WO2024048892A1 - 화합물, 이를 포함하는 감광성 수지 조성물 및 컬러 필터 - Google Patents

화합물, 이를 포함하는 감광성 수지 조성물 및 컬러 필터 Download PDF

Info

Publication number
WO2024048892A1
WO2024048892A1 PCT/KR2023/005396 KR2023005396W WO2024048892A1 WO 2024048892 A1 WO2024048892 A1 WO 2024048892A1 KR 2023005396 W KR2023005396 W KR 2023005396W WO 2024048892 A1 WO2024048892 A1 WO 2024048892A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
independently
photosensitive resin
Prior art date
Application number
PCT/KR2023/005396
Other languages
English (en)
French (fr)
Inventor
장춘근
권장현
전광일
정의수
최규범
신인섭
문희조
류지현
박백성
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2024048892A1 publication Critical patent/WO2024048892A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images

Definitions

  • This disclosure relates to compounds, photosensitive resin compositions containing the same, and color filters.
  • the liquid crystal display device which is one of the display devices, has advantages such as light weight, thinness, low cost, low power consumption, and excellent adhesion to integrated circuits, and its range of use is expanding to notebook computers, monitors, TV images, etc. there is.
  • This liquid crystal display device includes a lower substrate on which a black matrix, a color filter, and an ITO pixel electrode are formed; and an upper substrate on which an active circuit part consisting of a liquid crystal layer, a thin film transistor, and a storage capacitor layer and an ITO pixel electrode are formed.
  • the color filter includes a black matrix layer formed in a predetermined pattern on a transparent substrate to block light at the boundary between pixels; and pixel units in which a plurality of colors (typically three primary colors of red (R), green (G), and blue (B)) are arranged in a predetermined order to form each pixel.
  • a plurality of colors typically three primary colors of red (R), green (G), and blue (B)
  • the pigment dispersion method which is one of the methods of implementing a color filter, forms a colored thin film using a photosensitive resin composition containing a pigment as a colorant. Specifically, a series of processes including a process of forming a resin film by coating a photosensitive resin composition on a transparent substrate provided with a black matrix, a process of exposing a pattern on the resin film, and a process of removing the unexposed area with a solvent and heat curing it. By repeating this, a colored thin film is formed.
  • the manufacturing process of the color filter is difficult, and the quality of the manufactured color filter also has limitations.
  • storage and transportation conditions for maintaining the quality of the manufactured photosensitive resin composition at optimal levels are difficult.
  • the final color filter has limitations in luminance and contrast ratio resulting from the pigment particle size.
  • dyes are attracting attention as materials to replace or complement pigments.
  • the dyes known to date have problems with inferior heat resistance and chemical resistance compared to pigments.
  • One embodiment is to provide a compound that has excellent optical properties, heat resistance, chemical resistance, etc., and can replace or supplement pigments.
  • Another embodiment is to provide a photosensitive resin composition containing the above compound.
  • Another embodiment is to provide a photosensitive resin film manufactured using the photosensitive resin composition.
  • Another embodiment is to provide a color filter including the photosensitive resin film.
  • One embodiment provides a compound represented by Formula 1:
  • a and B are each independently a C6 to C20 aromatic ring, or a C2 to C20 heteroaromatic ring containing 1 to 3 heteroatoms each independently selected from the group consisting of N, O and S;
  • Y 1 and Y 2 are each independently *-O-*, *-S-*, or *-CR 1 R 2 -*;
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a cyano group, or a substituted or unsubstituted C1 to C10 alkyl group;
  • R 3 and R 4 are each independently a hydrogen atom or a substituted or unsubstituted C1 to C20 alkyl group
  • x and y are each independently integers from 1 to 18.
  • a and B may each independently be a benzene ring or a naphthalene ring.
  • At least one of A and B may be a naphthalene ring.
  • Y 1 and Y 2 may each independently be *-O-*, *-S-*, or *-C(CH 3 ) 2 -*.
  • Y 1 and Y 2 may be different from each other.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a cyano group, or a substituted or unsubstituted C1 to C20 alkyl group;
  • the substituent for the C1 to C20 alkyl group may be a sulfurous acid (*-SO 3 ) group, a (meth)acrylate group, or an epoxy group.
  • R 1 and R 2 may be different from each other.
  • R 3 and R 4 are each independently a substituted or unsubstituted C1 to C20 alkyl group;
  • the substituent for the C1 to C20 alkyl group may be a sulfurous acid (*-SO 3 ) group, a (meth)acrylate group, or an epoxy group.
  • R 3 and R 4 may be the same.
  • the maximum absorption wavelength ( ⁇ max) of the compound may be 500 nm to 580 nm.
  • the molar extinction coefficient ( ⁇ ) of the compound may be 90,000 L mol -1 cm -1 to 120,000 L mol -1 cm -1 .
  • the compound may be selected from the following formulas 1-1 to 1-3:
  • x1 is an integer from 1 to 6
  • y1 is an integer from 1 to 4;
  • x2 and y2 are each independently an integer from 1 to 4;
  • x3 and y3 are each independently integers from 1 to 6.
  • the compound may be selected from the group comprising:
  • a color material for electronic materials containing the above compound is provided.
  • the compound may be used as a core and may further include a shell surrounding the core.
  • the shell can be represented by the following formula (2):
  • L 1 and L 2 are each independently a substituted or unsubstituted C1 to C10 alkylene group
  • Z 1 and Z 2 are each independently *-CR-* or a nitrogen atom, where R is a hydrogen atom or a substituted or unsubstituted C1 to C10 alkyl group;
  • X 1 and X 2 are each independently a halogen group or a substituted or unsubstituted C1 to C10 alkyl group;
  • a1 and a2 are each independently integers from 0 to 4.
  • n is an integer from 2 to 10.
  • Another embodiment provides a photosensitive resin composition containing any one of the above compound and the color material for electronic materials.
  • the photosensitive resin composition may further include a binder resin, a photopolymerizable compound, a photopolymerization initiator, and a solvent.
  • Another embodiment provides a photosensitive resin film manufactured using the photosensitive resin composition.
  • Another embodiment provides a color filter including the photosensitive resin film.
  • Another embodiment provides a display device including the color filter.
  • the compound according to one embodiment is a compound that exhibits excellent optical properties, heat resistance, chemical resistance, etc. in the photosensitive resin composition and resin film, and can be usefully used in the manufacture of color filters by replacing or supplementing pigments.
  • Figure 1 is a diagram showing the cage width of the shell represented by Formula 2 above.
  • substituted or “substituted” means that one or more hydrogen atoms in the functional groups of the present invention are halogen atoms (F, Br, Cl or I), hydroxy groups, nitro groups, cyano groups, amino groups ( NH 2 , NH(R 200 ) or N(R 201 )(R 202 ), where R 200 , R 201 and R 202 are the same or different from each other and are each independently a C1 to C10 alkyl group), an amidino group, Hydrazine group, hydrazone group, carboxyl group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted alkynyl group, substituted or unsubstituted alicyclic organic group, substituted or unsubstituted aryl group, and substituted or unsubstituted heterocyclic groups.
  • halogen atoms F, Br, Cl or I
  • hydroxy groups
  • alkyl group means a C1 to C20 alkyl group, specifically means a C1 to C15 alkyl group
  • cycloalkyl group means a C3 to C20 cycloalkyl group, specifically C3 refers to a C1 to C18 cycloalkyl group
  • alkoxy group refers to a C1 to C20 alkoxy group, specifically refers to a C1 to C18 alkoxy group
  • aryl group refers to a C6 to C20 aryl group, specifically refers to a C6 to C20 aryl group.
  • alkenyl group means a C2 to C20 alkenyl group, specifically means a C2 to C18 alkenyl group
  • alkylene group means a C1 to C20 alkylene group, specifically a C1 to C18 alkylene group
  • arylene group refers to a C6 to C20 arylene group, specifically, a C6 to C16 arylene group.
  • (meth)acrylate means both “acrylate” and “methacrylate”
  • (meth)acrylic acid means “acrylic acid” and “methacrylic acid”. This means that both are possible.
  • “combination” means mixing or copolymerization. Additionally, “copolymerization” refers to block copolymerization to random copolymerization, and “copolymer” refers to block copolymerization to random copolymerization.
  • cardo-based resin refers to a resin in which at least one functional group selected from the group consisting of the following formulas 2-1 to 2-11 is included in the backbone of the resin.
  • One embodiment provides a compound represented by Formula 1:
  • a and B are each independently a C6 to C20 aromatic ring, or a C2 to C20 heteroaromatic ring containing 1 to 3 heteroatoms each independently selected from the group consisting of N, O and S;
  • Y 1 and Y 2 are each independently *-O-*, *-S-*, or *-CR 1 R 2 -*;
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a cyano group, or a substituted or unsubstituted C1 to C10 alkyl group;
  • R 3 and R 4 are each independently a hydrogen atom or a substituted or unsubstituted C1 to C20 alkyl group
  • x and y are each independently integers from 1 to 18.
  • Squarine (SQ)-based compounds generally known in the electronic materials field are 1,3-squarene-based compounds as follows.
  • the 1,3-squarene-based compound has a maximum absorption wavelength ( ⁇ max) of 650 nm to 850 nm, and is used as a green dye.
  • the above embodiment presents a 1,2-squarene-based compound, which is a structural isomer of the 1,3-squarene-based compound, and is an unknown compound in the electronic materials field.
  • the 1,2-squarene-based compound has a maximum absorption wavelength ( ⁇ max) of 500 nm to 580 nm and can function as a yellow dye, which can produce a completely different color from the 1,3-squarene-based compound.
  • the molar extinction coefficient ( ⁇ ) of the generally known yellow dye is about 500,000 L mol -1 cm -1 to 60,000 L mol -1 cm -1
  • the 1,2-squarene-based compound is 900,000 L mol -1 It has a significantly high molar extinction coefficient ( ⁇ ) ranging from 1 cm -1 to 100,000 L mol -1 cm -1 .
  • high molar extinction coefficient means “a large amount of light absorbed by one molecule.” Accordingly, compared to the generally known yellow dye, the 1,2-squarene-based compound can exhibit a high level of color reproducibility even when the amount applied to the photosensitive resin composition is reduced, and other solids in the photosensitive resin composition (e.g. It can also contribute to increasing the amount of application of photopolymerizable compounds, etc.).
  • a and B may each independently be a benzene ring or a naphthalene ring.
  • At least one of A and B may be a naphthalene ring.
  • the maximum absorption wavelength ( ⁇ max) of the compound may be higher.
  • one of A and B may be a naphthalene ring, and the other may be a benzene ring.
  • the molar extinction coefficient of the compound may be higher compared to the case of a symmetric structure.
  • the left and right D structures in the electron donating (Donor, D) - electron accepting (Acceptor, A) - electron donating (D) structure of the molecule are the same, which makes it easy to overlap between molecules.
  • Interference of electronic levels occurs due to interactions between molecules, which tends to reduce the intensity of the absorption graph and widen the half width.
  • the asymmetric structure is in the form of D-A-D’, which makes it relatively difficult to overlap between molecules, reducing interactions between molecules. Additionally, if a substituent is introduced outside the aromatic ring of the donor with an asymmetric structure, the above advantages can become more advantageous.
  • the effect of a high molar extinction coefficient is as described above.
  • Y 1 and Y 2 may each independently be *-O-*, *-S-*, or *-C(CH 3 ) 2 -*.
  • Y 1 and Y 2 may be different from each other.
  • the molar extinction coefficient of the compound may be higher compared to the case of a symmetric structure.
  • the effect of a high molar extinction coefficient is as described above.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a cyano group, or a substituted or unsubstituted C1 to C20 alkyl group;
  • the substituent of the C1 to C20 alkyl group may be a sulfurous acid (*-SO 3 ) group, a (meth)acrylate group, or an epoxy group.
  • the C1 to C20 alkyl group may be terminally substituted with a sulfurous acid (*-SO 3 ) group, a (meth)acrylate group, or an epoxy group.
  • a sulfurous acid (*-SO 3 ) group When the parent core structure of the compound is the same, the properties of the compound may vary depending on the type of terminal substituent. For example, if the terminal substituent is a sulfurous acid (*-SO 3 ) group, the ( ) effect can be strengthened, if the terminal substituent is a (meth)acrylate group, heat resistance can be strengthened, and if the terminal substituent is an epoxy group, chemical resistance can be strengthened.
  • R 1 and R 2 may be different from each other.
  • the molar extinction coefficient of the compound may be higher compared to the case of a symmetric structure.
  • the effect of a high molar extinction coefficient is as described above.
  • R 3 and R 4 are each independently a substituted or unsubstituted C1 to C20 alkyl group;
  • the substituent for the C1 to C20 alkyl group may be a sulfurous acid (*-SO 3 ) group, a (meth)acrylate group, or an epoxy group.
  • the C1 to C20 alkyl group may be terminally substituted with a sulfurous acid (*-SO 3 ) group, a (meth)acrylate group, or an epoxy group.
  • a sulfurous acid (*-SO 3 ) group may be terminally substituted with a (*-SO 3 ) group, a (meth)acrylate group, or an epoxy group.
  • the effects of the terminal substituents are as described above.
  • R 3 and R 4 may be the same.
  • the maximum absorption wavelength ( ⁇ max) of the compound may be 500 nm to 580 nm.
  • the maximum absorption wavelength ( ⁇ max) of the compound may be 500 nm to 550 nm.
  • the maximum absorption wavelength ( ⁇ max) of the compound may be increased to 550 nm to 580 nm.
  • the compound exhibits a maximum absorption wavelength ( ⁇ max) in the range of 500 nm to 580 nm.
  • ⁇ max maximum absorption wavelength
  • the above compound has a significantly higher molar extinction coefficient compared to generally known yellow dyes.
  • the molar extinction coefficient ( ⁇ ) of the compound may be 90,000 L mol -1 cm -1 to 120,000 L mol -1 cm -1 .
  • the molar extinction coefficient ( ⁇ ) of the compound may be 90,000 L mol -1 cm -1 to 100,000 L mol -1 cm -1 .
  • the molar extinction coefficient ( ⁇ ) of the compound can be as high as 100,000 L mol -1 cm -1 to 120,000 L mol -1 cm -1 .
  • the compound may be selected from the following formulas 1-1 to 1-3:
  • x1 is an integer from 1 to 6
  • y1 is an integer from 1 to 4;
  • x2 and y2 are each independently an integer from 1 to 4;
  • x3 and y3 are each independently integers from 1 to 6.
  • the one with the highest maximum absorption wavelength ( ⁇ max) and molar extinction coefficient ( ⁇ ) is the compound of Formula 1-1 in which at least one of A and B has an asymmetric structure as a naphthalene ring. You can.
  • the compound may be selected from the group comprising:
  • the highest absorption wavelength ( ⁇ max) and molar extinction coefficient ( ⁇ ) are those of formulas 1-1-1 to 1-1- where at least one of A and B is a naphthalene ring and has an asymmetric structure. It may be a compound of 36.
  • the properties of the compound may partially vary depending on the terminal substituents of R 3 and R 4 .
  • the effects of the terminal substituent are as described above.
  • a color material for electronic materials containing the above compound is provided.
  • “electronic materials” are not particularly limited, but include display devices such as liquid crystal displays (LCDs) and organic light emitting devices (OLEDs); Image sensors such as charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) image sensors; Electronic and electrical components such as prepreg, resin sheets, build-up materials, non-conductive films, metal foil-clad laminates, and printed wiring boards; Refers to materials used in, etc.
  • display devices such as liquid crystal displays (LCDs) and organic light emitting devices (OLEDs);
  • Image sensors such as charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) image sensors
  • CMOS complementary metal-oxide semiconductor
  • Electronic and electrical components such as prepreg, resin sheets, build-up materials, non-conductive films, metal foil-clad laminates, and printed wiring boards; Refers to materials used in, etc.
  • the compound has a maximum absorption wavelength ( ⁇ max) of 500 nm to 580 nm and can function as a yellow dye. Moreover, since the compound has a significantly high molar extinction coefficient ( ⁇ ) of 90,000 L mol -1 cm -1 to 100,000 L mol -1 cm -1 , a high level of color reproducibility is achieved even when the amount applied to the photosensitive resin composition is reduced. It can also contribute to increasing the application amount of other solids (for example, photopolymerizable compounds, etc.) in the photosensitive resin composition.
  • a core-shell compound can be prepared using the compound as a core and further comprising a shell surrounding the core.
  • the shell may be represented by the following formula (2):
  • L 1 and L 2 are each independently a substituted or unsubstituted C1 to C10 alkylene group
  • Z 1 and Z 2 are each independently *-CR-* or a nitrogen atom, where R is a hydrogen atom or a substituted or unsubstituted C1 to C10 alkyl group;
  • X 1 and X 2 are each independently a halogen group or a substituted or unsubstituted C1 to C10 alkyl group;
  • a1 and a2 are each independently integers from 0 to 4.
  • n is an integer from 2 to 10.
  • the shell represented by Formula 2 is a rotaxane-based macrocyclic compound and contains an amide bond (-CONH-). Accordingly, the hydrogen atom included in the amide bond of the shell represented by Formula 2 may form a non-covalent bond with the oxygen atom of the compound represented by Formula 1. Specifically, the two atoms form a hydrogen bond, which can enhance the durability of the core-shell compound.
  • one of Z 1 and Z 2 may be *-CH-* or a nitrogen atom, and the other may be *-CH-*.
  • the non-covalent bond between the shell and the core, or the non-covalent bond inside the shell increases, so that the core- The durability of the shell compound can be further strengthened.
  • X 1 and X 2 are each independently a halogen group, and d1+d2 may be an integer of 1 to 8.
  • d1+d2 may be an integer of 1 to 8.
  • both X 1 and X 2 may be fluorine atoms (i.e., F), and a1+a2 may be 8.
  • L 1 and L 2 may each independently be a C1 to C10 alkylene group. In this case, solubility is excellent and it is easy to form a structure in which the shell surrounds the core.
  • both L 1 and L 1 may be methylene groups (ie, *-CH 2 -*).
  • the n may be 2.
  • the shell may be represented by any of the following formulas 2-1 to 2-4:
  • the cage width of the shell may be 6.5 ⁇ to 7.5 ⁇ , and the volume of the shell may be 10 ⁇ to 16 ⁇ .
  • the cage width refers to the distance inside the shell, for example, the distance between two different phenylene groups with methylene groups connected to both sides in the shell represented by Chemical Formula 2 (see Figure 1).
  • the core-shell compound may include a core containing the compound represented by Formula 1 and the shell at a molar ratio of 1:1.
  • a coating layer (shell) surrounding the core containing the compound represented by Formula 1 can be well formed.
  • X 1 and X 2 are each independently *-CR 1 R 2 -*, *-O-* or *-S-*; R 1 and R 2 are each independently a hydrogen atom or a substituted or unsubstituted C1 to C10 alkyl group.
  • X 1 and X 2 are each independently *-CR 1 R 2 -*, and R 1 and R 2 may each independently be a substituted or unsubstituted C1 to C5 alkyl group.
  • R 1 and R 2 may both be CH 3
  • X 1 and X 2 may both be *-C(CH 3 ) 2 -*.
  • Y 1 to Y 4 are each independently a hydrogen atom, a halogen atom, a furanyl group, a cyano group, a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C1 to C20 alkoxy group; At least one of Y 1 to Y 4 is a C1 to C20 alkoxy group whose terminal is substituted with a furanyl group.
  • one of Y 1 and Y 2 may be a C1 to C20 alkoxy group whose terminal end is substituted with a furanyl group, and the other may be a hydrogen atom or a substituted or unsubstituted C1 to C10 alkyl group.
  • Y 2 may be a C1 to C20 alkoxy group whose terminal is substituted with a furanyl group
  • Y 1 may be a hydrogen atom.
  • one of Y 3 and Y 4 may be a C1 to C20 alkoxy group whose terminal end is substituted with a furanyl group, and the other may be a hydrogen atom or a substituted or unsubstituted C1 to C10 alkyl group.
  • Y 3 may be a C1 to C20 alkoxy group whose terminal is substituted with a furanyl group
  • Y 4 may be a hydrogen atom.
  • a 1 and A 2 are each independently an anionic substituent or a C1 to C20 alkyl group containing an anionic substituent at the terminal.
  • the anionic substituent may be a substituent represented by any one of the following Formulas A-1 to Formula A-5:
  • L 1 to L 3 are each independently, the same or different, *-O-*, *-CO-*, a substituted or unsubstituted C1 to C20 alkylene group, or a substituted or unsubstituted C3 to C20 cycloalkylene group. am.
  • L 1 and L 3 may each independently be a substituted or unsubstituted C1 to C10 alkylene group.
  • L 1 and L 3 may each independently be a substituted or unsubstituted C1 to C5 alkylene group.
  • L 2 may be a substituted or unsubstituted C1 to C10 alkylene group.
  • L 2 may be a substituted or unsubstituted C1 to C5 alkylene group.
  • a to c may each independently be an integer of 1 to 10, specifically an integer of 1 to 5, for example, an integer of 1 to 3.
  • the compound represented by Formula 1 may have maximum absorbance in the wavelength range of 450 nm to 780 nm.
  • Another embodiment provides a photosensitive resin composition containing any one of the compound and the color material for electronic materials.
  • the compound or the color material for electronic materials As it contains either the compound or the color material for electronic materials, it exhibits excellent optical properties, heat resistance, chemical resistance, etc., and can be usefully used in the production of a yellow color filter.
  • the photosensitive resin composition may include any one of the compound and the color material for electronic materials as a dye, and may further include a binder resin, a photopolymerizable compound, a photopolymerization initiator, and a solvent.
  • the colorant includes a dye, and the dye may include any one of the compound and the color material for electronic materials.
  • the dye may be a yellow dye.
  • the colorant may further include an organic solvent-soluble dye.
  • organic solvent-soluble dye examples include triarylmethane-based compounds, anthraquinone-based compounds, benzylidene-based compounds, xanthene-based compounds, phthalocyanine-based compounds, azaporphyrin-based compounds, and indigo-based compounds.
  • the colorant may further include a pigment in addition to the dye.
  • the pigment may include blue pigment, violet pigment, red pigment, green pigment, yellow pigment, etc.
  • blue pigment examples include C.I. Blue pigment 15:6, C.I. Blue Pigment 15, C.I. Blue pigment 15:1, C.I. Blue pigment 15:2, C.I. Blue pigment 15:3, C.I. Blue pigment 15:4, C.I. Blue pigment 15:5, C.I. Blue Pigment 16, C.I. Blue Pigment 22, C.I. Blue Pigment 60, C.I. Blue Pigment 64, C.I. Blue pigment 80 or a combination thereof may be mentioned.
  • C.I. Blue pigment 15:6, C.I. Blue Pigment 15, C.I. Blue pigment 15:1, C.I. Blue pigment 15:2, C.I. Blue pigment 15:3, C.I. Blue pigment 15:4, C.I. Blue pigment 15:5, C.I. Blue Pigment 16, C.I. Blue Pigment 22, C.I. Blue Pigment 60, C.I. Blue Pigment 64, C.I. Blue pigment 80 or a combination thereof may be mentioned.
  • violet pigment examples include C.I. Violet pigment 1, C.I. Violet Pigment 19, C.I. Violet Pigment 23, C.I. Violet Pigment 27, C.I. Violet Pigment 28, C.I. Violet Pigment 29, C.I. Violet Pigment 30, C.I. Violet Pigment 32, C.I. Violet Pigment 37, C.I. Violet Pigment 40, C.I. Violet Pigment 42, C.I. Violet Pigment 50 or a combination thereof may be mentioned.
  • red pigment examples include C.I. Red Pigment 254, C.I. Red Pigment 255, C.I. Red Pigment 264, C.I. Red Pigment 270, C.I. Red Pigment 272, C.I. Red Pigment 177, C.I. Red Pigment 179, C.I. Red pigment 89, etc. can be mentioned.
  • green pigment examples include C.I. Green Pigment 7, C.I. Green Pigment 36, C.I. Pigment Green 58, C.I. and halogenated phthalocyanine-based pigments such as Pigment Green 59.
  • yellow pigment examples include C.I. Pigment Yellow 139, C.I. Pigment Yellow 138, C.I. Pigment Yellow 150, etc. can be mentioned, and these can be used alone or in a mixture of two or more types.
  • the pigment may be included in the photosensitive resin composition in the form of a pigment dispersion.
  • the pigment dispersion may include a solid pigment, a solvent, and a dispersant for uniformly dispersing the pigment within the solvent.
  • the solid pigment is 1% to 20% by weight, such as 8% to 20% by weight, such as 8% to 15% by weight, such as 10% to 20% by weight, such as 10% by weight to 10% by weight, based on the total amount of the pigment dispersion. It may be included at 15% by weight.
  • a nonionic dispersant an anionic dispersant, a cationic dispersant, etc.
  • the dispersant include polyalkylene glycol and its esters, polyoxyalkylene, polyhydric alcohol ester alkylene oxide adduct, alcohol alkylene oxide adduct, sulfonic acid ester, sulfonic acid salt, carboxylic acid ester, carboxylic acid. Salts, alkylamide alkylene oxide adducts, alkyl amines, etc. may be used, and these may be used alone or in combination of two or more.
  • Examples of commercially available dispersants include BYK's DISPERBYK-101, DISPERBYK-130, DISPERBYK-140, DISPERBYK-160, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBYK-165, and DISPERBYK.
  • the dispersant may be included in an amount of 1% to 20% by weight based on the total amount of the pigment dispersion.
  • an appropriate viscosity can be maintained and the dispersibility of the photosensitive resin composition is excellent.
  • optical, physical and chemical qualities can be maintained when the product is applied.
  • Solvents for forming the pigment dispersion include ethylene glycol acetate, ethyl cellosolve, propylene glycol (mono)methyl ether acetate, ethyl lactate, polyethylene glycol, cyclohexanone, propylene glycol methyl ether, etc.
  • the colorant may be included in an amount of 5% to 30% by weight, for example, 5% to 25% by weight, based on the total amount of the photosensitive resin composition.
  • the colorant is included within the above range, the color reproduction rate is excellent, and the curability and adhesion of the pattern are excellent.
  • the binder resin may include an acrylic binder resin, a cardo-based binder resin, or a combination thereof.
  • the binder resin may be an acrylic binder resin.
  • the acrylic resin is a copolymer of a first ethylenically unsaturated monomer and a second ethylenically unsaturated monomer copolymerizable therewith, and is a resin containing one or more acrylic repeating units.
  • the first ethylenically unsaturated monomer is an ethylenically unsaturated monomer containing at least one carboxyl group, and specific examples thereof include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, or a combination thereof.
  • the first ethylenically unsaturated monomer may be included in an amount of 5% to 50% by weight, for example, 10% to 40% by weight, based on the total amount of the acrylic binder resin.
  • the second ethylenically unsaturated monomer may include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, and vinylbenzylmethyl ether; Methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxy butyl (meth)acrylate, benzyl (meth)acrylate, Unsaturated carboxylic acid ester compounds such as cyclohexyl (meth)acrylate and phenyl (meth)acrylate; unsaturated carboxylic acid amino alkyl ester compounds such as 2-aminoethyl (meth)acrylate and 2-dimethylaminoethyl (meth)acrylate; Carboxylic acid vinyl ester compounds such as vinyl acetate and vinyl benzoate; Unsaturated carboxylic acid glycidyl ester compounds such as glycid
  • acrylic binder resin examples include (meth)acrylic acid/benzyl methacrylate copolymer, (meth)acrylic acid/benzyl methacrylate/styrene copolymer, (meth)acrylic acid/benzyl methacrylate/2-hydroxyethyl methacrylate Examples include, but are not limited to, acrylate copolymers, (meth)acrylic acid/benzyl methacrylate/styrene/2-hydroxyethyl methacrylate copolymers, and these may be used alone or in combination of two or more types. there is.
  • the weight average molecular weight of the acrylic binder resin may be 3,000 g/mol to 150,000 g/mol, such as 5,000 g/mol to 50,000 g/mol, such as 20,000 g/mol to 30,000 g/mol.
  • the photosensitive resin composition has excellent physical and chemical properties, appropriate viscosity, and excellent adhesion to the substrate when manufacturing a color filter.
  • the acid value of the acrylic binder resin may be 15 mgKOH/g to 60 mgKOH/g, for example, 20 mgKOH/g to 50 mgKOH/g.
  • the acid value of the acrylic binder resin is within the above range, the resolution of the pixel pattern is excellent.
  • the cardo-based binder resin may include a repeating unit represented by the following formula (3).
  • R 11 and R 12 are each independently a hydrogen atom or a substituted or unsubstituted (meth)acryloyloxyalkyl group
  • R 13 and R 14 are each independently a hydrogen atom, a halogen atom, or a substituted or unsubstituted C1 to C20 alkyl group,
  • L 3 is a single bond, O, CO, SO 2 , CR 15 R 16 , SiR 17 R 18 (wherein R 15 to R 18 are each independently a hydrogen atom or a substituted or unsubstituted C1 to C20 alkyl group) or the following Any one of the linking groups represented by Formulas 4-1 to 4-11,
  • L 4 is an acid dianhydride residue
  • n1 and m2 are each independently integers from 0 to 4.
  • the cardo-based binder resin may include a functional group represented by the following formula (5) at at least one of both ends.
  • Z 3 may be represented by the following formulas 6-1 to 6-7.
  • R b and R c are each independently a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, an ester group, or an ether group.
  • R d is O, S, NH, a substituted or unsubstituted C1 to C20 alkylene group, a C1 to C20 alkylamine group, or a C2 to C20 alkenylamine group.
  • the cardo-based binder resin includes, for example, fluorene-containing compounds such as 9,9-bis(4-oxiranylmethoxyphenyl)fluorene; Benzene tetracarboxylic acid dianhydride, naphthalene tetracarboxylic acid dianhydride, biphenyl tetracarboxylic acid dianhydride, benzophenone tetracarboxylic acid dianhydride, pyromellitic dianhydride, cyclobutane tetracarboxylic acid dianhydride, perylene tetracarboxylic acid dianhydride.
  • fluorene-containing compounds such as 9,9-bis(4-oxiranylmethoxyphenyl)fluorene
  • Benzene tetracarboxylic acid dianhydride naphthalene tetracarboxylic acid dianhydride, biphenyl tetracarboxylic acid dian
  • anhydride compounds such as tetrahydrofuran tetracarboxylic acid dianhydride and tetrahydrophthalic acid anhydride
  • Glycol compounds such as ethylene glycol, propylene glycol, and polyethylene glycol
  • Alcohol compounds such as methanol, ethanol, propanol, n-butanol, cyclohexanol, and benzyl alcohol
  • Solvent compounds such as propylene glycol methyl ethyl acetate and N-methylpyrrolidone
  • Phosphorus compounds such as triphenylphosphine
  • amine or ammonium salt compounds such as tetramethylammonium chloride, tetraethylammonium bromide, benzyldiethylamine, triethylamine, tributylamine, and benzyltriethylammonium chloride.
  • the weight average molecular weight of the cardo-based binder resin may be 500 g/mol to 50,000 g/mol, for example, 3,000 g/mol to 30,000 g/mol. If the weight average molecular weight of the cardo-based binder resin is within the above range, a pattern can be easily formed without residue when manufacturing a color filter, there is no loss of film thickness during development, and a good pattern can be obtained.
  • the cardo-based binder resin may have an acid value of 100 mgKOH/g to 140 mgKOH/g.
  • the binder resin may be included in an amount of 1% to 10% by weight, for example, 1% to 7% by weight, based on the total amount of the photosensitive resin composition.
  • the binder resin is contained within the above range, excellent sensitivity, developability, and adhesion can be obtained.
  • the photopolymerizable compound may be a mono- or multi-functional ester of (meth)acrylic acid having at least one ethylenically unsaturated double bond.
  • the photopolymerizable compound By having the ethylenically unsaturated double bond, the photopolymerizable compound can form a pattern with excellent heat resistance, light resistance, and chemical resistance by causing sufficient polymerization upon exposure to light in the pattern formation process.
  • photopolymerizable compounds include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, and neopentyl glycol di.
  • Examples of commercially available photopolymerizable compounds are as follows.
  • Examples of the monofunctional ester of (meth)acrylic acid include Aronix M- 101® , M- 111® , and M- 114® manufactured by Toagosei Chemical Co., Ltd.; Nippon Kayaku Co., Ltd.'s KAYARAD TC-110S ® , KAYARAD TC-120S ® , etc.; Examples include V-158 ® and V-2311 ® manufactured by Osaka Yuki Chemical Co., Ltd.
  • Examples of the above-mentioned difunctional ester of (meth)acrylic acid include Aronics M-210 ® , M-240 ® , and M-6200 ® manufactured by Toagosei Chemical Co., Ltd.; Nihon Kayaku Co., Ltd.'s KAYARAD HDDA ® , HX-220 ® , R-604 ® , etc.; Examples include V-260 ® , V-312 ® , and V-335 HP ® manufactured by Osaka Yuki Chemical Engineering Co., Ltd.
  • Examples of the trifunctional ester of (meth)acrylic acid include Aronics M-309 ® , M-400 ® , M-405 ® , M-450 ® , and M manufactured by Toagosei Chemical Co., Ltd. -710 ® , M-8030 ® , M-8060 ® , etc.; Nippon Kayaku Co., Ltd.'s KAYARAD TMPTA ® , DPCA-20 ® , Dong-30 ® , Dong-60 ® , Dong-120 ® , etc.; Examples include V-295 ® , Dong-300 ® , Dong-360 ® , Dong-GPT ® , Dong-3PA ® , and Dong-400 ® manufactured by Osaka Yuki Kayaku Kogyo Co., Ltd.
  • the above products can be used alone or in combination of two or more types.
  • the photopolymerizable compound may be used by treating it with an acid anhydride to provide better developability.
  • the photopolymerizable compound may be included in an amount of 5% to 15% by weight, for example, 5% to 10% by weight, based on the total amount of the photosensitive resin composition.
  • the photopolymerizable compound is included within the above range, sufficient curing occurs during exposure to light in the pattern formation process, resulting in excellent reliability, excellent heat resistance, light resistance, and chemical resistance of the pattern, and also excellent resolution and adhesion.
  • the photopolymerization initiator is an initiator commonly used in photosensitive resin compositions, for example, an acetophenone-based compound, a benzophenone-based compound, a thioxanthone-based compound, a benzoin-based compound, a triazine-based compound, an oxime-based compound, or a combination thereof. You can use it.
  • acetophenone-based compounds examples include 2,2'-diethoxy acetophenone, 2,2'-dibutoxy acetophenone, 2-hydroxy-2-methylpropiophenone, p-t-butyltrichloro acetophenone, p-t -Butyldichloro acetophenone, 4-chloro acetophenone, 2,2'-dichloro-4-phenoxy acetophenone, 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropane-1 -one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, etc.
  • benzophenone-based compounds examples include benzophenone, benzoyl benzoic acid, methyl benzoyl benzoate, 4-phenyl benzophenone, hydroxy benzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4 '-bis(diethylamino)benzophenone, 4,4'-dimethylaminobenzophenone, 4,4'-dichlorobenzophenone, 3,3'-dimethyl-2-methoxybenzophenone, etc.
  • thioxanthone-based compounds examples include thioxanthone, 2-methylthioxanthone, isopropyl thioxanthone, 2,4-diethyl thioxanthone, 2,4-diisopropyl thioxanthone, 2- Chlorothioxanthone, etc. can be mentioned.
  • benzoin-based compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyldimethyl ketal.
  • triazine-based compounds examples include 2,4,6-trichloro-s-triazine, 2-phenyl 4,6-bis(trichloromethyl)-s-triazine, 2-(3', 4'- Dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloromethyl)-s-triazine, 2-biphenyl 4,6-bis(trichloromethyl)-s-triazine, bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphtho-1-yl)-4, 6-bis(trichloromethyl)-s-
  • Examples of the oxime-based compounds include O-acyloxime-based compounds, 2-(o-benzoyloxime)-1-[4-(phenylthio)phenyl]-1,2-octanedione, 1-(o-acetyloxime) )-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone, O-ethoxycarbonyl- ⁇ -oxyamino-1-phenylpropan-1-one etc. can be used.
  • O-acyloxime compounds include 1,2-octanedione, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholin-4-yl-phenyl)-butane- 1-one, 1-(4-phenylsulfanylphenyl)-butane-1,2-dione-2-oxime-O-benzoate, 1-(4-phenylsulfanylphenyl)-octane-1,2-dione -2-oxime-O-benzoate, 1-(4-phenylsulfanylphenyl)-octane-1-oneoxime-O-acetate, 1-(4-phenylsulfanylphenyl)-butane-1-oneoxime- O-acetate, etc. can be mentioned.
  • the photopolymerization initiator may include carbazole-based compounds, diketone-based compounds, sulfonium borate-based compounds, diazo-based compounds, imidazole-based compounds, biimidazole-based compounds, and fluorene-based compounds.
  • the photopolymerization initiator may be used together with a photosensitizer that absorbs light, becomes excited, and then transmits the energy to cause a chemical reaction.
  • photosensitizer examples include tetraethylene glycol bis-3-mercapto propionate, pentaerythritol tetrakis-3-mercapto propionate, dipentaerythritol tetrakis-3-mercapto propionate, etc. can be mentioned.
  • the photopolymerization initiator may be included in an amount of 0.1% to 5% by weight, for example, 0.1% to 3% by weight, based on the total amount of the photosensitive resin composition.
  • the photopolymerization initiator is included within the above range, curing occurs sufficiently during exposure during the pattern formation process to obtain excellent reliability, the heat resistance, light resistance, and chemical resistance of the pattern are excellent, resolution and adhesion are also excellent, and the non-reacted initiator is used. This can prevent a decrease in transmittance due to
  • the solvent may be a material that is compatible with, but does not react with, a compound, a pigment, a binder resin, a photopolymerizable compound, and a photopolymerization initiator according to one embodiment.
  • the solvent examples include alcohols such as methanol and ethanol; ethers such as dichloroethyl ether, n-butyl ether, diisoamyl ether, methylphenyl ether, and tetrahydrofuran; Glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; Cellosolve acetates such as methyl cellosolve acetate, ethyl cellosolve acetate, and diethyl cellosolve acetate; Carbitols such as methyl ethyl carbitol, diethyl carbitol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and diethylene glycol diethyl ether; propylene glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate and
  • N-methylpyrrolidone dimethyl sulfoxide, benzyl ethyl ether, dihexyl ether, acetylacetone, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl alcohol, benzyl acetate, benzoic acid.
  • High boiling point solvents such as ethyl, diethyl oxalate, diethyl maleate, ⁇ -butyrolactone, ethylene carbonate, propylene carbonate, and phenyl cellosolve acetate can be mentioned.
  • glycol ethers such as ethylene glycol monoethyl ether; Ethylene glycol alkyl ether acetates such as ethyl cellosolve acetate; esters such as ethyl 2-hydroxypropionate; Carbitols such as diethylene glycol monomethyl ether; Propylene glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate and propylene glycol propyl ether acetate may be used.
  • the solvent may be included in a residual amount, for example, 40% by weight to 80% by weight, based on the total amount of the photosensitive resin composition.
  • the photosensitive resin composition has an appropriate viscosity, thereby improving processability when manufacturing the photosensitive resin film in the color filter.
  • the photosensitive resin composition contains malonic acid to prevent stains or spots upon application, to improve leveling performance, and to prevent the creation of residues due to non-development; 3-amino-1,2-propanediol; Silane-based coupling agents having reactive substituents such as carboxyl group, methacryloyl group, isocyanate group, and epoxy group; leveling agent; Fluorine-based surfactant; It may further include additives such as a radical polymerization initiator.
  • silane-based coupling agent examples include trimethoxysilyl benzoic acid, ⁇ -methacryl oxypropyl trimethoxysilane, vinyl triacetoxysilane, vinyl trimethoxysilane, ⁇ -isocyanate propyl triethoxysilane, and ⁇ -gly.
  • Sidoxy propyl trimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, etc. can be used alone or in combination of two or more.
  • the silane-based coupling agent may be included in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the photosensitive resin composition. When the silane-based coupling agent is included within the above range, adhesion and storage properties are excellent.
  • the photosensitive resin composition may further include an epoxy compound to improve adhesion to the substrate.
  • Examples of the epoxy compound include a phenol novolac epoxy compound, a tetramethyl biphenyl epoxy compound, a bisphenol A type epoxy compound, an alicyclic epoxy compound, or a combination thereof.
  • the epoxy compound may be included in an amount of 0.01 to 20 parts by weight, for example, 0.1 to 10 parts by weight, based on 100 parts by weight of the photosensitive resin composition. When the epoxy compound is contained within the above range, adhesion, storage, etc. are excellent.
  • the photosensitive resin composition may further include a surfactant, if necessary, to improve coating properties and prevent defects.
  • a fluorine-based surfactant may be used as the surfactant, and examples of the fluorine-based surfactant include DIC's F-482, F-484, F-478, and F-554, but are not limited thereto.
  • the surfactant may be used in an amount of 0.001 to 5 parts by weight based on 100 parts by weight of the photosensitive resin composition. When the surfactant is contained within the above range, coating uniformity is ensured, stains do not occur, and wetting on the glass substrate is excellent.
  • antioxidants and stabilizers may be added to the photosensitive resin composition within the range that does not impair the physical properties.
  • a photosensitive resin film manufactured using the photosensitive resin composition is provided.
  • a color filter including the photosensitive resin film is provided.
  • the pattern formation process within the color filter is as follows.
  • a display device including the color filter is provided.
  • the display device may be a liquid crystal display (LCD), an organic light emitting diode (OLED), or the like.
  • Synthesis Example 8 Synthesis of a compound represented by Formula 1-3-1
  • the photosensitive resin composition according to Example 1 was prepared by mixing the components mentioned below in the composition shown in Table 1 below.
  • the photopolymerization initiator was dissolved in a solvent and stirred at room temperature for 2 hours. Then, an acrylic binder resin and a photopolymerizable compound were added thereto and stirred at room temperature for 2 hours. Next, a compound (dye) and a pigment (in the form of a pigment dispersion) represented by Chemical Formula 1-1-1 as a colorant were added to the obtained reaction product and stirred at room temperature for 1 hour. Then, the product was filtered three times to remove impurities, thereby preparing a photosensitive resin composition.
  • Example 2 A photosensitive resin composition was prepared in the same manner as Example 1, except that the compound represented by Formula 1-1-5 was used instead of the compound represented by Formula 1-1-1.
  • a photosensitive resin composition was prepared in the same manner as in Example 1, except that the compound represented by Formula 1-1-9 was used instead of the compound represented by Formula 1-1-1.
  • a photosensitive resin composition was prepared in the same manner as in Example 1, except that the compound represented by Formula 1-1-10 was used instead of the compound represented by Formula 1-1-1.
  • a photosensitive resin composition was prepared in the same manner as in Example 1, except that the compound represented by Formula 1-1-11 was used instead of the compound represented by Formula 1-1-1.
  • a photosensitive resin composition was prepared in the same manner as in Example 1, except that the compound represented by Formula 1-1-12 was used instead of the compound represented by Formula 1-1-1.
  • a photosensitive resin composition was prepared in the same manner as in Example 1, except that the compound represented by Formula 1-2-1 was used instead of the compound represented by Formula 1-1-1.
  • a photosensitive resin composition was prepared in the same manner as in Example 1, except that the compound represented by Formula 1-3-1 was used instead of the compound represented by Formula 1-1-1.
  • a photosensitive resin composition was prepared in the same manner as in Example 1, except that the compound represented by Formula A was used instead of the compound represented by Formula 1-1-1.
  • the compounds prepared in Synthesis Examples 1 to 8 and Comparative Synthesis Example 1 were mixed with a diluent solvent (PGMEA) to prepare a diluted solution with a concentration of 0.005 wt%, which was measured using an ultraviolet-visible spectrophotometer (model name: UV- 2550, manufacturer: Shimazu Seisakusho ( ⁇ ), and an absorption spectrum was obtained.
  • PMEA diluent solvent
  • the compounds of Synthesis Examples 1 to 8 have a maximum absorption wavelength ( ⁇ max) of 500 nm to 580 nm and can function as a yellow dye, which is 1, which has a maximum absorption wavelength ( ⁇ max) of 700 nm to 850 nm. It is possible to achieve a completely different color from 3-squarene-based compounds.
  • the molar extinction coefficient ( ⁇ ) of the generally known yellow dye (Comparative Synthesis Example 1) is about 40,000 L mol -1 cm -1 to 60,000 L mol - 1 cm -1
  • the compounds of Synthesis Examples 1 to 8 have a significantly higher molar extinction coefficient ( ⁇ ) of 90,000 L mol -1 cm -1 to 100,000 L mol -1 cm -1 .
  • the compounds of one embodiment, represented by the compounds of Synthesis Examples 1 to 8 can exhibit a high level of color reproducibility even when the amount applied to the photosensitive resin composition is reduced compared to the generally known yellow dye, and the photosensitive resin composition It can also contribute to increasing the application amount of other solids (for example, photopolymerizable compounds, etc.).
  • Color characteristics The color characteristics of the produced color specimen were evaluated based on C light source using MCPD (Otsuka) equipment, and the luminance (RY) was calculated based on Rx 0.658, and are shown in Table 4 below. It was.
  • the compounds of Synthesis Examples 1 to 8 are all superior in brightness, heat resistance, and chemical resistance compared to the compounds of Comparative Synthesis Example 1. Meanwhile, among the compounds of Synthesis Examples 1 to 8, when the structures of the parent nucleus are the same, the properties of the compounds are partially different depending on the terminal substituent.
  • the properties of the compound may vary depending on the type of terminal substituent. For example, if the terminal substituent is a sulfurous acid (Sulfite, *-SO 3 ) group, water solubility (Synthesis Example 4), if the terminal substituent is a (meth)acrylate group, heat resistance (Synthesis Example 5), and if the terminal substituent is an epoxy group, chemical resistance (Synthesis Example 6) will be strengthened. You can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

하기 화학식 1로 표시되는 화합물, 상기 화합물을 포함하는 감광성 수지 조성물 및 상기 감광성 수지 조성물을 이용하여 제조되는 컬러 필터가 제공된다. 일 구현예는 하기 화학식 1로 표시되는 화합물을 제공한다: [화학식 1] (상기 화학식 1에서, 각 치환기는 명세서에 정의된 바와 같다.) [대표도]

Description

화합물, 이를 포함하는 감광성 수지 조성물 및 컬러 필터
본 기재는 화합물, 이를 포함하는 감광성 수지 조성물 및 컬러 필터에 관한 것이다.
디스플레이 장치 중의 하나인 액정 디스플레이 장치는, 경량화, 박형화, 저가, 저소비 전력 구동화 및 우수한 집적 회로와의 접합성 등의 장점을 가지고 있어, 노트북 컴퓨터, 모니터, TV 화상용 등으로 그 사용 범위가 확대되고 있다.
이러한 액정 디스플레이 장치는, 블랙 매트릭스, 컬러 필터 및 ITO 화소 전극이 형성된 하부 기판; 및 액정층, 박막 트랜지스터, 축전 캐패시터층으로 구성된 능동 회로부와 ITO 화소전극이 형성된 상부 기판을 포함하여 구성된다.
또한, 컬러 필터는 화소 사이의 경계부를 차광하기 위해, 투명 기판 상에 정해진 패턴으로 형성된 블랙 매트릭스층; 및 각각의 화소를 형성하기 위해 복수의 색(통상적으로, 적(R), 녹(G), 청(B)의 3원색)을 정해진 순서로 배열한 화소부를 차례로 적층하여 구성된다.
컬러 필터를 구현하는 방법 중의 하나인 안료 분산법은, 착색제로서 안료를 포함하는 감광성 수지 조성물을 사용하여 착색 박막을 형성한다. 구체적으로, 흑색 매트릭스가 제공된 투명한 기질 위에 감광성 수지 조성물을 코팅하여 수지막을 형성하는 공정, 상기 수지막 상에 패턴을 노광하는 공정 및 비노광 부위를 용제로 제거하여 열경화시키는 공정을 포함하는 일련의 공정을 반복함으로써 착색 박막을 형성한다.
그런데, 안료 분산법을 이용할 경우, 컬러 필터의 제조 과정이 까다롭고, 제조된 컬러필더의 품질에도 한계가 나타난다. 우선, 감광성 수지 조성물 내 안료의 분산 상태를 안정화하여 미세하고 정교한 패턴을 형성하기 위하여, 입자 크기가 미세화된 안료를 사용하거나, 분산제 등 다양한 첨가제를 사용할 것이 요구된다. 또한, 제조된 감광성 수지 조성물의 품질을 최적의 상태로 유지하기 위한 보관 및 운송 조건이 까다롭다. 더욱이, 최종 컬러 필터에서는 안료 입자 크기에서 비롯되는 휘도와 명암비의 한계가 나타난다.
이에 따라, 안료를 대체하거나 이를 보완할 재료로서, 염료가 주목 받고 있다. 다만, 현재까지 알려진 염료는 휘도, 명암비 등 광학 특성이 우수한 것은 별론, 안료에 대비하여 내열성과 내화학성이 열등한 문제가 있다.
일 구현예는 광학 특성, 내열성, 내화학성 등이 두루 우수하여, 안료를 대체하거나 이를 보완할 수 있는 화합물을 제공하기 위한 것이다.
다른 일 구현예는 상기 화합물을 포함하는 감광성 수지 조성물을 제공하기 위한 것이다.
또 다른 일 구현예는 상기 감광성 수지 조성물을 이용하여 제조된 감광성 수지막을 제공하기 위한 것이다.
또 다른 일 구현예는 상기 감광성 수지막을 포함하는 컬러 필터를 제공하기 위한 것이다.
일 구현예는 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2023005396-appb-img-000001
상기 화학식 1에서,
A 및 B는 각각 독립적으로, C6 내지 C20 방향족 고리, 또는 N, O 및 S로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 3개의 헤테로원자를 포함하는 C2 내지 C20 헤테로방향족 고리이고;
Y1 및 Y2는 각각 독립적으로, *-O-*, *-S-*, 또는 *-CR1R2-*이고; 여기서 R1 및 R2는 각각 독립적으로, 수소 원자, 할로겐 원자, 시아노기, 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
R3 및 R4는 각각 독립적으로, 수소 원자, 또는 치환 또는 비치환된 C1 내지 C20 알킬기이고;
x 및 y는 각각 독립적으로, 1 내지 18의 정수이다.
상기 A 및 B는 각각 독립적으로, 벤젠 고리 또는 나프탈렌 고리일 수 있다.
상기 A 및 B 중 적어도 하나는 나프탈렌 고리일 수 있다.
상기 Y1 및 Y2는 각각 독립적으로, *-O-*, *-S-*, 또는 *-C(CH3)2-*일 수 있다.
상기 Y1 및 Y2가 서로 다를 수 있다.
상기 R1 및 R2는 각각 독립적으로, 수소 원자, 할로겐 원자, 시아노기, 또는 치환 또는 비치환된 C1 내지 C20 알킬기이되; 상기 C1 내지 C20 알킬기의 치환기는 아황산(Sulfite, *-SO3)기, (메트)아크릴레이트기, 또는 에폭시기일 수 있다.
상기 R1 및 R2가 서로 다를 수 있다.
상기 R3 및 R4는 각각 독립적으로, 치환 또는 비치환된 C1 내지 C20 알킬기이되; 상기 C1 내지 C20 알킬기의 치환기는 아황산(Sulfite, *-SO3)기, (메트)아크릴레이트기, 또는 에폭시기일 수 있다.
상기 R3 및 R4는 동일할 수 있다.
상기 화합물의 최대 흡수 파장(λmax)은 500nm 내지 580nm일 수 있다.
상기 화합물의 몰 흡광계수(ε)는 90,000 L mol-1 cm-1 내지 120,000 L mol-1 cm-1일 수 있다.
상기 화합물은 하기 화학식 1-1 내지 1-3 중에서 선택될 수 있다:
[화학식 1-1]
Figure PCTKR2023005396-appb-img-000002
[화학식 1-2]
Figure PCTKR2023005396-appb-img-000003
[화학식 1-3]
Figure PCTKR2023005396-appb-img-000004
상기 화학식 1-1 내지 1-3에서,
상기 Y1, Y2, 및 R1 내지 R4의 정의는 제1항과 동일하되;
x1은 1 내지 6의 정수이고, y1은 1 내지 4의 정수이고;
x2 및 y2는 각각 독립적으로, 1 내지 4의 정수이고;
x3 및 y3는 각각 독립적으로, 1 내지 6의 정수이다.
상기 화합물은 하기를 포함하는 군에서 선택될 수 있다:
[화학식 1-1-1]
Figure PCTKR2023005396-appb-img-000005
[화학식 1-1-2]
Figure PCTKR2023005396-appb-img-000006
[화학식 1-1-3]
Figure PCTKR2023005396-appb-img-000007
[화학식 1-1-4]
Figure PCTKR2023005396-appb-img-000008
[화학식 1-1-5]
Figure PCTKR2023005396-appb-img-000009
[화학식 1-1-6]
Figure PCTKR2023005396-appb-img-000010
[화학식 1-1-7]
Figure PCTKR2023005396-appb-img-000011
[화학식 1-1-8]
Figure PCTKR2023005396-appb-img-000012
[화학식 1-1-9]
Figure PCTKR2023005396-appb-img-000013
[화학식 1-1-10]
Figure PCTKR2023005396-appb-img-000014
[화학식 1-1-11]
Figure PCTKR2023005396-appb-img-000015
[화학식 1-1-12]
Figure PCTKR2023005396-appb-img-000016
[화학식 1-1-13]
Figure PCTKR2023005396-appb-img-000017
[화학식 1-1-14]
Figure PCTKR2023005396-appb-img-000018
[화학식 1-1-15]
Figure PCTKR2023005396-appb-img-000019
[화학식 1-1-16]
Figure PCTKR2023005396-appb-img-000020
[화학식 1-1-17]
Figure PCTKR2023005396-appb-img-000021
[화학식 1-1-18]
Figure PCTKR2023005396-appb-img-000022
[화학식 1-1-19]
Figure PCTKR2023005396-appb-img-000023
[화학식 1-1-20]
Figure PCTKR2023005396-appb-img-000024
[화학식 1-1-21]
Figure PCTKR2023005396-appb-img-000025
[화학식 1-1-22]
Figure PCTKR2023005396-appb-img-000026
[화학식 1-1-23]
Figure PCTKR2023005396-appb-img-000027
[화학식 1-1-24]
Figure PCTKR2023005396-appb-img-000028
[화학식 1-1-25]
Figure PCTKR2023005396-appb-img-000029
[화학식 1-1-26]
Figure PCTKR2023005396-appb-img-000030
[화학식 1-1-27]
Figure PCTKR2023005396-appb-img-000031
[화학식 1-1-28]
Figure PCTKR2023005396-appb-img-000032
[화학식 1-1-29]
Figure PCTKR2023005396-appb-img-000033
[화학식 1-1-30]
Figure PCTKR2023005396-appb-img-000034
[화학식 1-1-31]
Figure PCTKR2023005396-appb-img-000035
[화학식 1-1-32]
Figure PCTKR2023005396-appb-img-000036
[화학식 1-1-33]
Figure PCTKR2023005396-appb-img-000037
[화학식 1-1-34]
Figure PCTKR2023005396-appb-img-000038
[화학식 1-1-35]
Figure PCTKR2023005396-appb-img-000039
[화학식 1-1-36]
Figure PCTKR2023005396-appb-img-000040
[화학식 1-2-1]
Figure PCTKR2023005396-appb-img-000041
[화학식 1-2-2]
Figure PCTKR2023005396-appb-img-000042
[화학식 1-2-3]
Figure PCTKR2023005396-appb-img-000043
[화학식 1-2-4]
Figure PCTKR2023005396-appb-img-000044
[화학식 1-2-5]
Figure PCTKR2023005396-appb-img-000045
[화학식 1-2-6]
Figure PCTKR2023005396-appb-img-000046
[화학식 1-2-7]
Figure PCTKR2023005396-appb-img-000047
[화학식 1-2-8]
Figure PCTKR2023005396-appb-img-000048
[화학식 1-2-9]
Figure PCTKR2023005396-appb-img-000049
[화학식 1-2-10]
Figure PCTKR2023005396-appb-img-000050
[화학식 1-2-11]
Figure PCTKR2023005396-appb-img-000051
[화학식 1-2-12]
Figure PCTKR2023005396-appb-img-000052
[화학식 1-2-13]
Figure PCTKR2023005396-appb-img-000053
[화학식 1-2-14]
Figure PCTKR2023005396-appb-img-000054
[화학식 1-2-15]
Figure PCTKR2023005396-appb-img-000055
[화학식 1-2-16]
Figure PCTKR2023005396-appb-img-000056
[화학식 1-2-17]
Figure PCTKR2023005396-appb-img-000057
[화학식 1-2-18]
Figure PCTKR2023005396-appb-img-000058
[화학식 1-2-19]
Figure PCTKR2023005396-appb-img-000059
[화학식 1-2-20]
Figure PCTKR2023005396-appb-img-000060
[화학식 1-2-21]
Figure PCTKR2023005396-appb-img-000061
[화학식 1-2-22]
Figure PCTKR2023005396-appb-img-000062
[화학식 1-2-23]
Figure PCTKR2023005396-appb-img-000063
[화학식 1-2-24]
Figure PCTKR2023005396-appb-img-000064
[화학식 1-2-25]
Figure PCTKR2023005396-appb-img-000065
[화학식 1-2-26]
Figure PCTKR2023005396-appb-img-000066
[화학식 1-2-27]
Figure PCTKR2023005396-appb-img-000067
[화학식 1-2-28]
Figure PCTKR2023005396-appb-img-000068
[화학식 1-2-29]
Figure PCTKR2023005396-appb-img-000069
[화학식 1-2-30]
Figure PCTKR2023005396-appb-img-000070
[화학식 1-2-31]
Figure PCTKR2023005396-appb-img-000071
[화학식 1-2-32]
Figure PCTKR2023005396-appb-img-000072
[화학식 1-2-33]
Figure PCTKR2023005396-appb-img-000073
[화학식 1-2-34]
Figure PCTKR2023005396-appb-img-000074
[화학식 1-2-35]
Figure PCTKR2023005396-appb-img-000075
[화학식 1-2-36]
Figure PCTKR2023005396-appb-img-000076
[화학식 1-3-1]
Figure PCTKR2023005396-appb-img-000077
[화학식 1-3-2]
Figure PCTKR2023005396-appb-img-000078
[화학식 1-3-3]
Figure PCTKR2023005396-appb-img-000079
[화학식 1-3-4]
Figure PCTKR2023005396-appb-img-000080
[화학식 1-3-5]
Figure PCTKR2023005396-appb-img-000081
[화학식 1-3-6]
Figure PCTKR2023005396-appb-img-000082
[화학식 1-3-7]
Figure PCTKR2023005396-appb-img-000083
[화학식 1-3-8]
Figure PCTKR2023005396-appb-img-000084
[화학식 1-3-9]
Figure PCTKR2023005396-appb-img-000085
[화학식 1-3-10]
Figure PCTKR2023005396-appb-img-000086
[화학식 1-3-11]
Figure PCTKR2023005396-appb-img-000087
[화학식 1-3-12]
Figure PCTKR2023005396-appb-img-000088
[화학식 1-3-13]
Figure PCTKR2023005396-appb-img-000089
[화학식 1-3-14]
Figure PCTKR2023005396-appb-img-000090
[화학식 1-3-15]
Figure PCTKR2023005396-appb-img-000091
[화학식 1-3-16]
Figure PCTKR2023005396-appb-img-000092
[화학식 1-3-17]
Figure PCTKR2023005396-appb-img-000093
[화학식 1-3-18]
Figure PCTKR2023005396-appb-img-000094
[화학식 1-3-19]
Figure PCTKR2023005396-appb-img-000095
[화학식 1-3-20]
Figure PCTKR2023005396-appb-img-000096
[화학식 1-3-21]
Figure PCTKR2023005396-appb-img-000097
[화학식 1-3-22]
Figure PCTKR2023005396-appb-img-000098
[화학식 1-3-23]
Figure PCTKR2023005396-appb-img-000099
[화학식 1-3-24]
Figure PCTKR2023005396-appb-img-000100
[화학식 1-3-25]
Figure PCTKR2023005396-appb-img-000101
[화학식 1-3-26]
Figure PCTKR2023005396-appb-img-000102
[화학식 1-3-27]
Figure PCTKR2023005396-appb-img-000103
[화학식 1-3-28]
Figure PCTKR2023005396-appb-img-000104
[화학식 1-3-29]
Figure PCTKR2023005396-appb-img-000105
[화학식 1-3-30]
Figure PCTKR2023005396-appb-img-000106
[화학식 1-3-31]
Figure PCTKR2023005396-appb-img-000107
[화학식 1-3-32]
Figure PCTKR2023005396-appb-img-000108
[화학식 1-3-33]
Figure PCTKR2023005396-appb-img-000109
[화학식 1-3-34]
Figure PCTKR2023005396-appb-img-000110
[화학식 1-3-35]
Figure PCTKR2023005396-appb-img-000111
[화학식 1-3-36]
Figure PCTKR2023005396-appb-img-000112
.
다른 일 구현예에서는, 상기 화합물을 포함하는 전자재료용 색재료를 제공한다.
상기 화합물을 코어로 하고, 상기 코어를 둘러싸는 쉘을 더 포함할 수 있다.
상기 쉘은 하기 화학식 2로 표시될 수 있다:
[화학식 2]
Figure PCTKR2023005396-appb-img-000113
상기 화학식 2에서,
L1 및 L2는 각각 독립적으로, 치환 또는 비치환된 C1 내지 C10 알킬렌기이고;
Z1 및 Z2는 각각 독립적으로, *-CR-* 또는 질소 원자이고, 여기서 R은 수소 원자 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
X1 및 X2는 각각 독립적으로, 할로겐기 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
a1 및 a2은 각각 독립적으로 0 내지 4의 정수이고;
n은 2 내지 10의 정수이다.
또 다른 일 구현예는, 상기 화합물 및 상기 전자재료용 색재료 중 어느 하나를 포함하는 감광성 수지 조성물을 제공한다.
상기 감광성 수지 조성물은 바인더 수지, 광중합성 화합물, 광중합 개시제 및 용매를 더 포함할 수 있다.
또 다른 일 구현예는, 상기 감광성 수지 조성물을 이용하여 제조된 감광성 수지막을 제공한다.
또 다른 일 구현예는, 상기 감광성 수지막을 포함하는 컬러 필터를 제공한다.
또 다른 일 구현예는, 상기 컬러 필터를 포함하는 디스플레이 장치를 제공한다.
기타 본 발명의 측면들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
일 구현예에 따른 화합물은 감광성 수지 조성물 및 수지막 내에서 광학 특성, 내열성, 내화학성 등을 우수하게 발현하는 화합물로서, 안료를 대체하거나 이를 보완하여, 컬러 필터 제조에 유용하게 사용될 수 있다.
도 1은 상기 화학식 2로 표시되는 쉘의 케이지 너비(cage width)를 나타낸 도면이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다.  다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
(용어의 정의)
본 명세서에서 특별한 언급이 없는 한, "치환" 내지 "치환된"이란, 본 발명의 작용기 중의 하나 이상의 수소 원자가 할로겐 원자(F, Br, Cl 또는 I), 히드록시기, 니트로기, 시아노기, 아미노기(NH2, NH(R200) 또는 N(R201)(R202)이고, 여기서 R200, R201 및 R202는 동일하거나 서로 상이하며, 각각 독립적으로 C1 내지 C10 알킬기임), 아미디노기, 하이드라진기, 하이드라존기, 카르복실기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 알키닐기, 치환 또는 비치환된 지환족 유기기, 치환 또는 비치환된 아릴기, 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환된 것을 의미한다.
본 명세서에서 특별한 언급이 없는 한, "알킬기"란 C1 내지 C20 알킬기를 의미하고, 구체적으로는 C1 내지 C15 알킬기를 의미하고, "사이클로알킬기"란 C3 내지 C20 사이클로알킬기를 의미하고, 구체적으로는 C3 내지 C18 사이클로알킬기를 의미하고, "알콕시기"란 C1 내지 C20 알콕시기를 의미하고, 구체적으로는 C1 내지 C18 알콕시기를 의미하고, "아릴기"란 C6 내지 C20 아릴기를 의미하고, 구체적으로는 C6 내지 C18 아릴기를 의미하고, "알케닐기"란 C2 내지 C20 알케닐기를 의미하고, 구체적으로는 C2 내지 C18 알케닐기를 의미하고, "알킬렌기"란 C1 내지 C20 알킬렌기를 의미하고, 구체적으로는 C1 내지 C18 알킬렌기를 의미하고, "아릴렌기"란 C6 내지 C20 아릴렌기를 의미하고, 구체적으로는 C6 내지 C16 아릴렌기를 의미한다.
본 명세서에서 특별한 언급이 없는 한, "(메타)아크릴레이트"는 "아크릴레이트"와 "메타크릴레이트" 둘 다 가능함을 의미하며, "(메타)아크릴산"은 "아크릴산"과 "메타크릴산" 둘 다 가능함을 의미한다.
본 명세서에서 별도의 정의가 없는 한, "조합"이란 혼합 또는 공중합을 의미한다. 또한 "공중합"이란 블록 공중합 내지 랜덤 공중합을 의미하고, "공중합체"란 블록 공중합체 내지 랜덤 공중합체를 의미한다.
본 명세서 내 화학식에서 별도의 정의가 없는 한, 화학 결합이 그려져야 하는 위치에 화학결합이 그려져 있지 않은 경우는 상기 위치에 수소 원자가 결합되어 있음을 의미한다.
본 명세서에서 카도계 수지란, 하기 화학식 2-1 내지 화학식 2-11로 이루어진 군에서 선택된 하나 이상의 관능기가 수지 내 주골격(backbone)에 포함되는 수지를 의미한다.
또한, 본 명세서에서 별도의 정의가 없는 한, "*"는 동일하거나 상이한 원자 또는 화학식과 연결되는 부분을 의미한다.
(화합물)
일 구현예는 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2023005396-appb-img-000114
상기 화학식 1에서,
A 및 B는 각각 독립적으로, C6 내지 C20 방향족 고리, 또는 N, O 및 S로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 3개의 헤테로원자를 포함하는 C2 내지 C20 헤테로방향족 고리이고;
Y1 및 Y2는 각각 독립적으로, *-O-*, *-S-*, 또는 *-CR1R2-*이고; 여기서 R1 및 R2는 각각 독립적으로, 수소 원자, 할로겐 원자, 시아노기, 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
R3 및 R4는 각각 독립적으로, 수소 원자, 또는 치환 또는 비치환된 C1 내지 C20 알킬기이고;
x 및 y는 각각 독립적으로, 1 내지 18의 정수이다.
전자 재료 분야에서 일반적으로 알려진 스쿠아렌(Squarine, SQ)계 화합물은, 하기와 같은 1,3-스쿠아렌계 화합물이다.
Figure PCTKR2023005396-appb-img-000115
상기 1,3-스쿠아렌계 화합물은, 최대 흡수 파장(λmax)이 650 nm 내지 850 nm으로서, 녹색 염료로 사용되고 있다.
그에 반면, 상기 일 구현예에서는 상기 1,3-스쿠아렌계 화합물의 구조 이성질체인 1,2-스쿠아렌계 화합물을 제시하며, 이는 전자 재료 분야에서 알려지지 않은 화합물이다.
상기 1,2-스쿠아렌계 화합물은, 최대 흡수 파장(λmax)이 500nm 내지 580nm으로서 황색 염료로 기능할 수 있고, 이는 상기 1,3-스쿠아렌계 화합물과 전혀 다른 색을 구현할 수 있다.
더욱이, 일반적으로 알려진 황색 염료의 몰 흡광계수(ε)는 약 500,000 L mol-1 cm-1 내지 60,000 L mol-1 cm-1인 반면, 상기 1,2-스쿠아렌계 화합물은 900,000 L mol-1 cm-1 내지 100,000 L mol-1 cm-1로 현저히 높은 몰 흡광계수(ε)를 가진다.
여기서, "높은 몰 흡광계수"는 "하나의 분자가 흡수하는 광의 양이 많은 것"을 의미한다. 이에, 상기 1,2-스쿠아렌계 화합물은, 일반적으로 알려진 황색 염료에 대비하여, 감광성 수지 조성물에의 적용량을 줄이더라도 높은 수준의 색 재현성을 발휘할 수 있고, 감광성 수지 조성물 내 다른 고형분(예컨대, 광중합성 화합물 등)의 적용량을 늘리는 데에도 기여할 수 있다.
이하, 상기 일 구현예에 따른 화합물을 더욱 자세히 설명한다.
상기 A 및 B는 각각 독립적으로, 벤젠 고리 또는 나프탈렌 고리일 수 있다.
구체적으로, 상기 A 및 B 중 적어도 하나는 나프탈렌 고리일 수 있다. 이 경우, 상기 A 및 B 모두가 벤젠 고리인 경우에 대비하여, 상기 화합물의 최대 흡수 파장(λmax)이 더 높아질 수 있다.
예컨대, 상기 A 및 B 중 어느 하나는 나프탈렌 고리이고, 다른 하나는 벤젠 고리일 수 있다. 이처럼 비대칭 구조인 경우, 대칭 구조인 경우에 대비하여, 상기 화합물의 몰 흡광계수가 높아질 수 있다. 대칭 구조인 경우 분자의 전자공여성(Donor,D)-전자수용성(Acceptor,A)-전자공여성(D)의 구조에서 좌, 우의 D 구조가 동일하여 이로 인한 분자간의 중첩이 용이해지며, 그 결과 분자간의 상호작용에 의한 전자 준위의 간섭이 발생하여 흡광 그래프의 세기는 줄어들고 반치폭은 넓어지는 경향이 발생한다. 그에 반면, 비대칭 구조는 D-A-D’의 형태로 분자 간의 중첩이 상대적으로 용이하지 않아 분자 간 상호 작용이 줄어든다. 또한 비대칭 구조의 Donor 의 방향족 고리 외곽에 치환기가 도입될 경우 상기의 장점이 더 유리해질 수 있다. 높은 몰 흡광계수에 따른 효과는 전술한 바와 같다.
상기 Y1 및 Y2는 각각 독립적으로, *-O-*, *-S-*, 또는 *-C(CH3)2-*일 수 있다.
구체적으로, 상기 Y1 및 Y2는 서로 다를 수 있다. 이처럼 비대칭 구조인 경우, 대칭 구조인 경우에 대비하여, 상기 화합물의 몰 흡광계수가 높아질 수 있다. 높은 몰 흡광계수에 따른 효과는 전술한 바와 같다.
상기 R1 및 R2는 각각 독립적으로, 수소 원자, 할로겐 원자, 시아노기, 또는 치환 또는 비치환된 C1 내지 C20 알킬기이되; 상기 C1 내지 C20 알킬기의 치환기는 아황산(Sulfite, *-SO3)기, (메트)아크릴레이트기, 또는 에폭시기일 수 있다.
구체적으로, 여기서, 상기 C1 내지 C20 알킬기는 아황산(Sulfite, *-SO3)기, (메트)아크릴레이트기, 또는 에폭시기로 말단이 치환된 것일 수 있다. 상기 화합물의 모핵 구조가 동일할 때, 말단 치환기의 종류에 따라 상기 화합물의 특성이 일부 달라질 수 있다. 예컨대, 상기 말단 치환기가 아황산(Sulfite, *-SO3)기이면 ( ) 효과, (메트)아크릴레이트기이면 내열성, 에폭시기이면 내화학성을 각각 강화할 수 있다.
한편, 상기 R1 및 R2가 서로 다를 수 있다. 이처럼 비대칭 구조인 경우, 대칭 구조인 경우에 대비하여, 상기 화합물의 몰 흡광계수가 높아질 수 있다. 높은 몰 흡광계수에 따른 효과는 전술한 바와 같다.
상기 R3 및 R4는 각각 독립적으로, 치환 또는 비치환된 C1 내지 C20 알킬기이되; 상기 C1 내지 C20 알킬기의 치환기는 아황산(Sulfite, *-SO3)기, (메트)아크릴레이트기, 또는 에폭시기일 수 있다.
여기서, 상기 C1 내지 C20 알킬기는 아황산(Sulfite, *-SO3)기, (메트)아크릴레이트기, 또는 에폭시기로 말단이 치환된 것일 수 있다. 상기 말단 치환기에 의한 효과는 전술한 바와 같다.
한편,상기 R3 및 R4는 동일할 수 있다.
앞서 언급한 바와 같이, 상기 화합물의 최대 흡수 파장(λmax)은 500nm 내지 580nm일 수 있다.
구체적으로, 상기 A 및 B이 모두 벤젠 고리인 경우, 상기 화합물의 최대 흡수 파장(λmax)은 500nm 내지 550nm일 수 있다. 그에 반면, 상기 A 및 B 중 적어도 하나가 나프탈렌 고리인 경우, 상기 화합물의 최대 흡수 파장(λmax)은 550nm 내지 580nm로 높아질 수 있다.
앞서 설명한 바와 같이, 상기 화합물은 500nm 내지 580nm에서 최대 흡수 파장(λmax)이 나타나는데, 그 중에서도 520 nm 내지 550 nm의 파장 범위에서 흡광도 그래프의 기울기(즉, 흡광도/파장)가 가파를수록 몰 흡광계수가 높다.
이에, 상기 화합물은 일반적으로 알려진 황색 염료에 대비하여 몰 흡광계수가 현저히 높다.
보다 구체적으로, 상기 화합물은 몰 흡광계수(ε)는 90,000 L mol-1 cm-1 내지 120,000 L mol-1 cm-1일 수 있다.
여기서, 상기 화합물이 대칭 구조인 경우, 상기 화합물의 몰 흡광계수(ε)는 90,000 L mol-1 cm-1 내지 100,000 L mol-1 cm-1일 수 있다. 그에 반면, 상기 화합물이 비대칭 구조인 경우, 상기 화합물의 몰 흡광계수(ε)는 100,000 L mol-1 cm-1 내지 120,000 L mol-1 cm-1으로 높아질 수 있다.
상기 화합물은 하기 화학식 1-1 내지 1-3 중에서 선택될 수 있다:
[화학식 1-1]
Figure PCTKR2023005396-appb-img-000116
[화학식 1-2]
Figure PCTKR2023005396-appb-img-000117
[화학식 1-3]
Figure PCTKR2023005396-appb-img-000118
상기 화학식 1-1 내지 1-3에서,
상기 Y1, Y2, 및 R1 내지 R4의 정의는 제1항과 동일하되;
x1은 1 내지 6의 정수이고, y1은 1 내지 4의 정수이고;
x2 및 y2는 각각 독립적으로, 1 내지 4의 정수이고;
x3 및 y3는 각각 독립적으로, 1 내지 6의 정수이다.
상기 화학식 1-1 내지 1-3 중에서 최대 흡수 파장(λmax) 및 몰 흡광계수(ε)가 가장 높은 것은, 상기 A 및 B 중 적어도 하나가 나프탈렌 고리로서 비대칭 구조를 가지는 화학식 1-1의 화합물일 수 있다.
상기 화합물은 하기를 포함하는 군에서 선택될 수 있다:
[화학식 1-1-1]
Figure PCTKR2023005396-appb-img-000119
[화학식 1-1-2]
Figure PCTKR2023005396-appb-img-000120
[화학식 1-1-3]
Figure PCTKR2023005396-appb-img-000121
[화학식 1-1-4]
Figure PCTKR2023005396-appb-img-000122
[화학식 1-1-5]
Figure PCTKR2023005396-appb-img-000123
[화학식 1-1-6]
Figure PCTKR2023005396-appb-img-000124
[화학식 1-1-7]
Figure PCTKR2023005396-appb-img-000125
[화학식 1-1-8]
Figure PCTKR2023005396-appb-img-000126
[화학식 1-1-9]
Figure PCTKR2023005396-appb-img-000127
[화학식 1-1-10]
Figure PCTKR2023005396-appb-img-000128
[화학식 1-1-11]
Figure PCTKR2023005396-appb-img-000129
[화학식 1-1-12]
Figure PCTKR2023005396-appb-img-000130
[화학식 1-1-13]
Figure PCTKR2023005396-appb-img-000131
[화학식 1-1-14]
Figure PCTKR2023005396-appb-img-000132
[화학식 1-1-15]
Figure PCTKR2023005396-appb-img-000133
[화학식 1-1-16]
Figure PCTKR2023005396-appb-img-000134
[화학식 1-1-17]
Figure PCTKR2023005396-appb-img-000135
[화학식 1-1-18]
Figure PCTKR2023005396-appb-img-000136
[화학식 1-1-19]
Figure PCTKR2023005396-appb-img-000137
[화학식 1-1-20]
Figure PCTKR2023005396-appb-img-000138
[화학식 1-1-21]
Figure PCTKR2023005396-appb-img-000139
[화학식 1-1-22]
Figure PCTKR2023005396-appb-img-000140
[화학식 1-1-23]
Figure PCTKR2023005396-appb-img-000141
[화학식 1-1-24]
Figure PCTKR2023005396-appb-img-000142
[화학식 1-1-25]
Figure PCTKR2023005396-appb-img-000143
[화학식 1-1-26]
Figure PCTKR2023005396-appb-img-000144
[화학식 1-1-27]
Figure PCTKR2023005396-appb-img-000145
[화학식 1-1-28]
Figure PCTKR2023005396-appb-img-000146
[화학식 1-1-29]
Figure PCTKR2023005396-appb-img-000147
[화학식 1-1-30]
Figure PCTKR2023005396-appb-img-000148
[화학식 1-1-31]
Figure PCTKR2023005396-appb-img-000149
[화학식 1-1-32]
Figure PCTKR2023005396-appb-img-000150
[화학식 1-1-33]
Figure PCTKR2023005396-appb-img-000151
[화학식 1-1-34]
Figure PCTKR2023005396-appb-img-000152
[화학식 1-1-35]
Figure PCTKR2023005396-appb-img-000153
[화학식 1-1-36]
Figure PCTKR2023005396-appb-img-000154
[화학식 1-2-1]
Figure PCTKR2023005396-appb-img-000155
[화학식 1-2-2]
Figure PCTKR2023005396-appb-img-000156
[화학식 1-2-3]
Figure PCTKR2023005396-appb-img-000157
[화학식 1-2-4]
Figure PCTKR2023005396-appb-img-000158
[화학식 1-2-5]
Figure PCTKR2023005396-appb-img-000159
[화학식 1-2-6]
Figure PCTKR2023005396-appb-img-000160
[화학식 1-2-7]
Figure PCTKR2023005396-appb-img-000161
[화학식 1-2-8]
Figure PCTKR2023005396-appb-img-000162
[화학식 1-2-9]
Figure PCTKR2023005396-appb-img-000163
[화학식 1-2-10]
Figure PCTKR2023005396-appb-img-000164
[화학식 1-2-11]
Figure PCTKR2023005396-appb-img-000165
[화학식 1-2-12]
Figure PCTKR2023005396-appb-img-000166
[화학식 1-2-13]
Figure PCTKR2023005396-appb-img-000167
[화학식 1-2-14]
Figure PCTKR2023005396-appb-img-000168
[화학식 1-2-15]
Figure PCTKR2023005396-appb-img-000169
[화학식 1-2-16]
Figure PCTKR2023005396-appb-img-000170
[화학식 1-2-17]
Figure PCTKR2023005396-appb-img-000171
[화학식 1-2-18]
Figure PCTKR2023005396-appb-img-000172
[화학식 1-2-19]
Figure PCTKR2023005396-appb-img-000173
[화학식 1-2-20]
Figure PCTKR2023005396-appb-img-000174
[화학식 1-2-21]
Figure PCTKR2023005396-appb-img-000175
[화학식 1-2-22]
Figure PCTKR2023005396-appb-img-000176
[화학식 1-2-23]
Figure PCTKR2023005396-appb-img-000177
[화학식 1-2-24]
Figure PCTKR2023005396-appb-img-000178
[화학식 1-2-25]
Figure PCTKR2023005396-appb-img-000179
[화학식 1-2-26]
Figure PCTKR2023005396-appb-img-000180
[화학식 1-2-27]
Figure PCTKR2023005396-appb-img-000181
[화학식 1-2-28]
Figure PCTKR2023005396-appb-img-000182
[화학식 1-2-29]
Figure PCTKR2023005396-appb-img-000183
[화학식 1-2-30]
Figure PCTKR2023005396-appb-img-000184
[화학식 1-2-31]
Figure PCTKR2023005396-appb-img-000185
[화학식 1-2-32]
Figure PCTKR2023005396-appb-img-000186
[화학식 1-2-33]
Figure PCTKR2023005396-appb-img-000187
[화학식 1-2-34]
Figure PCTKR2023005396-appb-img-000188
[화학식 1-2-35]
Figure PCTKR2023005396-appb-img-000189
[화학식 1-2-36]
Figure PCTKR2023005396-appb-img-000190
[화학식 1-3-1]
Figure PCTKR2023005396-appb-img-000191
[화학식 1-3-2]
Figure PCTKR2023005396-appb-img-000192
[화학식 1-3-3]
Figure PCTKR2023005396-appb-img-000193
[화학식 1-3-4]
Figure PCTKR2023005396-appb-img-000194
[화학식 1-3-5]
Figure PCTKR2023005396-appb-img-000195
[화학식 1-3-6]
Figure PCTKR2023005396-appb-img-000196
[화학식 1-3-7]
Figure PCTKR2023005396-appb-img-000197
[화학식 1-3-8]
Figure PCTKR2023005396-appb-img-000198
[화학식 1-3-9]
Figure PCTKR2023005396-appb-img-000199
[화학식 1-3-10]
Figure PCTKR2023005396-appb-img-000200
[화학식 1-3-11]
Figure PCTKR2023005396-appb-img-000201
[화학식 1-3-12]
Figure PCTKR2023005396-appb-img-000202
[화학식 1-3-13]
Figure PCTKR2023005396-appb-img-000203
[화학식 1-3-14]
Figure PCTKR2023005396-appb-img-000204
[화학식 1-3-15]
Figure PCTKR2023005396-appb-img-000205
[화학식 1-3-16]
Figure PCTKR2023005396-appb-img-000206
[화학식 1-3-17]
Figure PCTKR2023005396-appb-img-000207
[화학식 1-3-18]
Figure PCTKR2023005396-appb-img-000208
[화학식 1-3-19]
Figure PCTKR2023005396-appb-img-000209
[화학식 1-3-20]
Figure PCTKR2023005396-appb-img-000210
[화학식 1-3-21]
Figure PCTKR2023005396-appb-img-000211
[화학식 1-3-22]
Figure PCTKR2023005396-appb-img-000212
[화학식 1-3-23]
Figure PCTKR2023005396-appb-img-000213
[화학식 1-3-24]
Figure PCTKR2023005396-appb-img-000214
[화학식 1-3-25]
Figure PCTKR2023005396-appb-img-000215
[화학식 1-3-26]
Figure PCTKR2023005396-appb-img-000216
[화학식 1-3-27]
Figure PCTKR2023005396-appb-img-000217
[화학식 1-3-28]
Figure PCTKR2023005396-appb-img-000218
[화학식 1-3-29]
Figure PCTKR2023005396-appb-img-000219
[화학식 1-3-30]
Figure PCTKR2023005396-appb-img-000220
[화학식 1-3-31]
Figure PCTKR2023005396-appb-img-000221
[화학식 1-3-32]
Figure PCTKR2023005396-appb-img-000222
[화학식 1-3-33]
Figure PCTKR2023005396-appb-img-000223
[화학식 1-3-34]
Figure PCTKR2023005396-appb-img-000224
[화학식 1-3-35]
Figure PCTKR2023005396-appb-img-000225
[화학식 1-3-36]
Figure PCTKR2023005396-appb-img-000226
.
상기로 구성되는 군에서 최대 흡수 파장(λmax) 및 몰 흡광계수(ε)가 가장 높은 것은, 상기 A 및 B 중 적어도 하나가 나프탈렌 고리로서 비대칭 구조를 가지는 화학식 1-1-1 내지 1-1-36의 화합물일 수 있다.
한편, 상기로 구성되는 군에서 모핵의 구조가 동일할 때, R3 및 R4의 각 말단 치환기에 따라 상기 화합물의 특성이 일부 달라질 수 있다. 상기 말단 치환기에 의한 효과는 전술한 바와 같다.
(전자재료용 색재료)
다른 일 구현예에서는, 상기 화합물을 포함하는 전자재료용 색재료를 제공한다.
여기서, 「전자 재료」란, 특별히 한정되는 것은 아니지만, 액정표시소자(LCD), 유기발광소자(OLED) 등의 디스플레이 장치; 전하 결합 소자(CCD: Charge Coupled Device) 및 CMOS(complementary metal-oxide semiconductor) 이미지 센서 등의 이미지 센서; 프리프레그, 수지 시트, 빌드업 재료, 비전도성 필름, 금속박 피복 적층판 및 프린트 배선판 등 전자 부품이나 전기 부품; 등에 사용되는 재료를 말한다.
앞서 설명한 바와 같이, 상기 화합물은 최대 흡수 파장(λmax)이 500nm 내지 580nm으로서 황색 염료로 기능할 수 있다. 더욱이, 상기 화합물은 90,000 L mol-1 cm-1 내지 100,000 L mol-1 cm-1로 현저히 높은 몰 흡광계수(ε)를 가지므로, 감광성 수지 조성물에의 적용량을 줄이더라도 높은 수준의 색 재현성을 발휘할 수 있고, 감광성 수지 조성물 내 다른 고형분(예컨대, 광중합성 화합물 등)의 적용량을 늘리는 데에도 기여할 수 있다.
이하, 전술한 내용과 중복되는 설명은 생략하고, 상기 전자재료용 색재료를 설명한다.
상기 화합물은, 충분히 우수한 내구성을 가지므로, 단독으로 사용되더라도 보관 안정성이 뛰어나다.
상기 화합물의 보관 안정성을 보완하기 위해, 상기 화합물을 코어로 하고, 상기 코어를 둘러싸는 쉘을 더 포함하는 코어-쉘 화합물을 제조할 수 있다.
구체적으로, 상기 쉘은 하기 화학식 2로 표시될 수 있다:
[화학식 2]
Figure PCTKR2023005396-appb-img-000227
상기 화학식 2에서,
L1 및 L2는 각각 독립적으로, 치환 또는 비치환된 C1 내지 C10 알킬렌기이고;
Z1 및 Z2는 각각 독립적으로, *-CR-* 또는 질소 원자이고, 여기서 R은 수소 원자 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
X1 및 X2는 각각 독립적으로, 할로겐기 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
a1 및 a2은 각각 독립적으로 0 내지 4의 정수이고;
n은 2 내지 10의 정수이다.
상기 화학식 2로 표시되는 쉘은 로탁산(Rotaxane)계 거대 고리형 화합물 화합물로서, 아마이드 결합(-CONH-)을 포함한다. 이에, 상기 화학식 2로 표시되는 쉘의 아마이드 결합에 포함된 수소 원자는, 상기 화학식 1로 표시되는 화합물의 산소 원자와 비공유 결합을 이룰 수 있다. 구체적으로, 상기 두 원자는 수소 결합을 이루어, 상기 코어-쉘 화합물의 내구성을 강화할 수 있다.
구체적으로, 상기 Z1 및 Z2 중 어느 하나는 *-CH-* 또는 질소 원자이고, 다른 하나는 *-CH-*일 수 있다. 상기 Z1 및 Z2 중 어느 하나로서 질소 원자를 도입할 때, 이를 전혀 도입하지 않은 경우에 대비하여, 상기 쉘과 상기 코어의 비공유 결합, 또는 상기 쉘 내부의 비공유 결합이 증가하여, 상기 코어-쉘 화합물의 내구성을 더욱 강화할 수 있다.
상기 X1 및 X2는 각각 독립적으로 할로겐기이고, d1+d2는 1 내지 8의 정수일 수 있다. 상기 X1 및 X2 중 적어도 하나로서 불소 원자를 도입할 때, 이를 전혀 도입하지 않은 경우에 대비하여, 상기 코어-쉘 화합물의 최대 흡수 피크가 장파장 영역으로 이동하여, 파장 정합성이 우수하게 구현할 수 있다. 예컨대, 상기 X1 및 X2는 모두 불소 원자(즉, F)이고, a1+a2는 8일 수 있다.
상기 L1 및 L2은 각각 독립적으로, C1 내지 C10 알킬렌기일 수 있다. 이 경우 용해도가 우수하고, 상기 쉘이 상기 코어를 둘러싸는 구조를 형성하기 쉽다. 예컨대, 상기 L1 및 L1은 모두 메틸렌기(즉, *-CH2-*)일 수 있다.
상기 n은 2일 수 있다.
상기 쉘은 하기 화학식 2-1 내지 2-4 중 어느 하나로 표시될 수 있다:
[화학식 2-1]
Figure PCTKR2023005396-appb-img-000228
[화학식 2-2]
Figure PCTKR2023005396-appb-img-000229
[화학식 2-3]
Figure PCTKR2023005396-appb-img-000230
[화학식 2-4]
Figure PCTKR2023005396-appb-img-000231
.
상기 2-1 내지 2-4 중에서 모핵의 구조가 동일할 때, 불소 원자로 치환된 쉘을 사용한 코어-쉘 화합물의 최대 흡수 피크를 보다 장파장 영역으로 이동시키는 효과가 있다.
상기 쉘의 케이지 너비(cage width)는 6.5Å 내지 7.5Å일 수 있으며, 상기 쉘의 체적은 10Å 내지 16Å일 수 있다. 본원에서 케이지 너비(cage width)라 함은 쉘 내부 거리, 예컨대 상기 화학식 2로 표시되는 쉘에서, 양쪽에 메틸렌기가 연결된, 서로 다른 2개의 페닐렌기 사이의 거리를 의미한다(도 1 참조). 상기 쉘이 상기 범위 내의 케이지 너비를 가지는 경우, 상기 화학식 1로 표시되는 코어를 둘러싸는 구조의 코어-쉘 화합물을 얻을 수 있고, 이에 따라 상기 코어-쉘 화합물을를 감광성 수지 조성물에 첨가할 경우 내구성이 우수하고 고휘도를 가지는 감광성 수지막을 구현할 수 있다.
한편, 상기 코어-쉘 화합물은 상기 화학식 1로 표시되는 화합물을 포함하는 코어 및 상기 쉘을 1:1의 몰비로 포함할 수 있다. 상기 코어 및 쉘이 상기 몰비로 존재할 경우 상기 화학식 1로 표시되는 화합물을 포함하는 코어를 둘러싸는 코팅층(쉘)이 잘 형성될 수 있다.
X1 및 X2는 각각 독립적으로, *-CR1R2-*, *-O-* 또는 *-S-* 이고; 상기 R1 및 R2는 각각 독립적으로, 수소 원자 또는 치환 또는 비치환된 C1 내지 C10 알킬기이다.
구체적으로, 상기 X1 및 X2는 각각 독립적으로 *-CR1R2-*이고, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C5 알킬기일 수 있다. 예컨대, 상기 R1 및 R2는 모두 CH3이고, 상기 X1 및 X2는 모두 *-C(CH3)2-*일 수 있다.
Y1 내지 Y4는 각각 독립적으로, 수소 원자, 할로겐 원자, 퓨라닐기, 시아노기, 치환 또는 비치환된 C1 내지 C20 알킬기, 또는 치환 또는 비치환된 C1 내지 C20 알콕시기이되; 상기 Y1 내지 Y4 중 하나 이상은 말단이 퓨라닐기로 치환된 C1 내지 C20 알콕시기기이다.
구체적으로, 상기 Y1 및 Y2 중 어느 하나는 말단이 퓨라닐기로 치환된 C1 내지 C20 알콕시기이고, 다른 하나는 수소 원자, 또는 치환 또는 비치환된 C1 내지 C10 알킬기일 수 있다. 예컨대, 상기 Y2는 말단이 퓨라닐기로 치환된 C1 내지 C20 알콕시기이고, Y1은 수소 원자일 수 있다.
또한, 상기 Y3 및 Y4 중 어느 하나는 말단이 퓨라닐기로 치환된 C1 내지 C20 알콕시기이고, 다른 하나는 수소 원자, 또는 치환 또는 비치환된 C1 내지 C10 알킬기일 수 있다. 예컨대, 상기 Y3는 말단이 퓨라닐기로 치환된 C1 내지 C20 알콕시기이고, Y4는 수소 원자일 수 있다.
A1 및 A2는 각각 독립적으로, 음이온 치환기이거나, 또는 말단에 음이온 치환기를 포함하는 C1 내지 C20 알킬기이다.
구체적으로, 상기 음이온 치환기는 하기 화학식 A-1 내지 화학식 A-5 중 어느 하나로 표시되는 치환기일 수 있다:
[화학식 A-1]
Figure PCTKR2023005396-appb-img-000232
[화학식 A-2]
Figure PCTKR2023005396-appb-img-000233
[화학식 A-3]
Figure PCTKR2023005396-appb-img-000234
[화학식 A-4]
Figure PCTKR2023005396-appb-img-000235
[화학식 A-5]
Figure PCTKR2023005396-appb-img-000236
.
L1 내지 L3는 각각 독립적으로, 동일하거나 상이하게, *-O-*, *-CO-*, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 또는 치환 또는 비치환된 C3 내지 C20 사이클로알킬렌기이다.
구체적으로, 상기 L1 및 L3는 각각 독립적으로, 치환 또는 비치환된 C1 내지 C10 알킬렌기일 수 있다. 예컨대, 상기 L1 및 L3는 각각 독립적으로, 치환 또는 비치환된 C1 내지 C5 알킬렌기일 수 있다.
또한, 상기 L2는 치환 또는 비치환된 C1 내지 C10 알킬렌기일 수 있다. 예컨대, 상기 L2는 치환 또는 비치환된 C1 내지 C5 알킬렌기일 수 있다.
a 내지 c는 각각 독립적으로, 1 내지 10의 정수, 구체적으로 1 내지 5의 정수, 예컨대 1 내지 3의 정수일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
[화학식 1-1]
Figure PCTKR2023005396-appb-img-000237
[화학식 1-2]
Figure PCTKR2023005396-appb-img-000238
[화학식 1-3]
Figure PCTKR2023005396-appb-img-000239
[화학식 1-4]
Figure PCTKR2023005396-appb-img-000240
[화학식 1-5]
Figure PCTKR2023005396-appb-img-000241
.
상기 화학식 1로 표시되는 화합물은 450nm 내지 780nm의 파장범위에서 최대 흡광도를 가질 수 있다.
(감광성 수지 조성물)
다른 일 구현예는, 상기 화합물 및 상기 전자재료용 색재료 중 어느 하나를 포함하는 감광성 수지 조성물을 제공한다.
이는, 상기 화합물 및 상기 전자재료용 색재료 중 어느 하나를 포함함에 따라, 광학 특성, 내열성, 내화학성 등을 우수하게 발현하고, 황색 컬러 필터 제조에 유용하게 사용될 수 있다.
상기 감광성 수지 조성물은, 상기 화합물 및 상기 전자재료용 색재료 중 어느 하나를 염료로서 포함하고, 바인더 수지, 광중합성 화합물, 광중합 개시제 및 용매를 더 포함할 수 있다.
이하, 상기 각 성분들에 대하여 구체적으로 설명한다.
착색제
상기 착색제는 염료를 포함하고, 상기 염료는 상기 화합물 및 상기 전자재료용 색재료 중 어느 하나를 포함할 수 있다.
상기 염료는 황색 염료일 수 있다.
상기 착색제는 상기 화합물 및 상기 전자재료용 색재료 중 어느 하나를 포함하는 것 외에도, 유기 용매 가용성 염료를 더 포함할 수 있다.
상기 유기 용매 가용성 염료의 예로는, 트리아릴메탄계 화합물, 안트라퀴논계 화합물, 벤질리덴계 화합물, 크산텐계 화합물, 프탈로시아닌계 화합물, 아자포피린계 화합물, 인디고계 화합물 등을 들 수 있다.
상기 착색제는 상기 염료 이외에, 안료를 더 포함할 수 있다.
상기 안료는 청색 안료, 바이올렛 안료, 적색 안료, 녹색 안료, 황색 안료 등을 포함할 수 있다.
상기 청색 안료의 예로는, C.I. 청색 안료 15:6, C.I. 청색 안료 15, C.I. 청색 안료 15:1, C.I. 청색 안료 15:2, C.I. 청색 안료 15:3, C.I. 청색 안료 15:4, C.I. 청색 안료 15:5, C.I. 청색 안료 16, C.I. 청색 안료 22, C.I. 청색 안료 60, C.I. 청색 안료 64, C.I. 청색 안료 80 또는 이들의 조합을 들 수 있다.  
상기 바이올렛 안료의 예로는, C.I. 바이올렛 안료 1, C.I. 바이올렛 안료 19, C.I. 바이올렛 안료 23, C.I. 바이올렛 안료 27, C.I. 바이올렛 안료 28, C.I. 바이올렛 안료 29, C.I. 바이올렛 안료 30, C.I. 바이올렛 안료 32, C.I. 바이올렛 안료 37, C.I. 바이올렛 안료 40, C.I. 바이올렛 안료 42, C.I. 바이올렛 안료 50 또는 이들의 조합을 들 수 있다.
상기 적색 안료의 예로는 C.I. 적색 안료 254, C.I. 적색 안료 255, C.I. 적색 안료 264, C.I. 적색 안료 270, C.I. 적색 안료 272, C.I. 적색 안료 177, C.I. 적색 안료 179, C.I. 적색 안료 89 등을 들 수 있다.
상기 녹색 안료의 예로는, C.I. 녹색 안료 7, C.I. 녹색 안료 36, C.I. 안료 녹색 58, C.I. 안료 녹색 59 등의 할로겐화 프탈로시아닌계 안료 등을 들 수 있다.  
상기 황색 안료의 예로는, C.I. 안료 황색 139, C.I. 안료 황색 138, C.I. 안료 황색 150 등을 들 수 있으며, 이들을 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 안료는 안료 분산액의 형태로 상기 감광성 수지 조성물에 포함될 수 있다.
상기 안료 분산액은 고형분의 안료, 용제 및 상기 용제 내에 상기 안료를 균일하게 분산시키기 위한 분산제를 포함할 수 있다.
상기 고형분의 안료는 안료 분산액 총량에 대하여 1 중량%내지 20 중량%, 예컨대 8 중량% 내지 20 중량%, 예컨대 8 중량% 내지 15 중량%, 예컨대 10 중량% 내지 20 중량%, 예컨대 10 중량% 내지 15 중량%로 포함될 수 있다.
상기 분산제로는 비이온성 분산제, 음이온성 분산제, 양이온성 분산제 등을 사용할 수 있다.  상기 분산제의 구체적인 예로는, 폴리알킬렌글리콜 및 이의 에스테르, 폴리옥시알킬렌, 다가알코올 에스테르 알킬렌 옥사이드 부가물, 알코올알킬렌 옥사이드 부가물, 술폰산 에스테르, 술폰산 염, 카르복실산 에스테르, 카르복실산 염, 알킬아미드 알킬렌 옥사이드 부가물, 알킬 아민 등을 들 수 있으며, 이들을 단독으로 또는 둘 이상 혼합하여 사용할 수 있다.
상기 분산제의 시판되는 제품을 예로 들면, BYK社의 DISPERBYK-101, DISPERBYK-130, DISPERBYK-140, DISPERBYK-160, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBYK-165, DISPERBYK-166, DISPERBYK-170, DISPERBYK-171, DISPERBYK-182, DISPERBYK-2000, DISPERBYK-2001 등; EFKA 케미칼社의EFKA-47, EFKA-47EA, EFKA-48, EFKA-49, EFKA-100, EFKA-400, EFKA-450 등; Zeneka社의 Solsperse 5000,Solsperse 12000, Solsperse 13240, Solsperse 13940, Solsperse 17000, Solsperse 20000, Solsperse24000GR, Solsperse 27000, Solsperse 28000 등; 또는 Ajinomoto社의 PB711, PB821 등이 있다.
상기 분산제는 안료 분산액 총량에 대하여 1 중량% 내지 20 중량%로 포함될 수 있다. 분산제가 상기 범위 내로 포함될 경우, 적절한 점도를 유지할 수 있어 감광성 수지 조성물의 분산성이 우수하며, 이로 인해 제품 적용시 광학적, 물리적 및 화학적 품질을 유지할 수 있다.
상기 안료 분산액을 형성하는 용제로는 에틸렌글리콜 아세테이트, 에틸셀로솔브, 프로필렌글리콜 (모노)메틸에테르아세테이트, 에틸락테이트, 폴리에틸렌글리콜, 사이클로헥사논, 프로필렌글리콜 메틸에테르 등을 사용할 수 있다.
상기 착색제는 상기 감광성 수지 조성물 총량에 대하여 5 중량% 내지 30 중량%, 예컨대 5 중량% 내지 25 중량%로 포함될 수 있다. 상기 착색제가 상기 범위 내로 포함될 경우,색 재현율이 우수하며, 패턴의 경화성 및 밀착성이 우수하다.
바인더 수지
상기 바인더 수지는 아크릴계 바인더 수지, 카도계 바인더 수지 또는 이들의 조합을 포함할 수 있다. 예컨대, 상기 바인더 수지는 아크릴계 바인더 수지일 수 있다.
상기 아크릴계 수지는 제1 에틸렌성 불포화 단량체및 이와 공중합 가능한 제2 에틸렌성 불포화 단량체의 공중합체로, 하나 이상의 아크릴계 반복단위를 포함하는 수지이다.  
상기 제1 에틸렌성 불포화 단량체는 하나 이상의 카르복시기를 함유하는 에틸렌성 불포화 단량체이며, 이의 구체적인 예로는아크릴산, 메타크릴산, 말레산, 이타콘산, 푸마르산또는 이들의 조합을 들 수 있다.
상기 제1 에틸렌성 불포화 단량체는 상기 아크릴계 바인더 수지 총량에 대하여 5 중량% 내지 50 중량%, 예컨대 10 중량% 내지 40 중량%로 포함될 수 있다.
상기 제2 에틸렌성 불포화 단량체는 스티렌, α-메틸스티렌, 비닐톨루엔, 비닐벤질메틸에테르 등의 방향족 비닐 화합물; 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 부틸(메타)아크릴레이트, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시 부틸(메타)아크릴레이트, 벤질(메타)아크릴레이트, 사이클로헥실(메타)아크릴레이트, 페닐(메타)아크릴레이트 등의 불포화 카르복시산 에스테르 화합물; 2-아미노에틸(메타)아크릴레이트, 2-디메틸아미노에틸(메타)아크릴레이트 등의 불포화 카르복시산 아미노 알킬 에스테르 화합물; 초산비닐, 안식향산 비닐 등의 카르복시산 비닐 에스테르 화합물; 글리시딜(메타)아크릴레이트 등의 불포화 카르복시산 글리시딜 에스테르 화합물; (메타)아크릴로니트릴 등의 시안화 비닐 화합물; (메타)아크릴아미드 등의 불포화 아미드 화합물; 등을 들 수 있으며, 이들을 단독으로 또는 둘 이상 혼합하여 사용할 수 있다.
상기 아크릴계 바인더 수지의 구체적인 예로는 (메타)아크릴산/벤질메타크릴레이트 공중합체, (메타)아크릴산/벤질메타크릴레이트/스티렌 공중합체, (메타)아크릴산/벤질메타크릴레이트/2-히드록시에틸메타크릴레이트 공중합체, (메타)아크릴산/벤질메타크릴레이트/스티렌/2-히드록시에틸메타크릴레이트 공중합체 등을 들 수 있으나, 이에 한정되는 것은 아니며, 이들을 단독 또는 2종 이상을 배합하여 사용할 수도 있다.
상기 아크릴계 바인더 수지의 중량평균 분자량은 3,000 g/mol 내지 150,000 g/mol, 예컨대 5,000 g/mol 내지 50,000 g/mol, 예컨대 20,000 g/mol 내지 30,000 g/mol 일 수 있다. 상기 아크릴계 바인더 수지의 중량평균 분자량이 상기 범위 내일 경우, 상기 감광성 수지 조성물의 물리적 및 화학적 물성이 우수하고 점도가 적절하며, 컬러 필터 제조시 기판과의 밀착성이 우수하다.  
상기 아크릴계 바인더 수지의 산가는 15 mgKOH/g 내지 60 mgKOH/g, 예컨대 20 mgKOH/g 내지 50 mgKOH/g 일 수 있다.  아크릴계 바인더 수지의 산가가 상기 범위 내일 경우 픽셀 패턴의 해상도가 우수하다.
상기 카도계 바인더 수지는 하기 화학식 3으로 표시되는 반복단위를 포함할 수 있다.
[화학식 3]
Figure PCTKR2023005396-appb-img-000242
상기 화학식 3에서,
R11 및 R12는 각각 독립적으로 수소원자 또는 치환 또는 비치환된 (메타)아크릴로일옥시알킬기이고,
R13 및 R14는 각각 독립적으로 수소원자, 할로겐 원자 또는 치환 또는 비치환된 C1 내지 C20 알킬기이고,
L3은 단일결합, O, CO, SO2, CR15R16, SiR17R18(여기서, R15 내지 R18은 각각 독립적으로 수소원자 또는 치환 또는 비치환된 C1 내지 C20 알킬기임) 또는 하기 화학식 4-1 내지 화학식 4-11로 표시되는 연결기 중 어느 하나이고,
[화학식 4-1]
Figure PCTKR2023005396-appb-img-000243
[화학식 4-2]
Figure PCTKR2023005396-appb-img-000244
[화학식 4-3]
Figure PCTKR2023005396-appb-img-000245
[화학식 4-4]
Figure PCTKR2023005396-appb-img-000246
[화학식 4-5]
Figure PCTKR2023005396-appb-img-000247
(상기 화학식 4-5에서,
Ra는 수소원자, 에틸기, C2H4Cl, C2H4OH, CH2CH=CH2 또는 페닐기이다.)
[화학식 4-6]
Figure PCTKR2023005396-appb-img-000248
[화학식 4-7]
Figure PCTKR2023005396-appb-img-000249
[화학식 4-8]
Figure PCTKR2023005396-appb-img-000250
[화학식 4-9]
Figure PCTKR2023005396-appb-img-000251
[화학식 4-10]
Figure PCTKR2023005396-appb-img-000252
[화학식 4-11]
Figure PCTKR2023005396-appb-img-000253
L4는 산이무수물 잔기이고,
m1 및 m2는 각각 독립적으로 0 내지 4의 정수이다.
상기 카도계 바인더 수지는 양 말단 중 적어도 하나에 하기 화학식 5로 표시되는 관능기를 포함할 수 있다.
[화학식 5]
Figure PCTKR2023005396-appb-img-000254
상기 화학식 5에서,
Z3은 하기 화학식 6-1 내지 화학식 6-7로 표시될 수 있다.
[화학식 6-1]
Figure PCTKR2023005396-appb-img-000255
(상기 화학식 6-1에서, Rb 및 Rc는 각각 독립적으로, 수소원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 에스테르기 또는 에테르기이다.)
[화학식 6-2]
Figure PCTKR2023005396-appb-img-000256
[화학식 6-3]
Figure PCTKR2023005396-appb-img-000257
[화학식 6-4]
Figure PCTKR2023005396-appb-img-000258
[화학식 6-5]
Figure PCTKR2023005396-appb-img-000259
(상기 화학식 6-5에서, Rd는 O, S, NH, 치환 또는 비치환된 C1 내지 C20 알킬렌기, C1 내지 C20 알킬아민기 또는 C2 내지 C20 알케닐아민기이다.)
[화학식 6-6]
Figure PCTKR2023005396-appb-img-000260
[화학식 6-7]
Figure PCTKR2023005396-appb-img-000261
상기 카도계 바인더 수지는 예컨대, 9,9-비스(4-옥시라닐메톡시페닐)플루오렌 등의 플루오렌 함유 화합물; 벤젠테트라카르복실산디무수물, 나프탈렌테트라카르복실산디무수물, 비페닐테트라카르복실산디무수물, 벤조페논테트라카르복실산디무수물, 피로멜리틱디무수물, 사이클로부탄테트라카르복실산디무수물,페릴렌테트라카르복실산디무수물, 테트라히드로푸란테트라카르복실산디무수물, 테트라하이드로프탈산무수물 등의 무수물 화합물; 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜 등의 글리콜 화합물; 메탄올, 에탄올, 프로판올, n-부탄올, 사이클로헥산올, 벤질알코올 등의 알코올 화합물; 프로필렌글리콜메틸에틸아세테이트, N-메틸피롤리돈 등의 용매류 화합물; 트리페닐포스핀 등의 인 화합물; 및 테트라메틸암모늄클로라이드, 테트라에틸암모늄브로마이드, 벤질디에틸아민, 트리에틸아민, 트리부틸아민, 벤질트리에틸암모늄클로라이드 등의 아민 또는 암모늄염 화합물 중에서 둘 이상을 혼합하여 제조할 수 있다.
상기 카도계 바인더 수지를 전술한 아크릴계 바인더 수지와 함께 사용할 경우, 밀착력이 우수하고, 고해상도 및 고휘도 특성을 가지는 감광성 수지 조성물을 얻을 수 있다.
상기 카도계 바인더 수지의 중량평균 분자량은 500 g/mol 내지 50,000 g/mol, 예컨대 3,000 g/mol 내지 30,000 g/mol 일 수 있다. 상기 카도계 바인더 수지의 중량평균 분자량이 상기 범위 내일 경우 컬러 필터 제조시 잔사없이 패턴 형성이 잘 되며, 현상시 막 두께의 손실이 없고, 양호한 패턴을 얻을 수 있다.
상기 카도계 바인더 수지는 100 mgKOH/g 내지 140 mgKOH/g의 산가를 가질 수 있다.
상기 바인더 수지는 상기 감광성 수지 조성물 총량에 대하여 1 중량% 내지 10 중량%, 예컨대 1 중량% 내지 7 중량%로 포함될 수 있다. 상기 바인더 수지가 상기 범위 내로 포함되는 경우 우수한 감도, 현상성 및 밀착성을 얻을 수 있다.
광중합성 화합물
상기 광중합성 화합물은 적어도 1개의 에틸렌성 불포화 이중결합을 가지는 (메타)아크릴산의 일관능 또는 다관능 에스테르가 사용될 수 있다.
광중합성 화합물은 상기 에틸렌성 불포화 이중결합을 가짐으로써, 패턴 형성 공정에서 노광시 충분한 중합을 일으킴으로써 내열성, 내광성 및 내화학성이 우수한 패턴을 형성할 수 있다.
광중합성 화합물의 구체적인 예로는, 에틸렌 글리콜 디(메타)아크릴레이트, 디에틸렌 글리콜 디(메타)아크릴레이트, 트리에틸렌 글리콜 디(메타)아크릴레이트, 프로필렌 글리콜 디(메타)아크릴레이트, 네오펜틸 글리콜 디(메타)아크릴레이트, 1,4-부탄디올 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트, 비스페놀A 디(메타)아크릴레이트, 펜타에리트리톨 디(메타)아크릴레이트, 펜타에리트리톨 트리(메타)아크릴레이트, 펜타에리트리톨 테트라(메타)아크릴레이트, 펜타에리트리톨 헥사(메타)아크릴레이트, 디펜타에리트리톨 디(메타)아크릴레이트, 디펜타에리트리톨 트리(메타)아크릴레이트, 디펜타에리트리톨 펜타(메타)아크릴레이트, 디펜타에리트리톨 헥사(메타)아크릴레이트, 비스페놀A 에폭시(메타)아크릴레이트, 에틸렌 글리콜 모노메틸에테르 (메타)아크릴레이트, 트리메틸올 프로판 트리(메타)아크릴레이트, 트리스(메타)아크릴로일옥시에틸 포스페이트, 노볼락에폭시 (메타)아크릴레이트 등을 들 수 있다.
광중합성 화합물의 시판되는 제품을 예로 들면 다음과 같다.  상기 (메타)아크릴산의 일관능 에스테르의 예로는, 도아 고세이 가가꾸 고교(주)社의 아로닉스 M-101®, 동 M-111®, 동 M-114® 등; 니혼 가야꾸(주)社의 KAYARAD TC-110S®, 동 TC-120S® 등; 오사카 유끼 가가꾸 고교(주)社의 V-158®, V-2311® 등을 들 수 있다. 상기 (메타)아크릴산의 이관능 에스테르의 예로는, 도아 고세이 가가꾸 고교(주)社의 아로닉스 M-210®, 동 M-240®, 동 M-6200® 등; 니혼 가야꾸(주)社의 KAYARAD HDDA®, 동 HX-220®, 동 R-604® 등; 오사카 유끼 가가꾸 고교(주)社의 V-260®, V-312®, V-335 HP® 등을 들 수 있다.  상기 (메타)아크릴산의 삼관능 에스테르의 예로는, 도아 고세이 가가꾸 고교(주)社의 아로닉스 M-309®, 동 M-400®, 동 M-405®, 동 M-450®, 동 M-710®, 동 M-8030®, 동 M-8060® 등; 니혼 가야꾸(주)社의 KAYARAD TMPTA®, 동 DPCA-20®, 동-30®, 동-60®, 동-120® 등; 오사카 유끼 가야꾸 고교(주)社의 V-295®, 동-300®, 동-360®, 동-GPT®, 동-3PA®, 동-400® 등을 들 수 있다.  상기 제품을 단독 사용 또는 2종 이상 함께 사용할 수 있다.
상기 광중합성 화합물은 보다 우수한 현상성을 부여하기 위하여 산무수물로 처리하여 사용할 수도 있다.
상기 광중합성 화합물은 상기 감광성 수지 조성물 총량에 대하여 5 중량% 내지 15 중량%, 예컨대 5 중량% 내지 10 중량%로 포함될 수 있다. 상기 광중합성 화합물이 상기 범위 내로 포함될 경우, 패턴 형성 공정에서 노광시 경화가 충분히 일어나 신뢰성이 우수하며, 패턴의 내열성, 내광성 및 내화학성이 우수하며, 해상도 및 밀착성 또한 우수하다.
광중합 개시제
상기 광중합 개시제는 감광성 수지 조성물에 일반적으로 사용되는 개시제로서, 예를 들어 아세토페논계 화합물, 벤조페논계 화합물, 티오크산톤계 화합물, 벤조인계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 조합을 사용할 수 있다.
상기 아세토페논계 화합물의 예로는, 2,2'-디에톡시 아세토페논, 2,2'-디부톡시 아세토페논, 2-히드록시-2-메틸프로피오페논, p-t-부틸트리클로로 아세토페논, p-t-부틸디클로로 아세토페논, 4-클로로 아세토페논, 2,2'-디클로로-4-페녹시 아세토페논, 2-메틸-1-(4-(메틸티오)페닐)-2-모폴리노프로판-1-온, 2-벤질-2-디메틸아미노-1-(4-모폴리노페닐)-부탄-1-온 등을 들 수 있다.
상기 벤조페논계 화합물의 예로는, 벤조페논, 벤조일 안식향산, 벤조일 안식향산 메틸, 4-페닐 벤조페논, 히드록시 벤조페논, 아크릴화 벤조페논, 4,4'-비스(디메틸 아미노)벤조페논, 4,4'-비스(디에틸아미노)벤조페논, 4,4'-디메틸아미노벤조페논, 4,4'-디클로로벤조페논, 3,3'-디메틸-2-메톡시벤조페논 등을 들 수 있다.
상기 티오크산톤계 화합물의 예로는, 티오크산톤, 2-메틸티오크산톤, 이소프로필 티오크산톤, 2,4-디에틸 티오크산톤, 2,4-디이소프로필 티오크산톤, 2-클로로티오크산톤 등을 들 수 있다.
상기 벤조인계 화합물의 예로는, 벤조인, 벤조인 메틸 에테르, 벤조인 에틸 에테르, 벤조인 이소프로필 에테르, 벤조인 이소부틸 에테르, 벤질디메틸케탈 등을 들 수 있다.
상기 트리아진계 화합물의 예로는, 2,4,6-트리클로로-s-트리아진, 2-페닐 4,6-비스(트리클로로메틸)-s-트리아진, 2-(3', 4'-디메톡시스티릴)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(4'-메톡시나프틸)-4,6-비스(트리클로로메틸)-s-트리아진,2-(p-메톡시페닐)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(p-톨릴)-4,6-비스(트리클로로 메틸)-s-트리아진, 2-비페닐 4,6-비스(트리클로로 메틸)-s-트리아진, 비스(트리클로로메틸)-6-스티릴-s-트리아진, 2-(나프토-1-일)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(4-메톡시나프토-1-일)-4,6-비스(트리클로로메틸)-s-트리아진, 2-4-비스(트리클로로메틸)-6-피페로닐-s-트리아진, 2-4-비스(트리클로로메틸)-6-(4-메톡시스티릴)-s-트리아진 등을 들 수 있다.
상기 옥심계 화합물의 예로는, O-아실옥심계 화합물, 2-(o-벤조일옥심)-1-[4-(페닐티오)페닐]-1,2-옥탄디온, 1-(o-아세틸옥심)-1-[9-에틸-6-(2-메틸벤조일)-9H-카르바졸-3-일]에탄온, O-에톡시카르보닐-α-옥시아미노-1-페닐프로판-1-온 등을 사용할 수 있다. 상기 O-아실옥심계 화합물의 구체적인 예로는, 1,2-옥탄디온, 2-디메틸아미노-2-(4-메틸벤질)-1-(4-모르폴린-4-일-페닐)-부탄-1-온, 1-(4-페닐술파닐페닐)-부탄-1,2-디온-2-옥심-O-벤조에이트, 1-(4-페닐술파닐페닐)-옥탄-1,2-디온-2-옥심-O-벤조에이트, 1-(4-페닐술파닐페닐)-옥탄-1-온옥심-O-아세테이트, 1-(4-페닐술파닐페닐)-부탄-1-온옥심-O-아세테이트 등을 들 수 있다.
상기 광중합 개시제는 상기 화합물 이외에도 카바졸계 화합물, 디케톤류 화합물, 술포늄 보레이트계 화합물, 디아조계 화합물, 이미다졸계 화합물, 비이미다졸계 화합물, 플루오렌계 화합물 등을 사용할 수 있다.
상기 광중합 개시제는 빛을 흡수하여 들뜬 상태가 된 후 그 에너지를 전달함으로써 화학반응을 일으키는 광 증감제와 함께 사용될 수도 있다.
상기 광 증감제의 예로는, 테트라에틸렌글리콜 비스-3-머캡토 프로피오네이트, 펜타에리트리톨 테트라키스-3-머캡토 프로피오네이트, 디펜타에리트리톨 테트라키스-3-머캡토 프로피오네이트 등을 들 수 있다.
상기 광중합 개시제는 상기 감광성 수지 조성물 총량에 대하여 0.1 중량% 내지 5 중량%, 예컨대 0.1 중량% 내지 3 중량%로 포함될 수 있다. 상기 광중합 개시제가 상기 범위 내로 포함될 경우, 패턴 형성 공정에서 노광시 경화가 충분히 일어나 우수한 신뢰성을 얻을 수 있으며, 패턴의 내열성, 내광성 및 내화학성이 우수하고, 해상도 및 밀착성 또한 우수하며, 미반응 개시제로 인한 투과율의 저하를 막을 수 있다.
용매
상기 용매는 일 구현예에 따른 화합물, 안료, 바인더 수지, 광중합성 화합물 및 광중합 개시제 등과의 상용성을 가지되 반응하지 않는 물질들이 사용될 수 있다.
상기 용매의 예로는, 메탄올, 에탄올 등의 알코올류; 디클로로에틸 에테르, n-부틸 에테르, 디이소아밀 에테르, 메틸페닐 에테르, 테트라히드로퓨란 등의 에테르류; 에틸렌 글리콜 모노메틸에테르, 에틸렌 글리콜 모노에틸에테르 등의 글리콜 에테르류; 메틸 셀로솔브 아세테이트, 에틸 셀로솔브 아세테이트, 디에틸 셀로솔브 아세테이트 등의 셀로솔브 아세테이트류; 메틸에틸 카르비톨, 디에틸 카르비톨, 디에틸렌 글리콜 모노메틸에테르, 디에틸렌 글리콜 모노에틸에테르, 디에틸렌 글리콜 디메틸에테르, 디에틸렌 글리콜 메틸에틸에테르, 디에틸렌 글리콜 디에틸에테르 등의 카르비톨류; 프로필렌 글리콜 모노메틸에테르 아세테이트, 프로필렌 글리콜 프로필에테르 아세테이트 등의 프로필렌 글리콜 알킬에테르 아세테이트류; 톨루엔, 크실렌 등의 방향족 탄화수소류; 메틸에틸케톤, 사이클로헥사논, 4-히드록시-4-메틸-2-펜타논, 메틸-n-프로필케톤, 메틸-n-부틸케톤, 메틸-n-아밀케톤, 2-헵타논 등의 케톤류; 초산 에틸, 초산-n-부틸, 초산 이소부틸 등의 포화 지방족 모노카르복실산 알킬 에스테르류; 젖산 메틸, 젖산 에틸 등의 젖산 에스테르류; 옥시 초산 메틸, 옥시 초산 에틸, 옥시 초산 부틸 등의 옥시 초산 알킬 에스테르류; 메톡시 초산 메틸, 메톡시 초산 에틸, 메톡시 초산 부틸, 에톡시 초산 메틸, 에톡시 초산 에틸 등의 알콕시 초산 알킬 에스테르류; 3-옥시 프로피온산 메틸, 3-옥시 프로피온산 에틸 등의 3-옥시 프로피온산 알킬에스테르류; 3-메톡시 프로피온산 메틸, 3-메톡시 프로피온산 에틸, 3-에톡시 프로피온산 에틸, 3-에톡시 프로피온산 메틸 등의 3-알콕시 프로피온산 알킬 에스테르류; 2-옥시 프로피온산 메틸, 2-옥시 프로피온산 에틸, 2-옥시 프로피온산 프로필 등의 2-옥시 프로피온산 알킬 에스테르류; 2-메톡시 프로피온산 메틸, 2-메톡시 프로피온산 에틸, 2-에톡시 프로피온산 에틸, 2-에톡시 프로피온산 메틸 등의 2-알콕시 프로피온산 알킬 에스테르류; 2-옥시-2-메틸 프로피온산 메틸, 2-옥시-2-메틸 프로피온산 에틸 등의 2-옥시-2-메틸 프로피온산 에스테르류, 2-메톡시-2-메틸 프로피온산 메틸, 2-에톡시-2-메틸 프로피온산 에틸 등의 2-알콕시-2-메틸 프로피온산 알킬류의 모노옥시 모노카르복실산 알킬 에스테르류; 2-히드록시 프로피온산 에틸, 2-히드록시-2-메틸 프로피온산 에틸, 히드록시 초산 에틸, 2-히드록시-3-메틸 부탄산 메틸 등의 에스테르류; 피루빈산 에틸 등의 케톤산 에스테르류 등이 있으며, 또한, N-메틸포름아미드, N,N-디메틸포름아미드, N-메틸포름아닐라드, N-메틸아세트아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈, 디메틸술폭시드, 벤질에틸에테르, 디헥실에테르, 아세틸아세톤, 이소포론, 카프론산, 카프릴산, 1-옥탄올, 1-노난올, 벤질알코올, 초산 벤질, 안식향산 에틸, 옥살산 디에틸, 말레인산 디에틸, γ-부티로락톤, 탄산 에틸렌, 탄산 프로필렌, 페닐 셀로솔브 아세테이트 등의 고비점 용매를 들 수 있다.
이들 중 좋게는 상용성 및 반응성을 고려하여, 에틸렌 글리콜 모노에틸에테르 등의 글리콜 에테르류; 에틸 셀로솔브 아세테이트 등의 에틸렌 글리콜 알킬에테르 아세테이트류; 2-히드록시 프로피온산 에틸 등의 에스테르류; 디에틸렌 글리콜 모노메틸에테르 등의 카르비톨류; 프로필렌 글리콜 모노메틸에테르 아세테이트, 프로필렌 글리콜 프로필에테르 아세테이트 등의 프로필렌 글리콜 알킬에테르 아세테이트류가 사용될 수 있다.
상기 용매는 상기 감광성 수지 조성물 총량에 대하여 잔부량, 예컨대 40 중량% 내지 80 중량%로 포함될 수 있다. 상기 용매가 상기 범위 내로 포함될 경우 상기 감광성 수지 조성물이 적절한 점도를 가짐에 따라 컬러 필터 내 감광성 수지막 제조시 공정성이 우수하다.
기타 첨가제
상기 감광성 수지 조성물은 도포시 얼룩이나 반점을 방지하고, 레벨링 성능을 개선하기 위해, 또한 미현상에 의한 잔사의 생성을 방지하기 위하여, 말론산; 3-아미노-1,2-프로판디올; 카르복실기, 메타크릴로일기, 이소시아네이트기, 에폭시기 등의 반응성 치환기를 갖는 실란계 커플링제; 레벨링제; 불소계 계면활성제; 라디칼 중합 개시제 등의 첨가제를 더 포함할 수 있다.
상기 실란계 커플링제의 예로는, 트리메톡시실릴 벤조산, γ-메타크릴 옥시프로필 트리메톡시실란, 비닐 트리아세톡시실란, 비닐 트리메톡시실란, γ-이소시아네이트 프로필 트리에톡시실란, γ-글리시독시 프로필 트리메톡시실란, β-(3,4-에폭시사이클로헥실)에틸트리메톡시실란 등을 들 수 있으며, 이들을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 실란계 커플링제는 감광성 수지 조성물 100 중량부에 대하여 0.01 중량부 내지 10 중량부로 포함될 수 있다. 실란계 커플링제가 상기 범위 내로 포함될 경우 밀착성, 저장성 등이 우수하다.
상기 감광성 수지 조성물은 기판과의 밀착성 등을 개선하기 위해 에폭시 화합물을 더 포함할 수 있다.
상기 에폭시 화합물의 예로는, 페놀 노볼락 에폭시 화합물, 테트라메틸 비페닐 에폭시 화합물, 비스페놀 A형 에폭시 화합물, 지환족 에폭시화합물 또는 이들의 조합을 들 수 있다.
상기 에폭시 화합물은 감광성 수지 조성물 100 중량부에 대하여 0.01 중량부 내지 20 중량부, 예컨대 0.1 중량부 내지 10 중량부로 포함될 수 있다.  에폭시 화합물이 상기 범위 내로 포함될 경우 밀착성, 저장성 등이 우수하다.
또한 상기 감광성 수지 조성물은 필요에 따라 코팅성 향상 및 결점 생성 방지 효과를 위해 계면 활성제를 더 포함할 수 있다.
상기 계면활성제로는 불소계 계면활성제를 사용할 수 있고, 상기 불소계 계면활성제의 예로는 DIC社의 F-482, F-484, F-478, F-554 등이 있으며, 이에 한정되는 것은 아니다.
상기 계면활성제는 감광성 수지 조성물 100 중량부에 대하여 0.001 중량부 내지 5 중량부로 사용될 수 있다.  계면활성제가 상기 범위 내로 포함될 경우 코팅 균일성이 확보되고, 얼룩이 발생하지 않으며, 유리 기판에 대한 습윤성(wetting)이 우수하다.
또한 상기 감광성 수지 조성물은 물성을 저해하지 않는 범위 내에서 산화방지제, 안정제 등의 기타 첨가제가 일정량 첨가될 수도 있다.
(감광성 수지막, 컬러 필터 및 디스플레이 장치)
다른 일 구현예에 따르면, 상기 감광성 수지 조성물을 이용하여 제조된 감광성 수지막을 제공한다. 또 다른 일 구현예에 따르면, 상기 감광성 수지막을 포함하는 컬러 필터를 제공한다.
상기 컬러 필터 내 패턴 형성 공정은 다음과 같다.
상기 감광성 수지 조성물을 지지 기판 상에 스핀 코팅, 슬릿 코팅, 잉크젯 프린팅 등으로 도포하는 공정; 상기 도포된 감광성 수지 조성물을 건조하여 감광성 수지 조성물 막을 형성하는 공정; 상기 감광성 수지 조성물 막을 노광하는 공정; 상기 노광된 감광성 수지 조성물 막을 알칼리 수용액으로 현상하여 감광성 수지막을 제조하는 공정; 및 상기 감광성 수지막을 가열 처리하는 공정을 포함한다. 상기 공정 상의 조건 등에 대하여는 당해 분야에서 널리 알려진 사항이므로, 본 명세서에서 자세한 설명은 생략하기로 한다.
또 다른 일 구현예에 따르면, 상기 컬러 필터를 포함하는 디스플레이 장치를 제공한다. 상기 디스플레이 장치는 액정표시소자(LCD), 유기발광소자(OLED) 등일 수 있다.
이하, 실시예를 들어 본 발명에 대해서 더욱 상세하게 설명할 것이나, 하기의 실시예는 본 발명의 바람직한 실시예일 뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
(화합물의 합성)
합성예 1: 화학식 1-1-1로 표시되는 화합물의 합성
A) 3-부틸-2-메틸나프토[2,1-d][1,3]옥사졸-3-륨 요오드화염 1당량을 포함한 에탄올(10 fold)용액을 트리에틸아민 1당량, 에틸 스쿠아레이트 1당량을 포함한 에탄올(1 fold) 용액에 상온에서 적하한후 20시간을 교반 후, 3hr 간 동안 환류가열하였다. 반응의 종결은 박막 크로마토그래피를 이용하여 확인하였고, 반응 종결 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물은 실리카 크로마토그래피를 이용하여 정제하였다.
B) A)에서 얻은 3-에톡시-4-{[(2Z)-3-부틸-2H,3H-나프토[2,1-d][1,3]옥사졸-2-일리덴]메틸}시클로부탄-1,2-디온 1당량과 3-부틸-2-메틸-1,3-벤조옥사졸-3-륨 요오드화염 1당량, 트리에틸아민 0.1당량을 포함한 에탄올(10fold) 용액을 환류가열하였다. 2시간 후 박막 크로마토그래피를 이용해 반응의 종결을 확인 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물을 실리카 크로마토그래피를 이용하여 정제하였다.
1H-NMR (δ ppm) : 7.67-7.61(m,2H), 7.23-7.18(m,2H), 7.10(d,1H), 7.08(d,1H), 6.78-6.57(m,4H), 5.32(s,1H), 4.56(s,1H), 3.71(dd,2H), 3.54-3.45(m,4H), 1.71-1.65(m,4H), 1.54-1.47(m,4H), 1.00(t,6H); LC-MS(m/z): 509.6
[화학식 1-1-1]
Figure PCTKR2023005396-appb-img-000262
합성예 2: 화학식 1-1-5로 표시되는 화합물의 합성
합성예 1의 A)에서 얻은 화합물인 3-에톡시-4-{[(2Z)-3-부틸-2H,3H-나프토[2,1-d][1,3]옥사졸-2-일리덴]메틸}시클로부탄-1,2-디온 1당량과 3-부틸-2-메틸-1,3-벤조티아졸-3-륨 요오드화염 1당량, 트리에틸아민 0.1당량을 포함한 에탄올(10fold) 용액을 환류가열하였다. 2시간 후 박막 크로마토그래피를 이용해 반응의 종결을 확인 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물을 실리카 크로마토그래피를 이용하여 정제하였다. 1H-NMR (δ ppm) : 7.67-7.61(m,2H), 7.23-7.18(m,2H), 7.10(d,1H), 7.08(d,1H), 6.81-6.59(m,4H), 5.48(s,1H), 4.56 (s,1H), 3.71(dd,2H), 3.54-3.45(m,4H), 1.71-1.65(m,4H), 1.54-1.47(m,4H), 1.00(m,6H); LC-MS(m/z): 525.7
[화학식 1-1-5]
Figure PCTKR2023005396-appb-img-000263
합성예 3: 화학식 1-1-9로 표시되는 화합물의 합성
합성예 1의 A)에서 얻은 화합물인 3-에톡시-4-{[(2Z)-3-부틸-2H,3H-나프토[2,1-d][1,3]옥사졸-2-일리덴]메틸}시클로부탄-1,2-디온 1당량과 3-부틸-2-메틸-1,1’-ㅣ메틸인돌륨 요오드화염 1당량, 트리에틸아민 0.1당량을 포함한 에탄올(10fold) 용액을 환류가열하였다. 2시간 후 박막 크로마토그래피를 이용해 반응의 종결을 확인 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물을 실리카 크로마토그래피를 이용하여 정제하였다. 1H-NMR (δ ppm) : 7.67-7.61(m,2H), 7.23-7.18(m,2H), 7.10(d,1H), 7.08(d,1H), 6.81-6.59(m,4H), 5.48(s,1H), 4.56 (s,1H), 3.71(dd,2H), 3.54-3.45(m,4H), 1.71-1.65(m,4H), 1.54-1.47(m,4H), 1.37(s, 6H), 1.01(m,6H); LC-MS(m/z): 535.2
[화학식 1-1-9]
Figure PCTKR2023005396-appb-img-000264
합성예 4: 화학식 1-1-10으로 표시되는 화합물의 합성
A) 3-(4-술폰부틸)-2-메틸나프토[2,1-d][1,3]옥사졸-3-륨 요오드화염 1당량을 포함한 에탄올(10 fold)용액을 트리에틸아민 1당량, 에틸 스쿠아레이트 1당량을 포함한 에탄올(1 fold) 용액에 상온에서 적하한후 20시간을 교반 후, 3hr 간 동안 환류가열하였다. 반응의 종결은 박막 크로마토그래피를 이용하여 확인하였고, 반응 종결 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물은 실리카 크로마토그래피를 이용하여 정제하였다.
B) A)에서 얻은 3-에톡시-4-{[(2Z)-3-(4-술폰부틸)-2H,3H-나프토[2,1-d][1,3]옥사졸-2-일리덴]메틸}시클로부탄-1,2-디온 1당량과 3-(4-술폰부틸)-2-메틸-1,1’-디메틸인돌륨 요오드화염 1당량, 트리에틸아민 0.1당량을 포함한 에탄올(10fold) 용액을 환류가열하였다. 2시간 후 박막 크로마토그래피를 이용해 반응의 종결을 확인 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물을 실리카 크로마토그래피를 이용하여 정제하였다.
1H-NMR (δ ppm) : 7.67-7.61(m,2H), 7.23-7.18(m,2H), 7.10(d,1H), 7.08(d,1H), 6.81-6.59(m,4H), 5.48(s,1H), 4.56 (s,1H), 3.71(dd,2H), 3.54-3.45(m,4H), 3.06(t,2H), 3.00(t,2H), 1.71-1.65(m,4H), 1.54-1.47(m,4H), 1.37(s, 6H); LC-MS(m/z): 693.1
[화학식 1-1-10]
Figure PCTKR2023005396-appb-img-000265
합성예 5: 화학식 1-1-11로 표시되는 화합물의 합성
A) 3-(4-아크릴로일부틸)-2-메틸나프토[2,1-d][1,3]옥사졸-3-륨 요오드화염 1당량을 포함한 에탄올(10 fold)용액을 트리에틸아민 1당량, 에틸 스쿠아레이트 1당량을 포함한 에탄올(1 fold) 용액에 상온에서 적하한후 20시간을 교반 후, 3hr 간 동안 환류가열하였다. 반응의 종결은 박막 크로마토그래피를 이용하여 확인하였고, 반응 종결 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물은 실리카 크로마토그래피를 이용하여 정제하였다.
B) A)에서 얻은 3-에톡시-4-{[(2Z)-3-(4-아크릴로일부틸)-2H,3H-나프토[2,1-d][1,3]옥사졸-2-일리덴]메틸}시클로부탄-1,2-디온 1당량과 3-(4-아크릴로일부틸)-2-메틸-1,1’-디메틸인돌륨 요오드화염 1당량, 트리에틸아민 0.1당량을 포함한 에탄올(10fold) 용액을 환류가열하였다. 2시간 후 박막 크로마토그래피를 이용해 반응의 종결을 확인 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물을 실리카 크로마토그래피를 이용하여 정제하였다.
1H-NMR (δ ppm) : 7.67-7.61(m,2H), 7.23-7.18(m,2H), 7.10(d,1H), 7.08(d,1H), 6.81-6.59(m,4H), 6.37(dd,2H), 6.08(dd,2H), 5.95(dd,2H), 5.48(s,1H), 4.56 (s,1H), 4.16(m,4H), 3.71(dd,2H), 3.54-3.45(m,4H), 1.71-1.65(m,4H), 1.54-1.47(m,4H), 1.37(s, 6H); LC-MS(m/z): 675.2
[화학식 1-1-11]
Figure PCTKR2023005396-appb-img-000266
합성예 6: 화학식 1-1-12로 표시되는 화합물의 합성
A) 3-(4-에폭시부틸)-2-메틸나프토[2,1-d][1,3]옥사졸-3-륨 요오드화염 1당량을 포함한 에탄올(10 fold)용액을 트리에틸아민 1당량, 에틸 스쿠아레이트 1당량을 포함한 에탄올(1 fold) 용액에 상온에서 적하한후 20시간을 교반 후, 3hr 간 동안 환류가열하였다. 반응의 종결은 박막 크로마토그래피를 이용하여 확인하였고, 반응 종결 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물은 실리카 크로마토그래피를 이용하여 정제하였다.
B) A)에서 얻은 3-에톡시-4-{[(2Z)-3-(4-에폭시부틸)-2H,3H-나프토[2,1-d][1,3]옥사졸-2-일리덴]메틸}시클로부탄-1,2-디온 1당량과 3-(4-에폭시부틸)-2-메틸-1,1’-디메틸인돌륨 요오드화염 1당량, 트리에틸아민 0.1당량을 포함한 에탄올(10fold) 용액을 환류가열하였다. 2시간 후 박막 크로마토그래피를 이용해 반응의 종결을 확인 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물을 실리카 크로마토그래피를 이용하여 정제하였다.
1H-NMR (δ ppm) : 7.67-7.61(m,2H), 7.23-7.18(m,2H), 7.10(d,1H), 7.08(d,1H), 6.81-6.59(m,4H), 5.48(s,1H), 4.56 (s,1H), 3.71(dd,2H), 3.54-3.45(m,4H), 2.86-2.81(m,2H), 2.59-2.55(m,2H), 2.47-2.41(m,2H), 1.71-1.65(m,4H), 1.56-1.47(m,8H), 1.37(s, 6H); LC-MS(m/z): 618.2
[화학식 1-1-12]
Figure PCTKR2023005396-appb-img-000267
합성예 7: 화학식 1-2-1로 표시되는 화합물의 합성
3-부틸-2-메틸벤조옥사졸-3-륨 요오드화염 2당량을 포함한 에탄올(10 fold)용액을 트리에틸아민 1당량, 에틸 스쿠아레이트 1당량을 포함한 에탄올(1 fold) 용액에 상온에서 적하한후 20시간을 교반 후, 3hr 간 동안 환류가열하였다. 반응의 종결은 박막 크로마토그래피를 이용하여 확인하였고, 반응 종결 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물은 실리카 크로마토그래피를 이용하여 정제하였다. 1H-NMR (δ ppm) : 6.78-6.57(m,8H), 4.56 (s,2H), 3.71(dd,2H), 3.66(t,2H), 3.54(t,2H), 1.71.65(m,4H), 1.54-1.47(m,4H), 1.02(t,6H); LC-MS(m/z): 458.03
[화학식 1-2-1]
Figure PCTKR2023005396-appb-img-000268
합성예 8: 화학식 1-3-1로 표시되는 화합물의 합성
3-부틸-2-메틸나프토[2,1-d][1,3]옥사졸-3-륨 요오드화염 2당량을 포함한 에탄올(10 fold)용액을 트리에틸아민 1당량, 에틸 스쿠아레이트 1당량을 포함한 에탄올(1 fold) 용액에 상온에서 적하한후 20시간을 교반 후, 3hr 간 동안 환류가열하였다. 반응의 종결은 박막 크로마토그래피를 이용하여 확인하였고, 반응 종결 후 가열을 멈추고 회전 농축기를 이용하여 용매를 제거하였다. 남은 생성물은 실리카 크로마토그래피를 이용하여 정제하였다. 1H-NMR (δ ppm) : 7.67-7.61(m,4H), 7.23-7.18(m,4H), 7.10(d,2H), 7.08(d,2H), 5.48(s,1H), 4.56 (s,1H), 3.71(dd,2H), 3.54-3.45(m,4H), 1.71-1.65(m,4H), 1.54-1.47(m,4H), 1.03(m,6H); LC-MS(m/z): 559.3
[화학식 1-3-1]
Figure PCTKR2023005396-appb-img-000269
비교합성예 1: 화학식 A로 표시되는 화합물의 합성
KR 10-2194873 B1에 기재된 방법으로, 하기 화학식 A로 표시되는 화합물(CAS No. 1982310-13-3)을 합성하였다:
[화학식 A]
Figure PCTKR2023005396-appb-img-000270
(감광성 수지 조성물의 합성)
실시예 1
하기 언급된 구성 성분들을 하기 표 1에 나타낸 조성으로 혼합하여 실시예 1에 따른 감광성 수지 조성물을 제조하였다.
구체적으로, 용매에 광중합 개시제를 녹인 후 2 시간 동안 상온에서 교반한 다음, 여기에 아크릴계 바인더 수지 및 광중합성 화합물을 첨가하여 2시간 동안 상온에서 교반하였다. 이어서, 얻어진 상기 반응물에 착색제로서 화학식 1-1-1로 표시되는 화합물(염료) 및 안료(안료 분산액 형태)를 넣고 1시간 동안 상온에서 교반하였다. 이어 상기 생성물을 3회 여과하여 불순물을 제거함으로써, 감광성 수지 조성물을 제조하였다.
(단위: 중량%)
배합원료 함량
착색제 염료 화학식 1-1-1로 표시되는 화합물 5.0
안료 분산액 Pigment Y138 안료 분산액 15.0
알칼리 가용성 수지 (A)/(B)=15/85(w/w),
분자량(Mw)=22,000g/mol
(A): 메타크릴산
(B): 벤질메타크릴레이트
3.5
광중합성 화합물 디펜타에리트리톨헥사아크릴레이트(DPHA) 8.0
광중합 개시제 1,2-옥탄디온 1.0
2-디메틸아미노-2-(4-메틸-벤질)-1-(4-모르폴린-4-일-페닐)-부탄-1-온 0.5
용매 사이클로헥사논 37.0
PGMEA(Propylene Glycol Monomethyl Ether Acetate) 30.0
총량(Total) 100.00
실시예 2화학식 1-1-1로 표시되는 화합물 대신 화학식 1-1-5로 표시되는 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 하여, 감광성 수지 조성물을 제조하였다.
실시예 3
화학식 1-1-1로 표시되는 화합물 대신 화학식 1-1-9으로 표시되는 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 하여, 감광성 수지 조성물을 제조하였다.
실시예 4
화학식 1-1-1로 표시되는 화합물 대신 화학식 1-1-10으로 표시되는 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 하여, 감광성 수지 조성물을 제조하였다.
실시예 5
화학식 1-1-1로 표시되는 화합물 대신 화학식 1-1-11로 표시되는 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 하여, 감광성 수지 조성물을 제조하였다.
실시예 6
화학식 1-1-1로 표시되는 화합물 대신 화학식 1-1-12로 표시되는 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 하여, 감광성 수지 조성물을 제조하였다.
실시예 7
화학식 1-1-1로 표시되는 화합물 대신 화학식 1-2-1로 표시되는 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 하여, 감광성 수지 조성물을 제조하였다.
실시예 8
화학식 1-1-1로 표시되는 화합물 대신 화학식 1-3-1로 표시되는 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 하여, 감광성 수지 조성물을 제조하였다.
비교예 1
화학식 1-1-1로 표시되는 화합물 대신 화학식 A로 표시되는 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 하여, 감광성 수지 조성물을 제조하였다.
평가 1: 광 특성
상기 합성예 1 내지 합성예 8, 및 비교합성예 1에서 제조된 화합물을 이용하여, 광 특성을 평가하였다.
구체적으로, 상기 합성예 1 내지 합성예 8, 및 비교합성예 1에서 제조된 화합물을 희석 용제(PGMEA)와 혼합하여 0.005wt% 농도의 희석액을 제조하고, 이를 자외선 가시분광 광도계(모델명: UV-2550, 제조사: 시마주제작소(島津製作所))로 분석하여 흡수 스펙트럼을 얻었다.
상기 합성예 1 내지 합성예 8, 및 비교합성예 1에서 제조된 화합물에 대한 각 흡수 스펙트럼에서, 최대 흡광도를 나타내는 파장(λmax) 및 몰 흡광계수(ε)를 파악하여 하기 표 2에 기재하였다.
최대 흡수 파장(nm) 몰 흡광계수(L mol-1 cm-1)
합성예 1 512 97,240
합성예 2 510 98,160
합성예 3 517 114,100
합성예 4 519 113,200
합성예 5 518 101,485
합성예 6 519 103,425
합성예 7 504 89,160
합성예 8 517 93,100
비교합성예 1 432 45,333
상기 표 3에 따르면, 상기 합성예 1 내지 8의 화합물은 최대 흡수 파장(λmax)이 500nm 내지 580nm으로서 황색 염료로 기능할 수 있고, 이는 최대 흡수 파장(λmax)이 700 nm 내지 850 nm인 1,3-스쿠아렌계 화합물과 전혀 다른 색을 구현할 수 있다.또한, 일반적으로 알려진 황색 염료(비교합성예 1)의 몰 흡광계수(ε)는 약 40,000 L mol-1 cm-1 내지 60,000 L mol-1 cm-1인 반면, 상기 합성예 1 내지 8의 화합물은 90,000 L mol-1 cm-1 내지 100,000 L mol-1 cm-1로 현저히 높은 몰 흡광계수(ε)를 가진다.
이에, 상기 합성예 1 내지 8의 화합물로 대표되는 일 구현예의 화합물은, 일반적으로 알려진 황색 염료에 대비하여, 감광성 수지 조성물에의 적용량을 줄이더라도 높은 수준의 색 재현성을 발휘할 수 있고, 감광성 수지 조성물 내 다른 고형분(예컨대, 광중합성 화합물 등)의 적용량을 늘리는 데에도 기여할 수 있다.
한편, 상기 합성예 1 내지 8의 화합물 중에서 최대 흡수 파장(λmax) 및 몰 흡광계수(ε)가 가장 높은 것은, 적어도 한 쪽에 나프탈렌 고리를 포함하여 비대칭 구조를 가지는 화합물(합성예 1 내지 6)이다.
평가 2: 색 특성(휘도), 내열성 및 내화학성
탈지 세척한 두께 1 mm의 유리 기판 상에 1 ㎛ 내지 3 ㎛의 두께로 상기 실시예 1 내지 실시예 8, 및 비교예 1에서 제조한 감광성 수지 조성물을 스핀 코터를 이용하여 유리 기판에서 250rpm 내지 350rpm의 조건으로 코팅한 뒤, 90℃의 열판(hot plate)에서 프리베이킹을 진행하였다. 그 후 노광기에서 50mJ/cm2의 조건으로 전면 노광을 진행한 뒤, 현상기에서 111배 KOH 현상액을 이용하여 수세액/현상액=1/0.8의 조건에서 60초 현상, 60초 수세를 진행하여 현상 이력을 주었다. 현상 후 230℃/20분 오븐(oven)에서 포스트베이킹을 진행하여 색 시편(Color chip)을 제작 완료하였다.
(1) 색 특성: 상기 제작된 색 시편을 MCPD(오츠카社) 장비를 이용하여 C광원 기준 색 특성을 평가하였고, 그 결과를 Rx 0.658 기준에서 휘도(RY)를 계산하여, 하기 표 4에 나타내었다.
(2) 내열성: 상기 제작된 색 시편을 추가로 컨백션 오븐을 이용하여 230℃/60분 처리한 후에, 처리 전과 처리 후의 색 변화를 MCPD(오츠카社) 장비를 이용하여 C광원 기준 색 특성을 평가하였고, 그 결과를 △Eab* 값을 계산하여, 하기 표 4에 나타내었다.
(3) 내화학성: 상기 제작된 색 시편을 1㎝×5㎝ 사이즈로 제작한 후, NMP 용액에 80℃에서 3분 동안 침전시키고, 침전되었던 NMP를 UV VIS를 사용하여 ABS. 분석을 진행하였다. 각각의 색 시편 별 ABS, 정량 곡선을 구한 뒤, 용출된 양을 계산하여, 하기 표 3에 나타내었다.
휘도 (%) 내열성 (@230℃, 60min) 내화학성 (ppm)
합성예 1 18.24 2.15 1.2
합성예 2 18.17 2.24 1.3
합성예 3 18.15 2.36 1.3
합성예 4 18.13 1.34 1.1
합성예 5 18.22 0.95 0.8
합성예 6 18.24 1.28 0.7
합성예 7 18.15 2.26 1.3
합성예 8 18.21 2.14 1.1
비교합성예 1 17.75 1.04 0.9
상기 합성예 1 내지 8의 화합물은 모두, 상기 비교합성예 1의 화합물에 대비하여 휘도, 내열성, 및 내화학성이 우수하다. 한편, 상기 합성예 1 내지 8의 화합물 중에서도, 모핵의 구조가 동일할 때, 말단 치환기에 따라 상기 화합물의 특성이 일부 달라진다. 말단 치환기의 종류에 따라 상기 화합물의 특성이 일부 달라질 수 있다. 예컨대, 상기 말단 치환기가 아황산(Sulfite, *-SO3)기이면 수용성(합성예 4), (메트)아크릴레이트기이면 내열성(합성예 5), 에폭시기이면 내화학성(합성예 6)을 각각 강화할 수 있다.
이상 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고, 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (21)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2023005396-appb-img-000271
    상기 화학식 1에서,
    A 및 B는 각각 독립적으로, C6 내지 C20 방향족 고리, 또는 N, O 및 S로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 3개의 헤테로원자를 포함하는 C2 내지 C20 헤테로방향족 고리이고;
    Y1 및 Y2는 각각 독립적으로, *-O-*, *-S-*, 또는 *-CR1R2-*이고; 여기서 R1 및 R2는 각각 독립적으로, 수소 원자, 할로겐 원자, 시아노기, 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
    R3 및 R4는 각각 독립적으로, 수소 원자, 또는 치환 또는 비치환된 C1 내지 C20 알킬기이고;
    x 및 y는 각각 독립적으로, 1 내지 18의 정수이다.
  2. 제1항에 있어서,
    상기 A 및 B는 각각 독립적으로, 벤젠 고리 또는 나프탈렌 고리인 화합물.
  3. 제2항에 있어서,
    상기 A 및 B 중 적어도 하나는 나프탈렌 고리인 화합물.
  4. 제1항에 있어서,
    상기 Y1 및 Y2는 각각 독립적으로, *-O-*, *-S-*, 또는 *-C(CH3)2-*인 화합물.
  5. 제4항에 있어서,
    상기 Y1 및 Y2가 서로 다른 화합물.
  6. 제1항에 있어서,
    상기 R1 및 R2는 각각 독립적으로, 수소 원자, 할로겐 원자, 시아노기, 또는 치환 또는 비치환된 C1 내지 C20 알킬기이되; 상기 C1 내지 C20 알킬기의 치환기는 아황산(Sulfite, *-SO3)기, (메트)아크릴레이트기, 또는 에폭시기인 화합물.
  7. 제6항에 있어서,
    상기 R1 및 R2가 서로 다른 화합물.
  8. 제1항에 있어서,
    상기 R3 및 R4는 각각 독립적으로, 치환 또는 비치환된 C1 내지 C20 알킬기이되; 상기 C1 내지 C20 알킬기의 치환기는 아황산(Sulfite, *-SO3)기, (메트)아크릴레이트기, 또는 에폭시기인 화합물.
  9. 제8항에 있어서,
    상기 R3 및 R4는 동일한 화합물.
  10. 제1항에 있어서,
    상기 화합물의 최대 흡수 파장(λmax)은 500nm 내지 580nm인 화합물.
  11. 제1항에 있어서,
    상기 화합물은 몰 흡광계수(ε)는 90,000 L mol-1 cm-1 내지 120,000 L mol-1 cm-1인 화합물.
  12. 제1항에 있어서,
    상기 화합물은 하기 화학식 1-1 내지 1-3 중에서 선택되는 화합물:
    [화학식 1-1]
    Figure PCTKR2023005396-appb-img-000272
    [화학식 1-2]
    Figure PCTKR2023005396-appb-img-000273
    [화학식 1-3]
    Figure PCTKR2023005396-appb-img-000274
    상기 화학식 1-1 내지 1-3에서,
    상기 Y1, Y2, 및 R1 내지 R4의 정의는 제1항과 동일하되;
    x1은 1 내지 6의 정수이고, y1은 1 내지 4의 정수이고;
    x2 및 y2는 각각 독립적으로, 1 내지 4의 정수이고;
    x3 및 y3는 각각 독립적으로, 1 내지 6의 정수이다.
  13. 제1항에 있어서,
    상기 화합물은 하기를 포함하는 군에서 선택되는 화합물:
    [화학식 1-1-1]
    Figure PCTKR2023005396-appb-img-000275
    [화학식 1-1-2]
    Figure PCTKR2023005396-appb-img-000276
    [화학식 1-1-3]
    Figure PCTKR2023005396-appb-img-000277
    [화학식 1-1-4]
    Figure PCTKR2023005396-appb-img-000278
    [화학식 1-1-5]
    Figure PCTKR2023005396-appb-img-000279
    [화학식 1-1-6]
    Figure PCTKR2023005396-appb-img-000280
    [화학식 1-1-7]
    Figure PCTKR2023005396-appb-img-000281
    [화학식 1-1-8]
    Figure PCTKR2023005396-appb-img-000282
    [화학식 1-1-9]
    Figure PCTKR2023005396-appb-img-000283
    [화학식 1-1-10]
    Figure PCTKR2023005396-appb-img-000284
    [화학식 1-1-11]
    Figure PCTKR2023005396-appb-img-000285
    [화학식 1-1-12]
    Figure PCTKR2023005396-appb-img-000286
    [화학식 1-1-13]
    Figure PCTKR2023005396-appb-img-000287
    [화학식 1-1-14]
    Figure PCTKR2023005396-appb-img-000288
    [화학식 1-1-15]
    Figure PCTKR2023005396-appb-img-000289
    [화학식 1-1-16]
    Figure PCTKR2023005396-appb-img-000290
    [화학식 1-1-17]
    Figure PCTKR2023005396-appb-img-000291
    [화학식 1-1-18]
    Figure PCTKR2023005396-appb-img-000292
    [화학식 1-1-19]
    Figure PCTKR2023005396-appb-img-000293
    [화학식 1-1-20]
    Figure PCTKR2023005396-appb-img-000294
    [화학식 1-1-21]
    Figure PCTKR2023005396-appb-img-000295
    [화학식 1-1-22]
    Figure PCTKR2023005396-appb-img-000296
    [화학식 1-1-23]
    Figure PCTKR2023005396-appb-img-000297
    [화학식 1-1-24]
    Figure PCTKR2023005396-appb-img-000298
    [화학식 1-1-25]
    Figure PCTKR2023005396-appb-img-000299
    [화학식 1-1-26]
    Figure PCTKR2023005396-appb-img-000300
    [화학식 1-1-27]
    Figure PCTKR2023005396-appb-img-000301
    [화학식 1-1-28]
    Figure PCTKR2023005396-appb-img-000302
    [화학식 1-1-29]
    Figure PCTKR2023005396-appb-img-000303
    [화학식 1-1-30]
    Figure PCTKR2023005396-appb-img-000304
    [화학식 1-1-31]
    Figure PCTKR2023005396-appb-img-000305
    [화학식 1-1-32]
    Figure PCTKR2023005396-appb-img-000306
    [화학식 1-1-33]
    Figure PCTKR2023005396-appb-img-000307
    [화학식 1-1-34]
    Figure PCTKR2023005396-appb-img-000308
    [화학식 1-1-35]
    Figure PCTKR2023005396-appb-img-000309
    [화학식 1-1-36]
    Figure PCTKR2023005396-appb-img-000310
    [화학식 1-2-1]
    Figure PCTKR2023005396-appb-img-000311
    [화학식 1-2-2]
    Figure PCTKR2023005396-appb-img-000312
    [화학식 1-2-3]
    Figure PCTKR2023005396-appb-img-000313
    [화학식 1-2-4]
    Figure PCTKR2023005396-appb-img-000314
    [화학식 1-2-5]
    Figure PCTKR2023005396-appb-img-000315
    [화학식 1-2-6]
    Figure PCTKR2023005396-appb-img-000316
    [화학식 1-2-7]
    Figure PCTKR2023005396-appb-img-000317
    [화학식 1-2-8]
    Figure PCTKR2023005396-appb-img-000318
    [화학식 1-2-9]
    Figure PCTKR2023005396-appb-img-000319
    [화학식 1-2-10]
    Figure PCTKR2023005396-appb-img-000320
    [화학식 1-2-11]
    Figure PCTKR2023005396-appb-img-000321
    [화학식 1-2-12]
    Figure PCTKR2023005396-appb-img-000322
    [화학식 1-2-13]
    Figure PCTKR2023005396-appb-img-000323
    [화학식 1-2-14]
    Figure PCTKR2023005396-appb-img-000324
    [화학식 1-2-15]
    Figure PCTKR2023005396-appb-img-000325
    [화학식 1-2-16]
    Figure PCTKR2023005396-appb-img-000326
    [화학식 1-2-17]
    Figure PCTKR2023005396-appb-img-000327
    [화학식 1-2-18]
    Figure PCTKR2023005396-appb-img-000328
    [화학식 1-2-19]
    Figure PCTKR2023005396-appb-img-000329
    [화학식 1-2-20]
    Figure PCTKR2023005396-appb-img-000330
    [화학식 1-2-21]
    Figure PCTKR2023005396-appb-img-000331
    [화학식 1-2-22]
    Figure PCTKR2023005396-appb-img-000332
    [화학식 1-2-23]
    Figure PCTKR2023005396-appb-img-000333
    [화학식 1-2-24]
    Figure PCTKR2023005396-appb-img-000334
    [화학식 1-2-25]
    Figure PCTKR2023005396-appb-img-000335
    [화학식 1-2-26]
    Figure PCTKR2023005396-appb-img-000336
    [화학식 1-2-27]
    Figure PCTKR2023005396-appb-img-000337
    [화학식 1-2-28]
    Figure PCTKR2023005396-appb-img-000338
    [화학식 1-2-29]
    Figure PCTKR2023005396-appb-img-000339
    [화학식 1-2-30]
    Figure PCTKR2023005396-appb-img-000340
    [화학식 1-2-31]
    Figure PCTKR2023005396-appb-img-000341
    [화학식 1-2-32]
    Figure PCTKR2023005396-appb-img-000342
    [화학식 1-2-33]
    Figure PCTKR2023005396-appb-img-000343
    [화학식 1-2-34]
    Figure PCTKR2023005396-appb-img-000344
    [화학식 1-2-35]
    Figure PCTKR2023005396-appb-img-000345
    [화학식 1-2-36]
    Figure PCTKR2023005396-appb-img-000346
    [화학식 1-3-1]
    Figure PCTKR2023005396-appb-img-000347
    [화학식 1-3-2]
    Figure PCTKR2023005396-appb-img-000348
    [화학식 1-3-3]
    Figure PCTKR2023005396-appb-img-000349
    [화학식 1-3-4]
    Figure PCTKR2023005396-appb-img-000350
    [화학식 1-3-5]
    Figure PCTKR2023005396-appb-img-000351
    [화학식 1-3-6]
    Figure PCTKR2023005396-appb-img-000352
    [화학식 1-3-7]
    Figure PCTKR2023005396-appb-img-000353
    [화학식 1-3-8]
    Figure PCTKR2023005396-appb-img-000354
    [화학식 1-3-9]
    Figure PCTKR2023005396-appb-img-000355
    [화학식 1-3-10]
    Figure PCTKR2023005396-appb-img-000356
    [화학식 1-3-11]
    Figure PCTKR2023005396-appb-img-000357
    [화학식 1-3-12]
    Figure PCTKR2023005396-appb-img-000358
    [화학식 1-3-13]
    Figure PCTKR2023005396-appb-img-000359
    [화학식 1-3-14]
    Figure PCTKR2023005396-appb-img-000360
    [화학식 1-3-15]
    Figure PCTKR2023005396-appb-img-000361
    [화학식 1-3-16]
    Figure PCTKR2023005396-appb-img-000362
    [화학식 1-3-17]
    Figure PCTKR2023005396-appb-img-000363
    [화학식 1-3-18]
    Figure PCTKR2023005396-appb-img-000364
    [화학식 1-3-19]
    Figure PCTKR2023005396-appb-img-000365
    [화학식 1-3-20]
    Figure PCTKR2023005396-appb-img-000366
    [화학식 1-3-21]
    Figure PCTKR2023005396-appb-img-000367
    [화학식 1-3-22]
    Figure PCTKR2023005396-appb-img-000368
    [화학식 1-3-23]
    Figure PCTKR2023005396-appb-img-000369
    [화학식 1-3-24]
    Figure PCTKR2023005396-appb-img-000370
    [화학식 1-3-25]
    Figure PCTKR2023005396-appb-img-000371
    [화학식 1-3-26]
    Figure PCTKR2023005396-appb-img-000372
    [화학식 1-3-27]
    Figure PCTKR2023005396-appb-img-000373
    [화학식 1-3-28]
    Figure PCTKR2023005396-appb-img-000374
    [화학식 1-3-29]
    Figure PCTKR2023005396-appb-img-000375
    [화학식 1-3-30]
    Figure PCTKR2023005396-appb-img-000376
    [화학식 1-3-31]
    Figure PCTKR2023005396-appb-img-000377
    [화학식 1-3-32]
    Figure PCTKR2023005396-appb-img-000378
    [화학식 1-3-33]
    Figure PCTKR2023005396-appb-img-000379
    [화학식 1-3-34]
    Figure PCTKR2023005396-appb-img-000380
    [화학식 1-3-35]
    Figure PCTKR2023005396-appb-img-000381
    [화학식 1-3-36]
    Figure PCTKR2023005396-appb-img-000382
    .
  14. 제1항의 화합물을 포함하는 전자재료용 색재료.
  15. 제14항에 있어서,
    제1항의 화합물을 코어로 하고, 상기 코어를 둘러싸는 쉘을 더 포함하는 전자재료용 색재료.
  16. 제15항에 있어서,
    상기 쉘은 하기 화학식 2로 표시되는 전자재료용 색재료:
    [화학식 2]
    Figure PCTKR2023005396-appb-img-000383
    상기 화학식 2에서,
    L1 및 L2는 각각 독립적으로, 치환 또는 비치환된 C1 내지 C10 알킬렌기이고;
    Z1 및 Z2는 각각 독립적으로, *-CR-* 또는 질소 원자이고, 여기서 R은 수소 원자 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
    X1 및 X2는 각각 독립적으로, 할로겐기 또는 치환 또는 비치환된 C1 내지 C10 알킬기이고;
    a1 및 a2은 각각 독립적으로 0 내지 4의 정수이고;
    n은 2 내지 10의 정수이다.
  17. 제1항 내지 제13항의 화합물 및 제14항 내지 제16항의 전자재료용 색재료 중 어느 하나를 포함하는 감광성 수지 조성물.
  18. 제17항에 있어서,
    상기 감광성 수지 조성물은 바인더 수지, 광중합성 화합물, 광중합 개시제 및 용매를 더 포함하는 감광성 수지 조성물.
  19. 제18항의 감광성 수지 조성물을 이용하여 제조된 감광성 수지막.
  20. 제19항의 감광성 수지막을 포함하는 컬러 필터.
  21. 제20항의 컬러 필터를 포함하는 디스플레이 장치.
PCT/KR2023/005396 2022-08-30 2023-04-20 화합물, 이를 포함하는 감광성 수지 조성물 및 컬러 필터 WO2024048892A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220109478A KR20240030438A (ko) 2022-08-30 2022-08-30 화합물, 이를 포함하는 감광성 수지 조성물 및 컬러 필터
KR10-2022-0109478 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024048892A1 true WO2024048892A1 (ko) 2024-03-07

Family

ID=90098144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005396 WO2024048892A1 (ko) 2022-08-30 2023-04-20 화합물, 이를 포함하는 감광성 수지 조성물 및 컬러 필터

Country Status (2)

Country Link
KR (1) KR20240030438A (ko)
WO (1) WO2024048892A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185957A (ja) * 1997-12-17 1999-07-09 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス装置
WO2014006589A2 (fr) * 2012-07-04 2014-01-09 L'oreal Composition cosmetique photoprotectrice
JP2016172828A (ja) * 2015-03-17 2016-09-29 株式会社日本触媒 オキソカーボン系化合物を含む硬化物の製造方法
KR20180019978A (ko) * 2016-08-17 2018-02-27 삼성에스디아이 주식회사 코어-쉘 염료, 이를 포함하는 감광성 수지 조성물 및 컬러필터

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185957A (ja) * 1997-12-17 1999-07-09 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス装置
WO2014006589A2 (fr) * 2012-07-04 2014-01-09 L'oreal Composition cosmetique photoprotectrice
JP2016172828A (ja) * 2015-03-17 2016-09-29 株式会社日本触媒 オキソカーボン系化合物を含む硬化物の製造方法
KR20180019978A (ko) * 2016-08-17 2018-02-27 삼성에스디아이 주식회사 코어-쉘 염료, 이를 포함하는 감광성 수지 조성물 및 컬러필터

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. LÓPEZ‐CARBALLEIRA; D. CASANOVA; F. RUIPÉREZ: "Potential Use of Squarates and Croconates as Singlet Fission Sensitizers", CHEMPHYSCHEM, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 19, no. 17, 14 June 2018 (2018-06-14), DE , pages 2224 - 2233, XP072156174, ISSN: 1439-4235, DOI: 10.1002/cphc.201800329 *

Also Published As

Publication number Publication date
KR20240030438A (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2019083112A1 (ko) 양자점 함유 조성물, 양자점 제조방법 및 컬러필터
WO2021045466A1 (ko) 화합물, 코어-쉘 염료, 이를 포함하는 감광성 수지 조성물 및 컬러필터
WO2015108386A1 (ko) 신규한 β-옥심에스테르 플루오렌 화합물, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2016126070A1 (ko) 신규한 옥심에스테르 유도체 화합물 및 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2015080503A1 (en) Photoinitiator and photosensitive composition including the same
WO2021172787A1 (ko) 코어-쉘 화합물, 이를 포함하는 감광성 수지 조성물, 감광성 수지막, 컬러필터 및 cmos 이미지 센서
WO2020050590A1 (ko) 화합물, 착색제 조성물, 감광재, 컬러필터 및 디스플레이 장치
WO2019107685A1 (ko) 착색제 조성물 제조방법, 이를 이용하여 제조된 착색제 조성물, 착색제 분산액, 감광성 수지 조성물, 컬러필터 및 액정 표시 장치
WO2019182315A1 (ko) 착색 경화성 수지 조성물, 컬러 필터 및 표시 장치
WO2019132138A1 (ko) 잔텐계 화합물 및 이를 포함하는 감광성 수지 조성물
WO2024144281A1 (ko) 화소정의층의 제조 방법
WO2024048892A1 (ko) 화합물, 이를 포함하는 감광성 수지 조성물 및 컬러 필터
WO2020022670A1 (ko) 바인더 수지, 감광성 수지 조성물, 감광재, 컬러필터 및 디스플레이 장치
WO2021075741A1 (ko) 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막 및 상기 경화막을 포함하는 컬러필터
WO2022075673A1 (ko) 수지, 수지 조성물 및 이를 이용한 표시장치
WO2021221304A1 (ko) 화합물, 이를 포함하는 반사방지 필름 및 디스플레이 장치
WO2021132865A1 (ko) 고분자 수지 화합물, 이의 제조 방법 및 이를 포함하는 감광성 수지 조성물
WO2022139234A1 (ko) 코어-쉘 염료, 이를 포함하는 감광성 수지 조성물, 감광성 수지막, 컬러필터 및 cmos 이미지센서
WO2016122160A1 (ko) 신규한 디옥심에스테르 화합물 및 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2019194384A1 (ko) 잔텐계 화합물, 이를 포함하는 감광성 수지 조성물, 감광재, 컬러필터, 및 디스플레이 장치
WO2019194381A1 (ko) 퀴노프탈론계 화합물, 이를 포함하는 감광성 수지 조성물, 감광재, 컬러필터, 및 디스플레이 장치
WO2019177401A1 (ko) 화합물, 착색 수지 조성물, 컬러 필터 및 표시 장치
WO2021133059A1 (ko) 폴리머, 이를 포함하는 감광성 수지 조성물, 그리고 이를 이용한 감광성 수지막, 컬러필터 및 디스플레이 장치
WO2022260283A1 (ko) 감광성 수지 조성물, 이를 이용한 감광성 수지막, 컬러필터 및 디스플레이 장치
WO2024085389A1 (ko) 화소정의층의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860581

Country of ref document: EP

Kind code of ref document: A1