WO2024039112A1 - 비스(글리콜)테레프탈레이트를 포함하는 폴리에스테르 수지 및 이의 제조 방법 - Google Patents

비스(글리콜)테레프탈레이트를 포함하는 폴리에스테르 수지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2024039112A1
WO2024039112A1 PCT/KR2023/011291 KR2023011291W WO2024039112A1 WO 2024039112 A1 WO2024039112 A1 WO 2024039112A1 KR 2023011291 W KR2023011291 W KR 2023011291W WO 2024039112 A1 WO2024039112 A1 WO 2024039112A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycol
terephthalate
bis
polyester resin
hydroxyethyl
Prior art date
Application number
PCT/KR2023/011291
Other languages
English (en)
French (fr)
Inventor
황다영
이유진
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Publication of WO2024039112A1 publication Critical patent/WO2024039112A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/017Esters of hydroxy compounds having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • C07C69/82Terephthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/065Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids the hydroxy and carboxylic ester groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a polyester resin containing bis(glycol)terephthalate, a recycled monomer, and a method for producing the same.
  • polyester Because polyester has excellent mechanical strength, heat resistance, transparency, and gas barrier properties, it is widely used as a material for beverage filling containers, packaging films, and audio and video films. In addition, polyester is widely produced around the world as an industrial material such as medical textiles and tire cords. In particular, polyester sheets and plates have good transparency and excellent mechanical strength, so they are widely used as materials for cases, boxes, partitions, shelves, panels, packaging, building materials, and interior and exterior materials.
  • waste of plastics such as polyester is being generated annually worldwide at an unmanageable level, and recently, countries around the world are preparing regulations and measures for recycling waste plastic resources, including waste polyester. For example, there is a movement to require a certain percentage of recycled resin to be used in packaging materials used in various fields. Physical or chemical methods are used to recycle waste polyester, but physical recycling methods cannot guarantee purity and are not widely applied.
  • the chemical recycling method involves depolymerization by breaking the ester bonds of waste polyester, and reactions such as glycolysis, hydrolysis, methanolysis, and aminolysis. Use it.
  • glycolysis is decomposition by adding glycol such as ethylene glycol or diethylene glycol to waste polyester at high temperature, and a reaction product containing mainly bis(2-hydroxyethyl)terephthalate (BHET) is obtained.
  • BHET bis(2-hydroxyethyl)terephthalate
  • the bis(2-hydroxyethyl)terephthalate can be used as a raw material for manufacturing unsaturated polyester or ester polyol after crystallization or purification.
  • Korean Patent No. 1386683 discloses a crystallization method and device for chemical recycling of waste polyester
  • U.S. Patent No. 7211193 discloses a method and device for converting polyester mainly composed of polyethylene terephthalate (PET) into ethylene glycol.
  • a method for purifying bis(2-hydroxyethyl)terephthalate (BHET) is disclosed, in which a solution produced by decomposition using (EG) is crystallized under specific temperature conditions and separated into solid and liquid.
  • Patent Document 1 Korean Patent No. 1386683
  • Patent Document 2 US Patent No. 7211193
  • the present inventors have developed a technology that utilizes BHET obtained by depolymerization of waste PET-based products to recycle it into various engineering polyester products or eco-friendly biodegradable polyester products, thereby increasing the content of recycled monomers and improving the quality of the final product. I looked for a way.
  • BHET generally regenerated BHET has a low purity due to impurities generated from reagents used in the depolymerization process and side reactions, so a separate process such as ion exchange or recrystallization is required to purify it, which increases the cost. There was.
  • glycol monomers DEG, ISB, CHDM, etc.
  • the glycol for copolymerization was pre-transesterified with BHET to produce bis(glycol)terephthalate and then introduced into the polymerization reaction, thereby increasing the content of recycled monomers in the polyester resin.
  • purity was improved by removing impurities during the transesterification reaction, thereby improving the quality, such as color, of the final resin.
  • the object of the present invention is to provide a method for producing a polyester resin with a high content of recycled monomers such as bis(2-hydroxyethyl)terephthalate and excellent final resin quality, and a polyester resin produced thereby.
  • preparing bis(glycol)terephthalate by reacting bis(2-hydroxyethyl)terephthalate with glycol having 3 or more carbon atoms; and preparing a copolymer using the bis(glycol)terephthalate and bis(2-hydroxyethyl)terephthalate.
  • a method for producing a polyester resin is provided.
  • polyester resin comprising bis(2-hydroxyethyl)terephthalate and bis(glycol)terephthalate as comonomers, wherein the glycol has 3 or more carbon atoms.
  • bis(2-hydroxyethyl)terephthalate obtained by depolymerization of waste polyester is transesterified with glycol having 3 or more carbon atoms to produce bis(glycol)terephthalate, and then copolymerized to produce a polyester resin.
  • the content of recycled monomers can be increased, and purity can be improved by removing impurities during the transesterification reaction, thereby improving the quality, such as color, of the final resin.
  • glycol monomer suitable for the desired copolymerization composition of the polyester resin with bis(2-hydroxyethyl)terephthalate
  • glycol by-products generated in the polymerization reaction can be reduced, and low-purity bis Since the purity of the recycled monomer is improved even when (2-hydroxyethyl)terephthalate is used, the cost of raw materials and processing can be reduced, so it can be applied to the manufacture of eco-friendly polyester products.
  • the molecular weight of the compound or the molecular weight of the polymer described in this specification is a relative mass based on carbon-12 and is not stated in units, but the same value can be used as necessary. It may be understood as molar mass (g/mol).
  • a “derivative” of a specific compound refers to a compound produced by partially modifying the compound through a chemical reaction or combining it with another component and containing the main portion of the compound.
  • a unit or group “derived” from a specific component refers to a part of the component included in the final product after going through a chemical reaction such as polymerization, and a part of the component is modified or combined with another component during the reaction process. It can exist as For example, the chain constituting the polymer includes units or groups derived from one or more monomers.
  • recycled monomer refers to a monomer obtained by decomposing, depolymerizing, reprocessing, repolymerizing waste plastic such as waste polyester by physical or chemical methods, or including the monomer or derived from the monomer. It may refer to polymerization raw materials.
  • bis(2-hydroxyethyl)terephthalate (BHET) used as a starting material in the method according to the present invention may be a recycled monomer obtained by depolymerization of waste polyester, and bis(glycol)terephthalate prepared therefrom Phthalates (BHDT, BHIT, BHCT) can all be considered recycled monomers.
  • recycled monomers can also be used for glycols having 3 or more carbon atoms introduced into the ester exchange reaction in the method of the present invention, and specific examples include recycled ethylene glycol (r-EG), recycled 1,4-cyclohexanedimethanol ( One or more types of regenerated glycol such as regenerated diethylene glycol (r-CHDM), regenerated diethylene glycol (r-DEG), regenerated isosorbide (r-ISB), etc. may be used.
  • r-EG recycled ethylene glycol
  • 1,4-cyclohexanedimethanol One or more types of regenerated glycol such as regenerated diethylene glycol (r-CHDM), regenerated diethylene glycol (r-DEG), regenerated isosorbide (r-ISB), etc.
  • recycled monomers can also be used as comonomers added to the polymerization of polyester resin in the method of the present invention.
  • one or more types selected from recycled dicarboxylic acids and recycled diols can be used.
  • recycled terephthalic acid (r-TPA) recycled isophthalic acid (r-IPA), recycled dimethyl terephthalate (r-DMT), recycled ethylene glycol (r-EG), and recycled 1,4-cyclohexanedi.
  • recycled monomers such as methanol (r-CHDM), recycled diethylene glycol (r-DEG), and recycled isosorbide (r-ISB) may be used.
  • Such recycled monomers can be obtained directly from waste plastics such as waste polyester by known methods or can be purchased and used commercially.
  • reacting bis(2-hydroxyethyl)terephthalate with glycol having 3 or more carbon atoms to produce bis(glycol)terephthalate; and preparing a copolymer using the bis(glycol)terephthalate and bis(2-hydroxyethyl)terephthalate.
  • the method for producing bis(glycol)terephthalate includes the steps of adding glycol having 3 or more carbon atoms to a reactor; and adding bis(2-hydroxyethyl)terephthalate to the reactor to perform a transesterification reaction.
  • the method of the present invention provides a polyester resin with a high content of recycled monomers such as bis(2-hydroxyethyl)terephthalate and excellent final resin quality. Specifically, by pre-esterifying a glycol monomer suitable for the desired copolymerization composition of the polyester resin with bis(2-hydroxyethyl)terephthalate, glycol by-products generated in the polymerization reaction can be reduced, and low-purity bis(2- Since the purity of recycled monomers is improved even when hydroxyethyl) terephthalate is used, the cost of raw materials and processing can be reduced, so it can be applied to the manufacture of eco-friendly polyester products.
  • Bis(2-hydroxyethyl)terephthalate is an ester of two ethylene glycols and one terephthalic acid.
  • polyester such as polyethylene terephthalate (PET) through a polymerization reaction of ethylene glycol and terephthalic acid or its ester. It is a compound that is formed as an intermediate during the production process.
  • PET polyethylene terephthalate
  • Bis(2-hydroxyethyl)terephthalate used in the present invention may be obtained by depolymerization of waste polyester.
  • the bis(2-hydroxyethyl)terephthalate can be obtained from waste polyester having ethylene glycol and terephthalic acid as repeating units, such as polyethylene terephthalate (PET) or glycol-modified polyethylene terephthalate (PETG), Specifically, it can be obtained by well-known depolymerization methods such as glycolysis, hydrolysis, and methanolysis.
  • the bis(2-hydroxyethyl)terephthalate may be obtained by depolymerizing waste polyethylene terephthalate with ethylene glycol and then purifying it.
  • Recycled BHET Bis(2-hydroxyethyl)terephthalate obtained by depolymerization of waste polyester
  • r-BHET Bis(2-hydroxyethyl)terephthalate obtained by depolymerization of waste polyester
  • r-BHET Bis(2-hydroxyethyl)terephthalate obtained by depolymerization of waste polyester
  • r-BHET Bis(2-hydroxyethyl)terephthalate obtained by depolymerization of waste polyester
  • r-BHET Bis(2-hydroxyethyl)terephthalate obtained by depolymerization of waste polyester
  • r-BHET Bis(2-hydroxyethyl)terephthalate obtained by depolymerization of waste polyester
  • Impurities contained in the regenerated BHET may include, for example, diethylene glycol derivatives and unreacted monomers.
  • the total content of impurities contained in the regenerated BHET may be 10 wt% or more, 15 wt% or more, or 20 wt% or more, and may also be 40 wt% or less, 35 wt% or less, 30 wt% or less, or 25 wt% or less. there is.
  • the purity of the regenerated BHET can be measured using liquid chromatography or the like. Specifically, the purity of the regenerated BHET can be derived by measuring the fraction (%) of the BHET peak area out of the total peak area in a spectrum obtained using high-performance liquid chromatography (HPLC).
  • the purity of the regenerated BHET may be 97% or less, 90% or less, 85% or less, or 80% or less, and may also be 60% or more, 65% or more, or 70% or more.
  • the purity of BHET introduced into the transesterification reaction of the present invention may be 60% to 97%, more specifically 65% to 90%, 65% to 85%, or 70% to 80%. .
  • the glycol used in the transesterification reaction of the present invention is added to the transesterification reaction with bis(2-hydroxyethyl)terephthalate and constitutes the residue of the product bis(glycol)terephthalate, and the bis(glycol)terephthalate It constitutes the polymer chain of the final polyester resin polymerized from .
  • the glycol used in the present invention may be a glycol having 3 or more carbon atoms to replace an ethylene glycol residue in a transesterification reaction.
  • the glycol has a boiling point of 10°C or more higher than that of ethylene glycol, which is advantageous for purification through fractional distillation during the transesterification reaction.
  • the glycol used in the transesterification reaction of the present invention may be a glycol monomer other than ethylene glycol (e.g., alkylene glycol with 3 or more carbon atoms) or a polymer glycol (e.g., polyether).
  • ethylene glycol e.g., alkylene glycol with 3 or more carbon atoms
  • polymer glycol e.g., polyether
  • the glycol may be one or more types selected from glycol monomers containing 3 to 20 carbon atoms and having a molecular weight of less than 500, and polymer glycols having a number average molecular weight of 400 to 5000.
  • the carbon number of the glycol monomer may be, for example, 3 or more or 4 or more, and may also be 20 or less, 15 or less, 12 or less, 10 or less, or 8 or less.
  • the glycol monomer may be an aliphatic diol having 3 to 20 carbon atoms. Additionally, the aliphatic diol may be chain or cyclic.
  • the glycol having 3 or more carbon atoms is 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol, isosorbide, 2-methyl-1,3-propanediol, 2-methylene -1,3-propanediol, 2-ethyl-1,3-propanediol, 2-isopropyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,3-butanediol, 3-methyl-1,5-pentanediol, 3-methyl-2,4-pentanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, diethylene glycol, polyethylene Glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol,
  • the glycol monomer may include one or more selected from the group consisting of diethylene glycol, isosorbide, 1,4-cyclohexanedimethanol, and derivatives thereof.
  • Such glycol monomers may be virgin glycols.
  • the glycol having 3 or more carbon atoms may include one or more types of recycled glycol obtained by depolymerization of waste polyester.
  • the regenerated glycol may be selected from the group consisting of regenerated ethylene glycol, regenerated 1,4-cyclohexanedimethanol, regenerated diethylene glycol, and regenerated isosorbide.
  • the type of regenerated glycol that can be used in the present invention is not limited to this, and any regenerated glycol that can be introduced into the transesterification reaction can be used.
  • Such regenerated glycol can be used in a transesterification reaction by completely replacing virgin glycol, or can be used in a transesterification reaction by mixing regenerated glycol and virgin glycol in a certain ratio.
  • the mixing ratio of the regenerated glycol is, for example, 0 mol% or more, 1 mol% or more, 10 mol% or more, 20 mol% or more, 30 mol% or more, 50 mol% or more, or 60 moles based on the number of moles of total glycol.
  • % or more may also be 100 mol% or less, 99 mol% or less, 90 mol% or less, 50 mol% or less, or 40 mol% or less, and specific examples include 1 mol% to 100 mol%, or 1 mol% to 99 mol%. It can be mole percent, or 30 mole percent to 100 mole percent.
  • derivatives of 1,4-cyclohexanedimethanol include 4-(hydroxymethyl)cyclohexylmethyl 4-(hydroxymethyl)cyclohexanecarboxylate, 4-(4-(hydroxymethyl)cyclohexane It may include silmethoxymethyl)cyclohexylmethanol, or mixtures thereof, and more specifically, 4-(hydroxymethyl)cyclohexylmethyl 4-(hydroxymethyl)cyclohexanecarboxylate, 4-(4-( It may be a compound containing hydroxymethyl)cyclohexylmethoxymethyl)cyclohexylmethanol in a molar ratio of 1:1 to 1:5, or 1:2 to 1:4.
  • the molecular weight of the glycol monomer may be, for example, less than 500, less than 400, less than 350, less than 300, or less than 250.
  • the polymer glycol includes, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol, copolymer of ethylene oxide and tetrahydrofuran, ethylene oxide-added polypropylene glycol, polycarbonate diol, polyneopentyl glycol, It may be selected from the group consisting of poly-3-methylpentanediol and poly-1,5-pentanediol. More specifically, the polymer glycol may be one or more selected from the group consisting of polytetramethylene glycol, polycarbonate diol, polypropylene glycol, and ethylene oxide-added polypropylene glycol.
  • the number average molecular weight of the polymer glycol may be, for example, 400 or more, 500 or more, 600 or more, 700 or more, or 800 or more, and may also be 6000 or less, 5000 or less, 4000 or less, or 300 or less.
  • the number average molecular weight of the polymer glycol may be 400 to 5000, and more specifically, 1000 to 3000 is advantageous in terms of reducing phase separation.
  • the polymer glycol is used in an amount of 5% to 75% by weight, specifically 10% to 60% by weight, and more specifically 15% to 50% by weight, based on the weight of the final polyester resin. It is advantageous for achieving high molecular weight while improving elasticity.
  • glycol and bis(2-hydroxyethyl)terephthalate undergo a transesterification reaction.
  • m is, for example, a number in the range of 1 to 10, or 1 to 4.
  • R is a group excluding the OH groups at both ends of a glycol having 3 or more carbon atoms.
  • R may be an alkylene group having 3 to 20 carbon atoms, or a group in which two or more same or different alkylene groups having 2 to 10 carbon atoms are connected through an ether group or a carbonate group.
  • R may be a group of 3 to 20 carbon atoms containing a single or multiple ring, and the ring may be aliphatic or aromatic and may also contain one or more heteroatoms (e.g. O, N, S). You can.
  • the transesterification reaction may be performed in the presence of a catalyst, and accordingly, the catalyst may be added together with the glycol, acid, or bis(2-hydroxyethyl)terephthalate into the reactor.
  • the catalyst for the transesterification reaction may be, for example, one or more selected from the group consisting of zinc-based catalysts, titanium-based catalysts, germanium-based catalysts, antimony-based catalysts, aluminum-based catalysts, and tin-based catalysts.
  • Examples of the zinc-based catalyst include zinc acetate, zinc acetate hydrate, zinc chloride, zinc sulfate, zinc sulfide, zinc carbonate, zinc citrate, zinc gluconate, or mixtures thereof.
  • Examples of the titanium-based catalyst include tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, 2-ethylhexyl titanate, octylene glycol titanate, triethanolamine titanate, and acetylacetonate. Titanate, ethyl acetoacetic ester titanate, isostearyl titanate, titanium dioxide, etc. are mentioned.
  • germanium-based catalyst examples include germanium dioxide, germanium tetrachloride, germanium ethylene glycoxide, germanium acetate, or combinations thereof.
  • germanium dioxide can be used as the germanium-based catalyst. This germanium dioxide can be either crystalline or amorphous, and glycol-soluble can also be used.
  • the amount of the transesterification catalyst input may vary depending on the reaction conditions and the catalyst used, but as an example, a metal catalyst (e.g., titanium catalyst, tin catalyst) is added to the glycol and bis(2-hydroxyethyl)terephthalate introduced into the reactor. It can be added at 0.0001 to 0.05 parts by weight for a total of 100 parts by weight.
  • a metal catalyst e.g., titanium catalyst, tin catalyst
  • the transesterification reaction can be performed in a batch or continuous manner.
  • glycol, or glycol and acid are added to the reactor and the temperature is raised, and when the temperature reaches a certain level, bis(2-hydroxyethyl)terephthalate can be added.
  • the addition of the bis(2-hydroxyethyl)terephthalate may be performed, for example, in a nitrogen atmosphere at a temperature of 180°C to 280°C while removing ethylene glycol, a by-product.
  • the bis(2-hydroxyethyl)terephthalate can be added in batches to the transesterification reaction with the glycol.
  • bis(2-hydroxyethyl)terephthalate is prepared in the form of powder or in the form of a BHET aqueous solution with a concentration of about 10 to 20% by weight by dissolving in water at about 80 to 100°C and added to the reactor in batches. You can.
  • bis(2-hydroxyethyl)terephthalate may be added separately or continuously to the transesterification reaction with the glycol.
  • bis(2-hydroxyethyl)terephthalate may be divided and added two or more times to the transesterification reaction with glycol.
  • the number of divided injections may be 2 or more, 3 or more, 4 or more, or 5 or more, and may also be 100 or less, 50 or less, 30 or less, 20 or less, 15 or less, or 10 or less.
  • the number of divided injections may be 2 to 30 times, or 3 to 15 times.
  • the time interval between the divided injections can be determined by dividing the total injection time by the number of divided injections.
  • the total input time may be, for example, 1 hour or more or 2 hours or more, and may also be 5 hours or less or 4 hours or less.
  • the one-time addition amount during the divided addition can be determined by dividing the total amount of bis(2-hydroxyethyl)terephthalate to be added to the reaction by the number of divided additions.
  • bis(2-hydroxyethyl)terephthalate is continuously added to the transesterification reaction with glycol.
  • the total time of the continuous injection may be, for example, 1 hour or more or 2 hours or more, and may also be 5 hours or less or 4 hours or less.
  • the continuous addition may be to add a certain amount of bis(2-hydroxyethyl)terephthalate per hour, and the amount per hour is the total amount of bis(2-hydroxyethyl)terephthalate to be added to the reaction. It can be determined by dividing it by the total investment time.
  • bis(2-hydroxyethyl)terephthalate is prepared in powder form or dissolved in water at about 80-100°C to prepare an aqueous BHET solution with a concentration of about 10-20% by weight, which is then continuously added. can be performed.
  • the continuous addition can be performed from the start of the transesterification reaction until one hour before the completion of the reaction.
  • a dropping funnel can be used at the laboratory level, and a fixed-quantity feeding device can be used at the commercial level.
  • the reaction conditions can be maintained until the transesterification reaction is completed. Additionally, the process of removing ethylene glycol, a by-product, during the transesterification reaction can be continued.
  • the removal of ethylene glycol can be performed through a distillation process using the difference in boiling point from other components, and the distilled ethylene glycol can be cooled, recovered, and then recycled for other processes.
  • the end point of the transesterification reaction can be confirmed by considering the theoretical amount of ethylene glycol generated from bis(2-hydroxyethyl)terephthalate through the transesterification reaction or by the point at which by-product outflow no longer occurs.
  • the pressure (absolute pressure) during the transesterification reaction may be, for example, 0.5 kgf/cm 2 or more, 0.7 kgf/cm 2 or more, or 1.0 kgf/cm 2 or more, and may also be 2.5 kgf/cm 2 or less, 2.0 kgf/cm 2 or more. It may be 2 or less, or 1.5 kgf/cm 2 or less, and as a specific example, it may be 0.5 kgf/cm 2 to 2.5 kgf/cm 2 .
  • the temperature during the transesterification reaction may be 140°C or higher, 160°C or higher, 180°C or higher, or 200°C or higher, and may also be 300°C or lower, 280°C or lower, 270°C or lower, 250°C or lower, or 220°C or lower.
  • the transesterification reaction may be performed in a nitrogen atmosphere.
  • the transesterification reaction can be performed in a nitrogen atmosphere at a pressure of 0.5 kgf/cm 2 to 2.5 kgf/cm 2 and a temperature of 180°C to 280°C.
  • the transesterification reaction can be carried out at a temperature of 180°C or higher to smoothly remove ethylene glycol, a by-product generated during the transesterification reaction, and to reduce the loss of the glycol to be substituted, at a temperature of 10°C rather than the boiling point of the glycol in question. It can be carried out at low temperatures.
  • the temperature can be adjusted to 180°C to 220°C, or when 1,4-cyclohexanedimethanol is used, the temperature can be adjusted to 200°C to 270°C.
  • the products of the transesterification reaction mainly include bis(glycol)terephthalate and derivatives thereof in which the ethylene glycol residue in bis(2-hydroxyethyl)terephthalate is replaced with another glycol residue.
  • the bis(glycol)terephthalate obtained by the transesterification reaction includes a compound represented by Formula 1 below.
  • -O-R-OH is a group derived from glycol having 3 or more carbon atoms, and m is, for example, a number in the range of 1 to 10, or 1 to 4.
  • the compound of Formula 1 may be a monomer or oligomer (dimer, trimer, etc.) of bis(glycol)terephthalate.
  • R is a group derived from glycol having 3 or more carbon atoms.
  • R may be an alkylene group having 3 to 20 carbon atoms, or a group in which two or more same or different alkylene groups having 2 to 10 carbon atoms are connected through an ether group or a carbonate group.
  • R may be a group of 3 to 20 carbon atoms containing a single or multiple ring, and the ring may be aliphatic or aromatic and may also contain one or more heteroatoms (e.g. O, N, S). You can.
  • Formula 1 may be a compound in which R is a group derived from diethylene glycol and m is 1, that is, bis(diethylene glycol) terephthalate (hereinafter abbreviated as BHDT).
  • Formula 1 may be a compound in which R is a group derived from isosorbide and m is 1, that is, bis(isosorbide)terephthalate (hereinafter abbreviated as BHIT).
  • Formula 1 may be a compound in which R is a group derived from 1,4-cyclohexanedimethanol and m is 1, that is, bis(1,4-cyclohexanedimethanol)terephthalate (hereinafter) Abbreviated as BHCT).
  • R is a group derived from 1,4-cyclohexanedimethanol and m is 1, that is, bis(1,4-cyclohexanedimethanol)terephthalate (hereinafter) Abbreviated as BHCT).
  • the bis(glycol)terephthalate may include two or more compounds represented by Formula 1, and may include derivatives thereof.
  • bis(glycol)terephthalate obtained through the transesterification reaction may have a purity of 80% or more. More specifically, the purity of the bis(glycol)terephthalate may be 85% or more, 90% or more, or 95% or more, and as a specific example, may be 80% to 99.9%.
  • a polyester resin is prepared, including preparing a copolymer using the bis(glycol)terephthalate and bis(2-hydroxyethyl)terephthalate.
  • the production step of the copolymer may be performed sequentially through an esterification reaction (first polymerization reaction step) and a polycondensation reaction (second polymerization reaction step).
  • the step of preparing the copolymer includes obtaining an oligomer by esterifying a comonomer containing the bis(glycol)terephthalate and bis(2-hydroxyethyl)terephthalate; and condensation polymerization of the oligomer to obtain a copolymer.
  • R is a group derived from glycol having 3 or more carbon atoms.
  • additional monomers may be added to the esterification reaction.
  • one or more comonomers selected from the group consisting of dicarboxylic acids, dicarboxylic acid derivatives, diols, and diol derivatives may be further added to the esterification reaction.
  • the dicarboxylic acid includes terephthalic acid or isophthalic acid;
  • the dicarboxylic acid derivatives include dimethyl terephthalate or dimethyl isophthalate;
  • the diol is diethylene glycol, 1,4-cyclohexanedimethanol, isosorbide, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-methylene-1 ,3-propanediol, 2-ethyl-1,3-propanediol, 2-isopropyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,4-butanediol, 2, 3-butanediol, 3-methyl-1,5-pentanediol, 3-methyl-2,4-pentanediol, 1,6-hexanediol, 1,2-cyclohexanedi
  • the one or more comonomers may include recycled monomers obtained by depolymerization of waste polyester.
  • the one or more comonomers may include one or more regenerated monomers selected from the group consisting of regenerated dicarboxylic acids, regenerated dicarboxylic acid derivatives, regenerated diols, and regenerated diol derivatives.
  • the recycled monomers include recycled ethylene glycol, recycled 1,4-cyclohexanedimethanol, recycled diethylene glycol and recycled isosorbide, recycled terephthalic acid, recycled dimethyl terephthalate, recycled isophthalic acid and recycled dimethylisophthalate.
  • the type of recycled monomer that can be used as a comonomer in the present invention is not limited to this, and any recycled monomer that can be introduced into the production of polyester resin can be used.
  • Such recycled monomers may be used for polymerization of polyester resins by completely replacing virgin monomers, or may be used for polymerization of polyester resins by mixing recycled monomers and virgin monomers in a certain ratio.
  • the mixing ratio of the recycled monomer is, for example, 0 mol% or more, 1 mol% or more, 10 mol% or more, 20 mol% or more, 30 mol% or more, 50 mol% or more, or 60 moles based on the number of moles of the total monomer.
  • % or more may also be 100 mol% or less, 99 mol% or less, 90 mol% or less, 50 mol% or less, or 40 mol% or less, and specific examples include 1 mol% to 100 mol%, or 1 mol% to 99 mol%. It may be mole percent, or 30 mole percent to 100 mole percent.
  • the esterification reaction may be performed in the presence of an esterification reaction catalyst, for example, a zinc-based catalyst may be used.
  • a zinc-based catalyst include zinc acetate, zinc acetate hydrate, zinc chloride, zinc sulfate, zinc sulfide, zinc carbonate, zinc citrate, zinc gluconate, or mixtures thereof.
  • the esterification reaction can be performed, for example, at a pressure of 0 kgf/cm 2 to 10.0 kgf/cm 2 and a temperature of 150°C to 300°C.
  • the esterification reaction conditions can be appropriately adjusted depending on the specific characteristics of the polyester being produced, the ratio of each component, or process conditions.
  • the pressure in the esterification reaction may be 0 kgf/cm 2 to 5.0 kgf/cm 2 , more specifically 0.1 kgf/cm 2 to 3.0 kgf/cm 2 .
  • the temperature may be 200°C to 270°C, more specifically 240°C to 260°C.
  • the esterification reaction can be performed in a batch or continuous manner.
  • the raw materials such as recycled BHET, dicarboxylic acid, and diol
  • the raw materials can be added separately to the reactor, or two or more raw materials can be mixed, and can be added in the form of solid, liquid, or slurry.
  • dicarboxylic acid, diol, and regenerated BHET can be added individually or in combination, and can be mixed with the already prepared terephthalic acid oligomer.
  • the terephthalic acid oligomer may be prepared by reacting terephthalic acid with diols such as ethylene glycol, cyclohexanedimethanol, and isosorbide.
  • diol, dicarboxylic acid, and regenerated BHET may be mixed in the form of a slurry.
  • diols such as isosorbide, which are solid at room temperature, can be dissolved in water or ethylene glycol and then mixed with dicarboxylic acid such as terephthalic acid to make a slurry.
  • dicarboxylic acid such as terephthalic acid
  • a slurry can be made by mixing dicarboxylic acids such as terephthalic acid and other diols.
  • additional water may be added to the mixed slurry to help increase the fluidity of the slurry.
  • liquid raw materials e.g., regenerated BHET solution
  • the hourly input amount of raw materials is the total amount of raw materials that must be added to achieve the daily target production amount. It can be decided by dividing by .
  • the mixture of bis(2-hydroxyethyl)terephthalate, bis(glycol)terephthalate, and other added components is kept in the esterification reactor for a certain period of time, for example, 1 hour to 24 hours, or 4 hours to 10 hours. Afterwards, it can be transferred to a condensation polymerization reactor.
  • the condensation polymerization reaction can produce a polyester resin with a relatively low molecular weight through melt polymerization, and can also produce a polyester resin with a relatively high molecular weight through solid phase polymerization after melt polymerization.
  • the temperature during the condensation polymerization reaction may be 150°C to 300°C, specifically 200°C to 290°C, and more specifically 260°C to 280°C.
  • the pressure in the condensation polymerization reaction may be 0.01 mmHg to 600 mmHg, specifically 0.05 mmHg to 200 mmHg, and more specifically 0.1 mmHg to 100 mmHg.
  • the temperature in the condensation polymerization reaction is less than 150°C, glycol, a reaction by-product, cannot be effectively removed from the system, and the intrinsic viscosity of the final reaction product may be low, which may lower the physical properties of the final polyester resin.
  • the temperature If the temperature exceeds 300°C, the likelihood of yellowing occurring in the final polyester resin increases.
  • the condensation polymerization reaction may be carried out for the required time until the intrinsic viscosity of the final reaction product reaches an appropriate level, for example, for an average residence time of 1 hour to 24 hours.
  • the condensation polymerization reaction may be performed in the presence of a condensation polymerization catalyst, and the condensation polymerization catalyst may be, for example, a titanium-based compound, a germanium-based compound, an antimony-based compound, an aluminum-based compound, a tin-based compound, or a mixture thereof.
  • the titanium-based compounds include tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, 2-ethylhexyl titanate, octylene glycol titanate, lactate titanate, and triethanolamine titanate.
  • germanium-based compound examples include germanium dioxide, germanium tetrachloride, germanium ethylene glycoxide, germanium acetate, or mixtures thereof.
  • germanium dioxide can be used. This germanium dioxide can be either crystalline or amorphous, and glycol-soluble can also be used.
  • the amount of the condensation polymerization catalyst used may be such that the amount of titanium element relative to the weight of the polyester resin is about 1 ppm to 100 ppm, more preferably about 1 ppm to 50 ppm.
  • additives In addition to the condensation polymerization catalyst, stabilizers, colorants, crystallizers, antioxidants, branching agents, etc. may be further used, and the timing of adding these additives is not particularly limited and can be used at any time during the manufacturing process of the polyester resin. It may also be put into .
  • phosphorus-based compounds such as phosphoric acid, trimethyl phosphate, triethyl phosphate, and triethylphosphonoacetate can be used, and the amount added is 10 ppm to 200 ppm relative to the weight of the polyester resin based on the amount of elemental phosphorus. It can be.
  • colorants added to improve the color of the polyester resin include common colorants such as cobalt acetate and cobalt propionate, and the amount added is the weight of the polyester resin based on the amount of cobalt element. It may be 10 ppm to 200 ppm.
  • anthraquinone-based compounds, perinone-based compounds, azo-based compounds, and methine-based compounds can be used as organic compound colorants.
  • Commercially available products include Clarient Toners such as Polysynthren Blue RLS or Clarient's Solvaperm Red BB can be used.
  • the amount of the organic compound colorant added can be adjusted to 0 to 50 ppm based on the weight of the polyester resin.
  • the crystallizing agent include crystal nucleating agents, ultraviolet absorbers, polyolefin resins, and polyamide resins.
  • the antioxidant include hindered phenol-based antioxidants, phosphite-based antioxidants, thioether-based antioxidants, or mixtures thereof.
  • the branching agent is a typical branching agent having three or more functional groups, for example, trimellitic anhydride, trimethylol propane, trimellitic acid, or mixtures thereof. It can be exemplified.
  • a polyester resin prepared according to the above method is provided.
  • the polyester resin of the present invention is a polyester resin that has been regenerated through chemical recycling of waste polyester.
  • the polyester resin is manufactured by copolymerizing monomers containing bis(2-hydroxyethyl)terephthalate and bis(glycol)terephthalate. Accordingly, the polyester resin includes bis(2-hydroxyethyl)terephthalate and bis(glycol)terephthalate as comonomers.
  • the glycol has 3 or more carbon atoms.
  • the bis(glycol)terephthalate may be a transesterification product between bis(2-hydroxyethyl)terephthalate and a glycol having 3 or more carbon atoms.
  • the glycol is a glycol having 3 or more carbon atoms, and its specific types are as exemplified above.
  • the bis(2-hydroxyethyl)terephthalate includes bis(diethylene glycol)terephthalate, bis(isosorbide)terephthalate, bis(1,4-cyclohexanedimethanol)terephthalate, and derivatives thereof. Can be selected from the group consisting of.
  • the total content of recycled monomers in the polyester resin of the present invention may be at least 1% by weight, at least 5% by weight, at least 10% by weight, at least 30% by weight, at least 50% by weight, at least 70% by weight, or at least 90% by weight. . Additionally, the total content of the recycled monomer may be 100 wt% or less, 99 wt% or less, 80 wt% or less, 60 wt% or less, 40 wt% or less, or 20 wt% or less. As a specific example, the polyester resin may include a total of 30% by weight or more of the bis(2-hydroxyethyl)terephthalate and the bis(glycol)terephthalate, based on the weight of the polyester resin.
  • polyester resin in addition to recycled monomers, monomers (i.e. virgin monomers) generally used in the polymerization of polyester resins, such as dicarboxylic acids, dicarboxylic acid derivatives, diols, and diol derivatives as discussed above, are used. Since one or more types selected from the group consisting of can be further used, the polyester resin may further include these comonomers.
  • Bis(2-hydroxyethyl)terephthalate used in the production of the polyester resin of the present invention has a structure of two ethylene glycols and one terephthalic acid combined, so the polyester resin of the present invention is derived from ethylene glycol and terephthalic acid. May contain repeat units.
  • the polyester resin of the present invention may further include a repeating unit derived from glycol having 3 or more carbon atoms.
  • the polyester resin of the present invention includes a dicarboxylic acid component and a diol component as monomer components (polymer structural units) constituting it, and these are bis(2-hydroxyethyl) initially added for the production of the polyester resin. It may be derived from terephthalate and glycol having 3 or more carbon atoms, or regenerated bis(glycol)terephthalate produced therefrom, and an additionally added comonomer.
  • the polyester resin of the present invention may be a copolymer resin containing two or more dicarboxylic acid components and/or two or more diol components.
  • the diol component further includes a diol component other than the ethylene glycol component as a comonomer.
  • the comonomer may include, for example, one or more selected from the group consisting of diethylene glycol, cyclohexanedimethanol, cyclohexanedimethanol derivatives, and isosorbide.
  • the diethylene glycol can contribute to improving the transparency and impact resistance of polyester resin.
  • the diethylene glycol may be included in an amount of 0.1 mol% to 50 mol% based on the number of moles of the total diol.
  • the cyclohexanedimethanol (e.g. 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol) is used to improve the transparency and impact resistance of the polyester resin produced. You can contribute.
  • the cyclohexanedimethanol may be included in an amount of 5 mol% to 90 mol% based on the number of moles of total diol.
  • the cyclohexanedimethanol derivative is 4-(hydroxymethyl)cyclohexylmethyl 4-(hydroxymethyl)cyclohexanecarboxylate, or 4-(4-(hydroxymethyl)cyclohexylmethoxymethyl)cyclohexylmethanol. It can be.
  • the cyclohexanedimethanol derivative may be included in an amount of 0.1 mol% to 25 mol% based on the number of moles of total diol.
  • the isosorbide can improve the processability of the final polyester resin.
  • the transparency and impact resistance of polyester resin are improved by the diol components of cyclohexanedimethanol and ethylene glycol, but for processability, shear fluidization characteristics must be improved and the crystallization rate must be delayed. Cyclohexanedimethanol and ethylene glycol It is difficult to achieve this effect alone. Accordingly, when isosorbide is included as a diol component, shear fluidization characteristics are improved and crystallization rate is delayed while transparency and impact resistance are maintained, thereby improving the processability of the polyester resin produced.
  • the isosorbide residue may be included in an amount of 0.1 mol% to 70 mol% based on the number of moles of the total diol.
  • the polyester resin includes terephthalic acid as a dicarboxylic acid component.
  • the terephthalic acid may be included in an amount of 5 mol% to 100 mol% based on the number of moles of the total dicarboxylic acid.
  • the terephthalic acid component may be formed from a terephthalic acid alkyl ester, such as dimethyl terephthalic acid.
  • the dicarboxylic acid component may further include an aromatic dicarboxylic acid component other than terephthalic acid, an aliphatic dicarboxylic acid component, or a mixture thereof.
  • Dicarboxylic acid components other than terephthalic acid may be included in an amount of 1% to 30% by weight based on the weight of the total dicarboxylic acid components.
  • the aromatic dicarboxylic acid component may be an aromatic dicarboxylic acid having 8 to 20 carbon atoms, preferably an aromatic dicarboxylic acid having 8 to 14 carbon atoms, or a mixture thereof.
  • the aromatic dicarboxylic acid include isophthalic acid, naphthalene dicarboxylic acid such as 2,6-naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, 4,4'-stilbendicarboxylic acid, 2, Examples include, but are not limited to, 5-furandicarboxylic acid and 2,5-thiophenedicarboxylic acid.
  • the aliphatic dicarboxylic acid component may be an aliphatic dicarboxylic acid component having 4 to 20 carbon atoms, preferably 4 to 12 carbon atoms, or a mixture thereof.
  • the aliphatic dicarboxylic acids include cyclohexanedicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid, phthalic acid, sebacic acid, succinic acid, isodecylsuccinic acid, Linear, branched, or cyclic aliphatic dicarboxylic acid components such as maleic acid, fumaric acid, adipic acid, glutaric acid, and azelaic acid are included, but are not limited thereto.
  • the polyester resin may also contain a catalyst used in the polymerization reaction for its preparation.
  • the polyester resin may include at least one catalyst selected from metal oxides or acetates.
  • the metal included in the catalyst may be selected from the group consisting of antimony (Sb), titanium (Ti), germanium (Ge), manganese (Mn), cobalt (Co), tin (Sn), and calcium (Ca).
  • the polyester resin may have a value obtained by subtracting the b value from the L value of 88 or more, 89 or more, 90 or more, 91 or more, 92 or more, or 93 or more when measuring the Hunter Lab color space.
  • the upper limit of the L-b value is not particularly limited, but may be, for example, 100 or less, 99 or less, 98 or less, 97 or less, or 95 or less.
  • Measurement of the Hunter Lab color space can be performed by making a specimen with a thickness of 6 mm using the polyester resin.
  • the polyester resin may have an L value minus a b value of 88 or more when measuring the Hunter Lab color space under the condition of a thickness of 6 mm.
  • the polyester resin may have an intrinsic viscosity (IV) of 0.5 dl/g or more, 0.6 dl/g or more, or 0.7 dl/g or more at 35°C, and may also be 1.2 dl/g or less, 1.1 dl/g or less, and 1.0 dl/g or less. /g or less, or 0.9 dl/g or less.
  • the polyester resin may have an intrinsic viscosity of 0.5 dl/g to 1.2 dl/g at 35°C.
  • the polyester resin may have an intrinsic viscosity of 0.5 dl/g to 0.9 dl/g at 35°C.
  • the polyester resin according to the present invention has excellent color, mechanical strength, heat resistance, transparency and gas barrier properties, it can be used as a material for beverage filling containers, packaging films, audio and video films, etc.
  • sheets or plates manufactured from the polyester resin of the present invention have good transparency and excellent mechanical strength, so they can be used as materials for cases, boxes, partitions, shelves, panels, packaging, building materials, interior and exterior materials, etc.
  • the polyester resin of the present invention can also be used as industrial materials such as medical fibers and tire cords.
  • the present invention provides an article containing the polyester resin.
  • the article may be a film, sheet, or profile.
  • Specific examples of the film include heat-shrinkable film and blown film.
  • the profile refers to a continuous extrusion molded product of plastic excluding sheets and films, and can be manufactured by general extrusion molding methods, and can have the shape of, for example, a tube or channel.
  • dicarboxylic acids or diols used as comonomers in the polymerization of the glycols and polyester resins used in the transesterification reactions below if they are not indicated as recycled monomers such as recycled terephthalic acid, recycled ethylene glycol, etc. (e.g. terephthalic acid, It should be understood that virgin monomers (ethylene glycol, etc.) are used.
  • Regenerated BHETs of various purities were prepared from waste polyester resins by depolymerization using a known method or purchased commercially.
  • the table below shows the area fraction (%), or purity, of only the BHET peak in the HPLC results of each regenerated BHET measured using HPLC.
  • 1,4-cyclohexanedimethanol (CHDM, 641 g) as glycol and zinc acetate (monomer mixture in the reactor) as a reaction catalyst in a 1 L volume transesterification reactor connected to a condenser and column that can be cooled by water.
  • 0.003 parts by weight compared to 100 parts by weight was added, nitrogen was flowed to adjust the pressure in the reactor to normal pressure (1.0 kgf/cm 2 ), and the temperature was raised while maintaining this pressure while stirring.
  • the temperature in the reactor reached about 200°C, the temperature was raised to 220°C for 3 hours and bis(2-hydroxyethyl)terephthalate (BHET, 254 g) was added to perform a transesterification reaction.
  • BHET bis(2-hydroxyethyl)terephthalate
  • Step A Preparation of bis(glycol)terephthalate via transesterification reaction
  • Bis(2-hydroxyethyl)terephthalate (BHET #1) was mixed with diethylene glycol (DEG), isosorbide (ISB), and 1,4-cyclohexanedimethanol (CHDM) according to the method of Preparation Example 2 above.
  • DEG diethylene glycol
  • ISB isosorbide
  • CHDM 1,4-cyclohexanedimethanol
  • BHDT bis(diethylene glycol)terephthalate
  • BHIT bis(isosorbide)terephthalate
  • BHCT bis(1,4-cyclohexanedimethinol)terephthalate
  • Step B Preparation of polyester resin through condensation polymerization reaction
  • Bis(2-hydroxyethyl)terephthalate (BHET #1, 3570.2 g), bis(diethylene glycol)terephthalate (BHDT, 69.7 g), bis(isosorbide)terephthalate (BHIT, 42.2 g), bis (1,4-cyclohexanedimethinol)terephthalate (BHCT, 212.9 g), terephthalic acid (TPA, 913.0 g), ethylene glycol (EG, 46.3 g), isosorbide (ISB, 9.9 g), Ge catalyst ( 2.6 g), blue toner (0.012 g), and red toner (0.006 g) were added to the esterification reactor.
  • the condensation polymerization reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor reached 0.60 dl/g. Afterwards, the mixture was discharged to the outside of the reactor to form pellets, which were solidified with a cooling liquid and then granulated to have an average weight of about 12 to 14 mg, thereby obtaining about 4 kg of polyester resin (copolymer).
  • step A bis(2-hydroxyethyl)terephthalate (BHET #2) was transesterified with diethylene glycol (DEG) to produce bis(diethylene glycol)terephthalate (BHDT) was obtained in step B, bis(2-hydroxyethyl)terephthalate (BHET #2, 2594.0 g), bis(diethylene glycol)terephthalate (BHDT, 174.6 g), terephthalic acid (TPA, 1610.5 g), Ethylene glycol (EG, 671.2 g), 1,4-cyclohexanedimethanol (CHDM, 58.8 g), Ge catalyst (2.6 g), Ti catalyst (0.4 g), phosphoric acid (0.4 g), blue toner (0.016 g) , red toner (0.004 g) was added, the esterification reaction was performed at a pressure 0.5 kgf/cm 2 higher than normal pressure and a temperature of 260°C, and the condensation polymer
  • polyester particles After the particles were left at 150°C for 1 hour to crystallize, they were placed in a solid phase polymerization reactor and nitrogen was flowed at a rate of 50 L/min while raising the temperature of the reactor from room temperature to 200°C at a rate of 40°C/hour and maintaining it. Solid-state polymerization was performed until the intrinsic viscosity (IV) of the particles in the reactor reached 0.90 dl/g, and approximately 4 kg of polyester resin (copolymer) was obtained.
  • IV intrinsic viscosity
  • step A bis(2-hydroxyethyl)terephthalate (BHET #3) was transesterified with 1,4-cyclohexanedimethanol (CHDM) to produce bis(1, Obtain 4-cyclohexanedimethanol)terephthalate (BHCT) and obtain bis(2-hydroxyethyl)terephthalate (BHET #3, 3941.2 g), bis(1,4-cyclohexanedimethanol)terephthalate in step B.
  • CHDM 1,4-cyclohexanedimethanol
  • step A bis(2-hydroxyethyl)terephthalate (BHET #4) was transesterified with 1,4-cyclohexanedimethanol (CHDM) to produce bis(1, Obtain 4-cyclohexanedimethanol)terephthalate (BHCT), obtain bis(2-hydroxyethyl)terephthalate (BHET #4, 2782.0 g), bis(1,4-cyclohexanedimethanol)terephthalate in step B.
  • CHDM 1,4-cyclohexanedimethanol
  • BHCT 763.1 g
  • terephthalic acid TPA, 909.1 g
  • ethylene glycol EG, 147.1 g
  • 1,4-cyclohexanedimethanol CHDM, 315.4 g
  • diethylene glycol DEG, 38.7 g
  • CHDM Derivatives (4-(hydroxymethyl)cyclohexylmethyl 4-(hydroxymethyl)cyclohexanecarboxylate and 4-(4-(hydroxymethyl)cyclohexylmethoxymethyl)cyclohexylmethanol in a molar ratio of 1:3 (80.0 g), Ge catalyst (5.1 g), Ti catalyst (0.4 g), phosphoric acid (0.4 g), cobalt acetate (0.5 g), blue toner (0.002 g), and red toner (0.001 g) were added.
  • the esterification reaction was performed at a pressure 2.0 kgf/cm 2 higher than normal pressure and a temperature of 255°C, and the condensation polymerization reaction was performed at a temperature of 285°C until the intrinsic viscosity (IV) reached 0.78 dl/g. Approximately 4 kg of polyester resin (copolymer) was obtained.
  • step A bis(2-hydroxyethyl)terephthalate (BHET #5) was transesterified with 1,4-cyclohexanedimethanol (CHDM) to produce bis(1, Obtain 4-cyclohexanedimethanol)terephthalate (BHCT) and obtain bis(2-hydroxyethyl)terephthalate (BHET #5, 907.1 g), bis(1,4-cyclohexanedimethanol)terephthalate in step B.
  • CHDM 1,4-cyclohexanedimethanol
  • step A bis(2-hydroxyethyl)terephthalate (BHET #6) was esterified with diethylene glycol (DEG) and 1,4-cyclohexanedimethanol (CHDM).
  • DEG diethylene glycol
  • CHDM 1,4-cyclohexanedimethanol
  • step B bis(2-hydroxyethyl)terephthalate (BHET # 6, 1376.8 g), bis(diethylene glycol) terephthalate (BHDT, 278.1 g), bis(1,4-cyclohexanedimethanol) terephthalate (BHCT, 1132.9 g), terephthalic acid (TPA, 1514.7 g), ethylene Glycol (EG, 784.2 g), 1,4-cyclohexanedimethanol (CHDM, 26.0 g), Ti catalyst (0.1 g), phosphoric acid (0.8 g),
  • step A bis(2-hydroxyethyl)terephthalate (BHET #7) is esterified with isosorbide (ISB) and 1,4-cyclohexanedimethanol (CHDM).
  • An exchange reaction is performed to obtain bis(isosorbide)terephthalate (BHIT) and bis(1,4-cyclohexanedimethanol)terephthalate (BHCT)
  • step B bis(2-hydroxyethyl)terephthalate (BHET # 7, 1072.3 g), bis(isosorbide) terephthalate (BHIT, 629.2 g), bis(1,4-cyclohexanedimethanol) terephthalate (BHCT, 2258.7 g), terephthalic acid (TPA, 953.1 g), ethylene Glycol (EG, 83.8 g), 1,4-cyclohexanedimethanol (CHDM, 24.3 g), regenerated isosorbide (r-ISB, 49.3
  • step A bis(2-hydroxyethyl)terephthalate (BHET #8) was esterified with diethylene glycol (DEG) and 1,4-cyclohexanedimethanol (CHDM).
  • DEG diethylene glycol
  • CHDM 1,4-cyclohexanedimethanol
  • step B bis(2-hydroxyethyl)terephthalate (BHET # 8, 483.4 g), bis(diethylene glycol) terephthalate (BHDT, 358.0 g), bis(1,4-cyclohexanedimethanol) terephthalate (BHCT, 556.9 g), terephthalic acid (TPA, 2448.4 g), regeneration Ethylene glycol (r-EG, 684.4 g), regenerated 1,4-cyclohexanedimethanol (r-CHDM, 13.7 g), diethylene glycol (DEG) and 1,4-cyclohexanedimethanol (CHDM).
  • DEG diethylene glycol
  • DEDM 1,4
  • step A bis(2-hydroxyethyl)terephthalate (BHET #9) was transesterified with 1,4-cyclohexanedimethanol (CHDM) to produce bis(1, Obtain 4-cyclohexanedimethanol)terephthalate (BHCT) and obtain bis(2-hydroxyethyl)terephthalate (BHET #9, 3621.9 g), bis(1,4-cyclohexanedimethanol)terephthalate in Step B.
  • CHDM 1,4-cyclohexanedimethanol
  • polyester particles were obtained. After the particles were left at 150°C for 1 hour to crystallize, they were placed in a solid-state polymerization reactor and nitrogen was flowed at a rate of 50 L/min while raising the temperature of the reactor from room temperature to 190°C at a rate of 40°C/hour and maintaining this temperature. While solid-state polymerization was carried out until the intrinsic viscosity (IV) of the particles in the reactor reached 1.10 dl/g, approximately 4 kg of polyester resin (copolymer) was obtained.
  • IV intrinsic viscosity
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 6 Regenerated monomer in resin (% by weight) 80 54 96 70 76 55 virgin monomer (mol) TPA 5.50 9.70 0.00 5.48 5.75 9.12 EG 0.75 10.83 0.55 2.37 2.17 12.65 DEG 0.00 0.00 0.37 0.37 0.00 0.00 CHDM 0.00 0.41 0.37 2.19 0.00 0.18 CHDM derivative 0.00 0.00 0.30 0.30 0.00 0.00 ISB 0.07 0.00 0.00 0.00 0.00 0.00 Play BHET Number #One #2 #3 #4 #5 #6 Regenerated monomer (mol) BHET 14.06 10.21 15.52 10.95 3.57 5.42 BHDT 0.20 0.51 0.00 0.00 0.81 BHIT 0.10 0.00 0.00 0.00 0.00 0.00 BHCT 0.51 0.00 2.74 1.83 6.21 2.71 * The input amount (mol) of each virgin monomer and recycled monomer refers to the relative molar ratio.
  • Monomers added for the production of polyester resin (BHET, BHDT, BHIT, BHCT, TPA, IPA, EG, CHDM, ISB, DEG, r-EG, r-CHDM, r-DEG, r-TPA, r-IPA Percentage (% by weight) of the total weight of only the recycled monomers (BHET, BHDT, BHIT, BHCT, r-EG, r-CHDM, r-DEG, r-TPA, r-IPA) based on the total weight of the was calculated.
  • the copolymerization compositions of the polyester resins of Examples and Comparative Examples were analyzed to be diverse, and specifically, the contents of glycol (DEG, ISB, CHDM, etc.) and their derivative residues in each polyester resin were analyzed to be diverse.
  • polyester resins having some of the same composition were confirmed, and specifically, the copolymer compositions of Comparative Example 1 and Example 3, Comparative Example 2 and Example 4, and Comparative Example 3 and Example 7 were confirmed to be the same.
  • the chromaticity and brightness of the polyester resin were measured using a Varian Cary 5 UV/Vis/NIR spectrophotometer equipped with a diffuse reflection accessory. Prepare a polyester resin specimen with a thickness of 6 mm obtained by injection at 250°C, obtain transmission data with Illuminant D65 at an observer angle of 2°, and analyze it using a color analysis device in Grams/32 software. The Hunter Lab value was calculated by processing using , and the value (L-b) was calculated by subtracting the b value from the L value.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Play BHET input mole% 69 50 85 60 23 30 water % 90 60 80 90 75 85 Regenerated monomers in resin weight% 80 54 96 70 76 55 Resin color (6T col L-b) 92 93 89 88 89 91
  • Example 7 Example 8
  • Example 9 Comparative Example 1 Comparative Example 2 Comparative Example 3 Play BHET input mole% 25 9 70 100 80 25 water % 78 75 97 80 90 78 Regenerated monomers in resin weight% 79 35 60 83 70 22 Resin color (6T col L-b) 88 88 91 87 88 88
  • Examples 1 to 9 some of BHET as a recycled monomer was transesterified with other glycols (DEG, ISB, CHDM) to obtain BHDT, BHIT, and BHCT, and then subjected to polymerization reaction. By adding them together to obtain a polyester resin, it was possible to increase the total content of recycled monomers while improving the color quality of the polyester resin.
  • Examples 7 to 9 further use additional recycled glycol (r-EG, r-DEG, r-CHDM, r-ISB) and recycled dicarboxylic acid (r-TPA) to increase the total content of recycled monomers. could be raised higher.
  • Comparative Example 1 had the same copolymerization composition as Example 3, but used only BHET as the recycled monomer, so the content of recycled monomer in the resin was low, and the color of the final polyester resin was poor due to the low purity of BHET. .
  • Comparative Example 2 also used only BHET as a recycled monomer, so purity was not improved through transesterification with glycol, so the color of the final polyester resin was poor compared to Example 1 using BHET of the same purity.
  • Comparative Example 3 had almost the same amount of BHET and r-ISB as Example 7, but did not use any other recycled monomers, so the total content of recycled monomers was low and the color of the final polyester resin was also poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

폐 폴리에스테르의 해중합에 의해 얻어지는 재생 모노머인 비스(2-히드록시에틸)테레프탈레이트를 탄소수 3 이상의 글리콜과 에스테르 교환 반응시켜 비스(글리콜)테레프탈레이트를 제조한 뒤 이들을 공중합시킴으로써, 폴리에스테르 수지 내의 재생 모노머 함량을 높일 수 있고 또한 에스테르 교환 반응 중에 불순물 제거를 통해 순도가 개선되어 최종 수지의 색상 등의 품질이 향상될 수 있다.

Description

비스(글리콜)테레프탈레이트를 포함하는 폴리에스테르 수지 및 이의 제조 방법
본 발명은 재생 모노머인 비스(글리콜)테레프탈레이트를 포함하는 폴리에스테르 수지 및 이를 제조하는 방법에 관한 것이다.
폴리에스테르는 기계적 강도, 내열성, 투명성 및 가스 배리어성이 우수하기 때문에, 음료 충전용 용기나, 포장용 필름, 오디오, 비디오용 필름 등의 소재로서 널리 사용되고 있다. 또한, 폴리에스테르는 의료용 섬유나 타이어 코드 등의 산업 자재로서도 전세계적으로 널리 생산되고 있다. 특히 폴리에스테르 시트나 판재는 투명성이 양호하고 기계적 강도가 우수하여, 케이스, 박스, 파티션, 선반, 패널, 패키징, 건축자재, 인테리어 내외장재 등의 재료로 광범위하게 사용되고 있다.
이에 따라 폴리에스테르와 같은 플라스틱의 폐기물은 연간 세계적으로 감당하기 어려울 정도로 발생하고 있으며, 최근 세계 각국에서는 폐 폴리에스테르를 비롯한 폐 플라스틱 자원의 재활용에 관한 규제 및 방안을 마련하고 있다. 예를 들어 다양한 분야에서 사용되는 포장재에 재활용 수지를 일정 비율 이상 사용하도록 하는 움직임이 있다. 폐 폴리에스테르를 재활용하는 방법으로는 물리적 또는 화학적인 방법이 사용되고 있으나, 물리적 재활용 방법은 순도를 보장할 수 없어 널리 응용되지 않고 있다.
화학적 재활용법은 폐 폴리에스테르의 에스테르 결합을 끊어서 해중합(depolymerization)하는 것으로, 글리콜리시스(glycolysis), 히드롤리시스(hydrolysis), 메탄올리시스(methanolysis), 아미놀리시스(aminolysis) 등의 반응을 이용한다. 이 중 글리콜리시스는 고온에서 폐 폴리에스테르에 에틸렌글리콜 또는 디에틸렌글리콜과 같은 글리콜을 가하여 분해하는 것으로, 주로 비스(2-히드록시에틸)테레프탈레이트(BHET)를 포함하는 반응 결과물이 얻어진다. 상기 비스(2-히드록시에틸)테레프탈레이트는 결정화 또는 정제 이후에 불포화 폴리에스테르나 에스테르 폴리올의 제조 원료로 사용될 수 있다.
이와 관련하여, 한국 등록특허 제 1386683 호는 폐 폴리에스터의 화학적 재활용을 위한 결정화 방법 및 장치를 개시하고 있고, 미국 등록특허 제 7211193 호는 폴리에틸렌테레프탈레이트(PET)를 주성분으로 하는 폴리에스테르를 에틸렌글리콜(EG)을 이용하여 분해하여 생성한 용액을 특정 온도 조건에서 결정화하고 고액 분리하는 비스(2-히드록시에틸)테레프탈레이트(BHET)의 정제 방법을 개시하고 있다.
[선행기술문헌]
(특허문헌 1) 한국 등록특허 제 1386683 호
(특허문헌 2) 미국 등록특허 제 7211193 호
본 발명자들은 폐 PET계 제품의 해중합에 의해 얻은 BHET를 활용하여 다양한 엔지니어링 폴리에스테르 제품 또는 친환경 생분해성 폴리에스테르 제품으로 재생하는 기술을 통해 재생 모노머의 함량을 높이면서 최종 제품의 품질도 향상시킬 수 있는 방법을 모색하였다.
한편 일반적으로 재생되는 BHET는 해중합 과정에서 사용되는 시약들과 부반응으로부터 발생하는 불순물들로 인해 대체로 순도가 낮기 때문에, 이를 정제하기 위해 이온교환이나 재결정과 같은 별도의 공정이 요구되어 비용이 상승하는 문제가 있었다. 또한 공중합 폴리에스테르 수지를 제조하기 위해서는 BHET 외에도 글리콜 모노머(DEG, ISB, CHDM 등)를 사용하여야 하므로 최종 수지 내의 재생 모노머의 함량을 높이기 어려운 문제가 있었다.
이에 본 발명자들이 연구한 결과, 공중합을 위한 글리콜을 BHET와 미리 에스테르 교환(transesterification) 반응시켜 비스(글리콜)테레프탈레이트를 제조한 뒤 중합 반응에 투입함으로써, 폴리에스테르 수지 내의 재생 모노머 함량을 높일 수 있고 또한 에스테르 교환 반응 중에 불순물 제거를 통해 순도가 개선되어 최종 수지의 색상 등의 품질이 향상됨을 발견하였다.
따라서 본 발명의 과제는 비스(2-히드록시에틸)테레프탈레이트 등 재생 모노머의 함량이 높으면서 최종 수지의 품질이 우수한 폴리에스테르 수지의 제조방법, 및 이를 통해 제조된 폴리에스테르 수지를 제공하는 것이다.
본 발명에 따르면, 비스(2-히드록시에틸)테레프탈레이트를 탄소수 3 이상인 글리콜과 반응시켜 비스(글리콜)테레프탈레이트를 제조하는 단계; 및 상기 비스(글리콜)테레프탈레이트 및 비스(2-히드록시에틸)테레프탈레이트를 이용하여 공중합체를 제조하는 단계를 포함하는, 폴리에스테르 수지의 제조방법이 제공된다.
본 발명에 따르면 또한 비스(2-히드록시에틸)테레프탈레이트 및 비스(글리콜)테레프탈레이트를 공단량체로서 포함하고, 상기 글리콜은 탄소수가 3 이상인, 폴리에스테르 수지가 제공된다.
본 발명에 따르면, 폐 폴리에스테르의 해중합에 의해 얻어지는 비스(2-히드록시에틸)테레프탈레이트를 탄소수 3 이상의 글리콜과 에스테르 교환 반응시켜 비스(글리콜)테레프탈레이트를 제조한 뒤 이들을 공중합시킴으로써, 폴리에스테르 수지 내의 재생 모노머 함량을 높일 수 있고 또한 에스테르 교환 반응 중에 불순물 제거를 통해 순도가 개선되어 최종 수지의 색상 등의 품질이 향상될 수 있다.
또한 본 발명에 따르면, 폴리에스테르 수지의 원하는 공중합 조성에 맞는 글리콜 모노머를 비스(2-히드록시에틸)테레프탈레이트와 미리 에스테르 교환 반응시킴으로써 중합 반응에서 발생하는 글리콜 부산물을 줄일 수 있고, 저순도의 비스(2-히드록시에틸)테레프탈레이트를 사용하여도 재생 모노머의 순도 개선이 이루어지므로, 원료 및 공정에 소요되는 비용도 낮출 수 있어서 친환경 폴리에스테르 물품의 제조에 적용될 수 있다.
이하 본 발명을 보다 구체적으로 설명한다.
본 명세서에서 각 구성요소를 지칭하는 용어는 다른 구성요소들과 구별하기 위해 사용되는 것이며, 구현예를 한정하려는 의도로 사용되는 것은 아니다. 또한 본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다.
본 명세서에서 제 1, 제 2 등의 용어는 다양한 구성 요소를 설명하기 위해 사용되는 것이고, 상기 구성 요소들은 상기 용어에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로 구별하는 목적으로 사용된다.
본 명세서에서 "포함"한다는 기재는 특정 특성, 영역, 단계, 공정, 요소 및/또는 성분을 구체화하기 위한 것이며, 특별히 반대되는 기재가 없는 한, 그 외 다른 특성, 영역, 단계, 공정, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
본 명세서에 기재되는 화합물의 분자량이나 고분자의 분자량, 예를 들어 수평균분자량 또는 중량평균분자량은 잘 알려진 바와 같이 탄소-12를 기준으로 한 상대적 질량으로서 단위를 기재하지 않으나, 필요에 따라 동일한 수치의 몰 질량(g/mol)인 것으로 이해하여도 무방하다.
본 명세서에서 특정 화합물의 "유도체"는 해당 화합물이 화학적 반응을 통해 일부가 변형되거나 다른 성분과 결합하여 생성된 화합물로서 해당 화합물의 주요 부위를 포함하게 된 화합물을 의미한다.
본 명세서에서 특정 성분으로부터 "유도된" 단위 또는 그룹이란 해당 성분이 중합 반응과 같은 화학 반응을 거쳐 최종 결과물 내에 포함된 부분을 의미하여, 반응 과정에서 해당 성분의 일부가 변형되거나 다른 성분과 결합한 형태로 존재할 수 있다. 예를 들어 중합체를 구성하는 사슬 내에는 하나 이상의 모노머로부터 유도되는 단위 또는 그룹이 포함된다.
본 명세서에서 "재생 모노머(recycled monomer)"는 폐 폴리에스테르와 같은 폐 플라스틱을 물리적 또는 화학적인 방법으로 분해, 해중합, 재가공, 재중합 등을 하여 얻어진 모노머, 또는 상기 모노머를 포함하거나 상기 모노머로부터 유래된 중합 원료를 의미할 수 있다.
일례로서 본 발명에 따른 방법에서 출발물질로 사용되는 비스(2-히드록시에틸)테레프탈레이트(BHET)는 폐 폴리에스테르의 해중합에 의해 얻어진 재생 모노머일 수 있고, 이로부터 제조되는 비스(글리콜)테레프탈레이트(BHDT, BHIT, BHCT)도 모두 재생 모노머라 할 수 있다.
다른 예로서, 본 발명의 방법에서 에스테스 교환 반응에 투입되는 탄소수 3 이상인 글리콜에도 재생 모노머가 사용될 수 있고, 구체적인 예로서, 재생 에틸렌글리콜(r-EG), 재생 1,4-사이클로헥산디메탄올(r-CHDM), 재생 디에틸렌글리콜(r-DEG), 재생 이소소르바이드(r-ISB) 등과 같은 재생 글리콜이 1종 이상 사용될 수 있다.
또 다른 예로서, 본 발명의 방법에서 폴리에스테르 수지의 중합에 투입되는 공단량체에도 재생 모노머가 사용될 수 있고, 구체적인 예로서, 재생 디카르복실산 및 재생 디올 중에서 선택되는 1종 이상이 사용될 수 있으며, 보다 구체적인 예로서, 재생 테레프탈산(r-TPA), 재생 이소프탈산(r-IPA), 재생 디메틸테레프탈레이트(r-DMT), 재생 에틸렌글리콜(r-EG), 재생 1,4-사이클로헥산디메탄올(r-CHDM), 재생 디에틸렌글리콜(r-DEG), 재생 이소소르바이드(r-ISB) 등과 같은 재생 모노머가 1종 이상 사용될 수 있다.
이와 같은 재생 모노머는 폐 폴리에스테르와 같은 폐 플라스틱으로부터 공지된 방법에 의해 직접 얻거나 또는 상업적으로 구매하여 사용할 수 있다.
본 발명의 일 측면에 따르면, 비스(2-히드록시에틸)테레프탈레이트를 탄소수 3 이상인 글리콜과 반응시켜 비스(글리콜)테레프탈레이트를 제조하는 단계; 및 상기 비스(글리콜)테레프탈레이트 및 비스(2-히드록시에틸)테레프탈레이트를 이용하여 공중합체를 제조하는 단계를 포함하는, 폴리에스테르 수지의 제조방법을 제공한다.
상기 비스(글리콜)테레프탈레이트를 제조하는 방법은, 반응기에 탄소수 3 이상인 글리콜을 투입하는 단계; 및 상기 반응기에 비스(2-히드록시에틸)테레프탈레이트를 투입하여 에스테르 교환 반응하는 단계를 포함한다.
본 발명의 방법은 비스(2-히드록시에틸)테레프탈레이트 등 재생 모노머의 함량이 높으면서 최종 수지의 품질이 우수한 폴리에스테르 수지를 제공한다. 구체적으로, 폴리에스테르 수지의 원하는 공중합 조성에 맞는 글리콜 모노머를 비스(2-히드록시에틸)테레프탈레이트와 미리 에스테르 교환 반응시킴으로써 중합 반응에서 발생하는 글리콜 부산물을 줄일 수 있고, 저순도의 비스(2-히드록시에틸)테레프탈레이트를 사용하여도 재생 모노머의 순도 개선이 이루어지므로, 원료 및 공정에 소요되는 비용도 낮출 수 있어서 친환경 폴리에스테르 물품의 제조에 적용될 수 있다.
비스(2-히드록시에틸)테레프탈레이트
비스(2-히드록시에틸)테레프탈레이트는 2개의 에틸렌글리콜과 1개의 테레프탈산의 에스테르로서, 예를 들어 에틸렌글리콜과 테레프탈산 또는 이의 에스테르와의 중합 반응을 통해 폴리에틸렌테레프탈레이트(PET)와 같은 폴리에스테르를 생성하는 과정에서 중간체로 형성되는 화합물이다.
본 발명에서 사용하는 비스(2-히드록시에틸)테레프탈레이트는 폐 폴리에스테르의 해중합에 의해 얻어진 것일 수 있다. 예를 들어 상기 비스(2-히드록시에틸)테레프탈레이트는 폴리에틸렌테레프탈레이트(PET) 또는 글리콜 변성 폴리에틸렌테레프탈레이트(PETG)와 같이 에틸렌글리콜과 테레프탈산을 반복 단위로 갖는 폐 폴리에스테르로부터 수득될 수 있고, 구체적으로 글리콜리시스(glycolysis), 히드롤리시스(hydrolysis), 메탄올리시스(methanolysis) 등의 잘 알려진 해중합 방법에 의해 얻을 수 있다. 특히, 상기 비스(2-히드록시에틸)테레프탈레이트는 폐 폴리에틸렌테레프탈레이트를 에틸렌글리콜로 해중합한 뒤 정제하여 얻어진 것일 수 있다.
이와 같은 폐 폴리에스테르의 해중합에 의해 수득된 비스(2-히드록시에틸)테레프탈레이트는 "재생 비스(2-히드록시에틸)테레프탈레이트(recycled BHET)"로 표기하거나, 약어로서 r-BHET 또는 rBHET로 표기하며, 이는 순수한 BHET 화합물과는 구별하여 이해할 필요가 있다. 구체적으로, 재생 BHET는 폐 폴리에스테르로부터 해중합되면서 거치는 여러 화학적인 단계에서 사용된 시약이나 용매 또는 이들과의 부반응에 의해 생성된 부산물을 함유하게 된다. 따라서 일반적인 해중합 방식으로 재생된 BHET는 주성분인 BHET 외에도 유무기 불순물들을 함유하여 순도가 높지 않은 편이다. 이러한 이유로 재생 BHET는 둘 이상의 성분을 포함하는 일종의 조성물로 볼 수도 있고, 이에 따라 BHET 조성물이라고도 이해할 수 있으며, 이러한 재생 BHET는 폴리에스테르 수지의 중합 원료로 사용될 수 있다.
상기 재생 BHET 내에 함유되는 불순물은 예를 들어 디에틸렌글리콜 유도체 및 미반응 모노머 등을 포함할 수 있다. 상기 재생 BHET 내에 함유되는 불순물의 총 함량은 10 중량% 이상, 15 중량% 이상 또는 20 중량% 이상일 수 있고, 또한 40 중량% 이하, 35 중량% 이하, 30 중량% 이하, 또는 25 중량% 이하일 수 있다.
상기 재생 BHET의 순도는 액상크로마토그래피 등을 이용하여 측정할 수 있다. 구체적으로, 상기 재생 BHET의 순도는 고성능 액상크로마토그래피(HPLC)를 이용하여 얻은 스펙트럼에서 전체 피크 면적 중에 BHET 피크 면적의 분율(%)을 측정하여 도출할 수 있다.
예를 들어, 상기 재생 BHET의 순도는 97% 이하, 90% 이하, 85% 이하 또는 80% 이하일 수 있고, 또한 60% 이상, 65% 이상 또는 70% 이상일 수 있다. 구체적으로, 상기 본 발명의 에스테르 교환 반응에 투입되는 BHET의 순도는 60% 내지 97%일 수 있고, 보다 구체적으로 65% 내지 90%, 65% 내지 85%, 또는 70% 내지 80%일 수 있다.
글리콜
본 발명의 에스테르 교환 반응에 사용되는 글리콜은 비스(2-히드록시에틸)테레프탈레이트와의 에스테르 교환 반응에 투입되어 생성물인 비스(글리콜)테레프탈레이트의 잔기를 구성하며, 상기 비스(글리콜)테레프탈레이트로부터 중합된 최종 폴리에스테르 수지의 중합체 사슬을 구성하게 된다.
본 발명에서 사용하는 글리콜은 에스테르 교환 반응에서 에틸렌글리콜 잔기를 치환하기 위한 탄소수 3 이상의 글리콜일 수 있다.
특히, 상기 글리콜은 에틸렌글리콜보다 끓는점이 10℃ 이상 높은 것이, 에스테르 교환 반응 중에 분별 증류를 통해 정제하는데 유리하다.
구체적으로 본 발명의 에스테르 교환 반응에 사용하는 글리콜은 에틸렌글리콜을 제외한 글리콜 모노머(예: 탄소수 3 이상의 알킬렌글리콜) 또는 고분자 글리콜(예: 폴리에테르)일 수 있다.
보다 구체적인 일례로서, 상기 글리콜은 3개 내지 20개의 탄소 원자를 포함하고 분자량 500 미만인 글리콜 모노머, 및 수평균분자량 400 내지 5000의 고분자 글리콜 중에서 선택되는 1종 이상일 수 있다.
상기 글리콜 모노머의 탄소수는 예를 들어 3 이상 또는 4 이상일 수 있고, 또한 20 이하, 15 이하, 12 이하, 10 이하, 또는 8 이하일 수 있다.
구체적으로, 상기 글리콜 모노머는 탄소수 3 내지 20의 지방족 디올일 수 있다. 또한 상기 지방족 디올은 사슬형 또는 고리형일 수 있다.
구체적인 예로서, 상기 탄소수 3 이상인 글리콜은 1,3-프로판디올, 1,4-부탄디올, 1,4-사이클로헥산디메탄올, 이소소르바이드, 2-메틸-1,3-프로판디올, 2-메틸렌-1,3-프로판디올, 2-에틸-1,3-프로판디올, 2-이소프로필-1,3-프로판디올, 2,2-디메틸-1,3-프로판디올, 2,3-부탄디올, 3-메틸-1,5-펜탄디올, 3-메틸-2,4-펜탄디올, 1,6-헥산디올, 1,2-사이클로헥산디올, 1,4-사이클로헥산디올, 디에틸렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 폴리헥사메틸렌글리콜, 에틸렌옥사이드와 테트라하이드로퓨란의 공중합체, 에틸렌옥사이드 부가 폴리프로필렌글리콜, 폴리카보네이트디올, 폴리네오펜틸글리콜, 폴리-3-메틸펜탄디올, 폴리-1,5-펜탄디올 및 이들의 유도체로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
보다 구체적인 예로서, 상기 글리콜 모노머는 디에틸렌글리콜, 이소소르바이드, 1,4-사이클로헥산디메탄올 및 이의 유도체로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 이와 같은 글리콜 모노머는 버진(virgin) 글리콜일 수 있다.
다른 예로서, 상기 탄소수 3 이상인 글리콜은 폐 폴리에스테르의 해중합에 의해 수득된 1종 이상의 재생 글리콜을 포함할 수 있다. 구체적인 예로서, 상기 재생 글리콜은 재생 에틸렌글리콜, 재생 1,4-사이클로헥산디메탄올, 재생 디에틸렌글리콜 및 재생 이소소르바이드로 이루어진 군에서 선택될 수 있다. 그러나 본 발명에서 사용 가능한 재생 글리콜의 종류는 이에 한정되지 않으며, 그 외에도 에스테르 교환 반응에 도입될 수 있는 재생 글리콜이라면 가능하다. 이와 같은 재생 글리콜은 버진 글리콜을 완전히 대체하여 에스테르 교환 반응에 사용될 수도 있고, 또는 재생 글리콜과 버진 글리콜을 일정 비율로 혼합하여 에스테르 교환 반응에 사용할 수도 있다. 상기 재생 글리콜의 혼합 비율은 예를 들어 전체 글리콜의 몰 수를 기준으로 0 몰% 이상, 1 몰% 이상, 10 몰% 이상, 20 몰% 이상, 30 몰% 이상, 50 몰% 이상 또는 60 몰% 이상일 수 있고, 또한 100 몰% 이하, 99 몰% 이하, 90 몰% 이하, 50 몰% 이하 또는 40 몰% 이하일 수 있으며, 구체적인 예로서 1 몰% 내지 100 몰%, 또는 1 몰% 내지 99 몰%, 또는 30 몰% 내지 100 몰%일 수 있다.
상기 1,4-사이클로헥산디메탄올의 유도체의 구체적인 예는 4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트, 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올, 또는 이들의 혼합물을 포함할 수 있으며, 보다 구체적으로 4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트, 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올을 1:1 내지 1:5의 몰비, 또는 1:2 내지 1:4의 몰비로 포함하는 화합물일 수 있다.
상기 글리콜 모노머의 분자량은 예를 들어 500 미만, 400 미만, 350 미만, 300 미만, 또는 250 미만일 수 있다.
상기 고분자 글리콜은 예를 들어 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 폴리헥사메틸렌글리콜, 에틸렌옥사이드와 테트라하이드로퓨란의 공중합체, 에틸렌옥사이드 부가 폴리프로필렌글리콜, 폴리카보네이트디올, 폴리네오펜틸글리콜, 폴리-3-메틸펜탄디올 및 폴리-1,5-펜탄디올로 이루어진 군에서 선택될 수 있다. 보다 구체적으로, 상기 고분자 글리콜은 폴리테트라메틸렌글리콜, 폴리카보네이트디올, 폴리프로필렌글리콜 및 에틸렌옥사이드 부가 폴리프로필렌글리콜로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 고분자 글리콜의 수평균분자량은 예를 들어 400 이상, 500 이상, 600 이상, 700 이상, 또는 800 이상일 수 있고, 또한 6000 이하, 5000 이하, 4000 이하, 또는 300 이하일 수 있다. 구체적인 일례로서, 상기 고분자 글리콜의 수평균분자량은 400 내지 5000일 수 있고, 보다 구체적으로 1000 내지 3000인 것이 상분리 감소의 면에서 유리하다.
상기 고분자 글리콜은 최종 폴리에스테르 수지의 중량을 기준으로, 5 중량% 내지 75 중량%, 구체적으로 10 중량% 내지 60 중량%, 보다 구체적으로 15 중량% 내지 50 중량%가 되도록 사용하는 것이 폴리에스테르 수지의 탄성을 향상시키면서 고분자량을 달성하는데 유리하다.
에스테르 교환 반응
상기 글리콜과 비스(2-히드록시에틸)테레프탈레이트는 에스테르 교환 반응을 거치게 된다.
[반응식 1]
Figure PCTKR2023011291-appb-img-000001
상기 반응식 1에서 m은 예를 들어 1 내지 10, 또는 1 내지 4의 범위 내의 수이다.
또한 상기 반응식 1에서 R은 탄소수 3 이상의 글리콜에서 양 말단의 OH기를 제외한 그룹이다. 일례로서, 상기 R은 탄소수 3 내지 20의 알킬렌기이거나, 또는 둘 이상의 동일하거나 서로 다른 탄소수 2 내지 10의 알킬렌기가 에테르기 또는 카보네이트기를 매개로 연결된 그룹일 수 있다. 다른 예로서, 상기 R은 단일 또는 다중 고리를 포함하는 탄소수 3 내지 20의 그룹일 수 있으며, 상기 고리는 지방족 또는 방향족일 수 있고 또한 하나 이상의 헤테로원자(예: O, N, S)를 포함할 수 있다.
상기 에스테르 교환 반응은 촉매의 존재 하에 수행될 수 있으며, 이에 따라 상기 글리콜, 산 또는 비스(2-히드록시에틸)테레프탈레이트를 반응기에 투입 시에 촉매를 함께 투입할 수 있다.
상기 에스테르 교환 반응을 위한 촉매는 예를 들어 아연계 촉매, 티타늄계 촉매, 게르마늄계 촉매, 안티몬계 촉매, 알루미늄계 촉매 및 주석계 촉매로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다.
상기 아연계 촉매의 예로는 아세트산아연, 아세트산아연 수화물, 염화아연, 황산아연, 황화아연, 탄산아연, 시트르산아연, 글루콘산아연, 또는 이의 혼합물을 들 수 있다. 상기 티타늄계 촉매의 예로는, 테트라에틸 티타네이트, 아세틸트리프로필 티타네이트, 테트라프로필 티타네이트, 테트라부틸 티타네이트, 2-에틸헥실 티타네이트, 옥틸렌글리콜 티타네이트, 트리에탄올아민 티타네이트, 아세틸아세토네이트 티타네이트, 에틸아세토아세틱에스테르 티타네이트, 이소스테아릴 티타네이트, 티타늄 디옥사이드 등을 들 수 있다. 상기 게르마늄계 촉매의 예로는 게르마늄 디옥사이드, 게르마늄 테트라클로라이드, 게르마늄 에틸렌글리콕시드, 게르마늄 아세테이트, 또는 이들의 조합을 들 수 있다. 구체적으로 상기 게르마늄계 촉매로서 게르마늄 디옥사이드를 사용할 수 있으며, 이러한 게르마늄 디옥사이드로는 결정성 또는 비결정성 모두를 사용할 수 있고, 글리콜 가용성도 사용할 수 있다.
상기 에스테르 교환 반응 촉매의 투입량은 반응 조건 및 사용 촉매에 따라 다를 수 있으나, 일례로서 금속계 촉매(예: 티타늄계 촉매, 주석계 촉매)는 반응기에 투입된 글리콜과 비스(2-히드록시에틸)테레프탈레이트 총 100 중량부에 대해 0.0001 중량부 내지 0.05 중량부로 투입할 수 있다.
상기 에스테르 교환 반응은 배치(batch)식 또는 연속식으로 수행될 수 있다.
일례로서, 반응기에 글리콜, 또는 글리콜과 산을 투입하고 승온하면서 일정 수준의 온도에 도달하면, 비스(2-히드록시에틸)테레프탈레이트를 투입할 수 있다. 상기 비스(2-히드록시에틸)테레프탈레이트의 투입은 예를 들어 180℃ 내지 280℃의 온도의 질소 분위기에서 부산물인 에틸렌글리콜을 제거하며 수행될 수 있다.
상기 비스(2-히드록시에틸)테레프탈레이트는 상기 글리콜과의 에스테르 교환 반응에 일괄적으로 투입될 수 있다. 구체적인 일례로서, 비스(2-히드록시에틸)테레프탈레이트를 분말(powder) 형태 또는 약 80~100℃에서 물에 용해하여 농도 약 10~20 중량%의 BHET 수용액 형태로 준비하고 반응기에 일괄 투입할 수 있다.
또는, 상기 글리콜과의 에스테르 교환 반응에 비스(2-히드록시에틸)테레프탈레이트를 분할 또는 연속 투입할 수 있다. 일 구현예에 따르면, 글리콜과의 에스테르 교환 반응에 비스(2-히드록시에틸)테레프탈레이트 2회 이상 분할하여 투입할 수 있다. 상기 분할 투입 횟수는 2회 이상, 3회 이상, 4회 이상 또는 5회 이상일 수 있고, 또한 100회 이하, 50회 이하, 30회 이하, 20회 이하, 15회 이하 또는 10회 이하일 수 있다. 구체적인 예로서, 상기 분할 투입 횟수는 2회 내지 30회, 또는 3회 내지 15회일 수 있다. 상기 분할 투입 간의 시간 간격은 전체 투입 시간을 분할 투입 횟수로 나누어 결정할 수 있다. 상기 전체 투입 시간은 예를 들어 1시간 이상 또는 2시간 이상일 수 있고, 또한 5시간 이하 또는 4시간 이하일 수 있다. 또한 상기 분할 투입 시의 1회 투입량은 반응에 투입할 비스(2-히드록시에틸)테레프탈레이트의 총량을 분할 투입 횟수로 나누어 결정할 수 있다. 다른 구현예에 따르면, 글리콜과의 에스테르 교환 반응에 비스(2-히드록시에틸)테레프탈레이트 연속 투입한다. 상기 연속 투입의 총 시간은 예를 들어 1시간 이상 또는 2시간 이상일 수 있고, 또한 5시간 이하 또는 4시간 이하일 수 있다. 예를 들어, 상기 연속 투입은 시간당 일정한 양의 비스(2-히드록시에틸)테레프탈레이트를 투입하는 것일 수 있고, 상기 시간당 투입량은 반응에 투입할 비스(2-히드록시에틸)테레프탈레이트의 총량을 전체 투입 시간으로 나누어 결정할 수 있다. 구체적인 일례로서, 비스(2-히드록시에틸)테레프탈레이트를 분말 형태로 준비하거나 또는 약 80~100℃에서 물에 용해하여 농도 약 10~20 중량%의 BHET 수용액을 준비하고, 이를 이용하여 연속 투입을 수행할 수 있다. 상기 연속 투입은 에스테르 교환 반응 시작부터 반응 완료 한 시간 전까지 수행할 수 있다. 시간당 일정한 양의 연속 투입을 위해 연구실 수준에서는 적가 깔대기(dropping funnel)을 사용할 수 있고, 상업적 수준에서는 정량 공급 장치를 이용할 수 있다.
이와 같은 비스(2-히드록시에틸)테레프탈레이트의 투입이 완료되면 에스테르 교환 반응이 종료될 때까지 반응 조건을 유지할 수 있다. 또한 상기 에스테르 교환 반응 중에 부산물인 에틸렌글리콜을 제거하는 공정을 지속할 수 있다. 상기 에틸렌글리콜의 제거는 다른 성분과의 비점 차이를 이용한 증류 공정으로 수행될 수 있고, 증류된 에틸렌글리콜을 냉각시켜 회수한 뒤 다른 공정에 재활용할 수 있다.
상기 에스테르 교환 반응의 종료 시점은 에스테르 교환 반응을 통해 비스(2-히드록시에틸)테레프탈레이트로부터 발생하는 에틸렌글리콜의 이론적인 양을 고려하거나 또는 부산물 유출이 더 이상 발생되지 않는 시점으로 확인 가능하다.
상기 에스테르 교환 반응 시의 압력(절대 압력)은 예를 들어 0.5 kgf/cm2 이상, 0.7 kgf/cm2 이상 또는 1.0 kgf/cm2 이상일 수 있고, 또한 2.5 kgf/cm2 이하, 2.0 kgf/cm2 이하, 또는 1.5 kgf/cm2 이하일 수 있으며, 구체적인 일례로서 0.5 kgf/cm2 내지 2.5 kgf/cm2일 수 있다.
또한 상기 에스테르 교환 반응 시의 온도는 140℃ 이상, 160℃ 이상, 180℃ 이상 또는 200℃ 이상일 수 있고, 또한 300℃ 이하, 280℃ 이하, 270℃ 이하, 250℃ 이하 또는 220℃ 이하일 수 있다. 또한 상기 에스테르 교환 반응은 질소 분위기에서 수행될 수 있다. 구체적인 일례로서, 상기 에스테르 교환 반응은 질소 분위기에서 0.5 kgf/cm2 내지 2.5 kgf/cm2의 압력 및 180℃ 내지 280℃ 온도 조건으로 수행할 수 있다.
상기 에스테르 교환 반응 시의 압력 및 온도 조건은 목적하는 폴리에스테르의 구체적인 특성, 각 성분의 비율, 또는 공정 조건 등에 따라 적절히 조절될 수 있다. 예를 들어 상기 에스테르 교환 반응은 에스테르 교환 반응 중에 발생하는 부산물인 에틸렌글리콜의 원활한 제거를 위해 180℃ 이상의 온도에서 실시할 수 있으며, 또한 치환하고자 하는 글리콜의 손실을 줄이기 위해 해당 글리콜의 비점보다는 10℃ 낮은 온도에서 실시할 수 있다. 구체적인 예로서, 글리콜로서 1,4-부탄디올을 사용할 경우 180℃ 내지 220℃로 조절할 수 있고, 또는 1,4-사이클로헥산디메탄올을 사용할 경우 200℃ 내지 270℃로 조절할 수 있다.
상기 에스테르 교환 반응의 생성물은 비스(2-히드록시에틸)테레프탈레이트에서 에틸렌글리콜 잔기가 다른 글리콜 잔기로 치환된 비스(글리콜)테레프탈레이트 및 이의 유도체를 주로 포함한다.
일 구현예에 따르면, 상기 에스테르 교환 반응에 의해 수득된 비스(글리콜)테레프탈레이트는 아래 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2023011291-appb-img-000002
상기 화학식 1에서 -O-R-OH 는 탄소수 3 이상의 글리콜로부터 유도된 그룹이고, m은 예를 들어 1 내지 10, 또는 1 내지 4의 범위 내의 수이다.
상기 화학식 1의 화합물은 비스(글리콜)테레프탈레이트의 모노머 또는 올리고머(다이머, 트라이머 등)일 수 있다.
상기 화학식 1에서 R은 탄소수 3 이상의 글리콜로부터 유도된 그룹이다. 일례로서, 상기 R은 탄소수 3 내지 20의 알킬렌기이거나, 또는 둘 이상의 동일하거나 서로 다른 탄소수 2 내지 10의 알킬렌기가 에테르기 또는 카보네이트기를 매개로 연결된 그룹일 수 있다. 다른 예로서, 상기 R은 단일 또는 다중 고리를 포함하는 탄소수 3 내지 20의 그룹일 수 있으며, 상기 고리는 지방족 또는 방향족일 수 있고 또한 하나 이상의 헤테로원자(예: O, N, S)를 포함할 수 있다.
구체적인 일례로서, 상기 화학식 1은 R이 디에틸렌글리콜로부터 유도된 그룹이고 m이 1인 화합물, 즉 비스(디에틸렌글리콜)테레프탈레이트일 수 있다(이하 BHDT로 약칭). 구체적인 다른 예로서, 상기 화학식 1은 R은 이소소르바이드로부터 유도된 그룹이고 m이 1인 화합물, 즉 비스(이소소르바이드)테레프탈레이트일 수 있다(이하 BHIT로 약칭). 구체적인 또 다른 예로서, 상기 화학식 1은 R이 1,4-사이클로헥산디메탄올로부터 유도된 그룹이고 m이 1인 화합물, 즉 비스(1,4-사이클로헥산디메탄올)테레프탈레이트일 수 있다(이하 BHCT로 약칭).
Figure PCTKR2023011291-appb-img-000003
상기 비스(글리콜)테레프탈레이트는 상기 화학식 1로 표시되는 화합물을 2종 이상 포함할 수도 있으며, 이의 유도체를 포함할 수도 있다.
상기 비스(글리콜)테레프탈레이트는 에스테르 교환 반응 중에 발생하는 글리콜과 같은 부산물을 제거하는 과정에서 불순물도 제거되므로, 출발물질인 비스(2-히드록시에틸)테레프탈레이트에 비해 순도가 향상될 수 있다. 예를 들어, 상기 에스테르 교환 반응을 통해 얻은 비스(글리콜)테레프탈레이트는 80% 이상의 순도를 가질 수 있다. 보다 구체적으로, 상기 비스(글리콜)테레프탈레이트의 순도는 85% 이상, 90% 이상, 또는 95% 이상일 수 있으며, 구체적인 일례로서 80% 내지 99.9%일 수 있다.
폴리에스테르 수지의 제조
이후 상기 비스(글리콜)테레프탈레이트 및 비스(2-히드록시에틸)테레프탈레이트를 이용하여 공중합체를 제조하는 단계를 포함하여 폴리에스테르 수지를 제조한다.
상기 공중합체의 제조 단계는 에스테르화(esterification) 반응(제 1 중합 반응 단계)과 축중합(polycondensation) 반응(제 2 중합 반응 단계)을 순차적으로 수행할 수 있다.
예를 들어 상기 공중합체를 제조하는 단계는 상기 비스(글리콜)테레프탈레이트 및 비스(2-히드록시에틸)테레프탈레이트를 포함하는 공단량체를 에스테르화 반응시켜 올리고머를 얻는 단계; 및 상기 올리고머를 축중합하여 공중합체를 얻는 단계를 포함할 수 있다.
아래 반응식 2에 개략적인 폴리에스테르 공중합 반응을 나타내었으며, 이 과정에서 부산물로 글리콜이 발생할 수 있다.
[반응식 2]
Figure PCTKR2023011291-appb-img-000004
상기 반응식 2에서 R은 탄소수 3 이상의 글리콜로부터 유도된 그룹이다.
상기 에스테르화 반응에는 재생 모노머 외에 추가적인 모노머가 더 투입될 수 있다. 예를 들어 상기 에스테르화 반응에 디카르복실산, 디카르복실산 유도체, 디올 및 디올 유도체로 이루어진 군에서 선택되는 1종 이상의 공단량체가 더 투입될 수 있다.
구체적인 예로서, 상기 디카르복실산은 테레프탈산 또는 이소프탈산을 포함하고; 상기 디카르복실산 유도체는 디메틸테레프탈레이트 또는 디메틸이소프탈레이트를 포함하고; 상기 디올은 디에틸렌글리콜, 1,4-사이클로헥산디메탄올, 이소소르바이드, 1,2-프로판디올, 1,3-프로판디올, 2-메틸-1,3-프로판디올, 2-메틸렌-1,3-프로판디올, 2-에틸-1,3-프로판디올, 2-이소프로필-1,3-프로판디올, 2,2-디메틸-1,3-프로판디올, 1,4-부탄디올, 2,3-부탄디올, 3-메틸-1,5-펜탄디올, 3-메틸-2,4-펜탄디올, 1,6-헥산디올, 1,2-사이클로헥산디올, 또는 1,4-사이클로헥산디올을 포함하고; 상기 디올 유도체는 4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트, 또는 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올을 포함할 수 있다. 이와 같은 공단량체는 버진(virgin) 모노머일 수 있다.
다른 예로서, 상기 1종 이상의 공단량체는 폐 폴리에스테르의 해중합에 의해 수득된 재생 모노머를 포함할 수 있다. 구체적인 예로서, 상기 1종 이상의 공단량체는 재생 디카르복실산, 재생 디카르복실산 유도체, 재생 디올 및 재생 디올 유도체로 이루어진 군에서 선택되는 1종 이상의 재생 모노머를 포함할 수 있다. 보다 구체적인 예로서, 상기 재생 모노머는 재생 에틸렌글리콜, 재생 1,4-사이클로헥산디메탄올, 재생 디에틸렌글리콜 및 재생 이소소르바이드, 재생 테레프탈산, 재생 디메틸테레프탈레이트, 재생 이소프탈산 및 재생 디메틸이소프탈레이트로 이루어진 군에서 선택될 수 있다. 그러나 본 발명에서 공단량체로서 사용 가능한 재생 모노머의 종류는 이에 한정되지 않으며, 그 외에도 폴리에스테르 수지의 제조에 도입될 수 있는 재생 모노머라면 가능하다. 이와 같은 재생 모노머는 버진 모노머를 완전히 대체하여 폴리에스테르 수지의 중합에 사용될 수도 있고, 또는 재생 모노머와 버진 모노머를 일정 비율로 혼합하여 폴리에스테르 수지의 중합에 사용할 수도 있다. 상기 재생 모노머의 혼합 비율은 예를 들어 전체 모노머의 몰 수를 기준으로 0 몰% 이상, 1 몰% 이상, 10 몰% 이상, 20 몰% 이상, 30 몰% 이상, 50 몰% 이상 또는 60 몰% 이상일 수 있고, 또한 100 몰% 이하, 99 몰% 이하, 90 몰% 이하, 50 몰% 이하 또는 40 몰% 이하일 수 있으며, 구체적인 예로서 1 몰% 내지 100 몰%, 또는 1 몰% 내지 99 몰%, 또는 30 몰% 내지 100 몰%일 수 있다.
상기 에스테르화 반응은 에스테르화 반응 촉매의 존재 하에 수행될 수 있으며, 예를 들어 아연계 촉매를 사용할 수 있다. 이러한 아연계 촉매의 구체적인 예로는 아세트산아연, 아세트산아연 수화물, 염화아연, 황산아연, 황화아연, 탄산아연, 시트르산아연, 글루콘산아연, 또는 이의 혼합물을 들 수 있다.
상기 에스테르화 반응은 예를 들어 0 kgf/cm2 내지 10.0 kgf/cm2의 압력 및 150℃ 내지 300℃ 온도에서 수행할 수 있다. 상기 에스테르화 반응 조건은 제조되는 폴리에스테르의 구체적인 특성, 각 성분의 비율, 또는 공정 조건 등에 따라 적절히 조절될 수 있다. 구체적으로, 상기 에스테르화 반응에서 압력은 0 kgf/cm2 내지 5.0 kgf/cm2, 보다 구체적으로 0.1 kgf/cm2 내지 3.0 kgf/cm2일 수 있다. 또한 상기 에스테르화 반응에서 온도는 200℃ 내지 270℃, 보다 구체적으로 240℃ 내지 260℃일 수 있다.
상기 에스테르화 반응은 배치(batch)식 또는 연속식으로 수행될 수 있다. 또한, 원료인 재생 BHET, 디카르복실산 및 디올을 각각 별도로 반응기에 투입하거나, 둘 이상의 원료를 혼합한 상태로 투입할 수도 있으며, 고상, 액상 또는 슬러리 형태 등으로 투입할 수 있다. 일례로서, 디카르복실산, 디올 및 재생 BHET를 각각 또는 혼합하여 투입할 수 있으며, 이미 제조된 테레프탈산 올리고머와 혼합될 수 있다. 상기 테레프탈산 올리고머는 예를 들어 테레프탈산과 에틸렌글리콜, 사이클로헥산디메탄올, 이소소르바이드 등의 디올이 반응하여 제조된 것일 수 있다. 다른 예로서, 디올에 디카르복실산 및 재생 BHET를 혼합한 슬러리 형태로 투입할 수도 있다.
보다 구체적으로, 상온에서 고형분인 이소소르바이드 등의 디올은 물 또는 에틸렌글리콜에 용해시킨 후, 테레프탈산 등의 디카르복실산에 혼합하여 슬러리로 만들 수 있다. 또는 60℃ 이상에서 이소소르바이드가 용융된 후, 테레프탈산 등의 디카르복실산과 기타 디올을 혼합하여 슬러리로 만들 수 있다. 또한, 상기 혼합된 슬러리에 물을 추가로 투입하여 슬러리의 유동성 증대에 도움을 줄 수도 있다. 또한 연속식의 경우, 펌프 등을 이용하여 반응기 내로 액상의 원료(예: 재생 BHET 용액)을 연속 투입할 수 있으며, 원료의 시간당 투입량은 하루 목표 생산량을 달성하기 위해 투입해야 할 원료의 총량을 시간으로 나누어 결정할 수 있다.
상기 비스(2-히드록시에틸)테레프탈레이트와 비스(글리콜)테레프탈레이트 및 그 외 첨가 성분들의 혼합물은 에스테르화 반응기에서 일정 시간, 예를 들어 1 시간 내지 24 시간, 또는 4 시간 내지 10 시간 동안 체류한 뒤, 축중합 반응기로 이송될 수 있다. 상기 축중합 반응은 용융 중합을 통해 상대적으로 낮은 분자량의 폴리에스테르 수지를 생성할 수 있고, 또한 용융 중합 이후 고상 중합까지 거쳐 상대적으로 높은 분자량의 폴리에스테르 수지를 생성할 수도 있다.
상기 축중합 반응 시의 온도는 150℃ 내지 300℃, 구체적으로 200℃ 내지 290℃, 보다 구체적으로 260℃ 내지 280℃일 수 있다. 또한 상기 축중합 반응에서 압력은 0.01 mmHg 내지 600 mmHg, 구체적으로 0.05 mmHg 내지 200 mmHg, 보다 구체적으로 0.1 mmHg 내지 100 mmHg일 수 있다. 상기 축중합 반응의 감압 조건을 적용함에 따라서 축중합 반응의 부산물인 글리콜을 계외로 제거할 수 있으며, 만약 상기 축중합 반응에서 압력이 0.01 mmHg 내지 400 mmHg를 벗어나는 경우 부산물의 제거가 불충분할 수 있다. 또한, 상기 축중합 반응에서 온도가 150℃ 미만일 경우 반응 부산물인 글리콜을 효과적으로 계외로 제거하지 못해 최종 반응 생성물의 고유점도가 낮아 최종 폴리에스테르 수지의 물성이 저하될 수 있으며, 상기 축중합 반응에서 온도가 300℃ 초과일 경우, 최종 폴리에스테르 수지에 황변(yellow)이 발생할 가능성이 높아진다. 그리고, 상기 축중합 반응은 최종 반응 생성물의 고유점도가 적절한 수준에 이를 때까지 필요한 시간 동안, 예를 들면, 1 시간 내지 24 시간의 평균 체류 시간 동안 진행될 수있다.
또한, 상기 축중합 반응은 축중합 촉매의 존재 하에 수행될 수 있으며, 상기 축중합 촉매는 예를 들어 티타늄계 화합물, 게르마늄계 화합물, 안티몬계 화합물, 알루미늄계 화합물, 주석계 화합물 또는 이들의 혼합물일 수 있다. 상기 티타늄계 화합물의 예로는, 테트라에틸 티타네이트, 아세틸트리프로필 티타네이트, 테트라프로필 티타네이트, 테트라부틸 티타네이트, 2-에틸헥실 티타네이트, 옥틸렌글리콜 티타네이트, 락테이트 티타네이트, 트리에탄올아민 티타네이트, 아세틸아세토네이트 티타네이트, 에틸아세토아세틱에스테르 티타네이트, 이소스테아릴 티타네이트, 티타늄 디옥사이드 등을 들 수 있다. 상기 게르마늄계 화합물의 예로는 게르마늄 디옥사이드, 게르마늄 테트라클로라이드, 게르마늄 에틸렌글리콕시드, 게르마늄 아세테이트, 또는 이들의 혼합물을 들 수 있다. 바람직하게는, 게르마늄 디옥사이드를 사용할 수 있으며, 이러한 게르마늄 디옥사이드로는 결정성 또는 비결정성 모두를 사용할 수 있고, 글리콜 가용성도 사용할 수 있다. 상기 축중합 촉매의 사용량은 폴리에스테르 수지의 중량 대비 티타늄 원소량이 약 1 ppm 내지 100 ppm, 더욱 바람직하게는 약 1 ppm 내지 50 ppm이 되도록 사용될 수 있다.
상기 축중합 촉매 외에도 안정화제, 정색제, 결정화제, 산화방지제, 분지화제(branching agent) 등이 더 사용될 수 있고, 이러한 첨가제들의 투입 시기는 특별히 한정되지 않으며 폴리에스테르 수지의 제조 단계 중 임의의 시점에 투입될 수도 있다.
상기 안정화제로는, 일반적으로 인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리에틸포스포노아세테이트 등의 인계 화합물을 사용할 수 있으며, 그 첨가량은 인 원소량을 기준으로 폴리에스테르 수지의 중량 대비 10 ppm 내지 200 ppm일 수 있다. 또한, 폴리에스테르 수지의 색상을 향상시키기 위해 첨가되는 정색제로는, 코발트 아세테이트, 코발트 프로피오네이트 등의 통상의 정색제를 예시할 수 있고, 그 첨가량은 코발트 원소량을 기준으로 폴리에스테르 수지의 중량 대비 10 ppm 내지 200 ppm일 수 있다. 필요에 따라, 유기 화합물 정색제로서 안트라퀴논(anthraquionone)계 화합물, 페리논(perinone)계 화합물, 아조(azo)계 화합물, 메틴(methine)계 화합물 등을 사용할 수 있으며, 시판되는 제품으로는 Clarient사의 Polysynthren Blue RLS 혹은 Clarient사의 Solvaperm Red BB 등의 토너를 사용할 수 있다. 상기 유기화합물 정색제의 첨가량은 폴리에스테르 수지 중량 대비 0 내지 50 ppm으로 조절될 수 있다. 상기 결정화제로는 결정핵제, 자외선 흡수제, 폴리올레핀계 수지, 폴리아마이드 수지 등을 예시할 수 있다. 상기 산화방지제로는 힌더드 페놀계 산화방지제, 포스파이트계 산화방지제, 티오에테르계 산화방지제 혹은 이들의 혼합물 등을 예시할 수 있다. 상기 분지화제로는 3 이상의 관능기를 가지는 통상의 분지화제로서, 예를 들면, 무수트리멜리틱산(trimellitic anhydride), 트리메틸올 프로판(trimethylol propane), 트리멜리틱산(trimellitic acid) 혹은 이들의 혼합물 등을 예시할 수 있다.
폴리에스테르 수지
본 발명의 또 다른 측면에 따르면, 앞서의 방법에 따라 제조되는 폴리에스테르 수지가 제공된다.
이와 같이 본 발명의 폴리에스테르 수지는, 폐 폴리에스테르의 화학적 재활용을 통해 재생산된(regenerated) 폴리에스테르 수지이다.
즉 상기 폴리에스테르 수지는 비스(2-히드록시에틸)테레프탈레이트 및 비스(글리콜)테레프탈레이트를 포함하는 모노머를 공중합하여 제조된다. 이에 따라 상기 폴리에스테르 수지는 비스(2-히드록시에틸)테레프탈레이트 및 비스(글리콜)테레프탈레이트를 공단량체로서 포함한다. 여기서 상기 글리콜은 탄소수가 3 이상이다.
상기 비스(글리콜)테레프탈레이트는 앞서 설명한 바와 같이 비스(2-히드록시에틸)테레프탈레이트와 탄소수 3 이상의 글리콜 간의 에스테르 교환 생성물일 수 있다.
여기서 상기 글리콜은 탄소수가 3 이상인 글리콜이며, 이의 구체적인 종류는 앞서 예시한 바와 같다.
구체적인 예시로서, 상기 비스(2-히드록시에틸)테레프탈레이트는 비스(디에틸렌글리콜)테레프탈레이트, 비스(이소소르바이드)테레프탈레이트, 비스(1,4-사이클로헥산디메탄올)테레프탈레이트 및 이의 유도체로 이루어진 군에서 선택될 수 있다.
본 발명의 폴리에스테르 수지 내의 재생 모노머의 총 함량은 1 중량% 이상, 5 중량% 이상, 10 중량% 이상, 30 중량% 이상, 50 중량% 이상, 70 중량% 이상, 또는 90 중량% 이상일 수 있다. 또한 상기 재생 모노머의 총 함량은 100 중량% 이하, 99 중량% 이하, 80 중량% 이하, 60 중량% 이하, 40 중량% 이하, 또는 20 중량% 이하일 수 있다. 구체적인 일례로서, 상기 폴리에스테르 수지는, 상기 폴리에스테르 수지의 중량을 기준으로, 상기 비스(2-히드록시에틸)테레프탈레이트 및 상기 비스(글리콜)테레프탈레이트를 총 30 중량% 이상 포함할 수 있다.
상기 폴리에스테르 수지의 제조에는 재생 모노머 외에 일반적으로 폴리에스테르 수지의 중합에 사용되는 모노머(즉 virgin 모노머), 예를 들어 앞서 살펴본 바와 같은 디카르복실산, 디카르복실산 유도체, 디올 및 디올 유도체로 이루어진 군에서 선택되는 1종 이상을 더 사용할 수 있으므로, 상기 폴리에스테르 수지는 이들 공단량체를 더 포함할 수 있다.
본 발명의 폴리에스테르 수지의 제조에 사용되는 비스(2-히드록시에틸)테레프탈레이트는 2개의 에틸렌글리콜과 1개의 테레프탈산이 결합된 구조이므로, 본 발명의 폴리에스테르 수지는 에틸렌글리콜 및 테레프탈산으로부터 유도된 반복 단위를 포함할 수 있다. 또한 상기 비스(글리콜)테레프탈레이트는 2개의 탄소수 3 이상의 글리콜과 1개의 테레프탈산이 결합된 구조이므로, 본 발명의 폴리에스테르 수지는 탄소수 3 이상의 글리콜로부터 유도된 반복 단위를 추가로 포함할 수 있다.
이와 같이 본 발명의 폴리에스테르 수지는 이를 구성하는 모노머 성분(중합체 구성 단위)으로서 디카르복실산 성분 및 디올 성분을 포함하며, 이들은 폴리에스테르 수지의 제조를 위해 최초 투입된 비스(2-히드록시에틸)테레프탈레이트 및 탄소수 3 이상의 글리콜, 또는 이로부터 제조된 재생 비스(글리콜)테레프탈레이트, 및 추가로 투입된 공단량체로부터 유도된 것일 수 있다.
이에 따라 본 발명의 폴리에스테르 수지는 둘 이상의 디카르복실산 성분 및/또는 둘 이상의 디올 성분을 포함하는 공중합체 수지일 수 있다.
일 구현예에 따르면 상기 디올 성분은 에틸렌글리콜 성분 외의 디올 성분을 공단량체로서 더 포함한다. 상기 공단량체는 예를 들어 디에틸렌글리콜, 사이클로헥산디메탄올, 사이클로헥산디메탄올 유도체, 및 이소소르바이드로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
상기 디에틸렌글리콜은 폴리에스테르 수지의 투명성과 내충격강도의 향상에 기여할 수 있다. 예를 들어 상기 디에틸렌글리콜은 상기 전체 디올의 몰 수를 기준으로 0.1 몰% 내지 50 몰%로 포함될 수 있다.
상기 사이클로헥산디메탄올(예: 1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올, 1,4-사이클로헥산디메탄올)은, 제조되는 폴리에스테르 수지의 투명성과 내충격강도의 향상에 기여할 수 있다. 예를 들어, 상기 사이클로헥산디메탄올은 전체 디올의 몰 수를 기준으로 5 몰% 내지 90 몰%로 포함될 수 있다. 상기 사이클로헥산디메탄올 유도체는 4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트, 또는 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올일 수 있다. 상기 사이클로헥산디메탄올 유도체는 전체 디올의 몰 수를 기준으로 0.1 몰% 내지 25 몰%로 포함될 수 있다.
상기 이소소르바이드는 최종 폴리에스테르 수지의 가공성을 향상시킬 수 있다. 상술한 사이클로헥산디메탄올과 에틸렌글리콜의 디올 성분에 의하여 폴리에스테르 수지의 투명성과 내충격강도가 향상되나, 가공성을 위하여 전단 유동화 특성이 개선되어야 하고 결정화 속도가 지연되어야 하는데, 사이클로헥산디메탄올과 에틸렌글리콜 만으로는 이의 효과를 달성하기 어렵다. 이에 디올 성분으로서 이소소르바이드를 포함할 경우, 투명성과 내충격강도가 유지되면서도 전단 유동화 특성이 개선되고 결정화 속도가 지연됨으로써, 제조되는 폴리에스테르 수지의 가공성이 개선될 수 있다. 바람직하게는, 상기 이소소르바이드 잔기는 상기 전체 디올의 몰 수를 기준으로 0.1 몰% 내지 70 몰%로 포함될 수 있다.
상기 폴리에스테르 수지는 디카르복실산 성분으로서 테레프탈산을 포함하며, 예를 들어 상기 테레프탈산은 상기 전체 디카르복실산의 몰 수를 기준으로 5 몰% 내지 100 몰%로 포함될 수 있다. 또한, 상기 테레프탈산 성분은 테레프탈산 알킬 에스테르, 예를 들어 디메틸테레프탈산으로부터 형성될 수도 있다.
아울러, 상기 디카르복실산 성분은 테레프탈산 외의 방향족 디카르복실산 성분, 지방족 디카르복실산 성분, 또는 이들의 혼합 성분을 추가로 포함할 수 있다. 이와 같은 테레프탈산 이외의 디카르복실산 성분은 전체 디카르복실산 성분의 중량을 기준으로 1 중량% 내지 30 중량%로 포함될 수 있다.
상기 방향족 디카르복실산 성분은 탄소수 8 내지 20, 바람직하게는 탄소수 8 내지 14의 방향족 디카르복실산 또는 이들의 혼합물 등일 수 있다. 상기 방향족 디카르복실산의 예로, 이소프탈산, 2,6-나프탈렌디카르복실산 등의 나프탈렌디카르복실산, 디페닐 디카르복실산, 4,4'-스틸벤디카르복실산, 2,5-퓨란디카르복실산, 2,5-티오펜디카르복실산 등이 있으나, 이에 한정되는 것은 아니다.
상기 지방족 디카르복실산 성분은 탄소수 4 내지 20, 바람직하게는 탄소수 4 내지 12의 지방족 디카르복실산 성분 또는 이들의 혼합물 등일 수 있다. 상기 지방족 디카르복실산의 예로, 1,4-사이클로헥산디카르복실산, 1,3-사이클로헥산디카르복실산 등의 사이클로헥산디카르복실산, 프탈산, 세바식산, 숙신산, 이소데실숙신산, 말레산, 푸마르산, 아디프산, 글루타르산, 아젤라산 등의 선형, 가지형 또는 고리형 지방족 디카르복실산 성분 등이 있으나, 이에 한정되는 것은 아니다.
상기 폴리에스테르 수지는 또한 이의 제조를 위한 중합 반응에 사용되었던 촉매를 포함할 수 있다. 예를 들어, 상기 폴리에스테르 수지는 금속의 산화물 또는 아세트산염 중에서 선택되는 적어도 하나의 촉매를 포함할 수 있다. 상기 촉매에 포함되는 금속은 안티몬(Sb), 티타늄(Ti), 게르마늄(Ge), 망간(Mn), 코발트(Co), 주석(Sn) 및 칼슘(Ca)으로 이루어진 군에서 선택될 수 있다.
상기 폴리에스테르 수지는 Hunter Lab 색공간 측정 시에 L 값에서 b 값을 뺀 값이 88 이상, 89 이상, 90 이상, 91 이상, 92 이상, 또는 93 이상일 수 있다. 또한 상기 L-b 값의 상한값은 특별히 한정되지 않지만, 예를 들어 100 이하, 99 이하, 98 이하, 97 이하 또는 95 이하일 수 있다. 상기 Hunter Lab 색공간의 측정은 상기 폴리에스테르 수지로 두께 6 mm의 시편을 만들어 수행할 수 있다. 구체적인 일례로서, 상기 폴리에스테르 수지는 두께 6 mm 조건으로 Hunter Lab 색공간 측정 시에 L 값에서 b 값을 뺀 값이 88 이상일 수 있다.
상기 폴리에스테르 수지는 고유점도(IV)는 35℃에서 0.5 dl/g 이상, 0.6 dl/g 이상, 또는 0.7 dl/g 이상일 수 있고, 또한 1.2 dl/g 이하, 1.1 dl/g 이하, 1.0 dl/g 이하, 또는 0.9 dl/g 이하일 수 있다. 예를 들어, 상기 폴리에스테르 수지의 고유점도는 35℃에서 0.5 dl/g 내지 1.2 dl/g일 수 있다. 구체적으로, 상기 폴리에스테르 수지의 고유점도는 35℃에서 0.5 dl/g 내지 0.9 dl/g일 수 있다.
본 발명에 따른 폴리에스테르 수지는 색상, 기계적 강도, 내열성, 투명성 및 가스 배리어성이 우수하기 때문에, 음료 충전용 용기나, 포장용 필름, 오디오, 비디오용 필름 등의 소재로서 사용될 수 있다. 또한 본 발명의 폴리에스테르 수지로부터 제조되는 시트나 판재는 투명성이 양호하고 기계적 강도가 우수하여 케이스, 박스, 파티션, 선반, 패널, 패키징, 건축자재, 인테리어 내외장재 등의 재료로 사용될 수 있다. 또한, 본 발명의 폴리에스테르 수지는 의료용 섬유나 타이어 코드 등의 산업 자재로서도 사용될 수 있다.
이에 본 발명은 상기 폴리에스테르 수지를 포함하는 물품을 제공한다. 일례로서, 상기 물품은 필름, 시트, 또는 프로파일일 수 있다. 상기 필름의 구체적인 예로는 열수축성 필름 및 블로운 필름을 들 수 있다. 상기 프로파일은 시트 및 필름을 제외한 플라스틱의 연속 압출 성형품을 의미하며, 일반적인 압출 성형 방식으로 제조될 수 있으며, 예를 들어 튜브나 채널 등의 형태를 가질 수 있다.
이하 실시예를 통해 본 발명을 보다 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들로 한정되는 것은 아니다.
이하 실시예의 에스테르 교환 반응에 사용되는 글리콜 및 폴리에스테르 수지의 중합에 공단량체로서 사용되는 디카르복실산 또는 디올에서, 재생 테레프탈산, 재생 에틸렌글리콜 등과 같이 재생 모노머로 표기되지 않은 경우(예: 테레프탈산, 에틸렌글리콜 등)에는 버진 모노머를 사용한 것으로 이해되어야 한다.
제조예 1: 재생 비스(2-히드록시에틸)테레프탈레이트
폐 폴리에스테르 수지로부터 공지된 방법에 의해 해중합하여 얻거나 또는 상업적으로 구매하여 다양한 순도의 재생 BHET를 준비하였다. 아래 표에 HPLC를 이용하여 측정한 각각의 재생 BHET의 HPLC 결과에서 BHET 피크만의 면적 분율(%), 즉 순도를 나타내었다.
재생 BHET #1 #2 #3 #4 #5 #6 #7 #8 #9 #3a #4a #7a
순도(HPLC - BHET%) 90 60 80 90 75 85 78 75 97 80 90 78
제조예 2: 에스테르 교환 반응을 통한 비스(글리콜)테레프탈레이트의 제조
물에 의해 냉각이 가능한 콘덴서와 컬럼이 연결되어 있는 1L 용적의 에스테르 교환 반응기에 글리콜로서 1,4-사이클로헥산디메탄올(CHDM, 641 g) 및 반응 촉매로서 아세트산아연(zinc acetate, 반응기 내 모노머 혼합물 100 중량부 대비 0.003 중량부)를 투입하고, 질소를 흘려주어 반응기 내의 압력을 상압(1.0 kgf/cm2)으로 조정하고 교반하면서 이 압력을 유지하며 승온하였다. 반응기 내 온도가 약 200℃에 도달하면 3시간 동안 220℃까지 승온하면서 비스(2-히드록시에틸)테레프탈레이트(BHET, 254 g)를 투입하여 에스테르 교환 반응을 수행하였다. 반응 중에 컬럼과 콘덴서를 통해 부산물인 글리콜류를 배출하였고, BHET 투입이 완료된 이후에도 220℃를 유지하면서 글리콜류의 유출이 멈출 때까지 에스테르 교환 반응을 계속하였다. 에스테르 교환 반응이 종료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮추어 비스(1,4-사이클로헥산디메탄올)테레프탈레이트를 얻었다.
실시예 1: 폴리에스테르 수지의 제조
단계 A: 에스테르 교환 반응을 통한 비스(글리콜)테레프탈레이트의 제조
상기 제조예 2의 방식에 따라 비스(2-히드록시에틸)테레프탈레이트(BHET #1)를 디에틸렌글리콜(DEG), 이소소르바이드(ISB) 및 1,4-사이클로헥산디메탄올(CHDM)과 에스테르 교환 반응시켜 비스(디에틸렌글리콜)테레프탈레이트(BHDT), 비스(이소소르바이드)테레프탈레이트(BHIT) 및 비스(1,4-사이클로헥산디메틴올)테레프탈레이트(BHCT)를 얻었다.
단계 B: 축중합 반응을 통한 폴리에스테르 수지의 제조
비스(2-히드록시에틸)테레프탈레이트(BHET #1, 3570.2 g), 비스(디에틸렌글리콜)테레프탈레이트(BHDT, 69.7 g), 비스(이소소르바이드)테레프탈레이트(BHIT, 42.2 g), 비스(1,4-사이클로헥산디메틴올)테레프탈레이트(BHCT, 212.9 g), 테레프탈산(TPA, 913.0 g), 에틸렌글리콜(EG, 46.3 g), 이소소르바이드(ISB, 9.9 g), Ge 촉매(2.6 g), 블루 토너(0.012 g), 레드 토너(0.006 g)를 에스테르화 반응기에 투입하였다.
이어서, 에스테르화 반응기에 질소를 주입하여 반응기의 압력이 상압보다 2.0 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 2231.1 mmHg). 그리고 에스테르화 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 260℃까지 2시간에 걸쳐 올렸다. 에스테르화 반응기 내의 혼합물을 260℃에서 약 7시간 동안 체류시킨 뒤 축중합 반응기로 이송하였고, 반응 과정에서 발생하는 부산물을 컬럼과 콘덴서를 통해 배출하였다.
축중합 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 축중합 반응기의 온도를 280℃까지 1시간에 걸쳐서 올린 뒤, 축중합 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 축중합 반응을 실시하였다. 축중합 반응의 초기에는 교반 속도를 빠르게 설정하였으나, 축중합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라간 경우 교반 속도를 적절히 조절하였다. 상기 축중합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.60 dl/g이 될 때까지 진행하였다. 이후 혼합물을 반응기 외부로 토출하여 펠렛(pellet)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12~14 mg 정도가 되도록 입자화하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
실시예 2: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A에서 비스(2-히드록시에틸)테레프탈레이트(BHET #2)를 디에틸렌글리콜(DEG)과 에스테르 교환 반응시켜 비스(디에틸렌글리콜)테레프탈레이트(BHDT)를 얻고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #2, 2594.0 g), 비스(디에틸렌글리콜)테레프탈레이트(BHDT, 174.6 g), 테레프탈산(TPA, 1610.5 g), 에틸렌글리콜(EG, 671.2 g), 1,4-사이클로헥산디메탄올(CHDM, 58.8 g), Ge 촉매(2.6 g), Ti 촉매(0.4 g), 인산(0.4 g), 블루 토너(0.016 g), 레드 토너(0.004 g)를 투입하고, 에스테르화 반응을 상압보다 0.5 kgf/cm2 만큼 높은 압력 및 260℃의 온도에서 수행하고, 축중합 반응을 275℃의 온도에서 고유점도(IV)가 0.70 dl/g이 될 때까지 수행하여 폴리에스테르 입자를 얻었다. 상기 입자를 150℃에서 1시간 동안 방치하여 결정화한 후, 고상 중합 반응기에 투입하고 질소를 50 L/min 속도로 흘려주면서 반응기의 온도를 상온에서 200℃까지 40℃/시간의 속도로 올리고 이를 유지하면서 반응기 내의 입자의 고유점도(IV)가 0.90 dl/g이 될 때까지 고상 중합을 진행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
실시예 3: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A에서 비스(2-히드록시에틸)테레프탈레이트(BHET #3)를 1,4-사이클로헥산디메탄올(CHDM)과 에스테르 교환 반응시켜 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT)를 얻고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #3, 3941.2 g), 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT, 1144.6 g), 에틸렌글리콜(EG, 34.0 g), 1,4-사이클로헥산디메탄올(CHDM, 52.6 g), 디에틸렌글리콜(DEG, 38.7 g), CHDM 유도체(4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트 및 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올을 1:3의 몰비로 포함, 80.0 g), Ge 촉매(5.1 g), Ti 촉매(0.4 g), 인산(0.4 g), 블루 토너(0.010 g), 레드 토너(0.002 g)를 투입하고, 에스테르화 반응을 상압보다 2.0 kgf/cm2 만큼 높은 압력 및 255℃의 온도에서 수행하고, 축중합 반응을 285℃의 온도에서 고유점도(IV)가 0.78 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
실시예 4: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A에서 비스(2-히드록시에틸)테레프탈레이트(BHET #4)를 1,4-사이클로헥산디메탄올(CHDM)과 에스테르 교환 반응시켜 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT)를 얻고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #4, 2782.0 g), 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT, 763.1 g), 테레프탈산(TPA, 909.1 g), 에틸렌글리콜(EG, 147.1 g), 1,4-사이클로헥산디메탄올(CHDM, 315.4 g), 디에틸렌글리콜(DEG, 38.7 g), CHDM 유도체(4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트 및 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올을 1:3의 몰비로 포함, 80.0 g), Ge 촉매(5.1 g), Ti 촉매(0.4 g), 인산(0.4 g), 코발트아세테이트(0.5 g), 블루 토너(0.002 g), 레드 토너(0.001 g)를 투입하고, 에스테르화 반응을 상압보다 2.0 kgf/cm2 만큼 높은 압력 및 255℃의 온도에서 수행하고, 축중합 반응을 285℃의 온도에서 고유점도(IV)가 0.78 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
실시예 5: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A에서 비스(2-히드록시에틸)테레프탈레이트(BHET #5)를 1,4-사이클로헥산디메탄올(CHDM)과 에스테르 교환 반응시켜 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT)를 얻고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #5, 907.1 g), 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT, 2596.3 g), 테레프탈산(TPA, 953.7 g), 에틸렌글리콜(EG, 134.8 g), Ti 촉매(0.1 g), 인산(0.8 g), 블루 토너(0.002 g), 레드 토너(0.001 g)를 투입하고, 에스테르화 반응을 상압보다 1.5 kgf/cm2 만큼 높은 압력 및 250℃의 온도에서 수행하고, 축중합 반응을 270℃의 온도에서 고유점도(IV)가 0.82 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
실시예 6: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A에서 비스(2-히드록시에틸)테레프탈레이트(BHET #6)를 디에틸렌글리콜(DEG) 및 1,4-사이클로헥산디메탄올(CHDM)과 에스테르 교환 반응시켜 비스(디에틸렌글리콜)테레프탈레이트(BHDT) 및 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT)를 얻고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #6, 1376.8 g), 비스(디에틸렌글리콜)테레프탈레이트(BHDT, 278.1 g), 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT, 1132.9 g), 테레프탈산(TPA, 1514.7 g), 에틸렌글리콜(EG, 784.2 g), 1,4-사이클로헥산디메탄올(CHDM, 26.0 g), Ti 촉매(0.1 g), 인산(0.8 g), 코발트아세테이트(1.1 g), 블루 토너(0.002 g), 레드 토너(0.001 g)를 투입하고, 에스테르화 반응을 상압보다 1.5 kgf/cm2 만큼 높은 압력 및 250℃의 온도에서 수행하고, 축중합 반응을 270℃의 온도에서 고유점도(IV)가 0.82 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
실시예 7: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A에서 비스(2-히드록시에틸)테레프탈레이트(BHET #7)를 이소소르바이드(ISB) 및 1,4-사이클로헥산디메탄올(CHDM)과 에스테르 교환 반응시켜 비스(이소소르바이드)테레프탈레이트(BHIT) 및 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT)를 얻고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #7, 1072.3 g), 비스(이소소르바이드)테레프탈레이트(BHIT, 629.2 g), 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT, 2258.7 g), 테레프탈산(TPA, 953.1 g), 에틸렌글리콜(EG, 83.8 g), 1,4-사이클로헥산디메탄올(CHDM, 24.3 g), 재생 이소소르바이드(r-ISB, 49.3 g), 디에틸렌글리콜(DEG, 35.8 g), Ge 촉매(25.6 g), 인산(0.08 g), 블루 토너(0.012 g), 레드 토너(0.004 g)를 투입하고, 에스테르화 반응을 상압보다 1.0 kgf/cm2 만큼 높은 압력 및 265℃의 온도에서 수행하고, 축중합 반응을 275℃의 온도에서 고유점도(IV)가 0.70 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
실시예 8: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A에서 비스(2-히드록시에틸)테레프탈레이트(BHET #8)를 디에틸렌글리콜(DEG) 및 1,4-사이클로헥산디메탄올(CHDM)과 에스테르 교환 반응시켜 비스(디에틸렌글리콜)테레프탈레이트(BHDT) 및 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT)를 얻고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #8, 483.4 g), 비스(디에틸렌글리콜)테레프탈레이트(BHDT, 358.0 g), 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT, 556.9 g), 테레프탈산(TPA, 2448.4 g), 재생 에틸렌글리콜(r-EG, 684.4 g), 재생 1,4-사이클로헥산디메탄올(r-CHDM, 13.7 g), 디에틸렌글리콜(DEG, 10.1 g), CHDM 유도체(4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트 및 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올을 1:3의 몰비로 포함, 166.7 g), Ge 촉매(2.6 g), 인산(0.4 g), 블루 토너(0.020 g), 레드 토너(0.008 g)를 투입하고, 에스테르화 반응을 상압보다 0.5 kgf/cm2 만큼 높은 압력 및 260℃의 온도에서 수행하고, 축중합 반응을 275℃의 온도에서 고유점도(IV)가 0.75 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
실시예 9: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A에서 비스(2-히드록시에틸)테레프탈레이트(BHET #9)를 1,4-사이클로헥산디메탄올(CHDM)과 에스테르 교환 반응시켜 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT)를 얻고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #9, 3621.9 g), 비스(1,4-사이클로헥산디메탄올)테레프탈레이트(BHCT, 212.9 g), 재생 테레프탈산(r-TPA, 929.9 g), 이소프탈산(IPA, 2451.6 g), 에틸렌글리콜(EG, 21.0 g), 이소소르바이드(ISB, 39.7 g), 재생 디에틸렌글리콜(r-DEG, 21.6 g), 디에틸렌글리콜(DEG, 21.6 g), Ti 촉매(0.4 g), 인산(8.0 g), 코발트아세테이트(0.7 g), 블루 토너(0.020 g), 레드 토너(0.008 g)를 투입하고, 에스테르화 반응을 상압보다 3.0 kgf/cm2 만큼 높은 압력 및 280℃의 온도에서 수행하고, 축중합 반응을 280℃의 온도에서 고유점도(IV)가 0.60 dl/g이 될 때까지 수행하여 폴리에스테르 입자를 얻었다. 상기 입자를 150℃에서 1시간 동안 방치하여 결정화한 후, 고상 중합 반응기에 투입하고 질소를 50 L/min 속도로 흘려주면서 반응기의 온도를 상온에서 190℃까지 40℃/시간의 속도로 올리고 이를 유지하면서 반응기 내의 입자의 고유점도(IV)가 1.10 dl/g이 될 때까지 고상 중합을 진행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
비교예 1: 폴리에스테르 수지의 제조
상기 실시예 3과 동일한 절차를 반복하되, 단계 A를 수행하지 않고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #3a, 4636.7 g), 에틸렌글리콜(EG, 56.6 g), 1,4-사이클로헥산디메탄올(CHDM, 841.2 g), CHDM 유도체(4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트 및 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올을 1:3의 몰비로 포함, 80.0 g), Ge 촉매(5.1 g), Ti 촉매(0.4 g), 인산(0.4 g), 블루 토너(0.010 g), 레드 토너(0.002 g)를 투입하고, 에스테르화 반응을 상압보다 2.0 kgf/cm2 만큼 높은 압력 및 255℃의 온도에서 수행하고, 축중합 반응을 285℃의 온도에서 고유점도(IV)가 0.78 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
비교예 2: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A를 수행하지 않고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #4a, 3709.4 g), 테레프탈산(TPA, 606.1 g), 에틸렌글리콜(EG, 56.6 g), 1,4-사이클로헥산디메탄올(CHDM, 841.2 g), CHDM 유도체(4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트 및 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올을 1:3의 몰비로 포함, 80.0 g), Ge 촉매(5.1 g), Ti 촉매(0.4 g), 인산(0.4 g), 코발트아세테이트(0.5 g), 블루 토너(0.002 g), 레드 토너(0.001 g)를 투입하고, 에스테르화 반응을 상압보다 2.0 kgf/cm2 만큼 높은 압력 및 255℃의 온도에서 수행하고, 축중합 반응을 285℃의 온도에서 고유점도(IV)가 0.80 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
비교예 3: 폴리에스테르 수지의 제조
상기 실시예 1과 동일한 절차를 반복하되, 단계 A를 수행하지 않고, 단계 B에서 비스(2-히드록시에틸)테레프탈레이트(BHET #7a, 1072.3 g), 테레프탈산(TPA, 2102.3 g), 에틸렌글리콜(EG, 83.8 g), 1,4-사이클로헥산디메탄올(CHDM, 1580.5 g), 재생 이소소르바이드(r-ISB, 493.1 g), 디에틸렌글리콜(DEG, 35.8 g), Ge 촉매(25.6 g), 인산(0.08 g), 블루 토너(0.012 g), 레드 토너(0.004 g)를 투입하고, 에스테르화 반응을 상압보다 1.0 kgf/cm2 만큼 높은 압력 및 265℃의 온도에서 수행하고, 축중합 반응을 275℃의 온도에서 고유점도(IV)가 0.70 dl/g이 될 때까지 수행하여, 폴리에스테르 수지(공중합체) 약 4 kg을 얻었다.
아래 표 2 및 3에 상기 실시예 및 비교예의 모노머 조성을 정리하였다.
 구 분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6
수지 내 재생 모노머 (중량%) 80 54 96 70 76 55
virgin 모노머(mol) TPA 5.50 9.70 0.00 5.48 5.75 9.12
EG 0.75 10.83 0.55 2.37 2.17 12.65
DEG 0.00 0.00 0.37 0.37 0.00 0.00
CHDM 0.00 0.41 0.37 2.19 0.00 0.18
CHDM유도체 0.00 0.00 0.30 0.30 0.00 0.00
ISB 0.07 0.00 0.00 0.00 0.00 0.00
재생 BHET 번호 #1 #2 #3 #4 #5 #6
재생 모노머(mol) BHET 14.06 10.21 15.52 10.95 3.57 5.42
BHDT 0.20 0.51 0.00 0.00 0.00 0.81
BHIT 0.10 0.00 0.00 0.00 0.00 0.00
BHCT 0.51 0.00 2.74 1.83 6.21 2.71
* 각 virgin 모노머 및 재생 모노머의 투입량(mol)은 상대적인 몰비를 의미한다.
 구 분 실시예 7 실시예 8 실시예 9 비교예 1 비교예 2 비교예 3
수지 내 재생 모노머 (중량%) 79 35 60 83 70 22
virgin 모노머(mol) TPA 5.74 14.75 0.00 0.00 3.65 12.66
EG 1.35 0.00 0.34 0.91 0.91 1.35
DEG 0.34 0.10 0.21 0.00 0.00 0.34
CHDM 0.17 0.00 0.00 5.84 5.84 10.98
CHDM유도체 0.00 0.62 0.00 0.30 0.30 0.00
ISB 0.00 0.00 0.27 0.00 0.00 0.00
재생 BHET 번호 #7 #8 #9 #3a #4a #7a
재생 모노머(mol) BHET 4.22 1.90 14.26 18.25 14.60 4.22
BHDT 0.00 1.05 0.00 0.00 0.00 0.00
BHIT 1.52 0.00 0.00 0.00 0.00 0.00
BHCT 5.40 1.33 0.51 0.00 0.00 0.00
r-TPA 0.00 0.00 5.60 0.00 0.00 0.00
r-EG 0.00 11.04 0.00 0.00 0.00 0.00
r-DEG 0.00 0.00 0.21 0.00 0.00 0.00
r-CHDM 0.00 0.10 0.00 0.00 0.00 0.00
r-ISB 0.34 0.00 0.00 0.00 0.00 3.38
* 각 virgin 모노머 및 재생 모노머의 투입량(mol)은 상대적인 몰비를 의미한다.
시험예
상기 실시예 및 비교예에서 사용된 원료 및 최종 수지에 대해 아래와 같이 시험하였다.
(1) 재생 BHET 투입량
폴리에스테르 수지의 제조를 위해 투입된 디카르복실산 및 이의 유도체(TPA, BHET, BHDT, BHIT, BHCT)의 총 몰 수를 기준으로 한, 비스(2-히드록시에틸)테레프탈레이트(BHET) 투입 몰 수의 백분율(몰%)을 산출하였다.
(2) 재생 BHET 순도 (HPLC)
재생 비스(2-히드록시에틸)테레프탈레이트 약 0.01 g을 메탄올 약 20 mL에 희석한 뒤 고성능 액상크로마토그래피(HPLC)로 분석하였다(Model : Waters e2695, Column: C18 (4.6 x 250 mm), 5 ㎛, UV Detector: 242 nm, Injection volume: 10 μL, Eluent (Gradient) A: H2O+H3PO4, B: Acetonitrile). 이후 HPLC의 전체 피크 면적 중에 BHET 피크 면적만의 분율(%)을 얻었다.
(3) 수지 내 재생 모노머 함량
폴리에스테르 수지의 제조를 위해 투입된 모노머들(BHET, BHDT, BHIT, BHCT, TPA, IPA, EG, CHDM, ISB, DEG, r-EG, r-CHDM, r-DEG, r-TPA, r-IPA 등)의 총 중량을 기준으로 한, 재생 모노머(BHET, BHDT, BHIT, BHCT, r-EG, r-CHDM, r-DEG, r-TPA, r-IPA)만의 합계 중량의 백분율(중량%)을 산출하였다.
(4) 공중합 조성 (NMR)
폴리에스테르 수지를 CDCl3 용매에 3 mg/mL의 농도로 용해한 후 핵자기공명장치(JEOL, 600MHz FT-NMR)를 이용하여 25℃에서 얻은 1H-NMR 스펙트럼을 얻었다. 상기 스펙트럼을 분석하여 모든 글리콜(EG, DEG, ISB, CHDM 등)에서 유래한 잔기의 총 몰 수를 기준으로 한, 디에틸렌글리콜(DEG), 이소소르바이드(ISB), 사이클로헥산디메탄올(CHDM) 및 이의 유도체 잔기의 함량(몰%)을 각각 산출하였다.
그 결과 실시예와 비교예의 폴리에스테르 수지의 공중합 조성이 다양한 것으로 분석되었으며, 구체적으로 각각의 폴리에스테르 수지 내의 글리콜(DEG, ISB, CHDM 등) 및 이의 유도체 잔기의 함량이 다양한 것으로 분석되었다.
다만 일부 동일한 조성을 갖는 폴리에스테르 수지도 확인되었으며, 구체적으로 비교예 1과 실시예 3, 비교예 2와 실시예 4, 비교예 3과 실시예 7의 공중합 조성이 각각 동일한 것으로 확인되었다.
(5) 색상 (Hunter Lab)
폴리에스테르 수지의 색도 및 명도를 확산 반사 부속품을 장착한 바리안 캐리(Cary) 5 UV/Vis/NIR 분광광도계를 사용해서 측정하였다. 250℃에서 사출하여 얻은 두께 6 mm의 폴리에스테르 수지 시편을 준비하고, 관측자의 각도 2°에서 일루미넌트(Illuminant) D65로 투과 데이터를 얻고, 이를 그램즈/32(Grams/32) 소프트웨어 내의 색 분석 장치를 사용해 처리하여 Hunter Lab 값을 산출하였고, L 값에서 b 값을 뺀 값(L-b)을 계산하였다.
상기 시험 결과를 하기 표 4 및 5에 정리하였다.
 구 분 단위 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6
재생 BHET 투입량 몰% 69 50 85 60 23 30
순도 % 90 60 80 90 75 85
수지 내 재생 모노머 중량% 80 54 96 70 76 55
수지 색상 (6T col L-b) 92 93 89 88 89 91
 구 분 단위 실시예 7 실시예 8 실시예 9 비교예 1 비교예 2 비교예 3
재생 BHET 투입량 몰% 25 9 70 100 80 25
순도 % 78 75 97 80 90 78
수지 내 재생 모노머 중량% 79 35 60 83 70 22
수지 색상 (6T col L-b) 88 88 91 87 88 88
상기 표 4 및 5에서 보듯이, 실시예 1 내지 9의 경우 재생 모노머로서 BHET 중 일부를 다른 글리콜(DEG, ISB, CHDM)과 에스테르 교환 반응시켜 BHDT, BHIT, BHCT를 얻은 뒤, 이들을 중합 반응에 함께 투입하여 폴리에스테르 수지를 얻음으로써, 재생 모노머의 총 함량을 높이면서도 폴리에스테르 수지의 색상 품질을 우수하게 만들 수 있었다. 특히 실시예 7 내지 9는 그 외에도 추가적인 재생 글리콜(r-EG, r-DEG, r-CHDM, r-ISB) 및 재생 디카르복실산(r-TPA)를 더 사용하여 재생 모노머의 총 함량을 보다 높일 수 있었다.
이에 대비하여, 비교예 1은 실시예 3과 공중합 조성이 동일하지만, 재생 모노머로서 BHET만을 사용하여 수지 내 재생 모노머의 함량이 낮았고, 또한 BHET의 낮은 순도로 인해 최종 폴리에스테르 수지의 색상이 저조하였다. 또한 비교예 2도 재생 모노머로서 BHET만을 사용하여 글리콜과의 에스테르 교환 반응을 통한 순도 향상이 이루어지지 않아서 동일한 순도의 BHET를 이용한 실시예 1에 비해 최종 폴리에스테르 수지의 색상이 저조하였다. 또한 비교예 3은 실시예 7과 BHET 및 r-ISB 투입량이 거의 동일하지만, 그 외 다른 재생 모노머를 사용하지 않아서 재생 모노머의 총 함량이 낮았고 최종 폴리에스테르 수지의 색상도 저조하였다.

Claims (17)

  1. 비스(2-히드록시에틸)테레프탈레이트를 탄소수 3 이상인 글리콜과 반응시켜 비스(글리콜)테레프탈레이트를 제조하는 단계; 및
    상기 비스(글리콜)테레프탈레이트 및 비스(2-히드록시에틸)테레프탈레이트를 이용하여 공중합체를 제조하는 단계를 포함하는, 폴리에스테르 수지의 제조방법.
     
  2. 제 1 항에 있어서,
    상기 비스(2-히드록시에틸)테레프탈레이트는 폐 폴리에스테르의 해중합에 의해 얻어진 것인, 폴리에스테르 수지의 제조방법.
     
  3. 제 1 항에 있어서,
    상기 비스(글리콜)테레프탈레이트를 제조하는 단계는,
    반응기에 탄소수 3 이상인 글리콜을 투입하는 단계; 및
    상기 반응기에 비스(2-히드록시에틸)테레프탈레이트를 투입하여 에스테르 교환 반응하는 단계를 포함하는, 폴리에스테르 수지의 제조방법.
     
  4. 제 1 항에 있어서,
    상기 탄소수 3 이상인 글리콜은
    1,3-프로판디올, 1,4-부탄디올, 1,4-사이클로헥산디메탄올, 이소소르바이드, 2-메틸-1,3-프로판디올, 2-메틸렌-1,3-프로판디올, 2-에틸-1,3-프로판디올, 2-이소프로필-1,3-프로판디올, 2,2-디메틸-1,3-프로판디올, 2,3-부탄디올, 3-메틸-1,5-펜탄디올, 3-메틸-2,4-펜탄디올, 1,6-헥산디올, 1,2-사이클로헥산디올, 1,4-사이클로헥산디올, 디에틸렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 폴리헥사메틸렌글리콜, 에틸렌옥사이드와 테트라하이드로퓨란의 공중합체, 에틸렌옥사이드 부가 폴리프로필렌글리콜, 폴리카보네이트디올, 폴리네오펜틸글리콜, 폴리-3-메틸펜탄디올, 폴리-1,5-펜탄디올 및 이들의 유도체로 이루어진 군에서 선택되는 1종 이상을 포함하는, 폴리에스테르 수지의 제조방법.
     
  5. 제 1 항에 있어서,
    상기 탄소수 3 이상인 글리콜은 폐 폴리에스테르의 해중합에 의해 수득된 1종 이상의 재생 글리콜을 포함하는, 폴리에스테르 수지의 제조방법.
     
  6. 제 5 항에 있어서,
    상기 재생 글리콜은 재생 에틸렌글리콜, 재생 1,4-사이클로헥산디메탄올, 재생 디에틸렌글리콜 및 재생 이소소르바이드로 이루어진 군에서 선택되는, 폴리에스테르 수지의 제조방법.
     
  7. 제 1 항에 있어서,
    상기 비스(2-히드록시에틸)테레프탈레이트는 60% 내지 97%의 순도를 갖는, 폴리에스테르 수지의 제조방법.
     
  8. 제 1 항에 있어서,
    상기 비스(글리콜)테레프탈레이트는 80% 이상의 순도를 갖는, 폴리에스테르 수지의 제조방법.
     
  9. 제 1 항에 있어서,
    상기 공중합체를 제조하는 단계는
    상기 비스(글리콜)테레프탈레이트 및 비스(2-히드록시에틸)테레프탈레이트를 포함하는 공단량체를 에스테르화 반응시켜 올리고머를 얻는 단계; 및
    상기 올리고머를 축중합하여 공중합체를 얻는 단계를 포함하는, 폴리에스테르 수지의 제조방법.
     
  10. 제 5 항에 있어서,
    상기 에스테르화 반응에
    디카르복실산, 디카르복실산 유도체, 디올 및 디올 유도체로 이루어진 군에서 선택되는 1종 이상의 공단량체가 더 투입되는, 폴리에스테르 수지의 제조방법.
     
  11. 제 10 항에 있어서,
    상기 디카르복실산은 테레프탈산 또는 이소프탈산을 포함하고;
    상기 디카르복실산 유도체는 디메틸테레프탈레이트 또는 디메틸이소프탈레이트를 포함하고;
    상기 디올은 디에틸렌글리콜, 1,4-사이클로헥산디메탄올, 이소소르바이드, 1,2-프로판디올, 1,3-프로판디올, 2-메틸-1,3-프로판디올, 2-메틸렌-1,3-프로판디올, 2-에틸-1,3-프로판디올, 2-이소프로필-1,3-프로판디올, 2,2-디메틸-1,3-프로판디올, 1,4-부탄디올, 2,3-부탄디올, 3-메틸-1,5-펜탄디올, 3-메틸-2,4-펜탄디올, 1,6-헥산디올, 1,2-사이클로헥산디올, 또는 1,4-사이클로헥산디올을 포함하고;
    상기 디올 유도체는 4-(히드록시메틸)사이클로헥실메틸 4-(히드록시메틸)사이클로헥산카르복실레이트, 또는 4-(4-(히드록시메틸)사이클로헥실메톡시메틸)사이클로헥실메탄올을 포함하는, 폴리에스테르 수지의 제조방법.
     
  12. 제 10 항에 있어서,
    상기 1종 이상의 공단량체는 폐 폴리에스테르의 해중합에 의해 수득된 재생 모노머를 포함하는, 폴리에스테르 수지의 제조방법.
     
  13. 제 12 항에 있어서,
    상기 재생 모노머는 재생 에틸렌글리콜, 재생 1,4-사이클로헥산디메탄올, 재생 디에틸렌글리콜 및 재생 이소소르바이드, 재생 테레프탈산, 재생 디메틸테레프탈레이트, 재생 이소프탈산 및 재생 디메틸이소프탈레이트로 이루어진 군에서 선택되는, 폴리에스테르 수지의 제조방법.
     
  14. 비스(2-히드록시에틸)테레프탈레이트 및 비스(글리콜)테레프탈레이트를 공단량체로서 포함하고, 상기 글리콜은 탄소수가 3 이상인, 폴리에스테르 수지.
     
  15. 제 14 항에 있어서,
    상기 폴리에스테르 수지는, 상기 폴리에스테르 수지의 중량을 기준으로, 상기 비스(2-히드록시에틸)테레프탈레이트 및 상기 비스(글리콜)테레프탈레이트를 총 30 중량% 이상 포함하는, 폴리에스테르 수지.
     
  16. 제 14 항에 있어서,
    상기 폴리에스테르 수지는 두께 6 mm 조건으로 Hunter Lab 색공간 측정 시에 L 값에서 b 값을 뺀 값이 88 이상인, 폴리에스테르 수지.
     
  17. 제 14 항에 있어서,
    상기 비스(글리콜)테레프탈레이트는
    비스(2-히드록시에틸)테레프탈레이트와 탄소수 3 이상의 글리콜 간의 에스테르 교환 생성물인, 폴리에스테르 수지.
PCT/KR2023/011291 2022-08-17 2023-08-02 비스(글리콜)테레프탈레이트를 포함하는 폴리에스테르 수지 및 이의 제조 방법 WO2024039112A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220102488 2022-08-17
KR10-2022-0102488 2022-08-17

Publications (1)

Publication Number Publication Date
WO2024039112A1 true WO2024039112A1 (ko) 2024-02-22

Family

ID=89941857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011291 WO2024039112A1 (ko) 2022-08-17 2023-08-02 비스(글리콜)테레프탈레이트를 포함하는 폴리에스테르 수지 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR20240024742A (ko)
WO (1) WO2024039112A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313235B1 (en) * 1999-12-31 2001-11-06 Industrial Technology Research Institute Method for preparing polypropylene terephthalate/polyethylene terephtalate copolyester
KR20010095884A (ko) * 2000-04-12 2001-11-07 빌.씨. 첸(Bill. C. Chen) 폴리프로필렌 테레프탈레이트/폴리에틸렌 테레프탈레이트코폴리에스테르의 제조방법
US20200369850A1 (en) * 2019-05-20 2020-11-26 Octal, Inc. Process for reclamation of polyester by reactor addition
WO2021038512A1 (en) * 2019-08-28 2021-03-04 Sanjay Tammaji Kulkarni A process for manufacturing specialty polyesters & co-polyesters from recycled bis 2-hydroxyethyl terephthalate (rbhet) and product thereof
KR20210110844A (ko) * 2019-01-12 2021-09-09 에스에이치피피 글로벌 테크놀러지스 비.브이. 향상된 발색력을 갖는 지속가능한 폴리부틸렌 테레프탈레이트 조성물
WO2021229449A1 (en) * 2020-05-11 2021-11-18 Shpp Global Technologies B.V. Sustainable polyester from recycled polyethylene terephthalate
KR20220055192A (ko) * 2020-10-26 2022-05-03 에스케이케미칼 주식회사 재사용 단량체를 포함하는 폴리에스테르 공중합체의 제조 방법
CN114853991A (zh) * 2022-04-26 2022-08-05 福建赛隆科技有限公司 一种petg及其废旧pet聚酯制备petg的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386683B1 (ko) 2013-02-27 2014-04-24 (주) 시온텍 폐 폴리에스터의 화학적 재활용을 위한 결정화 방법 및 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313235B1 (en) * 1999-12-31 2001-11-06 Industrial Technology Research Institute Method for preparing polypropylene terephthalate/polyethylene terephtalate copolyester
KR20010095884A (ko) * 2000-04-12 2001-11-07 빌.씨. 첸(Bill. C. Chen) 폴리프로필렌 테레프탈레이트/폴리에틸렌 테레프탈레이트코폴리에스테르의 제조방법
KR20210110844A (ko) * 2019-01-12 2021-09-09 에스에이치피피 글로벌 테크놀러지스 비.브이. 향상된 발색력을 갖는 지속가능한 폴리부틸렌 테레프탈레이트 조성물
US20200369850A1 (en) * 2019-05-20 2020-11-26 Octal, Inc. Process for reclamation of polyester by reactor addition
WO2021038512A1 (en) * 2019-08-28 2021-03-04 Sanjay Tammaji Kulkarni A process for manufacturing specialty polyesters & co-polyesters from recycled bis 2-hydroxyethyl terephthalate (rbhet) and product thereof
WO2021229449A1 (en) * 2020-05-11 2021-11-18 Shpp Global Technologies B.V. Sustainable polyester from recycled polyethylene terephthalate
KR20220055192A (ko) * 2020-10-26 2022-05-03 에스케이케미칼 주식회사 재사용 단량체를 포함하는 폴리에스테르 공중합체의 제조 방법
CN114853991A (zh) * 2022-04-26 2022-08-05 福建赛隆科技有限公司 一种petg及其废旧pet聚酯制备petg的方法

Also Published As

Publication number Publication date
KR20240024742A (ko) 2024-02-26

Similar Documents

Publication Publication Date Title
WO2022092558A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체의 제조 방법
WO2014038774A1 (ko) 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법
WO2021060686A1 (ko) 폴리에스테르 수지 혼합물, 폴리에스테르 필름 및 이의 제조 방법
WO2020166805A1 (ko) 압출 성형이 가능한 폴리에스테르 공중합체
WO2023195668A1 (ko) 비스(글리콜)테레프탈레이트의 제조방법 및 이를 이용한 폴리에스테르 수지
WO2021010591A1 (ko) 폴리에스테르 수지 혼합물
WO2024071915A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트를 포함하는 중합 원료 및 이의 제조방법
WO2019093770A1 (ko) 고내열 폴리카보네이트 에스테르로부터 제조된 성형품
WO2022102936A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2024039112A1 (ko) 비스(글리콜)테레프탈레이트를 포함하는 폴리에스테르 수지 및 이의 제조 방법
WO2024039113A1 (ko) 비스(글리콜)테레프탈레이트 올리고머 및 폴리에스테르 수지의 제조 방법
WO2022004995A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2023214727A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트 수용액을 이용한 폴리에스테르 수지의 제조방법
WO2023249327A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트의 보관 방법 및 폴리에스테르 수지의 제조 방법
WO2022097903A1 (ko) 비스-2-하이드록시에틸 테레프탈레이트의 고순도화 정제 방법 및 이를 포함하는 폴리에스테르 수지
WO2024112099A1 (ko) 재생 비스(4-히드록시부틸)테레프탈레이트, 이의 제조방법 및 이를 이용한 폴리에스테르 수지
WO2021086082A1 (ko) 폴리에스테르 필름, 이의 제조 방법, 및 이를 이용한 폴리에틸렌테레프탈레이트 용기의 재생 방법
WO2019066292A1 (ko) 고내열 폴리카보네이트 에스테르 및 이의 제조방법
WO2023277349A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2024039116A1 (ko) 폴리에스테르 수지 혼합물, 이의 제조방법 및 이로부터 제조된 폴리에스테르 필름
WO2023058916A1 (ko) 재사용 단량체를 포함하는, 압출 가공성이 개선된 폴리에스테르 공중합체
WO2020149469A1 (ko) 폴리에스테르 필름 및 이의 제조 방법
WO2023171986A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트를 이용한 폴리에스테르 수지 및 이를 포함하는 물품
WO2023204561A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트를 포함하는 폴리에스테르 수지 및 필름
WO2021066284A1 (ko) 폴리에스테르 수지 혼합물 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855079

Country of ref document: EP

Kind code of ref document: A1