WO2020166805A1 - 압출 성형이 가능한 폴리에스테르 공중합체 - Google Patents

압출 성형이 가능한 폴리에스테르 공중합체 Download PDF

Info

Publication number
WO2020166805A1
WO2020166805A1 PCT/KR2019/017395 KR2019017395W WO2020166805A1 WO 2020166805 A1 WO2020166805 A1 WO 2020166805A1 KR 2019017395 W KR2019017395 W KR 2019017395W WO 2020166805 A1 WO2020166805 A1 WO 2020166805A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
polyester copolymer
residue
mixture
pressure
Prior art date
Application number
PCT/KR2019/017395
Other languages
English (en)
French (fr)
Inventor
이진경
김성기
김주영
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Priority to US17/429,058 priority Critical patent/US20220127417A1/en
Priority to CN201980087920.2A priority patent/CN113286843B/zh
Priority to EP19915326.3A priority patent/EP3925999A4/en
Priority to JP2021545741A priority patent/JP7329302B2/ja
Publication of WO2020166805A1 publication Critical patent/WO2020166805A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/826Metals not provided for in groups C08G63/83 - C08G63/86
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/863Germanium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester copolymer capable of extrusion molding and an article comprising the same.
  • polyester Since polyester is excellent in mechanical strength, heat resistance, transparency, and gas barrier properties, it is most suitable as a material for beverage filling containers, packaging films, audio and video films, and is used in large quantities. In addition, they are widely produced worldwide as industrial materials such as medical fibers and tire cords. Polyester sheets and plates have good transparency and excellent mechanical strength, and are widely used as materials such as cases, boxes, partitions, store shelves, protection panels, blister packaging, construction materials, interior interior and exterior materials, and the like.
  • an IBM (injection blow molding) process is mainly applied, and mass production is possible through this.
  • an extrusion blow molding (EBM)/Profile process may be applied.
  • polyester resins have a problem that decomposition occurs as they are exposed to high temperatures during molding processing, and the longer the exposure time to high temperatures, the more decomposition occurs, and thus the viscosity of the resin decreases.
  • the viscosity of the resin is lowered as described above, molding processing becomes difficult.
  • the EBM/Profile process since the high temperature exposure time is long, this phenomenon tends to be further intensified.
  • the viscosity is lowered, the thickness becomes uneven, and thus sufficient processing becomes difficult.
  • the present invention is to provide an extrusion-molded polyester copolymer and an article comprising the same.
  • the present invention provides the following polyester copolymer:
  • V 0 is the complex viscosity measured at 210° C. and 1 rad/s condition of the polyester copolymer
  • V 1 is the 200th measured complex viscosity when the polyester copolymer was continuously measured at an interval of 18 seconds for 1 hour at 210°C and 1 rad/s.
  • the copolymer according to the present invention relates to a copolymer prepared by copolymerizing a dicarboxylic acid component and a diol component, and to a polyester copolymer prepared by participating in the reaction of a trifunctional compound during the copolymerization process.
  • the'residue' refers to a certain part or unit included in the result of the chemical reaction and derived from the specific compound.
  • each of the'residue' of the dicarboxylic acid component or the'residue' of the diol component is a moiety derived from a dicarboxylic acid component or a diol component in a polyester copolymer formed by an esterification reaction or a condensation polymerization reaction.
  • the'residue' of the trifunctional compound refers to a portion derived from the trifunctional compound in the ester structure in which the functional group is formed by an esterification reaction with the diol component.
  • the dicarboxylic acid component used in the present invention refers to the main monomer constituting the polyester copolymer together with the diol component.
  • the dicarboxylic acid includes terephthalic acid, and physical properties such as heat resistance, chemical resistance, and weather resistance of the polyester copolymer according to the present invention may be improved by terephthalic acid.
  • the dicarboxylic acid component may further include an aromatic dicarboxylic acid component, an aliphatic dicarboxylic acid component, or a mixture thereof in addition to terephthalic acid.
  • dicarboxylic acid components other than terephthalic acid are preferably included in an amount of 1 to 30% by weight based on the total weight of the total dicarboxylic acid components.
  • the aromatic dicarboxylic acid component may be an aromatic dicarboxylic acid having 8 to 20 carbon atoms, preferably 8 to 14 carbon atoms, or a mixture thereof.
  • the aromatic dicarboxylic acid include isophthalic acid, naphthalenedicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, diphenyl dicarboxylic acid, 4,4'-stilbenedicarboxylic acid, 2, 5-furandicarboxylic acid, 2,5-thiophenedicarboxylic acid, and the like, but specific examples of the aromatic dicarboxylic acid are not limited thereto.
  • the aliphatic dicarboxylic acid component may be an aliphatic dicarboxylic acid component having 4 to 20 carbon atoms, preferably 4 to 12 carbon atoms, or a mixture thereof.
  • Examples of the aliphatic dicarboxylic acid include cyclohexanedicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid, phthalic acid, sebacic acid, succinic acid, isodecylsuccinic acid, Linear, branched or cyclic aliphatic dicarboxylic acid components, such as maleic acid, fumaric acid, adipic acid, glutaric acid, and azelaic acid, etc. are included, but specific examples of the aliphatic dicarboxylic acid are not limited thereto.
  • the diol component used in the present invention refers to the main monomer constituting the polyester copolymer together with the above-described dicarboxylic acid component.
  • the diol component includes cyclohexanedimethanol, ethylene glycol, and isosorbide.
  • the cyclohexanedimethanol (eg, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol or 1,4-cyclohexanedimethanol) is the transparency and impact strength of the polyester copolymer to be prepared. It is an ingredient that contributes to the improvement of Preferably, the cyclohexanedimethanol residue is included in an amount of 40 to 70 moles relative to 100 moles of the total diol component residue.
  • the ethylene glycol is a component that contributes to the improvement of transparency and impact resistance of the polyester copolymer prepared with cyclohexanedimethanol.
  • the ethylene glycol residue is included in an amount of 5 to 25 moles relative to 100 moles of the total diol component residue.
  • the trifunctional compound used in the present invention is a component used in the preparation of a polyester copolymer in addition to the above-described dicarboxylic acid component and diol component, and is a component added to further improve processability, particularly shear fluidization properties.
  • a shear fluidization characteristic that maintains a low viscosity in a high shear stress section inside the screw of a molding machine and exhibits a high viscosity in a parison formation section with a low shear stress is required.
  • This shear fluidization characteristic minimizes the heat generated by shear stress friction generated inside the screw and reduces the temperature of the parison itself, thereby preventing the generation of frictional heat at a temperature higher than the molding temperature set in the molding machine.
  • the processability of the polyester copolymer to be produced may be improved.
  • crystallization is difficult compared to a simple linear polyester copolymer, which means an improvement in shear fluidization properties.
  • the amount of change in viscosity is controlled compared to the comparative example in which it is not used, and although not limited theoretically, as described above, a branch in the main chain of the polyester copolymer Or it is due to the fact that it is made into a complex chain through the formation of a graft.
  • the functional group means tricarboxylic acid or anhydride thereof. More preferably, the trifunctional compound is benzene-1,2,3-tricarboxylic acid, benzene-1,2,3-tricarboxylic acid anhydride, benzene-1,2,4-tricarboxylic acid, or benzene- 1,2,4-tricarboxylic acid anhydride.
  • the residue of the trifunctional compound is included in an amount of 0.005 to 0.5 parts by weight based on 100 parts by weight of the polyester copolymer. If the content exceeds 0.5 parts by weight, there is a disadvantage in that the transparency of the polyester copolymer to be prepared decreases, and if the content is less than 0.005 parts by weight, there is a disadvantage that the improvement in processability is insignificant. More preferably, the residue of the trifunctional compound is included in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the polyester copolymer.
  • the polyester copolymer according to the present invention can be prepared by copolymerizing the above-described dicarboxylic acid component, diol component, and trifunctional compound.
  • the copolymerization may sequentially perform an esterification reaction (step 1) and a polycondensation reaction (step 2).
  • the esterification reaction is carried out in the presence of an esterification reaction catalyst, and an esterification reaction catalyst including a zinc-based compound may be used.
  • an esterification reaction catalyst including a zinc-based compound
  • Specific examples of the zinc-based catalyst include zinc acetate, zinc acetate dihydrate, zinc chloride, zinc sulfate, zinc sulfide, zinc carbonate, zinc citrate, zinc gluconate, or mixtures thereof.
  • the esterification reaction may be carried out at a pressure of 0 to 10.0 kg/cm 2 and a temperature of 150 to 300°C.
  • the esterification reaction conditions may be appropriately adjusted according to specific properties of the polyester to be produced, the ratio of each component, or process conditions. More specifically, a preferred embodiment, from 0 to 5.0kg / cm 2, more preferably from 0.1 to 3.0, a pressure of kg / cm 2 of the esterification reaction conditions; 200 to 270°C, more preferably 240 to 260°C.
  • the esterification reaction may be carried out in a batch method or in a continuous manner, and each raw material may be added separately, but the diol component was added in the form of a slurry in which a dicarboxylic acid component and a trifunctional compound were mixed. It is desirable to do. And, after dissolving a diol component such as isosorbide, which is a solid content at room temperature, in water or ethylene glycol, it may be mixed with a dicarboxylic acid component such as terephthalic acid to form a slurry. Alternatively, after the isosorbide is melted at 60° C. or higher, a slurry may be prepared by mixing a dicarboxylic acid component such as tetephthalic acid and other diol components. In addition, water may be added to the mixed slurry to help increase the fluidity of the slurry.
  • a diol component such as isosorbide
  • a slurry may be prepared by mixing a dicarboxylic acid component such
  • the molar ratio of the dicarboxylic acid component and the diol component participating in the esterification reaction may be 1:1.00 to 1:3.00. If the molar ratio of the dicarboxylic acid component:diol component is less than 1:1.00, the unreacted dicarboxylic acid component may remain during polymerization and the transparency of the resin may be lowered. If the molar ratio is greater than 1:3.00, the polymerization rate is increased. It may be lowered or the productivity of the polyester copolymer may be lowered. More preferably, the molar ratio of the dicarboxylic acid component and the diol component participating in the esterification reaction may be 1:1.05 to 1:1.35.
  • Such polycondensation reaction 150 to 300 °C, preferably 200 to 290 °C, more preferably a reaction temperature of 260 to 280 °C; And 600 to 0.01 mmHg, preferably 200 to 0.05 mmHg, and more preferably 100 to 0.1 mmHg.
  • glycol which is a by-product of the polycondensation reaction
  • removal of by-products may be insufficient. have.
  • the polycondensation reaction occurs outside the temperature range of 150 to 300°C, if the polycondensation reaction proceeds below 150°C, the glycol, which is a by-product of the polycondensation reaction, cannot be effectively removed out of the system, and the intrinsic viscosity of the final reaction product is low. Physical properties of the polyester resin may be deteriorated, and if the reaction proceeds above 300°C, the possibility that the appearance of the polyester resin to be produced becomes yellow increases.
  • the polycondensation reaction may be performed for a required time until the intrinsic viscosity of the final reaction product reaches an appropriate level, for example, for an average residence time of 1 to 24 hours.
  • titanium-based compound examples include tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, 2-ethylhexyl titanate, octylene glycol titanate, lactate titanate, triethanolamine titanate. Acid, acetylacetonate titanate, ethylacetoacetic ester titanate, isostearyl titanate, titanium dioxide, and the like.
  • germanium-based compound examples include germanium dioxide, germanium tetrachloride, germanium ethylene glycoside, germanium acetate, a copolymer using these, or a mixture thereof.
  • germanium dioxide may be used, and both crystalline or amorphous may be used as the germanium dioxide, and glycol solubility may also be used.
  • the polyester copolymer according to the present invention has an intrinsic viscosity of 0.75 to 0.82 dl/g, and preferably 0.78 to 0.80 dl/g.
  • the method of measuring the intrinsic viscosity is specified in Examples to be described later.
  • the polyester copolymer according to the present invention satisfies the above-described Equation 1.
  • Equation 1 described above is an evaluation of the amount of change in kinematic viscosity when the polyester copolymer is maintained at 210° C. for 1 hour.
  • the amount of change in viscosity is 10% or more and 50% or less.
  • the viscosity change amount is less than 10%, there is a disadvantage that it is difficult to maintain a viscosity suitable for the EBM/Profile process due to the dominant decomposition reaction of the resin. If the viscosity change amount exceeds 50%, the screw load during the EBM/Profile process due to high viscosity There is a drawback of increasing the processing temperature and increasing the processing temperature.
  • the present invention provides an article comprising the polyester copolymer.
  • polyester copolymer according to the present invention described above can be extruded and applied to the manufacture of various containers.
  • TPA terephthalic acid; 2714.9 g
  • TMA trimellitic anhydride
  • EG ethylene glycol; 766.0 g
  • CHDM hydrogen dimethyl methacrylate
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 270° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.80 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA 2629.2 g
  • TMA 7.70 g
  • EG 603.9 g
  • CHDM 1140.4 g
  • ISB 427.8 g
  • GeO 2 2.0 g
  • phosphoric acid 5.0 g
  • cobalt acetate 0.7 g
  • Polysynthren Blue RLS (Clarient, 0.010 g) as a blue toner
  • Solvaperm Red BB (Clarient, 0.003 g) was used as a red toner.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 270° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.80 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (3008.3 g), TMA (2.08 g), EG (966.3 g), CHDM (1043.8 g), ISB (238.1 g) in a 10 L reactor connected to a column and a condenser capable of cooling by water
  • GeO 2 2.0 g
  • phosphoric acid 5.0 g
  • Polysynthren Blue RLS (Clarient, 0.017 g) as a blue toner
  • Solvaperm Red BB (Clarient, 0.004 g) as a blue toner ) was used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 275° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was performed until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.78 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (3272.9 g), TMA (2.50 g), EG (537.9 g), CHDM (1987.4 g), and ISB (316.6 g) were added to a 10 L reactor connected to a column and a condenser capable of cooling by water. Then, GeO 2 (2.0 g) as a catalyst, phosphoric acid (5.0 g) as a stabilizer, and cobalt acetate (1.1 g) as a colorant were used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 265° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was performed until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.78 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA 2938.9 g
  • TMA 0.43 g
  • EG 559.8 g
  • CHDM 1529.6 g
  • ISB 103.4 g
  • GeO 2 2.0 g
  • phosphoric acid 5.0 g
  • cobalt acetate 0.9 g
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.79 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (2597.2 g), TMA (19.00 g), EG (540.3 g), CHDM (1351.8 g), ISB (98.2 g) was added to a 10 L reactor in which a column and a condenser capable of cooling by water were connected. Then, GeO 2 (2.0 g) as a catalyst and phosphoric acid (5.0 g) as a stabilizer were used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 270° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.81 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (3034.7 g), TMA (0.42 g), EG (663.1 g), CHDM (1184.6 g), ISB (40.0 g) in a 10 L reactor connected to a column and a condenser capable of cooling by water.
  • GeO 2 2.0 g
  • phosphoric acid 5.0 g
  • Polysynthren Blue RLS (Clarient, 0.013 g) as a blue toner
  • Solvaperm Red BB (Clarient, 0.004 g) as a blue toner ) was used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 275° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.77 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (2854.1 g), TMA (19.75 g), EG (675.8 g), CHDM (1114.1 g), ISB (40.2 g) was added to a 10 L reactor connected to a column and a condenser capable of cooling by water. Then, GeO 2 (2.0 g) as a catalyst, phosphoric acid (5.0 g) as a stabilizer, Polysynthren Blue RLS (Clarient, 0.020 g) as a blue toner, and Solvaperm Red BB (Clarient, 0.008 g) as a red toner ) was used.
  • GeO 2 2.0 g
  • phosphoric acid 5.0 g
  • Polysynthren Blue RLS (Clarient, 0.020 g) as a blue toner
  • Solvaperm Red BB (Clarient, 0.008 g) as a red toner ) was used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 275° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.80 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (2586.6 g), EG (628.0 g), CHDM (1346.3 g), ISB (341.2 g) were added to a 10 L reactor connected to a column and a condenser capable of cooling by water, and GeO as a catalyst.
  • phosphoric acid 5.0 g
  • Polysynthren Blue RLS (Clarient, 0.017 g) as a blue toner
  • Solvaperm Red BB (Clarient, 0.006 g) as a red toner were used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 275° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.77 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (2611.4 g), TMA (16.5 g), EG (253.6 g), CHDM (1699.0 g), ISB (436.4 g) in a 10 L reactor connected to a column and a condenser capable of cooling by water.
  • GeO 2 2.0 g as a catalyst
  • phosphoric acid 5.0 g
  • cobalt acetate 0.7 g
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 280° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.81 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (2952.4 g), TMA (2.0 g), EG (683.7 g), CHDM (896.4 g), ISB (207.7 g) in a 10 L reactor connected to a column and a condenser capable of cooling by water
  • GeO 2 2.0 g
  • phosphoric acid 5.0 g
  • Polysynthren Blue RLS (Clarient, 0.012 g) as a blue toner
  • Solvaperm Red BB (Clarient, 0.004 g) as a blue toner ) was used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 280° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.79 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (2156.1 g), TMA (6.4 g), EG (539.5 g), CHDM (935.2 g), ISB (436.2 g) in a 10 L reactor connected to a column and a condenser capable of cooling by water
  • GeO 2 2.0 g
  • phosphoric acid 5.0 g
  • Polysynthren Blue RLS (Clarient, 0.010 g) as a blue toner
  • Solvaperm Red BB (Clarient, 0.003 g) as a blue toner ) was used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 270° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.80 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA (2870.6 g), TMA (25.2 g), EG (707.6 g), CHDM (1494.1 g) and ISB (101.0 g) were added to a 10 L reactor in which a column and a condenser capable of cooling by water were connected. Then, GeO 2 (2.0 g) as a catalyst, phosphoric acid (5.0 g) as a stabilizer, and cobalt acetate (0.7 g) as a colorant were used.
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 270° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.81 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • TPA 2595.8 g
  • TMA (19.5 g)
  • EG 533.2 g
  • CHDM 1576.3 g
  • phosphoric acid 5.0 g
  • cobalt acetate 0.8 g
  • the pressure of the reactor was lowered from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 275° C. over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less while carrying out a polycondensation reaction.
  • the stirring speed is set quickly at the beginning of the polycondensation reaction, but the stirring speed can be appropriately adjusted if the stirring power is weakened due to the increase in the viscosity of the reaction product or the temperature of the reaction product rises above the set temperature as the polycondensation reaction proceeds. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.80 dl/g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to form a strand, which was solidified with a cooling liquid and then granulated so that the average weight was about 12 to 14 mg.
  • the intrinsic viscosity was measured in a 35° C. thermostat using a Ubelrod viscometer.
  • the residue composition (mol%) derived from acid and diol in the polyester resin was obtained at 25°C using a nuclear magnetic resonance apparatus (JEOL, 600MHz FT-NMR) after dissolving the sample in a CDCl 3 solvent at a concentration of 3 mg/mL. It was confirmed through 1H-NMR spectrum.
  • the content of benzene-1,2,4-triethylcarboxylate produced by reacting ethanol with TMA through Ethanolysis was measured at 250°C using gas chromatography (Agilent Technologies, 7890B). It was confirmed by quantitative analysis through, and confirmed as the content (wt%) relative to the total weight of the polyester resin.
  • the complex viscosity was measured at a shear rate of 1.0 rad/s at 210° C. under nitrogen for the polyester copolymers prepared in Examples and Comparative Examples (V 0 , Pa ⁇ s ).
  • a parallel plate having a diameter of 25 mm was placed in parallel at intervals of 1 mm to 2 mm. Then, it rotated at a speed of 1 rad/s and the complex viscosity was continuously measured every 18 seconds for 1 hour, and the 200th measured value was confirmed as the final complex viscosity (V 1 , Pa ⁇ s).
  • the amount of viscosity change was calculated by substituting the measured V 0 and V 1 into the following equation.
  • Viscosity change (V 1 -V 0 )/V 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명에 따른 폴리에스테르 공중합체는 압출 성형이 가능하여 각종 용기의 제조에 유용하게 적용할 수 있다.

Description

압출 성형이 가능한 폴리에스테르 공중합체
본 발명은 압출 성형이 가능한 폴리에스테르 공중합체 및 이를 포함하는 물품에 관한 것이다.
폴리에스테르는 기계적 강도, 내열성, 투명성 및 가스 배리어성이 우수하기 때문에, 음료 충전용 용기나, 포장용 필름, 오디오, 비디오용 필름 등의 소재로서 가장 적합하여 대량으로 사용되고 있다. 또한, 의료용 섬유나 타이어코드 등의 산업 자재로서도 전세계적으로 널리 생산되고 있다. 폴리에스테르 시트(sheet)나 판재는 투명성이 양호하고 기계적 강도가 우수하여, 케이스, 박스, 파티션, 점포 선반, 보호패널, 블리스터 패키징, 건축자재, 인테리어 내외장재 등의 재료로 광범위하게 사용되고 있다.
이러한 폴리에스테르로 제품을 만드는 방법으로는, IBM(injection blow molding) 공정이 주로 적용되고 있으며, 이를 통하여 대량 생산이 가능하다. 또한, 폴리에스테르 중 비정질의 폴리에스테르의 경우에는, EBM(extrusion blow molding)/Profile 공정을 적용할 수 있다.
그런데, 폴리에스테르 수지는 성형 가공시 고온에 노출됨에 따라 분해가 발생하는 문제가 있으며, 고온 노출 시간이 길수록 분해가 많이 발생하여 수지의 점도가 낮아지는 문제가 있다. 이와 같이 수지의 점도가 낮아지게 되면 성형 가공이 어렵게 되는데, EBM/Profile 공정에서는 고온 노출 시간이 길기 때문에 이러한 현상이 더욱 심화되는 경향이 있다. 또한, EBM/Profile 공정으로 두께가 두꺼운 용기를 제조하는 경우, 점도가 낮아지게 되면 두께가 불균일하게 되어 충분한 가공이 어렵게 되는 문제가 있다.
따라서, 고온에 노출되는 경우에도 높은 점도를 유지할 수 있는 특성을 가지는 폴리에스테르 수지의 개발이 요구된다.
본 발명은 압출 성형이 가능한 폴리에스테르 공중합체 및 이를 포함하는 물품을 제공하기 위한 것이다.
상기 과제를 해결하기 위하여 본 발명은 하기의 폴리에스테르 공중합체를 제공한다:
1) 테레프탈산을 포함하는 디카르복실산 성분의 잔기;
2) 사이클로헥산디메탄올, 에틸렌 글리콜, 및 아이소소바이드를 포함하는 디올 성분의 잔기; 및
3) 3 관능기 화합물의 잔기를 포함하고,
하기 수학식 1을 만족하는,
폴리에스테르 공중합체:
[수학식 1]
Figure PCTKR2019017395-appb-I000001
상기 수학식 1에서,
V0는 폴리에스테르 공중합체를 210℃ 및 1 rad/s 조건에서 측정한 복소점도이고,
V1는 폴리에스테르 공중합체를 210℃ 및 1 rad/s 조건에서 1시간 동안 18초 간격으로 복소점도를 연속적으로 측정했을 때 200 번째 측정된 복소점도이다.
용어의 정의
본 발명에 따른 공중합체는 디카르복실산 성분과 디올 성분이 공중합되어 제조되는 공중합체에 관한 것으로, 상기 공중합 과정에서 3 관능기 화합물이 반응에 참여하여 제조되는 폴리에스테르 공중합체에 관한 것이다.
본 명세서에서, '잔기'는 특정한 화합물이 화학 반응에 참여하였을 때, 그 화학 반응의 결과물에 포함되고 상기 특정 화합물로부터 유래한 일정한 부분 또는 단위를 의미한다. 구체적으로, 상기 디카르복실산 성분의 '잔기' 또는 디올 성분의 '잔기' 각각은, 에스테르화 반응 또는 축중합 반응으로 형성되는 폴리에스테르 공중합체에서 디카르복실산 성분으로부터 유래한 부분 또는 디올 성분으로부터 유래한 부분을 의미한다. 또한, 상기 3 관능기 화합물의 '잔기'는 상기 관능기가 상기 디올 성분과 에스테르화 반응으로 형성되는 에스터 구조에서 상기 3 관능기 화합물에서 유래한 부분을 의미한다.
디카르복실산 성분
본 발명에서 사용되는 디카르복실산 성분은 디올 성분과 함께 폴리에스테르 공중합체를 구성하는 주요 단량체를 의미한다. 특히, 상기 디카르복실산은 테레프탈산을 포함하며, 테레프탈산에 의하여 본 발명에 따른 폴리에스테르 공중합체의 내열성, 내화학성, 내후성 등의 물성이 향상될 수 있다.
상기 디카르복실산 성분은 테레프탈산 외에 방향족 디카르복실산 성분, 지방족 디카르복실산 성분, 또는 이들의 혼합물을 추가로 포함할 수 있다. 이 경우, 테레프탈산 이외의 디카르복실산 성분은 전체 디카르복실산 성분의 총 중량 대비 1 내지 30 중량%로 포함되는 것이 바람직하다.
상기 방향족 디카르복실산 성분은 탄소수 8 내지 20, 바람직하게는 탄소수 8 내지 14의 방향족 디카르복실산 또는 이들의 혼합물 등일 수 있다. 상기 방향족 디카르복실산의 예로, 이소프탈산, 2,6-나프탈렌디카르복실산 등의 나프탈렌디카르복실산, 디페닐 디카르복실산, 4,4'-스틸벤디카르복실산, 2,5-퓨란디카르복실산, 2,5-티오펜디카르복실산 등이 있으나, 상기 방향족 디카르복실산의 구체적인 예가 이에 한정되는 것은 아니다. 상기 지방족 디카르복실산 성분은 탄소수 4 내지 20, 바람직하게는 탄소수 4 내지 12의 지방족 디카르복실산 성분 또는 이들의 혼합물 등일 수 있다. 상기 지방족 디카르복실산의 예로, 1,4-사이클로헥산디카르복실산, 1,3-사이클로헥산디카르복실산 등의 사이클로헥산디카르복실산, 프탈산, 세바식산, 숙신산, 이소데실숙신산, 말레산, 푸마르산, 아디픽산, 글루타릭산, 아젤라이산 등의 선형, 가지형 또는 고리형 지방족 디카르복실산 성분 등이 있으나, 상기 지방족 디카르복실산의 구체적인 예가 이에 한정되는 것은 아니다.
디올 성분
본 발명에서 사용되는 디올 성분은 상술한 디카르복실산 성분과 함께 폴리에스테르 공중합체를 구성하는 주요 단량체를 의미한다. 특히, 상기 디올 성분은 사이클로헥산디메탄올, 에틸렌 글리콜, 및 아이소소바이드를 포함한다.
상기 사이클로헥산디메탄올(예를 들어, 1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올 또는 1,4-사이클로헥산디메탄올)은, 제조되는 폴리에스테르 공중합체의 투명성과 내충격강도의 향상에 기여하는 성분이다. 바람직하게는, 상기 사이클로헥산디메탄올 잔기는 상기 전체 디올 성분 잔기 100 몰 대비 40 내지 70 몰로 포함된다.
상기 에틸렌 글리콜은 사이클로헥산디메탄올과 함께 제조되는 폴리에스테르 공중합체의 투명성과 내충격강도의 향상에 기여하는 성분이다. 바람직하게는, 상기 에틸렌글리콜 잔기는 상기 전체 디올 성분 잔기 100 몰 대비 5 내지 25 몰로 포함된다.
상기 아이소소바이드는 제조되는 폴리에스테르 공중합체의 가공성을 향상시키기 위하여 사용된다. 상술한 사이클로헥산디메탄올과 에틸렌 글리콜의 디올 성분에 의하여 폴리에스테르 공중합체의 투명성과 내충격강도가 향상되나, 가공성을 위하여 전단 유동화 특성이 개선되어야 하고 결정화 속도가 지연되어야 하는데, 사이클로헥산디메탄올과 에틸렌 글리콜 만으로는 이의 효과를 달성하기 어렵다. 이에 디올 성분으로서 아이소소바이드를 포함할 경우, 투명성과 내충격강도가 유지되면서도 전단 유동화 특성이 개선되고 결정화 속도가 지연됨으로써, 제조되는 폴리에스테르 공중합체의 가공성이 개선된다. 바람직하게는, 상기 아이소소바이드 잔기는 상기 전체 디올 성분 잔기 100 몰 대비 0.1 내지 12몰로 포함된다.
3 관능기 화합물
본 발명에서 사용되는 3 관능기 화합물은 상술한 디카르복실산 성분 및 디올 성분 외에 폴리에스테르 공중합체의 제조에 사용되는 성분으로서, 가공성, 특히 전단 유동화 특성을 더욱 향상시키기 위하여 첨가되는 성분이다.
EBM/Profile 공정에서는, 성형기의 스크류 내부의 높은 전단응력 구간에서는 낮은 점도를 유지하고, 전단응력이 낮은 패리슨 형성 구간에서는 높은 점도를 나타내는 전단 유동화 특성이 필요하다. 이러한 전단 유동화 특성은, 스크류 내부에서 발생되는 전단응력 마찰에 의한 발생열을 최소화하고, 패리슨 자체의 온도를 낮추어 줌으로서 성형기에 설정한 성형 온도보다 높은 온도로 마찰열이 발생되는 것을 막아 준다.
또한, 더 높은 전단응력을 받은 멀티헤드 EBM의 경우 1개의 스크류에서 여러 개의 패리슨을 만드는데, 높은 압출량을 위하여 스크류의 RPM이 더욱 높아져 더 높은 전단응력을 받게 되므로, 보다 우수한 전단 유동화 특성이 요구된다.
상술한 디올 성분의 조절을 통하여, 제조되는 폴리에스테르 공중합체의 가공성이 개선될 수 있으나, 특히 전단 유동화 특성을 개선하기 위해서는 폴리에스테르 공중합체의 주사슬에 브랜치 또는 그라프트를 형성할 필요가 있다. 이 경우, 단순한 선형 폴리에스테르 공중합체에 비하여 결정화를 어렵게 하며, 이는 전단 유동화 특성의 향상을 의미한다.
후술할 실시예와 같이, 상기 3 관능기 화합물을 사용한 경우에는, 이를 사용하지 않은 비교예에 비하여 점도 변화량이 조절되며, 이론적으로 제한되는 것은 아니나, 상술한 바와 같이 폴리에스테르 공중합체의 주사슬에 브랜치 또는 그라프트의 형성을 통하여 복잡한 사슬로 제조된 것에 기인한다.
바람직하게는, 상기 관능기란 트리카르복시산 또는 이의 안하이드라이드를 의미한다. 보다 바람직하게는, 상기 3 관능기 화합물은, 벤젠-1,2,3-트리카르복시산, 벤젠-1,2,3-트리카르복시산 안하이드라이드, 벤젠-1,2,4-트리카르복시산, 또는 벤젠-1,2,4-트리카르복시산 안하이드라이드이다.
바람직하게는, 상기 3 관능기 화합물의 잔기는, 상기 폴리에스테르 공중합체 100 중량부를 기준으로 0.005 내지 0.5 중량부로 포함된다. 상기 함량이 0.5 중량부를 초과하면 제조되는 폴리에스테르 공중합체의 투명도가 저하되는 단점이 있으며, 상기 함량이 0.005 중량부 미만인 경우에는, 가공성의 개선이 미미하다는 단점이 있다. 보다 바람직하게는, 상기 3 관능기 화합물의 잔기는, 상기 폴리에스테르 공중합체 100 중량부를 기준으로 0.01 내지 0.5 중량부로 포함된다.
폴리에스테르 공중합체
본 발명에 따른 폴리에스테르 공중합체는, 상술한 디카르복실산 성분, 디올 성분, 및 3 관능기 화합물을 공중합하여 제조할 수 있다. 이때, 상기 공중합은 에스테르화 반응(단계 1)과 중축합 반응(단계 2)을 순차적으로 수행할 수 있다.
상기 에스테르화 반응은 에스테르화 반응 촉매의 존재 하에 수행하며, 아연계 화합물을 포함하는 에스테르화 반응 촉매를 사용할 수 있다. 이러한 아연계 촉매의 구체적인 예로는 아연 아세테이트, 아연 아세테이트 디하이드레이트, 염화아연, 황산아연, 황화아연, 탄산아연, 아연 시트레이트, 글루콘산 아연, 또는 이의 혼합물을 들 수 있다.
상기 에스테르화 반응은 0 내지 10.0 kg/cm2의 압력 및 150 내지 300℃ 온도에서 수행할 수 있다. 상기 에스테르화 반응 조건은 제조되는 폴리에스테르의 구체적인 특성, 각 성분의 비율, 또는 공정 조건 등에 따라 적절히 조절될 수 있다. 구체적으로, 상기 에스테르화 반응 조건의 바람직한 예로, 0 내지 5.0kg/cm2, 보다 바람직하게는 0.1 내지 3.0 kg/cm2의 압력; 200 내지 270℃, 보다 바람직하게는 240 내지 260℃의 온도를 들 수 있다.
그리고, 상기 에스테르화 반응은 배치(batch)식 또는 연속식으로 수행될 수 있고, 각각의 원료는 별도로 투입될 수 있으나, 디올 성분에 디카르복실산 성분 및 3 관능기 화합물을 혼합한 슬러리 형태로 투입하는 것이 바람직하다. 그리고, 상온에서 고형분인 아이소소바이드 등의 디올 성분은 물 또는 에틸렌글리콜에 용해시킨 후, 테레프탈산 등의 디카르복실산 성분에 혼합하여 슬러리로 만들 수 있다. 또는, 60℃ 이상에서 아이소소바이드가 용융된 후, 테테프탈산 등의 디카르복실산 성분과 기타 디올 성분을 혼합하여 슬러리도 만들 수 있다. 또한, 상기 혼합된 슬러리에 물을 추가로 투입하여 슬러리의 유동성 증대에 도움을 줄 수도 있다.
상기 에스테르화 반응에 참여하는 디카르복실산 성분과 디올 성분의 몰비는 1:1.00 내지 1:3.00 일 수 있다. 상기 디카르복실산 성분:디올 성분의 몰비가 1:1.00 미만이면 중합반응 시 미반응 디카르복실산 성분이 잔류하여 수지의 투명성이 저하될 수 있고, 상기 몰비가 1:3.00 초과이면 중합 속도가 낮아지거나 폴리에스테르 공중합체의 생산성이 낮아질 수 있다. 보다 바람직하게는, 상기 에스테르화 반응에 참여하는 디카르복실산 성분과 디올 성분의 몰비는 1:1.05 내지 1:1.35 일 수 있다.
상기 중축합 반응은, 상기 에스테르화 반응 생성물을 150 내지 300℃ 온도 및 600 내지 0.01 mmHg의 감압 조건에서 1 내지 24시간 동안 반응시킴으로써 수행할 수 있다.
이러한 중축합 반응은, 150 내지 300℃, 바람직하게는 200 내지 290℃, 보다 바람직하게는 260 내지 280℃의 반응 온도; 및 600 내지 0.01mmHg, 바람직하게는 200 내지 0.05 mmHg, 보다 바람직하게는 100 내지 0.1 mmHg의 감압 조건에서 수행될 수 있다. 상기 중축합 반응의 감압 조건을 적용함에 따라서 중축합 반응의 부산물인 글리콜을 계외로 제거할 수 있으며, 이에 따라 상기 중축합 반응이 400 내지 0.01 mmHg감압 조건 범위를 벗어나는 경우 부산물의 제거가 불충분할 수 있다. 또한, 상기 중축합 반응이 150 내지 300℃ 온도 범위 밖에서 일어나는 경우, 축중합 반응이 150℃ 이하로 진행되면 중축합 반응의 부산물인 글리콜을 효과적으로 계외로 제거하지 못해 최종 반응 생성물의 고유 점도가 낮아 제조되는 폴리에스테르 수지의 물성이 저하될 수 있으며, 300℃ 이상으로 반응이 진행될 경우, 제조되는 폴리에스테르 수지의 외관이 황변(yellow)이 될 가능성이 높아진다. 그리고, 상기 중축합 반응은 최종 반응 생성물의 고유 점도가 적절한 수준에 이를 때까지 필요한 시간 동안, 예를 들면, 평균 체류 시간 1 내지 24시간 동안 진행될 수 있다.
또한, 상기 중축합 반응은 티타늄계 화합물, 게르마늄계 화합물, 안티몬계 화합물, 알루미늄계 화합물, 주석계 화합물 또는 이들의 혼합물을 포함하는 중축합 촉매를 사용할 수 있다.
상기 티타늄계 화합물의 예로는, 테트라에틸 티타네이트, 아세틸트리프로필 티타네이트, 테트라프로필 티타네이트, 테트라부틸 티타네이트, 2-에틸헥실 티타네이트, 옥틸렌글리콜 티타네이트, 락테이트 티타네이트, 트리에탄올아민 티타네이트, 아세틸아세토네이트 티타네이트, 에틸아세토아세틱에스테르 티타네이트, 이소스테아릴 티타네이트, 티타늄 디옥사이드 등을 들 수 있다. 상기 게르마늄계 화합물의 예로는 게르마늄 디옥사이드, 게르마늄 테트라클로라이드, 게르마늄 에틸렌글리콕시드, 게르마늄 아세테이트, 이들을 이용한 공중합체, 또는 이들의 혼합물 등을 들 수 있다. 바람직하게는, 게르마늄 디옥사이드를 사용할 수 있으며, 이러한 게르마늄 디옥사이드로는 결정성 또는 비결정성 모두를 사용할 수 있고, 글리콜 가용성도 사용할 수 있다.
한편, 본 발명에 따른 폴리에스테르 공중합체는, 고유 점도가 0.75 내지 0.82 dl/g이고, 바람직하게는 0.78 내지 0.80 dl/g이다. 상기 고유 점도의 측정 방법은 후술할 실시예에서 구체화한다.
또한, 바람직하게는, 본 발명에 따른 폴리에스테르 공중합체는, 상술한 수학식 1을 만족한다. 상술한 수학식 1은 210℃에서 1시간 동안 폴리에스테르 공중합체를 유지하였을 때 동점도의 변화량을 평가한 것으로, 특히 본 발명에서는 이에 따른 점도 변화량이 10% 이상 50% 이하라는 특징이 있다. 상기 점도 변화량이 10% 미만인 경우에는 수지의 분해 반응이 우세하여 EBM/Profile 공정에 적합한 점도 유지가 어렵다는 단점이 있고, 상기 점도 변화량이 50% 초과인 경우에는 높은 점도로 EBM/Profile 공정시 스크류 부하가 높아지며 가공 온도를 높여야 하는 단점이 있다.
또한, 본 발명은 상기 폴리에스테르 공중합체를 포함하는 물품을 제공한다.
상술한 본 발명에 따른 폴리에스테르 공중합체는 압출 성형이 가능하여 각종 용기의 제조에 적용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(terephthalic acid; 2714.9 g), TMA(trimellitic anhydride; 7.70 g), EG(ethylene glycol; 766.0 g), CHDM(1,4-cyclohexanedimethanol; 1189.3 g), ISB(isosorbide; 4.8 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 정색제로 코발트 아세테이트(cobalt acetate, 0.7 g), 블루토너로 Polysynthren Blue RLS(Clarient사, 0.012 g), 및 레드토너로 Solvaperm Red BB(Clarient사, 0.004 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1495.6 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 260℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 270℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.80 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
실시예 2
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2629.2 g), TMA(7.70 g), EG(603.9 g), CHDM(1140.4 g), ISB(427.8 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 정색제로 코발트 아세테이트(cobalt acetate, 0.7 g), 블루토너로 Polysynthren Blue RLS(Clarient사, 0.010 g), 및 레드토너로 Solvaperm Red BB(Clarient사, 0.003 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1495.6 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 255℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 255℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 270℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.80 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
실시예 3
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(3008.3 g), TMA(2.08 g), EG(966.3 g), CHDM(1043.8 g), ISB(238.1 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 블루토너로 Polysynthren Blue RLS(Clarient사, 0.017 g), 및 레드토너로 Solvaperm Red BB(Clarient사, 0.004 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 0.5 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1127.8 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 250℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 250℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 275℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.78 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
실시예 4
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(3272.9 g), TMA(2.50 g), EG(537.9 g), CHDM(1987.4 g), ISB(316.6 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 정색제로 코발트 아세테이트(cobalt acetate, 1.1 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1495.6 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 260℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 265℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.78 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
실시예 5
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2938.9 g), TMA(0.43 g), EG(559.8 g), CHDM(1529.6 g), ISB(103.4 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 정색제로 코발트 아세테이트(cobalt acetate, 0.9 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 2.0 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 2231.1 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 265℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 265℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 285℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.79 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
실시예 6
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2597.2 g), TMA(19.00 g), EG(540.3 g), CHDM(1351.8 g), ISB(98.2 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g)을 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.5 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1715.5 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 260℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 270℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.81 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
실시예 7
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(3034.7 g), TMA(0.42 g), EG(663.1 g), CHDM(1184.6 g), ISB(40.0 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 블루토너로 Polysynthren Blue RLS(Clarient사, 0.013 g), 및 레드토너로 Solvaperm Red BB(Clarient사, 0.004 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1495.6 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 265℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 265℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 275℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.77 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
실시예 8
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2854.1 g), TMA(19.75 g), EG(675.8 g), CHDM(1114.1 g), ISB(40.2 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 블루토너로 Polysynthren Blue RLS(Clarient사, 0.020 g), 및 레드토너로 Solvaperm Red BB(Clarient사, 0.008 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 0.5 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1127.8 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 268℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 268℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 275℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.80 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
비교예 1
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2586.6 g), EG(628.0 g), CHDM(1346.3 g), ISB(341.2 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 블루토너로 Polysynthren Blue RLS(Clarient사, 0.017 g), 및 레드토너로 Solvaperm Red BB(Clarient사, 0.006 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 0.5 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1127.8 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 260℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 275℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.77 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
비교예 2
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2611.4 g), TMA(16.5 g), EG(253.6 g), CHDM(1699.0 g), ISB(436.4 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 정색제로 코발트 아세테이트(cobalt acetate, 0.7 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1495.6 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 260℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.81 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
비교예 3
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2952.4 g), TMA(2.0 g), EG(683.7 g), CHDM(896.4 g), ISB(207.7 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 블루토너로 Polysynthren Blue RLS(Clarient사, 0.012 g), 및 레드토너로 Solvaperm Red BB(Clarient사, 0.004 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 0.5 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1127.8 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 265℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 265℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.79 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
비교예 4
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2156.1 g), TMA(6.4 g), EG(539.5 g), CHDM(935.2 g), ISB(436.2 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 블루토너로 Polysynthren Blue RLS(Clarient사, 0.010 g), 및 레드토너로 Solvaperm Red BB(Clarient사, 0.003 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.5 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1715.5 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 260℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 270℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.80 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
비교예 5
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2870.6 g), TMA(25.2 g), EG(707.6 g), CHDM(1494.1 g), ISB(101.0 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 정색제로 코발트 아세테이트(cobalt acetate, 0.7 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 2.0 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 2231.1 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 265℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 265℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 270℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.81 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
비교예 6
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 TPA(2595.8 g), TMA(19.5 g), EG(533.2 g), CHDM(1576.3 g)을 투입하고, 촉매로 GeO2(2.0 g), 안정제로 인산(phosphoric acid, 5.0 g), 정색제로 코발트 아세테이트(cobalt acetate, 0.8 g)를 사용하였다.
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.5 kgf/cm2 만큼 높은 가압 상태로 만들었다(절대 압력: 1715.5 mmHg). 그리고 반응기의 온도를 220℃까지 90분에 걸쳐 올리고, 220℃에서 2시간 유지한 후, 260℃까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260℃로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 275℃까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr(절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.80 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
이렇게 제조된 폴리에스테르 공중합체에 포함된 각 성분의 잔기 함량은 이하 표 1에 나타내었다.
실험예
상기 실시예 및 비교예에서 제조한 공중합체에 대하여, 이하와 같이 물성을 평가하였다.
1) 고유 점도
150℃ 오르쏘클로로페놀(OCP)에 0.12% 농도로 폴리에스테르 공중합체를 용해시킨 후, 35℃의 항온조에서 우벨로드형 점도계를 사용하여 고유점도를 측정하였다.
2) 잔기 조성
폴리에스테르 수지 내의 산 및 디올 유래의 잔기 조성(mol%)은 시료를 CDCl3 용매에 3 mg/mL의 농도로 용해한 후 핵자기 공명 장치(JEOL, 600MHz FT-NMR)를 이용하여 25℃에서 얻은 1H-NMR 스펙트럼을 통해 확인하였다. 또한, TMA 잔기는 Ethanolysis를 통해 에탄올이 TMA와 반응하여 생성된 벤젠-1,2,4-트리에틸카복실레이트의 함량을 가스 크로마토그래피(Agilent Technologies, 7890B)를 이용하여 250℃에서 측정한 스펙트럼을 통해 정량분석하여 확인하였으며, 전체 폴리에스테르 수지 중량 대비 함량(wt%)으로 확인하였다.
3) 점도 변화량
Anton Paar사의 Physica MCR 301 장비를 이용하여, 상기 실시예 및 비교예에서 제조한 폴리에스테르 공중합체에 대한 질소 하 210℃에서 1.0 rad/s의 전단 속도에서 복소점도를 측정(V0, Pa·s)하였다. 측정 시에는 직경이 25 mm인 페러렐 플레이트를 1 mm 내지 2 mm 간격으로 평행하게 위치시켜 사용하였다. 이어, 1 rad/s의 속도로 회전시키며 1시간 동안 18초마다 복소점도를 연속적으로 측정하여 200번째 측정값을 최종 복소점도(V1, Pa·s)로 확인하였다. 상기 측정한 V0과 V1을 이하 수학식에 대입하여 점도 변화량을 계산하였다.
점도 변화량 = (V1-V0)/V0
상기 결과를 하기 표 1에 나타내었다.
Figure PCTKR2019017395-appb-T000001

Claims (11)

1) 테레프탈산을 포함하는 디카르복실산 성분의 잔기;
2) 사이클로헥산디메탄올, 에틸렌 글리콜, 및 아이소소바이드를 포함하는 디올 성분의 잔기; 및
3) 3 관능기 화합물의 잔기를 포함하고,
하기 수학식 1을 만족하는,
폴리에스테르 공중합체:
[수학식 1]
Figure PCTKR2019017395-appb-I000002
상기 수학식 1에서,
V0는 폴리에스테르 공중합체를 210℃ 및 1 rad/s 조건에서 측정한 복소점도이고,
V1는 폴리에스테르 공중합체를 210℃ 및 1 rad/s 조건에서 1시간 동안 18초 간격으로 복소점도를 연속적으로 측정했을 때 200 번째 측정된 복소점도이다.
제1항에 있어서,
상기 사이클로헥산디메탄올 잔기는 상기 전체 디올 성분 잔기 100 몰 대비 40 내지 70 몰로 포함되는,
폴리에스테르 공중합체.
제1항에 있어서,
상기 에틸렌글리콜 잔기는 상기 전체 디올 성분 잔기 100 몰 대비 5 내지 25 몰로 포함되는,
폴리에스테르 공중합체.
제1항에 있어서,
상기 아이소소바이드 잔기는 상기 전체 디올 성분 잔기 100 몰 대비 0.1 내지 12몰로 포함되는,
폴리에스테르 공중합체.
제1항에 있어서,
상기 3 관능기 화합물은, 벤젠트리카르복시산, 또는 이의 안하이드라이드인,
폴리에스테르 공중합체.
제1항에 있어서,
상기 3 관능기 화합물은, 벤젠-1,2,3-트리카르복시산, 벤젠-1,2,3-트리카르복시산 안하이드라이드, 벤젠-1,2,4-트리카르복시산, 또는 벤젠-1,2,4-트리카르복시산 안하이드라이드인,
폴리에스테르 공중합체.
제1항에 있어서,
상기 3 관능기 화합물의 잔기는, 상기 폴리에스테르 공중합체 100 중량부 대비 0.005 내지 0.5 중량부로 포함되는,
폴리에스테르 공중합체.
디카르복실산 성분, 디올 성분, 및 3 관능기 화합물을 에스테르화 반응시키는 단계(단계 1); 및
상기 단계 1의 생성물을 중축합 반응시키는 단계(단계 2)를 포함하는,
제1항 내지 제7항 중 어느 한 항의 폴리에스테르 공중합체의 제조 방법.
제8항에 있어서,
상기 에스테르화 반응은 아연 아세테이트, 아연 아세테이트 디하이드레이트, 염화아연, 황산아연, 황화아연, 탄산아연, 아연 시트레이트, 글루콘산 아연, 또는 이의 혼합물의 에스테르화 반응 촉매의 존재 하에 수행하는,
폴리에스테르 공중합체의 제조 방법.
제8항에 있어서,
상기 중축합 반응은 티타늄계 화합물, 게르마늄계 화합물, 안티몬계 화합물, 알루미늄계 화합물, 주석계 화합물 또는 이들의 혼합물의 중축합 촉매의 존재 하에 수행하는,
폴리에스테르 공중합체의 제조 방법.
제1항 내지 제7항 중 어느 한 항에 따른 폴리에스테르 공중합체를 포함하는, 물품.
PCT/KR2019/017395 2019-02-11 2019-12-10 압출 성형이 가능한 폴리에스테르 공중합체 WO2020166805A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/429,058 US20220127417A1 (en) 2019-02-11 2019-12-10 Polyester copolymer for extrusion
CN201980087920.2A CN113286843B (zh) 2019-02-11 2019-12-10 用于挤出的聚酯共聚物
EP19915326.3A EP3925999A4 (en) 2019-02-11 2019-12-10 EXTRUSION MOLDABLE POLYESTER COPOLYMER
JP2021545741A JP7329302B2 (ja) 2019-02-11 2019-12-10 押出成形が可能なポリエステル共重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190015698A KR102576713B1 (ko) 2019-02-11 2019-02-11 압출 성형이 가능한 폴리에스테르 공중합체
KR10-2019-0015698 2019-02-11

Publications (1)

Publication Number Publication Date
WO2020166805A1 true WO2020166805A1 (ko) 2020-08-20

Family

ID=72044769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017395 WO2020166805A1 (ko) 2019-02-11 2019-12-10 압출 성형이 가능한 폴리에스테르 공중합체

Country Status (6)

Country Link
US (1) US20220127417A1 (ko)
EP (1) EP3925999A4 (ko)
JP (1) JP7329302B2 (ko)
KR (1) KR102576713B1 (ko)
CN (1) CN113286843B (ko)
WO (1) WO2020166805A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896874A (zh) * 2021-11-10 2022-01-07 清华大学 一种生物基共聚酯及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102593363B1 (ko) * 2018-10-05 2023-10-23 에스케이케미칼 주식회사 가공성이 우수한 폴리에스테르 공중합체 및 이를 포함하는 물품
CN113214612B (zh) * 2021-04-13 2022-12-30 中北大学 一种PBSeT/Zinc gluconate耐穿刺生物可降解材料及其制备方法
KR20230017535A (ko) * 2021-07-28 2023-02-06 에스케이케미칼 주식회사 우수한 압출 가공성 및 재활용이 가능한 압출 취입 수지 및 이를 포함하는 조성물
KR20230090831A (ko) * 2021-12-15 2023-06-22 에스케이케미칼 주식회사 공중합 폴리에스테르 수지 및 이의 제조 방법
KR20230095526A (ko) * 2021-12-22 2023-06-29 에스케이케미칼 주식회사 공중합 폴리에스테르 수지 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130136776A (ko) * 2012-06-05 2013-12-13 에스케이케미칼주식회사 폴리에스테르 수지 및 이의 제조 방법
KR20140009117A (ko) * 2010-09-08 2014-01-22 도레이 카부시키가이샤 폴리에스테르 조성물의 제조 방법
KR101361299B1 (ko) * 2012-09-27 2014-02-11 롯데케미칼 주식회사 결정성이 우수한 열가소성 폴리에스테르 수지 조성물
US20160168321A1 (en) * 2013-05-21 2016-06-16 Ester Industries Limited Heat resistant polyethylene terephthalate and a process for the preparation of the same
KR20170076558A (ko) * 2015-12-24 2017-07-04 에스케이케미칼주식회사 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004578A1 (en) * 2000-04-14 2002-01-10 Shelby Marcus David Polyester compositions containing polar chain terminatos
US6914120B2 (en) 2002-11-13 2005-07-05 Eastman Chemical Company Method for making isosorbide containing polyesters
US8604138B2 (en) * 2008-01-14 2013-12-10 Eastman Chemical Company Extrusion blow molded articles
KR101639631B1 (ko) 2009-12-28 2016-07-14 에스케이케미칼주식회사 장식 물질을 포함하는 열가소성 성형제품
US20130029068A1 (en) * 2011-07-28 2013-01-31 Eastman Chemical Company Extrusion blow molded articles
WO2016020938A1 (en) * 2014-08-05 2016-02-11 Ester Industries Limited A process for preparation of modified polyethylene terphthalate with improved barrier, mechanical and thermal properties and products thereof
WO2018101320A1 (ja) * 2016-11-30 2018-06-07 株式会社クラレ ポリエステル、その製造方法及びそれからなる成形品
JP6866681B2 (ja) 2017-02-21 2021-04-28 三菱ケミカル株式会社 ポリエステル樹脂の製造方法およびトナーの製造方法
KR102593363B1 (ko) 2018-10-05 2023-10-23 에스케이케미칼 주식회사 가공성이 우수한 폴리에스테르 공중합체 및 이를 포함하는 물품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140009117A (ko) * 2010-09-08 2014-01-22 도레이 카부시키가이샤 폴리에스테르 조성물의 제조 방법
KR20130136776A (ko) * 2012-06-05 2013-12-13 에스케이케미칼주식회사 폴리에스테르 수지 및 이의 제조 방법
KR101361299B1 (ko) * 2012-09-27 2014-02-11 롯데케미칼 주식회사 결정성이 우수한 열가소성 폴리에스테르 수지 조성물
US20160168321A1 (en) * 2013-05-21 2016-06-16 Ester Industries Limited Heat resistant polyethylene terephthalate and a process for the preparation of the same
KR20170076558A (ko) * 2015-12-24 2017-07-04 에스케이케미칼주식회사 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896874A (zh) * 2021-11-10 2022-01-07 清华大学 一种生物基共聚酯及其制备方法和应用

Also Published As

Publication number Publication date
KR20200098065A (ko) 2020-08-20
US20220127417A1 (en) 2022-04-28
CN113286843B (zh) 2023-08-08
CN113286843A (zh) 2021-08-20
EP3925999A1 (en) 2021-12-22
JP2022521678A (ja) 2022-04-12
EP3925999A4 (en) 2022-08-17
KR102576713B1 (ko) 2023-09-07
JP7329302B2 (ja) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2020166805A1 (ko) 압출 성형이 가능한 폴리에스테르 공중합체
KR102583652B1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체의 제조 방법
EP2478031A2 (en) Polyester resin and method for preparing the same
WO2012105770A2 (ko) 폴리에스테르 수지 조성물 및 그 제조방법
WO2021060686A1 (ko) 폴리에스테르 수지 혼합물, 폴리에스테르 필름 및 이의 제조 방법
WO2013073807A1 (ko) 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
WO2020071708A1 (ko) 가공성이 우수한 폴리에스테르 공중합체 및 이를 포함하는 물품
WO2023033562A1 (ko) 투명성과 충격강도가 우수한 생분해성 폴리에스테르 중합체 및 이를 포함하는 생분해성 고분자 조성물
WO2019093770A1 (ko) 고내열 폴리카보네이트 에스테르로부터 제조된 성형품
KR102583653B1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2013073818A1 (ko) 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
WO2021066284A1 (ko) 폴리에스테르 수지 혼합물 및 이로부터 형성된 성형품
WO2019112293A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
KR20220001371A (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2021066306A1 (ko) 폴리에스테르 수지 혼합물
WO2020032399A1 (ko) 폴리에스테르 수지 및 이의 제조방법
WO2023249327A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트의 보관 방법 및 폴리에스테르 수지의 제조 방법
WO2021040194A1 (ko) 폴리에스테르 수지 혼합물
WO2023277349A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2024039112A1 (ko) 비스(글리콜)테레프탈레이트를 포함하는 폴리에스테르 수지 및 이의 제조 방법
WO2024122770A1 (ko) 폴리에테르에스테르 공중합체, 및 이의 제조방법
US20230399462A1 (en) Method for purifying bis-2-hydroxylethyl terephthalate and polyester resin comprising same
KR20220064311A (ko) 강도가 우수한 폴리에스테르 공중합체 및 이를 포함하는 물품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019915326

Country of ref document: EP

Effective date: 20210913