WO2024083080A1 - 多路径配置方法、装置及*** - Google Patents

多路径配置方法、装置及*** Download PDF

Info

Publication number
WO2024083080A1
WO2024083080A1 PCT/CN2023/124764 CN2023124764W WO2024083080A1 WO 2024083080 A1 WO2024083080 A1 WO 2024083080A1 CN 2023124764 W CN2023124764 W CN 2023124764W WO 2024083080 A1 WO2024083080 A1 WO 2024083080A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
terminal device
identifier
cell
srb
Prior art date
Application number
PCT/CN2023/124764
Other languages
English (en)
French (fr)
Inventor
叶宽
彭文杰
王瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024083080A1 publication Critical patent/WO2024083080A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application relates to the field of communication technology, and in particular to a multipath configuration method, device and system.
  • CA carrier aggregation
  • CC component carriers
  • RRC radio resource control
  • a remote UE adds a new path to the base station, for example, the remote UE has established a non-indirect path with the base station through a relay UE, and a direct path between the remote UE and the base station needs to be configured
  • the method of configuring PCell in the existing CA configuration process is adopted, then, although the RRC message sent by the base station to the relay UE carries a synchronization reconfiguration parameter, the synchronization reconfiguration parameter can only be used for the remote UE to perform cell switching, that is, the synchronization reconfiguration parameter can only be used for the remote UE to switch from the first cell accessed in the non-indirect path to the second cell to be accessed in the direct path, and cannot be used for the remote UE to access the first cell and the second cell at the same time, that is, the remote UE cannot maintain the non-indirect path and the direct path between the base station at the same time.
  • the embodiments of the present application provide a multi-path configuration method, device and system for providing a process for a remote UE to establish multiple paths from a single path.
  • a multi-path configuration method is provided, and the device for executing the multi-path configuration method may be a first terminal device, or may be a module applied to the first terminal device, such as a chip or a chip system.
  • the following description is taken as an example in which the execution subject is the first terminal device.
  • the first terminal device receives a first message from a network device via a first path; wherein the first message is used to instruct the first terminal device to establish a second path between the first terminal device and the network device, and the second path is different from the first path; the first terminal device adopts the first message to establish the second path in the second cell; the first terminal device maintains a media access control MAC entity, and the MAC entity is used for the first terminal device to communicate with the network device via a direct path in the first path or the second path.
  • the first terminal device since the first message can instruct the first terminal device to establish a second path between the first terminal device and the network device, the first terminal device can also establish a second path different from the first path based on the establishment of the first path, thereby achieving the purpose of the first terminal device communicating with the network device through multiple paths, namely the first path and the second path.
  • the first message includes the second identifier of the first terminal device, and the second identifier of the first terminal device is the identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path; before the first terminal device receives the first message from the network device through the first path, the method also includes: the first terminal device receives and stores the first identifier of the first terminal device from the network device through the first path, and the first identifier of the first terminal device is the identifier of the first terminal device in the first cell to be accessed by the first terminal device in the first path; after the first terminal device receives the first message from the network device through the first path, the method also includes: the first terminal device updates the stored first identifier of the first terminal device to the second identifier of the first terminal device; or, the first terminal device stores the second identifier of the first terminal device.
  • the first terminal device only stores the most recently received second identifier of the first terminal device, which can effectively save the storage resources of the first terminal device.
  • the first terminal device simultaneously stores the first identifier of the first terminal device.
  • a first identifier of a terminal device and a second identifier of the first terminal device so that the first identifier of the first terminal device is used when data is subsequently transmitted through the first path, and the second identifier of the first terminal device is used when data is transmitted through the second path, which is easier to distinguish.
  • the first message includes the second identifier of the first terminal device and the identifier of the second cell to be accessed by the first terminal device in the second path, the second identifier of the first terminal device is the identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path; before the first terminal device receives the first message from the network device through the first path, the method further includes: the first terminal device receives and stores the first identifier of the first terminal device from the network device through the first path, the first identifier of the first terminal device is the identifier of the first terminal device in the first cell accessed by the first terminal device in the first path; after the first terminal device receives the first message from the network device through the first path, the method further includes: if the identifier of the second cell is the same as the identifier of the first cell, the first terminal device updates the stored first identifier of the first terminal device to the second identifier of the first terminal device; if the
  • the first terminal device only stores the second identifier of the first terminal device received the most recently, which can effectively save the storage resources of the first terminal device. If the first cell and the second cell are different cells, the first terminal device stores the first identifier of the first terminal device and the second identifier of the first terminal device at the same time, so that the first identifier of the first terminal device is used when data is subsequently transmitted through the first path, and the second identifier of the first terminal device is used when data is transmitted through the second path, which is easier to distinguish.
  • the first path is an indirect path
  • the second path is a direct path
  • the first path is a direct path
  • the second path is an indirect path
  • the first message includes an identifier of the second terminal device
  • the first message does not include a second identifier of the first terminal device
  • the second identifier of the first terminal device is an identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path
  • the second terminal device is a relay device between the first terminal device and the network device
  • the first terminal device uses the first message to establish the second path, including: the first terminal device uses the identifier of the second terminal device in the first message to establish a sidelink SL connection with the second terminal device. Since the first message does not include the second identifier of the first terminal device, the first terminal device only needs to store an identifier of the first terminal device, that is, the first identifier of the first terminal device, to achieve the establishment of multiple paths.
  • the method further includes: the first terminal device determines a primary cell to which the first terminal device accesses, wherein the primary cell is a special cell on the target path.
  • the determined primary cell can be used by the first terminal device to uniquely determine an identifier of the first terminal device in the primary cell, and use the identifier to perform RRC reconstruction or cell switching.
  • the target path is the first path; the target path is a direct path between the first path and the second path; the target path is a non-direct path between the first path and the second path; or, the target path is a path randomly selected by the first terminal device from the first path and the second path.
  • the target path is the path where the SRB is located.
  • the target path is the first path; the target path is a directly connected path between the first path and the second path; the target path is a non-directly connected path between the first path and the second path; or, the target path is a path randomly selected by the first terminal device from the first path and the second path.
  • the target path is the path where the primary radio link control RLC entity is located.
  • the primary cell when the target path is the first path, the primary cell is the first cell; when the target path is the second path, the primary cell is the second cell.
  • the method further includes: the first terminal device determines a primary path.
  • the main path is a first path; the main path is the first path the main path is a directly connected path among the first path and the second path; the main path is a non-directly connected path among the first path and the second path; or, the main path is a path randomly selected by the first terminal device from the first path and the second path.
  • the primary path is the path where the SRB is located.
  • the main path is the first path; the main path is a direct path between the first path and the second path; the main path is a non-direct path between the first path and the second path; or, the main path is a path randomly selected by the first terminal device from the first path and the second path.
  • the primary path is the path where the primary RLC entity is located.
  • a first terminal device for implementing the above method.
  • the first terminal device includes a module, unit, or means corresponding to the above method, and the module, unit, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the first terminal device includes: a transceiver module and a processing module; the transceiver module is used to receive a first message from a network device through a first path; wherein the first message is used to instruct the first terminal device to establish a second path between the first terminal device and the network device, and the second path is different from the first path; the transceiver module is also used to adopt the first message to establish the second path in the second cell; the processing module is used to maintain a media access control MAC entity, and the MAC entity is used for the first terminal device to communicate with the network device through a direct path in the first path or the second path.
  • the first terminal device also includes a storage module;
  • the first message includes a second identifier of the first terminal device, and the second identifier of the first terminal device is the identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path;
  • the transceiver module is also used to receive the first identifier of the first terminal device from the network device through the first path, and the first identifier of the first terminal device is the identifier of the first terminal device in the first cell to be accessed by the first terminal device in the first path;
  • the storage module is used to store the first identifier of the first terminal device;
  • the processing module is also used to update the first identifier of the first terminal device stored in the storage module to the second identifier of the first terminal device; or, the storage module is also used to store the second identifier of the first terminal device.
  • the first terminal device also includes: a storage module; the first message includes the second identifier of the first terminal device and the identifier of the second cell to be accessed by the first terminal device in the second path, and the second identifier of the first terminal device is the identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path; the transceiver module is also used to receive the first identifier of the first terminal device from the network device through the first path, and the first identifier of the first terminal device is the identifier of the first terminal device in the first cell to be accessed by the first terminal device in the first path; the storage module is used to store the first identifier of the first terminal device; the processing module is also used to update the stored first identifier of the first terminal device to the second identifier of the first terminal device if the identifier of the second cell is the same as the identifier of the first cell; the storage module is also used to
  • the first path is an indirect path
  • the second path is a direct path
  • the first path is a direct path
  • the second path is an indirect path
  • the first message includes an identifier of the second terminal device, and the first message does not include a second identifier of the first terminal device
  • the second identifier of the first terminal device is an identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path
  • the second terminal device is a relay device between the first terminal device and the network device
  • the transceiver module is also used to adopt the first message to establish the second path in the second cell, including: using the identifier of the second terminal device in the first message to establish a side link SL connection with the second terminal device.
  • the processing module is also used to determine a primary cell to which the first terminal device accesses, wherein the primary cell is a special cell on the target path.
  • the target path is the first path; the target path is the The target path is a directly connected path among the first path and the second path; the target path is an indirect connected path among the first path and the second path; or, the target path is a path randomly selected by the first terminal device from the first path and the second path.
  • the target path is the path where the SRB is located.
  • the target path is the first path; the target path is a direct path between the first path and the second path; the target path is a non-direct path between the first path and the second path; or, the target path is a path randomly selected by the first terminal device from the first path and the second path.
  • the target path is the path where the primary radio link control RLC entity is located.
  • the primary cell when the target path is the first path, the primary cell is the first cell; when the target path is the second path, the primary cell is the second cell.
  • the processing module is further used to determine a main path.
  • the main path is the first path; the main path is a direct path between the first path and the second path; the main path is a non-direct path between the first path and the second path; or, the main path is a path randomly selected by the first terminal device from the first path and the second path.
  • the primary path is the path where the SRB is located.
  • the main path is the first path; the main path is a direct path between the first path and the second path; the main path is a non-direct path between the first path and the second path; or, the main path is a path randomly selected by the first terminal device from the first path and the second path.
  • the primary path is the path where the primary RLC entity is located.
  • a communication device comprising: a processor; the processor is used to couple with a memory, and after reading a computer instruction stored in the memory, execute the method as described in the first aspect according to the instruction.
  • the communication device further includes a memory; the memory is used to store computer instructions.
  • the communication device further includes a communication interface; the communication interface is used for the communication device to communicate with other devices.
  • the communication interface can be a transceiver, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc.
  • the communication device may be a chip or a chip system.
  • the communication device may be composed of a chip, or may include a chip and other discrete devices.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or the chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication system comprising: a network device, a second terminal device and a first terminal device for executing the method of the first aspect; wherein the second terminal device is a relay device between the first terminal device and the network device.
  • a computer-readable storage medium wherein instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer can execute the method described in the first aspect above.
  • the technical effects brought about by the second to fifth aspects can refer to the technical effects brought about by the different implementation methods in the above-mentioned first aspect, and will not be repeated here.
  • FIG1 is a schematic diagram of SL communication in the prior art
  • FIG2 is a schematic diagram of a communication scenario of multipath relay in the prior art
  • FIG3A is a schematic diagram of a protocol stack architecture when a remote UE and a relay UE communicate via a SL in the prior art
  • 3B is a schematic diagram of a protocol stack architecture when a remote UE and a relay UE communicate via an ideal non-3GPP link in the prior art
  • FIG4 is a schematic diagram of a base station configuring carrier aggregation for a UE in the prior art
  • FIG5A is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG5B is a schematic diagram of the architecture of another communication system provided in an embodiment of the present application.
  • FIG6 is a first structural diagram of a communication device provided in an embodiment of the present application.
  • FIG7 is a flow chart of a multipath configuration method provided in an embodiment of the present application.
  • FIG8 is a flowchart of a specific example of a multipath configuration method provided in an embodiment of the present application.
  • FIG9 is a flowchart of another specific example of a multipath configuration method provided in an embodiment of the present application.
  • FIG10 is a flowchart of another specific example of a multipath configuration method provided in an embodiment of the present application.
  • FIG. 11 is a second schematic diagram of the structure of the communication device provided in an embodiment of the present application.
  • data can be transmitted between UEs through a base station or directly between UEs without the aid of a base station. Similar to the Uu interface between the UE and the base station, the interface between the UEs can be called a PC5 interface.
  • SL link between UEs
  • UE 1 and UE 2 can transmit data through SL via the PC5 interface.
  • a typical application scenario of SL communication can be vehicle to everything (V2X).
  • V2X vehicle to everything
  • each vehicle can be regarded as a UE, and data can be transmitted directly between UEs through SL without the help of base stations, which can effectively reduce communication delays.
  • UE 1 in broadcast communication, similar to the base station broadcasting system information, UE 1 can send unencrypted broadcast service data to other UEs. Any UE within the effective receiving range, such as UE 2, can receive the data of the broadcast service if it is interested in the broadcast service.
  • UE 1 and UE 2 In unicast communication, similar to the RRC connection established between UE and base station before data communication, UE 1 and UE 2 first establish a unicast connection and then transmit data based on the negotiated identifier.
  • the data transmitted in unicast communication can be encrypted or unencrypted.
  • UE 1 and UE 2 in unicast communication can communicate only after the unicast connection is established.
  • Multicast communication may be communication between all UEs in a communication group, and any UE in the communication group may send or receive data of the multicast service.
  • a unicast communication of SL corresponds to a pair of source layer 2 identifier (layer-2 identifier, L2 ID) and destination L2 ID.
  • the source L2 ID and the destination L2 ID are included in each SL media access control (media access control, MAC) layer data protocol unit (protocol data unit, PDU) subheader to enable data to be transmitted from the sender to the correct receiver.
  • media access control media access control
  • PDU protocol data unit
  • radio bearer (RB).
  • RBs are services provided by Layer 2 for transmitting user data between the UE and the base station.
  • RBs include packet data convergence protocol (PDCP) entities, radio link control (RLC) protocol entities, MAC protocol entities, and resources allocated to the physical (PHY) layer.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • RBs can be specifically divided into data radio bearers (DRBs) for carrying data and signaling radio bearers (SRBs) for carrying signaling messages.
  • DRBs data radio bearers
  • SRBs signaling radio bearers
  • SL RBs include SL DRBs and SL SRBs.
  • RB configuration usually refers to the configuration of the PDCP layer and the service data adaptation protocol (SDAP) layer.
  • SDAP service data adaptation protocol
  • RLC bearers the protocol entities at and below the RLC layer can be referred to as RLC bearers, and the corresponding configurations are given in the RLC bearer configuration.
  • FIG. 2 shows a schematic diagram of the communication scenario of multipath relay.
  • the remote UE can communicate with the base station through both the direct path and the indirect path.
  • the remote UE and the base station can communicate directly through the Uu interface.
  • the remote UE can communicate with the base station through the relay UE, wherein the relay UE can communicate with the base station through the Uu interface, and the remote UE and the relay UE can communicate through the SL or through an ideal non-3GPP link.
  • FIG3A shows a schematic diagram of the protocol stack architecture when the remote UE and the relay UE communicate through the SL.
  • the remote UE side in addition to PDCP, there are two protocol stacks.
  • One of the protocol stacks is used to communicate with the base station through the Uu interface, including RLC, MAC and PHY; the other protocol stack is used to communicate with the relay UE through the PC5 interface, including the adaptation protocol, RLC, MAC and PHY.
  • the relay UE side there are two protocol stacks, which are used to communicate with the remote UE through the PC5 interface and to communicate with the base station through the Uu interface. Both protocol stacks include the adaptation protocol, RLC, MAC and PHY.
  • the adaptation protocol used when the remote UE and the relay UE communicate through the PC5 interface can be SRAP.
  • FIG3B shows a schematic diagram of a protocol stack architecture when a remote UE and a relay UE communicate via an ideal non-3GPP link.
  • the protocol stack for communicating with the relay UE via an ideal non-3GPP link includes an adaptation protocol and a PHY.
  • the protocol stack for communicating with the remote UE via an ideal non-3GPP link includes an adaptation protocol and a PHY.
  • the adaptation protocol may not be included in FIG3B.
  • a UE with carrier aggregation capability can transmit data on one or more CCs simultaneously.
  • CC can be further divided into a primary component carrier (PCC) between the base station and the PCell, and a secondary component carrier (SCC) between the base station and the SCell.
  • the PCell can be used to provide non-access stratum (NAS) mobility information when the RRC connection between the base station and the UE is established, reestablished or switched.
  • the SCell can also be used to provide security input when the RRC connection between the base station and the UE is reestablished or switched.
  • a PCell and one or more SCells can form a group of service cells.
  • the UE's service cell set consists of a PCell and one or more SCells.
  • each cell in the serving cell set has an independent hybrid automatic repeat request (HARQ) entity.
  • HARQ hybrid automatic repeat request
  • each cell in the serving cell set is assigned a transport block or authorized to generate a transport block.
  • Each transport block and its potential HARQ retransmissions are mapped to a corresponding cell.
  • the reconfiguration, addition and deletion of SCells can be performed by the base station through the RRC connection.
  • the base station can add, delete, retain or reconfigure SCells for use with the target Pcell.
  • dedicated RRC signaling is used to send all system information required for the SCell. That is, when the UE is in the RRC connected (RRC_CONNECTED) state, it does not need to obtain the broadcast system information directly from the SCell.
  • a multi-path relay communication scenario for example, when a non-direct path has been established between the remote UE and the base station through the relay UE and a direct path between the remote UE and the base station needs to be configured, if the SCell configuration method in the existing carrier aggregation configuration process is adopted, then the RRC message sent by the base station to the relay UE will not carry the synchronization reconfiguration parameters for the remote UE to randomly access the base station, resulting in the remote UE being unable to randomly access the base station, and further unable to establish a direct path.
  • the base station can allocate a first cell radio network temporary identifier (C-RNTI) to the remote UE, where the first C-RNTI is the C-RNTI of the remote UE in the first cell accessed by the remote UE in the indirect path, and send the first C-RNTI to the remote UE via the indirect path.
  • C-RNTI cell radio network temporary identifier
  • the synchronization reconfiguration parameters carried in the message may include a second C-RNTI, which is the C-RNTI of the remote UE in the second cell accessed by the remote UE in the direct path.
  • At least one of the following or its similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • at least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the words "first”, “second” and the like are used to distinguish the same items or similar items with substantially the same functions and effects.
  • a communication system 50 is provided in an embodiment of the present application.
  • the communication system 50 includes a first terminal device 501, a second terminal device 502, and a network device 503.
  • the path for the first terminal device 501 to communicate with the network device 503 through the second terminal device 502 is the first path.
  • the path for the first terminal device 501 to directly communicate with the network device 503 is the second path.
  • the first path is a non-direct connection path
  • the second path is a direct connection path.
  • the communication system 51 includes a first terminal device 501, a second terminal device 502, and a network device 503.
  • the path for the first terminal device 501 to directly communicate with the network device 503 is the first path.
  • the path for the first terminal device 501 to communicate with the network device 503 through the second terminal device 502 is the second path.
  • the first path is a direct path
  • the second path is an indirect path.
  • first path and the second path is a direct path and the other path is an indirect path.
  • first path and the second path may also be two different indirect paths, and the embodiment of the present application does not impose any limitation on this.
  • the first terminal device 501 receives a first message from the network device 503 through the first path; wherein the first message is used to instruct the first terminal device 501 to establish a second path between the first terminal device 501 and the network device 503, and the second path is different from the first path; the first terminal device 501 uses the first message to establish the second path in the second cell; the first terminal device 501 maintains a MAC entity, and the MAC entity is used for the first terminal device 501 to communicate with the network device 503 through a direct path in the first path or the second path.
  • the network device 503 in the embodiment of the present application is a device that connects a terminal device to a wireless network, which may be a base station, an evolved NodeB (eNodeB), a transmission reception point (TRP), a next generation NodeB (gNB) in a 5G mobile communication system, a base station in a future mobile communication system, or an access node in a wireless-fidelity (Wi-Fi) system, etc.; it may also be a module or unit that completes part of the functions of a base station, for example, it may be a centralized unit (CU) or a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • network devices refer to wireless access network devices.
  • the first terminal device 501 or the second terminal device 502 in the embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that can be used in a terminal, etc.
  • the above-mentioned terminal may be a UE, an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a terminal agent or a terminal device, etc. in a 5G network or a future evolved public land mobile network (public land mobile network, PLMN).
  • PLMN public land mobile network
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, wireless terminals in industrial control or self-driving, wireless terminals in remote medical, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the first terminal device 501 or the second terminal device 502 can be fixed or movable, and the embodiments of the present application do not specifically limit this.
  • the first terminal device 501 or the second terminal device 502 includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system, or Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of the present application, as long as it can communicate according to the method provided in the embodiment of the present application by running a program that records the code of the method provided in the embodiment of the present application.
  • the execution subject of the method provided in the embodiment of the present application may be the first terminal device 501 or the second terminal device 502, or a functional module in the first terminal device 501 or the second terminal device 502 that can call and execute a program; or, the execution subject of the method provided in the embodiment of the present application may be the network device 503, or a functional module in the network device 503 that can call and execute a program.
  • the related functions of the first terminal device, the second terminal device or the network device in the embodiment of the present application can be implemented by one device, or by multiple devices together, or by one or more functional modules in one device, and the embodiment of the present application does not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, or software functions running on dedicated hardware, or a combination of hardware and software, or virtualization functions instantiated on a platform (e.g., a cloud platform).
  • a platform e.g., a cloud platform
  • the relevant functions of the first terminal device, the second terminal device or the network device in the embodiment of the present application can be implemented by the communication device 600 in Figure 6.
  • FIG6 is a schematic diagram of the structure of a communication device 600 provided in an embodiment of the present application.
  • the communication device 600 includes one or more processors 601, a communication line 602, and at least one communication interface (FIG. 6 is only exemplary, and a communication interface 604 and a processor 601 are used as examples for illustration), and may optionally include a memory 603.
  • Processor 601 can be a CPU, a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • ASIC application-specific integrated circuit
  • the communication line 602 may include a pathway for connecting different components.
  • the communication interface 604 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, WLAN, etc.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 604 may also be a transceiver circuit located in the processor 601 to implement signal input and signal output of the processor.
  • the memory 603 may be a device with a storage function.
  • it may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory may exist independently and be connected to the processor through the communication line 602. The memory may also be integrated with the processor.
  • the memory 603 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 601.
  • the processor 601 is used to execute the computer-executable instructions stored in the memory 603, thereby implementing the multipath configuration method provided in the embodiment of the present application.
  • the processor 601 may also perform the processing-related functions in the multipath configuration method provided in the following embodiment of the present application, and the communication interface 604 is responsible for communicating with other devices or communication networks.
  • the embodiment of the present application does not specifically describe this. Body limitation.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the processor 601 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 6 .
  • the communication device 600 may include multiple processors, such as the processor 601 and the processor 607 in FIG6. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the communication device 600 may further include an output device 605 and an input device 606.
  • the output device 605 communicates with the processor 601 and may display information in a variety of ways.
  • a multipath configuration method is provided in an embodiment of the present application, and the multipath configuration method includes the following steps:
  • Step S701 A first terminal device receives a first message from a network device via a first path; wherein the first message is used to instruct the first terminal device to establish a second path between the first terminal device and the network device, and the second path is different from the first path.
  • the first terminal device can be the remote UE in the above Figures 2, 3A or 3B; the second terminal device can be the relay UE in the above Figures 2, 3A or 3B; the network device can be the base station in the above Figures 2, 3A or 3B.
  • the first path may be an indirect path or a direct path.
  • the second path is a direct path; when the first path is a direct path, the second path is an indirect path.
  • the first message may be an RRC reconfiguration message.
  • the first message includes a second identifier of the first terminal device, and the second identifier of the first terminal device is an identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path; before step S701, the multi-path configuration method provided in the embodiment of the present application also includes: the first terminal device receives and stores the first identifier of the first terminal device from the network device through the first path, and the first identifier of the first terminal device is an identifier of the first terminal device in the first cell to be accessed by a terminal device in the first path; after step S701, the multi-path configuration method provided in the embodiment of the present application also includes: the first terminal device updates the stored first identifier of the first terminal device to the second identifier of the first terminal device; or, the first terminal device stores the second identifier of the first terminal device.
  • the first terminal device only stores the second identifier of the first terminal device that is most recently received, which can effectively save the storage resources of the first terminal device.
  • the first terminal device stores the first identifier of the first terminal device and the second identifier of the first terminal device at the same time, so that the first identifier of the first terminal device is used when data is subsequently transmitted through the first path, and the second identifier of the first terminal device is used when data is transmitted through the second path, which is easier to distinguish.
  • the identifier of the first terminal device may be uniquely determined by the path and the cell on the path. This is explained uniformly and will not be repeated below.
  • the identifier of the first terminal device may be the C-RNTI of the first terminal device.
  • the second identifier of the first terminal device may be included in the synchronization reconfiguration parameter.
  • the identifier of the first terminal device can be a parameter name
  • the value of the first identifier or the second identifier of the first terminal device that is, the first value or the second value
  • the first terminal device updates the stored first identifier of the first terminal device to the second identifier of the first terminal device, which can also be expressed as: the first terminal device changes or replaces the value of the identifier of the first terminal device from the first value to the second value; or, the first terminal device replaces the first value with the second value as the value of the identifier of the first terminal device; or, the first terminal device sets the value of the identifier of the first terminal device to the second value.
  • the first identifier of the first terminal device may be the same as or different from the second identifier of the first terminal device.
  • the above-mentioned scheme of “the first terminal device updates the stored first identifier of the first terminal device to the second identifier of the first terminal device” is referred to as Scheme 1
  • the above-mentioned scheme of “the first terminal device stores the first identifier of the first terminal device and the second identifier of the first terminal device” is referred to as Scheme 2.
  • the above solution 1 can be executed in the scenario shown in FIG5A or in the scenario shown in FIG5B.
  • the above solution 2 can be executed in the scenario shown in FIG5A or in the scenario shown in FIG5B.
  • the present application embodiment does not make any limitation to this.
  • the first message includes a second identifier of the first terminal device and a second small path to be accessed by the first terminal device.
  • the identifier of the area, the second identifier of the first terminal device is the identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path;
  • the multi-path configuration method provided in the embodiment of the present application also includes: the first terminal device receives and stores the first identifier of the first terminal device from the network device through the first path, and the first identifier of the first terminal device is the identifier of the first terminal device in the first cell accessed by the first terminal device in the first path; after step S702, the multi-path configuration method provided in the embodiment of the present application also includes: if the identifier of the second cell is the same as the identifier of the first cell, the first terminal device updates the stored first identifier of the first terminal device to the second identifier of the first terminal device; if the identifier of the second cell is different from the identifie
  • the first terminal device only stores the second identifier of the first terminal device that is most recently received, which can effectively save the storage resources of the first terminal device. If the first cell and the second cell are different cells, the first terminal device stores the first identifier of the first terminal device and the second identifier of the first terminal device at the same time, so that the first identifier of the first terminal device is used when data is subsequently transmitted through the first path, and the second identifier of the first terminal device is used when data is transmitted through the second path, which is easier to distinguish.
  • the identifier of the first cell may be a physical cell identifier (PCI) and/or a cell global identifier (CGI) of the first cell.
  • the identifier of the second cell may be a PCI and/or a CGI of the second cell.
  • the second identifier of the first terminal device and the identifier of the second cell may be included in the synchronization reconfiguration parameter.
  • Step S702 The first terminal device uses the first message to establish a second path in the second cell.
  • the first path is a direct path
  • the second path is an indirect path
  • the first message includes an identifier of the second terminal device
  • the first message does not include a second identifier of the first terminal device
  • the second identifier of the first terminal device is an identifier of the first terminal device in the second cell to be accessed by the first terminal device in the second path
  • the second terminal device is a relay device between the first terminal device and the network device
  • step S702 includes: the first terminal device uses the identifier of the second terminal device in the first message to establish an SL connection with the second terminal device.
  • this scheme is referred to as Scheme 4.
  • Scheme 4 can only be executed in the scenario shown in FIG. 5B.
  • the first terminal device since the first message does not include the second identifier of the first terminal device, the first terminal device only needs to store one identifier of the first terminal device, that is, the first identifier of the first terminal device, to achieve the establishment of multiple paths.
  • the same solution can be executed, for example, solution one, solution two or solution three can be executed.
  • different solutions can also be executed, for example, in the scenario shown in FIG. 5A, solution one, solution two or solution three are executed, and in the scenario shown in FIG. 5B, solution four is executed.
  • solution one is executed, and in the scenario shown in FIG. 5B, solution two is executed; or, in the scenario shown in FIG. 5A, solution two is executed, and in the scenario shown in FIG. 5B, solution one is executed; or, in the scenario shown in FIG. 5A, solution one is executed, and in the scenario shown in FIG. 5A, solution one is executed, and in the scenario shown in FIG.
  • solution three is executed; or, in the scenario shown in FIG. 5A, solution three is executed, and in the scenario shown in FIG. 5B, solution one is executed; or, in the scenario shown in FIG. 5A, solution two is executed, and in the scenario shown in FIG. 5B, solution three is executed; or, in the scenario shown in FIG. 5A, solution three is executed, and in the scenario shown in FIG. 5B, solution one is executed; or, in the scenario shown in FIG. 5A, solution two is executed, and in the scenario shown in FIG. 5B, solution three is executed; or, in the scenario shown in FIG. 5A, solution three is executed, and in the scenario shown in FIG. 5B, solution two is executed.
  • the embodiments of the present application do not impose any limitation on this.
  • Step S703 The first terminal device maintains a MAC entity, and the MAC entity is used for the first terminal device to communicate with the network device through a direct connection path in the first path or the second path.
  • the MAC entity in the embodiment of the present application may be a Uu MAC entity.
  • the first terminal device Different from the situation in which the first terminal device needs to maintain two MAC entities under dual connectivity (DC), in an embodiment of the present application, the first terminal device only needs to maintain one MAC entity.
  • DC dual connectivity
  • the multipath configuration method provided in the embodiment of the present application further includes: the first terminal device creates a MAC entity.
  • the first terminal device since the first message can instruct the first terminal device to establish a second path between the first terminal device and the network device, the first terminal device can also establish a second path different from the first path based on the establishment of the first path, thereby achieving the purpose of the first terminal device communicating with the network device through multiple paths, namely the first path and the second path.
  • the first terminal device is a remote UE
  • the second terminal device is a relay UE
  • the network device is Taking the gNB
  • the first message is an RRC reconfiguration message
  • the first identifier of the first terminal device is the first C-RNTI
  • the second identifier of the first terminal device is the second C-RNTI as an example
  • FIG8 shows a specific example of the multipath configuration method provided in an embodiment of the present application, which includes the following steps:
  • Step S801 The remote UE and the gNB may communicate via a non-direct path. Alternatively, the remote UE and the gNB may communicate via a relay UE.
  • Step S801 may include: the relay UE may send the identifier of the accessed SpCell to the remote UE. Accordingly, the remote UE may receive the identifier of the SpCell accessed by the relay UE from the relay UE, and use the SpCell as the cell accessed by the remote UE in the non-direct path, that is, the first cell.
  • Step S801 may also include: the relay UE may forward the first C-RNTI configured by the gNB to the remote UE. Accordingly, the remote UE may receive the first C-RNTI from the relay UE.
  • Step S802 The gNB may send an RRC reconfiguration message to the remote UE via a non-direct path.
  • the RRC reconfiguration message is used to instruct the remote UE to establish a direct path. Accordingly, the remote UE may receive the RRC reconfiguration message from the gNB via the non-direct path.
  • the trigger condition of step S802 may be: the gNB decides to configure multipath for the remote UE based on the measurement reporting result of the remote UE.
  • the RRC reconfiguration message may include a synchronization reconfiguration parameter
  • the synchronization reconfiguration parameter may include the second C-RNTI and an identifier of the second cell.
  • the RRC reconfiguration message may also include a random access channel (RACH) dedicated configuration (config dedicated).
  • RACH random access channel
  • the random access channel dedicated configuration may be used for the remote UE to randomly access the gNB in the following step S804.
  • the random access channel dedicated configuration may include time domain resources and/or frequency domain resources in the second cell for the UE to randomly access the gNB, information supporting contention or non-contention random access, and information supporting two-step or four-step random access.
  • step S802 the following steps may be performed: the remote UE creates a Uu MAC entity for the direct path. This step may also be performed before step S801, and the embodiment of the present application does not impose any limitation on this.
  • the remote UE maintains the Uu MAC entity.
  • Step S803 The remote UE may send an RRC reconfiguration complete message to the gNB. Accordingly, the gNB may receive an RRC reconfiguration complete message from the remote UE.
  • FIG8 schematically shows that step S803 is performed on a non-directly connected path.
  • Step S804 The remote UE initiates a random access procedure, that is, the remote UE uses an RRC reconfiguration message to establish a direct connection path in the second cell.
  • the remote UE may randomly access the gNB on the time domain resources and/or frequency domain resources of the second cell; or, the remote UE may randomly access the gNB on the time domain resources and/or frequency domain resources included in the RRC reconfiguration message; or, the remote UE may randomly access the gNB according to the system message.
  • the embodiment of the present application does not impose any limitation on this.
  • step S803 may be performed first, and then step S804; or, step S804 may be performed first, and then step S803; or, step S803 and step S804 may be performed simultaneously.
  • the present application embodiment does not impose any limitation on this.
  • step S803 Before the remote UE successfully randomly accesses the gNB, that is, before the direct path is established, step S803 may be performed on the indirect path. After the remote UE successfully randomly accesses the gNB, that is, after the direct path is established, step S803 may be performed on the indirect path and/or the direct path.
  • the second cell can be regarded as the SpCell accessed by the remote UE on the direct connection path.
  • the gNB can also configure one or more SCells for the remote UE on the direct connection path, and the one or more SCells and the second cell constitute the service cell set of the remote UE on the direct connection path.
  • the second C-RNTI can be used by the gNB to allocate time domain resources and/or frequency domain resources for data transmission to the remote UE.
  • the gNB can use the second C-RNTI when scheduling time domain resources and/or frequency domain resources for data transmission through the direct path.
  • the remote UE Before the direct path is established, including during the configuration of the direct path, the remote UE can maintain communication with the gNB through an indirect path. After the direct path is established, the remote UE can transmit data with the gNB through the direct path and/or the indirect path.
  • FIG. 9 shows another specific example of the multipath configuration method provided in an embodiment of the present application, which example includes the following steps:
  • Step S901 The remote UE and the gNB may communicate via a direct path. Alternatively, the remote UE and the gNB may communicate directly.
  • the gNB may configure a first cell and one or more SCells for a remote UE.
  • the first cell is the SpCell of the remote UE on the direct path.
  • Step S901 may include: the gNB may send an identifier of the first cell and a first C-RNTI to the remote UE. Accordingly, the remote UE receives the identifier of the first cell and the first C-RNTI from the gNB.
  • the remote UE can maintain the Uu MAC entity.
  • Step S902 The gNB may send an RRC reconfiguration message to the relay UE. Accordingly, the relay UE may receive the RRC reconfiguration message from the gNB.
  • Step S903 The relay UE may send an RRC reconfiguration completion message to the gNB. Accordingly, the gNB may receive an RRC reconfiguration completion message from the relay UE.
  • the gNB can establish an RRC connection with the relay UE so as to subsequently forward the downlink data to the remote UE or assist the remote UE in sending uplink data to the gNB.
  • Step S904 The gNB may send an RRC reconfiguration message to the remote UE via a direct path.
  • the RRC reconfiguration message is used to instruct the remote UE to establish a non-direct path. Accordingly, the remote UE may receive the RRC reconfiguration message from the gNB via the direct path.
  • the trigger condition of step S904 may be: the gNB selects a suitable relay UE for the remote UE based on the measurement reporting result of the remote UE.
  • the RRC reconfiguration message may include a synchronization reconfiguration parameter
  • the synchronization reconfiguration parameter may include the second C-RNTI and an identifier of the second cell.
  • the RRC reconfiguration message may include a synchronization reconfiguration parameter, which may include an identifier of the second cell and an identifier of the relay UE, but not the second C-RNTI.
  • a synchronization reconfiguration parameter which may include an identifier of the second cell and an identifier of the relay UE, but not the second C-RNTI.
  • Step S905 Establish a SL connection between the remote UE and the relay UE.
  • steps S902 and S903 may be performed before steps S904 and S905, or after steps S904 and S905, and the embodiment of the present application does not impose any limitation on this.
  • Step S906 The remote UE sends an RRC reconfiguration complete message to the gNB. Accordingly, the gNB receives the RRC reconfiguration complete message from the remote UE.
  • the remote UE Before the indirect path is established, including during the configuration of the indirect path, the remote UE can maintain data transmission with the gNB via the direct path. After the indirect path is established, the remote UE can perform data transmission with the gNB via the direct path and/or the indirect path.
  • step S905 may be performed first, and then step S906; or, step S906 may be performed first, and then step S905; or, step S905 and step S906 may be performed simultaneously.
  • step S906 may be performed on the direct path.
  • step S906 may be performed on the indirect path and/or the direct path.
  • the multipath configuration method further includes: the first terminal device determines a primary cell to which the first terminal device accesses, wherein the primary cell is a special cell on the target path.
  • the determined primary cell can be used by the first terminal device to uniquely determine an identifier of the first terminal device in the primary cell, and use the identifier to perform RRC reconstruction or cell switching.
  • the remote UE can simultaneously access the first cell on the indirect path and the second cell on the direct path.
  • the gNB can configure the service including the second cell for the remote UE.
  • the first terminal device determines a primary cell to be accessed by the first terminal device, that is, the remote UE selects a cell from the first cell and the serving cell set including the second cell as the primary cell to be accessed by the remote UE.
  • the gNB can configure a service cell set including the first cell for the remote UE.
  • the remote UE can simultaneously access the service cell set including the first cell on the direct path and the second cell on the indirect path.
  • the first terminal device determines the primary cell accessed by the first terminal device, that is, the remote UE selects a cell from the service cell set including the first cell and the second cell as the primary cell accessed by the remote UE.
  • the target path is the first path; the target path is a direct path between the first path and the second path; the target path is an indirect path between the first path and the second path; or the target path is a path randomly selected by the first terminal device from the first path and the second path.
  • the target path is the path where the SRB is located.
  • the SRB in the embodiment of the present application may be SRB 1.
  • the network device may configure a separation SRB 1 and a replication SRB 1 for SRB 1.
  • the target path is the first path; the target path is a direct path between the first path and the second path; the target path is a non-direct path between the first path and the second path; or, the target path is a path randomly selected by the first terminal device from the first path and the second path.
  • the target path is a path where a primary RLC entity is located.
  • FIG. 10 shows another specific example of the multipath configuration method provided in an embodiment of the present application, which is used for a remote UE to perform RRC reestablishment, and includes the following steps:
  • Step S1001 The remote UE sends an RRC Reestablishment Request to the target gNB through the source gNB.
  • the target gNB receives the RRC Reestablishment Request from the remote UE through the source gNB.
  • the triggering condition of step S1001 may refer to the triggering condition for reestablishing the RRC connection in the prior art, which will not be repeated here.
  • the source gNB in the embodiment shown in Figure 10 may be the gNB in Figure 8 or 9.
  • the RRC re-establishment request may include the primary cell accessed by the remote UE and the C-RNTI of the remote UE in the primary cell.
  • the scheme for determining the primary cell accessed by the remote UE can refer to the above embodiment and will not be repeated here.
  • the primary cell accessed by the remote UE is the first cell; when the target path is the second path, the primary cell accessed by the remote UE is the second cell.
  • Step S1002 The target gNB sends a retrieve UE context request to the source gNB, where the retrieve UE context request includes the C-RNTI of the remote UE in the primary cell to which the remote UE accesses.
  • the source gNB receives the retrieve UE context request from the target gNB.
  • the source gNB and the target gNB in the embodiment of the present application may be the same gNB or different gNBs.
  • the source gNB and the target gNB are the same gNB, the source gNB may obtain the context of the remote UE locally without performing the interaction between step S1002 and the following step S1003.
  • the source gNB may perform integrity verification using two short MAC-Is. If the source gNB succeeds in verifying using at least one short MAC-I, continue to perform the following steps.
  • Step S1003 The source gNB sends a retrieve UE context response to the target gNB, where the retrieve UE context request includes the context of the remote UE.
  • the target gNB receives the retrieve UE context response from the source gNB.
  • Step S1004 The target gNB sends an RRC Reestablishment message to the remote UE through the source gNB.
  • the remote UE receives the RRC Reestablishment message from the target gNB through the source gNB.
  • Step S1005 The remote UE sends an RRCReestablishmentComplete message to the target gNB through the source gNB.
  • the target gNB receives the RRCReestablishmentComplete message from the remote UE through the source gNB.
  • Step S1006 The target gNB sends an RRC reconfiguration message to the remote UE through the source gNB.
  • the remote UE receives the RRC reconfiguration message from the target gNB through the source gNB.
  • Step S1007 The remote UE sends an RRC Reconfiguration Complete message to the target gNB through the source gNB.
  • the target gNB receives the RRC Reconfiguration Complete message from the remote UE through the source gNB.
  • the target gNB can perform RRC reconfiguration to reestablish SRB2 and DRB.
  • the steps in the embodiment shown in Figure 10 are performed. If the triggering condition for reestablishing the RRC connection is met on a path other than the target path, the remote UE informs the source gNB through an RRC message, and the source gNB restores the RRC connection.
  • the target gNB may send to the remote UE an identifier of the primary cell to which the remote UE is accessing.
  • the scheme for determining the primary cell to which the remote UE is accessing can be referred to the above embodiment and will not be described in detail here.
  • the multi-path configuration method further includes: the first terminal device determines a primary path;
  • the main path is the first path; or, the main path is a direct path between the first path and the second path; or, the main path is a non-direct path between the first path and the second path; or, the main path is a path randomly selected by the first terminal device from the first path and the second path.
  • the primary path is the path where the SRB is located.
  • the main path is the first path; the main path is a direct path between the first path and the second path; the main path is a non-direct path between the first path and the second path; or, the main path is a path randomly selected by the first terminal device from the first path and the second path.
  • the primary path is a path where the primary RLC entity is located.
  • the method for determining the main path may refer to the method for determining the target path, which will not be described in detail here.
  • the method and/or step implemented by the first terminal device can also be implemented by a component (such as a chip or circuit) that can be used for the first terminal device; the method and/or step implemented by the second terminal device can also be implemented by a component (such as a chip or circuit) that can be used for the second terminal device; the method and/or step implemented by the network device can also be implemented by a component (such as a chip or circuit) that can be used for the network device.
  • the above mainly introduces the scheme provided by the embodiment of the present application from the perspective of interaction between various network elements. Accordingly, the embodiment of the present application also provides a communication device, which is used to implement the above various methods.
  • the communication device can be the first terminal device in the above method embodiment, or a device including the above first terminal device, or a component that can be used for the first terminal device; or, the communication device can be the second terminal device in the above method embodiment, or a device including the above second terminal device, or a component that can be used for the second terminal device; or, the communication device can be the network device in the above method embodiment, or a device including the above network device, or a component that can be used for the network device.
  • the communication device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • Fig. 11 shows a schematic diagram of the structure of a communication device 11.
  • the communication device 11 comprises a transceiver module 111.
  • the transceiver module 111 which may also be referred to as a transceiver unit, is used to implement a transceiver function, and may be, for example, a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the communication device 11 also includes a processing module 112; a transceiver module 111, which is used to receive a first message from a network device via a first path; wherein the first message is used to instruct the communication device 11 to establish a second path between the communication device 11 and the network device, and the second path is different from the first path; the transceiver module 111 is also used to establish a second path in a second cell using the first message; the processing module 112 is used to maintain a media access control MAC entity, and the MAC entity is used for the communication device 11 to communicate with the network device via a direct path in the first path or the second path.
  • the communication device 11 also includes a storage module 113;
  • the first message includes a second identifier of the communication device 11, and the second identifier of the communication device 11 is an identifier of the communication device 11 in the second cell to be accessed by the communication device 11 in the second path;
  • the transceiver module 11 is also used to receive the first identifier of the communication device 11 from the network device through the first path, and the first identifier of the communication device 11 is an identifier of the communication device 11 in the first cell to be accessed by the communication device 11 in the first path;
  • the storage module 113 is used to store the first identifier of the communication device 11;
  • the processing module 112 is also used to update the first identifier of the communication device 11 stored in the storage module 113 to the second identifier of the communication device 11; or, the storage module 113 is also used to store the second identifier of the communication device 11.
  • the communication device 11 also includes: a storage module 113; the first message includes the second identifier of the communication device 11 and the identifier of the second cell to be accessed by the communication device 11 in the second path, and the second identifier of the communication device 11 is the identifier of the communication device 11 in the second cell to be accessed by the communication device 11 in the second path; the transceiver module 11 is also used to receive the first identifier of the communication device 11 from the network device through the first path, and the first identifier of the communication device 11 is the identifier of the communication device 11 in the first cell to be accessed by the communication device 11 in the first path; the storage module 113 is used to store the first identifier of the communication device 11; the processing module 112 is also used to update the stored first identifier of the communication device 11 to the second identifier of the communication device 11 if the identifier of the second cell is the same as the identifier of the first cell; the storage module 113 is also used to store the second identifie
  • the first path is a direct path
  • the second path is an indirect path
  • the first message includes an identifier of the second terminal device, and the first message does not include a second identifier of the communication device 11
  • the second identifier of the communication device 11 is an identifier of the communication device 11 in the second cell to be accessed by the communication device 11 in the second path
  • the second terminal device is a relay device between the communication device 11 and the network device
  • the transceiver module 111 is also used to adopt the first message to establish a second path in the second cell, including: using the identifier of the second terminal device in the first message to establish a SL connection with the second terminal device.
  • the processing module 112 is further configured to determine a primary cell to which the communication device 11 accesses, wherein the primary cell is a special cell on the target path.
  • the processing module 112 is further configured to determine a main path.
  • the communication device 11 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above functions.
  • the communication device 11 When the communication device 11 is the first terminal device in the above method embodiment, in a simple embodiment, those skilled in the art may imagine that the communication device 11 may take the form of the communication device 600 shown in FIG. 6 .
  • the processor 601 or 607 in the communication device 600 shown in FIG6 can call the computer execution instruction stored in the memory 603, so that the communication device 600 executes the multipath configuration method in the above method embodiment.
  • the function/implementation process of the processing module 112 in FIG11 can be implemented by the processor 601 or 607 in the communication device 600 shown in FIG6 calling the computer execution instruction stored in the memory 603.
  • the function/implementation process of the transceiver module 111 in FIG11 can be implemented by a communication module connected via the communication interface 604 in FIG6.
  • the communication device 11 provided in this embodiment can execute the above-mentioned multi-path configuration method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of the two.
  • the software exists in the form of computer program instructions and is stored in a memory, and a processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built into an SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor is used to execute software instructions to perform calculations or processing.
  • it may further include necessary hardware accelerators, such as a field programmable gate array (FPGA), a PLD (programmable logic device), or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be any one or any combination of a CPU, a microprocessor, a digital signal processing (DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, a SoC, an FPGA, a PLD, a dedicated digital circuit, a hardware accelerator or a non-integrated discrete device, which can run the necessary software or not rely on the software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • SoC SoC
  • FPGA field-programmable gate array
  • PLD programmable gate array
  • a dedicated digital circuit a hardware accelerator or a non-integrated discrete device
  • an embodiment of the present application further provides a chip system, comprising: at least one processor and an interface, wherein the at least one processor is coupled to a memory via the interface, and when the at least one processor executes a computer program or instruction in the memory, the method in any of the above method embodiments is executed.
  • the communication device also includes a memory.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • wired e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)
  • wireless e.g., infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that a computer can access or may contain one or more servers, data centers and other data storage devices that can be integrated with the medium.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a DVD
  • a semiconductor medium e.g., a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供多路径配置方法、装置及***,用于提供远端UE由单路径建立多路径的流程。方法包括:第一终端设备通过第一路径接收来自网络设备的第一消息;其中,第一消息用于指示第一终端设备建立第一终端设备与网络设备之间的第二路径,第二路径不同于第一路径;第一终端设备采用第一消息,在第二小区建立第二路径;第一终端设备维护一个媒体接入控制MAC实体,MAC实体用于第一终端设备与网络设备通过第一路径或第二路径中的直连路径进行通信。

Description

多路径配置方法、装置及***
本申请要求于2022年10月17日提交国家知识产权局、申请号为202211284860.3、申请名称为“多路径配置方法、装置及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及多路径配置方法、装置及***。
背景技术
在载波聚合(carrier aggregation,CA)技术中,可以将多个分量载波(component carrier,CC)聚合起来供用户设备(user equipment,UE)使用,以增加通信带宽。其中,UE与基站之间仅有一个无线资源控制(radio resource control,RRC)连接,但基站可以为UE配置一个主小区(primary cell,PCell),以及一个或多个辅小区(secondary cell,SCell)。
当远端(remote)UE新增与基站之间的路径时,例如,远端UE已通过中继(relay)UE与基站之间建立了非直连(indirect)路径,需要配置远端UE与基站之间的直连(direct)路径时,若采用现有CA配置流程中配置PCell的方式,那么,基站向中继UE发送的RRC消息中虽然携带有同步重配参数,但该同步重配参数只能用于远端UE进行小区切换,即该同步重配参数只能用于远端UE从非直连路径中接入的第一小区切换至直连路径中的待接入的第二小区,而不能用于远端UE同时接入第一小区以及第二小区,即远端UE无法同时维护与基站之间的非直连路径和直连路径。
发明内容
本申请实施例提供多路径配置方法、装置及***,用于提供远端UE由单路径建立多路径的流程。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种多路径配置方法,执行该多路径配置方法的装置可以为第一终端设备,可以为应用于第一终端设备中的模块,例如芯片或芯片***。下面以执行主体为第一终端设备为例进行描述。第一终端设备通过第一路径接收来自网络设备的第一消息;其中,该第一消息用于指示该第一终端设备建立该第一终端设备与该网络设备之间的第二路径,该第二路径不同于该第一路径;该第一终端设备采用该第一消息,在第二小区建立该第二路径;该第一终端设备维护一个媒体接入控制MAC实体,该MAC实体用于该第一终端设备与该网络设备通过该第一路径或该第二路径中的直连路径进行通信。
在本申请实施例中,由于第一消息可以指示第一终端设备建立第一终端设备与网络设备之间的第二路径,因此,在第一路径建立好的基础上,第一终端设备还可以再建立与第一路径不同的第二路径,从而达到第一终端设备可以通过多路径,即第一路径和第二路径,与网络设备进行通信的目的。
结合上述第一方面,在一种可能的实现方式中,该第一消息包括该第一终端设备的第二标识,该第一终端设备的该第二标识为该第二路径中该第一终端设备待接入的该第二小区内该第一终端设备的标识;在该第一终端设备通过第一路径接收来自网络设备的第一消息之前,该方法还包括:该第一终端设备通过该第一路径接收并存储来自该网络设备的该第一终端设备的第一标识,该第一终端设备的该第一标识为该第一路径中该第一终端设备接入的第一小区内该第一终端设备的标识;在该第一终端设备通过第一路径接收来自网络设备的第一消息之后,该方法还包括:该第一终端设备将存储的该第一终端设备的该第一标识更新为该第一终端设备的该第二标识;或者,该第一终端设备存储该第一终端设备的该第二标识。在该方案中,第一终端设备仅存储最新收到的第一终端设备的第二标识,可以有效地节省第一终端设备的存储资源。第一终端设备同时存储第 一终端设备的第一标识,以及第一终端设备的第二标识,以便在后续通过第一路径传输数据时使用第一终端设备的第一标识,通过第二路径传输数据时使用第一终端设备的第二标识,更容易区分。
结合上述第一方面,在一种可能的实现方式中,该第一消息包括该第一终端设备的第二标识和该第二路径中该第一终端设备待接入的第二小区的标识,该第一终端设备的该第二标识为该第二路径中该第一终端设备待接入的该第二小区内该第一终端设备的标识;在该第一终端设备通过第一路径接收来自网络设备的第一消息之前,该方法还包括:该第一终端设备通过该第一路径接收并存储来自该网络设备的该第一终端设备的第一标识,该第一终端设备的第一标识为该第一路径中该第一终端设备接入的第一小区内该第一终端设备的标识;在该第一终端设备通过第一路径接收来自网络设备的第一消息之后,该方法还包括:若该第二小区的标识与该第一小区的标识相同,该第一终端设备将存储的该第一终端设备的该第一标识更新为该第一终端设备的该第二标识;若该第二小区的标识与该第一小区的标识不同,该第一终端设备存储该第一终端设备的该第二标识。若第一小区与第二小区是同一小区,则第一终端设备仅存储最新收到的第一终端设备的第二标识,可以有效地节省第一终端设备的存储资源。若第一小区与第二小区是不同的小区,第一终端设备同时存储第一终端设备的第一标识,以及第一终端设备的第二标识,以便后续通过第一路径传输数据时使用第一终端设备的第一标识,通过第二路径传输数据时使用第一终端设备的第二标识,更容易区分。
结合上述第一方面,在一种可能的实现方式中,该第一路径为非直连路径,该第二路径为直连路径。
结合上述第一方面,在一种可能的实现方式中,该第一路径为直连路径,该第二路径为非直连路径;该第一消息包括第二终端设备的标识,该第一消息不包括该第一终端设备的第二标识,该第一终端设备的该第二标识为该第二路径中该第一终端设备待接入的该第二小区内该第一终端设备的标识,该第二终端设备为该第一终端设备与该网络设备之间的中继设备;该第一终端设备采用该第一消息,建立该第二路径,包括:该第一终端设备采用该第一消息中该第二终端设备的标识,建立与该第二终端设备之间的侧行链路SL连接。由于第一消息不包括第一终端设备的第二标识,因此第一终端设备只需要存储一个第一终端设备的标识,即,第一终端设备的第一标识,就可以实现多路径的建立。
结合上述第一方面,在一种可能的实现方式中,在该第一终端设备建立该第二路径之后,该方法还包括:该第一终端设备确定该第一终端设备接入的主小区,其中,该主小区为目标路径上的特殊小区。在该方案中,确定出的主小区可用于第一终端设备唯一确定该主小区内第一终端设备的标识,并使用该标识进行RRC重建或小区切换。
结合上述第一方面,在一种可能的实现方式中,该目标路径为该第一路径;该目标路径为该第一路径和该第二路径中的直连路径;该目标路径为该第一路径和该第二路径中的非直连路径;或者,该目标路径为该第一终端设备从该第一路径和该第二路径中随机选择的一个路径。
结合上述第一方面,在一种可能的实现方式中,在该网络设备未为信令无线承载SRB配置分离SRB的情况下,该目标路径为该SRB所在的路径。
结合上述第一方面,在一种可能的实现方式中,在该网络设备为SRB配置分离SRB和复制SRB的情况下,该目标路径为该第一路径;该目标路径为该第一路径和该第二路径中的直连路径;该目标路径为该第一路径和该第二路径中的非直连路径;或者,该目标路径为该第一终端设备从该第一路径和该第二路径中随机选择的一个路径。
结合上述第一方面,在一种可能的实现方式中,在该网络设备为SRB配置分离SRB但未配置复制SRB的情况下,该目标路径为主无线链路控制RLC实体所在的路径。
结合上述第一方面,在一种可能的实现方式中,在该目标路径为该第一路径的情况下,该主小区为第一小区;在该目标路径为该第二路径的情况下,该主小区为该第二小区。
结合上述第一方面,在一种可能的实现方式中,在该第一终端设备建立该第二路径之后,该方法还包括:该第一终端设备确定主路径。
结合上述第一方面,在一种可能的实现方式中,该主路径为第一路径;该主路径为该第一路 径和该第二路径中的直连路径;该主路径为该第一路径和该第二路径中的非直连路径;或者,该主路径为该第一终端设备从该第一路径和该第二路径中随机选择的一个路径。
结合上述第一方面,在一种可能的实现方式中,在该网络设备未为SRB配置分离SRB的情况下,该主路径为该SRB所在的路径。
结合上述第一方面,在一种可能的实现方式中,在该网络设备为SRB配置分离SRB和复制SRB的情况下,该主路径为该第一路径;该主路径为该第一路径和该第二路径中的直连路径;该主路径为该第一路径和该第二路径中的非直连路径;或者,该主路径为该第一终端设备从该第一路径和该第二路径中随机选择的一个路径。
结合上述第一方面,在一种可能的实现方式中,在该网络设备为SRB配置分离SRB但未配置复制SRB的情况下,该主路径为主RLC实体所在的路径。
第二方面,提供了一种第一终端设备用于实现上述方法。该第一终端设备包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第二方面,在一种可能的实现方式中,该第一终端设备包括:收发模块和处理模块;该收发模块,用于通过第一路径接收来自网络设备的第一消息;其中,该第一消息用于指示该第一终端设备建立该第一终端设备与该网络设备之间的第二路径,该第二路径不同于该第一路径;该收发模块,还用于采用该第一消息,在第二小区建立该第二路径;该处理模块,用于维护一个媒体接入控制MAC实体,该MAC实体用于该第一终端设备与该网络设备通过该第一路径或该第二路径中的直连路径进行通信。
结合上述第二方面,在一种可能的实现方式中,该第一终端设备还包括存储模块;该第一消息包括该第一终端设备的第二标识,该第一终端设备的该第二标识为该第二路径中该第一终端设备待接入的该第二小区内该第一终端设备的标识;该收发模块,还用于通过该第一路径接收来自该网络设备的该第一终端设备的第一标识,该第一终端设备的该第一标识为该第一路径中该第一终端设备接入的第一小区内该第一终端设备的标识;该存储模块,用于存储该第一终端设备的该第一标识;该处理模块,还用于将存储模块中存储的第一终端设备的该第一标识更新为该第一终端设备的该第二标识;或者,该存储模块,还用于存储该第一终端设备的该第二标识。
结合上述第二方面,在一种可能的实现方式中,该第一终端设备还包括:存储模块;该第一消息包括该第一终端设备的第二标识和该第二路径中该第一终端设备待接入的第二小区的标识,该第一终端设备的该第二标识为该第二路径中该第一终端设备待接入的该第二小区内该第一终端设备的标识;该收发模块,还用于通过该第一路径接收来自该网络设备的该第一终端设备的第一标识,该第一终端设备的该第一标识为该第一路径中该第一终端设备接入的第一小区内该第一终端设备的标识;该存储模块,用于存储该第一终端设备的该第一标识;该处理模块,还用于若该第二小区的标识与该第一小区的标识相同,将存储的该第一终端设备的该第一标识更新为该第一终端设备的该第二标识;该存储模块,还用于若该第二小区的标识与该第一小区的标识不同,存储该第一终端设备的该第二标识。
结合上述第二方面,在一种可能的实现方式中,该第一路径为非直连路径,该第二路径为直连路径。
结合上述第二方面,在一种可能的实现方式中,该第一路径为直连路径,该第二路径为非直连路径;该第一消息包括第二终端设备的标识,该第一消息不包括该第一终端设备的第二标识,该第一终端设备的该第二标识为该第二路径中该第一终端设备待接入的该第二小区内该第一终端设备的标识,该第二终端设备为该第一终端设备与该网络设备之间的中继设备;该收发模块,还用于采用该第一消息,在第二小区建立该第二路径,包括:用于采用该第一消息中该第二终端设备的标识,建立与该第二终端设备之间的侧行链路SL连接。
结合上述第二方面,在一种可能的实现方式中,该处理模块,还用于确定该第一终端设备接入的主小区,其中,该主小区为目标路径上的特殊小区。
结合上述第二方面,在一种可能的实现方式中,该目标路径为该第一路径;该目标路径为该 第一路径和该第二路径中的直连路径;该目标路径为该第一路径和该第二路径中的非直连路径;或者,该目标路径为该第一终端设备从该第一路径和该第二路径中随机选择的一个路径。
结合上述第二方面,在一种可能的实现方式中,在该网络设备未为信令无线承载SRB配置分离SRB的情况下,该目标路径为该SRB所在的路径。
结合上述第二方面,在一种可能的实现方式中,在该网络设备为SRB配置分离SRB和复制SRB的情况下,该目标路径为该第一路径;该目标路径为该第一路径和该第二路径中的直连路径;该目标路径为该第一路径和该第二路径中的非直连路径;或者,该目标路径为该第一终端设备从该第一路径和该第二路径中随机选择的一个路径。
结合上述第二方面,在一种可能的实现方式中,在该网络设备为SRB配置分离SRB但未配置复制SRB的情况下,该目标路径为主无线链路控制RLC实体所在的路径。
结合上述第二方面,在一种可能的实现方式中,在该目标路径为该第一路径的情况下,该主小区为第一小区;在该目标路径为该第二路径的情况下,该主小区为该第二小区。
结合上述第二方面,在一种可能的实现方式中,该处理模块,还用于确定主路径。
结合上述第二方面,在一种可能的实现方式中,该主路径为第一路径;该主路径为该第一路径和该第二路径中的直连路径;该主路径为该第一路径和该第二路径中的非直连路径;或者,该主路径为该第一终端设备从该第一路径和该第二路径中随机选择的一个路径。
结合上述第二方面,在一种可能的实现方式中,在该网络设备未为SRB配置分离SRB的情况下,该主路径为该SRB所在的路径。
结合上述第二方面,在一种可能的实现方式中,在该网络设备为SRB配置分离SRB和复制SRB的情况下,该主路径为该第一路径;该主路径为该第一路径和该第二路径中的直连路径;该主路径为该第一路径和该第二路径中的非直连路径;或者,该主路径为该第一终端设备从该第一路径和该第二路径中随机选择的一个路径。
结合上述第二方面,在一种可能的实现方式中,在该网络设备为SRB配置分离SRB但未配置复制SRB的情况下,该主路径为主RLC实体所在的路径。
第三方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中存储的计算机指令之后,根据该指令执行如上述第一方面所述的方法。
结合上述第三方面,在一种可能的实现方式中,通信装置还包括存储器;该存储器用于存储计算机指令。
结合上述第三方面,在一种可能的实现方式中,通信装置还包括通信接口;该通信接口用于该通信装置与其它设备进行通信。示例性的,该通信接口可以为收发器、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
结合上述第三方面,在一种可能的实现方式中,该通信装置可以是芯片或芯片***。其中,当该通信装置是芯片***时,该通信装置可以由芯片构成,也可以包含芯片和其他分立器件。
结合上述第三方面,在一种可能的实现方式中,当通信装置为芯片或芯片***时,上述通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。上述处理器也可以体现为处理电路或逻辑电路。
第四方面,提供了一种通信***,包括:网络设备,第二终端设备以及用于执行上述第一方面该的方法的第一终端设备;其中,该第二终端设备为该第一终端设备与该网络设备之间的中继设备。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面所述的方法。
其中,第二方面至第五方面所带来的技术效果可参见上述第一方面中不同实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术中SL通信的示意图;
图2为现有技术中多路径中继的通信场景的示意图;
图3A为现有技术中远端UE与中继UE之间通过SL进行通信时的协议栈架构示意图;
图3B为现有技术中远端UE与中继UE之间通过理想的非3GPP链路进行通信时的协议栈架构示意图;
图4为现有技术中基站为UE配置载波聚合的示意图;
图5A为本申请实施例提供的一种通信***的架构示意图;
图5B为本申请实施例提供的另一种通信***的架构示意图;
图6为本申请实施例提供的通信装置的结构示意图一;
图7为本申请实施例提供的一种多路径配置方法的流程图;
图8为本申请实施例提供的一种多路径配置方法的一个具体示例的流程图;
图9为本申请实施例提供的一种多路径配置方法的另一个具体示例的流程图;
图10为本申请实施例提供的一种多路径配置方法的又一个具体示例的流程图;
图11为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,侧行链路(sidelink,SL)和SL通信。
在无线通信***中,UE与UE之间可以通过基站进行数据传输,也可以不借助基站,直接进行UE与UE之间的数据传输。类似于UE与基站之间的Uu接口,UE与UE之间的接口可以被称为PC5接口。
通常,UE与UE之间的链路可以被称为SL。如图1所示,UE 1与UE 2之间可以经由PC5接口,通过SL进行数据传输。SL通信的典型应用场景可以是车联网(vehicle to everything,V2X)。在车联网中,每个车可以被视作一个UE,UE与UE之间可以通过SL直接进行数据传输,而不需要借助基站,这样,可以有效地减少通信时延。
SL上支持广播,单播和组播通信。
其中,在广播通信中,类似于基站广播***信息,UE 1可以向其他UE发送未经加密的广播业务的数据。在有效接收范围内的任一UE,例如UE 2,如果对该广播业务感兴趣,可以接收该广播业务的数据。
在单播通信中,类似于UE与基站之间先建立RRC连接再进行数据通信,UE 1与UE 2之间先建立单播连接再基于协商的标识进行数据传输。单播通信中传输的数据可以是加密的,也可以是不加密的。与广播通信不同的是,单播通信中的UE 1与UE 2只有在建立单播连接后才能通信。
组播通信可以是一个通信组内所有UE之间的通信,该通信组内任一UE都可以发送或接收组播业务的数据。
本申请实施例主要涉及单播通信。SL的一次单播通信与一对源(source)层二标识(layer-2 identifier,L2 ID)和目的(destination)L2 ID相对应。该源L2 ID和目的L2 ID包含在每个SL媒体接入控制(media access control,MAC)层数据协议单元(protocol data unit,PDU)子头中,以使数据能够从发送端传输至正确的接收端。
第二,无线承载(radio bearer,RB)。
基站为UE分配的多个协议实体及相关的配置的统称为RB。RB是由层二提供的用于在UE和基站之间传输用户数据的服务。RB包括分组数据汇聚协议(packet data convergence protocol,PDCP)实体,无线链路控制(radio link control,RLC)协议实体,MAC协议实体,以及为物理(physical,PHY)层分配的资源。RB具体可以分为用于承载数据的数据无线承载(data radio bearer,DRB),以及用于承载信令消息的信令无线承载(signalling radio bearer,SRB)。
在SL通信中,UE与UE之间通过SL RB进行通信。其中,SL RB包括SL DRB和SL SRB。在相关的协议中,RB配置通常是指PDCP层和业务数据适配协议(service data adaptation protocol,SDAP)层的配置。此外,RLC层及以下的协议实体可以被称为RLC承载,且相应的配置在RLC承载配置中给出。
第三,多路径中继(multi-path relay)的通信场景。
作为第三代合作伙伴计划(3rd generation partnership project,3GPP)版本(release,R)17中 用户设备到网络中继(UE-to-network relay)方案的演进,多路径中继方案在3GPP R18中被广泛讨论。图2示出了多路径中继的通信场景的示意图。其中,远端UE可以同时通过直连路径和非直连路径与基站进行通信。在直连路径上,远端UE与基站之间可以通过Uu接口直接进行通信。在非直连路径上,远端UE可以通过中继UE与基站进行通信,其中,中继UE可以与基站之间通过Uu接口进行通信,远端UE与中继UE之间既可以通过SL进行通信,也可以通过理想的非3GPP链路进行通信。在多路径中继的通信场景下,由于直连路径和非直连路径上可以同时传输相同或者不同的数据,即数据包1和数据包2可以同时进行传输,且数据包1与数据包2可以相同,也可以不同,因此,能够提高数据传输的吞吐率和可靠性。
图3A示出了远端UE与中继UE之间通过SL进行通信时的协议栈架构示意图。其中,在远端UE侧,除PDCP之外,存在两份协议栈。其中一份协议栈用于通过Uu接口与基站进行通信,包括RLC、MAC以及PHY;另外一份协议栈用于通过PC5接口与中继UE进行通信,包括适配协议、RLC、MAC以及PHY。在中继UE侧,存在两份协议栈,分别用于通过PC5接口与远端UE进行通信,以及通过Uu接口与基站进行通信,两份协议栈中均包括适配协议、RLC、MAC以及PHY。在基站侧,除PDCP之外,存在两份协议栈。其中一份协议栈用于通过Uu接口与远端UE进行通信,包括RLC、MAC以及PHY;另外一份协议栈用于通过Uu接口与中继UE进行通信,包括适配协议、RLC、MAC以及PHY。通常,远端UE与中继UE通过PC5接口进行通信时所用到的适配协议可以为SRAP。
图3B示出了远端UE与中继UE之间通过理想的非3GPP链路进行通信时的协议栈架构示意图。与图3A的不同之处在于,在远端UE侧,用于通过理想的非3GPP链路与中继UE进行通信的协议栈包括适配协议和PHY。在中继UE侧,用于通过理想的非3GPP链路与远端UE进行通信的协议栈包括适配协议和PHY。可选地,图3B中可以不包括适配协议。
第四,载波聚合。
具有载波聚合能力的UE可以在一个或多个CC上同时传输数据。如图4所示,CC可以进一步分为基站与PCell之间的主分量载波(primary component carrier,PCC),以及基站与SCell之间的辅分量载波(secondary component carrier,SCC)。其中,PCell可以用于在基站与UE之间的RRC连接建立,重建或切换时提供非接入层(non-access stratum,NAS)移动性信息。SCell也可以用于在基站与UE之间的RRC连接重建或切换时提供安全输入。一个PCell以及一个或多个SCell可以组成一组服务小区,换言之,UE的服务小区集由一个PCell以及一个或多个SCell组成。
在基站为UE配置载波聚合的情况下,PHY层的多载波性质只会影响MAC层。在上行和下行链路中,服务小区集中的每个小区都有一个独立的混合自动重传请求(hybrid automatic repeat request,HARQ)实体。在没有空间复用的情况下,服务小区集中的每个小区被分配一个传输块或授权生成一个传输块。每个传输块及其潜在的HARQ重传映射到对应的一个小区上。
SCell的重新配置、添加和删除可以由基站通过RRC连接执行。UE在新空口(new radio,NR)***内进行小区切换或UE从RRC非激活(RRC_INACTIVE)状态恢复到RRC连接(RRC_CONNECTED)状态期间,基站可以添加、删除、保留或重新配置SCell,以与目标Pcell一起使用。当添加新的SCell时,专用RRC信令用于发送SCell所需的所有***信息。也就是说,UE处于RRC连接(RRC_CONNECTED)状态时,不需要直接从SCell获取广播***信息。
第五,现有的载波聚合配置流程及其存在的问题。
在多路径中继的通信场景下,例如当远端UE已通过中继UE与基站之间建立了非直连路径,需要配置远端UE与基站之间的直连路径时,若采用现有载波聚合配置流程中配置SCell的方式,那么,基站向中继UE发送的RRC消息中不会携带用于远端UE随机接入基站的同步重配参数,从而导致远端UE无法随机接入基站,进而无法建立直连路径。
如背景技术所述,若采用现有CA配置流程中配置PCell的方式,那么,远端UE将无法同时维护与基站之间的非直连路径和直连路径。此外,基站可以为远端UE分配第一小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),第一C-RNTI为非直连路径中远端UE接入的第一小区内远端UE的C-RNTI,并通过非直连路径向远端UE发送第一C-RNTI。上述RRC 消息中携带的同步重配参数中可以包含第二C-RNTI,第二C-RNTI为直连路径中远端UE接入的第二小区内远端UE的C-RNTI。在接收到第一C-RNTI和第二C-RNTI之后,远端UE触发重建立时,判断上报哪个C-RNTI,也是亟待解决的技术问题。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
如图5A所示,为本申请实施例提供的一种通信***50。该通信***50包括第一终端设备501,第二终端设备502,以及网络设备503。其中,第一终端设备501通过第二终端设备502与网络设备503进行通信的路径为第一路径。第一终端设备501与网络设备503直接进行通信的路径为第二路径。也就是说,第一路径为非直连路径,第二路径为直连路径。
如图5B所示,为本申请实施例提供的另一种通信***51。该通信***51包括第一终端设备501,第二终端设备502,以及网络设备503。其中,第一终端设备501与网络设备503直接进行通信的路径为第一路径。第一终端设备501通过第二终端设备502与网络设备503进行通信的路径为第二路径。也就是说,第一路径为直连路径,第二路径为非直连路径。
在本申请实施例中,以第一路径与第二路径中的一条路径为直连路径,另一条路径为非直连路径为例进行说明,但第一路径与第二路径也可以是两条不同的非直连路径,本申请实施例对此不作任何限定。
在图5A和图5B中,第一终端设备501通过第一路径接收来自网络设备503的第一消息;其中,第一消息用于指示第一终端设备501建立第一终端设备501与网络设备503之间的第二路径,第二路径不同于第一路径;第一终端设备501采用第一消息,在第二小区建立第二路径;第一终端设备501维护一个MAC实体,MAC实体用于第一终端设备501与网络设备503通过第一路径或第二路径中的直连路径进行通信。该方案的具体实现及技术效果将在后续方法实施例中详细描述,在此不予赘述。
可选的,本申请实施例中的网络设备503,是一种将终端设备接入到无线网络的设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信***中的下一代基站(next generation NodeB,gNB)、未来移动通信***中的基站或无线保真(wireless-fidelity,Wi-Fi)***中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,如果无特殊说明,网络设备均指无线接入网设备。
可选的,本申请实施例中的第一终端设备501或第二终端设备502可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,上述终端可以是5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的UE、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、 具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端装置、增强现实(augmented reality,AR)终端装置、工业控制(industrial control)中的无线终端或无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。第一终端设备501或第二终端设备502可以是固定位置的,也可以是可移动的,本申请实施例对此不做具体限定。
可选的,在本申请实施例中,第一终端设备501或第二终端设备502包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是第一终端设备501或第二终端设备502,或是第一终端设备501或第二终端设备502中能够调用程序并执行程序的功能模块;或者,本申请实施例提供的方法的执行主体可以是网络设备503,或是网络设备503中能够调用程序并执行程序的功能模块。
可选的,本申请实施例中的第一终端设备、第二终端设备或者网络设备的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的第一终端设备、第二终端设备或者网络设备的相关功能可以通过图6中的通信装置600来实现。
图6所示为本申请实施例提供的通信装置600的结构示意图。该通信装置600包括一个或多个处理器601,通信线路602,以及至少一个通信接口(图6中仅是示例性的以包括通信接口604,以及一个处理器601为例进行说明),可选的还可以包括存储器603。
处理器601可以是一个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路602可包括通路,用于连接不同组件之间。
通信接口604,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口604也可以是位于处理器601内的收发电路,用以实现处理器的信号输入和信号输出。
存储器603可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路602与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器603用于存储执行本申请方案的计算机执行指令,并由处理器601来控制执行。处理器601用于执行存储器603中存储的计算机执行指令,从而实现本申请实施例中提供的多路径配置方法。
或者,本申请实施例中,也可以是处理器601执行本申请下述实施例提供的多路径配置方法中的处理相关的功能,通信接口604负责与其他设备或通信网络通信,本申请实施例对此不作具 体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器601可以包括一个或多个CPU,例如图6中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置600可以包括多个处理器,例如图6中的处理器601和处理器607。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置600还可以包括输出设备605和输入设备606。输出设备605和处理器601通信,可以以多种方式来显示信息。
下面将结合图1至图6对本申请实施例提供的多路径配置方法进行具体阐述。
如图7所示,为本申请实施例提供的一种多路径配置方法,该多路径配置方法包括如下步骤:
步骤S701、第一终端设备通过第一路径接收来自网络设备的第一消息;其中,第一消息用于指示第一终端设备建立第一终端设备与网络设备之间的第二路径,第二路径不同于第一路径。
结合上述图2、图3A和图3B,第一终端设备可以为上述图2、图3A或图3B中的远端UE;第二终端设备可以为上述图2、图3A或图3B中的中继UE;网络设备可以为上述图2、图3A或图3B中的基站。
在本申请实施例中,如无特殊说明,第一路径可以是非直连路径或直连路径。当第一路径是非直连路径时,第二路径为直连路径;当第一路径是直连路径时,第二路径为非直连路径。
示例性地,第一消息可以为RRC重配置消息。
可选地,第一消息包括第一终端设备的第二标识,第一终端设备的第二标识为第二路径中第一终端设备待接入的第二小区内第一终端设备的标识;在步骤S701之前,本申请实施例提供的多路径配置方法还包括:第一终端设备通过第一路径接收并存储来自网络设备的第一终端设备的第一标识,第一终端设备的第一标识为第一路径中一终端设备接入的第一小区内第一终端设备的标识;在步骤S701之后,本申请实施例提供的多路径配置方法还包括:第一终端设备将存储的第一终端设备的第一标识更新为第一终端设备的第二标识;或者,第一终端设备存储第一终端设备的第二标识。在该方案中,第一终端设备仅存储最新收到的第一终端设备的第二标识,可以有效地节省第一终端设备的存储资源。第一终端设备同时存储第一终端设备的第一标识,以及第一终端设备的第二标识,以便在后续通过第一路径传输数据时使用第一终端设备的第一标识,通过第二路径传输数据时使用第一终端设备的第二标识,更容易区分。
在本申请实施例中,第一终端设备的标识可以由路径和该路径上的小区唯一确定。在此统一说明,以下不再赘述。示例性地,第一终端设备的标识可以为第一终端设备的C-RNTI。第一终端设备的第二标识可以包含在同步重配参数中。
在本申请实施例中,第一终端设备的标识可以为参数名,第一终端设备的第一标识或第二标识的取值,即第一值或第二值,可以为参数值。第一终端设备将存储的第一终端设备的第一标识更新为第一终端设备的第二标识,也可以表述为:第一终端设备将第一终端设备的标识的取值由第一值变更或替换为第二值;或者,第一终端设备将第二值代替第一值,作为第一终端设备的标识的取值;或者,第一终端设备将第一终端设备的标识的取值设置为第二值。
可选地,第一终端设备的第一标识与第一终端设备的第二标识可以相同,也可以不同。
为了便于引用和说明,在本申请实施例中,将上述“第一终端设备将存储的第一终端设备的第一标识更新为第一终端设备的第二标识”的方案称为方案一,将上述“第一终端设备存储第一终端设备的第一标识,以及第一终端设备的第二标识”的方案称为方案二。
以上方案一可以在图5A所示的场景下执行,也可以在图5B所示的场景下执行。类似地,以上方案二可以在图5A所示的场景下执行,也可以在图5B所示的场景下执行。本申请实施例对此不作任何限定。
可选地,第一消息包括第一终端设备的第二标识和第二路径中第一终端设备待接入的第二小 区的标识,第一终端设备的第二标识为第二路径中第一终端设备待接入的第二小区内第一终端设备的标识;在步骤S701之前,本申请实施例提供的多路径配置方法还包括:第一终端设备通过第一路径接收并存储来自网络设备的第一终端设备的第一标识,第一终端设备的第一标识为第一路径中第一终端设备接入的第一小区内第一终端设备的标识;在步骤S702之后,本申请实施例提供的多路径配置方法还包括:若第二小区的标识与第一小区的标识相同,第一终端设备将存储的第一终端设备的第一标识更新为第一终端设备的第二标识;若第二小区的标识与第一小区的标识不同,第一终端设备存储第一终端设备的第二标识。为了便于引用和说明,在本申请实施例中,将该方案称为方案三。方案三可以在图5A所示的场景下执行,也可以在图5B所示的场景下执行。
在方案三中,若第一小区与第二小区是同一小区,则第一终端设备仅存储最新收到的第一终端设备的第二标识,可以有效地节省第一终端设备的存储资源。若第一小区与第二小区是不同的小区,第一终端设备同时存储第一终端设备的第一标识,以及第一终端设备的第二标识,以便后续通过第一路径传输数据时使用第一终端设备的第一标识,通过第二路径传输数据时使用第一终端设备的第二标识,更容易区分。
示例性地,第一小区的标识可以为第一小区的物理小区标识(physical cell identifier,PCI)和/或全球小区标识(cell global identifier,CGI)。第二小区的标识可以为第二小区的PCI和/或CGI。
示例性地,第一终端设备的第二标识和第二小区的标识可以包含在同步重配参数中。
步骤S702、第一终端设备采用第一消息,在第二小区建立第二路径。
可选地,第一路径为直连路径,第二路径为非直连路径;第一消息包括第二终端设备的标识,第一消息不包括第一终端设备的第二标识,第一终端设备的第二标识为第二路径中第一终端设备待接入的第二小区内第一终端设备的标识,第二终端设备为第一终端设备与网络设备之间的中继设备;步骤S702包括:第一终端设备采用第一消息中第二终端设备的标识,建立与第二终端设备之间的SL连接。为了便于引用和说明,在本申请实施例中,将该方案称为方案四。方案四仅可以在图5B所示的场景下执行。
在方案四中,由于第一消息不包括第一终端设备的第二标识,因此第一终端设备只需要存储一个第一终端设备的标识,即,第一终端设备的第一标识,就可以实现多路径的建立。
在图5A和图5B所示的场景下,可以执行相同的方案,例如,可以都执行方案一、方案二或方案三。在图5A和图5B所示的场景下,也可以执行不同的方案,例如,在图5A所示的场景下,执行方案一、方案二或方案三,在图5B所示的场景下,执行方案四。又例如,在图5A所示的场景下,执行方案一,在图5B所示的场景下,执行方案二;或者,在图5A所示的场景下,执行方案二,在图5B所示的场景下,执行方案一;或者,在图5A所示的场景下,执行方案一,在图5B所示的场景下,执行方案三;或者,在图5A所示的场景下,执行方案三,在图5B所示的场景下,执行方案一;或者,在图5A所示的场景下,执行方案二,在图5B所示的场景下,执行方案三;或者,在图5A所示的场景下,执行方案三,在图5B所示的场景下,执行方案二。本申请实施例对此不作任何限定。
步骤S703、第一终端设备维护一个MAC实体,MAC实体用于第一终端设备与网络设备通过第一路径或第二路径中的直连路径进行通信。
本申请实施例中的MAC实体可以为Uu MAC实体。
区别于双连接(dual connectivity,DC)下第一终端设备需要维护两个MAC实体,在本申请实施例中,第一终端设备仅需要维护一个MAC实体。
在图5A所示的场景下,步骤S703之前,本申请实施例提供的多路径配置方法还包括:第一终端设备创建MAC实体。
在本申请实施例中,由于第一消息可以指示第一终端设备建立第一终端设备与网络设备之间的第二路径,因此,在第一路径建立好的基础上,第一终端设备还可以再建立与第一路径不同的第二路径,从而达到第一终端设备可以通过多路径,即第一路径和第二路径,与网络设备进行通信的目的。
示例性地,结合图5A,以第一终端设备为远端UE,第二终端设备为中继UE,网络设备为 gNB,第一消息为RRC重配置消息,第一终端设备的第一标识为第一C-RNTI,第一终端设备的第二识为第二C-RNTI为例,图8示出了本申请实施例提供的多路径配置方法的一个具体示例,该示例包括如下步骤:
步骤S801、远端UE与gNB之间可以通过非直连路径通信。或者,远端UE与gNB之间可以通过中继UE通信。
在本申请实施例中,在非直连路径上,gNB可以为中继UE配置一个特殊小区(special cell,SpCell)和一个或多个SCell。本申请实施例中SpCell的定义可参见现有标准,在此不再赘述。步骤S801可以包括:中继UE可以将接入的SpCell的标识发送给远端UE。相应地,远端UE可以接收来自中继UE的中继UE接入的SpCell的标识,并将该SpCell作为非直连路径中远端UE接入的小区,即第一小区。
步骤S801还可以包括:中继UE可以将gNB配置的第一C-RNTI转发至远端UE。相应地,远端UE可以接收来自中继UE的第一C-RNTI。
步骤S802、gNB可以通过非直连路径向远端UE发送RRC重配置消息。其中,RRC重配置消息用于指示远端UE建立直连路径。相应地,远端UE可以通过非直连路径接收来自gNB的RRC重配置消息。
可选地,步骤S802的触发条件可以是:gNB根据远端UE的测量上报结果,决策为远端UE配置多路径。
可选地,RRC重配置消息中可以包括同步重配参数,同步重配参数可以包括第二C-RNTI和第二小区的标识。远端UE接收到第二C-RNTI之后,如何存储第二C-RNTI可参照上述步骤S701中的方案一、方案二和方案三,在此不再赘述。
可选地,RRC重配置消息中还可以包括随机接入信道(random access channel,RACH)专用配置(config dedicated)。随机接入信道专用配置可以用于下述步骤S804中远端UE随机接入gNB。随机接入信道专用配置可以包括第二小区中用于UE随机接入gNB的时域资源和/或频域资源,支持竞争或非竞争随机接入的信息,以及支持两步或四步随机接入的信息。
步骤S802之后,可以执行如下步骤:远端UE为直连路径创建Uu MAC实体。该步骤也可以在步骤S801之前执行,本申请实施例对此不作任何限定。
在Uu MAC实体被创建之后,还可以执行如下步骤:远端UE维护该Uu MAC实体。
步骤S803、远端UE可以向gNB发送RRC重配置完成消息。相应地,gNB可以接收来自远端UE的RRC重配置完成消息。
在图8中,示意性地示出在非直连路径上执行步骤S803。
步骤S804、远端UE发起随机接入流程,即,远端UE采用RRC重配置消息在第二小区建立直连路径。
在本申请实施例中,远端UE可以在第二小区的时域资源和/或频域资源上随机接入gNB;或者,远端UE可以在RRC重配置消息包括的时域资源和/或频域资源上随机接入gNB;或者,远端UE可以根据***消息随机接入gNB。本申请实施例对此不作任何限定。
在本申请实施例中,可以先执行步骤S803,再执行步骤S804;或者,可以先执行步骤S804,再执行步骤S803;或者,可以同时执行步骤S803和步骤S804。本申请实施例对此不作任何限定。在远端UE随机接入gNB成功之前,即在直连路径建立好之前,可以在非直连路径上执行步骤S803。在远端UE随机接入gNB成功之后,即在直连路径建立好之后,可以在非直连路径和/或直连路径上执行步骤S803。
在直连路径建立好之后,第二小区可以被视为直连路径上远端UE接入的SpCell。此外,gNB还可以在直连路径上为远端UE配置一个或多个SCell,该一个或多个SCell与第二小区组成直连路径上远端UE的服务小区集。
在直连路径建立好之后,第二C-RNTI可以用于gNB为远端UE分配传输数据的时域资源和/或频域资源。换言之,gNB通过直连路径调度传输数据的时域资源和/或频域资源时可以使用第二C-RNTI。
在直连路径建立好之前,包括直连路径的配置期间,远端UE可以通过非直连路径与gNB保 持数据传输。在直连路径建立好之后,远端UE可以通过直连路径和/或非直连路径与gNB进行数据传输。
示例性地,结合图5B,以第一终端设备为远端UE,第二终端设备为中继UE,网络设备为gNB,第一消息为RRC重配置消息,第一终端设备的第一标识为第一C-RNTI,第一终端设备的第二识为第二C-RNTI为例,图9示出了本申请实施例提供的多路径配置方法的另一个具体示例,该示例包括如下步骤:
步骤S901、远端UE与gNB之间可以通过直连路径通信。或者,远端UE与gNB之间可以直接通信。
在本申请实施例中,在直连路径上,gNB可以为远端UE配置第一小区和一个或多个SCell。其中,第一小区为直连路径上远端UE的SpCell。步骤S901可以包括:gNB可以将第一小区的标识和第一C-RNTI发送给远端UE。相应地,远端UE接收来自gNB的第一小区的标识和第一C-RNTI。
由于在建立直连路径时,Uu MAC实体已经建立,因此,远端UE可以维护该Uu MAC实体。
步骤S902、gNB可以向中继UE发送RRC重配置消息。相应地,中继UE可以接收来自gNB的RRC重配置消息。
步骤S903、中继UE可以向gNB发送RRC重配置完成消息。相应地,gNB可以接收来自中继UE的RRC重配置完成消息。
经过上述步骤S902和步骤S903,gNB可以与中继UE之间建立RRC连接,以便后续将下行数据转发至远端UE或辅助远端UE向gNB发送上行数据。
步骤S904、gNB可以通过直连路径向远端UE发送RRC重配置消息。其中,RRC重配置消息用于指示远端UE建立非直连路径。相应地,远端UE可以通过直连路径接收来自gNB的RRC重配置消息。
可选地,步骤S904的触发条件可以是:gNB根据远端UE的测量上报结果,为远端UE选择好合适的中继UE。
一种可能的实现方式中,RRC重配置消息中可以包括同步重配参数,同步重配参数可以包括第二C-RNTI和第二小区的标识。远端UE接收到第二C-RNTI之后,如何存储第二C-RNTI可参照上述步骤S701中的方案一、方案二和方案三,在此不再赘述。
另一种可能的实现方式中,RRC重配置消息中可以包括同步重配参数,同步重配参数可以包括第二小区的标识和中继UE的标识,而不包括第二C-RNTI。该实现方式的相关描述可参照上述步骤S702中的方案四,在此不再赘述。
步骤S905、远端UE与中继UE之间建立SL连接。
上述步骤S902和步骤S903可以在步骤S904和步骤S905之前执行,也可以在步骤S904和步骤S905之后执行,本申请实施例对此不作任何限定。
步骤S906、远端UE向gNB发送RRC重配置完成消息。相应地,gNB接收来自远端UE的RRC重配置完成消息。
在非直连路径建立好之前,包括非直连路径的配置期间,远端UE可以通过直连路径与gNB保持数据传输。在非直连路径建立好之后,远端UE可以通过直连路径和/或非直连路径与gNB进行数据传输。
在本申请实施例中,可以先执行步骤S905,再执行步骤S906;或者,可以先执行步骤S906,再执行步骤S905;或者,可以同时执行步骤S905和步骤S906。本申请实施例对此不作任何限定。在非直连路径建立好之前,可以在直连路径上执行步骤S906。在非直连路径建立好之后,可以在非直连路径和/或直连路径上执行步骤S906。
可选地,在第一终端设备建立第二路径之后,本申请实施例提供的多路径配置方法还包括:第一终端设备确定第一终端设备接入的主小区,其中,主小区为目标路径上的特殊小区。在该方案中,确定出的主小区可用于第一终端设备唯一确定该主小区内第一终端设备的标识,并使用该标识进行RRC重建或小区切换。
结合图8所示的实施例,在直连路径建立之后,远端UE可以同时接入非直连路径上的第一小区,以及直连路径上的第二小区。在直连路径上,gNB可以为远端UE配置包括第二小区的服 务小区集。第一终端设备确定第一终端设备接入的主小区,即远端UE从第一小区和包括第二小区的服务小区集中选择一个小区作为远端UE接入的主小区。
结合图9所示的实施例,在直连路径上,gNB可以为远端UE配置包括第一小区的服务小区集。在非直连路径建立之后,远端UE可以同时接入直连路径上包括第一小区的服务小区集,以及非直连路径上的第二小区。第一终端设备确定第一终端设备接入的主小区,即远端UE从包括第一小区的服务小区集和第二小区中选择一个小区作为远端UE接入的主小区。
可选地,目标路径为第一路径;目标路径为第一路径和第二路径中的直连路径;目标路径为第一路径和第二路径中的非直连路径;或者,目标路径为第一终端设备从第一路径和第二路径中随机选择的一个路径。
可选地,在网络设备未为SRB配置分离(split)SRB的情况下,目标路径为SRB所在的路径。
示例性地,本申请实施例中的SRB可以为SRB1。为了提高多路径传输的可靠性,网络设备可以为SRB1配置分离SRB1和复制SRB1。
可选地,在网络设备为SRB配置分离SRB和复制(duplication)SRB的情况下,目标路径为第一路径;目标路径为第一路径和第二路径中的直连路径;目标路径为第一路径和第二路径中的非直连路径;或者,目标路径为第一终端设备从第一路径和第二路径中随机选择的一个路径。
可选地,在网络设备为SRB配置分离SRB但未配置复制SRB的情况下,目标路径为主(primary)RLC实体所在的路径。
示例性地,结合图8或图9,图10示出了本申请实施例提供的多路径配置方法的又一个具体示例,该示例用于远端UE进行RRC重建,包括如下步骤:
步骤S1001、远端UE通过源gNB向目标(target)gNB发送RRC重建立请求(RRCReestablishmentRequest)。相应地,目标gNB通过源gNB接收来自远端UE的RRC重建立请求。
在本申请实施例中,步骤S1001的触发条件可参照现有技术中重建RRC连接的触发条件,在此不再赘述。
图10所示实施例中的源gNB可以为图8或图9中的gNB。
在本申请实施例中,RRC重建立请求中可以包括远端UE接入的主小区,以及该主小区内远端UE的C-RNTI。远端UE接入的主小区的确定方案可参见上述实施例,在此不再赘述。
可选地,在目标路径为第一路径的情况下,远端UE接入的主小区为第一小区;在目标路径为第二路径的情况下,远端UE接入的主小区为第二小区。
步骤S1002、目标gNB向源gNB发送检索UE上下文请求(retrieve UE context request),该检索UE上下文请求中包括远端UE接入的主小区内远端UE的C-RNTI。相应地,源gNB接收来自目标gNB的检索UE上下文请求。
可选地,本申请实施例中的源gNB与目标gNB可以为同一gNB或不同的gNB。当源gNB与目标gNB为同一gNB时,源gNB可以在本地获取远端UE的上下文,而不需要执行步骤S1002和下述步骤S1003的交互。
可选地,在远端UE存储第一C-RNTI和第二C-RNTI,并且远端UE从第一路径和第二路径中随机选择一个路径作为目标路径的情况下,在执行步骤S1002之后且在执行步骤S1003之前,源gNB可以用采用两个短MAC-I进行完整性验证。若源gNB采用至少一个短MAC-I验证成功,则继续执行如下步骤。
步骤S1003、源gNB向目标gNB发送检索UE上下文响应(retrieve UE context response),该检索UE上下文请求中包括远端UE的上下文。相应地,目标gNB接收来自源gNB的检索UE上下文响应。
步骤S1004、目标gNB通过源gNB向远端UE发送RRC重建立(RRCReestablishment)消息。相应地,远端UE通过源gNB接收来自目标gNB的RRC重建立消息。
步骤S1005、远端UE通过源gNB向目标gNB发送RRC重建立完成(RRCReestablishmentComplete)消息。相应地,目标gNB通过源gNB接收来自远端UE的RRC重建立消息。
步骤S1006、目标gNB通过源gNB向远端UE发送RRC重配置(RRCReconfigutation)消息。相应地,远端UE通过源gNB接收来自目标gNB的RRC重配置消息。
步骤S1007、远端UE通过源gNB向目标gNB发送RRC重配置完成(RRCReconfigutationComplete)消息。相应地,目标gNB通过源gNB接收来自远端UE的RRC重配置完成消息。
在本申请实施例中,目标gNB可以执行RRC重配置,以重建SRB2和DRB。
可选地,若在目标路径上满足重建RRC连接的触发条件,则执行图10所示实施例中的步骤。若在目标路径之外的其他路径上满足重建RRC连接的触发条件,则远端UE通过RRC消息告知源gNB,并由源gNB恢复RRC连接。
除了图10所示的RRC重建流程,在远端UE从源gNB切换到目标gNB时,如果目标gNB配置了多路径,那么,目标gNB可以向远端UE发送包括远端UE接入的主小区的标识。远端UE接入的主小区的确定方案可参见上述实施例,在此不再赘述。
可选地,在第一终端设备建立第二路径之后,本申请实施例提供的多路径配置方法还包括:第一终端设备确定主路径(primary path);
可选地,主路径为第一路径;或者,主路径为第一路径和第二路径中的直连路径;或者,主路径为第一路径和第二路径中的非直连路径;或者,主路径为第一终端设备从第一路径和第二路径中随机选择的一个路径。
可选地,在网络设备未为SRB配置分离SRB的情况下,主路径为SRB所在的路径。
可选地,在网络设备为SRB配置分离SRB和复制SRB的情况下,主路径为第一路径;主路径为第一路径和第二路径中的直连路径;主路径为第一路径和第二路径中的非直连路径;或者,主路径为第一终端设备从第一路径和第二路径中随机选择的一个路径。
可选地,在网络设备为SRB配置分离SRB但未配置复制SRB的情况下,主路径为主RLC实体所在的路径。
在本申请实施例中,主路径的确定方法可参照目标路径的确定方法,在此不再赘述。
可以理解的是,以上各个实施例中,由第一终端设备实现的方法和/或步骤,也可以由可用于第一终端设备的部件(例如芯片或者电路)实现;由第二终端设备实现的方法和/或步骤,也可以由可用于第二终端设备的部件(例如芯片或者电路)实现;由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一终端设备,或者包含上述第一终端设备的装置,或者为可用于第一终端设备的部件;或者,该通信装置可以为上述方法实施例中的第二终端设备,或者包含上述第二终端设备的装置,或者为可用于第二终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图11示出了一种通信装置11的结构示意图。该通信装置11包括收发模块111。所述收发模块111,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
以通信装置11为上述方法实施例中的第一终端设备为例,则:
通信装置11还包括处理模块112;收发模块111,用于通过第一路径接收来自网络设备的第一消息;其中,第一消息用于指示通信装置11建立通信装置11与网络设备之间的第二路径,第二路径不同于第一路径;收发模块111,还用于采用第一消息,在第二小区建立第二路径;处理模块112,用于维护一个媒体接入控制MAC实体,MAC实体用于通信装置11与网络设备通过第一路径或第二路径中的直连路径进行通信。
一种可能的实现方式中,通信装置11还包括存储模块113;第一消息包括通信装置11的第二标识,通信装置11的第二标识为第二路径中通信装置11待接入的第二小区内通信装置11的标识;收发模块111,还用于通过第一路径接收来自网络设备的通信装置11的第一标识,通信装置11的第一标识为第一路径中通信装置11接入的第一小区内通信装置11的标识;存储模块113,用于存储通信装置11的第一标识;处理模块112,还用于将存储模块113中存储的通信装置11的第一标识更新为通信装置11的第二标识;或者,存储模块113,还用于存储通信装置11的第二标识。
一种可能的实现方式中,通信装置11还包括:存储模块113;第一消息包括通信装置11的第二标识和第二路径中通信装置11待接入的第二小区的标识,通信装置11的第二标识为第二路径中通信装置11待接入的第二小区内通信装置11的标识;收发模块111,还用于通过第一路径接收来自网络设备的通信装置11的第一标识,通信装置11的第一标识为第一路径中通信装置11接入的第一小区内通信装置11的标识;存储模块113,用于存储通信装置11的第一标识;处理模块112,还用于若第二小区的标识与第一小区的标识相同,将存储的通信装置11的第一标识更新为通信装置11的第二标识;存储模块113,还用于若第二小区的标识与第一小区的标识不同,存储通信装置11的第二标识。
一种可能的实现方式中,第一路径为直连路径,第二路径为非直连路径;第一消息包括第二终端设备的标识,第一消息不包括通信装置11的第二标识,通信装置11的第二标识为第二路径中通信装置11待接入的第二小区内通信装置11的标识,第二终端设备为通信装置11与网络设备之间的中继设备;收发模块111,还用于采用第一消息,在第二小区建立第二路径,包括:用于采用第一消息中第二终端设备的标识,建立与第二终端设备之间的SL连接。
一种可能的实现方式中,处理模块112,还用于确定通信装置11接入的主小区,其中,主小区为目标路径上的特殊小区。
一种可能的实现方式中,处理模块112,还用于确定主路径。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置11以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
当通信装置11为上述方法实施例中的第一终端设备时,在一个简单的实施例中,本领域的技术人员可以想到该通信装置11可以采用图6所示的通信装置600的形式。
比如,图6所示的通信装置600中的处理器601或607可以通过调用存储器603中存储的计算机执行指令,使得通信装置600执行上述方法实施例中的多路径配置方法。具体的,图11中的处理模块112的功能/实现过程可以通过图6所示的通信装置600中的处理器601或607调用存储器603中存储的计算机执行指令来实现。图11中的收发模块111的功能/实现过程可以通过经由图6中的通信接口604连接的通信模块来实现。
由于本实施例提供的通信装置11可执行上述多路径配置方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上***)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的 核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片***,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该通信装置还包括存储器。可选的,该芯片***可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种多路径配置方法,其特征在于,包括:
    第一终端设备通过第一路径接收来自网络设备的第一消息;其中,所述第一消息用于指示所述第一终端设备建立所述第一终端设备与所述网络设备之间的第二路径,所述第二路径不同于所述第一路径;
    所述第一终端设备采用所述第一消息,在第二小区建立所述第二路径;
    所述第一终端设备维护一个媒体接入控制MAC实体,所述MAC实体用于所述第一终端设备与所述网络设备通过所述第一路径或所述第二路径中的直连路径进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括所述第一终端设备的第二标识,所述第一终端设备的所述第二标识为所述第二路径中所述第一终端设备待接入的所述第二小区内所述第一终端设备的标识;
    在所述第一终端设备通过第一路径接收来自网络设备的第一消息之前,所述方法还包括:
    所述第一终端设备通过所述第一路径接收并存储来自所述网络设备的所述第一终端设备的第一标识,所述第一终端设备的所述第一标识为所述第一路径中所述第一终端设备接入的第一小区内所述第一终端设备的标识;
    在所述第一终端设备通过第一路径接收来自网络设备的第一消息之后,所述方法还包括:
    所述第一终端设备将存储的所述第一终端设备的所述第一标识更新为所述第一终端设备的所述第二标识;或者,所述第一终端设备存储所述第一终端设备的所述第二标识。
  3. 根据权利要求1所述的方法,其特征在于,所述第一消息包括所述第一终端设备的第二标识和所述第二路径中所述第一终端设备待接入的第二小区的标识,所述第一终端设备的所述第二标识为所述第二路径中所述第一终端设备待接入的所述第二小区内所述第一终端设备的标识;
    在所述第一终端设备通过第一路径接收来自网络设备的第一消息之前,所述方法还包括:
    所述第一终端设备通过所述第一路径接收并存储来自所述网络设备的所述第一终端设备的第一标识,所述第一终端设备的第一标识为所述第一路径中所述第一终端设备接入的第一小区内所述第一终端设备的标识;
    在所述第一终端设备通过第一路径接收来自网络设备的第一消息之后,所述方法还包括:
    若所述第二小区的标识与所述第一小区的标识相同,所述第一终端设备将存储的所述第一终端设备的所述第一标识更新为所述第一终端设备的所述第二标识;
    若所述第二小区的标识与所述第一小区的标识不同,所述第一终端设备存储所述第一终端设备的所述第二标识。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一路径为非直连路径,所述第二路径为直连路径。
  5. 根据权利要求1所述的方法,其特征在于,所述第一路径为直连路径,所述第二路径为非直连路径;所述第一消息包括第二终端设备的标识,所述第一消息不包括所述第一终端设备的第二标识,所述第一终端设备的所述第二标识为所述第二路径中所述第一终端设备待接入的所述第二小区内所述第一终端设备的标识,所述第二终端设备为所述第一终端设备与所述网络设备之间的中继设备;
    所述第一终端设备采用所述第一消息,建立所述第二路径,包括:
    所述第一终端设备采用所述第一消息中所述第二终端设备的标识,建立与所述第二终端设备之间的侧行链路SL连接。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在所述第一终端设备建立所述第二路径之后,所述方法还包括:
    所述第一终端设备确定所述第一终端设备接入的主小区,其中,所述主小区为目标路径上的特殊小区。
  7. 根据权利要求6所述的方法,其特征在于,
    所述目标路径为所述第一路径;
    所述目标路径为所述第一路径和所述第二路径中的直连路径;
    所述目标路径为所述第一路径和所述第二路径中的非直连路径;或者,
    所述目标路径为所述第一终端设备从所述第一路径和所述第二路径中随机选择的一个路径。
  8. 根据权利要求6所述的方法,其特征在于,在所述网络设备未为信令无线承载SRB配置分离SRB的情况下,所述目标路径为所述SRB所在的路径。
  9. 根据权利要求6所述的方法,其特征在于,在所述网络设备为SRB配置分离SRB和复制SRB的情况下,
    所述目标路径为所述第一路径;
    所述目标路径为所述第一路径和所述第二路径中的直连路径;
    所述目标路径为所述第一路径和所述第二路径中的非直连路径;或者,
    所述目标路径为所述第一终端设备从所述第一路径和所述第二路径中随机选择的一个路径。
  10. 根据权利要求6所述的方法,其特征在于,在所述网络设备为SRB配置分离SRB但未配置复制SRB的情况下,所述目标路径为主无线链路控制RLC实体所在的路径。
  11. 根据权利要求6-10任一项所述的方法,其特征在于,
    在所述目标路径为所述第一路径的情况下,所述主小区为第一小区;在所述目标路径为所述第二路径的情况下,所述主小区为所述第二小区。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,在所述第一终端设备建立所述第二路径之后,所述方法还包括:
    所述第一终端设备确定主路径。
  13. 根据权利要求12所述的方法,其特征在于,
    所述主路径为第一路径;
    所述主路径为所述第一路径和所述第二路径中的直连路径;
    所述主路径为所述第一路径和所述第二路径中的非直连路径;或者,
    所述主路径为所述第一终端设备从所述第一路径和所述第二路径中随机选择的一个路径。
  14. 根据权利要求12所述的方法,其特征在于,在所述网络设备未为SRB配置分离SRB的情况下,所述主路径为所述SRB所在的路径。
  15. 根据权利要求12所述的方法,其特征在于,在所述网络设备为SRB配置分离SRB和复制SRB的情况下,
    所述主路径为所述第一路径;
    所述主路径为所述第一路径和所述第二路径中的直连路径;
    所述主路径为所述第一路径和所述第二路径中的非直连路径;或者,
    所述主路径为所述第一终端设备从所述第一路径和所述第二路径中随机选择的一个路径。
  16. 根据权利要求12所述的方法,其特征在于,在所述网络设备为SRB配置分离SRB但未配置复制SRB的情况下,所述主路径为主RLC实体所在的路径。
  17. 一种第一终端设备,其特征在于,所述第一终端设备包括:收发模块和处理模块;
    所述收发模块,用于通过第一路径接收来自网络设备的第一消息;其中,所述第一消息用于指示所述第一终端设备建立所述第一终端设备与所述网络设备之间的第二路径,所述第二路径不同于所述第一路径;
    所述收发模块,还用于采用所述第一消息,在第二小区建立所述第二路径;
    所述处理模块,用于维护一个媒体接入控制MAC实体,所述MAC实体用于所述第一终端设备与所述网络设备通过所述第一路径或所述第二路径中的直连路径进行通信。
  18. 根据权利要求17所述的第一终端设备,其特征在于,所述第一终端设备还包括:存储模块;所述第一消息包括所述第一终端设备的第二标识,所述第一终端设备的所述第二标识为所述第二路径中所述第一终端设备待接入的所述第二小区内所述第一终端设备的标识;
    所述收发模块,还用于通过所述第一路径接收来自所述网络设备的所述第一终端设备的第一标识,所述第一终端设备的所述第一标识为所述第一路径中所述第一终端设备接入的第一小区内所述第一终端设备的标识;
    所述存储模块,用于存储所述第一终端设备的所述第一标识;
    所述处理模块,还用于将存储模块中存储的第一终端设备的所述第一标识更新为所述第一终端设备的所述第二标识;或者,所述存储模块,还用于存储所述第一终端设备的所述第二标识。
  19. 根据权利要求17所述的第一终端设备,其特征在于,所述第一终端设备还包括:存储模块;所述第一消息包括所述第一终端设备的第二标识和所述第二路径中所述第一终端设备待接入的第二小区的标识,所述第一终端设备的所述第二标识为所述第二路径中所述第一终端设备待接入的所述第二小区内所述第一终端设备的标识;
    所述收发模块,还用于通过所述第一路径接收来自所述网络设备的所述第一终端设备的第一标识,所述第一终端设备的所述第一标识为所述第一路径中所述第一终端设备接入的第一小区内所述第一终端设备的标识;
    所述存储模块,用于存储所述第一终端设备的所述第一标识;
    所述处理模块,还用于若所述第二小区的标识与所述第一小区的标识相同,将存储的所述第一终端设备的所述第一标识更新为所述第一终端设备的所述第二标识;
    所述存储模块,还用于若所述第二小区的标识与所述第一小区的标识不同,存储所述第一终端设备的所述第二标识。
  20. 根据权利要求18或19所述的第一终端设备,其特征在于,所述第一路径为非直连路径,所述第二路径为直连路径。
  21. 根据权利要求17所述的第一终端设备,其特征在于,所述第一路径为直连路径,所述第二路径为非直连路径;所述第一消息包括第二终端设备的标识,所述第一消息不包括所述第一终端设备的第二标识,所述第一终端设备的所述第二标识为所述第二路径中所述第一终端设备待接入的所述第二小区内所述第一终端设备的标识,所述第二终端设备为所述第一终端设备与所述网络设备之间的中继设备;
    所述收发模块,还用于采用所述第一消息,在第二小区建立所述第二路径,包括:
    用于采用所述第一消息中所述第二终端设备的标识,建立与所述第二终端设备之间的侧行链路SL连接。
  22. 根据权利要求17-21任一项所述的第一终端设备,其特征在于,所述处理模块,还用于确定所述第一终端设备接入的主小区,其中,所述主小区为目标路径上的特殊小区。
  23. 根据权利要求22所述的第一终端设备,其特征在于,所述目标路径为所述第一路径;所述目标路径为所述第一路径和所述第二路径中的直连路径;所述目标路径为所述第一路径和所述第二路径中的非直连路径;或者,所述目标路径为所述第一终端设备从所述第一路径和所述第二路径中随机选择的一个路径。
  24. 根据权利要求22所述的第一终端设备,其特征在于,在所述网络设备未为信令无线承载SRB配置分离SRB的情况下,所述目标路径为所述SRB所在的路径。
  25. 根据权利要求22所述的第一终端设备,其特征在于,在所述网络设备为SRB配置分离SRB和复制SRB的情况下,所述目标路径为所述第一路径;所述目标路径为所述第一路径和所述第二路径中的直连路径;所述目标路径为所述第一路径和所述第二路径中的非直连路径;或者,所述目标路径为所述第一终端设备从所述第一路径和所述第二路径中随机选择的一个路径。
  26. 根据权利要求22所述的第一终端设备,其特征在于,在所述网络设备为SRB配置分离SRB但未配置复制SRB的情况下,所述目标路径为主无线链路控制RLC实体所在的路径。
  27. 根据权利要求22-26任一项所述的第一终端设备,其特征在于,在所述目标路径为所述第一路径的情况下,所述主小区为第一小区;在所述目标路径为所述第二路径的情况下,所述主小区为所述第二小区。
  28. 一种通信装置,其特征在于,包括:存储器以及与所述存储器耦合的处理器,所述存储器用于存储程序,所述处理器用于执行所述存储器存储的所述程序;当所述通信装置运行时,所述处理器运行所述程序,使得所述通信装置执行上述权利要求1-16任一项所述的多路径配置方法。
  29. 一种通信***,其特征在于,所述通信***包括网络设备,第二终端设备以及用于执行如权利要求1-16任一项所述方法的第一终端设备;其中,所述第二终端设备为所述第一终端设备与所述网络设备之间的中继设备。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至16任一项所述的多路径配置方法。
PCT/CN2023/124764 2022-10-17 2023-10-16 多路径配置方法、装置及*** WO2024083080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211284860.3 2022-10-17
CN202211284860.3A CN115734313A (zh) 2022-10-17 2022-10-17 多路径配置方法、装置及***

Publications (1)

Publication Number Publication Date
WO2024083080A1 true WO2024083080A1 (zh) 2024-04-25

Family

ID=85293953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124764 WO2024083080A1 (zh) 2022-10-17 2023-10-16 多路径配置方法、装置及***

Country Status (2)

Country Link
CN (1) CN115734313A (zh)
WO (1) WO2024083080A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115734313A (zh) * 2022-10-17 2023-03-03 华为技术有限公司 多路径配置方法、装置及***
WO2024093104A1 (en) * 2023-03-27 2024-05-10 Lenovo (Beijing) Limited Terminal device, network device and methods for multi-path communications
CN117076140B (zh) * 2023-10-17 2024-01-23 浪潮(北京)电子信息产业有限公司 一种分布式计算方法、装置、设备、***及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021236774A1 (en) * 2020-05-19 2021-11-25 Idac Holdings, Inc. Method and apparatus for service continuity associated with wtru to wtru relays
CN114071490A (zh) * 2020-07-30 2022-02-18 维沃移动通信有限公司 副链路中继架构中的配置方法和终端
CN114513822A (zh) * 2017-08-11 2022-05-17 华为技术有限公司 一种路径转换方法、相关装置及***
CN114747294A (zh) * 2019-11-19 2022-07-12 华为技术有限公司 利用ue中继的ue协作的方法、装置及***
CN115734313A (zh) * 2022-10-17 2023-03-03 华为技术有限公司 多路径配置方法、装置及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114513822A (zh) * 2017-08-11 2022-05-17 华为技术有限公司 一种路径转换方法、相关装置及***
CN114747294A (zh) * 2019-11-19 2022-07-12 华为技术有限公司 利用ue中继的ue协作的方法、装置及***
WO2021236774A1 (en) * 2020-05-19 2021-11-25 Idac Holdings, Inc. Method and apparatus for service continuity associated with wtru to wtru relays
CN114071490A (zh) * 2020-07-30 2022-02-18 维沃移动通信有限公司 副链路中继架构中的配置方法和终端
CN115734313A (zh) * 2022-10-17 2023-03-03 华为技术有限公司 多路径配置方法、装置及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE: "Discussion on multi-path relaying support", 3GPP DRAFT; R2-2209771, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Conference; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052263098 *

Also Published As

Publication number Publication date
CN115734313A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
CN111602451B (zh) 无线通信***中的终端、基站及其执行的方法
WO2024083080A1 (zh) 多路径配置方法、装置及***
US20230180349A1 (en) Bearer configuration method and apparatus, context information management method and apparatus, releasing method and apparatus, and device
US11190996B2 (en) Method and apparatus for reporting selected PLMN of RRC-inactive mode UE in next-generation communication system
US11375423B2 (en) Method and apparatus for configuring fallback for each bearer when daps handover fails in next-generation mobile communication system
US11202333B2 (en) Layer 2 processing method, central unit and distributed unit
US11172491B2 (en) Data transmission method, apparatus and system, network element, storage medium and processor
CN111373837A (zh) 用于在无线通信***中发送和接收数据的方法和装置
TW201935993A (zh) 與基地台處理一雙連結的裝置及方法
WO2022002017A1 (zh) 一种通信方法及装置
CN114205883A (zh) 网络切片重映射方法、装置及存储介质
WO2021163894A1 (zh) 一种基于中继的通信方法及装置
CN113574961A (zh) 用于在无线通信***中执行通信的方法和装置
WO2022120744A1 (zh) 数据传输处理方法及相关装置
WO2021134601A1 (zh) 一种会话建立的方法及装置
KR20210009176A (ko) 이중연결구조의 DRB Path 전환과 사이드링크 베어러 해제 방법 및 장치
WO2021244579A1 (zh) 一种通信方法、装置及网络架构
WO2023160706A1 (zh) 一种通信方法及装置
WO2022001641A1 (zh) 用于切换的数据传输的方法和装置
WO2022032672A1 (zh) 无线通信方法和终端
WO2022068164A1 (zh) 一种通信方法及相关设备
WO2022170545A1 (zh) 一种无线链路的重建方法和装置
WO2023202512A1 (zh) 一种通信方法及设备
WO2022027653A1 (zh) 信息传输方法、通信装置及存储介质
CN111034155B (zh) 一种改变承载类型的方法及装置、计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879069

Country of ref document: EP

Kind code of ref document: A1