WO2024050768A1 - 玻璃粉的制备方法、银浆以及制备方法 - Google Patents

玻璃粉的制备方法、银浆以及制备方法 Download PDF

Info

Publication number
WO2024050768A1
WO2024050768A1 PCT/CN2022/117866 CN2022117866W WO2024050768A1 WO 2024050768 A1 WO2024050768 A1 WO 2024050768A1 CN 2022117866 W CN2022117866 W CN 2022117866W WO 2024050768 A1 WO2024050768 A1 WO 2024050768A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver paste
glass powder
silver
oxide
powder
Prior art date
Application number
PCT/CN2022/117866
Other languages
English (en)
French (fr)
Inventor
张�杰
刘小丽
李德林
Original Assignee
深圳市首骋新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市首骋新材料科技有限公司 filed Critical 深圳市首骋新材料科技有限公司
Priority to PCT/CN2022/117866 priority Critical patent/WO2024050768A1/zh
Priority to CN202280003094.0A priority patent/CN115667169A/zh
Publication of WO2024050768A1 publication Critical patent/WO2024050768A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters

Definitions

  • the present application belongs to the technical field of glass powder and conductive paste, and in particular relates to a preparation method of glass powder, silver paste and preparation method.
  • Filters are key components for signal transmission frequency selection in mobile communications. They mainly remove unnecessary frequency components from signals through a combination of capacitors, inductors, resistors and other components, while retaining required frequency components, thereby ensuring that the signal can be transmitted at a specific frequency. Transmit on the frequency band to eliminate mutual interference between frequency bands. From the perspective of usage functions, the two main uses of current filters are filters for base stations and filters for terminals. According to survey data, the market space for filters will rapidly grow from US$5.208 billion in 2016 to US$16.311 billion in 2022, with a compound growth rate of 21%.
  • Ceramic dielectric filters have the advantages of small size, light weight, and large Q value (filter quality factor, defined as the center frequency divided by the filter bandwidth). They have absolute advantages in applications in the 5G field and have huge development potential. In the production process of ceramic filters, the metallization process plays a connecting role and determines whether ceramic filters are capable of mass production.
  • Conductive silver paste is one of the key materials in the metallization process. Its conductive properties and the density of the conductive layer have a direct impact on the performance of the filter.
  • Conductive silver paste is a filled conductive paste whose conductive filler is silver powder. It is a key material for dielectric filters. This is because silver has the advantages of strong electrical conductivity, thermal expansion coefficient close to that of porcelain, good thermal stability, and the ability to weld metal directly on the silver layer. It is regarded as the best choice for ceramic dielectric filter electrode materials. Therefore, the surface of the 5G ceramic dielectric filter must form a silver conductive layer with high density, good adhesion, strong conductivity and good solderability, and the selection of conductive silver paste is particularly critical.
  • the technical problem to be solved by this application is to provide a preparation method and application of glass frit, aiming to solve the problem that the existing glass frit has poor low-temperature silver dissolving and silver precipitation ability, and the TOPCon crystalline silicon battery cannot be metallized at low temperature.
  • this application also provides a conductive paste and a preparation method.
  • a glass powder used for 5G ceramic dielectric filter silver paste which includes the following molar percentages of each component:
  • a method for preparing glass frit includes the following steps:
  • the glass raw material mixture is melted to obtain molten glass
  • the glass particles are ground and classified to obtain glass frit.
  • a silver paste includes silver powder, and also includes glass powder or glass powder prepared by the method for preparing glass powder mentioned above.
  • a method for preparing silver paste includes the following steps:
  • the glass powder in the above text or the glass powder prepared by the preparation method of the glass powder in the above text and silver powder are mixed to obtain silver paste.
  • the glass powder provided in this application can provide some trace amounts of the glass powder by adjusting the compound ratio of bismuth oxide, zinc oxide, silicon dioxide, boron oxide, alkali metal oxide and other components calculated as oxides. Elements. Special trace elements are added to the glass powder to improve the dielectric properties of the glass powder.
  • the silver paste prepared with the glass powder is applied to ceramic substrates of different materials to obtain a higher Q value (filter quality factor, defined as the center frequency divided by the filter bandwidth), exhibiting excellent electrical characteristics.
  • this glass powder in 5G ceramic dielectric filter silver paste can broaden the sintering window of 5G ceramic dielectric filter silver paste, and the ceramic matrix can include titanate system ceramics, aluminate system ceramics, aluminosilicates System ceramics and samarium-titanium system ceramics both have strong physical and chemical bonding, which provides strong adhesion, improves the welding tension of the silver layer, obtains a higher Q value, and exhibits excellent electrical properties, which can be used
  • the silver paste prepared by the glass powder can be applied to ceramic substrates of different materials.
  • the preparation method of glass frit provided in this application is mainly divided into four steps.
  • each glass raw material is weighed according to the components contained in the glass frit in the above article, and the glass transition temperature of the glass frit in the above article can be adjusted.
  • a highly dispersed glass raw material mixture can be obtained, which facilitates subsequent molding processing of each glass raw material.
  • the glass raw material mixture is melted to form a liquid glass frit.
  • the glass liquid is quenched with water to solidify the glass liquid to obtain glass particles.
  • the fourth step is to grind and classify the glass particles to obtain glass frit with a preset particle size, which can be used in the 5G ceramic dielectric filter silver paste.
  • the glass powder provided by this application is used as a sintering aid and binder in silver paste.
  • the degree of densification of the sintered silver layer is improved, and the silver layer and the ceramic matrix form an effective combination.
  • the addition of a certain amount of glass powder can prevent the mutual penetration of components between the slurry and ceramics and ensure the stability of the electrical properties of the product.
  • the glass powder provided in this application is adjusted to the glass powder formula so that the glass powder has a moderate characteristic softening temperature. Therefore, when used in 5G ceramic dielectric filter silver paste, it has high sintering activity and good wettability to silver powder.
  • Improve the sintering density of the silver powder thereby improving the conductivity of the silver layer, without excessive erosion of the ceramic matrix, aggravation of silver migration, and a decrease in the electrical properties of the porcelain body itself.
  • the silver paste formed by the combination of glass frit and silver powder provided by the present application imparts conductive properties to the conductive paste, which facilitates screen printing processing of the silver paste to form a conductive layer.
  • the silver paste provided by the embodiment of the present application can be used as a 5G ceramic dielectric filter silver paste.
  • silver powder is dispersed in glass powder, which can reduce the sintering window of the silver paste of the 5G ceramic dielectric filter, and has strong physical and chemical bonding with the ceramic matrix, which provides strong adhesion and improves the welding tension of the silver layer.
  • the silver paste prepared with this glass powder can be applied to ceramic substrates of different materials, all of which obtain high Q values and exhibit excellent electrical properties.
  • Figure 1 is a front-side SEM photo of a silver layer provided by an embodiment of the present application.
  • Figure 2 is a front-side SEM photo of a silver layer provided in the comparative example of this application;
  • Figure 3 is a cross-sectional SEM of a silver paste sintered silver layer provided by an embodiment of the present application.
  • Figure 4 is a microscope photo of a silver paste sintering provided in an embodiment of the present application.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Condition. Where A and B can be singular or plural.
  • the character "/" generally indicates that the related objects are in an "or" relationship.
  • At least one refers to one or more
  • plural items refers to two or more.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items (items) or plural items (items).
  • at least one of a, b, or c or “at least one of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple respectively.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution. Some or all steps can be executed in parallel or one after another. The execution order of each process should be based on its function and order. The internal logic is determined and should not constitute any limitation on the implementation process of the implementation regulations of this application.
  • weights of relevant components mentioned in the description of the embodiments of the present application may not only refer to the specific content of each component, but also represent the proportional relationship of weight between the components. Therefore, as long as the relevant components are combined according to the description of the embodiments of the present application, Any scaling up or down of the content is within the scope disclosed in the examples of this application.
  • the mass described in the description of the embodiments of this application may be mass units well-known in the chemical industry such as ⁇ g, mg, g, kg, etc.
  • first and “second” are used for descriptive purposes only and are used to distinguish objects such as substances from each other, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • the first XX may also be called the second XX
  • the second XX may also be called the first XX. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the first aspect of the embodiment of the present application provides a glass powder for 5G ceramic dielectric filter silver paste, which includes the following molar percentages of each component:
  • the glass powder provided in the embodiments of the present application can provide some trace elements for the glass powder by adjusting the compound ratio of bismuth oxide, zinc oxide, silicon dioxide, boron oxide, alkali metal oxide and other components calculated as oxides. Special trace elements are added to the glass powder to improve the dielectric properties of the glass powder.
  • the silver paste prepared with the glass powder is applied to ceramic substrates of different materials to obtain a higher Q value (filter quality factor, defined as the center frequency divided by the filter device bandwidth), exhibiting excellent electrical characteristics. Using this glass powder in the 5G ceramic dielectric filter silver paste can broaden the sintering window of the 5G ceramic dielectric filter silver paste.
  • the glass powder provided in the embodiments of the present application has a sintering temperature of 850 ⁇ 910°C.
  • the window is 20°C wider than the 870 ⁇ 905°C of DuPont PV series silver paste, and the ceramic matrix can include titanate system ceramics, aluminate system ceramics, aluminosilicate system ceramics and samarium titanium system ceramics Both have strong physical and chemical bonding, which provides strong adhesion, improves the welding tension of the silver layer, obtains a higher Q value, and exhibits excellent electrical properties.
  • the silver paste prepared with this glass powder Can be applied to ceramic substrates of different materials.
  • copper-containing salts or copper-containing oxides are also included.
  • the copper-containing salt or copper-containing oxide includes at least one of copper carbonate, basic copper carbonate, copper oxide, cuprous oxide, copper chloride, and copper sulfate.
  • oxides of rare earth elements are also included.
  • the oxide of rare earth elements includes at least one of erbium oxide, ytterbium oxide, thulium oxide, lanthanum oxide, neodymium oxide, and samarium oxide. Improve the dielectric properties of ceramics of different systems through the single or mixed addition of rare earth elements.
  • it also includes copper-containing salts or copper-containing oxides and oxides of rare earth elements.
  • Rare earth oxides and copper salts and copper oxides have good mutual solubility, and both can make the glass powder and the surface of the ceramic substrate A certain crystalline phase or filled oxide can be effectively bonded or wetted under a wide sintering window.
  • titanium dioxide and zirconium dioxide are also included, which can further provide some trace elements for the glass powder. Special trace elements are added to the glass powder to improve the dielectric properties of the glass powder.
  • the silver paste prepared with the glass powder is used in High Q values are obtained for ceramic substrates of different materials, showing excellent electrical properties.
  • alkaline earth metal oxides are also included, which can further provide some trace elements for the glass powder.
  • the second aspect of the embodiments of the present application provides a method for preparing glass powder, which includes the following steps:
  • Step S10 Convert the mass ratio of each raw material according to the glass frit formula in the above text
  • Step S20 Mix each raw material to obtain a mixture
  • Step S30 Melt the mixture to obtain molten glass
  • Step S40 Perform water quenching treatment on the glass liquid to obtain glass particles
  • Step S50 Grind the glass particles to obtain glass powder.
  • the preparation method of glass frit provided in this application is mainly divided into four steps.
  • each glass raw material is weighed according to the components contained in the glass frit in the above article, and the glass transition temperature of the glass frit in the above article can be adjusted. By mixing each of the glass raw materials mentioned above, a highly dispersed glass raw material mixture can be obtained.
  • the glass raw material mixture is melted to form a liquid glass frit.
  • the glass liquid is quenched with water to solidify the glass liquid to obtain glass particles.
  • the fourth step is to grind the glass particles to obtain glass frit with a preset particle size, which can be used in the 5G ceramic dielectric filter silver paste.
  • the melting temperature is 1100 ⁇ 1350°C and the time is 30 ⁇ 60 minutes, so that liquid glass frit can be formed.
  • the grinding process includes ball milling, the ball milling time is 4 to 8 hours, and the glass powder is classified in an airflow mill.
  • the glass powder preparation process Special it can control the particle size range of glass powder more accurately to ensure excellent dispersion in the slurry.
  • the particle size of glass powder is 2 ⁇ 4 ⁇ m.
  • the third aspect of the embodiments of the present application provides a silver paste, which includes silver powder and an organic carrier, and also includes glass powder or glass powder prepared by the method for preparing glass powder mentioned above.
  • the glass powder provided in the embodiment of the present application is used as a sintering aid and a binder in the silver paste.
  • the degree of densification of the sintered silver layer is improved, and the silver layer and the ceramic matrix form an effective combination.
  • the addition of a certain amount of glass powder can prevent the mutual penetration of components between the silver paste and ceramics, ensuring the stability of the electrical properties of the product.
  • the glass powder provided in the embodiments of the present application is adjusted to the glass powder formula so that the glass powder has a moderate characteristic softening temperature. Therefore, when used in 5G ceramic dielectric filter silver paste, it has higher sintering activity and better wettability to silver powder.
  • the embodiments of this application focus on the development of glass powders for filter conductive silver pastes based on four different ceramic substrates.
  • the prepared silver pastes are comparable to or even better than existing foreign products from sintering window to electrical properties.
  • Product DuPont PV series of silver paste At the same time, we hereby declare that the conductive silver paste prepared in this application does not contain harmful elements such as lead (Pb) and cadmium (Cd), and meets the requirements of RoHS1.0 and RoHS2.0.
  • the organic vehicle imparts viscosity and rheological characteristics suitable for printing to the slurry composition by mechanical mixing with inorganic components in the composition for solar cell electrodes.
  • the organic vehicle may be any typical organic vehicle used in compositions of solar cell electrodes, and may include binder resins, solvents, and the like.
  • inorganic additives are also included, and the silver paste includes the following mass percentages of each component:
  • silver powder as the functional phase of the conductive paste, has good electrical and thermal conductivity, excellent physical and mechanical properties, and its price has significant advantages over precious metals such as gold, platinum, and palladium, and is used in GF In various conductive and resistive pastes. Different types, different particle sizes, and different morphologies of silver powder have different effects on the application fields of the slurry.
  • silver powder is dispersed in glass powder, which can improve the sintering window of silver powder, can meet the wide sintering window of 850 ⁇ 910°C, and has strong physical and chemical bonding with the ceramic matrix, providing strong adhesion and improving the Welding tension of silver layer.
  • the inorganic additive includes Inorganic Additive 1 and Inorganic Additive 2.
  • inorganic additive 1 includes any one of copper oxide, basic copper carbonate, cuprous oxide, bismuth oxide, and zinc oxide
  • inorganic additive 2 includes iron sesquioxide, aluminum oxide, silicon dioxide, nickel oxide, and zinc oxide. Either of the cerium, inorganic additives 1 enable adhesion of the metal layer. Inorganic additive 2 can improve the compactness and anti-aging performance of the silver layer.
  • the silver powder includes a first silver powder and a second silver powder, wherein the D50 particle size of the first silver powder is 500 nm, the D50 particle size of the second silver powder is 1.5 ⁇ m, and the D50 particle size of the first silver powder and the second silver powder is The mass ratio is 1:1 ⁇ 1:2.
  • the shape of the silver powder includes spherical or spherical-like shape, and the average particle size of the silver powder is 1.5 ⁇ 3.5 ⁇ m.
  • the first silver powder and the second silver powder are used in a mixed manner, which has good dispersion and dense packing in the slurry, which is beneficial to improving the density and good conductivity of the sintered silver layer.
  • the inorganic additive includes at least one of copper oxide, basic copper carbonate, cuprous oxide, bismuth oxide, zinc oxide, ferric oxide, aluminum oxide, silicon dioxide, nickel oxide, and cerium oxide.
  • the sintering performance of the silver paste is enhanced, the shrinkage of the silver layer is reduced, the sintering density is improved, and the sintering silver layer is ensured to have excellent soldering adhesion and electrical properties (obtained higher Q value).
  • the particle size of the inorganic additive is 500 nm ⁇ 1 ⁇ m.
  • the welding tension of the silver paste on the substrate is greater than 40N/mm 2 , and when tested at 3.7GHz, the Q value is >2300, wherein the materials forming the substrate include titanate system ceramics and aluminate system ceramics. , aluminosilicate system ceramics and samarium titanium system ceramics.
  • the fourth aspect of the embodiments of the present application provides a method for preparing silver paste, which includes the following steps:
  • Step S60 Mix the above-mentioned glass powder or the glass powder prepared by the above-mentioned glass powder preparation method and silver powder to obtain silver paste.
  • the silver paste formed by the compounding of glass frit and silver powder provided in the above embodiments of the present application the silver paste imparts conductive properties to the conductive paste, which facilitates screen printing processing of the silver paste to form a conductive layer.
  • the silver paste provided by the embodiment of the present application can be used as a 5G ceramic dielectric filter silver paste.
  • silver powder dispersed in glass powder can reduce the sintering window of the silver paste of the 5G ceramic dielectric filter.
  • the glass powder provided in the embodiment of the present application has a sintering window of 850 ⁇ 910°C.
  • its sintering window can be 880°C, and It has a strong physical and chemical bond with the ceramic matrix, which provides strong adhesion and improves the welding tension of the silver layer.
  • the silver paste prepared with this glass powder can be applied to ceramic substrates of different materials, all of which obtain high Q values and exhibit excellent electrical properties.
  • the mixing process specifically includes the following steps:
  • the viscosity of the silver paste is 30 to 60 Pa ⁇ s, which is convenient for printing.
  • This embodiment provides a method for preparing glass powder for 5G ceramic dielectric filter silver paste, which includes the following steps:
  • Step S1 The mass ratio of bismuth oxide: boric acid: silicon dioxide: zinc oxide: alkaline earth metal oxide: alkali metal oxide: titanium dioxide: zirconium dioxide is 30:15:120:28:3.2:1.0:2.5: For the formula of 0.3, weigh the raw materials of the glass frit;
  • Step S2 Fully mix the weighed raw materials in the mixer to ensure uniform mixing of raw materials with different components
  • Step S3 Place the mixed raw materials in an alumina crucible, then place the crucible in a muffle furnace for melting at 1100 ⁇ 1350°C and keep it warm for 30 ⁇ 60 minutes;
  • Step S4 pour the molten glass into deionized water for water quenching to obtain glass particles of about 1mm;
  • Step S5 Put the glass particles into a ball mill jar, grind them for 4 to 8 hours, sieve through 500 mesh and dry them in an oven at 120°C to obtain the required glass powder, and then place them in an airflow mill for classification.
  • the particle size is controlled at D50: 2 ⁇ 4 ⁇ m.
  • This embodiment provides a method for preparing glass powder for 5G ceramic dielectric filter silver paste, which includes the following steps:
  • Step S1 Weigh the glass frit according to the formula with a mass ratio of bismuth oxide: boric acid: silicon dioxide: zinc oxide: alkali metal oxide: thulium oxide: samarium oxide: 30:10:35:15:10:0.01:0.03 various raw materials;
  • Step S2 Fully mix the weighed raw materials in the mixer to ensure uniform mixing of raw materials with different components
  • Step S3 Place the mixed raw materials in an alumina crucible, then place the crucible in a muffle furnace for melting at 1100 ⁇ 1350°C and keep it warm for 30 ⁇ 60 minutes;
  • Step S4 pour the molten glass into deionized water for water quenching to obtain glass particles of about 1mm;
  • Step S5 Put the glass particles into a ball mill jar, grind them for 4 to 8 hours, sieve through 500 mesh and dry them in an oven at 120°C to obtain the required glass powder, and then place them in an airflow mill for classification.
  • the particle size is controlled at D50: 2 ⁇ 4 ⁇ m.
  • This embodiment provides a method for preparing glass powder for 5G ceramic dielectric filter silver paste, which includes the following steps:
  • Step S1 The mass ratio of bismuth oxide: boric acid: silicon dioxide: basic copper carbonate: zinc oxide: alkali metal oxide: thulium oxide: samarium oxide is 30:10:30:5:15:10:0.01: For the formula of 0.03, weigh the raw materials of the glass frit;
  • Step S2 Fully mix the weighed raw materials in the mixer to ensure uniform mixing of raw materials with different components
  • Step S3 Place the mixed raw materials in an alumina crucible, then place the crucible in a muffle furnace for melting at 1100 ⁇ 1350°C and keep it warm for 30 ⁇ 60 minutes;
  • Step S4 pour the molten glass into deionized water for water quenching to obtain glass particles of about 1mm;
  • Step S5 Put the glass particles into a ball mill jar, grind them for 4 to 8 hours, sieve through 500 mesh and dry them in an oven at 120°C to obtain the required glass powder, and then place them in an airflow mill for classification.
  • the particle size is controlled at D50: 2 ⁇ 4 ⁇ m.
  • This embodiment provides a method for preparing glass powder for 5G ceramic dielectric filter silver paste, which includes the following steps:
  • Step S1 Weigh according to the formula with a mass ratio of bismuth oxide: boric acid: silicon dioxide: basic copper carbonate: zinc oxide: alkali metal oxide: thulium oxide: samarium oxide: 32:18:27:5:9:9 Get the raw materials for glass frit;
  • Step S2 Fully mix the weighed raw materials in the mixer to ensure uniform mixing of raw materials with different components
  • Step S3 Place the mixed raw materials in an alumina crucible, then place the crucible in a muffle furnace for melting at 1100 ⁇ 1350°C and keep it warm for 30 ⁇ 60 minutes;
  • Step S4 pour the molten glass into deionized water for water quenching to obtain glass particles of about 1mm;
  • Step S5 Put the glass particles into a ball mill jar, grind them for 4 to 8 hours, sieve through 500 mesh and dry them in an oven at 120°C to obtain the required glass powder, and then place them in an airflow mill for classification.
  • the particle size is controlled at D50: 2 ⁇ 4 ⁇ m.
  • the first aspect of this embodiment provides a silver paste.
  • the silver paste includes the following mass percentages of each component:
  • the second aspect of this embodiment provides a method for preparing silver paste, which includes the following steps:
  • Step S6 Obtain the mass percentage of each component according to the silver paste formula in the above article;
  • Step S7 Mix the above components and grind them 5 to 8 times. Under the measurement conditions of 25°C, the viscosity of the silver paste is 30 to 60 Pa ⁇ s.
  • the silver paste includes the following mass percentages of each component:
  • the second aspect of this embodiment provides a method for preparing silver paste, which includes the following steps:
  • Step S6 Obtain the mass percentage of each component according to the silver paste formula in the above article;
  • Step S7 Mix the above components and grind them 5 to 8 times. Under the measurement conditions of 25°C, the viscosity of the silver paste is 30 to 60 Pa.s.
  • the silver paste includes the following mass percentages of each component:
  • the second aspect of this embodiment provides a method for preparing silver paste, which includes the following steps:
  • Step S6 Obtain the mass percentage of each component according to the silver paste formula in the above article;
  • Step S7 Mix the above components and grind them 5 to 8 times. Under the measurement conditions of 25°C, the viscosity of the silver paste is 30 to 60 Pa.s.
  • the silver paste includes the following mass percentages of each component:
  • the second aspect of this embodiment provides a method for preparing silver paste, which includes the following steps:
  • Step S6 Obtain the mass percentage of each component according to the silver paste formula in the above article;
  • Step S7 Mix the above components and grind them 5 to 8 times. Under the measurement conditions of 25°C, the viscosity of the silver paste is 30 to 60 Pa.s.
  • Example 5 to Example 8 The glass powder in Example 5 to Example 8 was used to prepare conductive silver paste for different ceramic substrates.
  • the conductive silver paste was tested for performance on different ceramic substrates and the DuPont PV series silver paste in Comparative Example 1.
  • the conductive silver paste will be implemented.
  • the conductive silver paste in Examples 5 to 8 was sprayed on four substrates ABCD.
  • the corresponding relationship between the silver paste and the substrate is shown in Table 2.
  • A corresponds to titanate system ceramics
  • B corresponds to aluminate system.
  • Ceramics, C corresponds to aluminosilicate system ceramics
  • D corresponds to samarium titanium system ceramics, among which Comparative Example 1 is the silver paste of DuPont PV series currently on the market.
  • Table 1 is the composition of the conductive silver paste in Example 5 to Example 8, as follows:
  • inorganic additive 1 in Examples 5 to 8 is basic copper carbonate.
  • Inorganic additive 2 is ferric oxide.
  • the silver pastes in Examples 5 to 8 were sintered on a chain furnace, which has a sintering window of 850 to 910°C, a sintering peak temperature of 880°C, and a peak temperature holding time of 12 minutes.
  • the sintering window of this embodiment is significantly wider than the 870 ⁇ 905°C of Comparative Example 1, and the lower temperature limit zone during sintering is widened by 20°C.
  • each sample was tested for dry film strength, electrical conductivity, sintering density, welding tension, Q value, solderability, solder resistance, and aging. The test results are shown in Table 2 below.
  • the conductive silver pastes in Examples 5 to 8 are not good, and no obvious holes appear. Compared with the conductive silver paste in Comparative Example 1, they have better The sintering density of the silver powder is good, and it has the same sintering window as Comparative Example 1. After the conductive silver pastes in Examples 6, 7 and 8 are sintered, silver is basically not lost, which is further illustrated by comparing with the conductive silver paste in Comparative Example 1. From Embodiment 5 to Embodiment 8, the welding tension of the silver paste on the substrate is greater than 40N/mm 2 , and when tested under 3.7GHz conditions, the Q value is > 2300.
  • Example 8 obtained the best test data, especially in terms of silver layer adhesion and electrical properties (Q value), which were significantly better than Comparative Example 1.
  • Figure 1 is a front SEM photo of the silver layer of Example 8
  • Figure 2 is a front SEM photo of the silver layer of Comparative Example 1
  • Figure 3 is a cross-sectional SEM photo of the silver layer of Example 8
  • Figure 4 is a microscopic photo of the silver layer shown in Example 8. It can be seen that the silver paste in Example 8 is superior to the DuPont PV series silver paste in terms of compactness of the silver layer after sintering.
  • the conductive silver paste in Examples 5 to 8 has strong physical and chemical bonding with the ceramic matrix, which provides strong adhesion and improves the welding pulling force of the silver layer.
  • the silver paste prepared with this glass powder can be applied to ceramic substrates of different materials, all of which obtain high Q values and exhibit excellent electrical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

本申请涉及玻璃粉及导电浆料技术领域,尤其涉及一种玻璃粉的制备方法、银浆以及制备方法。本申请提供了一种玻璃粉,用于5G陶瓷介质滤波器银浆,其包括如下摩尔百分比的各组分:20~40%氧化铋、10%~30%氧化锌、20%~50%二氧化硅、5~25%氧化硼、1~15%碱金属氧化物。将该玻璃粉用于5G陶瓷介质滤波器银浆中,可拓宽5G陶瓷介质滤波器银浆的烧结窗口,且与不同材料的陶瓷基体具有牢固的物理化学键合,提供了较强的附着力,提升了银层的焊接拉力。用该玻璃粉制备的银浆可应用于不同材质的陶瓷基体,均得到较高的Q值,且展现出优异的电学特性。

Description

玻璃粉的制备方法、银浆以及制备方法 技术领域
本申请属于玻璃粉及导电浆料技术领域,尤其涉及一种玻璃粉的制备方法、银浆以及制备方法。
背景技术
滤波器是移动通信中进行信号传输频率选择的关键器件,主要通过电容、电感、电阻等元器件的组合移除信号中不需要的频率分量,同时保留需要的频率分量,从而保障信号能在特定的频带上传输,消除频带间相互干扰。从使用功能的角度来看,当前滤波器的两大主要用途为基站用滤波器与终端用滤波器。据调查数据预测,滤波器的市场空间将从2016年的52.08亿美金快速成长至在2022年的163.11亿美元,复合增速达到21%。
陶瓷介质滤波器具有尺寸小、重量轻、Q值(滤波器品质因数,定义为中心频率除以滤波器带宽)大等优点,在5G领域的应用占有绝对优势,发展潜力巨大。在陶瓷滤波器生产过程中,金属化工艺起到承上启下的作用,同时决定了陶瓷滤波器是否具备大批量生产的可能。
导电银浆作为金属化工艺的关键材料之一,其导电性能和导电层的致密性对滤波器的性能产生直接的影响。导电银浆是导电性填料为银粉的填充型导电浆料,是介质滤波器的关键材料。这是因为银具有导电能力强、热膨胀系数接近瓷坯、热稳定性好、可直接在银层上焊接金属等优点,被视为陶瓷介质滤波器电极材料的最优选择。因此,5G陶瓷介质滤波器表面要形成致密性高、附着力好、导电性能强及可焊性能好的银导电层,导电银浆的选择尤为关键。
经过大量的实验研究表明,在5G银浆中,影响目前滤波器金属化性能的关键材料是银粉和玻璃粉,由于国内研究5G银浆起步较晚,国内外5G导电浆料市场主要被Dupont、Ferro、大洲等国际知名企业所垄断,银粉作为功能材料国产化已初见成效,而制约国内5G银浆与国外银浆抗衡的关键材料玻璃粉目前尚未完全成熟,与国外还有一定的差距。因此玻璃粉的完全国产化替代迫在眉睫。
经分析,国内玻璃粉常见问题在于烧结窗口与银浆以及滤波器产品的烧结窗口存在一定的偏差,且银层附着力与金属层的电性能之间的矛盾一直得不到解决。国内银浆厂家通常玻璃粉添加量大于2.0%,甚至有的做到5%,以保证满焊接拉力的要求,但与此同时带来了银层电学性能的下降,比如Q值偏低、插损升高、可焊性下降等显著缺陷。
现有文献提到了“一种5G陶瓷基座滤波器用高Q值电极银浆及其制备方法”,专利中提到的Q值在1900左右,相对偏低,无法满足现在的产品需求。
另外,现有文献提到了“一种高效的5G陶瓷介质滤波器导电银浆及其制备方法”,但文中并未列举具体的测试性能,且本专利银含达到89%以上,应用成本会有所上升。
技术问题
本申请所要解决的技术问题是:在于提供一种玻璃料的制备方法以及应用,旨在解决现有玻璃料的低温溶银析银能力差,TOPCon晶硅电池的无法低温金属化的问题。
进一步地,本申请还提供了一种导电浆料以及制备方法。
技术解决方案
为了实现上述发明目的,本申请采用的技术方案如下:
一种玻璃粉,用于5G陶瓷介质滤波器银浆,其包括如下摩尔百分比的各组分:
20~40%         氧化铋;
10%~30%       氧化锌;
20%~50%       二氧化硅;
5~25%          氧化硼;
1~15%          碱金属氧化物。
相应地,一种玻璃料的制备方法,包括如下步骤:
获取混合碱铅硼硅玻璃料、铅硼硅玻璃料和碱性玻璃料中任一种所含的组分称取各玻璃原料,并进行混合处理,得到玻璃原料混合物;
将玻璃原料混合物进行熔制处理,得到玻璃液;
将玻璃液进行水淬处理,得到玻璃碎粒;
将玻璃碎粒进行研磨处理、分级处理,得到玻璃料。
以及,一种银浆,包括银粉,还包括上述文中玻璃粉或玻璃粉的制备方法制备的玻璃粉。
相应地,一种银浆的制备方法,包括如下步骤:
将上述文中玻璃粉或上述文中玻璃粉的制备方法制备的玻璃粉和银粉进行混合处理,得到银浆。
有益效果
相对于现有技术,本申请提供的玻璃粉通过调整以氧化物计的氧化铋、氧化锌、二氧化硅、氧化硼、碱金属氧化物等组分复配比,可为玻璃粉提供一些微量元素,在该玻璃粉中添加特殊微量元素改善玻璃粉的介电性能,用该玻璃粉制备的银浆应用于不同材质的陶瓷基体均得到较高的Q值(滤波器品质因数,定义为中心频率除以滤波器带宽),展现优异的电学特性。将该玻璃粉用于5G陶瓷介质滤波器银浆中,可拓宽5G陶瓷介质滤波器银浆的烧结窗口,且与陶瓷基体可包括钛酸盐体系陶瓷、铝酸盐体系陶瓷、铝硅酸盐体系陶瓷和钐钛体系陶瓷均具有牢固的物理化学键合,会提供了较强的附着力,提升了银层的焊接拉力,均得到较高的Q值,且展现出优异的电学特性,进而用该玻璃粉制备的银浆可应用于不同材质的陶瓷基体。
本申请提供的玻璃料的制备方法,主要分为四步。第一步,按照上述文中玻璃料所含的组分称取各玻璃原料,可调整上述文中玻璃料的玻璃化转变温度。将上述文中的各玻璃原料进行混合处理,可得到高度分散的玻璃原料混合物,便于后续对各玻璃原料进行成型处理。第二步,将玻璃原料混合物进行熔制处理,形成液态状的玻璃料。第三步,将玻璃液进行水淬处理,可使玻璃液固化得到玻璃碎粒。第四步,将玻璃碎粒进行研磨处理、分级处理,可得到预设粒径的玻璃料,以应用于5G陶瓷介质滤波器银浆中。
本申请提供的玻璃粉在银浆中作为烧结助剂以和粘合剂。使烧结后的银层致密化程度提高,银层与陶瓷基体形成有效的结合。同时,一定量玻璃粉的加入,可以防止浆料和陶瓷之间成分的相互渗透,保证产品电学性能的稳定性。本申请提供的玻璃粉通过调整玻璃粉配方,使玻璃粉具备适中的特征软化温度,因此,应用于5G陶瓷介质滤波器银浆中,其具有烧结活性较高,对银粉润湿性较好,改善银粉的烧结致密性,进而提高银层的导电性,不会对陶瓷基体形成过度侵蚀,银迁移不会加剧,不会造成瓷体本身的电学性能下降。
上述本申请提供的玻璃料与银粉的复配形成的银浆,银浆赋予导电浆料导电性能,便于对银浆进行丝印处理,形成导电层。其中,本申请实施例提供的银浆可作为5G陶瓷介质滤波器银浆。上述文中,银粉分散于玻璃粉中,可降低5G陶瓷介质滤波器银浆的烧结窗口,且与陶瓷基体具有牢固的物理化学键合,会提供了较强的附着力,提升了银层的焊接拉力。用该玻璃粉制备的银浆可应用于不同材质的陶瓷基体,均得到较高的Q值,且展现出优异的电学特性。
附图说明
图1为本申请实施例提供的一种银层正面SEM照片;
图2为本申请对比例提供的一种银层正面SEM照片;
图3为本申请实施例提供的一种银浆烧结银层断面SEM;
图4为本申请实施例提供的一种银浆烧结显微镜照片。
本发明的实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“ a,b,或c中得至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a, b, c, a-b(即a和b), a-c, b-c, 或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施条例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施条例的目的,而非旨在限制本申请。在本申请实施条例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中所述的质量可以是µg、mg、g、kg等化工领域公知的质量单位。
术语第一、“第二”仅用于描述目的,用来将目的如物质彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施条例范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX 。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例第一方面提供了一种玻璃粉,用于5G陶瓷介质滤波器银浆,其包括如下摩尔百分比的各组分:
20~40%       氧化铋;
10%~30%     氧化锌;
20%~50%     二氧化硅;
5~25%         氧化硼;
1~15%         碱金属氧化物。
本申请实施例提供的玻璃粉通过调整以氧化物计的氧化铋、氧化锌、二氧化硅、氧化硼、碱金属氧化物等组分复配比,可为玻璃粉提供一些微量元素,在该玻璃粉中添加特殊微量元素改善玻璃粉的介电性能,用该玻璃粉制备的银浆应用于不同材质的陶瓷基体均得到较高的Q值(滤波器品质因数,定义为中心频率除以滤波器带宽),展现优异的电学特性。将该玻璃粉用于5G陶瓷介质滤波器银浆中,可拓宽5G陶瓷介质滤波器银浆的烧结窗口,经具体实施例研究表明,本申请实施例提供的玻璃粉具备850~910℃的烧结窗口,与杜邦PV 系列的银浆870~905℃相比,拓宽了20℃,且与陶瓷基体可包括钛酸盐体系陶瓷、铝酸盐体系陶瓷、铝硅酸盐体系陶瓷和钐钛体系陶瓷均具有牢固的物理化学键合,会提供了较强的附着力,提升了银层的焊接拉力,均得到较高的Q值,且展现出优异的电学特性,进而用该玻璃粉制备的银浆可应用于不同材质的陶瓷基体。
在一些实施例中,还包括含铜盐或含铜氧化物。上述文中,含铜盐或含铜氧化物包括碳酸铜、碱式碳酸铜、氧化铜、氧化亚铜、氯化铜、硫酸铜中的至少一种。通过在玻璃配方中添加铜盐或铜的氧化物,增强了对陶瓷基材和银粉的润湿性,进一步拓宽了玻璃粉的烧结窗口值。
在一些实施例中,还包括稀土元素的氧化物。上述文中,稀土元素的氧化物包括氧化铒、氧化镱、氧化铥、氧化镧、氧化钕、氧化钐中的至少一种。通过稀土元素的单一或混合添加改善不同体系陶瓷的介电性能。
在一些实施例中,还包括含铜盐或含铜氧化物和稀土元素的氧化物,稀土氧化物和铜盐铜的氧化物具备较好的互溶性,两者可使玻璃粉与陶瓷基体表面的某种晶相或者填充氧化物在较宽的烧结窗口下进行有效键合或者浸润。
在一些实施例中,还包括二氧化钛和二氧化锆,可进一步为玻璃粉提供一些微量元素,在该玻璃粉中添加特殊微量元素改善玻璃粉的介电性能,用该玻璃粉制备的银浆应用于不同材质的陶瓷基体均得到较高的Q值,展现优异的电学特性。
在一些实施例中,还包括碱土金属氧化物,可进一步为玻璃粉提供一些微量元素。
本申请实施例第二方面提供了一种玻璃粉的制备方法,包括如下步骤:
步骤S10:按照上述文中的玻璃料的配方换算成的各原料质量配比;
步骤S20:将各原料进行混合处理,得到混合料;
步骤S30:将混合料进行熔制处理,得到玻璃液;
步骤S40:将玻璃液进行水淬处理,得到玻璃碎粒;
步骤S50:将玻璃碎粒进行研磨处理,得到玻璃粉。
本申请提供的玻璃料的制备方法,主要分为四步。第一步,按照上述文中玻璃料所含的组分称取各玻璃原料,可调整上述文中玻璃料的玻璃化转变温度。将上述文中的各玻璃原料进行混合处理,可得到高度分散的玻璃原料混合物。第二步,将玻璃原料混合物进行熔制处理,形成液态状的玻璃料。第三步,将玻璃液进行水淬处理,可使玻璃液固化得到玻璃碎粒。第四步,将玻璃碎粒进行研磨处理,可得到预设粒径的玻璃料,以应用于5G陶瓷介质滤波器银浆中。
在一些实施例中,上述步骤S30中,熔制的温度为1100~1350℃,时间为30~60min,可形成液态状的玻璃料。
在一些实施例中,上述步骤S50中,研磨处理包括球磨处理,球磨处理的时间为4~8h,还包括对所述玻璃粉进行分级处理,于气流磨中进行分级处理,该玻璃粉制备工艺特殊,能较精确的控制玻璃粉的粒径范围,保证在浆料中具有优异的分散性。例如:玻璃粉的粒径为2~4μm。
本申请实施例第三方面提供了一种银浆,包括银粉和有机载体,还包括上述文中玻璃粉或玻璃粉的制备方法制备的玻璃粉。
本申请实施例提供的玻璃粉在银浆中作为烧结助剂以和粘合剂。使烧结后的银层致密化程度提高,银层与陶瓷基体形成有效的结合。同时,一定量玻璃粉的加入,可以防止银浆和陶瓷之间成分的相互渗透,保证产品电学性能的稳定性。本申请实施例提供的玻璃粉通过调整玻璃粉配方,使玻璃粉具备适中的特征软化温度,因此,应用于5G陶瓷介质滤波器银浆中,其具有烧结活性较高,对银粉润湿性较好,改善银粉的烧结致密性,进而提高银层的导电性,不会对陶瓷基体形成过度侵蚀,银迁移不会加剧,不会造成瓷体本身的电学性能下降。进一步的,本申请实施例重点针对四种不同陶瓷基体开发的应用于滤波器导电银浆的玻璃粉,所制备的银浆从烧结窗口到电学性能均与国外产品相媲美甚至优于现有国外产品杜邦PV 系列的银浆。同时在此申明:本申请制备的导电银浆中不含有铅(Pb)与镉(Cd)等有害元素,符合RoHS1.0和RoHS2.0的要求。
在一些实施例中,有机载体通过与用于太阳能电池电极的组合物中的无机组分进行机械混合来赋予浆料组合物适于印刷的粘度和流变特征。有机载体可为用于太阳能电池电极的组合物的任何典型有机载体,并且可以包含粘合剂树脂、溶剂等。
在一些实施例中,还包括无机添加剂,且银浆包括如下质量百分比的各组分:
76~81%    银粉;
0.5~1.5%   玻璃粉;
0.5~1.0%   无机添加剂;
0.5~1.0%   有机载体。
在本申请实施例中银粉作为导电浆料的功能相,具备良好的导电性导热性能,具备优异的物理和机械性能,且价格相对金、铂、钯等贵金属具有显著的优势,被广发应用于各种导电、电阻浆料中。不同种类、不同粒径、不同形貌的银粉对浆料的应用领域具有不同的作用。上述文中,银粉分散于玻璃粉中,可改善银粉的烧结窗口,可以满足850~910℃较宽的烧结窗口,且与陶瓷基体具有牢固的物理化学键合,提供了较强的附着力,提升了银层的焊接拉力。
在一些实施例中,无机添加剂包括无机添加剂1和无机添加剂2。上述文中,无机添加剂1包括氧化铜、碱式碳酸铜、氧化亚铜、氧化铋、氧化锌中的任一种,无机添加剂2包括三氧化二铁、氧化铝、二氧化硅、氧化镍、氧化铈中的任一种,无机添加剂1能够金属层的附着力。无机添加剂2能够提高银层的致密性、抗老化性能等。
在一些实施例中,银粉包括第一银粉和第二银粉,其中,第一银粉的D50粒径为500nm,第二银粉的D50粒径为1.5μm,且第一银粉和所述第二银粉的质量比为1:1~1:2。在一些实施例中,银粉的形状包括球状或类球状,银粉的平均粒径为1.5~3.5μm。上述文中,第一银粉和第二银粉两种银粉混合搭配使用,在浆料中具有良好的分散性和堆积致密性,有利提高烧结银层的致密性和良好的导电性。
在一些实施例中,无机添加剂包括氧化铜、碱式碳酸铜、氧化亚铜、氧化铋、氧化锌、三氧化二铁、氧化铝、二氧化硅、氧化镍、氧化铈中的至少一种。通过玻璃玻璃粉配方的改进和无机添加剂的搭配使用,增强了银浆的烧结性能,降低了银层的收缩,提升烧结致密性,保证烧结后银层具备优异的焊接附着力和电学性能(获得较高的Q值)。在一些实施例中,无机添加剂的粒径为500nm~1μm。
在一些实施例中,银浆在基体上的焊接拉力大于40N/mm 2,在3.7GHz条件下测试,Q值>2300,其中,形成基体的材料包括钛酸盐体系陶瓷、铝酸盐体系陶瓷、铝硅酸盐体系陶瓷和钐钛体系陶瓷。
本申请实施例第四方面提供了一种银浆的制备方法,包括如下步骤:
步骤S60:将上述文中玻璃粉或上述文中玻璃粉的制备方法制备的玻璃粉和银粉进行混合处理,得到银浆。
上述本申请实施例提供的玻璃料与银粉的复配形成的银浆,银浆赋予导电浆料导电性能,便于对银浆进行丝印处理,形成导电层。其中,本申请实施例提供的银浆可作为5G陶瓷介质滤波器银浆。上述文中,银粉分散于玻璃粉中,可降低5G陶瓷介质滤波器银浆的烧结窗口,本申请实施例提供的玻璃粉具备850~910℃烧结窗口,进一步,其烧结窗口可为880℃,且与陶瓷基体具有牢固的物理化学键合,会提供了较强的附着力,提升了银层的焊接拉力。用该玻璃粉制备的银浆可应用于不同材质的陶瓷基体,均得到较高的Q值,且展现出优异的电学特性。
在一些实施例中,上述步骤S60中,混合处理具体包括如下步骤:
对银浆研磨5~8遍,25℃测量条件下,银浆的粘度为30~60Pa·s,便于印刷。
为使本申请上述实施细节和操作能清楚地被本领域技术人员理解,以及本申请实施例料的制备方法、银浆以及制备方法的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
本实施例提供了一种5G陶瓷介质滤波器银浆用玻璃粉的制备方法,包括如下步骤:
步骤S1:按照氧化铋:硼酸:二氧化硅:氧化锌:碱土金属氧化物:碱金属氧化物:二氧化钛:二氧化锆的质量配比为30:15:120:28:3.2:1.0:2.5:0.3的配方称取玻璃料的各原料;
步骤S2:将称量后的原料在混料机中充分混合,保证不同成分原料的均匀混合;
步骤S3:将混合后的原料置于氧化铝坩埚中,然后将坩埚放置与马弗炉中1100~1350℃下熔制并保温30~60min;
步骤S4:将熔制好的玻璃液倒入去离子水中进行水淬,得到1mm左右的玻璃碎粒;
步骤S5:将玻璃碎粒装入球磨罐中,球磨4~8h,经500目过筛后置于烘箱中120℃烘干,得到需求的玻璃粉,然后置于气流磨中分级,玻璃粉的粒径控制在D50:2~4μm。
实施例2
本实施例提供了一种5G陶瓷介质滤波器银浆用玻璃粉的制备方法,包括如下步骤:
步骤S1:按照氧化铋:硼酸:二氧化硅:氧化锌:碱金属氧化物:氧化铥:氧化钐的质量配比为30:10:35:15:10:0.01:0.03的配方称取玻璃料的各原料;
步骤S2:将称量后的原料在混料机中充分混合,保证不同成分原料的均匀混合;
步骤S3:将混合后的原料置于氧化铝坩埚中,然后将坩埚放置与马弗炉中1100~1350℃下熔制并保温30~60min;
步骤S4:将熔制好的玻璃液倒入去离子水中进行水淬,得到1mm左右的玻璃碎粒;
步骤S5:将玻璃碎粒装入球磨罐中,球磨4~8h,经500目过筛后置于烘箱中120℃烘干,得到需求的玻璃粉,然后置于气流磨中分级,玻璃粉的粒径控制在D50:2~4μm。
实施例3
本实施例提供了一种5G陶瓷介质滤波器银浆用玻璃粉的制备方法,包括如下步骤:
步骤S1:按照氧化铋:硼酸:二氧化硅:碱式碳酸铜:氧化锌:碱金属氧化物:氧化铥:氧化钐的质量配比为30:10:30:5:15:10:0.01:0.03的配方称取玻璃料的各原料;
步骤S2:将称量后的原料在混料机中充分混合,保证不同成分原料的均匀混合;
步骤S3:将混合后的原料置于氧化铝坩埚中,然后将坩埚放置与马弗炉中1100~1350℃下熔制并保温30~60min;
步骤S4:将熔制好的玻璃液倒入去离子水中进行水淬,得到1mm左右的玻璃碎粒;
步骤S5:将玻璃碎粒装入球磨罐中,球磨4~8h,经500目过筛后置于烘箱中120℃烘干,得到需求的玻璃粉,然后置于气流磨中分级,玻璃粉的粒径控制在D50:2~4μm。
实施例4
本实施例提供了一种5G陶瓷介质滤波器银浆用玻璃粉的制备方法,包括如下步骤:
步骤S1:按照氧化铋:硼酸:二氧化硅:碱式碳酸铜:氧化锌:碱金属氧化物:氧化铥:氧化钐的质量配比为32:18:27:5:9:9的配方称取玻璃料的各原料;
步骤S2:将称量后的原料在混料机中充分混合,保证不同成分原料的均匀混合;
步骤S3:将混合后的原料置于氧化铝坩埚中,然后将坩埚放置与马弗炉中1100~1350℃下熔制并保温30~60min;
步骤S4:将熔制好的玻璃液倒入去离子水中进行水淬,得到1mm左右的玻璃碎粒;
步骤S5:将玻璃碎粒装入球磨罐中,球磨4~8h,经500目过筛后置于烘箱中120℃烘干,得到需求的玻璃粉,然后置于气流磨中分级,玻璃粉的粒径控制在D50:2~4μm。
实施例5
本实施例第一方面提供了一种银浆,银浆包括如下质量百分比的各组分:
第一银粉                                  36
第二银粉                                  45.8
实施例1中玻璃粉                          0.75
无机添加剂1                              0.28
无机添加剂2                              0.14
有机载体                                  17。
本实施例第二方面提供了一种银浆的制备方法,其包括如下步骤:
步骤S6:按照上述文中的银浆的配方获取质量百分比的各组分;
步骤S7:将上述文中的各组分进行混合处理,研磨5~8遍,25℃测量条件下,银浆的粘度为30~60Pa·s。
实施例6
本实施例提供了一种银浆,银浆包括如下质量百分比的各组分:
第一银粉                                   36
第二银粉                                  45.6
实施例2中玻璃粉                          0.85
无机添加剂1                               0.75
无机添加剂2                               0.2
有机载体                                  17。
本实施例第二方面提供了一种银浆的制备方法,其包括如下步骤:
步骤S6:按照上述文中的银浆的配方获取质量百分比的各组分;
步骤S7:将上述文中的各组分进行混合处理,研磨5~8遍,25℃测量条件下,银浆的粘度为30~60Pa.s。
实施例7
本实施例提供了一种银浆,银浆包括如下质量百分比的各组分:
第一银粉                                  36
第二银粉                                  45
实施例3中玻璃粉                          1.3
无机添加剂1                              0.5
无机添加剂2                              0.2
有机载体                                 17。
本实施例第二方面提供了一种银浆的制备方法,其包括如下步骤:
步骤S6:按照上述文中的银浆的配方获取质量百分比的各组分;
步骤S7:将上述文中的各组分进行混合处理,研磨5~8遍,25℃测量条件下,银浆的粘度为30~60Pa.s。
实施例8
本实施例提供了一种银浆,银浆包括如下质量百分比的各组分:
第一银粉                                  36
第二银粉                                  45.4
实施例4中玻璃粉                          0.75
无机添加剂1                               0.5
无机添加剂2                               0.35
有机载体                                   17。
本实施例第二方面提供了一种银浆的制备方法,其包括如下步骤:
步骤S6:按照上述文中的银浆的配方获取质量百分比的各组分;
步骤S7:将上述文中的各组分进行混合处理,研磨5~8遍,25℃测量条件下,银浆的粘度为30~60Pa.s。
对比例1
杜邦PV 系列的银浆。
性能测试
将实施例5至实施例8中该玻璃粉制备用于不同陶瓷基体的导电银浆,该导电银浆针对不同的陶瓷基体和对比例1中的杜邦PV 系列的银浆进行性能测试,将实施例5至实施例8中的导电银浆喷涂于ABCD四种基体上,银浆与基体的对应关系,请参见表2所示,其中,A对应钛酸盐体系陶瓷、B对应铝酸盐体系陶瓷、C对应铝硅酸盐体系陶瓷和D对应钐钛体系陶瓷,其中对比例1为目前市场杜邦PV 系列的银浆。其中,表1是实施例5至实施例8中的导电银浆的组成,如下:
表1 5G导电银浆制备配比组成
需要说明的,实施例5至实施例8中的无机添加剂1为碱式碳酸铜。无机添加剂2为三氧化二铁。
将实施例5至实施例8中的银浆在链式炉上进行烧结,其具有850~910℃的烧结窗口,烧结峰值温度为880℃,峰值温度保温时间12min。本实施例烧结窗口较对比例1的870~905℃明显拓宽,且在烧结下限温区拓宽20℃。然后对各个样品进行干膜强度、导电性、烧结致密性、焊接拉力、Q值,可焊性、耐焊性、老化测试,测试结果如下表2所示。
表2器件性能测试结果
其中,烧结峰值温度为880℃的条件下,实施例5至实施例8中的导电银浆烧结之后,均没有良好,没有出现明显孔洞,与对比例1中的导电银浆相比,具有更好银粉的烧结致密性,且其与对比例1有相同的烧结窗口。实施例6、实施例7和实施例8中的导电银浆烧结之后,基本不掉银,进一步说明了,与对比例1中的导电银浆相比。实施例5至实施例8,银浆在基体上的焊接拉力大于40N/mm 2,在3.7GHz条件下测试,Q值>2300,实施例5至实施例8中的导电银浆在性能测试方面和对比例1中的银浆相媲美,甚至实施例6和实施例8中的Q值优于对比例1中的银浆。说明了,实施例5至实施例8中的导电银浆烧结后形成的银层与陶瓷基体形成有效的结合,通过改善银粉的烧结致密性,进而提高银层的导电性。
实施例5至实施例8,实施列8获得了最佳的测试数据,尤其在银层附着性和电学性能(Q值)上明显优于对比例1。图1是实施例8银层正面SEM照片,图2是对比例1银层正面SEM照片,图3是实施例8银层断面SEM照片,图4是实施例8所示为银层显微镜照片。可以看出,实施例8中银浆在烧结后,在银层致密性方面优于杜邦PV 系列的银浆。
综上所述,实施例5至实施例8中的导电银浆与陶瓷基体具有牢固的物理化学键合,会提供了较强的附着力,提升了银层的焊接拉力。用该玻璃粉制备的银浆可应用于不同材质的陶瓷基体,均得到较高的Q值,且展现出优异的电学特性。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种玻璃粉,其特征在于,用于5G陶瓷介质滤波器银浆,其包括如下摩尔百分比的各组分:
    20~40%         氧化铋;
    10%~30%       氧化锌;
    20%~50%       二氧化硅;
    5~25%          氧化硼;
    1~5%           碱金属氧化物。
  2. 如权利要求1所述玻璃粉,其特征在于,还包括稀土元素的氧化物;
    或/和,还包括含铜盐或含铜氧化物;
    或/和,还包括二氧化钛和二氧化锆;
    或/和,还包括碱土金属氧化物;
    或/和,所述玻璃粉的玻璃转变温度为380~480℃,所述玻璃粉的平均粒径为2~4μm。
  3. 如权利要求2所述玻璃粉,其特征在于,所述含铜盐或含铜氧化物的原料包括碳酸铜、碱式碳酸铜、氧化铜、氧化亚铜、氯化铜、硫酸铜中的至少一种。
  4. 如权利要求2或3所述玻璃粉,其特征在于,所述稀土元素的氧化物包括氧化铒、氧化镱、氧化铥、氧化镧、氧化钕、氧化钐中的至少一种。
  5. 一种玻璃粉的制备方法,其特征在于,包括如下步骤:
    按照权利要求1-4任一项所述玻璃料的配方换算成的各原料质量配比;
    将各所述原料进行混合处理,得到混合料;
    将所述混合料进行熔制处理,得到玻璃液;
    将所述玻璃液进行水淬处理,得到玻璃碎粒;
    将所述玻璃碎粒进行研磨处理,得到玻璃粉。
  6. 如权利要求5所述玻璃粉的制备方法,其特征在于,所述研磨处理包括球磨处理;
    或/和,还包括对所述玻璃粉进行分级处理;
    或/和,还包括对所述玻璃粉进行筛选处理;
    或/和,所述玻璃粉的粒径为2~4μm。
  7. 如权利要求6所述玻璃粉的制备方法,其特征在于,所述球磨处理的时间为4~8h。
  8. 如权利要求6所述玻璃粉的制备方法,其特征在于,所述熔制的温度为1100~1350℃,时间为30~60min。
  9. 一种银浆,其特征在于,包括银粉和有机载体,还包括权利要求1-4任一项所述玻璃粉或权利要求5-8任一项所述玻璃粉的制备方法制备的玻璃粉。
  10. 如权利要求9所述银浆,其特征在于,还包括无机添加剂,且所述银浆包括如下质量百分比的各组分:
    76~81%    银粉;
    0.5~1.5%   玻璃粉;
    0.5~1.0%   无机添加剂;
    0.5~1.0%   有机载体。
  11. 如权利要求10所述银浆,其特征在于,所述银粉包括第一银粉和第二银粉;其中,所述第一银粉的D50粒径为500nm,所述第二银粉的D50粒径为1.5μm,且所述第一银粉和所述第二银粉的质量比为1:1~1:2。
  12. 如权利要求10所述银浆,其特征在于,所述银粉的形状包括球状或类球状。
  13. 如权利要求10所述银浆,其特征在于,所述银粉的平均粒径为1.5~3.5μm。
  14. 如权利要求10所述银浆,其特征在于,所述无机添加剂包括氧化铜、碱式碳酸铜、氧化亚铜、氧化铋、氧化锌、三氧化二铁、氧化铝、二氧化硅、氧化镍、氧化铈中的至少一种。
  15. 如权利要求10所述银浆,其特征在于,所述无机添加剂的粒径为500nm~1μm。
  16. 如权利要求9-15任一项所述银浆,其特征在于,所述银浆在基体上的焊接拉力大于40N/mm 2,在3.7GHz条件下测试,Q值>2300,其中,形成基体的材料包括钛酸盐体系陶瓷、铝酸盐体系陶瓷、铝硅酸盐体系陶瓷和钐钛体系陶瓷。
  17. 一种银浆的制备方法,其特征在于,包括如下步骤:将权利要求1-4任一项所述玻璃粉或权利要求5-8任一项所述玻璃粉的制备方法制备的玻璃粉和银粉进行混合处理,得到所述银浆。
  18. 如权利要求17所述银浆的制备方法,其特征在于,所述混合处理具体包括如下步骤:
    对所述银浆研磨5~8遍,25℃测量条件下,所述银浆的粘度为30~60Pa·s。
PCT/CN2022/117866 2022-09-08 2022-09-08 玻璃粉的制备方法、银浆以及制备方法 WO2024050768A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/117866 WO2024050768A1 (zh) 2022-09-08 2022-09-08 玻璃粉的制备方法、银浆以及制备方法
CN202280003094.0A CN115667169A (zh) 2022-09-08 2022-09-08 玻璃粉的制备方法、银浆以及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117866 WO2024050768A1 (zh) 2022-09-08 2022-09-08 玻璃粉的制备方法、银浆以及制备方法

Publications (1)

Publication Number Publication Date
WO2024050768A1 true WO2024050768A1 (zh) 2024-03-14

Family

ID=85023368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117866 WO2024050768A1 (zh) 2022-09-08 2022-09-08 玻璃粉的制备方法、银浆以及制备方法

Country Status (2)

Country Link
CN (1) CN115667169A (zh)
WO (1) WO2024050768A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177886A (zh) * 2023-02-23 2023-05-30 日鸿半导体材料(南通)有限公司 一种透光率高的玻璃粉及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439852A (en) * 1994-08-01 1995-08-08 E. I. Du Pont De Nemours And Company Cadmium-free and lead-free thick film conductor composition
CN103531266A (zh) * 2012-07-03 2014-01-22 苏州柏特瑞新材料有限公司 一种晶硅太阳能电池背电极银浆及其制备方法
CN111292873A (zh) * 2020-02-24 2020-06-16 贵研铂业股份有限公司 一种功能陶瓷用电极银浆及其制备方法
US20210126141A1 (en) * 2019-10-25 2021-04-29 Dupont Electronics, Inc. Conductive paste for n-type solar cell, method for manufacturing n-type solar cell and n-type solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439852A (en) * 1994-08-01 1995-08-08 E. I. Du Pont De Nemours And Company Cadmium-free and lead-free thick film conductor composition
CN103531266A (zh) * 2012-07-03 2014-01-22 苏州柏特瑞新材料有限公司 一种晶硅太阳能电池背电极银浆及其制备方法
US20210126141A1 (en) * 2019-10-25 2021-04-29 Dupont Electronics, Inc. Conductive paste for n-type solar cell, method for manufacturing n-type solar cell and n-type solar cell
CN111292873A (zh) * 2020-02-24 2020-06-16 贵研铂业股份有限公司 一种功能陶瓷用电极银浆及其制备方法

Also Published As

Publication number Publication date
CN115667169A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US10529873B2 (en) Aging resistant backside silver paste for crystalline silicon solar cells and preparation method thereof
CN101425545B (zh) 一种环保型硅太阳能电池背电场铝浆及其制造方法
JP3534684B2 (ja) 導電ペーストおよび外部電極とその製造方法
CN1329926C (zh) 一种无铅银电极浆料及其制造方法
CN102403049B (zh) 一种防雷型ZnO压敏电阻用无铅电极银浆料及其制备方法
KR100895414B1 (ko) 은 코팅분말을 포함하는 전극용 전도성 페이스트 조성물 및그 제조방법
CN101290817B (zh) 一种耐高温抗氧化无铅镍导体浆料及其制备方法
CN111564234B (zh) 一种钛酸盐基无铅化银电极浆料及其制备与使用方法
CN101692410A (zh) 一种mlcc端电极用银浆
JP4291146B2 (ja) 銀導体組成物
JP2525689B2 (ja) ガラスシ―ル材
CN104112490A (zh) 电极浆料及其制备方法
WO2024050768A1 (zh) 玻璃粉的制备方法、银浆以及制备方法
CN106098144A (zh) 一种玻璃粉及用其制备的太阳能电池正面银浆及其制备方法
CN114914012B (zh) 一种端电极导电铜浆及其制备方法
CN113257455B (zh) 一种可低温烧结的无铅导电银浆
CN103413591A (zh) 一种贴片保险丝熔断体用电子浆料及其制作方法
CN111028975B (zh) 一种低温度系数电阻膏体及其制备方法与应用
CN115611521A (zh) 一种玻璃粉以及含该玻璃粉铜浆在ZnO压敏陶瓷基体上的应用
CN114590999B (zh) 一种低熔点无铅玻璃粉及其制备方法
CN113345622B (zh) 一种陶瓷基材rfid专用高温烧结银浆及其制备方法
CN102568650B (zh) 一种ntc热敏电阻专用银电极浆料及其制备方法
CN112435772B (zh) 一种用于ptc表面可焊接的欧姆银电极浆料及制备方法
KR102302205B1 (ko) 은 분말 및 이의 제조 방법
CN109994250B (zh) 低熔点SnBi合金-铜复合电子浆料及制备、印刷方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957740

Country of ref document: EP

Kind code of ref document: A1