WO2024075174A1 - Rebar assembly device - Google Patents

Rebar assembly device Download PDF

Info

Publication number
WO2024075174A1
WO2024075174A1 PCT/JP2022/037038 JP2022037038W WO2024075174A1 WO 2024075174 A1 WO2024075174 A1 WO 2024075174A1 JP 2022037038 W JP2022037038 W JP 2022037038W WO 2024075174 A1 WO2024075174 A1 WO 2024075174A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reinforcing bar
bars
reinforcement
shear reinforcement
Prior art date
Application number
PCT/JP2022/037038
Other languages
French (fr)
Japanese (ja)
Inventor
宏明 田中
鈞 馬
圭祐 平尾
Original Assignee
東洋ライト工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ライト工業株式会社 filed Critical 東洋ライト工業株式会社
Priority to PCT/JP2022/037038 priority Critical patent/WO2024075174A1/en
Priority to KR1020227037247A priority patent/KR20240049107A/en
Priority to CN202280003750.7A priority patent/CN118140031A/en
Publication of WO2024075174A1 publication Critical patent/WO2024075174A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • E04G21/122Machines for joining reinforcing bars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0604Prismatic or cylindrical reinforcement cages composed of longitudinal bars and open or closed stirrup rods
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions

Definitions

  • the present invention relates to a device for assembling reinforcing bars used in the columns or beams of a building or structure, and in particular to a device that places reinforcing bars in predetermined positions based on pre-created design information for the building or structure, and assembles the bars by bundling or otherwise connecting the intersections of the reinforcing bars.
  • buildings or structures constructed with reinforced concrete are made up of columns, beams or walls in which pre-arranged reinforcing bars are hardened with concrete, and the reinforcing bars are arranged before the concrete is poured.
  • the arrangement of reinforcing bars is carried out exclusively at the construction site, where the designated main bars and shear reinforcing bars are brought to the construction site, moved to the designated position by a crane or the like, and assembled by tying the intersections of the reinforcing bars together (the so-called on-site assembly method).
  • pre-assembly method a method of preassembly at a processing plant or the like (pre-assembly method) has come to be used, whereby pre-assembled reinforcing bars (pre-assembled units) are assembled at a processing plant or the like, and the assembled reinforcing bars are brought to the construction site. Therefore, in order to make the work at the processing plant or the like more efficient, a device (reinforcing bar assembly device) has been developed for arranging the main bars and shear reinforcing bars in the designated positions (see Patent Documents 1 and 2).
  • the above-mentioned rebar assembly device is a device that moves the shear reinforcement in the longitudinal direction of the main reinforcement, and the shear reinforcement is installed at a predetermined interval in advance (unitized), and this unitized shear reinforcement is transported by a chain conveyor or endless belt.
  • the process of installing the shear reinforcement at a predetermined interval during the assembly work was not automated, and work efficiency was not dramatically improved.
  • tasks such as bundling were not automated.
  • a rebar assembly device is configured to install a manipulator robot that moves parallel to the axial direction of the main rebar, and to have this manipulator robot sequentially perform tasks such as bundling (see Patent Document 3).
  • this technology it is possible to have the manipulator robot perform tasks such as bundling, as well as the placement of shear reinforcement bars.
  • Japanese Utility Model Application Publication No. 4-130659 Japanese Patent Application Laid-Open No. 6-218475 JP 2013-204257 A JP 2006-318257 A JP 2009-30403 A JP 2011-253484 A
  • Patent Documents 1 and 2 relating to rebar assembly equipment are basically configured to place the main reinforcement bars on a work table, move the shear reinforcement bars (units), and then perform bundling and other connecting work. Even if bundling and other connecting work were automated, the main reinforcement bars would have to be placed in multiple locations inside the shear reinforcement bars, so the extent to which it could be automated would be limited. Furthermore, in the technology disclosed in Patent Document 3, the placement and connecting of the shear reinforcement bars is ultimately performed by a manipulator robot, and rapid rebar assembly is dependent on the speed of the manipulator robot.
  • Patent Documents 4 and 5 mentioned above is a processing technology that stores rebar data in design information for buildings and the like as electronic data, and reconstructs corrected data to avoid rebar interference.
  • merely digitizing the rebar data can help workers grasp and understand it, but the electronic data is displayed as a drawing, and workers work based on that drawing.
  • rebar interference occurs primarily at the joints between columns and beams or slabs, and between beams and slabs, so there is no need to correct the rebar data for individual columns or beams.
  • this rebar data is presented in the form of drawings to support work at the construction site, and is not used in rebar assembly devices.
  • the present invention was made in consideration of the above points, and its purpose is to provide a device that can automate the assembly of reinforcing bars in columns and beams based on reinforcing bar arrangement information contained in design information for buildings, etc.
  • the present invention provides an apparatus for assembling reinforcing bars to be used in columns or beams of a building or structure based on design information for the building or structure that has been created in advance, the apparatus comprising: a storage area in which the reinforcing bars to be used can be stored by type; an assembly area in which the reinforcing bars are arranged in predetermined positions and then joined at predetermined positions of their intersections for assembly; a transport means for transporting the desired reinforcing bars by type from the storage area to the assembly area; a joining means for joining intersections where multiple reinforcing bars intersect in the assembly area; and a control means for controlling the transport of the transport means and the joining operation of the joining means, the control means controlling the design of the building or structure.
  • the system is characterized by comprising a reinforcing bar information acquisition unit that acquires information on the arrangement of at least each type of reinforcing bar in the reinforcing bar groups used in constructing columns or beams from design information related to the structure, a calculation unit that calculates, from the information acquired by the reinforcing bar information acquisition unit, control information including at least the number and transport distance of each type of reinforcing bar to be transported from the storage area to the assembly area, and the coordinates of the intersections between the reinforcing bar groups transported to the assembly area, a first output unit that outputs a control signal for the transport means based on the control information calculated by the calculation unit, and a second output unit that outputs a control signal for the connection means based on the control information calculated by the calculation unit.
  • the control means obtains information (reinforcement data) on the construction of columns and beams from design information of the building to be constructed, calculates information on the movement of reinforcing bars and position information on the coordinates where the reinforcing bars intersect with each other, and outputs a control signal based on the information.
  • the control signal is output separately to the transport means and the joining means, and the transport means controls the transport of a predetermined number of reinforcing bars of a predetermined type in a predetermined order from the reinforcing bars stored in the storage area to the assembly area, and the joining means controls the position and state of the joining based on the calculated coordinates of the intersection position.
  • joining can be done by welding, and a bundling machine can be used as a joining means when joining by bundling, and a welding torch is used when joining by welding.
  • the joining operation means the state of the bundling machine, such as its position, orientation, operation, etc., and the state of the welding torch, such as its position, orientation, etc.
  • design information for buildings and the like can use the reinforcing bar data disclosed in, for example, Patent Document 4, as well as three-dimensional information called BIM (Building Information Modeling and Management) or CIM (Construction Information Modeling and Management).
  • BIM Building Information Modeling and Management
  • CIM Construction Information Modeling and Management
  • BIM and CIM combine information on components and the like to be added to the three-dimensional model as attribute information, which also includes information on reinforcing bars (reinforcing bar data).
  • the group of reinforcing bars includes main bars and shear reinforcement bars
  • the transport means can include a main reinforcement transport section for transporting the main reinforcement bars and a reinforcement transport section for transporting the shear reinforcement bars.
  • the group of reinforcing bars transported to the assembly area has the axis of the main reinforcement bars horizontal and the entire shear reinforcement bars in an upright state so that the axes of the components that make up the shear reinforcement bars are perpendicular to the axis of the main reinforcement bars
  • the calculation section calculates the order of transport of the group of reinforcing bars, and the calculation conditions can be configured to transport a predetermined number of shear reinforcement bars as the first priority, and then transport the main reinforcement bars as the second priority.
  • the main reinforcement and the shear reinforcement can basically be transported to the assembly area in sequence.
  • the main reinforcement is transported with the shear reinforcement as the first priority, with the axis of the main reinforcement assumed to be horizontal, followed by the main reinforcement.
  • Typical shear reinforcement is a rectangular ring-shaped reinforcing bar arranged around the main reinforcement, such as a hoop for a column and a stirrup for a beam.
  • the shear reinforcement is arranged so that each element reinforcing bar (four sides) forming this rectangle is perpendicular to the axis of the main reinforcement, and when the axis of the main reinforcement is horizontal, the shear reinforcement is in a state where the rectangular part is erected.
  • the orientation of the shear reinforcement in the erected state there are no particular restrictions on the orientation of the shear reinforcement in the erected state, but generally, when a rectangular shear reinforcement is installed, one side of the rectangle is the base.
  • the relationship between the main reinforcement and the shear reinforcement is such that multiple shear reinforcement bars are arranged at a predetermined interval along the longitudinal direction of the main reinforcement. Therefore, by arranging the shear reinforcement bars at a predetermined interval in advance and then inserting the main reinforcement bars inside the shear reinforcement bars, it is possible to arrange the reinforcement bars in a predetermined mutual relationship.
  • the installation positions of the shear reinforcement bars and the insertion positions of the main reinforcement bars are each controlled based on the results of calculations performed by the calculation unit, and the coordinates of the intersections after the insertion of the main reinforcement bars will ultimately match the control information from the calculation unit.
  • the assembly area may be provided with a holding means for holding the shear reinforcement bars transported as the first priority in an upright state while maintaining a predetermined interval based on information regarding the arrangement of the reinforcing bars acquired by the reinforcing bar information acquisition unit
  • the main reinforcement transport unit may be provided with a main reinforcement support unit that can rise and fall in the gaps between the shear reinforcement bars held by the holding means, and a main reinforcement delivery unit, and may be configured so that the main reinforcement bars are supported by the main reinforcement support unit and transported by being delivered by the main reinforcement delivery unit.
  • the holding means can hold the shear reinforcement in a predetermined position and state in the assembly area.
  • shear reinforcement that forms a rectangle with two sets of opposing sides (reinforcing bar components)
  • one set of opposing sides of the rectangular structure is horizontal and the other set of opposing sides is vertical.
  • This state can be called the erected state.
  • a holder that holds the periphery of the apex corner located at both ends of the base at two points can be used as a method of holding the shear reinforcement by the holding means.
  • the holder can be one that has an integrated engagement groove that allows the reinforcing bar parts (only a part of the horizontal part and a part of the vertical part) on both sides of the apex corner to be engaged while leaving the apex corner open.
  • this holder By arranging this holder near the apex corners on both sides, the shear reinforcement can be held in an erected state by partially engaging both sides of the base of the shear reinforcement into the engagement grooves of the holders on both sides at the same time. Therefore, it is sufficient to place holders on both sides of the position where the shear reinforcement is to be placed, depending on the number of shear reinforcement bars to be held.
  • Another possible holding method is to magnetically attach the shear reinforcement bars using magnets placed at a specified interval.
  • the magnets may be permanent magnets or electromagnets.
  • the position of the electromagnets must be adjusted to match the interval (pitch) of the shear reinforcement bars to be placed, so it is preferable to place multiple electromagnets and set the magnetic attachment position by selectively passing current through them.
  • core reinforcement bars can be held together with the ties by previously connecting (tying or welding) them to the ties, etc.
  • the main reinforcement can be transported by utilizing the gaps (pitch spaces) formed between the installed shear reinforcement.
  • the main reinforcement support parts can be raised and lowered through the gaps between the shear reinforcement, and when transporting the main reinforcement (inserting it inside the shear reinforcement), the main reinforcement is partially supported by the main reinforcement support parts distributed in several places while the main reinforcement is advanced by the main reinforcement delivery part, making it possible to transport it.
  • the installation interval (pitch) of the shear reinforcement changes according to the reinforcing bar arrangement data to be assembled, so the main reinforcement support parts are necessarily provided so that they can be moved to be placed in the gaps between the shear reinforcement.
  • many main reinforcement support parts are prepared in advance so that the location and number of support can be selected according to the length and weight of the main reinforcement, and a part or all of these selected from them are used to support the main reinforcement.
  • a slider For transporting the shear reinforcement and sending out the main reinforcement, a slider is provided that can move back and forth between the storage area and the assembly area.
  • This slider By providing this slider with a gripping part that has the function of gripping the rebar, it is possible to move the shear reinforcement and main reinforcement a specified distance while gripping them, and by controlling the distance of movement, it is possible to transport them to the position where they are to be supplied.
  • These sliders with gripping parts may be installed separately for the shear reinforcement and the main reinforcement, but since the timing for transporting both is different, the same slider may be used for both.
  • a posture adjustment area can be formed between the storage area and the assembly area to change the posture of the reinforcing bars to a desired state depending on the type of reinforcing bars during transportation, and at least the reinforcing bar transport unit can be configured to transport the shear reinforcing bars via the posture adjustment area and to enable the posture of the shear reinforcing bars to be changed in the posture adjustment area based on a control signal from the control means.
  • the shear reinforcement is transported to the assembly area via the posture adjustment area, so the posture of the shear reinforcement removed from the storage area can be changed as needed during transport.
  • the posture of the shear reinforcement removed from the storage area can be changed as needed during transport.
  • tie bars or stirrups they can be inverted to adjust the position of the hooks. It is also possible to abut the core bars at a specified position on the tie bars, etc., and then perform a process of joining (tying or welding).
  • control means can be configured as a mobile terminal
  • the transport means and the connecting means are each capable of transmitting and receiving information to and from the mobile terminal
  • the mobile terminal can be configured to store the design information, calculate the control information, output control signals based on the control information to the transport means and the connecting means, input outgoing information transmitted from the transport means and the connecting means, and store the outgoing information as work progress information.
  • the transport means and connecting means which are the main components of the rebar assembly device, can send and receive signals to and from a mobile terminal, and therefore operate based on control signals output from the mobile terminal.
  • Transmission and reception can be wired or wireless, and because it involves sending and receiving data, it can also be used outside of a factory (such as at a construction site for a building, etc.).
  • a factory such as at a construction site for a building, etc.
  • it becomes possible to distinguish and appropriately select the group of rebars to be assembled (whether they are columns or beams, or which parts of the columns or beams they are, etc.) according to the progress of construction at the construction site.
  • the mobile terminal can input the transmitted information and store it as work progress information, making it possible to manage it as a so-called log.
  • control means may be composed of a cloud server and a mobile terminal
  • the transport means and the connecting means are each provided so as to be capable of transmitting and receiving data between the mobile terminal
  • the cloud server stores the design information, calculates the control information, and stores the control information
  • the mobile terminal receives the control information stored in the cloud server, outputs control signals based on the control information to the transport means and the connecting means, inputs information transmitted from the transport means and the connecting means, and stores the information as work progress information.
  • the system can be used outside the factory.
  • the mobile device can receive only the necessary control information, reducing the load on the mobile device.
  • the design information can be information subdivided for each work process, and the control information can be calculated for each work process. If the control information is calculated in the cloud server, the mobile terminal can be configured to obtain the control information for each work process stored in the cloud server individually for each work process.
  • the information contained in the design information is subdivided into work processes determined by information on location, type, construction sequence, etc., and the control information is calculated in advance for each subdivided design information, making it possible to immediately start rebar assembly for the required work process.
  • Each subdivided design information or control information is individually assigned an index, and the desired information can be retrieved from the stored information using the index as a marker. If the index is linked to a barcode, it may be possible to easily retrieve the information by reading the barcode.
  • control information is calculated based on the reinforcing bar arrangement information contained in the design information of a building, etc., and the transport means and connecting means are controlled based on the results of this calculation, so that the reinforcing bars can be assembled in a state that is faithful to the design information of the building, etc.
  • these processes can be automated.
  • the present invention employs a method in which the shear reinforcement bars are placed first and then the main reinforcement bars are inserted, which makes it possible to effectively utilize the gaps (pitch space) between the shear reinforcement bars and quickly form the intersection state between the two.
  • connection by the connecting means can be immediately started with the main reinforcement bars inserted inside the shear reinforcement bars.
  • the rebar assembly device only needs to be set up so that it can send and receive data to and from the mobile terminal. It is also possible to install the rebar assembly device outside the factory (e.g., at a construction site) and operate the main components, the transport means and connecting means, by inputting only the signals output from the mobile terminal.
  • the present invention has a configuration for calculating control information based on rebar arrangement information contained in design information for buildings, etc., it is possible to verify the assembly state in virtual space by using the various pieces of information obtained.
  • AR Augmented Reality
  • the adoption of AR (Augmented Reality) technology makes it possible to visually verify the augmented reality using AR goggles and a mobile AR application (visualizing the existing part and the rebar group to be assembled at the same time).
  • a 3D scanner it is possible to verify or visually confirm by combining 3D data of a real object under construction with data after assembly.
  • FIG. 1 is an explanatory diagram showing an entire assembly device according to an embodiment of the present invention
  • FIG. 2 is an explanatory diagram showing the configuration of one block that constitutes the assembly device.
  • FIG. 4 is an explanatory diagram illustrating a conveying means.
  • FIG. 1 is an explanatory diagram illustrating a method for retaining shear reinforcement bars.
  • FIG. 4 is an explanatory diagram illustrating a coupling means.
  • FIG. 2 is an explanatory diagram illustrating the configuration of a control means.
  • FIG. 2 is an explanatory diagram showing the assembled state of the reinforcing bar group.
  • FIG. 13 is an explanatory diagram showing the state of the intersection of reinforcing bars.
  • FIG. 1 is an explanatory diagram showing the state of shear reinforcement bars and core bars.
  • FIG. 10 is an explanatory diagram illustrating a state in which a core bar is held and a guide portion for holding the core bar.
  • FIG. FIG. 13 is an explanatory diagram showing a modified example of the control means.
  • FIG. 13 is an explanatory diagram showing a modified example of the control means.
  • FIG. 13 is an explanatory diagram showing a modified example of the processing means.
  • Fig. 1 is a schematic diagram of an embodiment of a reinforcing bar assembly device according to the present invention. As shown in this figure, this embodiment is constructed by lining up a number of blocks BL, each of which is made up of a number of frames FL. By connecting these blocks BL, an assembly area 1, a posture adjustment area 2, and a storage area 3 are provided in that order. At the very end, a waiting area 4 for transport means 8 and 9, which will be described later, is provided.
  • an upper connecting means 5 and lower connecting means 6 and 7 are arranged in the assembly area 1.
  • the lower connecting means 6 and 7 also function as part of the main reinforcement transport means, as described below.
  • Storage area 3 has an appropriate amount of space, and can store shear reinforcement bars SM1 and core bars SM2 at the top, and main reinforcement bars SM3 at the bottom. Shear reinforcement bars SM1 and core bars SM2 are stored suspended and aligned at a specified height, and main reinforcement bars SM3 can be stored placed on the frame FL of the block BL.
  • the posture adjustment area 2 is disposed between the assembly area 1 and the storage area 3, and ensures an appropriate amount of space. Details will be described later, but the conveying means 8, 9 are provided so that they can rotate when the posture (orientation) of the shear reinforcement SM1, core reinforcement SM2, etc. is changed while the conveying means 8, 9 is holding it. Therefore, it can be omitted if there is no need to change the posture (orientation) of the shear reinforcement SM1, core reinforcement SM2, etc.
  • the waiting area 4 is a waiting space when the operation of the transport means 8, 9 is not required, and serves as the starting point (origin) when controlling the amount of movement.
  • the starting point may be set in the storage area 3, and the waiting area 4 may be omitted when the starting point is the position where the transfer of the shear reinforcement SM1, the core reinforcement SM2, etc. begins.
  • rails LD1, LD2, LU1, LU2 are provided at appropriate locations on each block BL that constitutes the rebar assembly device to guide the movement direction of the connecting means 6, 7 and the transporting means 8, 9.
  • the upper frame F of the block BL is provided with a pair of two rails LU1, LU2 for the upper connecting means 6 and the transporting means 8, 9, allowing both means 6, 8, 9 to move while straddling both rails LU1, LU1,
  • the lower frame is provided with a pair of two rails LD1, LD2 for the lower connecting means 7, allowing said means 7 to move while straddling both rails LD1, LD2.
  • each of the rails LD1 to LU2 can be installed on the cross members of the frame FL that constitutes the block BL. Furthermore, by using these rails LD1 to LU2 as linear guides, the individual connecting means 6, 7 and conveying means 8, 9 can be moved by linear motion.
  • FIG. 2 shows one block BL.
  • Each block BL is basically configured as a cube with a lower cross frame FL1 that forms the foundation, an upper cross frame FL2, and multiple support frames FL3 that are erected vertically.
  • the coordinate system can be established with the length direction X as the X-axis, the width direction Y as the Y-axis, and the height direction Z as the Z-axis.
  • transportation to the construction site and installation and connection at the construction site can be simplified.
  • the horizontal frames FL2a and FL2b that are arranged in the X direction of the upper horizontal frame FL2 function as a base for providing the aforementioned rails LU1 and LU2, and rails LU1 and LU2 of the same length as the horizontal frames FL2a and FL2b can also be installed in advance.
  • auxiliary frames FL4a and FL4b are provided in the vicinity of the lower horizontal frame FL1 and are arranged parallel to the horizontal frame FL1, and function solely as a base for the rails LD1 and LD2 to be installed below. Rails LD1 and LD2 can also be installed in advance on these auxiliary frames FL4a and FL4b.
  • each of the rails LD1 to LU2 is aligned with the length direction X of the block BL, and by connecting multiple blocks BL of the same type in the length direction X, the rails LD1 to LU2 are also continuous, making it possible to obtain the required length. Also, if the rails LD1 to LU2 do not need to be continuous (there are unnecessary areas), it is possible to prepare blocks BL of the same type in which one of the rails LD1 to LU2 is not installed, and to select the blocks BL appropriately to make them continuous.
  • the length dimension L, width dimension W, and height dimension H of the blocks BL in the above configuration can be adjusted as appropriate depending on the reinforcement information to be assembled, but they may also be configured to have a constant size with ample room to allow for the assembly of rebar groups of various sizes.
  • the length dimension L can be 1m, assuming that multiple blocks BL will be connected, the width dimension W can be 2m to ensure sufficient space inside the device, and the height dimension can be 3m.
  • FIG. 3 is a perspective view showing an example of two types of conveying means 8, 9.
  • the figure shows both conveying means 8, 9 as conveying in the same conveying direction C, and the power supply system (power cable, etc.) for the driving device installed individually is omitted.
  • both 8, 9 are equipped with sliders 81a, 81b, 91a, 91b that can slide in the longitudinal direction X (X-axis direction) along rails (linear motion guides) LU1, LU2 installed on upper frames FL2a, FL2b, respectively, and frames 82, 92 are suspended so as to straddle these sliders 81a to 92b.
  • Motors 83, 93 are provided on one of the sliders 81a, 91a, and driving forces for sliding along the rails LU1, LU2 are applied.
  • a second linear motion guide is formed in the frames 82, 92, and the transport bases 84, 94 are slidable in the axial direction Y (Y-axis direction) of the guide.
  • One of the conveying means 8 is an example of a device for conveying the shear reinforcement SM1. Therefore, the lifting section 85 can be raised and lowered by an actuator installed on the conveying base 84. In this case, a Zip Chain Actuator (registered trademark) or the like can be used as the actuator, but other actuators can be used as appropriate.
  • the lifting section 85 is provided with a horizontal arm 86 via a motor or the like as appropriate, and a vertical arm 87 is provided at its tip.
  • the horizontal arm 86 can be rotated around the center of the lifting section 85 by the operation of a motor or the like, and the vertical arm 87 also rotates at the same time when the horizontal arm 86 rotates.
  • Both arms 86, 87 are provided with chucks 88, 89 that can slide in the axial direction, and are configured to be able to grip a part of the shear reinforcement at an appropriate position.
  • the chuck 88 of the horizontal arm 86 grips a horizontal piece of rebar at the top
  • the chuck 89 of the vertical arm 87 grips a vertical piece of rebar at the side.
  • the rotation of the lifting unit 85 rotates within the XY plane about the Z axis, so that the horizontal arm 86 changes its orientation in the longitudinal direction and the vertical arm 87 changes its position around the axis.
  • the gripping by the chucks 88 and 89 of both arms 86 and 87 maintains the rectangular rebar with its two opposing sides vertically and horizontally, while only changing its posture (position and direction).
  • the other conveying means 9 is exemplified as a device solely for conveying the core bar SM2.
  • the lifting section 95 can be raised and lowered by an actuator installed on the conveying base 94.
  • An example of the actuator in this case is a Zip Chain Actuator (registered trademark).
  • the lifting section 95 is provided with a rotating section 96 that is linked to a motor or the like, and a chuck 97 is provided on part of the rotating section 96.
  • the rotating section 96 rotates in the XY plane around the Z axis, and the chuck 97 can be rotated around the base by another motor or the like, so that the shaft part of the core bar other than the hook can be gripped, and the posture can be changed by rotating and swiveling while gripped.
  • Each of the above-mentioned transport means 8, 9 can be rotated to a predetermined angle and slid along rails (linear motion guides) LU1, LU2 installed on the upper frames FL2a, FL2b, to transport the shear reinforcement or core reinforcement in a predetermined position to a predetermined position.
  • rails linear motion guides
  • servo motors are used as the driving devices (motors) for driving the respective movements, rotations, etc., and the number of rotations is detected when a driving force is applied, and the amount of movement and the angle of rotation, etc. can be calculated from the number of rotations.
  • batteries or general-purpose wired cables can be used, but this is omitted as it does not require special explanation.
  • the shear reinforcement is supplied to the assembly area 1 by the conveying means 8, but in order to allow the supply of the main reinforcement to be performed after the supply of the shear reinforcement, it is necessary to hold the shear reinforcement supplied first in a predetermined position and in a predetermined state.
  • the orientation of the shear reinforcement is exemplified as being, in principle, such that one set of two opposing sides forming a rectangle is kept horizontal and the other set of two opposing sides is kept vertical. Therefore, in order to hold the shear reinforcement while maintaining the above orientation, for example, a method using a holder as a physical means is available.
  • the retainer shown in Figure 4 is shown.
  • This retainer is structured to simultaneously hold the periphery of the apex angles SM11 and SM12 located on both sides of the base portion SM1a of the shear reinforcement SM1 to be held.
  • the retainers 10a and 10b shown in the figure are of the same shape, but are shown installed in an inverted state, but the retainers 10a and 10b may be configured to have mutually symmetrical shapes.
  • Each retainer 10a, 10b has grooves 11a, 12a, 11b, 12b into which the reinforcing bar components (two sides) located on both sides of the vertices SM11, SM12 can be inserted, and these are connected by connecting parts 13a, 13b, which are formed in an offset state deviated from the axis of the shear reinforcement SM1.
  • the reason that the connecting parts 13a, 13b are in an offset state is so as not to impede the function of the connecting means (binding means, etc.) when connecting (binding, etc.) with the main reinforcement.
  • the connecting parts 13a, 13b may be curved in addition to being connected in a straight line, and may be connected in a shape other than the offset state as long as the shape exposes the connecting part (intersection) with the main reinforcement.
  • the sides (reinforcing bar components) SM1a, SM1b located on both sides of one apex angle SM11 of the shear reinforcement SM1 can be held together by simultaneously engaging them into the engagement grooves 11a, 12a of one retainer 10a. Simultaneous engagement of the two sides SM1a, SM1b into both engagement grooves 11a, 12a is achieved by lowering the retainer 10a from above, first engaging the vertical side SM1b into the side engagement groove 12a, and then further lowering it so that the base side SM1a can be engaged into the lower engagement groove 11a, making simultaneous engagement possible in this state.
  • the sides SM1a, SM1c located on both sides of the other apex angle SM12 can be held together by the other retainer 10b. In this way, by simultaneously holding the areas near the apex angles SM11 and SM12 on both sides of the base SMa of the shear reinforcement SM1, the shear reinforcement SM1 is held upright in the specified position without tilting.
  • each retainer 10a, 10b is movable along the rails 14a, 14b.
  • the rails 14a, 14b are provided with a plurality of retainers 10a, 10b in advance, and the retainers are arranged at their respective predetermined positions by sliding along the rails 14a, 14b. Since the shear reinforcement SM1 should be installed at a predetermined interval, the retainers 10a, 10b are arranged at the predetermined interval, and spacers may be arranged between the retainers 10a, 10b to maintain the interval constant. The spacers may be mounted on the rails 14a, 14b, or may be configured to be attached to each retainer 10a, 10b.
  • the rails 14a, 14b for allowing the retainers 10a, 10b to slide are mounted on another rail 15 arranged in a perpendicular direction, and are made slidable along this rail 15.
  • the retainer mounting rails 14a, 14b along this rail 15 the mutual positions can be moved apart or closer to each other to accommodate the dimensions.
  • a slider (not shown) is installed in the rail, and by providing a stopper to stop the sliding of this slider, the arrangement state at each specified position is maintained.
  • FIG. 5 is a perspective view showing an example of two types of fastening means 5, 6, and 7 arranged separately above and below.
  • the fastening means illustrated here are all fastening means that enable fastening by fastening, and hereinafter the fastening means may be referred to as fastening means, and a fastening machine is illustrated as an example of a fastening device.
  • the figure omits the support frame FL3, but the upper fastening means 5 and the lower fastening means 6 and 7 are arranged separately above and below by the support frame FL3.
  • the upper binding means is able to slide in the longitudinal direction Y (X-axis direction) of the rails by means of sliders 51a and 51b attached to rails (linear motion guides) LU1 and LU2 installed on the upper frames FL2a and FL2b.
  • a frame 52 is suspended so as to straddle both sliders 51a and 51b, and a driving force for sliding is applied by a motor 53.
  • a second linear motion guide is also configured in the frame 52, allowing the binding base 54 to slide in the axial direction Y (Y-axis direction) of the guide.
  • An actuator is installed in the binding base 54, allowing the lifting section 55 to be raised and lowered.
  • a rotating section 56 is provided at the bottom of this lifting section 55 via a suitable motor or the like, allowing it to rotate in a horizontal plane (XY plane).
  • a binding machine 57 is installed on this rotating section 56, allowing the binding of rebar. Note that relative to the rotating section 56, the binding machine 57 can rotate around a horizontal axis, allowing the direction of the tip of the binding machine 57 to be changed.
  • the sliders 51a, 51b can be moved in the X direction and the binding base 54 can be moved in the Y direction, allowing the lifting unit 55 to move the binding machine 57 to a predetermined position in the XY plane. Then, by raising and lowering the lifting unit 55, it is possible to move the binding machine 67 to the target position.
  • the orientation of the binding machine 57 can be freely changed by rotating the swivel unit 56 and rotating it around the horizontal axis, so it can be adjusted to the orientation required for binding.
  • binding machine 57 it is possible to move the binding machine 57 to the binding positions on the top and left and right sides and bind them appropriately.
  • a so-called automatic binding machine can be used as the binding machine 57, and for example, a "Twin Tire” manufactured by Max can be used. This device places two claws on both sides of the rebar, suspending a binding wire between the two claws and completing the binding.
  • the lower binding means 6, 7 are two similarly configured units arranged in parallel. These binding means 6, 7 are installed on rails (linear motion guides) LD1, LD2 installed on auxiliary frames FL4a, FL4b. Sliders 61a, 61b, 71a, 71b are attached to these rails LD1, LD2, allowing them to slide in the longitudinal direction Y (X-axis direction) of the rails. Each has a frame 62, 72, which is suspended so as to straddle the sliders 61a, 61b, 71a, 71b on both sides, and a driving force for sliding is applied by a motor 63, 73.
  • a second linear motion guide is also configured in the frame 52, allowing the binding bases 64, 74 to slide in the axial direction Y (Y-axis direction) of the guide.
  • a binding machine 65, 75 is installed on the binding base 64, 74, and the binding machine 65, 75 can be moved to the binding position by changing the position of the binding base 64, 74.
  • binding machines 65 and 75 used here can also use the "Twin Tire” manufactured by Max.
  • a servo motor can be used as the drive device (motor) for driving the movement etc. of these bundling means 5, 6, 7.
  • the amount of movement etc. can be calculated from that number of rotations.
  • the upper bundling means 5 may be operated as a bundling (connecting) means for integrating the shear reinforcement and the tangential bars. That is, the two transport means 8, 9 mentioned above are operated simultaneously to temporarily transport the shear reinforcement and the tangential bars to the posture adjustment area 2, and after maintaining the postures of both in a specified state in this posture adjustment area 2, the upper bundling means 5 is moved to the posture adjustment area 2, enabling bundling in the posture adjustment area 2.
  • the tangential bars connected to the shear reinforcement by bundling can be inevitably supplied to the specified position by supplying the shear reinforcement.
  • ⁇ Examples of means for transporting main reinforcement> an example of a main reinforcing bar transport means that can be used in this embodiment will be shown.
  • a part of the main reinforcing bar transport means (transport auxiliary unit) is mounted on the lower bundling means 6, 7 in Fig. 5.
  • the driving force for transporting the main reinforcing bars is provided by the above-mentioned transport means 8, 9.
  • the transport means is composed of the lower bundling means 6, 7 and the transport means 8, 9.
  • the upper part of the binding base 64, 74 constituting the lower binding means 6, 7 described above has a V-shaped conveying auxiliary part 66, 76 having two conveyor rollers.
  • the main reinforcement is supported at two points on both sides below.
  • the conveying means 8, 9 that apply the driving force to the main reinforcement are provided with chucks 88, 89, 97 as described above, and these chucks 88, 89, 97 are appropriately selected to grip and transport the main reinforcement.
  • the two types of conveying means 8, 9 are gripped and transported, and released from gripping and retreated sequentially and alternately, forcing the main reinforcement to move a predetermined distance, which acts as a driving force (propulsion force) for the main reinforcement toward the assembly area 1.
  • a driving force propulsion force
  • the conveyor rollers that make up the transport auxiliary parts 66, 76 do not have to be two V-shaped rollers, but may be a single flat roller. If a flat roller is used, guide plates or the like should be provided on both sides to prevent the main reinforcement from rolling.
  • the transport auxiliary parts 66, 76 are equipped with an axis that can be expanded and contracted by an actuator, and are normally kept in a contracted state. When transporting the main reinforcement, they can be expanded appropriately according to the position of the main reinforcement in the height direction (Z direction). Since the main reinforcement should be placed inside the shear reinforcement, the transport auxiliary parts 66, 76 are adjusted in size to be able to appear and disappear inside through the gaps in the shear reinforcement transported by the shear reinforcement transport means 8, 9.
  • the spacing between the shear reinforcement is about 60 mm between the centers even in the narrowest case, and therefore the gaps formed between the shear reinforcement are about 50 mm, so the outer diameter dimensions of the conveyor rollers and axis parts of the transport auxiliary parts 66, 76 are adjusted to less than 50 mm.
  • the conveying means is also used as the bundling means 6, 7.
  • the bundling is performed at the bottom of the shear reinforcement. Therefore, when bundling the main reinforcement at that position, there is a method in which at least two conveying auxiliary parts 66, 76 support the main reinforcement and the remaining bundling means (not shown) bundling it.
  • the role of conveying auxiliary can be completed, and in this state, it can be operated as the bundling means 8, 9.
  • the main reinforcement when the main reinforcement is supported at an appropriate height, bundling at the bottom of the shear reinforcement is not necessary, so it can function solely as the conveying auxiliary parts 66, 76 for the main reinforcement. In this case, the main reinforcement is maintained supported at a specified height until bundling by the upper bundling means 5 is completed.
  • the conveying means 8, 9 are used to convey the main reinforcing bars (drive units), the number of rotations when the driving force is applied can be detected by a similar servo motor, and the amount of movement, etc. can be calculated from that number of rotations, making it possible to control the conveying distance of the main reinforcing bars (the position of the main reinforcing bars after conveyance).
  • a mobile terminal 100 as shown in FIG. 6 can be used.
  • a tablet PC capable of transmitting and receiving with the outside can be used. That is, the receiving unit 111 and the transmitting unit 112 provided in the tablet PC can be used to receive external information and transmit processed control information.
  • the external information can be information stored in a cloud server or the like, and can be transmitted and received via a network line.
  • transmission and reception can be performed between an external device via a network line by using, for example, an LTE (Long Term Evolution) router 120, and information can be transmitted and received between the mobile terminal 100 and each of the above-mentioned operating means 5 to 9.
  • the mobile terminal 100 outputs a control signal to the operating means 5 to 9 capable of transmitting and receiving, and can also be used to detect the operating status (operating state) of the operating means 5 to 9.
  • This type of mobile terminal is equipped with a processing device 200 as a control means, which includes an information acquisition unit (in this embodiment, a rebar information acquisition unit) 221, a storage unit 222 such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) or other memory, and a processing unit (calculation unit) 223. It also includes output units 224, 225 for outputting the calculation results.
  • a processing device 200 includes an information acquisition unit (in this embodiment, a rebar information acquisition unit) 221, a storage unit 222 such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) or other memory, and a processing unit (calculation unit) 223. It also includes output units 224, 225 for outputting the calculation results.
  • the rebar information acquired via the receiving unit 111 includes rebar arrangement data in design information for buildings and the like stored as electronic data, or electronic data that reflects correction values to avoid interference between rebars. There is also information about rebars (rebar arrangement data) as attribute information included in BIM or CIM. This rebar information includes detailed information such as the type of rebar group (rebar diameter and dimensions, etc.) to be used when constructing columns and beams, as well as the position and number at which they should be placed, and the desired rebar assembly can be achieved by arranging various rebar groups based on this information.
  • the receiving unit 111 can receive from the outside information about the building to be constructed, such as overall information and reinforcing bar arrangement information, and store it in the memory unit 222.
  • the construction order of the columns or beams to be constructed is identified from the overall information, and detailed information about the reinforcing bar groups to be assembled is identified from the reinforcing bar arrangement information. Since both the overall information and the reinforcing bar arrangement information are design information, by identifying a column, beam, etc. as a specific construction part, drawing information for that column, etc. can be obtained.
  • the processing unit (calculation unit) 223 calculates assembly information for various reinforcing bars according to the positions where the main bars, shear reinforcement bars, and tangential bars should be placed, from drawing information related to the reinforcing bars for specific columns, etc. Specifically, it calculates position information for prioritizing the placement of shear reinforcement bars and tangential bars, with the principle that the main bars should be inserted last, and calculates the operating sequence and transport distance of the transport means 6 to 9 mentioned above. At the same time, it calculates the transport distance of the main bars, and quantifies the positions of the reinforcing bars to be assembled as coordinates.
  • the information on the calculated results is temporarily stored in the memory unit 222 and is output via the output units 224 and 225 in accordance with the operating sequence.
  • the order of output is determined by setting a priority order in advance, and the output is sequentially output according to the priority order.
  • the first output unit 224 outputs to the conveying means, and the second output unit 225 outputs to the bundling means. In particular, when the outputs are not overlapping, they may be output via a single output unit.
  • the output information can be output as a control signal.
  • the conveying means 6 to 9 and bundling means 5 to 7 are configured as a group of client devices 300, with one PLC (Programmable Logic Controller) as a representative (representative PLC) 130, which receives a control signal (control information) output from the mobile terminal 100 via the LTE router 120 and transmits it to the individual PLCs 301 1 to 301 5 of the client devices 300.
  • PLC Programmable Logic Controller
  • an access point may be provided to transmit information wirelessly, for example, by Wi-Fi.
  • Wi-Fi Wireless Fidelity
  • the reason for providing the representative PLC 130 is that a case in which multiple client devices 300 are operated at the same time is that providing the representative PLC 130 to each client device 300 makes it possible to manage them by IP addresses or the like. Therefore, when only control of a single client device 300 is assumed, the representative PLC 130 may be omitted.
  • the individual PLCs 301 1 to 301 5 provided for the operating means 5 to 9 of the client machine 300 receive a control signal (control information), and the operating means 5 to 9 connected to the client machine 300 execute a predetermined operation based on the control signal.
  • the operating status of the operating means 5 to 9 is input from the individual PLCs 301 1 to 301 5 to the mobile terminal 100 via the representative PLC 130. This operating status can be used to organize the operating sequence of the operating means 5 to 9 that operate individually, and can also be used to analyze the progress of the work.
  • the progress information of the work can be stored separately in the storage unit 222 and managed as a so-called log (operation log).
  • the operation log can be used to adjust the progress speed of the reinforcing bar work according to the construction status of the building, etc., and can also be used as verification data when a malfunction of the operating means 5 to 9 or a defect in the reinforcing bar state is found.
  • FIG. 7 shows an example of a reinforcing bar group showing an assembly state based on the reinforcing bar arrangement information of a column.
  • the reinforcing bars for constructing a column are configured so that the main reinforcing bars SM3 are vertical and the shear reinforcing bars SM1 are arranged around them.
  • the whole is oriented horizontally and the main reinforcing bars SM3 are assembled in the horizontal direction.
  • the rectangular plane of the shear reinforcing bars SM1 can be set to the Y-Z plane and aligned at a predetermined interval in the X-axis direction.
  • the axis of the main reinforcement SM3 is arranged horizontally. Note that the assembly state based on the reinforcing bar information (reinforcing bar arrangement information) for the beam is such that the main reinforcement SM3 is horizontal from the beginning, so it can be assembled in the same manner as above.
  • the above-mentioned retainers 10a and 10b can be used to mechanically set the shear reinforcement SM1 upright.
  • magnetic means can be provided below and to the sides of the shear reinforcement SM1, and the lower and sides of the shear reinforcement SM1 can be magnetically attached to position it.
  • the magnetic means can be configured by magnets arranged intermittently according to the installation intervals of the shear reinforcement SM1.
  • the magnetic means can be configured to arrange multiple permanent magnets at appropriate positions, or it can be configured to magnetize the shear reinforcement SM1 at appropriate intervals by passing electricity through an electromagnet at a specified position.
  • the shear reinforcement SM1 is formed by bending a rod-shaped member into a rectangle, with the straight lines constituting the four sides (reinforcing bar components) SM1a to SM1d.
  • a typical shear reinforcement SM1 is formed by bending the tip of a rod-shaped member to form a hook F.
  • This hook F can be a 90-degree hook (bent at 90 degrees) or a 135-degree hook (bent at 135 degrees), but a 135-degree hook is shown here.
  • hooks F are required to be aligned by reversing the left and right (alternately arranged in the Y-axis direction) so that they are not aligned in the same position (not in a line in the X-axis direction). Therefore, they are supplied while adjusting their orientation.
  • the transport means 8 for transporting the shear reinforcement SM1 receives the shear reinforcement SM1 from the storage area 3, adjusts the posture of the shear reinforcement SM1 in the posture adjustment area 2 on the way to the assembly area 1, transports it to a predetermined position according to the transport distance, and lowers it so that it is held by the pre-arranged holders 10a, 10b. In this way, the required number of shear reinforcement SM1 are aligned and held in sequence from the front, completing the arrangement of the shear reinforcement SM1.
  • the main reinforcement SM3 since the main reinforcement SM3 is placed in contact with the inside of the rectangular shear reinforcement SM1, it can be inserted from behind the last shear reinforcement SM1 in the axial direction (X direction) so as to pass through the inside of the shear reinforcement SM1 that has already been placed. Note that since the main reinforcement SM3 does not have a member to hold it, it is transported one by one and held in place by completing the connection with the shear reinforcement SM1 at the specified position.
  • the main reinforcement SM3 is held (connected) by tying the intersections with the main reinforcement inserted inside the pre-aligned shear reinforcement SM1, and the entire reinforcing bar is assembled.
  • the tying work is carried out by tying means 5, 6, and 7.
  • Figure 8 shows the state of the intersections between each component SM1a-SM1d of the shear reinforcement SM1 and the main reinforcement SM3.
  • the axis of the main reinforcement SM3 is in the X direction, while the axes of the rebar components SM1a and SM1b arranged above and below are in the Y direction, so they cross in the X and Y directions.
  • this state of intersection is shown as the intersection O of the mutual center lines (axes), and the outer diameters D1 and D2 of both rebar components SM1 (SM1a, SM1b) and SM3 are presented as separate drawing information.
  • the actual intersection point is the point of abutment P on the outer periphery of both reinforcing bar components SM1 (SM1a, SM1b) and SM3, which is a different point from the intersection point O of the center lines in the drawing information. Therefore, the coordinates of the point of abutment P are calculated using the information on the outer diameters D1, D2 from the intersection point O in the drawing information.
  • the coordinates of the intersection point O (or point of abutment P) in the axial direction (X direction) of the main reinforcement SM3 are the distance L from the tip to the intersection point O, and can be obtained directly from the drawing information.
  • the binding wire is hung diagonally (binding is done diagonally with respect to both axes), so the binding direction is inclined by 45 degrees from the X axis (or Y axis).
  • the "Twin Tire” manufactured by Max Co., Ltd. as a binding machine for binding, for example, in order to bind the intersection of the upper reinforcing bar component SM1a and the main reinforcing bar SM3 (see FIG.
  • the binding machine is placed above the intersection and rotated by 45 degrees from the X axis (or Y axis), and two claws are placed on both sides of the contact point P, so that the binding wire can be bound diagonally. Note that when binding the intersection of the lower reinforcing bar component SM1b and the main reinforcing bar SM3 (see FIG. 8(b)), the binding machine is placed below the intersection. Only in this case will the lower binding means 6, 7 be used.
  • the intersection point in the drawing information is the intersection point of the center lines, so the coordinates of the contact point are determined by the outer diameters of the main reinforcement SM3 and the rebar components SM1c, SM1d.
  • the two claws are oriented horizontally and rotated 45 degrees around the X-axis (or Z-axis), and two claws are positioned on either side of the contact point, allowing for diagonal binding.
  • the auxiliary transport parts 66, 76 for the main reinforcement provided on the lower bundling means 6, 7 must be extended upward to support the main reinforcement SM3 at the top. Therefore, bundling the lower main reinforcement SM3 first will interfere with the transport and support of the upper main reinforcement SM3. Therefore, bundling is performed in sequence, starting from the upper main reinforcement SM3.
  • the core bars SM2 are arranged together with the shear reinforcement bars SM1, and are finally connected (tied) to the main reinforcement bars SM3.
  • the shear reinforcement bars SM1 are arranged around the main reinforcement bars SM3, while the core bar SM2 is placed across a pair of opposing main reinforcement bars SM3, and is arranged to cross or cross the rectangular interior of the shear reinforcement bars SM1.
  • the core bars SM2 are arranged adjacent to the shear reinforcement bars SM1, with a part of the core bar being in contact with the shear reinforcement bars SM1.
  • the shear reinforcement bars SM1 and the core bars SM2 in advance, and to arrange the shear reinforcement bars SM1 so that the core bars SM2 are necessarily arranged.
  • the core bars SM2 are not arranged for all the shear reinforcement bars SM1, but one core bar is arranged for each of several shear reinforcement bars SM1.
  • the direction of the axis of the core line SM2 (the axis of the central part excluding the hooks at both ends) is not constant (different between (a) and (b) of FIG. 9).
  • FIG. 9(a) there are cases where the core bars SM2 are arranged so as to cross the shear reinforcement bars SM1.
  • Such core bars SM2 are suspended from a set of main reinforcements SM3 arranged laterally, with the axis of the central part being horizontal. Note that the figure shows an example in which one core bar SM2 is provided for every two shear reinforcement bars SM1.
  • the core bars SM2 are arranged to run vertically through the shear reinforcement bars SM1.
  • the core bars SM2 are suspended from a pair of main reinforcements SM3 arranged above and below, with their axis in the vertical direction.
  • the installation interval in this figure is also exemplified as one core bar SM2 being provided for every two shear reinforcement bars SM1.
  • the core bars SM2 are mixed, some of which cross the shear reinforcement bars SM1, and some that run vertically.
  • the two types are not installed at the same position at the same time, but are installed adjacent to different shear reinforcement bars SM1. Since the core bars SM2 arranged in this way are installed in contact with the shear reinforcement bars SM1, the aforementioned conveying means 8, 9 are arranged with the conveying means 8 for the shear reinforcement bars at the front and the conveying means 9 for the core bars at the rear (see Figure 1).
  • the conveying means 8 for the shear reinforcement bars and the conveying means 9 for the core bars grasp and convey both reinforcing bars SM1, SM2, respectively, and join them in the posture adjustment area 2.
  • the core bar transport means 9 can release the transport (gripping) and retreat to its original position, and the shear reinforcement bar transport means 8 can grip the shear reinforcement bar SM1 and place it in the specified position, allowing both reinforcing bars SM1 and SM2 to be supplied simultaneously.
  • the hooks SM2b, SM2c at both ends of the core bar SM2 are connected (tied) to the shear reinforcement bar SM1.
  • the core bar SM2 is formed by bending both ends of a single rod-shaped member, with a straight main body component SM2a and hooks SM2b, SM2c formed on both ends.
  • the hooks SM2b, SM2c of the core bar SM2 also come in 90-degree hooks (bent at 90 degrees) and 135-degree hooks (bent at 135 degrees), but the figure shows an example of a 135-degree hook.
  • the aforementioned conveying means 8 and 9 are used to bring the core bar SM2 into contact with the shear reinforcement SM1 in a predetermined direction and position.
  • the hooks SM2b and SM2c are brought into contact with the two lateral sides SM1b and SM1c of the shear reinforcement SM1.
  • the apex portions of the hooks SM2b and SM2c can be tied together to secure a fixed connection.
  • the core bar SM2 is connected to the shear reinforcement SM1, so by managing only the shear reinforcement SM1 and moving it to a specific position as described above, and keeping the shear reinforcement SM1 in an upright position, the core bar SM2 can be placed in the desired position.
  • the positions where each reinforcing bar should be placed and the positions of intersections can be calculated and quantified as coordinates based on the reinforcing bar group information included in the design information of a building, etc., which is created in advance.
  • the transport amount of the transport means is controlled to place the reinforcing bar group at a predetermined position, and the position of the bundling means is controlled and changed to enable bundling, so that the reinforcing bars can be assembled in a state faithful to the design information (reinforcing bar information) of the building, etc., and these assembly operations can also be automated.
  • the rebars to be assembled are those used in columns and beams, and in the above calculations, for beams, the main bars are placed horizontally as is. In contrast, for columns, the original vertical main bars are rotated 90 degrees, and calculations are performed with the main bars in a horizontal state, allowing assembly to be performed with the same coordinates as for beams.
  • the information used by the processing device 200 as the control means includes information on reinforcing bars (reinforcing bar data) as attribute information contained in BIM or CIM. Since these BIM or CIM contain all information related to the design of buildings, etc., it is possible to display the entire building and the assembly state of the reinforcing bars in a virtual space by using this information and various other information such as calculated reinforcing bar information. When displayed in such a virtual space, the state of the reinforcing bars in the virtual space can be verified.
  • AR Augmented Reality
  • AR goggles or the like which combines the real object under construction and the reinforcing bars after assembly.
  • composite data of the real object under construction and the reinforcing bars after assembly can be created in a similar manner, and can be visually confirmed and verified.
  • the above embodiment shows one example of the present invention, and is not intended to limit the present invention to the above embodiment. Therefore, the above embodiment may be partially modified and other configurations may be added. For example, the configurations of the conveying means, binding means, etc. are not limited to the examples shown in the embodiment.
  • the control means is not limited to the use of a mobile terminal as in the example, but may be any means that allows control of each means (device) as a whole while using other control devices. That is, in the above embodiment, the processing unit (calculation unit) 223 of the mobile terminal is configured to calculate the transport positions of various rebars based on the rebar arrangement information, and further to output control signals for the transport means, but this processing unit (calculation unit) 223 may also be operated by another processing device.
  • a processing device 400 provided outside the mobile terminal 10 can be used, and the coordinate information based on the reinforcing bar arrangement information included in the design information can be calculated in the cloud server 400.
  • the calculation results (coordinate information) can be received via the transmission/reception unit 111 of the mobile terminal 100, and the processing unit 223 of the mobile terminal 100 can convert them into control signals for each means (device), which can then be transmitted to each means (device) via the transmission/reception unit 111.
  • the processing unit 223 can function as a device that processes to identify the output destination from among multiple representative PLCs.
  • the cloud server 400 is provided with a reinforcing bar information acquisition unit 421, which inputs reinforcing bar information via the input unit 426, and the memory unit 422 stores the reinforcing bar information as well as the results of calculations processed by the processing unit (calculation unit) 423, which can be transmitted to the mobile terminal 100 via the output unit 425 and a network line.
  • the mobile terminal 100 inputs information via the transmission/reception unit 111, so that the input information passed through the processing unit 223 can be stored in the memory unit 222, and the stored information can be identified via the output unit 224 and transmitted from the transmission/reception unit 111 to the representative PLC 130 or an individual client machine 300.
  • the mobile terminal 100 may function as a device that does not store information, but outputs information from the cloud server 400 to the representative PLC, and transmits information sent from the client device 300 to the client server 400 via the representative PLC.
  • a smartphone or the like can also be used as such a mobile terminal 100.
  • the information received from the cloud server 400 is transmitted sequentially to the representative PLC 130 as individual information.
  • an assembly line (line 1, line 2, line 3, etc.) with multiple client machines 300a, 300b, 300c, etc. and multiple corresponding mobile terminals 100a, 100b, 100c, etc., and to configure each line so that information is sent and received via a representative PLC 130a, 130b, 130c, etc.
  • sensors may be provided as appropriate to allow the client device 300 to transmit the operating status of each of the means 5 to 9. Furthermore, by feeding back the state of installation of the rebar and the position of the rebar before binding from the sensing data from these sensors, it is also possible to perform feedback control using a program stored in an individual PLC 301.
  • Binding means (upper binding means) 6, 7 Binding means (sub-binding means) and conveying means (for main reinforcement) 8.
  • Transportation means (for shear reinforcement) 9.
  • Transport means (for core bars) 10a, 10b Holder 11a, 11b, 12a, 12b Engagement groove 13a, 13b Connection portion 14a, 14b Rail (rail with holder mounted) 15 Rail 41, 42, 43, 44 Magnetic attachment means 45, 46, 47, 48 Guide portion 51a, 51b, 61a, 61b, 71a, 71b, 81a, 81b, 91a, 91b Slider 52, 62, 72, 82, 92 Frame 53, 63, 73, 83, 93 Motor 54, 64, 74 Binding base portion 55 Lifting portion 56, 96 Swiveling portion 57, 65, 75 Binding machine 66, 76 Transport auxiliary portion 84, 94 Transport base portion 85, 95 Lifting portion 86 Horizontal arm 87 Vertical arm

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Wire Processing (AREA)

Abstract

[Problem] To provide a device that automates the assembly of rebars for a column or beam on the basis of the rod arrangement information of the rebars included in the design information about a building, etc. [Solution] The present invention is provided with: a holding region 3 where rebar groups are held; an assembly region 1 where intersecting sections are tied while the rebar groups are disposed at predetermined positions; conveying means 8 and 9 that convey the rebars from the holding region to the assembly region; tying means 5, 6, and 7 that tie the intersecting sections where the plurality of rebars intersect; and a control means that controls the conveying means and the tying means. The control means comprises: a rebar information acquiring unit that acquires, from the design information, information related to the arrangement of each rebar of a rebar group to be used in the construction of a column or beam; a computing unit that computes control information that includes the number and the conveying distance of rebars to be conveyed from the holding region to the assembly region, and the coordinates of the mutual intersecting sections of the rebar groups; a first output unit that outputs a control signal to the conveying means based on the control information; and a second output unit that outputs a control signal to the tying means based on the control information computed by the computing unit.

Description

鉄筋組立装置Rebar assembly equipment
 本発明は、建築物または該構築物の柱または梁に使用される鉄筋群を組み立てるための装置に関し、特に、予め作成された建築物または構築物に関する設計情報に基づいて、所定の位置に鉄筋を配置するとともに、鉄筋の交差部を結束等により結合して組み立てるものに関する。 The present invention relates to a device for assembling reinforcing bars used in the columns or beams of a building or structure, and in particular to a device that places reinforcing bars in predetermined positions based on pre-created design information for the building or structure, and assembles the bars by bundling or otherwise connecting the intersections of the reinforcing bars.
 一般的に鉄筋コンクリートにより構築される建築物または構築物は、予め配筋された鉄筋をコンクリートで固めた柱や梁または壁で構成されており、コンクリートを打設する前に鉄筋を配筋している。そのため、鉄筋の配筋作業は、専ら施工現場において行われ、所定の主筋およびせん断補強筋を施工現場に搬入し、クレーン等で所定の位置まで移動させたうえ、各鉄筋の交差部を結束等することにより組み立てられていた(いわゆる現場組み方式)。ところが、現場作業では作業の省力化や効率化に限界があるため、加工場等で予め組み立てる方法(先組み方式)が用いられるようになり、加工場等において先組みした鉄筋群(先組ユニット)を組み立て、施工現場に組立後の鉄筋群を搬入することがあった。そこで、加工場等における作業を効率化するために、主筋とせん断補強筋とを所定に位置に配置するための装置(鉄筋組立装置)が開発されている(特許文献1および特許文献2参照)。 Generally, buildings or structures constructed with reinforced concrete are made up of columns, beams or walls in which pre-arranged reinforcing bars are hardened with concrete, and the reinforcing bars are arranged before the concrete is poured. For this reason, the arrangement of reinforcing bars is carried out exclusively at the construction site, where the designated main bars and shear reinforcing bars are brought to the construction site, moved to the designated position by a crane or the like, and assembled by tying the intersections of the reinforcing bars together (the so-called on-site assembly method). However, since there is a limit to how much labor can be saved and how efficient work can be done on-site, a method of preassembly at a processing plant or the like (pre-assembly method) has come to be used, whereby pre-assembled reinforcing bars (pre-assembled units) are assembled at a processing plant or the like, and the assembled reinforcing bars are brought to the construction site. Therefore, in order to make the work at the processing plant or the like more efficient, a device (reinforcing bar assembly device) has been developed for arranging the main bars and shear reinforcing bars in the designated positions (see Patent Documents 1 and 2).
 ところが、上記のような鉄筋組立装置は、主筋の長手方向にせん断補強筋を移動させる装置であって、せん断補強筋を予め所定の間隔で設置した状態とし(ユニット化し)、このユニット化したせん断補強筋をチェーンコンベアまたは無端ベルトによって搬送するものであった。そのため、組立作業において、せん断補強筋を所定の間隔で設置する工程については自動化されておらず、作業効率が飛躍的に向上するものではなかった。また、結束等の作業については自動化されていないものであった。 However, the above-mentioned rebar assembly device is a device that moves the shear reinforcement in the longitudinal direction of the main reinforcement, and the shear reinforcement is installed at a predetermined interval in advance (unitized), and this unitized shear reinforcement is transported by a chain conveyor or endless belt. As a result, the process of installing the shear reinforcement at a predetermined interval during the assembly work was not automated, and work efficiency was not dramatically improved. Furthermore, tasks such as bundling were not automated.
 そこで、主筋の軸線方向に平行に移動するマニピュレータロボットを設置し、このマニピュレータロボットによって、順次結束等の作業を実行させる構成の鉄筋組立装置が提案されている(特許文献3参照)。この技術によれば、結束等の作業のほか、せん断補強筋の配置作業についてもマニピュレータロボットに実行させることができるものとされている。 Therefore, a rebar assembly device has been proposed that is configured to install a manipulator robot that moves parallel to the axial direction of the main rebar, and to have this manipulator robot sequentially perform tasks such as bundling (see Patent Document 3). With this technology, it is possible to have the manipulator robot perform tasks such as bundling, as well as the placement of shear reinforcement bars.
 他方、建築物等の設計情報における鉄筋の配置情報(配筋データ)を電子化する技術が開発されている(特許文献4参照)。この技術は、これまで詳細に図面化されていなかった配筋データを電子情報化するために、鉄筋コンクリート構造物の3次元構造における鉄筋の組立位置に関する情報と、鉄筋の種類(径や長さ等の特徴的な要素)を識別する情報などから、鉄筋の3次元構造情報を作成するものであった。 On the other hand, technology has been developed to digitize rebar placement information (reinforcement data) in design information for buildings and the like (see Patent Document 4). In order to digitize rebar data, which previously had not been shown in detailed drawings, this technology creates three-dimensional structural information for rebar from information on the assembly position of rebar in the three-dimensional structure of a reinforced concrete structure and information identifying the type of rebar (characteristic elements such as diameter and length).
 また、上記のように鉄筋の3次元構造情報を使用して、鉄筋の干渉をチェックし、配筋データを再構築する技術(特許文献5参照)および再構築された配筋データをさらに施工現場において支援する技術(特許文献6参照)も開発さている。 In addition, technology has been developed that uses the 3D structural information of reinforcing bars as described above to check for interference between reinforcing bars and reconstruct reinforcement data (see Patent Document 5), as well as technology that provides further support at the construction site using the reconstructed reinforcement data (see Patent Document 6).
実開平4-130659号公報Japanese Utility Model Application Publication No. 4-130659 特開平6-218475号公報Japanese Patent Application Laid-Open No. 6-218475 特開2013-204257号公報JP 2013-204257 A 特開2006-318257号公報JP 2006-318257 A 特開2009-30403号公報JP 2009-30403 A 特開2011-253484号公報JP 2011-253484 A
 鉄筋組立装置に係る前掲の特許文献1および2に開示される技術は、基本的に主筋を作業テーブル上に設置し、せん断補強筋(ユニット)を移動させた後に結束等の結合作業を行う構成であり、仮に結束等の結合作業を自動化したとしても、せん断補強筋の内側における複数の箇所に主筋を配置しなければならず、自動化され得る範囲が限定的なものとなっていた。また、特許文献3に開示される技術は、せん断補強筋の配置および結合の各作業は、結局のところマニピュレータロボットが実行するものであり、迅速な鉄筋組立には、マニピュレータロボットの速度に依存することとなっていた。 The technologies disclosed in the above-mentioned Patent Documents 1 and 2 relating to rebar assembly equipment are basically configured to place the main reinforcement bars on a work table, move the shear reinforcement bars (units), and then perform bundling and other connecting work. Even if bundling and other connecting work were automated, the main reinforcement bars would have to be placed in multiple locations inside the shear reinforcement bars, so the extent to which it could be automated would be limited. Furthermore, in the technology disclosed in Patent Document 3, the placement and connecting of the shear reinforcement bars is ultimately performed by a manipulator robot, and rapid rebar assembly is dependent on the speed of the manipulator robot.
 他方、前掲の特許文献4~5に開示される技術は、建築物等の設計情報における配筋データを電子データとして格納し、また、鉄筋の干渉を回避させるために修正データを再構築する処理技術である。しかしながら、第1に、配筋データを電子化したのみでは、作業者において把握・理解を促すことができるものではあるが、当該電子データを図面として表示させるものとなり、その図面に基づき作業者が作業するものとなっていた。また、鉄筋の干渉については、専ら、柱と梁またはスラブとの接合部分、梁とスラブとの接合部分において発生するため、柱単体または梁単体の配筋データに関する限りにおいて、修正する必要はないものであった。さらに、これらの配筋データは、図面化されて施工現場における作業を支援するものであって、鉄筋組立装置には利用されていなかった。 On the other hand, the technology disclosed in Patent Documents 4 and 5 mentioned above is a processing technology that stores rebar data in design information for buildings and the like as electronic data, and reconstructs corrected data to avoid rebar interference. Firstly, however, merely digitizing the rebar data can help workers grasp and understand it, but the electronic data is displayed as a drawing, and workers work based on that drawing. Furthermore, rebar interference occurs primarily at the joints between columns and beams or slabs, and between beams and slabs, so there is no need to correct the rebar data for individual columns or beams. Furthermore, this rebar data is presented in the form of drawings to support work at the construction site, and is not used in rebar assembly devices.
 本発明は、上記諸点に鑑みてなされたものであって、その目的とするところは、建築物等の設計情報に含まれる鉄筋の配筋情報に基づいて、柱や梁における鉄筋の組立を自動化し得る装置を提供することである。 The present invention was made in consideration of the above points, and its purpose is to provide a device that can automate the assembly of reinforcing bars in columns and beams based on reinforcing bar arrangement information contained in design information for buildings, etc.
 そこで、本発明は、予め作成された建築物または構築物に関する設計情報に基づき、該建築物または該構築物の柱または梁に使用される鉄筋群を組み立てるための装置であって、使用される鉄筋群を種類ごとに保管することができる保管領域と、鉄筋群を所定の位置に配置しつつ交差部の所定位置を結合させて組み立てるための組立領域と、前記保管領域から前記組立領域まで所望の鉄筋を種類ごとに搬送する搬送手段と、前記組立領域において複数の鉄筋が交差する交差部を結合する結合手段と、前記搬送手段の搬送および前記結合手段の結合動作をそれぞれ制御する制御手段を備え、前記制御手段は、建築物または構築物にかかる設計情報から柱または梁の構築に使用される鉄筋群の少なくとも各鉄筋の種類ごとの配置に関する情報を取得する鉄筋情報取得部と、前記鉄筋情報取得部によって取得された情報から、少なくとも保管領域から組立領域まで搬送すべき鉄筋の種類ごとの数および搬送距離、ならびに前記組立領域に搬送された鉄筋群相互の交差部の座標を含む制御情報を演算する演算部と、該演算部によって演算された制御情報に基づく搬送手段に対する制御信号を出力する第1の出力部と、前記演算部によって演算された制御情報に基づく結合手段に対する制御信号を出力する第2の出力部とを備えることを特徴とする。 The present invention provides an apparatus for assembling reinforcing bars to be used in columns or beams of a building or structure based on design information for the building or structure that has been created in advance, the apparatus comprising: a storage area in which the reinforcing bars to be used can be stored by type; an assembly area in which the reinforcing bars are arranged in predetermined positions and then joined at predetermined positions of their intersections for assembly; a transport means for transporting the desired reinforcing bars by type from the storage area to the assembly area; a joining means for joining intersections where multiple reinforcing bars intersect in the assembly area; and a control means for controlling the transport of the transport means and the joining operation of the joining means, the control means controlling the design of the building or structure. The system is characterized by comprising a reinforcing bar information acquisition unit that acquires information on the arrangement of at least each type of reinforcing bar in the reinforcing bar groups used in constructing columns or beams from design information related to the structure, a calculation unit that calculates, from the information acquired by the reinforcing bar information acquisition unit, control information including at least the number and transport distance of each type of reinforcing bar to be transported from the storage area to the assembly area, and the coordinates of the intersections between the reinforcing bar groups transported to the assembly area, a first output unit that outputs a control signal for the transport means based on the control information calculated by the calculation unit, and a second output unit that outputs a control signal for the connection means based on the control information calculated by the calculation unit.
 上記構成の発明によれば、制御手段は、施工すべき建築物等の設計情報から、柱および梁の構築に関する情報(配筋データ)を取得し、鉄筋群の移動に関する情報と、鉄筋群相互が交差する座標に関する位置情報を演算し、当該情報に基づく制御信号を出力できることとなる。制御信号は、搬送手段と結合手段とに個別に出力され、搬送手段では、保管領域において保管される鉄筋群を組立領域に所定の種類の鉄筋を、所定の順番に所定の数だけ搬送するように制御されるものであり、結合手段では、演算された交差位置の座標に基づき、結合の位置および状態が制御されるものとなる。なお、結合としては、結束のほか溶接によるものがあり、結束による結合する場合の結合手段としては結束機を用いることができ、溶接による結合の場合には溶接トーチを用いることとなる。このような構成の場合、結合動作とは、結束機の配置、向き、作動等の状態や溶接トーチの配置、向き等の状態などを意味するものである。  According to the invention of the above configuration, the control means obtains information (reinforcement data) on the construction of columns and beams from design information of the building to be constructed, calculates information on the movement of reinforcing bars and position information on the coordinates where the reinforcing bars intersect with each other, and outputs a control signal based on the information. The control signal is output separately to the transport means and the joining means, and the transport means controls the transport of a predetermined number of reinforcing bars of a predetermined type in a predetermined order from the reinforcing bars stored in the storage area to the assembly area, and the joining means controls the position and state of the joining based on the calculated coordinates of the intersection position. In addition to bundling, joining can be done by welding, and a bundling machine can be used as a joining means when joining by bundling, and a welding torch is used when joining by welding. In this configuration, the joining operation means the state of the bundling machine, such as its position, orientation, operation, etc., and the state of the welding torch, such as its position, orientation, etc.
 本発明に使用される建築物等の設計情報としては、前掲の特許文献4などに開示される配筋データを使用するほか、BIM(Building Information Modeling・Management)やCIM(Construction Information Modeling・Management)と呼ばれる3次元情報を使用することができる。BIMやCIMは、建築物等の形状の3次元モデル(形状を3次元で表現した情報)のほかに、属性情報として、3次元モデルに付与する部材等の情報が組み合わされており、この中には鉄筋に関する情報(配筋データ)も含まれる。これまでは、BIMやCIMのデータは、施工途上または成功後の画像を前記3次元モデルと比較することにより、施工の正確性を確認するために利用されてきたが、本発明は、BIMやCIMの3次元モデルに含まれる配筋データに基づいて鉄筋を組み立てることができるものとなる。 In the present invention, design information for buildings and the like can use the reinforcing bar data disclosed in, for example, Patent Document 4, as well as three-dimensional information called BIM (Building Information Modeling and Management) or CIM (Construction Information Modeling and Management). In addition to a three-dimensional model of the shape of a building and the like (information that expresses the shape in three dimensions), BIM and CIM combine information on components and the like to be added to the three-dimensional model as attribute information, which also includes information on reinforcing bars (reinforcing bar data). Until now, BIM and CIM data have been used to check the accuracy of construction by comparing images taken during or after construction with the three-dimensional model, but the present invention makes it possible to assemble reinforcing bars based on the reinforcing bar data contained in the three-dimensional model of BIM or CIM.
 上記構成の発明においては、前記鉄筋群は、主筋およびせん断補強筋を含みものとし、前記搬送手段は、主筋を搬送する主筋搬送部と、せん断補強筋を搬送する補強筋搬送部とを備えるものとすることができ、この場合、前記組立領域に搬送される該鉄筋群は、主筋の軸線を水平方向とし、せん断補強筋を構成する構成部の各軸線が主筋の軸線に対して直交するように、該せん断補強筋全体を立設状態とするものであり、前記演算部は、鉄筋群の搬送の順序を演算するものであり、該演算条件は、第1順位として所定の数のせん断補強筋を搬送したのち、第2順位として主筋を搬送させることとするものと構成できる。 In the invention of the above configuration, the group of reinforcing bars includes main bars and shear reinforcement bars, and the transport means can include a main reinforcement transport section for transporting the main reinforcement bars and a reinforcement transport section for transporting the shear reinforcement bars. In this case, the group of reinforcing bars transported to the assembly area has the axis of the main reinforcement bars horizontal and the entire shear reinforcement bars in an upright state so that the axes of the components that make up the shear reinforcement bars are perpendicular to the axis of the main reinforcement bars, and the calculation section calculates the order of transport of the group of reinforcing bars, and the calculation conditions can be configured to transport a predetermined number of shear reinforcement bars as the first priority, and then transport the main reinforcement bars as the second priority.
 このような構成によれば、基本的に主筋とせん断補強筋とを順次組立領域に搬送することができる。このとき、主筋は、軸線を水平方向とすることを前提としつつ、せん断補強筋を第1順位として搬送し、その後に主筋を搬送するもとなる。せん断補強筋としては、柱にあっては帯筋(フープ)、梁にあってはあばら筋(スターラップ)のように、主筋の周囲に配置される矩形環状に形成された鉄筋が代表的である。せん断補強筋は、この矩形を形成する各要素鉄筋(四辺部分)が主筋の軸線に直交する状態で配筋されるものであり、主筋の軸線を水平方向とする場合、せん断補強筋は、矩形部分が立設した状態となるものである。せん断補強筋の立設状態における姿勢は特に限定されないが、一般的には矩形のせん断補強筋を設置する場合、矩形の一辺を底辺とすることとなる。主筋とせん断補強筋との相互関係は、主筋の長手方向に沿って、複数のせん断補強筋が所定の間隔を有して配置されるものである。そこで、予めせん断補強筋を所定間隔で配置しておき、最後に主筋をせん断補強筋の内側に挿入することにより、相互関係を所定の状態として配筋させることができるものとなる。なお、せん断補強筋の設置位置および主筋の挿入位置は、それぞれ演算部により演算された結果に基づいて制御されており、主筋の挿入後における交差部の座標は、最終的には演算部による制御情報に一致するものとなる。 With this configuration, the main reinforcement and the shear reinforcement can basically be transported to the assembly area in sequence. At this time, the main reinforcement is transported with the shear reinforcement as the first priority, with the axis of the main reinforcement assumed to be horizontal, followed by the main reinforcement. Typical shear reinforcement is a rectangular ring-shaped reinforcing bar arranged around the main reinforcement, such as a hoop for a column and a stirrup for a beam. The shear reinforcement is arranged so that each element reinforcing bar (four sides) forming this rectangle is perpendicular to the axis of the main reinforcement, and when the axis of the main reinforcement is horizontal, the shear reinforcement is in a state where the rectangular part is erected. There are no particular restrictions on the orientation of the shear reinforcement in the erected state, but generally, when a rectangular shear reinforcement is installed, one side of the rectangle is the base. The relationship between the main reinforcement and the shear reinforcement is such that multiple shear reinforcement bars are arranged at a predetermined interval along the longitudinal direction of the main reinforcement. Therefore, by arranging the shear reinforcement bars at a predetermined interval in advance and then inserting the main reinforcement bars inside the shear reinforcement bars, it is possible to arrange the reinforcement bars in a predetermined mutual relationship. Note that the installation positions of the shear reinforcement bars and the insertion positions of the main reinforcement bars are each controlled based on the results of calculations performed by the calculation unit, and the coordinates of the intersections after the insertion of the main reinforcement bars will ultimately match the control information from the calculation unit.
 さらに、上記構成に発明において、前記組立領域は、前記鉄筋情報取得部によって取得される鉄筋の配置に関する情報に基づいて、第1順位として搬送されるせん断補強筋を所定の間隔を維持しつつ、立設状態で保持する保持手段を備えるものとすることができ、前記主筋搬送部は、前記保持手段により保持されるせん断補強筋の間隙において昇降可能な主筋支持部と、主筋送出部とを備えるものとすることができ、該主筋支持部により主筋を支持させつつ主筋送出部による送り出しによって搬送させるものとして構成することができる。 Furthermore, in the invention having the above configuration, the assembly area may be provided with a holding means for holding the shear reinforcement bars transported as the first priority in an upright state while maintaining a predetermined interval based on information regarding the arrangement of the reinforcing bars acquired by the reinforcing bar information acquisition unit, and the main reinforcement transport unit may be provided with a main reinforcement support unit that can rise and fall in the gaps between the shear reinforcement bars held by the holding means, and a main reinforcement delivery unit, and may be configured so that the main reinforcement bars are supported by the main reinforcement support unit and transported by being delivered by the main reinforcement delivery unit.
 このような構成によれば、組立領域において保持手段がせん断補強筋を所定の位置および状態で保持することができる。せん断補強筋を保持する状態としては、2組の対向二辺(鉄筋構成部)によって矩形を形成するせん断補強筋にあっては、その矩形構造のうち、一組の対向二辺を水平方向とし、他の一組の対向二辺を鉛直方向とするものがある。このような状態を立設状態ということができる。また、保持手段によるせん断補強筋の保持方法としては、例えば、上記のような状態で保持する場合、底辺の両端に位置する頂角部周辺を2か所で保持させる保持具を使用するものとすることができる。この場合における保持具は、頂角部を開放しつつ、当該頂角部両側の鉄筋部分(水平部分および鉛直部分の各一部のみ)が係入できる係入溝を一体化したものを用いることができる。この保持具を両側の頂角部近傍に配置させておくことにより、当該両側の各保持具の各係入溝に対し、せん断補強筋の底辺両側を部分的に同時に係入させることにより、当該せん断補強筋を立設状態に保持することができる。従って、保持すべきせん断補強筋の数に応じて、配設すべき位置の両側に保持具を配置すればよいものである。その他の保持方法としては、所定間隔に配置したマグネットによって磁着させる方法があり得る。マグネットは、永久磁石であっても電磁石であってもよいが、永久磁石の場合には配置すべきせん断補強筋の間隔(ピッチ)に合わせて電磁石の位置を調整しなければならないことから、複数の電磁石を配置しておき、選択的に通電させることで磁着位置を設定することが好ましい。なお、帯筋やあばら筋以外のせん断補強筋として、例えば中子筋を使用する場合においては、中子筋を予め帯筋等に結合(結束または溶接)させておくことで帯筋等と同時に保持させることができる。 With this configuration, the holding means can hold the shear reinforcement in a predetermined position and state in the assembly area. In the case of shear reinforcement that forms a rectangle with two sets of opposing sides (reinforcing bar components), one set of opposing sides of the rectangular structure is horizontal and the other set of opposing sides is vertical. This state can be called the erected state. In addition, as a method of holding the shear reinforcement by the holding means, for example, when holding it in the above state, a holder that holds the periphery of the apex corner located at both ends of the base at two points can be used. In this case, the holder can be one that has an integrated engagement groove that allows the reinforcing bar parts (only a part of the horizontal part and a part of the vertical part) on both sides of the apex corner to be engaged while leaving the apex corner open. By arranging this holder near the apex corners on both sides, the shear reinforcement can be held in an erected state by partially engaging both sides of the base of the shear reinforcement into the engagement grooves of the holders on both sides at the same time. Therefore, it is sufficient to place holders on both sides of the position where the shear reinforcement is to be placed, depending on the number of shear reinforcement bars to be held. Another possible holding method is to magnetically attach the shear reinforcement bars using magnets placed at a specified interval. The magnets may be permanent magnets or electromagnets. In the case of permanent magnets, the position of the electromagnets must be adjusted to match the interval (pitch) of the shear reinforcement bars to be placed, so it is preferable to place multiple electromagnets and set the magnetic attachment position by selectively passing current through them. In addition, when using core reinforcement bars as shear reinforcement bars other than ties and stirrups, for example, the core reinforcement bars can be held together with the ties by previously connecting (tying or welding) them to the ties, etc.
 他方、主筋は、設置されたせん断補強筋相互に形成される間隙(ピッチ空間)を利用して搬送部を構成することができる。すなわち、せん断補強筋の間隙から主筋支持部を昇降可能としておき、主筋の搬送(せん断補強筋の内側へ挿入)する際に、数ヶ所に分散配置させた主筋支持部によって、主筋を部分的に支持しつつ主筋送出部により主筋を前進させることによって搬送を可能とするものである。せん断補強筋の設置間隔(ピッチ)は、組み立てるべき鉄筋の配筋データに応じて変化するため、必然的に主筋支持部がせん断補強筋の間隙に配置されるように移動可能に設けられるものである。また、主筋の長さおよび重量に応じて支持する場所および数を選択できるように、多数の主筋支持部が予め用意され、これらの中から選択された一部または全部を使用して主筋の支持に供されるものとなる。 On the other hand, the main reinforcement can be transported by utilizing the gaps (pitch spaces) formed between the installed shear reinforcement. In other words, the main reinforcement support parts can be raised and lowered through the gaps between the shear reinforcement, and when transporting the main reinforcement (inserting it inside the shear reinforcement), the main reinforcement is partially supported by the main reinforcement support parts distributed in several places while the main reinforcement is advanced by the main reinforcement delivery part, making it possible to transport it. The installation interval (pitch) of the shear reinforcement changes according to the reinforcing bar arrangement data to be assembled, so the main reinforcement support parts are necessarily provided so that they can be moved to be placed in the gaps between the shear reinforcement. Also, many main reinforcement support parts are prepared in advance so that the location and number of support can be selected according to the length and weight of the main reinforcement, and a part or all of these selected from them are used to support the main reinforcement.
 なお、せん断補強筋の搬送および主筋の送り出しには、保管領域から組立領域に至る範囲を往復移動できるスライダを設け、このスライダに鉄筋の把持機能を有する把持部を設けることにより、せん断補強筋および主筋を把持しつつ所定距離の移動を可能とし、その移動距離が制御されることにより、供給すべき位置までの搬送を実現し得るものとなる。これらの把持部を有するスライダは、せん断補強筋のためのものと、主筋のためのものとを個別に設置してもよいが、両者を搬送させるタイミングが相違することから、同じものを兼用させてもよい。 For transporting the shear reinforcement and sending out the main reinforcement, a slider is provided that can move back and forth between the storage area and the assembly area. By providing this slider with a gripping part that has the function of gripping the rebar, it is possible to move the shear reinforcement and main reinforcement a specified distance while gripping them, and by controlling the distance of movement, it is possible to transport them to the position where they are to be supplied. These sliders with gripping parts may be installed separately for the shear reinforcement and the main reinforcement, but since the timing for transporting both is different, the same slider may be used for both.
 上記構成の発明においては、さらに、前記保管領域と前記組立領域との間には、搬送途上における該鉄筋の種類に応じて該鉄筋の姿勢を所望状態に変更させるための姿勢調整領域が形成される構成とすることができ、少なくとも前記補強筋搬送部は、前記姿勢調整領域を経由してせん断補強筋を搬送するものであり、前記制御手段の制御信号に基づいて、該姿勢調整領域において該せん断補強筋の姿勢の変更を可能とするものと構成することができる。 In the invention configured as above, a posture adjustment area can be formed between the storage area and the assembly area to change the posture of the reinforcing bars to a desired state depending on the type of reinforcing bars during transportation, and at least the reinforcing bar transport unit can be configured to transport the shear reinforcing bars via the posture adjustment area and to enable the posture of the shear reinforcing bars to be changed in the posture adjustment area based on a control signal from the control means.
 このような構成によれば、せん断補強筋は、姿勢調整領域を経由して組立領域まで搬送されることとなるから、保管領域から取り出したせん断補強筋の姿勢を、搬送途上において適宜変更することができる。例えば、帯筋やあばら筋を配筋する場合、フックの位置を調整するために反転させることができる。また、帯筋等の所定位置に中子筋を当接させたうえで、結合(結束または溶接)する工程を行うことも可能となる。 With this configuration, the shear reinforcement is transported to the assembly area via the posture adjustment area, so the posture of the shear reinforcement removed from the storage area can be changed as needed during transport. For example, when placing tie bars or stirrups, they can be inverted to adjust the position of the hooks. It is also possible to abut the core bars at a specified position on the tie bars, etc., and then perform a process of joining (tying or welding).
 上記各構成の発明においては、前記制御手段は、携帯端末によって構成されるものとすることができ、前記搬送手段および前記結合手段は、前記携帯端末との間でそれぞれ送受信可能に設けられ、前記携帯端末は、前記設計情報を保存し、前記制御情報を演算し、該制御情報に基づく制御信号を前記搬送手段および結合手段に対して出力し、前記搬送手段および前記結合手段から発信される発信情報を入力するとともに、該発信情報を作業進捗情報として保存するように構成することができる。 In the inventions having each of the above configurations, the control means can be configured as a mobile terminal, the transport means and the connecting means are each capable of transmitting and receiving information to and from the mobile terminal, and the mobile terminal can be configured to store the design information, calculate the control information, output control signals based on the control information to the transport means and the connecting means, input outgoing information transmitted from the transport means and the connecting means, and store the outgoing information as work progress information.
 上記構成によれば、鉄筋組立装置における主要部である搬送手段および結合手段は、携帯端末との間で送受信可能であることから、携帯端末から出力される制御信号に基づいて作動することとなる。送受信は有線でもよいが無線でもよく、データの送受信よることから、工場の外(建築物等の施工現場等)においても使用できる。特に、施工現場における施工進捗に応じて、組み立てるべき鉄筋群(柱か梁かの区別またはどの部分の柱や梁なのか等)を区別し、適宜選択することができることとなる。また、搬送手段および結合手段が作動する場合の当該作動の状態が逐次発信されることにより、携帯端末が発信情報を入力し、これを作業進捗情報として保存することにより、いわゆるログとして管理することも可能となる。  With the above configuration, the transport means and connecting means, which are the main components of the rebar assembly device, can send and receive signals to and from a mobile terminal, and therefore operate based on control signals output from the mobile terminal. Transmission and reception can be wired or wireless, and because it involves sending and receiving data, it can also be used outside of a factory (such as at a construction site for a building, etc.). In particular, it becomes possible to distinguish and appropriately select the group of rebars to be assembled (whether they are columns or beams, or which parts of the columns or beams they are, etc.) according to the progress of construction at the construction site. In addition, by successively transmitting the operating status of the transport means and connecting means when they are operating, the mobile terminal can input the transmitted information and store it as work progress information, making it possible to manage it as a so-called log.
 また、各構成の発明において、前記制御手段は、クラウドサーバと携帯端末とで構成されるものとし、前記搬送手段および前記結合手段は、前記携帯端末との間でそれぞれ送受信可能に設けられ、前記クラウドサーバが、前記設計情報を保存し、前記制御情報を演算し、その制御情報を保存するものであり、前記携帯端末が、前記クラウドサーバに保存される前記制御情報を受信するとともに、該制御情報に基づく制御信号を前記搬送手段および前記結合手段に対して出力し、前記搬送手段および前記結合手段から発信される発信情報を入力するとともに、該発信情報を作業進捗情報として保存するように構成してもよい。 In addition, in each of the inventions, the control means may be composed of a cloud server and a mobile terminal, the transport means and the connecting means are each provided so as to be capable of transmitting and receiving data between the mobile terminal, the cloud server stores the design information, calculates the control information, and stores the control information, and the mobile terminal receives the control information stored in the cloud server, outputs control signals based on the control information to the transport means and the connecting means, inputs information transmitted from the transport means and the connecting means, and stores the information as work progress information.
 このような構成の場合においても、工場外において使用できるものとなる。また、クラウドサーバに基本的な設計情報を保存させておき、かつ制御情報を演算させておくことにより、携帯端末は、必要な制御情報のみを受信することができ、携帯端末の負荷を軽減できる。 Even with this configuration, the system can be used outside the factory. In addition, by storing basic design information on the cloud server and having the control information calculated, the mobile device can receive only the necessary control information, reducing the load on the mobile device.
 このような携帯端末を利用する構成または携帯端末とクラウドサーバを利用する構成にあっては、前記設計情報が、作業工程ごとに細分化された情報であり、前記制御情報が、作業工程ごとに演算されるものとすることができる。制御情報がクラウドサーバにおいて演算される場合は、携帯端末において、クラウドサーバに保存される作業工程ごとの制御情報を、作業工程ごとに個別に取得するような構成としてもよい。 In a configuration using such a mobile terminal or a configuration using a mobile terminal and a cloud server, the design information can be information subdivided for each work process, and the control information can be calculated for each work process. If the control information is calculated in the cloud server, the mobile terminal can be configured to obtain the control information for each work process stored in the cloud server individually for each work process.
 上記構成の場合には、設計情報に含まれる情報のうち、位置、種類および施工順序等に関する情報から、これらの情報よって定まる作業工程ごとに、細分化することとし、細分化された設計情報ごとに制御情報を予め演算しておくことにより、必要な作業工程のための鉄筋組立を即時に開始することができる。これらの細分化された設計情報または制御情報については、個別にインデックスを付与しておき、そのインデックスを目印として保存情報の中から所望の情報を取得することができる。インデックスがバーコードに紐付けられる場合には、バーコードの読み取りによって容易に取得することも可能とし得る。 In the above configuration, the information contained in the design information is subdivided into work processes determined by information on location, type, construction sequence, etc., and the control information is calculated in advance for each subdivided design information, making it possible to immediately start rebar assembly for the required work process. Each subdivided design information or control information is individually assigned an index, and the desired information can be retrieved from the stored information using the index as a marker. If the index is linked to a barcode, it may be possible to easily retrieve the information by reading the barcode.
 本発明によれば、建築物等の設計情報に含まれる鉄筋の配筋情報に基づいた制御情報を演算するうえ、その演算結果に基づいて搬送手段および結合手段を制御することから、当該建築物等の設計情報に忠実な状態で鉄筋を組み立てることができる。しかも、これらを自動化することができることとなる。特に、本発明は、せん断補強筋を先行して配置し、その後に主筋を挿入する方式を採用したことにより、せん断補強筋の間隙(ピッチ空間)を有効に利用できることとなり、両者の交差状態を迅速に形成させることができる。また、両者の搬送状態が制御され、かつ交差部の座標が演算されていることから、せん断補強筋の内側に主筋が挿入された状態で、結合手段による結合を直ちに開始することができる。 According to the present invention, control information is calculated based on the reinforcing bar arrangement information contained in the design information of a building, etc., and the transport means and connecting means are controlled based on the results of this calculation, so that the reinforcing bars can be assembled in a state that is faithful to the design information of the building, etc. Furthermore, these processes can be automated. In particular, the present invention employs a method in which the shear reinforcement bars are placed first and then the main reinforcement bars are inserted, which makes it possible to effectively utilize the gaps (pitch space) between the shear reinforcement bars and quickly form the intersection state between the two. In addition, because the transport state of both is controlled and the coordinates of the intersection are calculated, connection by the connecting means can be immediately started with the main reinforcement bars inserted inside the shear reinforcement bars.
 また、制御手段を携帯端末によって機能させ、またはクラウドサーバと携帯端末とで機能させる場合、鉄筋組立装置は携帯端末との間で送受信可能に設ければよく、工場外(例えば施工現場)に鉄筋組立装置を設置し、携帯端末から出力される信号のみを入力することにより、主要部分である搬送手段と結合手段とを作動させることも可能となる。 In addition, if the control means is operated by a mobile terminal or by a cloud server and a mobile terminal, the rebar assembly device only needs to be set up so that it can send and receive data to and from the mobile terminal. It is also possible to install the rebar assembly device outside the factory (e.g., at a construction site) and operate the main components, the transport means and connecting means, by inputting only the signals output from the mobile terminal.
 さらに、本発明は、建築物等の設計情報に含まれる鉄筋の配筋情報に基づいた制御情報を演算する構成を有することから、得られる各種の情報を利用することにより、仮想空間において、組立状態を検証することも可能となる。これを発展的に利用する場合には、AR(Augmented Reality:拡張現実)の技術を採用することにより、ARゴーグル、モバイル用ARアプリケーションを使用した拡張現実を目視する(既設部分と組立予定の鉄筋群とを同時に目視する)ことによる検証も可能となる。また、3Dスキャナを使用する場合には、工事途上の現実物体を3D化したデータと組立後のデータとを組み合わせて検証し、または目視によって確認することも可能となる。 Furthermore, since the present invention has a configuration for calculating control information based on rebar arrangement information contained in design information for buildings, etc., it is possible to verify the assembly state in virtual space by using the various pieces of information obtained. When this is used in a more advanced way, the adoption of AR (Augmented Reality) technology makes it possible to visually verify the augmented reality using AR goggles and a mobile AR application (visualizing the existing part and the rebar group to be assembled at the same time). In addition, when a 3D scanner is used, it is possible to verify or visually confirm by combining 3D data of a real object under construction with data after assembly.
本発明に係る実施形態の組立装置全体を示す説明図である。1 is an explanatory diagram showing an entire assembly device according to an embodiment of the present invention; 組立装置を構成する1ブロックの構成を示す説明図である。FIG. 2 is an explanatory diagram showing the configuration of one block that constitutes the assembly device. 搬送手段を例示する説明図である。FIG. 4 is an explanatory diagram illustrating a conveying means. せん断補強筋の保持方法を例示する説明図である。FIG. 1 is an explanatory diagram illustrating a method for retaining shear reinforcement bars. 結合手段を例示する説明図である。FIG. 4 is an explanatory diagram illustrating a coupling means. 制御手段の構成を例示する説明図である。FIG. 2 is an explanatory diagram illustrating the configuration of a control means. 鉄筋群の組立状態を示す説明図である。FIG. 2 is an explanatory diagram showing the assembled state of the reinforcing bar group. 鉄筋の交差部分の状態を示す説明図である。FIG. 13 is an explanatory diagram showing the state of the intersection of reinforcing bars. せん断補強筋と中子筋の状態を示す説明図である。FIG. 1 is an explanatory diagram showing the state of shear reinforcement bars and core bars. 中子筋の保持状態および保持のための案内部を例示する説明図である。10 is an explanatory diagram illustrating a state in which a core bar is held and a guide portion for holding the core bar. FIG. 制御手段の変形例を示す説明図である。FIG. 13 is an explanatory diagram showing a modified example of the control means. 制御手段の変形例を示す説明図である。FIG. 13 is an explanatory diagram showing a modified example of the control means. 処理手段の変形例を示す説明図である。FIG. 13 is an explanatory diagram showing a modified example of the processing means.
 以下、本発明の実施の形態を図面に基づいて説明する。 The following describes an embodiment of the present invention with reference to the drawings.
<装置概要>
 図1は、本発明の鉄筋組立装置に係る実施形態の概略を示す図である。この図に示されるように、本実施形態は、複数のフレームFLによって構築された複数のブロックBLを整列させることにより全体を構成させている。これらのブロックBLの連結により、順次、組立領域1、姿勢調整領域2、保管領域3が設けられている。なお、最後尾には、後述する搬送手段8,9の待機領域4が設けられている。
<Device Overview>
Fig. 1 is a schematic diagram of an embodiment of a reinforcing bar assembly device according to the present invention. As shown in this figure, this embodiment is constructed by lining up a number of blocks BL, each of which is made up of a number of frames FL. By connecting these blocks BL, an assembly area 1, a posture adjustment area 2, and a storage area 3 are provided in that order. At the very end, a waiting area 4 for transport means 8 and 9, which will be described later, is provided.
 組立領域1には、上位の結合手段5と、下位の結合手段6,7とが配置されている。下位の結合手段6,7は、後述するように、主筋の搬送手段の一部としても機能するものである。 In the assembly area 1, an upper connecting means 5 and lower connecting means 6 and 7 are arranged. The lower connecting means 6 and 7 also function as part of the main reinforcement transport means, as described below.
 保管領域3は、適度なスペースを確保したものであり、上位において、せん断補強筋SM1や中子筋SM2などを保管できるものであり、下位には主筋SM3を保管できるものとしている。せん断補強筋SM1や中子筋SM2などは、所定の高さに整列した状態で吊下して保管し、主筋SM3は、ブロックBLのフレームFL上に載置した状態で保管し得るものである。 Storage area 3 has an appropriate amount of space, and can store shear reinforcement bars SM1 and core bars SM2 at the top, and main reinforcement bars SM3 at the bottom. Shear reinforcement bars SM1 and core bars SM2 are stored suspended and aligned at a specified height, and main reinforcement bars SM3 can be stored placed on the frame FL of the block BL.
 姿勢調整領域2は、上記の組立領域1と保管領域3との間に配置され、適宜な空間を確保するものである。詳細は後述するが、搬送手段8,9が、せん断補強筋SM1や中子筋SM2などを把持した状態において、その姿勢(向き)を変更する際に、当該搬送手段8,9が旋回作動させることができるように設けられるものである。従って、せん断補強筋SM1や中子筋SM2などの姿勢(向き)を変更させる必要がない場合は省略することも可能である。 The posture adjustment area 2 is disposed between the assembly area 1 and the storage area 3, and ensures an appropriate amount of space. Details will be described later, but the conveying means 8, 9 are provided so that they can rotate when the posture (orientation) of the shear reinforcement SM1, core reinforcement SM2, etc. is changed while the conveying means 8, 9 is holding it. Therefore, it can be omitted if there is no need to change the posture (orientation) of the shear reinforcement SM1, core reinforcement SM2, etc.
 待機領域4は、搬送手段8,9の作動を要しないときの待機スペースであり、移動量を制御する際の起点(原点)となるものである。なお、起点は保管領域3に設定してもよく、せん断補強筋SM1や中子筋SM2などの受け渡しを開始する位置を起点とするときは、待機領域4を省略することも可能である。 The waiting area 4 is a waiting space when the operation of the transport means 8, 9 is not required, and serves as the starting point (origin) when controlling the amount of movement. The starting point may be set in the storage area 3, and the waiting area 4 may be omitted when the starting point is the position where the transfer of the shear reinforcement SM1, the core reinforcement SM2, etc. begins.
 ところで、鉄筋組立装置を構成する各ブロックBLには、適宜箇所にレールLD1,LD2,LU1,LU2が設けられ、結合手段6,7、搬送手段8,9の移動方向を案内させている。例えは、ブロックBLの上位のフレームFには、上位の結合手段6と搬送手段8,9のための二本のレールLU1,LU2が一対として設けられ、両レールLU1,LU1に跨がった状態で両手段6,8,9を移動可能とし、また、下位のフレームには、下位の結合手段7のための二本のレールLD1,LD2を一対として設けることにより、両レールLD1,LD2に跨がった状態で当該手段7を移動可能とすることができる。 Incidentally, rails LD1, LD2, LU1, LU2 are provided at appropriate locations on each block BL that constitutes the rebar assembly device to guide the movement direction of the connecting means 6, 7 and the transporting means 8, 9. For example, the upper frame F of the block BL is provided with a pair of two rails LU1, LU2 for the upper connecting means 6 and the transporting means 8, 9, allowing both means 6, 8, 9 to move while straddling both rails LU1, LU1, and the lower frame is provided with a pair of two rails LD1, LD2 for the lower connecting means 7, allowing said means 7 to move while straddling both rails LD1, LD2.
 なお、各レールLD1~LU2は、それぞれブロックBLを構成するフレームFLのうちの横架材に設置することができ、また、これらのレールLD1~LU2をリニアガイドとして使用することにより、個々の結合手段6,7および搬送手段8,9をリニアモーションによって移動可能とすることができる。 In addition, each of the rails LD1 to LU2 can be installed on the cross members of the frame FL that constitutes the block BL. Furthermore, by using these rails LD1 to LU2 as linear guides, the individual connecting means 6, 7 and conveying means 8, 9 can be moved by linear motion.
 図2は、1個のブロックBLを示している。個々のブロックBLは、基本的には、基礎部分を構成する下位の横架フレームFL1と、上位の横架フレームFL2と、鉛直方向に立設された複数の支柱フレームFL3とで立方体に構成される。立方体を基本とすることにより、長さ方向XをX軸、幅方向YをY軸、高さ方向ZをZ軸として座標の基準を構成させることができる。また、同じ大きさの立方体とすることにより、施工現場への搬送および施工現場での設置・連結を簡易なものとし得る。 Figure 2 shows one block BL. Each block BL is basically configured as a cube with a lower cross frame FL1 that forms the foundation, an upper cross frame FL2, and multiple support frames FL3 that are erected vertically. By using a cube as the basis, the coordinate system can be established with the length direction X as the X-axis, the width direction Y as the Y-axis, and the height direction Z as the Z-axis. Furthermore, by using cubes of the same size, transportation to the construction site and installation and connection at the construction site can be simplified.
 各フレームFL1,FL2,FL3のうち、上位の横架フレームFL2のX方向に配置される横架フレームFL2a,FL2bは、前述のレールLU1,LU2を設けるためのベースとして機能し、予め、横架フレームFL2a,FL2bの長さと同じ長さのレールLU1,LU2を設置しておくこともできる。 Of the frames FL1, FL2, and FL3, the horizontal frames FL2a and FL2b that are arranged in the X direction of the upper horizontal frame FL2 function as a base for providing the aforementioned rails LU1 and LU2, and rails LU1 and LU2 of the same length as the horizontal frames FL2a and FL2b can also be installed in advance.
 また、下位の横架フレームFL1の近傍には、当該横架フレームFL1に平行に配置した補助フレームFL4a,FL4bが設けられており、専ら下位に設置するレールLD1,LD2を設けるためのベースとして機能させている。この補助フレームFL4a,FL4bにも、予めレールLD1,LD2を設置しておくことができる。 Also, auxiliary frames FL4a and FL4b are provided in the vicinity of the lower horizontal frame FL1 and are arranged parallel to the horizontal frame FL1, and function solely as a base for the rails LD1 and LD2 to be installed below. Rails LD1 and LD2 can also be installed in advance on these auxiliary frames FL4a and FL4b.
 なお、各レールLD1~LU2の軸線は、いずれもブロックBLの長さ方向Xに一致させており、同種のブロックBLを長さ方向Xに複数連結することにより、各レールLD1~LU2も連続することとなり、必要な長さを得ることができるものとなる。また、レールLD1~LU2のうち、連続する必要がない(不要な領域がある)場合は、同種のブロックBLにおいて、各レールLD1~LU2のいずれかを設置しないものを用意しておき、ブロックBLを適宜選択して連続させてもよい。 The axis of each of the rails LD1 to LU2 is aligned with the length direction X of the block BL, and by connecting multiple blocks BL of the same type in the length direction X, the rails LD1 to LU2 are also continuous, making it possible to obtain the required length. Also, if the rails LD1 to LU2 do not need to be continuous (there are unnecessary areas), it is possible to prepare blocks BL of the same type in which one of the rails LD1 to LU2 is not installed, and to select the blocks BL appropriately to make them continuous.
 上記構成のブロックBLは、組み立てるべき配筋情報によって、長さ寸法L、幅寸法Wおよび高さ寸法Hを適宜調整したものを使用できるが、各種の大きさの鉄筋群を組み立てることができるように、余裕のある大きさとして一定に構成してもよい。例えば、長さ寸法Lは、複数のブロックBLを連結することを前提として1mとし、幅寸法Wは、装置内部の空間を十分に確保できるように2mとし、高さ寸法を3mとすることができる。 The length dimension L, width dimension W, and height dimension H of the blocks BL in the above configuration can be adjusted as appropriate depending on the reinforcement information to be assembled, but they may also be configured to have a constant size with ample room to allow for the assembly of rebar groups of various sizes. For example, the length dimension L can be 1m, assuming that multiple blocks BL will be connected, the width dimension W can be 2m to ensure sufficient space inside the device, and the height dimension can be 3m.
<搬送手段の例示>
 ここで、本実施形態に用いることができる補強筋(主筋以外)の搬送手段8,9を例示する。図3は、二種類の搬送手段8,9の一例を示す斜視図である。なお、図は、いずれの搬送手段8,9についても同じ搬送方向Cへ搬送するものとして示しており、個々に設置される駆動装置に対する電源供給系統(電源ケーブル等)については省略している。この図に示されるように、両者8,9は、上位フレームFL2a,FL2bに設置されるレール(リニアモーションガイド)LU1,LU2に沿って、長手方向X(X軸方向)へ摺動可能なスライダ81a,81b,91a,91bが、それぞれ装着されており、これらのスライダ81a~92bに跨がるようにフレーム82,92が懸架されるものである。片方のスライダ81a,91aには、モータ83,93が設けられ、レールLU1,LU2に沿った摺動のための駆動力が付与されるものとなっている。なお、フレーム82,92には、第2のリニアモーションガイドが構成されており、搬送基部84,94を当該ガイドの軸線方向Y(Y軸方向)へ摺動可能としている。
<Examples of conveying means>
Here, the conveying means 8, 9 for the reinforcing bars (other than the main bars) that can be used in this embodiment are illustrated. FIG. 3 is a perspective view showing an example of two types of conveying means 8, 9. In addition, the figure shows both conveying means 8, 9 as conveying in the same conveying direction C, and the power supply system (power cable, etc.) for the driving device installed individually is omitted. As shown in this figure, both 8, 9 are equipped with sliders 81a, 81b, 91a, 91b that can slide in the longitudinal direction X (X-axis direction) along rails (linear motion guides) LU1, LU2 installed on upper frames FL2a, FL2b, respectively, and frames 82, 92 are suspended so as to straddle these sliders 81a to 92b. Motors 83, 93 are provided on one of the sliders 81a, 91a, and driving forces for sliding along the rails LU1, LU2 are applied. In addition, a second linear motion guide is formed in the frames 82, 92, and the transport bases 84, 94 are slidable in the axial direction Y (Y-axis direction) of the guide.
 一方の搬送手段8は、専らせん断補強筋SM1を搬送するための装置を例示したものである。そのため、搬送基部84に設置したアクチュエータにより、昇降部85を昇降可能としている。この場合のアクチュエータとしては、ジップチェーンアクチュエータ(登録商標)などを用いることができるが、それ以外のアクチュエータを適宜使用することができる。また、昇降部85には、適宜モータ等を介して水平アーム86が設けられ、その先端に垂直アーム87が設けられている。水平アーム86が、モータ等の作動により、昇降部85の中央を中心として旋回可能となっており、この水平アーム86の旋回により垂直アーム87も同時に旋回するものとなっている。両アーム86,87には、軸線方向に摺動可能なチャック88,89がそれぞれ設けられ、適宜な位置でせん断補強筋の一部を掴持できるように構成されている。 One of the conveying means 8 is an example of a device for conveying the shear reinforcement SM1. Therefore, the lifting section 85 can be raised and lowered by an actuator installed on the conveying base 84. In this case, a Zip Chain Actuator (registered trademark) or the like can be used as the actuator, but other actuators can be used as appropriate. In addition, the lifting section 85 is provided with a horizontal arm 86 via a motor or the like as appropriate, and a vertical arm 87 is provided at its tip. The horizontal arm 86 can be rotated around the center of the lifting section 85 by the operation of a motor or the like, and the vertical arm 87 also rotates at the same time when the horizontal arm 86 rotates. Both arms 86, 87 are provided with chucks 88, 89 that can slide in the axial direction, and are configured to be able to grip a part of the shear reinforcement at an appropriate position.
 チャック88,89による鉄筋の掴持の状態は、矩形のせん断補強筋(帯筋やあばら筋など)の対向二辺を上下および左右に配置するとき、水平アーム86のチャック88が上部で水平状態となっている一本の鉄筋構成部を掴持し、また、垂直アーム87のチャック89が側方における垂直状態の一本の鉄筋構成部を掴持している昇降部85による旋回は、Z軸を中心とするXY平面内における旋回であることから、旋回により水平アーム86は、長手方向に向きを変更し、垂直アーム87は、軸回りに位置を変更することとなる。両アーム86,87の各チャック88,89による掴持は、対向二辺を上下および左右とする矩形鉄筋の状態を維持しつつ、その姿勢(位置および向き)のみを変化できるものとなっている。 When the two opposing sides of rectangular shear reinforcement (such as ties or stirrups) are arranged vertically and horizontally, the chuck 88 of the horizontal arm 86 grips a horizontal piece of rebar at the top, and the chuck 89 of the vertical arm 87 grips a vertical piece of rebar at the side. The rotation of the lifting unit 85 rotates within the XY plane about the Z axis, so that the horizontal arm 86 changes its orientation in the longitudinal direction and the vertical arm 87 changes its position around the axis. The gripping by the chucks 88 and 89 of both arms 86 and 87 maintains the rectangular rebar with its two opposing sides vertically and horizontally, while only changing its posture (position and direction).
 他方の搬送手段9は、専ら中子筋SM2を搬送するための装置として例示したものである。この搬送手段9においても、搬送基部94に設置したアクチュエータにより、昇降部95が昇降可能となっている。この場合のアクチュエータとしては、ジップチェーンアクチュエータ(登録商標)などがある。また、昇降部95には、モータ等に連動する旋回部96が設けられており、この旋回部96の一部にチャック97を設けた構成としている。旋回部96は、Z軸を中心としてXY平面内で旋回するものであり、さらに、チャック97は、別のモータ等により基部回りに回動可能としており、中子筋のフック以外の軸部を掴持できるものとしつつ、掴持した状態で、回動および旋回により、姿勢を変化させることができるようにしている。 The other conveying means 9 is exemplified as a device solely for conveying the core bar SM2. In this conveying means 9 as well, the lifting section 95 can be raised and lowered by an actuator installed on the conveying base 94. An example of the actuator in this case is a Zip Chain Actuator (registered trademark). The lifting section 95 is provided with a rotating section 96 that is linked to a motor or the like, and a chuck 97 is provided on part of the rotating section 96. The rotating section 96 rotates in the XY plane around the Z axis, and the chuck 97 can be rotated around the base by another motor or the like, so that the shaft part of the core bar other than the hook can be gripped, and the posture can be changed by rotating and swiveling while gripped.
 上記の各搬送手段8,9は、いずれも所定の角度に旋回等させたうえ、上位フレームFL2a,FL2bに設置されるレール(リニアモーションガイド)LU1,LU2に沿って摺動することにより、所定の姿勢としたせん断補強筋または中子筋を所定の位置まで搬送できるものである。 Each of the above-mentioned transport means 8, 9 can be rotated to a predetermined angle and slid along rails (linear motion guides) LU1, LU2 installed on the upper frames FL2a, FL2b, to transport the shear reinforcement or core reinforcement in a predetermined position to a predetermined position.
 上記構成の搬送手段8,9において、それぞれの移動、旋回等を駆動するための駆動装置(モータ)として、サーボモータが用いられており、駆動力を作用させた際の回転数が検出され、当該回転数から移動量および旋回角等を算出できるものとしている。なお、これらに対する電源供給については、バッテリを使用するほか汎用される有線ケーブルなどを使用することができるが、これは特に説明を要しないため省略している。 In the conveying means 8 and 9 configured as described above, servo motors are used as the driving devices (motors) for driving the respective movements, rotations, etc., and the number of rotations is detected when a driving force is applied, and the amount of movement and the angle of rotation, etc. can be calculated from the number of rotations. Note that, as power is supplied to these means, batteries or general-purpose wired cables can be used, but this is omitted as it does not require special explanation.
<せん断補強筋の保持方法の例示>
 せん断補強筋は、前述のとおり、搬送手段8によって組立領域1に供給されるものであるが、主筋の供給がせん断補強筋の供給の後に実行できるようにするため、先に供給されるせん断補強筋を所定の位置において所定の状態に保持させる必要がある。そして、上述の結束手段5~7による結束を可能にするためには、せん断補強筋の姿勢は、矩形を形成する1組の対向二辺を水平に、他の1組の対向二辺を鉛直に維持させることを原則として例示した。そのため、上記の姿勢を維持させつつせん断補強筋を保持するためには、例えば、物理的な手段として保持具を用いる方法がある。
<Example of how to hold shear reinforcement bars>
As described above, the shear reinforcement is supplied to the assembly area 1 by the conveying means 8, but in order to allow the supply of the main reinforcement to be performed after the supply of the shear reinforcement, it is necessary to hold the shear reinforcement supplied first in a predetermined position and in a predetermined state. In order to enable the bundling by the bundling means 5 to 7 described above, the orientation of the shear reinforcement is exemplified as being, in principle, such that one set of two opposing sides forming a rectangle is kept horizontal and the other set of two opposing sides is kept vertical. Therefore, in order to hold the shear reinforcement while maintaining the above orientation, for example, a method using a holder as a physical means is available.
 その一例として、図4に示すような保持具を示す。この保持具は、保持すべきせん断補強筋SM1の底辺部SM1aの両側に位置する頂角SM11,SM12の周辺を同時に保持する構造としている。図示の保持具10a,10bは、同一形状のものを反転させて設置した状態を示しているが、保持具10a,10bは、相互に対象な形状として構成してもよい。 As an example, the retainer shown in Figure 4 is shown. This retainer is structured to simultaneously hold the periphery of the apex angles SM11 and SM12 located on both sides of the base portion SM1a of the shear reinforcement SM1 to be held. The retainers 10a and 10b shown in the figure are of the same shape, but are shown installed in an inverted state, but the retainers 10a and 10b may be configured to have mutually symmetrical shapes.
 個々の保持具10a,10bは、いずれも頂点SM11,SM12の両側に位置する鉄筋構成部(二辺)を係入できる係入溝11a,12a,11b,12bを備え、これらを連結部13a,13bで連結したものであり、連結部13a,13bは、せん断補強筋SM1の軸線から逸脱させたオフセット状態として形成したものである。連結部13a,13bをオフセット状態としているのは、主筋との結合(結束等)の際の結合手段(結束手段等)の機能に支障を与えないためである。その意味から、連結部13a,13bは、直線的に連結する場合のほか、湾曲させてもよく、また、主筋との結合部(交差部)を露出させる形状であれば、オフセット状態以外の形状により連結させてもよい。 Each retainer 10a, 10b has grooves 11a, 12a, 11b, 12b into which the reinforcing bar components (two sides) located on both sides of the vertices SM11, SM12 can be inserted, and these are connected by connecting parts 13a, 13b, which are formed in an offset state deviated from the axis of the shear reinforcement SM1. The reason that the connecting parts 13a, 13b are in an offset state is so as not to impede the function of the connecting means (binding means, etc.) when connecting (binding, etc.) with the main reinforcement. For that reason, the connecting parts 13a, 13b may be curved in addition to being connected in a straight line, and may be connected in a shape other than the offset state as long as the shape exposes the connecting part (intersection) with the main reinforcement.
 従って、一方の保持具10aの係入溝11a,12aに対し、せん断補強筋SM1の一方の頂角SM11の両側に位置する辺(鉄筋構成部)SM1a,SM1bを同時に係入させることにより、一体的に保持することができる。両係入溝11a,12aに対する二辺SM1a,SM1bの同時係入は、保持具10aに対して上方から下降させることにより、まずは側方の係入溝12aに鉛直の一辺SM1bを係入し、さらに下降させることにより底辺SM1aを下方の係入溝11aに係入させることができ、この状態で同時係入が可能となる。また、他方の保持具10bにより他方の頂角SM12の両側に位置する辺SM1a,SM1cを一体的に保持することができる。このように、せん断補強筋SM1の底辺SMaの両側の頂角SM11,SM12の近傍を同時に保持することにより、せん断補強筋SM1は、傾倒することなく、所定位置において立設した状態で保持されることとなる。 Therefore, the sides (reinforcing bar components) SM1a, SM1b located on both sides of one apex angle SM11 of the shear reinforcement SM1 can be held together by simultaneously engaging them into the engagement grooves 11a, 12a of one retainer 10a. Simultaneous engagement of the two sides SM1a, SM1b into both engagement grooves 11a, 12a is achieved by lowering the retainer 10a from above, first engaging the vertical side SM1b into the side engagement groove 12a, and then further lowering it so that the base side SM1a can be engaged into the lower engagement groove 11a, making simultaneous engagement possible in this state. The sides SM1a, SM1c located on both sides of the other apex angle SM12 can be held together by the other retainer 10b. In this way, by simultaneously holding the areas near the apex angles SM11 and SM12 on both sides of the base SMa of the shear reinforcement SM1, the shear reinforcement SM1 is held upright in the specified position without tilting.
 また、せん断補強筋SM1は、所定の間隔により複数配置されることから、この保持具10a,10bは、それぞれの位置において、両者10a,10bを一組として、必要な組数が配置される。そのため、各保持具10a,10bは、それぞれレール14a,14bに沿って移動可能としている。このレール14a,14bには、予め複数の保持具10a,10bが設けられ、レール14a,14bに沿って摺動させることにより、それぞれ所定の位置に配設するものとしている。なお、せん断補強筋SM1は所定の間隔で設置されるべきものであるため、複数の保持具10a,10bは、当該所定間隔に合わせて配置されるものであり、その間隔を一定に維持するために、各保持具10a,10bの間にスペーサを配置してもよい。スペーサは、レール14a,14bに搭載させるものでもよく、各保持具10a,10bに装着する構成としてもよい。 In addition, since the shear reinforcement SM1 is arranged at a predetermined interval, the necessary number of sets of the retainers 10a, 10b are arranged at each position, with the retainers 10a, 10b as one set. Therefore, each retainer 10a, 10b is movable along the rails 14a, 14b. The rails 14a, 14b are provided with a plurality of retainers 10a, 10b in advance, and the retainers are arranged at their respective predetermined positions by sliding along the rails 14a, 14b. Since the shear reinforcement SM1 should be installed at a predetermined interval, the retainers 10a, 10b are arranged at the predetermined interval, and spacers may be arranged between the retainers 10a, 10b to maintain the interval constant. The spacers may be mounted on the rails 14a, 14b, or may be configured to be attached to each retainer 10a, 10b.
 また一方で、供給されるべきせん断補強筋SM1は、配筋すべき対象(柱や梁等)に応じて寸法が変更されることから、保持具10a,10bを摺動可能にするためのレール14a,14bは、さらに直行方向に配置された他のレール15に搭載され、このレール15に沿って摺動可能としている。このレール15に沿って保持具搭載レール14a,14bを摺動させることにより、相互の位置を離間させ、または接近させることにより当該寸法に適用させることができる。なお、図示のレール15は説明の都合上1本のみを示しているが、保持具搭載レール14a,14bを安定的に支持するため、平行に配置された複数本によって構成されるものである。また、これらの各レール14a,14b,15に沿った摺動には、図示せぬスライダがレール内に設置されており、このスライダの摺動を停止させるストッパを設けることにより、それぞれ所定の位置における配置状態が維持されるものである。 On the other hand, since the dimensions of the shear reinforcement SM1 to be supplied change depending on the object (column, beam, etc.) to be reinforced, the rails 14a, 14b for allowing the retainers 10a, 10b to slide are mounted on another rail 15 arranged in a perpendicular direction, and are made slidable along this rail 15. By sliding the retainer mounting rails 14a, 14b along this rail 15, the mutual positions can be moved apart or closer to each other to accommodate the dimensions. Note that only one rail 15 is shown in the figure for convenience of explanation, but in order to stably support the retainer mounting rails 14a, 14b, it is composed of multiple rails arranged in parallel. In addition, for sliding along each of these rails 14a, 14b, 15, a slider (not shown) is installed in the rail, and by providing a stopper to stop the sliding of this slider, the arrangement state at each specified position is maintained.
<結合手段の例示>
 次に、本実施形態に用いることができる結合手段5,6,7を例示する。図5は、上下に分かれて配置された二種類の結合手段5,6,7の一例を示す斜視図である。なお、ここで例示する結合手段は、いずれも結束による結合を可能とする結束手段であり、以下、結合手段を結束手段と称する場合があり、結合装置については結束機を例示する。また、図は、支柱フレームFL3を省略しているが、上位の結束手段5と、下位の結束手段6,7とが、支柱フレームFL3によって上下に分かれて配置されるものである。
<Examples of connecting means>
Next, examples of the fastening means 5, 6, and 7 that can be used in this embodiment are illustrated. Fig. 5 is a perspective view showing an example of two types of fastening means 5, 6, and 7 arranged separately above and below. Note that the fastening means illustrated here are all fastening means that enable fastening by fastening, and hereinafter the fastening means may be referred to as fastening means, and a fastening machine is illustrated as an example of a fastening device. Also, the figure omits the support frame FL3, but the upper fastening means 5 and the lower fastening means 6 and 7 are arranged separately above and below by the support frame FL3.
 この図5に示されるように、上位の結束手段5は、搬送手段8,9と同様に、上位フレームFL2a,FL2bに設置されるレール(リニアモーションガイド)LU1,LU2に装着されるスライダ51a,51bによって、レールの長手方向Y(X軸方向)へ摺動可能になっている。また、両スライダ51a,51bに跨がるようにフレーム52が懸架され、モータ53によって摺動のための駆動力が付与される。また、フレーム52には、第2のリニアモーションガイドが構成されており、結束基部54を当該ガイドの軸線方向Y(Y軸方向)へ摺動可能としている。 As shown in FIG. 5, the upper binding means 5, like the transport means 8 and 9, is able to slide in the longitudinal direction Y (X-axis direction) of the rails by means of sliders 51a and 51b attached to rails (linear motion guides) LU1 and LU2 installed on the upper frames FL2a and FL2b. A frame 52 is suspended so as to straddle both sliders 51a and 51b, and a driving force for sliding is applied by a motor 53. A second linear motion guide is also configured in the frame 52, allowing the binding base 54 to slide in the axial direction Y (Y-axis direction) of the guide.
 結束基部54にはアクチュエータが設置されており、昇降部55を昇降可能としている。この昇降部55の下部には、適宜モータ等を介して旋回部56が設けられており、水平面(XY平面)内での旋回を可能にしている。また、この旋回部56に結束機57が設置され、鉄筋の結束を行うことができるものである。なお、旋回部56に対し、結束機57は、水平軸を中心に回動可能としており、結束機57の先端方向を変更できるものとしている。 An actuator is installed in the binding base 54, allowing the lifting section 55 to be raised and lowered. A rotating section 56 is provided at the bottom of this lifting section 55 via a suitable motor or the like, allowing it to rotate in a horizontal plane (XY plane). In addition, a binding machine 57 is installed on this rotating section 56, allowing the binding of rebar. Note that relative to the rotating section 56, the binding machine 57 can rotate around a horizontal axis, allowing the direction of the tip of the binding machine 57 to be changed.
 このような構成の上位の結束手段5によって、スライダ51a,51bをX方向に移動させ、結束基部54をY方向に移動させることにより、昇降部55をXY平面内の所定の位置に結束機57を移動させることができる。そのうえで、昇降部55を昇降させれば、目標とする位置に結束機67を移動させることが可能となる。また、結束機57の向きが、旋回部56による旋回と水平軸回りへの回動により、自在に変更できることから、結束すべき向きに調整可能となっている。 By using the upper binding means 5 configured in this way, the sliders 51a, 51b can be moved in the X direction and the binding base 54 can be moved in the Y direction, allowing the lifting unit 55 to move the binding machine 57 to a predetermined position in the XY plane. Then, by raising and lowering the lifting unit 55, it is possible to move the binding machine 67 to the target position. In addition, the orientation of the binding machine 57 can be freely changed by rotating the swivel unit 56 and rotating it around the horizontal axis, so it can be adjusted to the orientation required for binding.
 従って、矩形のせん断補強筋の対向二辺を上下および左右とし、その内部に主筋を配置した状態を想定する場合、上辺および左右の側辺における結束位置まで結束機57を移動し、適宜結束させることが可能となる。なお、結束機57としては、いわゆる自動結束機を用いるものとし、例えば、マックス社製の「ツインタイヤ」を使用することができる。この装置は、二箇所の爪を鉄筋の両側に配置することにより、当該二箇所の爪の間で結束線を懸架し、結束を完了させることができるものである。 Therefore, if we consider a rectangular shear reinforcement bar with two opposing sides, top and bottom and left and right, and main reinforcement bars placed inside, it is possible to move the binding machine 57 to the binding positions on the top and left and right sides and bind them appropriately. Note that a so-called automatic binding machine can be used as the binding machine 57, and for example, a "Twin Tire" manufactured by Max can be used. This device places two claws on both sides of the rebar, suspending a binding wire between the two claws and completing the binding.
 他方、下位の結束手段6,7は、同様に構成された2台が、並列に配置されたものである。これらの両結束手段6,7は、補助フレームFL4a,FL4bに設置されるレール(リニアモーションガイド)LD1,LD2に設置されるものである。このレールLD1,LD2にスライダ61a,61b,71a,71bが装着されており、レールの長手方向Y(X軸方向)へ摺動可能としている。また、それぞれが、フレーム62,72を有しており、両側のスライダ61a,61b,71a,71bにそれぞれ跨がるように懸架され、モータ63,73によって摺動のための駆動力が付与される。また、フレーム52には、第2のリニアモーションガイドが構成されており、結束基部64,74を当該ガイドの軸線方向Y(Y軸方向)へ摺動可能としている。なお、結束基部64,74には、結束機65,75が設置され、前記結束基部64,74の位置の変動により、結束位置まで当該結束機65,75を移動させることができるようになっている。 On the other hand, the lower binding means 6, 7 are two similarly configured units arranged in parallel. These binding means 6, 7 are installed on rails (linear motion guides) LD1, LD2 installed on auxiliary frames FL4a, FL4b. Sliders 61a, 61b, 71a, 71b are attached to these rails LD1, LD2, allowing them to slide in the longitudinal direction Y (X-axis direction) of the rails. Each has a frame 62, 72, which is suspended so as to straddle the sliders 61a, 61b, 71a, 71b on both sides, and a driving force for sliding is applied by a motor 63, 73. A second linear motion guide is also configured in the frame 52, allowing the binding bases 64, 74 to slide in the axial direction Y (Y-axis direction) of the guide. In addition, a binding machine 65, 75 is installed on the binding base 64, 74, and the binding machine 65, 75 can be moved to the binding position by changing the position of the binding base 64, 74.
 従って、矩形のせん断補強筋の対向二辺を上下および左右とし、その内部に主筋を配置した状態を想定する場合、その底辺における結束位置まで結束機57を移動し、適宜結束させることが可能となる。なお、ここで使用する結束機65,75もマックス社製の「ツインタイヤ」を使用することができるものである。 Therefore, if we assume that the two opposing sides of a rectangular shear reinforcement are the top and bottom and the left and right, and that the main reinforcement is placed inside, it is possible to move the binding machine 57 to the binding position at the base and bind it appropriately. The binding machines 65 and 75 used here can also use the "Twin Tire" manufactured by Max.
 上述の上位の結束手段5とともに使用することにより、矩形のせん断補強筋の全周を分担しつつ結束することが可能となる。これらの結束手段5,6,7における移動等を駆動するための駆動装置(モータ)としては、サーボモータが用いることができる。駆動力を作用させた際の回転数を検出することにより、当該回転数から移動量等を算出できるものとしている。 By using it together with the upper bundling means 5 described above, it becomes possible to share and bind the entire circumference of the rectangular shear reinforcement. A servo motor can be used as the drive device (motor) for driving the movement etc. of these bundling means 5, 6, 7. By detecting the number of rotations when the driving force is applied, the amount of movement etc. can be calculated from that number of rotations.
 なお、上位の結束手段5は、せん断補強筋と中子筋とを一体化させるための結束(結合)手段として作動させてもよい。すなわち、前述の二つの搬送手段8,9を同時に作動させ、せん断補強筋と中子筋を姿勢調整領域2まで一時的に搬送し、この姿勢調整領域2において両者の姿勢を所定の状態に維持させたうえで、上位の結束手段5を姿勢調整領域2まで移動させることで、当該姿勢調整領域2における結束が可能となる。結束によりせん断補強筋に結合された中子筋は、せん断補強筋の供給により必然的に所定位置への供給が可能となる。 The upper bundling means 5 may be operated as a bundling (connecting) means for integrating the shear reinforcement and the tangential bars. That is, the two transport means 8, 9 mentioned above are operated simultaneously to temporarily transport the shear reinforcement and the tangential bars to the posture adjustment area 2, and after maintaining the postures of both in a specified state in this posture adjustment area 2, the upper bundling means 5 is moved to the posture adjustment area 2, enabling bundling in the posture adjustment area 2. The tangential bars connected to the shear reinforcement by bundling can be inevitably supplied to the specified position by supplying the shear reinforcement.
<主筋の搬送手段の例示>
 次に、本実施形態に用いることができる主筋の搬送手段を例示する。図5中の下位の結束手段6,7には主筋の搬送手段の一部(搬送補助部)が搭載されている。また、主筋を搬送するための駆動力は、前述の搬送手段8,9を使用する。すなわち、搬送手段は、下位の結束手段6,7および搬送手段8,9によって構成されるものである。
<Examples of means for transporting main reinforcement>
Next, an example of a main reinforcing bar transport means that can be used in this embodiment will be shown. A part of the main reinforcing bar transport means (transport auxiliary unit) is mounted on the lower bundling means 6, 7 in Fig. 5. The driving force for transporting the main reinforcing bars is provided by the above-mentioned transport means 8, 9. In other words, the transport means is composed of the lower bundling means 6, 7 and the transport means 8, 9.
 前述した下位の結束手段6,7を構成する結束基部64,74の上部には、V字状に二つのコンベアローラを有する搬送補助部66,76を立設している。二つのコンベアローラをV字状とすることにより、主筋を下方両側の二点において当接支持させるのである。コンベアローラは従動ローラとすることにより、駆動力(推進力)を受けた主筋を所定の位置で支持することができるものである。他方、主筋に対して駆動力を作用する搬送手段8,9には、前述のとおりそれぞれチャック88,89,97を備えることから、これらのチャック88,89,97を適宜選択して主筋を掴持させ、搬送させるのである。このとき、二種類の搬送手段8,9を順次かつ交互に、掴持および搬送ならびに掴持解除および後退させることにより、主筋に対し所定距離の移動を強制するため、これが組立領域1へ向かう主筋の駆動力(推進力)として作用させることとなる。なお、組立領域1において所定の位置まで主筋を移動させた後は、搬送補助部66,76のみによって主筋が支持されるものとなる。また、搬送補助部66,76を構成するコンベアローラは、2個をV字状とするものではなく、1個の平ローラによって構成してもよい。平ローラとする場合はその両側に主筋の転動を防止するためのガイド板等を設ければよいものである。 The upper part of the binding base 64, 74 constituting the lower binding means 6, 7 described above has a V-shaped conveying auxiliary part 66, 76 having two conveyor rollers. By making the two conveyor rollers V-shaped, the main reinforcement is supported at two points on both sides below. By making the conveyor rollers driven rollers, the main reinforcement that receives the driving force (propulsion force) can be supported at a predetermined position. On the other hand, the conveying means 8, 9 that apply the driving force to the main reinforcement are provided with chucks 88, 89, 97 as described above, and these chucks 88, 89, 97 are appropriately selected to grip and transport the main reinforcement. At this time, the two types of conveying means 8, 9 are gripped and transported, and released from gripping and retreated sequentially and alternately, forcing the main reinforcement to move a predetermined distance, which acts as a driving force (propulsion force) for the main reinforcement toward the assembly area 1. After the main reinforcement is moved to a specified position in the assembly area 1, it is supported only by the transport auxiliary parts 66, 76. The conveyor rollers that make up the transport auxiliary parts 66, 76 do not have to be two V-shaped rollers, but may be a single flat roller. If a flat roller is used, guide plates or the like should be provided on both sides to prevent the main reinforcement from rolling.
 ここで、搬送補助部66,76は、アクチュエータによって伸縮可能な軸部を備えるものとしており、通常は収縮状態としておき、主筋を搬送する際には、主筋の高さ方向(Z方向)の位置に応じて、適宜伸張させることができるものとなっている。主筋は、せん断補強筋の内側に配置されるべきものであることから、搬送補助部66,76は、せん断補強筋の搬送手段8,9によって搬送されたせん断補強筋の隙間から、内側に出没可能な大きさに調整されている。なお、せん断補強筋の配置間隔は、最も狭い場合であっても中心間で60mm程度であるため、せん断補強筋の間に形成される間隙は50mm程度となることから、搬送補助部66,76のコンベアローラおよび軸部の外径寸法を50mm未満に調整している。 Here, the transport auxiliary parts 66, 76 are equipped with an axis that can be expanded and contracted by an actuator, and are normally kept in a contracted state. When transporting the main reinforcement, they can be expanded appropriately according to the position of the main reinforcement in the height direction (Z direction). Since the main reinforcement should be placed inside the shear reinforcement, the transport auxiliary parts 66, 76 are adjusted in size to be able to appear and disappear inside through the gaps in the shear reinforcement transported by the shear reinforcement transport means 8, 9. Note that the spacing between the shear reinforcement is about 60 mm between the centers even in the narrowest case, and therefore the gaps formed between the shear reinforcement are about 50 mm, so the outer diameter dimensions of the conveyor rollers and axis parts of the transport auxiliary parts 66, 76 are adjusted to less than 50 mm.
 なお、この場合の搬送手段は、結束手段6,7と兼用されるものであるところ、当該結束手段6,7として機能する場合は、上述のように、せん断補強筋の底辺における結束であるから、当該位置における主筋の結束に際しては、少なくとも2個の搬送補助部66,76によって主筋を支持しておき、残りの結束手段(図示省略)によって結束する方法がある。または、せん断補強筋の底辺の内側に主筋を載置した状態において、主筋の自重によって位置を安定させておけば、搬送補助のための役目を終了させることができることから、この状態により、結束手段8,9として作動させることができる。他方、主筋を適宜な高さで支持する場合は、せん断補強筋の底辺における結束は不要となるため、専ら主筋の搬送補助部66,76としてのみ機能させることができる。この場合、上位の結束手段5による結束が完了するまで、主筋を所定の高さに支持した状態を維持させるのである。 In this case, the conveying means is also used as the bundling means 6, 7. When functioning as the bundling means 6, 7, as described above, the bundling is performed at the bottom of the shear reinforcement. Therefore, when bundling the main reinforcement at that position, there is a method in which at least two conveying auxiliary parts 66, 76 support the main reinforcement and the remaining bundling means (not shown) bundling it. Alternatively, if the position of the main reinforcement is stabilized by the weight of the main reinforcement when it is placed inside the bottom of the shear reinforcement, the role of conveying auxiliary can be completed, and in this state, it can be operated as the bundling means 8, 9. On the other hand, when the main reinforcement is supported at an appropriate height, bundling at the bottom of the shear reinforcement is not necessary, so it can function solely as the conveying auxiliary parts 66, 76 for the main reinforcement. In this case, the main reinforcement is maintained supported at a specified height until bundling by the upper bundling means 5 is completed.
 上記のような搬送手段8,9を主筋の搬送用(駆動部)として機能させる場合においても、同様のサーボモータにより、駆動力を作用させた際の回転数を検出し、当該回転数から移動量等を算出できるものとなり、主筋の搬送距離(搬送後の主筋の位置)を制御することができるものとしている。 Even when the above-mentioned conveying means 8, 9 are used to convey the main reinforcing bars (drive units), the number of rotations when the driving force is applied can be detected by a similar servo motor, and the amount of movement, etc. can be calculated from that number of rotations, making it possible to control the conveying distance of the main reinforcing bars (the position of the main reinforcing bars after conveyance).
<制御手段>
 本実施形態で使用する制御手段としては、例えば、図6に示すような携帯端末100を使用することができる。携帯端末100としては、外部と送受信可能なタブレットPCなどを使用することができる。すなわち、タブレットPCに備えられている受信部111および送信部112を使用して、外部情報を受信し、また、処理後の制御情報を送信することができる。なお、外部情報は、クラウドサーバ等に保存した情報等とすることができ、ネットワーク回線を介して相互に送受信することができる。また、送受信は、例えば、LTE(Long Term Evolution)ルーター120を使用することにより、ネットワーク回線を介して外部機器との間で行うことができるほか、前述の各操作手段5~9との間で情報の送受信を行うように構成してよい。携帯端末100は送受信可能な操作手段5~9に対して制御信号を出力し、また操作手段5~9による作動状況(作動状態)の検知のために使用することも可能となる。
<Control Means>
As the control means used in this embodiment, for example, a mobile terminal 100 as shown in FIG. 6 can be used. As the mobile terminal 100, a tablet PC capable of transmitting and receiving with the outside can be used. That is, the receiving unit 111 and the transmitting unit 112 provided in the tablet PC can be used to receive external information and transmit processed control information. The external information can be information stored in a cloud server or the like, and can be transmitted and received via a network line. In addition, transmission and reception can be performed between an external device via a network line by using, for example, an LTE (Long Term Evolution) router 120, and information can be transmitted and received between the mobile terminal 100 and each of the above-mentioned operating means 5 to 9. The mobile terminal 100 outputs a control signal to the operating means 5 to 9 capable of transmitting and receiving, and can also be used to detect the operating status (operating state) of the operating means 5 to 9.
 この種の携帯端末には、制御手段としての処理装置200が備えられており、この処理装置200には、情報取得部(本実施形態では鉄筋情報取得部)221、HDD(Hard Disk Drive)またはSSD(Solid State Drive)その他のメモリ等による記憶部222、および処理部(演算部)223を備えている。また、演算結果を出力するための出力部224,225を備えるものである。 This type of mobile terminal is equipped with a processing device 200 as a control means, which includes an information acquisition unit (in this embodiment, a rebar information acquisition unit) 221, a storage unit 222 such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) or other memory, and a processing unit (calculation unit) 223. It also includes output units 224, 225 for outputting the calculation results.
 受信部111を介して取得する鉄筋情報としては、建築物等の設計情報における配筋データを電子データとして格納したもの、または、これらの電子データについて、鉄筋の干渉を回避させるために補正値を反映させた電子データがある。また、BIMまたはCIMに含まれる属性情報としての鉄筋に関する情報(配筋データ)がある。これらの鉄筋情報には、柱や梁を構築する際に使用すべき鉄筋群の種類(鉄筋径および寸法等)や配置すべき位置および数などの情報が詳細に含まれており、これらの情報に基づいて、各種の鉄筋群を配筋することにより、所望の鉄筋組立が可能となる。 The rebar information acquired via the receiving unit 111 includes rebar arrangement data in design information for buildings and the like stored as electronic data, or electronic data that reflects correction values to avoid interference between rebars. There is also information about rebars (rebar arrangement data) as attribute information included in BIM or CIM. This rebar information includes detailed information such as the type of rebar group (rebar diameter and dimensions, etc.) to be used when constructing columns and beams, as well as the position and number at which they should be placed, and the desired rebar assembly can be achieved by arranging various rebar groups based on this information.
 受信部111は、構築する建築物等における全体情報や鉄筋に関する配筋情報などを、外部から受信し、記憶部222に記憶させることができる。全体情報からは構築すべき柱または梁の構築順序などを特定し、配筋情報からは組み立てるべき鉄筋群の詳細情報を特定する。全体情報および配筋情報は、いずれも設計情報であるから、具体的な構築部位としての柱または梁等を特定することにより、当該柱等の図面情報を得ることができる。 The receiving unit 111 can receive from the outside information about the building to be constructed, such as overall information and reinforcing bar arrangement information, and store it in the memory unit 222. The construction order of the columns or beams to be constructed is identified from the overall information, and detailed information about the reinforcing bar groups to be assembled is identified from the reinforcing bar arrangement information. Since both the overall information and the reinforcing bar arrangement information are design information, by identifying a column, beam, etc. as a specific construction part, drawing information for that column, etc. can be obtained.
 処理部(演算部)223は、特定の柱等にかかる鉄筋に関する図面情報から、主筋、せん断補強筋および中子筋等の配置すべき位置に応じて、各種の鉄筋の組立情報を演算する。具体的には、主筋を最後に挿入することを原則として、せん断補強筋および中子筋等を優先して配置するための、位置情報を演算し、前述の搬送手段6~9の作動順序および搬送距離を演算する。これと同時に主筋の搬送距離を演算し、組み立てられるべき鉄筋群の各位置を座標として数値化するものである。 The processing unit (calculation unit) 223 calculates assembly information for various reinforcing bars according to the positions where the main bars, shear reinforcement bars, and tangential bars should be placed, from drawing information related to the reinforcing bars for specific columns, etc. Specifically, it calculates position information for prioritizing the placement of shear reinforcement bars and tangential bars, with the principle that the main bars should be inserted last, and calculates the operating sequence and transport distance of the transport means 6 to 9 mentioned above. At the same time, it calculates the transport distance of the main bars, and quantifies the positions of the reinforcing bars to be assembled as coordinates.
 各鉄筋群の位置が座標上に数値化されることにより、鉄筋間の交差位置を座標上で数値化することが可能となる。このとき、交差部は、中心線で交差するものではなく、交差する鉄筋の表面が当接した状態となるから、交差する相互の鉄筋の径寸法を参照することにより、結束すべき中心位置および結束線を通過させる状態を演算することができる。 By quantifying the position of each group of rebars on a coordinate system, it is possible to quantify the intersection positions between the rebars on a coordinate system. In this case, the intersection does not occur along a center line, but rather occurs when the surfaces of the intersecting rebars are in contact. Therefore, by referencing the diameters of the intersecting rebars, it is possible to calculate the center position to be tied and the state in which the tie wire should pass.
 演算された結果の情報は、一旦記憶部222に記憶させておき、作動順序に従って出力部224,225を介して出力する。出力の順序は、予め優先順位を設定しておくことにより、当該優先順位に応じて、順次出力するものとしている。なお、第1の出力部224は搬送手段に対する出力を実行し、第2の出力部225は結束手段に対する出力を実行するものである。なお、特に出力が重畳的でない場合は、単一の出力部を介して出力させてもよい。出力情報としては、制御信号とした状態で出力させることができる。 The information on the calculated results is temporarily stored in the memory unit 222 and is output via the output units 224 and 225 in accordance with the operating sequence. The order of output is determined by setting a priority order in advance, and the output is sequentially output according to the priority order. The first output unit 224 outputs to the conveying means, and the second output unit 225 outputs to the bundling means. In particular, when the outputs are not overlapping, they may be output via a single output unit. The output information can be output as a control signal.
 前述の搬送手段6~9および結束手段5~7は、一群のクライアント機300として、一つのPLC(Programmable Logic Controller)を代表(代表PLC)130として、LTEルーター120を介して携帯端末100から出力される成語信号(制御情報)を受信し、クライアント機300の個別のPLC301~301に伝達される構成としている。情報の伝達には、アクセスポイント(AP)を設けて、例えばWi-Fiによって無線で送受信させるものとすることができる。当然ながら他の無線規格を使用してもよく、有線であってもよい。代表PLC130を設ける構成としたのは、同時に複数のクライアント機300を作動させる場合を考慮したものであり、個々のクライアント機300に代表PLC130を設けることにより、IPアドレス等により管理することを可能にするためである。従って、単一のクライアント機300に対す制御のみを前提とする場合には、代表PLC130を省略してもよい。 The conveying means 6 to 9 and bundling means 5 to 7 are configured as a group of client devices 300, with one PLC (Programmable Logic Controller) as a representative (representative PLC) 130, which receives a control signal (control information) output from the mobile terminal 100 via the LTE router 120 and transmits it to the individual PLCs 301 1 to 301 5 of the client devices 300. For transmitting information, an access point (AP) may be provided to transmit information wirelessly, for example, by Wi-Fi. Of course, other wireless standards may be used, or the information may be wired. The reason for providing the representative PLC 130 is that a case in which multiple client devices 300 are operated at the same time is that providing the representative PLC 130 to each client device 300 makes it possible to manage them by IP addresses or the like. Therefore, when only control of a single client device 300 is assumed, the representative PLC 130 may be omitted.
 クライアント機300の操作手段5~9ごとに設けられる個別のPLC301~301が制御信号(制御情報)を受信することにより、それぞれ連結される操作手段5~9が、当該制御信号に基づいて、所定の作動を実行するものとなっている。また、これらの操作手段5~9の作動状況は、個々のPLC301~301から代表PLC130を介して携帯端末100に入力される。この操作状況は、個別に作動する操作手段5~9の作動順序を整理するために用いることができるほか、作業の進捗状況の解析に使用することができる。作業の進捗情報は、記憶部222により別途保存することにより、いわゆるログ(操作ログ)として管理するために保存することができる。操作ログは、建築物等の施工状況に応じた配筋作業の進行速度の緩急に利用できるほか、各操作手段5~9の作動不良や配筋状態の不具合を発見した際の検証データとして使用することができる。 The individual PLCs 301 1 to 301 5 provided for the operating means 5 to 9 of the client machine 300 receive a control signal (control information), and the operating means 5 to 9 connected to the client machine 300 execute a predetermined operation based on the control signal. The operating status of the operating means 5 to 9 is input from the individual PLCs 301 1 to 301 5 to the mobile terminal 100 via the representative PLC 130. This operating status can be used to organize the operating sequence of the operating means 5 to 9 that operate individually, and can also be used to analyze the progress of the work. The progress information of the work can be stored separately in the storage unit 222 and managed as a so-called log (operation log). The operation log can be used to adjust the progress speed of the reinforcing bar work according to the construction status of the building, etc., and can also be used as verification data when a malfunction of the operating means 5 to 9 or a defect in the reinforcing bar state is found.
<配筋方法>
 次に、配筋情報に基づく制御信号の具体例を説明する。図7は、柱の鉄筋情報(配筋情報)に基づく組立状態を示す鉄筋群の例を示すものである。図7(a)に示すように、柱を構成するための鉄筋は、主筋SM3を鉛直方向とし、その周囲にせん断補強筋SM1を配置する構成とするものである。本発明では、図7(b)に示すように、柱を構成する場合の鉄筋組立においても、全体を横向きとして、主筋SM3を水平方向に向けて組み立てるのである。このとき、主筋SM3の軸線方向(長手方向)をX軸方向とすることにより、せん断補強筋SM1の矩形平面をY-Z平面とし、X軸方向に所定間隔で整列させることができるようになる。このときのせん断補強筋SM1を構成する矩形の四辺(鉄筋構成部)SM1a~SM1dのうち、一組の対向二辺(対向する鉄筋構成部)SM1a,SM1dを水平な方向(Y軸方向)とするとき、他の二辺(他の鉄筋構成部)SM1b,SM1cは鉛直方向(Z軸方向)となり、このような状態のせん断補強筋SM1を立設状態と呼ぶ。せん断補強筋SM1を立設状態とするとき、底辺(一つの鉄筋構成部)SM1aを組立領域内の所定位置に載置させることができるものとなる。そして、このように立設状態で載置される複数のせん断補強筋SM1を適宜間隔で整列させるとき、主筋SM3の軸線は水平方向に配置するものとなるのである。なお、梁についての鉄筋情報(配筋情報)に基づく組立状態は、当初より主筋SM3が水平な状態であるため、上記と同様により組み立てることができる。
<Reinforcement method>
Next, a specific example of a control signal based on the reinforcing bar arrangement information will be described. FIG. 7 shows an example of a reinforcing bar group showing an assembly state based on the reinforcing bar arrangement information of a column. As shown in FIG. 7(a), the reinforcing bars for constructing a column are configured so that the main reinforcing bars SM3 are vertical and the shear reinforcing bars SM1 are arranged around them. In the present invention, as shown in FIG. 7(b), even in the reinforcing bar assembly for constructing a column, the whole is oriented horizontally and the main reinforcing bars SM3 are assembled in the horizontal direction. At this time, by setting the axial direction (longitudinal direction) of the main reinforcing bars SM3 to the X-axis direction, the rectangular plane of the shear reinforcing bars SM1 can be set to the Y-Z plane and aligned at a predetermined interval in the X-axis direction. In this case, among the four sides (reinforcing bar components) SM1a to SM1d of the rectangle constituting the shear reinforcement SM1, when a pair of opposing sides (opposing reinforcing bar components) SM1a and SM1d are horizontal (Y-axis direction), the other two sides (other reinforcing bar components) SM1b and SM1c are vertical (Z-axis direction), and the shear reinforcement SM1 in this state is called the standing state. When the shear reinforcement SM1 is in the standing state, the bottom side (one reinforcing bar component) SM1a can be placed at a predetermined position in the assembly area. When the multiple shear reinforcements SM1 placed in this standing state are aligned at appropriate intervals, the axis of the main reinforcement SM3 is arranged horizontally. Note that the assembly state based on the reinforcing bar information (reinforcing bar arrangement information) for the beam is such that the main reinforcement SM3 is horizontal from the beginning, so it can be assembled in the same manner as above.
 せん断補強筋SM1を上記状態により保持させる場合には、例えば、図7(b)に示すように、前述の保持具10a,10bを使用して機械的にせん断補強筋SM1を立設させることができる。なお、磁着手段により保持させる場合には、例えば、せん断補強筋SM1の下方および側方に適宜磁着手段を設け、せん断補強筋SM1の下部および側部を磁着することにより位置決めするように構成してもよい。このとき、磁着手段は、せん断補強筋SM1の設置間隔に合わせて、間欠的に磁石を配置したものによって構成することができる。なお、磁着手段としては、複数の永久磁石を適宜位置に配置するように構成するほか、電磁石により所定の位置における電磁石を通電させることにより適宜間隔で磁着させる構成としてもよい。 When the shear reinforcement SM1 is held in the above state, for example, as shown in FIG. 7(b), the above-mentioned retainers 10a and 10b can be used to mechanically set the shear reinforcement SM1 upright. When holding the shear reinforcement SM1 by magnetic means, for example, magnetic means can be provided below and to the sides of the shear reinforcement SM1, and the lower and sides of the shear reinforcement SM1 can be magnetically attached to position it. In this case, the magnetic means can be configured by magnets arranged intermittently according to the installation intervals of the shear reinforcement SM1. The magnetic means can be configured to arrange multiple permanent magnets at appropriate positions, or it can be configured to magnetize the shear reinforcement SM1 at appropriate intervals by passing electricity through an electromagnet at a specified position.
 また、これらの図に示されるように、せん断補強筋SM1は、棒状部材を折り曲げて矩形に構成されるものであり、直線部分が前記の四辺(鉄筋構成部)SM1a~SM1dを構成するものであるが、一般的なせん断補強筋SM1は、棒状部材の先端を湾曲させることによりフックFが形成された構成となっている。このフックFは、90度フック(90度に湾曲させたもの)や135度フック(135度に湾曲させたもの)などがあるが、ここでは、135度フックを例示している。これらのフックFは、同じ位置で揃わない(X方向に一列とならない)ように、左右を逆転させて(Y軸方向に交互に配置して)整列させることが要求されるものである。そのため、向きを調整しつつ供給されることとなる。 As shown in these figures, the shear reinforcement SM1 is formed by bending a rod-shaped member into a rectangle, with the straight lines constituting the four sides (reinforcing bar components) SM1a to SM1d. However, a typical shear reinforcement SM1 is formed by bending the tip of a rod-shaped member to form a hook F. This hook F can be a 90-degree hook (bent at 90 degrees) or a 135-degree hook (bent at 135 degrees), but a 135-degree hook is shown here. These hooks F are required to be aligned by reversing the left and right (alternately arranged in the Y-axis direction) so that they are not aligned in the same position (not in a line in the X-axis direction). Therefore, they are supplied while adjusting their orientation.
 以上のことから、せん断補強筋SM1を搬送するための搬送手段8は、保管領域3からせん断補強筋SM1を受け取り、組立領域1へ移動する途中の姿勢調整領域2において、せん断補強筋SM1の姿勢を調整し、その搬送距離に応じて所定の位置まで搬送し、下降させて予め配置されている保持具10a,10bによって保持される作動させるものとなる。このようにして、必要な数のせん断補強筋SM1を前方から順次整列かつ保持させてせん断補強筋SM1の配筋を完了させることとなる。 As described above, the transport means 8 for transporting the shear reinforcement SM1 receives the shear reinforcement SM1 from the storage area 3, adjusts the posture of the shear reinforcement SM1 in the posture adjustment area 2 on the way to the assembly area 1, transports it to a predetermined position according to the transport distance, and lowers it so that it is held by the pre-arranged holders 10a, 10b. In this way, the required number of shear reinforcement SM1 are aligned and held in sequence from the front, completing the arrangement of the shear reinforcement SM1.
 他方、主筋SM3は、矩形のせん断補強筋SM1の内側に接した状態で配筋されるものであることから、既に配筋されたせん断補強筋SM1の内側を挿通するように、軸線方向(X方向に)向かって最後のせん断補強筋SM1の後方から挿入すればよいものとなる。なお、主筋SM3は、保持する部材を有しないため、1本ずつ搬送し、所定の位置においてせん断補強筋SM1との結束を完了させることにより保持させることとなる。 On the other hand, since the main reinforcement SM3 is placed in contact with the inside of the rectangular shear reinforcement SM1, it can be inserted from behind the last shear reinforcement SM1 in the axial direction (X direction) so as to pass through the inside of the shear reinforcement SM1 that has already been placed. Note that since the main reinforcement SM3 does not have a member to hold it, it is transported one by one and held in place by completing the connection with the shear reinforcement SM1 at the specified position.
<結束方法>
 上述のように、予め整列されたせん断補強筋SM1の内側に挿入した主筋との交差部分を結束することにより主筋SM3を保持(連結)させ、鉄筋全体を組み立てるものであるが、結束作業については、結束手段5,6,7によって実施される。
<Binding method>
As described above, the main reinforcement SM3 is held (connected) by tying the intersections with the main reinforcement inserted inside the pre-aligned shear reinforcement SM1, and the entire reinforcing bar is assembled. The tying work is carried out by tying means 5, 6, and 7.
 そこで、結束手段5,6,7による結束に際し、結束位置および交差状態を特定する必要がある。せん断補強筋SM1の各構成部SM1a~SM1dと主筋SM3との交差部分の状態を図8に示す。この図8(a)および(b)に示されているように、主筋SM3と水平な鉄筋構成部SM1a,SM1bとが交差する部分は、主筋SM3の軸線がX方向であるのに対し、上下に配置される鉄筋構成部SM1a,SM1bの軸線は、Y軸方向となっており、X方向とY方向とで交差する。このような交差の状態は、通常の図面情報においては、相互の中心線(軸線)の交点Oとして示され、双方の鉄筋構成部SM1(SM1a,SM1b),SM3の外径D1,D2が別の図面情報として提示される。 Therefore, when using the bundling means 5, 6, and 7 to bundle, it is necessary to specify the bundling position and the crossing state. Figure 8 shows the state of the intersections between each component SM1a-SM1d of the shear reinforcement SM1 and the main reinforcement SM3. As shown in Figures 8(a) and (b), in the part where the main reinforcement SM3 intersects with the horizontal rebar components SM1a and SM1b, the axis of the main reinforcement SM3 is in the X direction, while the axes of the rebar components SM1a and SM1b arranged above and below are in the Y direction, so they cross in the X and Y directions. In normal drawing information, this state of intersection is shown as the intersection O of the mutual center lines (axes), and the outer diameters D1 and D2 of both rebar components SM1 (SM1a, SM1b) and SM3 are presented as separate drawing information.
 ところが、図示のように、実際に交差する部分は、双方の鉄筋構成部SM1(SM1a,SM1b),SM3の外周面における当接点Pとなるため、図面情報における中心線の交点Oとは異なる点となる。そこで、図面情報における交点Oから外径D1,D2の情報を使用して、当接点Pの座標を算出するのである。なお、主筋SM3の軸線方向(X方向)における交点O(または当接点P)の座標は、先端から交点Oまでの距離Lであり、図面情報から直接得ることができる。 However, as shown in the figure, the actual intersection point is the point of abutment P on the outer periphery of both reinforcing bar components SM1 (SM1a, SM1b) and SM3, which is a different point from the intersection point O of the center lines in the drawing information. Therefore, the coordinates of the point of abutment P are calculated using the information on the outer diameters D1, D2 from the intersection point O in the drawing information. The coordinates of the intersection point O (or point of abutment P) in the axial direction (X direction) of the main reinforcement SM3 are the distance L from the tip to the intersection point O, and can be obtained directly from the drawing information.
 さらに、このような当接点Pにおける交差状態は、X方向とY方向に直交していることから、結束線を斜め掛けとする(両軸線に対して斜状に結束する)ため、X軸(またはY軸)から45度だけ傾けた方向を結束方向とすることとなる。結束のための結束機として、例えば、前掲のマックス社製の「ツインタイヤ」を使用する場合には、上位の鉄筋構成部SM1aと主筋SM3との交差部(図8(a)参照)を結束するためには、交差部の上方に配置し、X軸(またはY軸)から45度だけ回転させた状態としつつ、当接点Pを中心として、その両側に二箇所の爪を配置することで、結束線を斜め掛けとしつつ結束させることができる。なお、下位の鉄筋構成部SM1bと主筋SM3との交差部(図8(b)参照)を結束する場合は、結束機を交差部の下方から配置することとなる。この場合に限り、下位の結束手段6,7を使用することとなる。 Furthermore, since the crossing state at the contact point P is perpendicular to the X and Y directions, the binding wire is hung diagonally (binding is done diagonally with respect to both axes), so the binding direction is inclined by 45 degrees from the X axis (or Y axis). When using the "Twin Tire" manufactured by Max Co., Ltd. as a binding machine for binding, for example, in order to bind the intersection of the upper reinforcing bar component SM1a and the main reinforcing bar SM3 (see FIG. 8(a)), the binding machine is placed above the intersection and rotated by 45 degrees from the X axis (or Y axis), and two claws are placed on both sides of the contact point P, so that the binding wire can be bound diagonally. Note that when binding the intersection of the lower reinforcing bar component SM1b and the main reinforcing bar SM3 (see FIG. 8(b)), the binding machine is placed below the intersection. Only in this case will the lower binding means 6, 7 be used.
 図8(c)および(d)に示すように、主筋SM3と垂直方向の鉄筋構成部SM1c,SM1dとが交差する部分は、主筋SM3の軸線がX方向であるのに対し、鉄筋構成部SM1c,SM1dの軸線は、Z軸方向となっており、X方向とZ方向とで交差する。この場合においても、図面情報の交差点は中心線の交点であるから、主筋SM3および鉄筋構成部SM1c,SM1dの外径によって当接点の座標を特定するのである。 As shown in Figures 8(c) and (d), at the intersection between the main reinforcement SM3 and the vertical rebar components SM1c, SM1d, the axis of the main reinforcement SM3 is in the X direction, while the axes of the rebar components SM1c, SM1d are in the Z direction, so they intersect in the X and Z directions. Even in this case, the intersection point in the drawing information is the intersection point of the center lines, so the coordinates of the contact point are determined by the outer diameters of the main reinforcement SM3 and the rebar components SM1c, SM1d.
 この場合においても、例えば、結束機としてマックス社製の「ツインタイヤ」を使用するためには、二箇所の爪を横向きとし、また、X軸(またはZ軸)に対して45度だけ回転させた状態とし、当接点の両側に二箇所の爪を配置することで、斜め掛けによる結束を可能とするものである。 Even in this case, for example, to use the "Twin Tire" manufactured by Max as the binding machine, the two claws are oriented horizontally and rotated 45 degrees around the X-axis (or Z-axis), and two claws are positioned on either side of the contact point, allowing for diagonal binding.
 なお、主筋SM3とせん断補強筋SM1との交差部を結束する場合、主筋SM3を上位で支持するには、下位の結束手段6,7に設けられている主筋用の搬送補助部66,76を上向きに延伸させる必要があるため、先に下位の主筋SM3から結束するときは上位の主筋SM3の搬送および支持に支障を来すこととなる。そのため、上位の主筋SM3から順次結束することとなる。 When bundling the intersections between the main reinforcement SM3 and the shear reinforcement SM1, the auxiliary transport parts 66, 76 for the main reinforcement provided on the lower bundling means 6, 7 must be extended upward to support the main reinforcement SM3 at the top. Therefore, bundling the lower main reinforcement SM3 first will interfere with the transport and support of the upper main reinforcement SM3. Therefore, bundling is performed in sequence, starting from the upper main reinforcement SM3.
<中子筋の配筋方法>
 中子筋SM2は、図9に示すよう、せん断補強筋SM1とともに配筋され、最終的には主筋SM3に連結(結束)されるものである。せん断補強筋SM1は、主筋SM3の周囲に配置されるのに対し、中子金SM2は対向する二本一組の主筋SM3に架け渡され、せん断補強筋SM1の矩形内部を横断または縦断するように配置されるものである。また、中子筋SM2は、せん断補強筋SM1に隣接した状態において一部を接した状態で設けられる。そのため、予めせん断補強筋SM1と中子筋SM2とを一体化し、せん断補強筋SM1を配置させることにより必然的に中子筋SM2も配置されるものとすることが可能である。ただし、全てのせん断補強筋SM1に対して中子筋SM2が設けられるものではなく、せん断補強筋SM1が数本に対して1本ずつ配置される。さらには、中子筋SM2の軸線(両端のフックを除く中央部分の軸線)の向きについても一定ではない(図9の(a)と(b)とで相違する)。
<Method of placing core bars>
As shown in Fig. 9, the core bars SM2 are arranged together with the shear reinforcement bars SM1, and are finally connected (tied) to the main reinforcement bars SM3. The shear reinforcement bars SM1 are arranged around the main reinforcement bars SM3, while the core bar SM2 is placed across a pair of opposing main reinforcement bars SM3, and is arranged to cross or cross the rectangular interior of the shear reinforcement bars SM1. The core bars SM2 are arranged adjacent to the shear reinforcement bars SM1, with a part of the core bar being in contact with the shear reinforcement bars SM1. Therefore, it is possible to integrate the shear reinforcement bars SM1 and the core bars SM2 in advance, and to arrange the shear reinforcement bars SM1 so that the core bars SM2 are necessarily arranged. However, the core bars SM2 are not arranged for all the shear reinforcement bars SM1, but one core bar is arranged for each of several shear reinforcement bars SM1. Furthermore, the direction of the axis of the core line SM2 (the axis of the central part excluding the hooks at both ends) is not constant (different between (a) and (b) of FIG. 9).
 例えば、図9(a)に示すように、中子筋SM2がせん断補強筋SM1を横断するように設けられる場合がある。このような中子筋SM2は、側方に配筋される主筋SM3の一組に懸架され、その中央部分の軸線が水平な状態となるものである。なお、図においては、せん断補強筋SM1が2本配置されるごとに1本の中子筋SM2を設ける状態を例示している。 For example, as shown in Figure 9(a), there are cases where the core bars SM2 are arranged so as to cross the shear reinforcement bars SM1. Such core bars SM2 are suspended from a set of main reinforcements SM3 arranged laterally, with the axis of the central part being horizontal. Note that the figure shows an example in which one core bar SM2 is provided for every two shear reinforcement bars SM1.
 また、図9(b)に示すように、中子筋SM2がせん断補強筋SM1を縦断するように設けられる場合もある。このような場合の中子筋SM2は、上下に配筋される主筋SM3の一組に懸架されるものであり、軸線を垂直方向とすることとなる。この図における設置間隔についても、せん断補強筋SM1が2本配置されるごとに1本の中子筋SM2を設けるものとして例示している。 In addition, as shown in Figure 9(b), there are also cases where the core bars SM2 are arranged to run vertically through the shear reinforcement bars SM1. In such cases, the core bars SM2 are suspended from a pair of main reinforcements SM3 arranged above and below, with their axis in the vertical direction. The installation interval in this figure is also exemplified as one core bar SM2 being provided for every two shear reinforcement bars SM1.
 さらに、図示を省略しているが、中子筋SM2がせん断補強筋SM1を横断するものと、縦断するものとを混在させる場合もある。この場合は、同じ位置に同時に2種類を設けるものではなく、異なるせん断補強筋SM1に近接させて設置されるものである。このように配筋される中子筋SM2は、せん断補強筋SM1に接して設けられることから、前述した搬送手段8,9は、前方にせん断補強筋用の搬送手段8を配置し、後方に中子筋用の搬送手段9を配置している(図1参照)。そして、中子筋SM2を配筋すべき場合は、せん断補強筋用の搬送手段8および中子筋用の搬送手段9が、それぞれ両鉄筋SM1,SM2を把持して搬送し、姿勢調整領域2において両者を結合させるのである。中子筋SM2がせん断補強筋SM1に結合された後は、中子筋用の搬送手段9は搬送(掴持)を解除し、後退して元の位置に戻ることができ、せん断補強筋用の搬送手段8が、せん断補強筋SM1を掴持しつつ所定に位置に配筋することにより、両鉄筋SM1,SM2を同時に供給することができるものとなる。 Furthermore, although not shown in the figure, there are cases where the core bars SM2 are mixed, some of which cross the shear reinforcement bars SM1, and some that run vertically. In this case, the two types are not installed at the same position at the same time, but are installed adjacent to different shear reinforcement bars SM1. Since the core bars SM2 arranged in this way are installed in contact with the shear reinforcement bars SM1, the aforementioned conveying means 8, 9 are arranged with the conveying means 8 for the shear reinforcement bars at the front and the conveying means 9 for the core bars at the rear (see Figure 1). When the core bars SM2 are to be arranged, the conveying means 8 for the shear reinforcement bars and the conveying means 9 for the core bars grasp and convey both reinforcing bars SM1, SM2, respectively, and join them in the posture adjustment area 2. After the core bar SM2 is connected to the shear reinforcement bar SM1, the core bar transport means 9 can release the transport (gripping) and retreat to its original position, and the shear reinforcement bar transport means 8 can grip the shear reinforcement bar SM1 and place it in the specified position, allowing both reinforcing bars SM1 and SM2 to be supplied simultaneously.
 上記のように、中子筋SM2をせん断補強筋SM1に結合するためには、例えば、図10において示されているように、中子筋SM2の両端のフックSM2b,SM2cをせん断補強筋SM1に結合(結束)することによるものとなる。なお、中子筋SM2は、一本の棒状部材の両端を湾曲させて構成したものであり、直線状の本体構成部SM2aと、その両端にフックSM2b,SM2cを形成させたものである。中子筋SM2のフックSM2b,SM2cについても90度フック(90度に湾曲させたもの)や135度フック(135度に湾曲させたもの)などがあるが、図は、135度フックを例示したものである。 As described above, in order to connect the core bar SM2 to the shear reinforcement bar SM1, for example, as shown in Figure 10, the hooks SM2b, SM2c at both ends of the core bar SM2 are connected (tied) to the shear reinforcement bar SM1. The core bar SM2 is formed by bending both ends of a single rod-shaped member, with a straight main body component SM2a and hooks SM2b, SM2c formed on both ends. The hooks SM2b, SM2c of the core bar SM2 also come in 90-degree hooks (bent at 90 degrees) and 135-degree hooks (bent at 135 degrees), but the figure shows an example of a 135-degree hook.
 両者SM1,SM2を結合させる場合は、前述の搬送手段8,9を使用し、せん断補強筋SM1に対し、所定の向きおよび位置に中子筋SM2を当接させるのであるが、例えば、せん断補強筋SM1を横断するように中子筋SM2を配筋する場合には、図10(a)に示すように、フックSM2b,SM2cをせん断補強筋SM1の側方の二辺SM1b,SM1cに当接させるのである。この状態で、当該フックSM2b,SM2cの頂点部分を結束することにより固定的に結合させることができる。 When joining the two SM1 and SM2, the aforementioned conveying means 8 and 9 are used to bring the core bar SM2 into contact with the shear reinforcement SM1 in a predetermined direction and position. For example, when placing the core bar SM2 so that it crosses the shear reinforcement SM1, as shown in Figure 10(a), the hooks SM2b and SM2c are brought into contact with the two lateral sides SM1b and SM1c of the shear reinforcement SM1. In this state, the apex portions of the hooks SM2b and SM2c can be tied together to secure a fixed connection.
 また、せん断補強筋SM1を縦断するように中子筋SM2を配筋する場合には、図10(b)に示すように、フックSM2b,SM2cをせん断補強筋SM1の上下の二辺SM1a,SM1dに当接させるのである。この状態で上記と同様にフックSM2b,SM2cの頂点部分を結束することにより固定的に結合させることができる。 When placing the core bars SM2 so that they run vertically through the shear reinforcement bars SM1, as shown in Figure 10(b), the hooks SM2b and SM2c are brought into contact with the top and bottom two sides SM1a and SM1d of the shear reinforcement bars SM1. In this state, the tops of the hooks SM2b and SM2c can be tied together in a fixed manner in the same manner as above.
 上記のいずれの場合においても、せん断補強筋SM1に中子筋SM2が結合された状態となることから、せん断補強筋SM1についてのみ管理しつつ前述のような特定位置に移動させ、せん断補強筋SM1を立設状態に保持させることにより、必然的に中子筋SM2を所望の位置に配置させることができるものとなる。 In either of the above cases, the core bar SM2 is connected to the shear reinforcement SM1, so by managing only the shear reinforcement SM1 and moving it to a specific position as described above, and keeping the shear reinforcement SM1 in an upright position, the core bar SM2 can be placed in the desired position.
<まとめ>
 本発明の実施形態は、上記のとおりであるから、予め作成される建築物等の設計情報に含まれる鉄筋群の配筋情報に基づいて、個々の鉄筋の配置すべき位置、交差部の位置を演算し、座標として数値化することができる。この演算結果(座標)に基づき、搬送手段の搬送量を制御して所定の位置に鉄筋群を配置し、結束手段の結束部の位置を制御しつつ変更して結束を可能にすることから、建築物等の設計情報(配筋情報)に忠実な状態で鉄筋を組み立てることができ、これらの組立作業を自動化することもできる。
<Summary>
Since the embodiment of the present invention is as described above, the positions where each reinforcing bar should be placed and the positions of intersections can be calculated and quantified as coordinates based on the reinforcing bar group information included in the design information of a building, etc., which is created in advance. Based on this calculation result (coordinates), the transport amount of the transport means is controlled to place the reinforcing bar group at a predetermined position, and the position of the bundling means is controlled and changed to enable bundling, so that the reinforcing bars can be assembled in a state faithful to the design information (reinforcing bar information) of the building, etc., and these assembly operations can also be automated.
 組み立てるべき鉄筋群は、柱および梁に使用される鉄筋であり、前記の演算において、梁については、そのまま主筋を水平に配置させた状態で実行する。これに対し、柱については、本来の主筋が鉛直方向であるものを90度回転させ、主筋を水平な状態として演算することにより、梁の場合と同様な座標として組立を実行させることができる。 The rebars to be assembled are those used in columns and beams, and in the above calculations, for beams, the main bars are placed horizontally as is. In contrast, for columns, the original vertical main bars are rotated 90 degrees, and calculations are performed with the main bars in a horizontal state, allowing assembly to be performed with the same coordinates as for beams.
 なお、上述のように、実施形態において例示した技術によれば、制御手段としての処理装置200によって利用される情報としては、BIMまたはCIMに含まれる属性情報としての鉄筋に関する情報(配筋データ)が挙げられるところ、これらのBIMまたはCIMには、建築物等の設計に関する全ての情報が包含されていることから、当該情報と演算された配筋情報などの各種の情報を利用することにより、建築物全体および鉄筋群の組立状態をそれぞれ仮想空間に表示させることも可能となる。このような仮想空間内に表示させる場合は、当該仮想空間における鉄筋群の状態を検証し得る。さらに発展的に利用する場合には、AR(Augmented Reality:拡張現実)の技術を採用することにより、ARゴーグル等を使用すれば、工事途上の現実物体と組立後の鉄筋群とを合成させた拡張現実として目視による検証も可能となる。3Dスキャナを使用する場合においても、同様に工事途上の現実物体と組立後の鉄筋群との合成データを作成し、目視によって確認・検証し得るものとなる。 As described above, according to the technology exemplified in the embodiment, the information used by the processing device 200 as the control means includes information on reinforcing bars (reinforcing bar data) as attribute information contained in BIM or CIM. Since these BIM or CIM contain all information related to the design of buildings, etc., it is possible to display the entire building and the assembly state of the reinforcing bars in a virtual space by using this information and various other information such as calculated reinforcing bar information. When displayed in such a virtual space, the state of the reinforcing bars in the virtual space can be verified. For further development, by adopting AR (Augmented Reality) technology, it is possible to visually verify the augmented reality by using AR goggles or the like, which combines the real object under construction and the reinforcing bars after assembly. Even when a 3D scanner is used, composite data of the real object under construction and the reinforcing bars after assembly can be created in a similar manner, and can be visually confirmed and verified.
 なお、上記実施形態は、本発明の一例を示すものであり、本発明が上述の実施形態に限定される趣旨ではない。従って、上記実施形態の一部を変更し、さらに他の構成を付加するものであってもよい。例えば、搬送手段や結束手段等の各構成は、実施形態において示した例示に限定されるものではない。 The above embodiment shows one example of the present invention, and is not intended to limit the present invention to the above embodiment. Therefore, the above embodiment may be partially modified and other configurations may be added. For example, the configurations of the conveying means, binding means, etc. are not limited to the examples shown in the embodiment.
 また、制御手段についても、例示のような携帯端末の使用例に限らず、他の制御装置を使用しつつ、全体として各手段(各装置)の制御を可能にするものであればよい。すなわち、上記実施形態においては、携帯端末の処理部(演算部)223によって配筋情報に基づく各種鉄筋の搬送位置等を演算し、さらに搬送手段等に対する制御信号を出力するものとして構成したが、この処理部(演算部)223を他の処理装置によって機能させるものであってもよい。 The control means is not limited to the use of a mobile terminal as in the example, but may be any means that allows control of each means (device) as a whole while using other control devices. That is, in the above embodiment, the processing unit (calculation unit) 223 of the mobile terminal is configured to calculate the transport positions of various rebars based on the rebar arrangement information, and further to output control signals for the transport means, but this processing unit (calculation unit) 223 may also be operated by another processing device.
 例えば、図11に示すように、携帯端末10の外部に設けられる処理装置(例えばクラウドサーバ)400を使用し、設計情報に含まれる鉄筋群の配筋情報に基づく座標情報については、クラウドサーバ400において演算させておき、この演算結果(座標情報)を携帯端末100の送受信部111を介して受信し、携帯端末100の処理部223により、個々の手段(装置)に対する制御信号に返還したうえ、送受信部111を経由して各手段(各装置)に送信させる構成とすることができる。なお、前述の実施形態のように代表PLC130(図6)を設ける場合は、処理部223は複数の代表PLCの中から出力先を特定するために処理するものとして機能させることができる。 For example, as shown in FIG. 11, a processing device (e.g., a cloud server) 400 provided outside the mobile terminal 10 can be used, and the coordinate information based on the reinforcing bar arrangement information included in the design information can be calculated in the cloud server 400. The calculation results (coordinate information) can be received via the transmission/reception unit 111 of the mobile terminal 100, and the processing unit 223 of the mobile terminal 100 can convert them into control signals for each means (device), which can then be transmitted to each means (device) via the transmission/reception unit 111. Note that when a representative PLC 130 (FIG. 6) is provided as in the above-mentioned embodiment, the processing unit 223 can function as a device that processes to identify the output destination from among multiple representative PLCs.
 上記構成の場合、クラウドサーバ400には、鉄筋情報取得部421が設けられ、入力部426を介して鉄筋情報を入力し、記憶部422は、鉄筋情報を記憶させるものであるとともに、処理部(演算部)423で処理した演算結果をも記憶させるものとし、出力部425を介し、ネットワーク回線を経由して携帯端末100に送信できるものとする。他方、携帯端末100は、送受信部111を介して情報を入力するため、処理部223を経由した入力情報を記憶部222に記憶させ、また、出力部224を介して記憶情報を特定しつつ送受信部111から、代表PLC130または個別のクライアント機300に送信するものとすることができる。 In the above configuration, the cloud server 400 is provided with a reinforcing bar information acquisition unit 421, which inputs reinforcing bar information via the input unit 426, and the memory unit 422 stores the reinforcing bar information as well as the results of calculations processed by the processing unit (calculation unit) 423, which can be transmitted to the mobile terminal 100 via the output unit 425 and a network line. On the other hand, the mobile terminal 100 inputs information via the transmission/reception unit 111, so that the input information passed through the processing unit 223 can be stored in the memory unit 222, and the stored information can be identified via the output unit 224 and transmitted from the transmission/reception unit 111 to the representative PLC 130 or an individual client machine 300.
 また、図11の構成を変形した例として、図12に示すように、携帯端末100は、情報の保存をせず、クラウドサーバ400の情報を代表PLCに出力し、代表PLCを経由してクライアント機300から発信される情報をクライアントサーバ400に送信するものとして機能させるものでもよい。このような携帯端末100としてはスマートフォンなどを使用することも可能である。このような構成の場合には、クライドサーバ400から受信した情報を、順次に個別の情報として代表PLC130に送信するものである。 Also, as an example of a variation of the configuration of FIG. 11, as shown in FIG. 12, the mobile terminal 100 may function as a device that does not store information, but outputs information from the cloud server 400 to the representative PLC, and transmits information sent from the client device 300 to the client server 400 via the representative PLC. A smartphone or the like can also be used as such a mobile terminal 100. In such a configuration, the information received from the cloud server 400 is transmitted sequentially to the representative PLC 130 as individual information.
 さらに、図13に示すように、複数のクライアント機300a,300b,300c・・・と、これらに対応する複数の携帯端末100a,100b,100c・・・とで、組立ライン(ライン1、ライン2、ライン3・・・)を構築し、そのラインごとに、代表PLC130a,130b,130c・・・を介して情報の送受信を行うように構築することも可能である。 Furthermore, as shown in FIG. 13, it is also possible to configure an assembly line (line 1, line 2, line 3, etc.) with multiple client machines 300a, 300b, 300c, etc. and multiple corresponding mobile terminals 100a, 100b, 100c, etc., and to configure each line so that information is sent and received via a representative PLC 130a, 130b, 130c, etc.
 なお、いずれの形態においても、クライアント機300による各手段5~9の作動状態を発信させるために、適宜センサ類が設ける構成としてよく、また、これらのセンサ類によるセンシングデータから、鉄筋の設置の状態や結束前の鉄筋位置等をフィードバックさせることにより、個別のPLC301に保存されるプログラムによりフィードバック制御を行うことも可能となる。 In any case, sensors may be provided as appropriate to allow the client device 300 to transmit the operating status of each of the means 5 to 9. Furthermore, by feeding back the state of installation of the rebar and the position of the rebar before binding from the sensing data from these sensors, it is also possible to perform feedback control using a program stored in an individual PLC 301.
1 組立領域
2 姿勢調整領域
3 保管領域
4 待機領域
5 結束手段(上位の結束手段)
6,7 結束手段(下位の結束手段)および搬送手段(主筋用)
8 搬送手段(せん断補強筋用)
9 搬送手段(中子筋用)
10a,10b 保持具 11a,11b,12a,12b 係入溝13a,13b 連結部14a,14b レール(保持具搭載レール)15 レール41,42,43,44 磁着手段
45,46,47,48 案内部
51a,51b,61a,61b,71a,71b,81a,81b,91a,91b スライダ
52,62,72,82,92 フレーム
53,63,73,83,93 モータ
54,64,74 結束基部
55 昇降部
56,96 旋回部
57,65,75 結束機
66,76 搬送補助部
84,94 搬送基部
85,95 昇降部
86 水平アーム
87 垂直アーム
88,89,97 チャック
100 携帯端末
111 受信アンテナ
112 送信アンテナ
113 受信部
114 送信部
115 入力部
116 処理部
117 記憶部
118 出力部
120 TLEルーター
130 代表PLC
200 処理装置
221 鉄筋情報取得部(情報取得部)
222 記憶部
223 処理部(演算部)
224 出力部(第1)
225 出力部(第2)
226 入力部
300 クライアント機
301 個別のPLC
400 クラウドサーバ
421 鉄筋情報取得部
422 記憶部
423 処理部(演算部)
425 出力部
526 入力部
BL ブロック
FL フレーム
LD1,LD2,LU1,LU2 レール
SM1 せん断補強筋
SM11,SM12 せん断補強筋の頂角
SM1a,SM1b,SM1c,SM1d せん断補強筋の辺(鉄筋構成部)
SM2 中子筋
SM2a 中子筋の本体構成部
SM2b,SM2c 中子筋のフック
SM3 主筋
 
1 Assembly area 2 Attitude adjustment area 3 Storage area 4 Waiting area 5 Binding means (upper binding means)
6, 7 Binding means (sub-binding means) and conveying means (for main reinforcement)
8. Transportation means (for shear reinforcement)
9. Transport means (for core bars)
10a, 10b Holder 11a, 11b, 12a, 12b Engagement groove 13a, 13b Connection portion 14a, 14b Rail (rail with holder mounted) 15 Rail 41, 42, 43, 44 Magnetic attachment means 45, 46, 47, 48 Guide portion 51a, 51b, 61a, 61b, 71a, 71b, 81a, 81b, 91a, 91b Slider 52, 62, 72, 82, 92 Frame 53, 63, 73, 83, 93 Motor 54, 64, 74 Binding base portion 55 Lifting portion 56, 96 Swiveling portion 57, 65, 75 Binding machine 66, 76 Transport auxiliary portion 84, 94 Transport base portion 85, 95 Lifting portion 86 Horizontal arm 87 Vertical arm 88, 89, 97 Chuck 100 Portable terminal 111 Receiving antenna 112 Transmitting antenna 113 Receiving section 114 Transmitting section 115 Input section 116 Processing section 117 Storage section 118 Output section 120 TLE router 130 Representative PLC
200 Processing device 221 Reinforcing bar information acquisition unit (information acquisition unit)
222 Storage unit 223 Processing unit (calculation unit)
224 output unit (first)
225 Output section (second)
226 Input unit 300 Client machine 301 Individual PLC
400 Cloud server 421 Reinforcing bar information acquisition unit 422 Storage unit 423 Processing unit (calculation unit)
425 Output section 526 Input section BL Block FL Frame LD1, LD2, LU1, LU2 Rail SM1 Shear reinforcement SM11, SM12 Apex angle of shear reinforcement SM1a, SM1b, SM1c, SM1d Side of shear reinforcement (reinforcement component)
SM2 Core bar SM2a Core bar main body SM2b, SM2c Core bar hook SM3 Main bar

Claims (8)

  1.  予め作成された建築物または構築物に関する設計情報に基づき、該建築物または該構築物の柱または梁に使用される鉄筋群を組み立てるための装置であって、
     使用される鉄筋群を種類ごとに保管することができる保管領域と、鉄筋群を所定の位置に配置しつつ交差部の所定位置を結合させて組み立てるための組立領域と、前記保管領域から前記組立領域まで所望の鉄筋を種類ごとに搬送する搬送手段と、前記組立領域において複数の鉄筋が交差する交差部を結合する結合手段と、前記搬送手段の搬送および前記結合手段の結合動作をそれぞれ制御する制御手段とを備え、
     前記制御手段は、建築物または構築物にかかる設計情報から柱または梁の構築に使用される鉄筋群の少なくとも各鉄筋の種類ごとの配置に関する情報を取得する鉄筋情報取得部と、前記鉄筋情報取得部によって取得された情報から、少なくとも保管領域から組立領域まで搬送すべき鉄筋の種類ごとの数および搬送距離、ならびに前記組立領域に搬送された鉄筋群相互の交差部の座標を含む制御情報を演算する演算部と、該演算部によって演算された制御情報に基づく搬送手段に対する制御信号を出力する第1の出力部と、前記演算部によって演算された制御情報に基づく結合手段に対する制御信号を出力する第2の出力部と
    を備えることを特徴とする鉄筋組立装置。
    An apparatus for assembling reinforcing bars to be used for columns or beams of a building or structure based on previously created design information for the building or structure,
    The system comprises a storage area in which reinforcing bars to be used can be stored by type, an assembly area in which the reinforcing bars are arranged in predetermined positions and then joined at predetermined positions of their intersections to assemble, a transport means for transporting desired reinforcing bars by type from the storage area to the assembly area, a joining means for joining intersections where multiple reinforcing bars intersect in the assembly area, and a control means for controlling the transport of the transport means and the joining operation of the joining means,
    The control means is characterized in that it comprises a reinforcing bar information acquisition unit that acquires information regarding the arrangement of at least each type of reinforcing bar in the reinforcing bar groups used to construct columns or beams from design information for a building or structure, a calculation unit that calculates control information from the information acquired by the reinforcing bar information acquisition unit, the control information including at least the number of each type of reinforcing bars to be transported from the storage area to the assembly area and the transport distance, as well as the coordinates of the intersections of the reinforcing bar groups transported to the assembly area, a first output unit that outputs a control signal for a transporting means based on the control information calculated by the calculation unit, and a second output unit that outputs a control signal for a connecting means based on the control information calculated by the calculation unit.
  2.  前記鉄筋群は、主筋およびせん断補強筋を含み、
     前記搬送手段は、主筋を搬送する主筋搬送部と、せん断補強筋を搬送する補強筋搬送部とを備え、
     前記組立領域に搬送される該鉄筋群は、主筋の軸線を水平方向とし、せん断補強筋を構成する構成部の各軸線が主筋の軸線に対して直交するように、該せん断補強筋全体を立設状態とするものであり、
     前記演算部は、鉄筋群の搬送の順序を演算するものであり、該演算条件は、第1順位として所定の数のせん断補強筋を搬送したのち、第2順位として主筋を搬送させることとするものである
    請求項1に記載の鉄筋組立装置。
    The reinforcing bar group includes main reinforcement and shear reinforcement,
    The conveying means includes a main reinforcement conveying section for conveying the main reinforcement and a reinforcing bar conveying section for conveying the shear reinforcement,
    The reinforcing bars transported to the assembly area are arranged so that the axis of the main reinforcement is horizontal and the axis of each component of the shear reinforcement is perpendicular to the axis of the main reinforcement, so that the entire shear reinforcement is in an upright state.
    2. The reinforcing bar assembly device according to claim 1, wherein the calculation unit calculates the order of transporting the reinforcing bar groups, and the calculation condition is to transport a predetermined number of shear reinforcement bars as a first priority, and then transport main reinforcement bars as a second priority.
  3.  前記組立領域は、前記鉄筋情報取得部によって取得される鉄筋の配置に関する情報に基づいて、第1順位として搬送されるせん断補強筋を所定の間隔を維持しつつ、立設状態で保持する保持手段を備えており、
     前記主筋搬送部は、前記保持手段により保持されるせん断補強筋の間隙において昇降可能な主筋支持部と、主筋送出部とを備え、該主筋支持部により主筋を支持させつつ主筋送出部による送り出しによって搬送させるものである
    請求項2に記載の鉄筋組立装置。
    the assembly area includes a holding means for holding the shear reinforcement bars transported as a first priority in an upright state while maintaining a predetermined interval based on information regarding the arrangement of the reinforcing bars acquired by the reinforcing bar information acquisition unit,
    The reinforcing bar assembly device according to claim 2, wherein the main reinforcement conveying section comprises a main reinforcement support section that can rise and fall in the gaps between the shear reinforcement bars held by the holding means, and a main reinforcement delivery section, and the main reinforcement is supported by the main reinforcement support section while being transported by the main reinforcement delivery section.
  4.  前記保管領域と前記組立領域との間には、搬送途上における該鉄筋の種類に応じて該鉄筋の姿勢を所望状態に変更させるための姿勢調整領域が形成されるものであり、
     少なくとも前記補強筋搬送部は、前記姿勢調整領域を経由してせん断補強筋を搬送するものであり、前記制御手段の制御信号に基づいて、該姿勢調整領域において該せん断補強筋の姿勢の変更を可能とするものである請求項3に記載の鉄筋組立装置。
    Between the storage area and the assembly area, a posture adjustment area is formed for changing the posture of the reinforcing bar to a desired state depending on the type of the reinforcing bar during transportation,
    The steel bar assembly device described in claim 3, wherein at least the reinforcing bar transporting section transports the shear reinforcing bar through the posture adjustment area and enables the posture of the shear reinforcing bar to be changed in the posture adjustment area based on a control signal from the control means.
  5.  前記制御手段は、携帯端末によって構成されるものであり、
     前記搬送手段および前記結合手段は、前記携帯端末との間でそれぞれ送受信可能に設けられ、
     前記携帯端末は、前記設計情報を保存し、前記制御情報を演算し、該制御情報に基づく制御信号を前記搬送手段および前記結合手段に対して出力し、前記搬送手段および前記結合手段から発信される発信情報を入力するとともに、該発信情報を作業進捗情報として保存するものである
    請求項1~4のいずれかに記載の鉄筋組立装置。
    the control means is configured by a mobile terminal,
    the conveying means and the connecting means are provided so as to be capable of transmitting and receiving information between the conveying means and the portable terminal,
    The reinforcing bar assembly device according to any one of claims 1 to 4, wherein the mobile terminal stores the design information, calculates the control information, outputs control signals based on the control information to the conveying means and the connecting means, inputs transmission information transmitted from the conveying means and the connecting means, and stores the transmission information as work progress information.
  6.  前記設計情報は、作業工程ごとに細分化された情報であり、前記制御情報は作業工程ごとに演算されるものである請求項5に記載の鉄筋組立装置。 The reinforcing bar assembly device according to claim 5, wherein the design information is information subdivided for each work process, and the control information is calculated for each work process.
  7.  前記制御手段は、クラウドサーバと携帯端末とで構成されるものであり、
     前記搬送手段および前記結合手段は、前記携帯端末との間でそれぞれ送受信可能に設けられ、
     前記クラウドサーバは、前記設計情報を保存し、前記制御情報を演算し、その制御情報を保存するものであり、
     前記携帯端末は、前記クラウドサーバに保存される前記制御情報を受信するとともに、該制御情報に基づく制御信号を前記搬送手段および結束手段に対して出力し、前記搬送手段および前記結合手段から発信される発信情報を入力するとともに、該発信情報を作業進捗情報として保存するものである
    請求項1~4のいずれかに記載の鉄筋組立装置。
    The control means is composed of a cloud server and a mobile terminal,
    the conveying means and the connecting means are provided so as to be capable of transmitting and receiving information between the conveying means and the portable terminal,
    The cloud server stores the design information, calculates the control information, and stores the control information;
    The reinforcing bar assembly device according to any one of claims 1 to 4, wherein the mobile terminal receives the control information stored in the cloud server, outputs a control signal based on the control information to the conveying means and the binding means, inputs transmission information transmitted from the conveying means and the binding means, and stores the transmission information as work progress information.
  8.  前記設計情報は、作業工程ごとに細分化された情報であり、前記制御情報は作業工程ごとに演算されるものであり、
     前記携帯端末は、前記クラウドサーバに保存される作業工程ごとの前記制御情報を、作業工程ごとに個別に取得するものである請求項7に記載の鉄筋組立装置。
    The design information is information subdivided for each work process, and the control information is calculated for each work process,
    The reinforcing bar assembly device according to claim 7 , wherein the mobile terminal acquires the control information for each work process stored in the cloud server individually for each work process.
PCT/JP2022/037038 2022-10-03 2022-10-03 Rebar assembly device WO2024075174A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/037038 WO2024075174A1 (en) 2022-10-03 2022-10-03 Rebar assembly device
KR1020227037247A KR20240049107A (en) 2022-10-03 2022-10-03 rebar assembly device
CN202280003750.7A CN118140031A (en) 2022-10-03 2022-10-03 Reinforcing bar assembly quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037038 WO2024075174A1 (en) 2022-10-03 2022-10-03 Rebar assembly device

Publications (1)

Publication Number Publication Date
WO2024075174A1 true WO2024075174A1 (en) 2024-04-11

Family

ID=90607712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037038 WO2024075174A1 (en) 2022-10-03 2022-10-03 Rebar assembly device

Country Status (3)

Country Link
KR (1) KR20240049107A (en)
CN (1) CN118140031A (en)
WO (1) WO2024075174A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642751A (en) * 1987-06-26 1989-01-06 Taisei Corp Reinforcement assembly device
JP2008279478A (en) * 2007-05-10 2008-11-20 Runhorn Pretech Engineering Co Ltd Apparatus and method for forming square helical hoop
JP6907759B2 (en) * 2017-06-28 2021-07-21 株式会社大林組 Reinforcing bar arrangement device and manufacturing method of reinforcing bar assembly and pre-assembled reinforcing bar unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218475A (en) 1993-01-20 1994-08-09 Shimizu Corp Assembling device for reinforcing bar
KR100413659B1 (en) 2001-01-19 2003-12-31 안판상 base plate for fixing a structure
JP2006318257A (en) 2005-05-13 2006-11-24 Trion:Kk Provision method for structure information of reinforcing member
JP5656041B2 (en) 2007-07-30 2015-01-21 清水建設株式会社 Construction drawing system
JP5248550B2 (en) 2010-06-04 2013-07-31 株式会社奥村組 On-site bar arrangement support method using 3D bar arrangement system
JP5874487B2 (en) 2012-03-27 2016-03-02 株式会社大林組 Rebar assembling apparatus and rebar assembling method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642751A (en) * 1987-06-26 1989-01-06 Taisei Corp Reinforcement assembly device
JP2008279478A (en) * 2007-05-10 2008-11-20 Runhorn Pretech Engineering Co Ltd Apparatus and method for forming square helical hoop
JP6907759B2 (en) * 2017-06-28 2021-07-21 株式会社大林組 Reinforcing bar arrangement device and manufacturing method of reinforcing bar assembly and pre-assembled reinforcing bar unit

Also Published As

Publication number Publication date
KR20240049107A (en) 2024-04-16
CN118140031A (en) 2024-06-04

Similar Documents

Publication Publication Date Title
Kasperzyk et al. Automated re-prefabrication system for buildings using robotics
WO2019183945A1 (en) Steel bar prefabrication method
US20180333764A1 (en) Production plant for manufacturing reinforcement elements
KR101234656B1 (en) The apparatus and method of auto forming a binding wire bundle
JP2021195757A (en) Steel bar distributing device and steel bar distributing method
US20200147797A1 (en) Rebar automating robot
CN104002377A (en) Steel bar binding and corrugated pipe locating device for precasting box girder
CN104308447A (en) Automatic overturning device for linear steel tube bundle structural components
CN104325231B (en) Steel pipe bundle combining structure component automatic assembling welder
WO2024075174A1 (en) Rebar assembly device
US11845151B2 (en) Systems and methods of plating structural members
WO2024089830A1 (en) Reinforcing bar binding device in reinforcing bar assembly device
WO2024089829A1 (en) Rebar feeding device for rebar assembly device
WO2024089831A1 (en) Shear reinforcing bar holding device in reinforcing bar assembly device
CN104353937A (en) Automatic assembling and welding device for straight steel pipe bundles
CN104400430A (en) Automatic production process and device of steel pipe bundle combined structural component
TW202415841A (en) Steel bar assembly device
CN114263116A (en) Industrial construction method for concrete bridge tower reinforcing steel bar part
JPH06226494A (en) Automatic welding method for steel-frame joints parts and equipment therefor
DK180334B1 (en) Assembly machine and method for assembling reinforced structures
JP2019007314A (en) Reinforcing bar arranging device, reinforcing bar assembly and manufacturing method of pre-assembled reinforcing bar unit
WO2019183948A1 (en) Method for preparing movable steel bar
JP2500811B2 (en) Automatic rebar assembly equipment
US20240051009A1 (en) Method and apparatus for processing bars
JP2788003B2 (en) Rebar prefabricated automatic assembly equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961364

Country of ref document: EP

Kind code of ref document: A1