WO2024032424A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024032424A1
WO2024032424A1 PCT/CN2023/110511 CN2023110511W WO2024032424A1 WO 2024032424 A1 WO2024032424 A1 WO 2024032424A1 CN 2023110511 W CN2023110511 W CN 2023110511W WO 2024032424 A1 WO2024032424 A1 WO 2024032424A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
coreset
pool
signaling
resource pool
Prior art date
Application number
PCT/CN2023/110511
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024032424A1 publication Critical patent/WO2024032424A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, in particular to wireless signal transmission methods and devices in wireless communication systems supporting cellular networks.
  • Network energy saving is one of the SI (Study Item, research work), in which the spatial element of the base station (such as the antenna element) ), antenna panel (antenna panel), antenna port (antenna port), logical (logical) antenna port, transmit radio frequency channel (TxRU, Transmit Radio Unit), transmit and receive node (TRxP, Transmission Reception Point), etc.) adaptation (Adaptation) is a research direction in energy saving.
  • the inventor found through research that in a wireless communication system, how to evaluate the quality of wireless links is a key issue.
  • this application discloses a solution. It should be noted that in the description of this application, only uplink and downlink are used as a typical application scenario; this application is also applicable to other scenarios facing similar problems (such as sidelink, Internet of Vehicles, etc.). Similar technical effects can also be achieved. In addition, adopting a unified solution for different scenarios (including but not limited to multi-carrier scenarios) can also help reduce hardware complexity and cost. In the case of no conflict, the embodiments and features in the embodiments of the first node device of the present application can be applied to the second node device, and vice versa. In particular, for the explanation of terms (Terminology), nouns, functions, and variables in this application (if not otherwise specified), you may refer to the definitions in the 3GPP standard protocols TS36 series, TS37 series, and TS38 series.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • Receive a first higher layer message set the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used for wireless link quality assessment;
  • the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer;
  • At least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the problems to be solved by this application include: how to adjust RS (Reference Signal, reference signal) resources for evaluating wireless link quality.
  • RS Reference Signal
  • the first signaling is used to determine a first RS resource, and the first RS resource is associated with the first RS resource pool.
  • At least one RS resource in the second RS resource pool depends on the configuration of the first higher-layer message set.
  • the first BWP is a BWP of the first serving cell; whenever the wireless resource pool evaluated according to the second RS resource pool When the line link quality is worse than the reference threshold, the physical layer of the first node sends a beam failure event indication for the first serving cell to a higher layer; the target counter is used for the beam failure event indication for the first serving cell. The count of the beam failure event indications.
  • the behavior of evaluating the wireless link quality of the first BWP according to the second RS resource pool includes: separately evaluating the wireless link according to the first RS resource set and the second RS resource set. quality;
  • the second RS resource pool includes the first RS resource set and the second RS resource set; the first RS resource pool includes a third RS resource set and a fourth RS resource set; the reference CORESET pool includes Multiple CORESETs configured to the first BWP, the reference CORESET pool includes a first CORESET sub-pool and a second CORESET sub-pool, the first CORESET sub-pool includes at least one CORESET, and the second CORESET sub-pool Including at least one CORESET; at least one RS resource in the first RS resource set depends on the TCI status of at least one CORESET in the first CORESET sub-pool.
  • each RS resource in the first RS resource set depends on the TCI status of CORESET, and each RS resource in the second RS resource set depends on the first higher layer Configuration of message collection.
  • the physical layer of the first node sends a message to a higher layer for the Beam failure event indication of the first RS resource set; when the radio link quality evaluated according to the second RS resource set is worse than the reference threshold, the physical layer of the first node sends to a higher layer a response to the The beam failure event indication of the second RS resource set; the first counter is used for counting the beam failure event indication of the first RS resource set, and the second counter is used for the beam failure event indication of the second RS resource set. The count of failed event indications.
  • beam failure recovery for the first serving cell is triggered; and the beam failure recovery process for the first serving cell includes sending the first signal.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used for wireless link quality assessment;
  • the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer;
  • the recipient of the first signaling evaluates the wireless link quality of the first BWP according to the second RS resource pool. ; At least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the first signaling is used to determine a first RS resource, and the first RS resource is associated with the first RS resource pool.
  • At least one RS resource in the second RS resource pool depends on the configuration of the first higher layer message set.
  • the receiver of the first signaling triggers beam failure recovery for the first serving cell when the value of the target counter is equal to or greater than the target threshold; wherein, the The first BWP is a BWP of the first serving cell; whenever the radio link quality evaluated according to the second RS resource pool is worse than a reference threshold, the receiver of the first signaling
  • the physical layer sends a beam failure event indication for the first serving cell to a higher layer of the recipient of the first signaling; the target counter is used for the beam failure for the first serving cell The count indicated by the event.
  • the receiver of the first signaling evaluates the wireless link quality of the first BWP according to the second RS resource pool including: the first signaling The receiver separately evaluates the wireless link quality according to the first RS resource set and the second RS resource set;
  • the second RS resource pool includes the first RS resource set and the second RS resource set; the first RS resource pool includes a third RS resource set and a fourth RS resource set; the reference CORESET pool includes Multiple CORESETs configured to the first BWP, the reference CORESET pool includes a first CORESET sub-pool and a second CORESET sub-pool, the first CORESET sub-pool includes at least one CORESET, and the second CORESET sub-pool Including at least one CORESET; at least one RS resource in the first RS resource set depends on the TCI status of at least one CORESET in the first CORESET sub-pool.
  • each RS resource in the first RS resource set relies on the TCI of CORESET. status, each RS resource in the second RS resource set depends on the configuration of the first higher layer message set.
  • the physical layer of the receiver of the first signaling sends a signal to A higher layer of the receiver of the first signaling sends a beam failure event indication for the first RS resource set; when the radio link quality evaluated according to the second RS resource set is worse than the
  • the physical layer of the recipient of the first signaling sends a beam failure event indication for the second RS resource set to a higher layer of the recipient of the first signaling; first A counter is used for counting beam failure event indications for the first RS resource set, and a second counter is used for counting beam failure event indications for the second RS resource set.
  • the beam failure recovery for the first serving cell is triggered; the beam failure recovery process for the first serving cell includes the receiver of the first signaling sending the first signal.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives a first higher layer message set, the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used for wireless link quality assessment. ; Receive the first signaling, the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer; In response to receiving the first signaling, evaluate the first BWP according to the second RS resource pool Wireless link quality;
  • At least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends a first higher layer message set, the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used for wireless link quality assessment. ;Sending the first signaling, the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer;
  • the recipient of the first signaling evaluates the wireless link quality of the first BWP according to the second RS resource pool. ; At least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • this application has the following advantages:
  • the RS resources for evaluating wireless link quality can be quickly adjusted to quickly adapt to changes in the environment and scenarios.
  • Figure 1 shows a flow chart of receiving a first higher layer message set and receiving first signaling according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of first signaling according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of a second RS resource pool according to an embodiment of the present application.
  • Figure 8 shows a schematic diagram of beam failure recovery of the first serving cell according to an embodiment of the present application
  • Figure 9 shows a schematic diagram of a first RS resource set and a second RS resource set according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of a first RS resource set and a second RS resource set according to another embodiment of the present application
  • Figure 11 shows a schematic diagram of a beam failure event indication of a first RS resource set and a beam failure event indication of a second RS resource set according to an embodiment of the present application
  • Figure 12 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of receiving a first higher-layer message set and receiving first signaling according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the first node in this application receives the first higher-layer message set in step 101; receives the first signaling in step 102; and serves as the node for receiving the first signaling in step 103.
  • the wireless link quality of the first BWP is evaluated according to the second RS resource pool; wherein the first higher layer message set is used to configure the first RS resource pool for the first BWP, and the first RS resource
  • the pool is used for wireless link quality assessment;
  • the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer; at least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the protocol layer to which the first signaling belongs is the MAC layer.
  • the protocol layer to which the first signaling belongs is the MAC layer, and the first signaling is MAC CE.
  • the protocol layer to which the first signaling belongs is the physical layer.
  • the protocol layer to which the first signaling belongs is the physical layer
  • the first signaling is physical layer signaling
  • the protocol layer to which the first signaling belongs is the physical layer, and the first signaling is DCI signaling.
  • the first signaling is cell common.
  • the first signaling is cell specific.
  • the first signaling is user equipment group common (UE group common).
  • the first signaling is UE group specific.
  • the first signaling is user equipment specific (UE specific).
  • the first signaling is used to update or indicate a spatial element.
  • the first signaling is used to update or indicate the number of spatial elements.
  • the first signaling is used to activate or deactivate a TCI state.
  • the first signaling is used to activate or deactivate spatial elements.
  • the first signaling is used to activate or deactivate the number of spatial elements.
  • the spatial element includes TCI status.
  • the spatial elements include TCI status, antenna element (antenna element), antenna panel (antenna panel), antenna port (antenna port), logical (logical) antenna port, transmit radio frequency channel (TxRU, Transmit Radio Unit) ), at least one of the sending and receiving nodes (TRxP, Transmission Reception Point).
  • the first signaling is used to indicate the first value.
  • the first value is related to a spatial element.
  • the first value is used to indicate the adjustment of the spatial element.
  • the first value is used to determine the adjusted spatial element.
  • the first value is used to indicate the adjusted spatial element.
  • the first value indicates a TCI status.
  • the first value indicates at least one TCI status.
  • the first value is an index of a TCI state.
  • the first value is an index of a TCI status group.
  • the first value is a non-negative integer.
  • the first value is an integer.
  • the first value is a real number.
  • the first value is an index group.
  • the first value is an index.
  • the first value is an identifier
  • the first value is a bit sequence.
  • the first RS resource pool includes at least one RS resource, and the at least one RS resource in the first RS resource pool includes CSI-RS (Channel State Information-Reference Signal, Channel State Information Reference Signal) ) resources or at least one of SS/PBCH (Synchronization Signal/Physical Broadcast CHannel) block resources.
  • CSI-RS Channel State Information-Reference Signal, Channel State Information Reference Signal
  • SS/PBCH Synchrom Signal/Physical Broadcast CHannel
  • the first RS resource pool includes at least one RS resource, and any RS resource in the first RS resource pool is a CSI-RS resource.
  • the first RS resource pool includes at least one RS resource, and any RS resource in the first RS resource pool is a periodic CSI-RS resource.
  • the maximum number of RS resources included in the first RS resource pool is 2, and the maximum number of RS resources included in the first RS resource pool is 2.
  • the second RS resource pool includes the first RS resource set and the second RS resource set; the first RS resource pool includes a third RS resource set and a fourth RS resource set;
  • the maximum number of RS resources included in each of the first RS resource set, the second RS resource set, the third RS resource set and the fourth RS resource set is K.
  • the index of an RS resource is used to identify the one RS resource.
  • the index of an RS resource is the configuration index of the one RS resource.
  • the index of an RS resource includes a configuration index of the one RS resource.
  • the index of a periodic CSI-RS resource is the configuration index of the periodic CSI-RS resource.
  • the index of a periodic CSI-RS resource includes the configuration index of the periodic CSI-RS resource.
  • the index of a CSI-RS resource is NZP-CSI-RS-ResourceId.
  • the index of a CSI-RS resource is NZP-CSI-RS-ResourceId.
  • the index of a CSI-RS resource is csi-RS-Index.
  • the index of an SS/PBCH block resource is SSB-Index.
  • the index of an SS/PBCH block resource is ssb-Index.
  • the second RS resource pool and the first RS resource pool are different.
  • At least one RS resource in the second RS resource pool does not belong to the first RS resource pool.
  • At least one RS resource in the second RS resource pool is not configured or activated by the first higher layer message set.
  • any RS resource in the second RS resource pool is not configured or activated by the first higher layer message set.
  • At least one RS resource in the second RS resource pool is determined implicitly.
  • any RS resource in the second RS resource pool is determined implicitly.
  • At least one RS resource in the second RS resource pool is determined based on at least one RS resource index in the RS resource set indicated by the TCI status of at least one CORESET used by the first node to monitor PDCCH. .
  • each RS resource in the second RS resource pool is determined based on at least one RS resource index in the RS resource set indicated by the TCI status of at least one CORESET used by the first node to monitor PDCCH. .
  • the second RS resource pool includes at least one RS resource
  • the at least one RS resource in the second RS resource pool includes at least one of CSI-RS resources or SS/PBCH block resources.
  • the second RS resource pool includes at least one RS resource, and any RS resource in the second RS resource pool is a CSI-RS resource.
  • the second RS resource pool includes at least one RS resource, and any RS resource in the second RS resource pool is a periodic CSI-RS resource.
  • the first RS resource pool includes at least one RS resource, and any RS resource in the first RS resource pool is a periodic CSI-RS resource; the second RS resource pool includes at least one RS resource. resources, any RS resource in the second RS resource pool is a periodic CSI-RS resource.
  • the second RS resource pool includes at least one periodic CSI-RS resource, and the index of any periodic CSI-RS resource included in the second RS resource pool is the same as that described in the first BWP.
  • the first node monitors the PDCCH using a CORESET One RS resource index in the RS resource set indicated by the TCI status is the same.
  • one RS resource in the second RS resource pool belongs to the first RS resource pool.
  • At least one RS resource in the second RS resource pool belongs to the first RS resource pool.
  • each RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • each RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the first signaling is used to determine the second RS resource pool.
  • the meaning of the sentence "At least one RS resource in the second RS resource pool depends on the TCI status of CORESET" includes: only one RS resource in the second RS resource pool depends on the TCI status of CORESET. .
  • the meaning of the sentence "At least one RS resource in the second RS resource pool depends on the TCI status of CORESET" includes: each RS resource in the second RS resource pool depends on the TCI status of CORESET. state.
  • the meaning of the sentence "At least one RS resource in the second RS resource pool depends on the TCI status of CORESET" includes: the index of at least one RS resource in the second RS resource pool is the same as the TCI status of CORESET.
  • the RS resource index in the RS resource set indicated by the TCI status of CORESET used by the first node in the first BWP to monitor the PDCCH is the same.
  • the meaning of the sentence "At least one RS resource in the second RS resource pool depends on the TCI status of CORESET" includes: the index of each RS resource in the second RS resource pool and the An RS resource index in the RS resource set indicated by the TCI status of a CORESET used by the first node in the first BWP to monitor the PDCCH is the same.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution, long-term evolution), LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 can be called 5GS (5G System)/EPS (Evolved Packet System). Grouping System) 200 or some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 that communicates with the UE 201 on a side link, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnection with other access networks is possible, but these entities/interfaces are not shown for simplicity.
  • 5GS/EPS200 provides packet switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks providing circuit switched services.
  • NG-RAN 202 includes NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • the gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communications devices, land vehicles, cars, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME/AMF/SMF214 S-GW (Service Gateway, Service Gateway)/UPF (User Plane Function, User Plane Function) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include Internet Network, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the first node in this application includes the UE241.
  • the second node in this application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first higher layer message set is generated in the RRC sublayer 306.
  • the first higher layer message set is generated in the RRC sublayer 306 and the MAC sublayer 302.
  • the target counter is generated in the MAC sublayer 302.
  • the first counter and the second counter are generated in the MAC sublayer 302.
  • the first higher layer message set is generated in the MAC sublayer 352.
  • the target counter is generated in the MAC sublayer 352.
  • the first counter and the second counter are generated in the MAC sublayer 352.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna interface Receive processor 472, multi-antenna transmit processor 471, transmitter/receiver 418 and antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and control of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • Transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT ) to generate a physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 with the second Any parallel flow to which communication device 450 is the destination.
  • the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media. In the DL, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operations.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which undergo analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then are provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory for storing program code and data. Storage 476 is associated.
  • Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communications device 450 .
  • Upper layer packets from controller/processor 475 may be provided to the core network.
  • Controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 device at least: receives a first higher layer message set, the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used to Radio link quality assessment; receiving the first signaling, the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer; in response to receiving the first signaling, evaluating the result according to the second RS resource pool The wireless link quality of the first BWP; wherein at least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A higher layer message set, the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used for wireless link quality assessment; receiving the first signaling, The protocol layer to which the first signaling belongs is the protocol layer below the RRC layer; in response to receiving the first signaling, the wireless link quality of the first BWP is evaluated according to the second RS resource pool; wherein, At least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least: sends a first higher layer message set, the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used to Wireless link quality assessment; sending first signaling, the protocol layer to which the first signaling belongs is a protocol layer below the RRC layer; wherein, as a recipient of the first signaling, receiving the first signaling In response, the recipient of the first signaling evaluates the wireless link quality of the first BWP according to the second RS resource pool; at least one RS resource in the second RS resource pool relies on the TCI status of CORESET .
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A higher layer message set, the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used for wireless link quality assessment; sending the first signaling,
  • the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer; wherein, as the recipient of the first signaling receives a response to the first signaling, the first signaling
  • the receiver evaluates the wireless link quality of the first BWP according to a second RS resource pool; at least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data
  • At least one of the sources 467 ⁇ is used to receive the first higher layer message set in the present application;
  • At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first higher layer message set in this application.
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in the present application; ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first signaling in this application.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U01 and the second node N02 are respectively two communication nodes transmitting through the air interface.
  • step S5101 For the first node U01 , in step S5101, the first higher layer message set is received; in step S5102, the first signaling is received; in step S5103, as a response to receiving the first signaling, the second RS resource pool evaluation is performed The wireless link quality of the first BWP;
  • the first higher layer message set is sent in step S5201; the first signaling is sent in step S5202.
  • the first higher layer message set is used to configure a first RS resource pool for the first BWP, and the first RS resource pool is used for wireless link quality assessment; the first signaling
  • the protocol layer to which it belongs is the protocol layer below the RRC layer; at least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the first higher layer message set is not used to configure the TCI status of CORESET.
  • the first higher layer message set does not include RRC IE (Information Element, Information Element) ControlResourceSet.
  • the first higher layer message set does not include messages whose names include tci-StatesPDCCH.
  • the first higher layer message set does not include a field whose name includes tci-StatesPDCCH.
  • only the second RS resource pool among the first RS resource pool and the second RS resource pool includes at least one RS resource dependent on the TCI (Transmission SET) of CORESET (COntrol REsource SET, control resource set). Configuration Indication, transmission configuration indication) state.
  • the first set of higher layer messages includes at least one higher layer message.
  • the first higher layer message set includes RRC messages.
  • the first higher layer message set includes at least RRC messages among RRC messages or MAC CE messages.
  • the first higher layer message set includes RRC messages and MAC CE messages.
  • the first higher layer message set includes some or all fields in one or more RRC IEs.
  • the first higher layer message set includes some or all fields in an RRC IE.
  • the first higher layer message set includes some fields in RRC IE RadioLinkMonitoringConfig.
  • the first higher layer message set includes a field in the RRC IE whose name includes failureDetectionResourcesToAddModList.
  • the first higher layer message set includes the failureDetectionResourcesToAddModList field in RRC IE RadioLinkMonitoringConfig.
  • the first higher layer message set includes the failureDetectionSet1 field and the failureDetectionSet2 field in the RRC IE RadioLinkMonitoringConfig.
  • the first higher layer message set includes a domain whose name includes failureDetectionSet1 and a domain whose name includes failureDetectionSet2 in the RRC IE.
  • the first higher layer message set includes at least one field in the RRC IE whose name includes failureDetectionSet.
  • the name of the RRC message in the first higher layer message set includes failureDetectionResources.
  • the name of the RRC message in the first higher layer message set includes failureDetectionSet.
  • the RRC message in the first higher layer message set includes the failureDetectionSet1 field and the failureDetectionSet2 field in the RRC IE RadioLinkMonitoringConfig, and the MAC CE message in the first higher layer message set includes BFD-RS IndicationMAC CE.
  • the MAC CE message in the first higher layer message set is BFD-RS Indication MAC CE.
  • the name of the MAC CE message in the first higher layer message set includes BFD-RS Indication MAC CE.
  • the name of the MAC CE message in the first higher layer message set includes BFD.
  • the first higher layer message set includes the failureDetectionSet1 field and the failureDetectionSet2 field in the RRC IE RadioLinkMonitoringConfig, and the BFD-RS Indication MAC CE.
  • the BFD-RS Indication MAC CE activates one or two RS resources from failureDetectionSet1 or failureDetectionSet2.
  • RRC IE RadioLinkMonitoringConfig As an example, for the specific definitions of RRC IE RadioLinkMonitoringConfig, failureDetectionResourcesToAddModList field, failureDetectionSet1 field and failureDetectionSet2 field, please refer to Chapter 6.3.2 of 3GPP TS38.331.
  • each RS resource in the first RS resource pool depends on the configuration of the first higher-layer message set.
  • the first higher layer message set includes an index of each RS resource included in the first RS resource pool.
  • the first higher layer message set includes an index of each RS resource included in the first RS resource pool.
  • the first higher layer message set includes RRC messages and MAC CE messages; the RRC messages in the first higher layer message set are used to configure the target RS resource pool for the first BWP, and the first The MAC CE message in the higher layer message set is used to activate the first RS resource pool from the target RS resource pool.
  • the first higher layer message set includes RRC messages and MAC CE messages; the first RS resource pool belongs to the target RS resource pool, and the RRC message in the first higher layer message set includes all The index of each RS resource included in the target RS resource pool, and the MAC CE message in the first higher layer message set activates the first RS resource pool from the target RS resource pool.
  • the first higher layer message set includes RRC messages and MAC CE messages; the first RS resource pool belongs to the target RS resource pool, and the RRC message in the first higher layer message set includes all The index of each RS resource included in the target RS resource pool, and the MAC CE message in the first higher layer message set activates the first RS resource pool from the target RS resource pool.
  • the reference CORESET pool includes at least one CORESET configured to the first BWP.
  • the first receiver receives a reference RRC message, which is used to configure the reference CORESET pool; the reference RRC message includes part or all of the fields in at least one RRC IE.
  • the second transmitter sends a reference RRC message, which is used to configure the reference CORESET pool; the reference RRC message includes at least part of one RRC IE or All domains.
  • the reference RRC message includes the controlResourceSetToAddModList field in the RRC IE.
  • the reference RRC message includes a field whose name in the RRC IE includes controlResourceSetToAddModList.
  • the second RS resource pool is determined.
  • the first node is not configured with the failureDetectionResourcesToAddModList field in RRC IE RadioLinkMonitoringConfig.
  • the first node is not configured with the failureDetectionSet1 domain and the failureDetectionSet2 domain in the RRC IE RadioLinkMonitoringConfig.
  • the first higher layer message set is used to configure the TCI status of at least one CORESET of the first BWP.
  • the first higher layer message set includes the controlResourceSetToAddModList field in the RRC IE.
  • the first higher-level message set includes some or all fields in at least one RRC IE (Information Element) ControlResourceSet.
  • RRC IE Information Element
  • the first higher layer message set includes at least one RRC IE ControlResourceSet.
  • the first higher layer message set includes at least one tci-StatesPDCCH field in the RRC IE ControlResourceSet.
  • the first higher layer message set includes a domain whose name in at least one RRC IE includes tci-StatesPDCCH.
  • the first higher layer message set is used to configure the reference CORESET pool.
  • any RS resource in the first RS resource pool and the second RS resource pool depends on the TCI status of CORESET.
  • the reference CORESET pool includes at least one CORESET configured to the first BWP, and any RS resource in the first RS resource pool depends on the TCI status of one CORESET in the reference CORESET pool; so Any RS resource in the second RS resource pool depends on the TCI status of a CORESET in the reference CORESET pool.
  • the given RS resource is an index of any RS resource included in the first RS resource pool, and the given RS resource is the same as an RS resource index in the RS resource set indicated by the given TCI status.
  • the given TCI state is the TCI state of a CORESET used by the first node in the first BWP to monitor the PDCCH.
  • the given RS resource is an index of any RS resource included in the second RS resource pool, and the given RS resource is the same as an RS resource index in the RS resource set indicated by the given TCI status.
  • the given TCI state is the first BWP The first node monitors the TCI status of a CORESET used by the PDCCH.
  • any RS resource in the first RS resource pool depends on the TCI status of a CORESET in the first CORESET group, and the TCI status of any CORESET in the first CORESET group is controlled by the first RS resource.
  • An RS resource in the pool depends on; any RS resource in the second RS resource pool depends on the TCI status of a CORESET in the second CORESET group, and the TCI status of any CORESET in the second CORESET group is said to be
  • One RS resource in the second RS resource pool depends on; the first CORESET group includes at least one CORESET in the reference CORESET pool, and the second CORESET group includes at least one CORESET in the reference CORESET pool.
  • the first signaling is used to determine whether the first CORESET group and the second CORESET group are the same.
  • the reference CORESET pool is arranged in ascending order of the PDCCH monitoring period of the corresponding search space.
  • the first CORESET group includes the 1st,...,K CORESETs in the reference CORESET pool, and K is a positive integer.
  • the reference CORESET pool is arranged in ascending order of the PDCCH monitoring period of the corresponding search space, and the first signaling is used to determine the second CORESET group from the reference CORESET pool.
  • the first signaling is used to determine the first RS resource
  • the target CORESET pool includes the CORESET(s) on which the first RS resource in the reference CORESET pool depends.
  • At least one CORESET other than the second CORESET group includes the 1st,...,Kth CORESET in the target CORESET pool, and K is a positive integer.
  • the first signaling is used to determine the first RS resource group
  • the target CORESET pool includes any RS resource in the first RS resource group in the reference CORESET pool.
  • At least one CORESET other than the dependent CORESET(s), the second CORESET group includes the 1st,...,K CORESETs in the target CORESET pool, K is a positive integer.
  • the K is indicated by capabilityparametername.
  • the K is a capability parameter of the first node.
  • the K is determined according to the capability of the first node.
  • the K is reported by the first node to the sender of the first higher-layer message set.
  • the K is configured by the sender of the first higher layer message set.
  • the K is configured by the base station.
  • the K is not greater than 2.
  • the K is greater than 2.
  • K is equal to 1.
  • any RS resource in the third RS resource set depends on the TCI status of a CORESET in the first CORESET sub-pool
  • any RS resource in the fourth RS resource set depends on the The TCI status of a CORESET in the second CORESET sub-pool
  • any RS resource in the first RS resource set depends on the TCI status of a CORESET in the first CORESET sub-pool
  • the TCI status of a CORESET in the second RS resource set is
  • Any RS resource depends on the TCI status of a CORESET in the second CORESET sub-pool.
  • any RS resource in the third RS resource set depends on the TCI status of one CORESET in the third CORESET group, and the TCI status of any CORESET in the third CORESET group is controlled by the third CORESET group.
  • One RS resource in the RS resource set depends on it; the third CORESET group belongs to the first CORESET pool; any RS resource in the fourth RS resource set depends on the TCI status of one CORESET in the fourth CORESET group.
  • the TCI status of any CORESET in the fourth CORESET group is dependent on one RS resource in the fourth RS resource set; the fourth CORESET group belongs to the second CORESET pool; the first RS Any RS resource in the resource set depends on the TCI status of a CORESET in the fifth CORESET group, and the TCI status of any CORESET in the fifth CORESET group is dependent on an RS resource in the first RS resource set.
  • the fifth CORESET group belongs to the first CORESET pool; any RS resource in the second RS resource set depends on the TCI status of a CORESET in the sixth CORESET group, and any RS resource in the sixth CORESET group The TCI status of a CORESET is dependent on an RS resource in the second RS resource set; the sixth CORESET group belongs to the second CORESET pool.
  • the first signaling is used to determine whether the third CORESET group and the fifth CORESET group are the same, and the first signaling is used to determine whether the fourth CORESET group and the fifth CORESET group are the same.
  • the sixth CORESET group is the same.
  • the first CORESET sub-pool is arranged in ascending order of the PDCCH monitoring period of the corresponding search space, and the third CORESET group includes the 1st,...,Kth ones in the first CORESET pool.
  • CORESET,K is a positive integer.
  • the second CORESET sub-pool is arranged in ascending order of the PDCCH monitoring period of the corresponding search space, and the fourth CORESET group includes the 1st,...,K CORESET, K in the second CORESET sub-pool. is a positive integer.
  • the first CORESET sub-pool is arranged in ascending order according to the PDCCH monitoring period of the corresponding search space, and the first signaling is used to determine the first CORESET sub-pool from the first CORESET sub-pool. Describe the fifth CORESET group.
  • the first signaling is used to determine the first RS resource
  • the first target CORESET sub-pool includes the first RS resource in the first CORESET sub-pool on which the first RS resource depends.
  • the fifth CORESET group includes the first K CORESETs in the first target CORESET sub-pool, and K is a positive integer.
  • the first signaling is used to determine a first RS resource group, and the first target CORESET pool is included in the first RS resource group in the first CORESET sub-pool. At least one CORESET other than the CORESET(s) on which any RS resource depends, the fifth CORESET group includes the first K CORESETs in the first target CORESET pool, and K is a positive integer.
  • the second CORESET sub-pool is arranged in ascending order according to the PDCCH monitoring period of the corresponding search space, and the first signaling is used to determine the second CORESET sub-pool from the second CORESET sub-pool. Describe the sixth CORESET group.
  • the first signaling is used to determine the first RS resource
  • the second target CORESET sub-pool included in the second CORESET sub-pool depends on the first RS resource.
  • the sixth CORESET group includes the first K CORESETs in the second target CORESET sub-pool, and K is a positive integer.
  • the first signaling is used to determine a first RS resource group
  • the second target CORESET pool includes the first RS resource group in the second CORESET sub-pool.
  • the sixth CORESET group includes the first K CORESETs in the second target CORESET pool, and K is a positive integer.
  • the first RS resource pool is configured by the first higher layer message set for wireless link quality assessment (assess).
  • wireless link quality assessment is used for beam failure monitoring.
  • the wireless link quality assessment includes a determination of whether the wireless link quality is worse than a reference threshold.
  • the wireless link quality is RSRP.
  • the wireless link quality is L1-RSRP.
  • the wireless link quality is SINR.
  • the wireless link quality is L1-SINR.
  • the wireless link quality is BLER.
  • the wireless link quality is hypothetical BLER.
  • the radio link quality of the first BWP is evaluated according to only the second RS resource pool among the first RS resource pool and the second RS resource pool.
  • evaluating the radio link quality based on a given RS resource pool means: evaluating the radio link quality based on all RS resources in the given RS resource pool.
  • the wireless link quality is one of RSRP, L1-RSRP, SINR or L1-SINR.
  • the meaning of "evaluating wireless link quality based on a given RS resource pool" includes: the wireless link quality It is the maximum value among the RSRP, L1-RSRP, SINR or L1-SINR measured based on all RS resources in the given RS resource pool.
  • the wireless link quality is BLER
  • "evaluating the wireless link quality based on a given RS resource pool” means: the wireless link quality is based on all RSs in the given RS resource pool. The minimum value of BLER measured by the resource.
  • the wireless link quality is a hypothetical BLER.
  • the meaning of "evaluating the wireless link quality based on a given RS resource pool" includes: the wireless link quality is based on the BLER in the given RS resource pool. The minimum value of the hypothetical BLER measured by all RS resources.
  • the wireless link quality is one of RSRP, L1-RSRP, SINR or L1-SINR.
  • the meaning of "evaluating wireless link quality based on a given RS resource pool" includes: the wireless link quality is the average of the RSRP, L1-RSRP, SINR or L1-SINR measured based on all RS resources in the given RS resource pool.
  • the wireless link quality is BLER
  • the meaning of "evaluating wireless link quality based on a given RS resource pool" includes:
  • the wireless link quality is the average value of BLER measured based on all RS resources in the given RS resource pool.
  • the wireless link quality is a hypothetical BLER.
  • the meaning of "evaluating the wireless link quality based on a given RS resource pool" includes: the wireless link quality is based on the BLER in the given RS resource pool. The average of the hypothetical BLER measured across all RS resources.
  • the given RS resource pool is the second RS resource pool.
  • the given RS resource pool is the first RS resource set.
  • the given RS resource pool is the second RS resource set.
  • the given CORESET is a CORESET in the first BWP; the meaning of the sentence "the given RS resource depends on the TCI status of the given CORESET" includes: the given RS resource is not used by the first BWP. A higher-level message set configured or activated.
  • the given CORESET is a CORESET in the first BWP; the meaning of the sentence "the given RS resource depends on the TCI status of the given CORESET" includes: the given RS resource is not used by the first BWP. A higher layer message set is configured or activated; the given RS resource is the same as an RS resource in the first RS resource pool, or the given RS resource is different from any RS resource in the first RS resource pool.
  • One RS resources are the same.
  • the given CORESET is a CORESET in the first BWP; the meaning of the sentence "the given RS resource depends on the TCI status of the given CORESET" includes: the given RS resource is based on the given CORESET. Determined by the TCI status of CORESET.
  • the given CORESET is a CORESET in the first BWP; the meaning of the sentence "the given RS resource depends on the TCI status of the given CORESET" includes: the given RS resource is based on the first BWP.
  • a node monitors the PDCCH using the TCI status determined by the given CORESET.
  • the given CORESET is a CORESET in the first BWP; the meaning of the sentence "the given RS resource depends on the TCI status of the given CORESET" includes: the given RS resource is not used by the first BWP. A higher layer message set is configured or activated; the index of the given RS resource is the same as the index of an RS resource indicated by the TCI status of the given CORESET.
  • the given CORESET is a CORESET in the first BWP; the meaning of the sentence "the given RS resource depends on the TCI status of the given CORESET" includes: the index of the given RS resource and the The TCI status of a given CORESET indicates the same index of an RS resource.
  • a given CORESET is a CORESET in the first BWP; the meaning of the sentence "the given RS resource depends on the TCI status of the given CORESET" includes: the given TCI status is a CORESET in the first BWP
  • the first node monitors the TCI status of the given CORESET used by the PDCCH, and the index of the given RS resource is the same as an RS resource index in the RS resource set indicated by the given TCI status.
  • the given CORESET is a CORESET in the first BWP; the meaning of the sentence "the given RS resource depends on the TCI state of the given CORESET" includes: the given RS resource is a periodic CSI- RS resource, the given TCI status is the TCI status of the given CORESET used by the first node in the first BWP to monitor the PDCCH, and the index of the given RS resource is the same as indicated by the given TCI status.
  • the index of an RS resource in the RS resource set is the same.
  • the given RS resource pool is the first RS resource pool, or the given RS resource pool is the third RS resource set;
  • the sentence "the first RS resource and the given "RS resource pool association" means: the first RS resource depends on the configuration of the first higher-layer message set.
  • the given RS resource pool is the first RS resource pool, or the given RS resource pool is the third RS resource set; the sentence "the first RS resource and the given "RS resource pool association" means: the first RS resource belongs to the given RS resource pool.
  • the given RS resource pool is the first RS resource pool, or the given RS resource pool is the third RS resource set;
  • the sentence "the first RS resource and the given "RS resource pool association" means: the first RS resource is associated with an RS resource in the given RS resource pool.
  • the given RS resource pool is the first RS resource pool, or the given RS resource pool is the third RS resource set;
  • the sentence "the first RS resource and the given "RS resource pool association" means: the first RS resource is quasi-co-located with an RS resource in the given RS resource pool.
  • the given RS resource pool is the first RS resource pool, or the given RS resource pool is the third RS resource set;
  • the sentence "the first RS resource and the given "RS resource pool association" means: the first RS resource and an RS resource in the given RS resource pool have the same quasi co-location (Quasi Co-Location, QCL) parameter.
  • the given RS resource pool is the first RS resource pool, or the given RS resource pool is the third RS resource set;
  • the sentence "the first RS resource and the given "RS resource pool association" means: the first RS resource has the same quasi-co-location relationship with an RS resource in the given RS resource pool.
  • the given RS resource pool is the first RS resource pool, or the given RS resource pool is the third RS resource set;
  • the sentence "the first RS resource and the given "RS resource pool association" means: the first RS resource and an RS resource in the given RS resource pool have the same quasi-co-location assumption.
  • a TCI state indicates at least one RS resource and the type of quasi-colocation parameter corresponding to each RS resource.
  • the types of the quasi-co-located parameters include TypeA, TypeB, TypeC and TypeD.
  • the quasi-colocation parameters of type A include Doppler shift, Doppler spread, average delay, and delay spread.
  • the quasi-co-located parameters of Type B include Doppler shift (Doppler shift) and Doppler spread (Doppler spread).
  • the quasi-co-location parameters of type C include Doppler shift (Doppler shift) and average delay (average delay).
  • the quasi-co-located parameters of Type D include spatial reception parameters (Spatial Rx parameters).
  • TypeA As an embodiment, for the specific definitions of TypeA, TypeB, TypeC and TypeD, please refer to Chapter 5.1.5 of 3GPP TS38.214.
  • the quasi-co-location parameters include delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average delay (average delay), or spatial reception parameters (Spatial Rx parameter) one or more.
  • the quasi-co-location parameters include Doppler shift (Doppler shift) and Doppler spread (Doppler spread).
  • the quasi-co-location parameters include Doppler shift (Doppler shift) and average delay (average delay).
  • the quasi-co-location parameters include spatial reception parameters (Spatial Rx parameters).
  • the quasi-co-location parameters include at least one of spatial transmission parameters or spatial reception parameters.
  • the quasi-co-location parameters include a spatial domain receive filter (Spatial Domain Receive Filter).
  • the quasi-co-location parameter includes a spatial domain filter (Spatial Domain Filter).
  • the quasi-co-location parameter includes at least one of a spatial domain transmit filter (spatial domain transmit filter) or a spatial domain receive filter (spatial domain receive filter).
  • the meaning of the sentence "two RS resources are quasi-co-located” includes: the quasi-co-location parameters of the two RS resources are the same; the meaning of the sentence "the two RS resources are not quasi-co-located” includes: the The quasi-co-location parameters of the two RS resources are different.
  • the meaning of the sentence "two RS resources are quasi-co-located” includes: the first node device assumes that the same quasi-co-located parameter is used to receive the two RS resources; the sentence "two RS resources are quasi-co-located" "Not quasi-co-located” means including: the first node device does not assume that the same quasi-co-located parameter is used to receive the two RS resources.
  • the meaning of the sentence "two RS resources are quasi-co-located” includes: the first node device assumes that the same quasi-co-located parameter is used to send or receive the two RS resources; the sentence "two RS resources are quasi-co-located” "The RS resource is not quasi-co-located” means that the first node device does not assume that the same quasi-co-located parameter is used to send or receive the two RS resources.
  • the sentence "two RS resources are quasi-co-located” means: the two RS resources have the same quasi-co-located characteristics; the sentence "two RS resources are quasi-co-located” means: The two RS resources have different quasi-co-location characteristics.
  • the meaning of the sentence "two RS resources are quasi-co-located” includes: the two RS resources have the same spatial reception parameter (Spatial Rx parameter); the meaning of the sentence "two RS resources are not quasi-co-located” The meaning includes: the two RS resources have different spatial reception parameters.
  • the meaning of the sentence "two RS resources are quasi-co-located” includes: the two RS resources have the same quasi-co-located location. Relationship; the meaning of the sentence "two RS resources are quasi-co-located” includes: the two RS resources have different quasi-co-located relationships.
  • the sentence "two RS resources are quasi-co-located” means: the two RS resources have the same quasi-co-located assumption; the sentence "two RS resources are quasi-co-located” means: The two RS resources described above have different quasi-co-location assumptions.
  • Embodiment 6 illustrates a schematic diagram of first signaling according to an embodiment of the present application; as shown in Figure 6.
  • the first signaling is used to determine a first RS resource, and the first RS resource is associated with the first RS resource pool.
  • the first signaling is used to indicate the first RS resource.
  • the first RS resource is deactivated.
  • the first signaling is used to instruct the first node not to measure the first RS resource.
  • the first node in response to receiving the first signaling, does not measure the first RS resource.
  • the first signaling is used to indicate a first RS resource group, and the first RS resource is an RS resource in the first RS resource group.
  • the first signaling is used to indicate a first value
  • the first value is used to indicate the first RS resource.
  • the first signaling is used to indicate a first value
  • the first value is used to indicate a first RS resource group
  • the first RS resource is a resource in the first RS resource group.
  • the first signaling is used to indicate a first value, and the first value is used to determine the first RS resource.
  • the first signaling is used to indicate a first value
  • the first value is used to determine a first RS resource group
  • the first RS resource is a resource in the first RS resource group.
  • the meaning of the sentence "the first value is used to determine the first RS resource" includes: the first value indicates an index of the first RS resource.
  • the meaning of the sentence "the first value is used to determine the first RS resource" includes: the first value and the first RS resource have a corresponding relationship.
  • the meaning of the sentence "the first value is used to determine the first RS resource" includes: the first value is related to the first RS resource.
  • the meaning of the sentence "the first value is used to determine the first RS resource group" includes: the first value indicates an index of the first RS resource group.
  • the meaning of the sentence "the first value is used to determine the first RS resource group" includes: the first value indicates the value of each RS resource included in the first RS resource group. index.
  • the meaning of the sentence "the first value is used to determine the first RS resource group" includes: the first value and the first RS resource group have a corresponding relationship.
  • the meaning of the sentence "the first value is used to determine the first RS resource group” includes: the first value is related to the first RS resource group.
  • the first signaling is DCI, and a field in the first signaling is used to determine the first RS resource.
  • the first signaling is DCI, and multiple domains in the first signaling are jointly used to determine the first RS resource.
  • one RS resource is deactivated means that the first node does not measure the one RS resource.
  • an RS resource is deactivated means: the first node releases the one RS resource.
  • an RS resource is deactivated means: the first node considers that the one RS resource does not exist.
  • one RS resource is activated means: the first node measures the one RS resource.
  • the meaning of "an RS resource is activated" includes: the first node believes that the one RS resource exists.
  • Embodiment 7 illustrates a schematic diagram of the second RS resource pool according to an embodiment of the present application; as shown in FIG. 7 .
  • At least one RS resource in the second RS resource pool depends on the configuration of the first higher layer message set.
  • only one RS resource in the second RS resource pool depends on the configuration of the first higher layer message set.
  • some RS resources in the second RS resource pool depend on the configuration of the first higher-layer message set.
  • At least one RS resource in the second RS resource pool is not configured or activated by the first higher layer message set.
  • the given RS resource is an RS resource in the second RS resource pool, and the meaning of the sentence "the given RS resource depends on the configuration of the first higher layer message set" includes: the given The index of a certain RS resource is configured or activated by the first higher layer message set.
  • the given RS resource is an RS resource in the second RS resource pool, and the meaning of the sentence "the given RS resource depends on the configuration of the first higher layer message set" includes: the given The index of the given RS resource is not configured or activated by the first higher layer message set, and the index of the given RS resource is the same as an index configured or activated by the first higher layer message set.
  • the given RS resource is an RS resource in the second RS resource pool
  • the meaning of the sentence "the given RS resource depends on the configuration of the first higher layer message set" includes: the given The index of the given RS resource is determined based on at least one RS resource index in the RS resource set indicated by the TCI status of at least one CORESET used by the first node to monitor the PDCCH, and the index of the given RS resource is the same as the first node.
  • the given RS resource is an RS resource in the second RS resource pool, and the meaning of the sentence "the given RS resource depends on the configuration of the first higher layer message set" includes: the given The index of the specified RS resource is the same as an index configured or activated in the first higher layer message set.
  • the given RS resource is an RS resource in the second RS resource pool, and the meaning of the sentence "the given RS resource depends on the configuration of the first higher layer message set" includes: the given A certain RS resource belongs to the first RS resource pool.
  • the given RS resource is an RS resource in the second RS resource pool
  • the meaning of the sentence "the given RS resource depends on the configuration of the first higher layer message set" includes: the given The index of a certain RS resource is the same as the index of an RS resource in the first RS resource pool.
  • the given RS resource is an RS resource in the second RS resource pool
  • the meaning of the sentence "the given RS resource depends on the configuration of the first higher layer message set" includes: the given The certain RS resource is quasi-co-located with one RS resource in the first RS resource pool.
  • Embodiment 8 illustrates a schematic diagram of beam failure recovery of the first serving cell according to an embodiment of the present application; as shown in Figure 8.
  • the first node in this application when the value of the target counter is equal to or greater than the target threshold, the first node in this application triggers beam failure recovery for the first serving cell; wherein the first BWP is the first A BWP of the serving cell; whenever the radio link quality evaluated according to the second RS resource pool is worse than a reference threshold, the physical layer of the first node sends a BWP for the first serving cell to a higher layer.
  • Beam failure event indication the target counter is used for counting the beam failure event indication for the first serving cell.
  • the wireless link quality is one of RSRP, L1-RSRP, SINR or L1-SINR; the phrase "the wireless link quality evaluated according to the second RS resource pool is worse than a reference threshold" means: the radio link quality evaluated according to the second RS resource pool is less than the reference threshold.
  • the unit of the reference threshold is dBm or dB.
  • the wireless link quality is BLER; the phrase "the wireless link quality evaluated according to the second RS resource pool is worse than a reference threshold" means: evaluated according to the second RS resource pool The wireless link quality is greater than the reference threshold.
  • the reference threshold is a BLER threshold.
  • the wireless link quality is a hypothetical BLER; the phrase "the wireless link quality evaluated according to the second RS resource pool is worse than a reference threshold" means: according to the first The radio link quality evaluated by the second RS resource pool is greater than the reference threshold.
  • the reference threshold is a real number.
  • the reference threshold is a non-negative real number.
  • the reference threshold is a non-negative real number not greater than 1.
  • the reference threshold is Qout_L.
  • the reference threshold is one of Qout_L, Qout_LR_SSB or Qout_LR_CSI-RS.
  • Qout_LR Qout_LR_SSB
  • Qout_LR_CSI-RS Qout_LR_CSI-RS
  • the reference threshold is configured by the RRC parameter rlmInSyncOutOfSyncThreshold.
  • the reference threshold is the default value of rlmInSyncOutOfSyncThreshold.
  • rlmInSyncOutOfSyncThreshold can be found in 3GPP TS38.133.
  • the sentence "when the value of the target counter is equal to or greater than the target threshold” means: if and only when the value of the target counter is equal to or greater than the target threshold.
  • the sentence "when the value of the target counter is equal to or greater than the target threshold” means: as a response that the value of the target counter is equal to or greater than the target threshold.
  • the first node maintains the target counter at the MAC layer.
  • the MAC entity of the first node maintains the target counter.
  • a target timer is started or restarted, and The value of the target counter is increased by 1.
  • the target counter is BFI_COUNTER.
  • the first node device includes:
  • the target counter In response to receiving the first signaling, the target counter is set to zero.
  • the target timer in response to receiving the first signaling, the target timer is started or restarted.
  • the target counter is set to 0.
  • the target timer is beamFailureDetectionTimer.
  • the target counter is BFI_COUNTER.
  • the initial value of the target counter is 0.
  • the target threshold is a positive integer.
  • the target threshold is beamFailureInstanceMaxCount.
  • the target threshold is configured by RRC parameters.
  • the RRC parameters for configuring the target threshold include all or part of the information in the beamFailureInstanceMaxCount field of RadioLinkMonitoringConfig IE.
  • the target timer is beamFailureDetectionTimer.
  • the initial value of the target timer is a positive integer.
  • the initial value of the target timer is a positive real number.
  • the unit of the initial value of the target timer is the Qout, LR reporting period of the beam failure detection RS.
  • the initial value of the target timer is configured by the higher-level parameter beamFailureDetectionTimer.
  • the initial value of the target timer is configured by an IE.
  • the name of the IE that configures the initial value of the target timer includes RadioLinkMonitoring.
  • the beam failure recovery process for the first serving cell includes sending the first signal.
  • the first signal includes at least one of a random access preamble (contention-based Random Access Preamble), BFR MAC CE, Truncated BFR MAC CE, Enhanced BFR MAC CE, or Truncated Enhanced BFR MAC CE.
  • a random access preamble contention-based Random Access Preamble
  • BFR MAC CE Random Access Preamble
  • Truncated BFR MAC CE Truncated BFR MAC CE
  • Enhanced BFR MAC CE Truncated Enhanced BFR MAC CE.
  • the beam failure recovery (BFR) for the first serving cell includes a random access process.
  • the beam failure recovery (BFR) for the first serving cell includes sending a random access preamble, sending a BFR MAC CE, sending a Truncated BFR MAC CE, sending an Enhanced BFR MAC CE, or Send at least one of Truncated Enhanced BFR MAC CE.
  • the random access preamble is a contention-based random access preamble (contention-based Random Access Preamble).
  • the random access preamble is a contention-free Random Access Preamble.
  • the beam failure recovery (BFR) for the first serving cell includes sending one of BFR MAC CE, Truncated BFR MAC CE, Enhanced BFR MAC CE or Truncated Enhanced BFR MAC CE.
  • the beam failure recovery (BFR) for the first serving cell includes sending a MAC CE whose name includes BFR.
  • the wave speed failure recovery process can be found in Chapter 5.17 of 3GPP TS38.321.
  • the wave speed failure recovery process can be found in Chapter 6 of 3GPP TS38.213.
  • Embodiment 9 illustrates a schematic diagram of the first RS resource set and the second RS resource set according to an embodiment of the present application; as shown in Figure 9.
  • the behavior of evaluating the wireless link quality of the first BWP according to the second RS resource pool includes: separately evaluating the wireless link quality according to the first RS resource set and the second RS resource set; wherein, The second RS resource pool includes the first RS resource set and the second RS resource set; the first RS resource pool includes a third RS resource set and a fourth RS resource set; the reference CORESET pool includes the Multiple CORESETs of the first BWP, the reference CORESET pool includes a first CORESET sub-pool and a second CORESET sub-pool, the first CORESET sub-pool includes at least one CORESET, and the second CORESET sub-pool includes at least one CORESET; at least one RS resource in the first RS resource set depends on the TCI status of at least one CORESET in the first CORESET sub-pool.
  • any RS resource in the first RS resource set depends on the TCI status of a CORESET in the first CORESET sub-pool.
  • some RS resources in the first RS resource set depend on the TCI status of CORESET(s) in the first CORESET sub-pool.
  • At least one RS resource in the second RS resource set depends on the configuration of the first higher layer message set.
  • At least one RS resource in the second RS resource set depends on the TCI status of at least one CORESET in the second CORESET sub-pool.
  • each RS resource in the second RS resource set depends on the TCI status of at least one CORESET in the second CORESET sub-pool.
  • each RS resource in the first RS resource set depends on the TCI status of at least one CORESET in the first CORESET sub-pool
  • each RS resource in the second RS resource set depends on the TCI status of at least one CORESET in the first CORESET sub-pool.
  • the TCI status of at least one CORESET in the second CORESET sub-pool is the TCI status of at least one CORESET in the second CORESET sub-pool.
  • the third RS resource set and the fourth RS resource set are respectively configured or activated by the first higher layer message set for wireless link quality assessment.
  • the first RS resource set corresponds to the third RS resource set
  • the second RS resource set corresponds to the fourth RS resource set.
  • the first RS resource set and the third RS resource set both correspond to the first COREST sub-pool
  • the second RS resource set and the fourth RS resource set both correspond to the second COREST sub-pool.
  • the index of the first CORESET sub-pool is 0, and the index of the second CORESET sub-pool is 1.
  • the first CORESET sub-pool includes at least one CORESET corresponding to a CORESETPoolIndex of 0 and the second CORESET sub-pool includes at least one CORESET corresponding to a CORESETPoolIndex of 1.
  • the first signaling is used to determine a first RS resource, and the first RS resource is associated with the third RS resource set.
  • the first higher layer message set includes a first RRC message and a second RRC message
  • the third RS resource set is configured by the first RRC message
  • the fourth RS resource set is configured by the second RRC message configuration.
  • the first RRC message includes failureDetectionSet1 in RRC IE RadioLinkMonitoringConfig. field
  • the second RRC message includes the failureDetectionSet2 field in the RRC IE RadioLinkMonitoringConfig.
  • the first RRC message is used to configure the first CORESET sub-pool
  • the second RRC message is used to configure the second CORESET sub-pool
  • Embodiment 10 illustrates a schematic diagram of a first RS resource set and a second RS resource set according to another embodiment of the present application; as shown in FIG. 10 .
  • each RS resource in the first RS resource set depends on the TCI status of CORESET, and each RS resource in the second RS resource set depends on the configuration of the first higher layer message set.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the one RS resource is not configured or activated by the first higher-layer message set.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the one RS resource is not configured or activated by the first higher layer message set; the one RS resource is different from the One RS resource in the first RS resource pool is the same, or the one RS resource is different from any RS resource in the first RS resource pool.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the one RS resource is determined based on the TCI status of a CORESET.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the one RS resource is determined based on the TCI status of a CORESET used by the first node to monitor the PDCCH.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the one RS resource is determined based on the TCI status of at least one CORESET used by the first node to monitor the PDCCH.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the one RS resource is not configured or activated by the first higher layer message set; the index of the one RS resource is the same as The TCI status of a CORESET indicates the same index of an RS resource.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the index of the one RS resource is the same as the index of an RS resource indicated by the TCI status of a CORESET.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the index of the one RS resource is the same as the index of an RS resource indicated by the TCI status of a CORESET.
  • the meaning of the sentence "an RS resource depends on the TCI status of CORESET" includes: the index of the one RS resource and the TCI status of a CORESET used by the first node in the first BWP to monitor the PDCCH.
  • An RS resource index in an indicated RS resource set is the same.
  • an RS resource depends on the configuration of the first higher-layer message set
  • the first higher-layer message set includes the index of the one RS resource.
  • an RS resource depends on the configuration of the first higher-layer message set
  • the first higher-layer message set includes the index of the one RS resource.
  • Embodiment 11 illustrates a schematic diagram of the beam failure event indication of the first RS resource set and the beam failure event indication of the second RS resource set according to an embodiment of the present application; as shown in FIG. 6 .
  • Embodiment 11 whenever the radio link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the first node sends to a higher layer a response to the first RS resource set. Beam failure event indication; when the wireless link quality evaluated according to the second RS resource set is worse than the reference threshold, the physical layer of the first node sends a message to a higher layer for the second RS Beam failure event indication of the resource set; the first counter is used for counting the beam failure event indication of the first RS resource set, and the second counter is used for counting the beam failure event indication of the second RS resource set. count.
  • the statistics of beam failure event indications (beam failure instance indication) for the first RS resource set and the statistics of beam failure event indications for the second RS resource set are performed separately.
  • beam failure detection for the first RS resource set and beam failure detection for the second RS resource set are performed separately.
  • the beam failure recovery of the first RS resource set and the beam failure recovery of the second RS resource set are triggered respectively.
  • the first RS resource set and the second RS resource set are two beam failure detection RS sets, and beam failure detection is performed per (per) beam failure detection RS set.
  • the first RS resource set and the second RS resource set are two beam failure detection RS sets, and beam failure recovery is performed per (per) beam failure detection RS set.
  • the first RS resource set and the second RS resource set correspond to two BFI_COUNTERs respectively.
  • the first RS resource set corresponds to a first counter
  • the second RS resource set corresponds to a second counter
  • the first counter when the value of the first counter is equal to or greater than a first threshold, beam failure recovery for the first RS resource set is triggered; when the value of the second counter is equal to or greater than the second threshold, beam failure recovery is triggered for the first RS resource set.
  • the BFR of the second RS resource set is triggered.
  • the sentence "when the value of the first counter is equal to or greater than the first threshold” means: if and only when the value of the first counter is equal to or greater than the first threshold.
  • the sentence "when the value of the first counter is equal to or greater than the first threshold” means: as a response that the value of the first counter is equal to or greater than the first threshold.
  • the sentence "when the value of the second counter is equal to or greater than the second threshold” means: if and only when the value of the second counter is equal to or greater than the second threshold.
  • the sentence "when the value of the second counter is equal to or greater than the second threshold” means: as a response that the value of the second counter is equal to or greater than the second threshold.
  • the first node device includes:
  • At least one RS resource in the first RS resource set depends on the TCI status of CORESET.
  • the first node device includes:
  • At least one RS resource in the second RS resource set depends on the TCI status of CORESET.
  • the first node device includes:
  • At least one RS resource in the first RS resource set depends on the TCI state of CORESET
  • at least one RS resource in the second RS resource set depends on the TCI state of CORESET
  • the first node maintains the first counter at the MAC layer, and the first node maintains the second counter at the MAC layer.
  • the MAC entity of the first node maintains the first counter
  • the MAC entity of the first node maintains the second counter
  • the first timer is started or restarted.
  • the value of the first counter is incremented by 1; whenever the MAC entity of the first node receives a beam failure event indication from the physical layer for the second RS resource set, start (start) Or restart (restart) the second timer, and add 1 to the value of the second counter.
  • the first counter and the second counter are two BFI_COUNTERs.
  • At least one RS resource in the first RS resource set depends on the TCI status of CORESET.
  • At least one RS resource in the second RS resource set depends on the TCI status of CORESET.
  • At least one RS resource in the first RS resource set depends on the TCI state of CORESET
  • at least one RS resource in the second RS resource set depends on the TCI state of CORESET
  • the first counter is set to 0; when the second timer expires, the second counter is set to 0.
  • the first timer and the second timer are two beamFailureDetectionTimers.
  • the initial value of the first counter is 0, and the initial value of the second counter is 0.
  • the first threshold is a positive integer
  • the second threshold is a positive integer
  • the first threshold and the first threshold are respectively configured beamFailureInstanceMaxCount-r17.
  • the name of the first threshold includes beamFailureInstanceMaxCount
  • the name of the second threshold includes beamFailureInstanceMaxCount
  • the first threshold and the second threshold are respectively configured by RRC parameters.
  • the first threshold and the second threshold are the same.
  • the first threshold and the second threshold are different.
  • the first threshold and the second threshold are configured by some or all domains in an RRC IE.
  • the RRC message configuring the first threshold and the second threshold includes two beamFailureInstanceMaxCount-r17 fields of the RadioLinkMonitoringConfig IE.
  • the RRC message configuring the first threshold and the second threshold respectively includes part or all of the information in the two failureDetectionSet1-r17 fields of RadioLinkMonitoringConfigIE.
  • the RRC message configuring the first threshold and the second threshold respectively includes part or all of the information in the domain in the RadioLinkMonitoringConfig IE whose name includes failureDetectionSet1, configuring the first threshold and the second threshold.
  • the RRC messages respectively include some or all of the information in the RadioLinkMonitoringConfig IE domain whose name includes failureDetectionSet2.
  • the initial value of the first timer and the initial value of the second timer are the same.
  • the initial value of the first timer and the initial value of the second timer are different.
  • the initial value of the first timer and the initial value of the second timer are respectively configured by RRC parameters.
  • the first timer and the second timer are two beamFailureDetectionTimer-r17 respectively.
  • the names of the first timer and the second timer both include beamFailureDetectionTimer-r17.
  • the initial value of the first timer is a positive integer
  • the initial value of the second timer is a positive integer
  • the initial value of the first timer is a positive real number
  • the initial value of the second timer is a positive real number
  • the unit of the initial value of the first timer and the unit of the initial value of the second timer are both Qout and LR reporting periods of the beam failure detection RS.
  • the initial value of the first timer and the initial value of the first timer are respectively configured by two higher-layer parameters beamFailureDetectionTimer-r17.
  • the initial value of the first timer and the initial value of the second timer are respectively configured by two higher-level parameters whose names include beamFailureDetectionTimer-r17.
  • the initial value of the first timer and the initial value of the second timer are configured by an IE.
  • the name of the IE that configures the initial value of the first timer and the initial value of the second timer includes RadioLinkMonitoring.
  • the beam failure recovery (BFR) for the first RS resource set includes sending one of BFR MAC CE, Truncated BFR MAC CE, Enhanced BFR MAC CE or Truncated Enhanced BFR MAC CE.
  • the beam failure recovery (BFR) for the second RS resource set includes sending BFR One of MAC CE, Truncated BFR MAC CE, Enhanced BFR MAC CE or Truncated Enhanced BFR MAC CE.
  • the beam failure recovery (BFR) for the first RS resource set includes sending a MAC CE whose name includes BFR
  • the beam failure recovery (BFR) for the second RS resource set ( Beam Failure Recovery (BFR) includes sending MAC CE whose name includes BFR.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing device 1200 in the first node device includes a first receiver 1201 or at least the first receiver 1201 of the first transceiver 1202, wherein the first transceiver 1202 is optional .
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1201 includes the ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, and data source in Embodiment 4. At least one of 467 ⁇ .
  • the first transceiver 1202 includes ⁇ antenna 452, transmitter/receiver 454, receiving processor 456, transmitting processor 468, multi-antenna receiving processor 458, multi-antenna transmitting processing in Embodiment 4 At least one of the processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ .
  • the first receiver 1201 receives a first higher layer message set.
  • the first higher layer message set is used to configure a first RS resource pool for the first BWP.
  • the first RS resource pool is used for wireless link quality. Evaluate; receive the first signaling, the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer; in response to receiving the first signaling, evaluate the first BWP according to the second RS resource pool wireless link quality;
  • At least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the first signaling is used to determine a first RS resource, and the first RS resource is associated with the first RS resource pool.
  • At least one RS resource in the second RS resource pool depends on the configuration of the first higher layer message set.
  • the first node device includes:
  • the first transceiver 1202 triggers beam failure recovery for the first serving cell when the value of the target counter is equal to or greater than the target threshold;
  • the first BWP is a BWP of the first serving cell; whenever the radio link quality evaluated according to the second RS resource pool is worse than a reference threshold, the physical layer of the first node A beam failure event indication for the first serving cell is sent to a higher layer; the target counter is used for counting the beam failure event indication for the first serving cell.
  • the behavior of evaluating the wireless link quality of the first BWP according to the second RS resource pool includes: separately evaluating the wireless link quality according to the first RS resource set and the second RS resource set;
  • the second RS resource pool includes the first RS resource set and the second RS resource set; the first RS resource pool includes a third RS resource set and a fourth RS resource set; the reference CORESET pool includes Multiple CORESETs configured to the first BWP, the reference CORESET pool includes a first CORESET sub-pool and a second CORESET sub-pool, the first CORESET sub-pool includes at least one CORESET, and the second CORESET sub-pool Including at least one CORESET; at least one RS resource in the first RS resource set depends on the TCI status of at least one CORESET in the first CORESET sub-pool.
  • each RS resource in the first RS resource set depends on the TCI status of CORESET, and each RS resource in the second RS resource set depends on the configuration of the first higher layer message set.
  • the physical layer of the first node sends to a higher layer a link for the first RS resource set.
  • Beam failure event indication when the radio link quality evaluated according to the second RS resource set is worse than the reference threshold, the physical layer of the first node sends to a higher layer a target for the second RS resource set.
  • the beam failure event indication the first counter is used for counting the beam failure event indication for the first RS resource set, and the second counter is used for counting the beam failure event indication for the second RS resource set.
  • the first node device includes:
  • the first transceiver 1202 sends a first signal
  • the beam failure recovery for the first serving cell is triggered; the beam failure recovery process package for the first serving cell including sending the first signal.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the second node device includes a second transmitter 1301 or at least the second transmitter 1301 of the second transceiver 1302, wherein the second transceiver 1302 is optional. .
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1301 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4. At least one.
  • the second transceiver 1302 includes the ⁇ antenna 420, transmitter/receiver 418, transmit processor 416, receive processor 470, multi-antenna transmit processor 471, multi-antenna receive processor in Embodiment 4. At least one of the processor 472, the controller/processor 475, and the memory 476 ⁇ .
  • the second transmitter 1301 sends a first higher layer message set.
  • the first higher layer message set is used to configure a first RS resource pool for the first BWP.
  • the first RS resource pool is used for wireless link quality. Evaluate; send the first signaling, the protocol layer to which the first signaling belongs is the protocol layer below the RRC layer;
  • the recipient of the first signaling evaluates the first BWP according to the second RS resource pool.
  • Wireless link quality; at least one RS resource in the second RS resource pool depends on the TCI status of CORESET.
  • the first signaling is used to determine a first RS resource, and the first RS resource is associated with the first RS resource pool.
  • At least one RS resource in the second RS resource pool depends on the configuration of the first higher layer message set.
  • the receiver of the first signaling triggers beam failure recovery for the first serving cell when the value of the target counter is equal to or greater than the target threshold; wherein the first BWP is the A BWP of the first serving cell; whenever the radio link quality evaluated according to the second RS resource pool is worse than a reference threshold, the physical layer of the receiver of the first signaling sends a signal to the third A higher layer of the receiver of a signaling sends a beam failure event indication for the first serving cell; the target counter is used for counting the beam failure event indication for the first serving cell.
  • the behavior of the receiver of the first signaling to evaluate the wireless link quality of the first BWP according to the second RS resource pool includes: the receiver of the first signaling according to The first RS resource set and the second RS resource set evaluate wireless link quality respectively;
  • the second RS resource pool includes the first RS resource set and the second RS resource set; the first RS resource pool includes a third RS resource set and a fourth RS resource set; the reference CORESET pool includes Multiple CORESETs configured to the first BWP, the reference CORESET pool includes a first CORESET sub-pool and a second CORESET sub-pool, the first CORESET sub-pool includes at least one CORESET, and the second CORESET sub-pool Including at least one CORESET; at least one RS resource in the first RS resource set depends on the TCI status of at least one CORESET in the first CORESET sub-pool.
  • each RS resource in the first RS resource set depends on the TCI status of CORESET, and each RS resource in the second RS resource set depends on the configuration of the first higher layer message set.
  • the physical layer of the receiver of the first signaling sends a signal to the first signaling.
  • the higher layer of the receiver sends a beam failure event indication for the first RS resource set;
  • the The physical layer of the recipient of the first signaling sends a beam failure event indication for the second RS resource set to a higher layer of the recipient of the first signaling;
  • a first counter is used for the The second counter is used to count the beam failure event indications of the second RS resource set.
  • the second node device includes:
  • the second transceiver 1302 receives the first signal
  • the beam failure recovery for the first serving cell is triggered; the beam failure recovery process for the first serving cell includes the receiver of the first signaling sending the first signal.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;接收第一信令,所述第一信令所属的协议层是RRC层之下的协议层;作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量。所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其是支持蜂窝网的无线通信***中的无线信号的传输方法和装置。
背景技术
未来无线通信***的应用场景越来越多元化,不同的应用场景对***提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
当前,R18版本的5G NR已经开始了研究工作,网络能量节省(network energy saving)是其中一个SI(Study Item,研究工作),其中基站的空间元素(spatial element)(比如:天线元素(antenna element),天线面板(antenna panel),天线端口(antenna port),逻辑(logical)天线端口,发送射频通道(TxRU,Transmit Radio Unit),发收节点(TRxP,Transmission Reception Point)等等)的适应化(adaptation)是能量节省的一个研究方向。
发明内容
发明人通过研究发现,在无线通信***中,如何评估无线链路质量是一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将上下行链路作为一个典型应用场景;本申请也同样适用于面临相似问题的其它场景(比如副链路(Sidelink)、车联网等),也可以取得类似的技术效果。此外,不同场景(包括但不限于多载波的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS37系列、TS38系列中的定义。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;
接收第一信令,所述第一信令所属的协议层是RRC层之下的协议层;
作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;
其中,所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,本申请要解决的问题包括:如何调整评估无线链路质量的RS(Reference Signal,参考信号)资源。
根据本申请的一个方面,其特征在于,所述第一信令被用于确定第一RS资源,所述第一RS资源与所述第一RS资源池关联。
根据本申请的一个方面,其特征在于,所述第二RS资源池中的至少一个RS资源依赖所述第一更高层消息集合的配置。
根据本申请的一个方面,其特征在于,包括:
当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;
其中,所述第一BWP是所述第一服务小区的一个BWP;每当根据所述第二RS资源池评估的所述无 线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
根据本申请的一个方面,其特征在于,所述行为根据第二RS资源池评估所述第一BWP的无线链路质量包括:根据第一RS资源集合和第二RS资源集合分别评估无线链路质量;
其中,所述第二RS资源池包括所述第一RS资源集合和所述第二RS资源集合;所述第一RS资源池包括第三RS资源集合和第四RS资源集合;参考CORESET池包括被配置给所述第一BWP的多个CORESET,所述参考CORESET池包括第一CORESET子池和第二CORESET子池,所述第一CORESET子池包括至少一个CORESET,所述第二CORESET子池包括至少一个CORESET;所述第一RS资源集合中的至少一个RS资源依赖所述第一CORESET子池中的至少一个CORESET的TCI状态。
根据本申请的一个方面,其特征在于,所述第一RS资源集合中的每个RS资源依赖CORESET的TCI状态,所述第二RS资源集合中的每个RS资源依赖所述第一更高层消息集合的配置。
根据本申请的一个方面,其特征在于,每当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一节点的物理层向更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数。
根据本申请的一个方面,其特征在于,包括:
发送第一信号;
其中,针对所述第一服务小区的波束失败恢复被触发;针对所述第一服务小区的波束失败恢复过程包括发送所述第一信号。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;
发送第一信令,所述第一信令所属的协议层是RRC层之下的协议层;
其中,作为所述第一信令的接收者接收所述第一信令的响应,所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
根据本申请的一个方面,所述第一信令被用于确定第一RS资源,所述第一RS资源与所述第一RS资源池关联。
根据本申请的一个方面,所述第二RS资源池中的至少一个RS资源依赖所述第一更高层消息集合的配置。
根据本申请的一个方面,其特征在于,所述第一信令的所述接收者在当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;其中,所述第一BWP是所述第一服务小区的一个BWP;每当根据所述第二RS资源池评估的所述无线链路质量差于参考阈值时,所述第一信令的所述接收者的物理层向所述第一信令的所述接收者的更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
根据本申请的一个方面,其特征在于,所述行为所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量包括:所述第一信令的所述接收者根据第一RS资源集合和第二RS资源集合分别评估无线链路质量;
其中,所述第二RS资源池包括所述第一RS资源集合和所述第二RS资源集合;所述第一RS资源池包括第三RS资源集合和第四RS资源集合;参考CORESET池包括被配置给所述第一BWP的多个CORESET,所述参考CORESET池包括第一CORESET子池和第二CORESET子池,所述第一CORESET子池包括至少一个CORESET,所述第二CORESET子池包括至少一个CORESET;所述第一RS资源集合中的至少一个RS资源依赖所述第一CORESET子池中的至少一个CORESET的TCI状态。
根据本申请的一个方面,其特征在于,所述第一RS资源集合中的每个RS资源依赖CORESET的TCI 状态,所述第二RS资源集合中的每个RS资源依赖所述第一更高层消息集合的配置。
根据本申请的一个方面,其特征在于,每当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一信令的所述接收者的物理层向所述第一信令的所述接收者的更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一信令的所述接收者的物理层向所述第一信令的所述接收者的更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数。
根据本申请的一个方面,其特征在于,包括:
接收第一信号;
其中,针对所述第一服务小区的波束失败恢复被触发;针对所述第一服务小区的波束失败恢复过程包括所述第一信令的所述接收者发送所述第一信号。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;接收第一信令,所述第一信令所属的协议层是RRC层之下的协议层;作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;
其中,所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;发送第一信令,所述第一信令所属的协议层是RRC层之下的协议层;
其中,作为所述第一信令的接收者接收所述第一信令的响应,所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-根据RRC层之下的协议层的信令(比如MAC CE或者物理层信令),更快的调整评估无线链路质量的RS资源,快速适应了环境和场景的变化。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的接收第一更高层消息集合和接收第一信令的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一信令的示意图;
图7示出了根据本申请的一个实施例的第二RS资源池的示意图;
图8示出了根据本申请的一个实施例的第一服务小区的波束失败恢复的示意图;
图9示出了根据本申请的个实施例的第一RS资源集合和第二RS资源集合的示意图;
图10示出了根据本申请的另一个实施例的第一RS资源集合和第二RS资源集合的示意图;
图11示出了根据本申请的一个实施例的第一RS资源集合的波束失败事件指示和第二RS资源集合的波束失败事件指示的示意图;
图12示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的接收第一更高层消息集合和接收第一信令的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一更高层消息集合;在步骤102中接收第一信令;在步骤103中作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;其中,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;所述第一信令所属的协议层是RRC层之下的协议层;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第一信令所属的协议层是MAC层。
作为一个实施例,所述第一信令所属的协议层是MAC层,所述第一信令是MAC CE。
作为一个实施例,所述第一信令所属的协议层是物理层。
作为一个实施例,所述第一信令所属的协议层是物理层,所述第一信令是物理层信令。
作为一个实施例,所述第一信令所属的协议层是物理层,所述第一信令是DCI信令。
作为一个实施例,所述第一信令是小区公共(cell common)的。
作为一个实施例,所述第一信令是小区特有(cell specific)的。
作为一个实施例,所述第一信令是用户设备组公共(UE group common)的。
作为一个实施例,所述第一信令是用户设备组特有(UE group specific)的。
作为一个实施例,所述第一信令是用户设备特有(UE specific)的。
作为一个实施例,所述第一信令被用于更新或指示空间元素(spatial element)。
作为一个实施例,所述第一信令被用于更新或指示空间元素(spatial element)的数量。
作为一个实施例,所述第一信令被用于激活或去激活一个TCI状态。
作为一个实施例,所述第一信令被用于激活或去激活空间元素(spatial element)。
作为一个实施例,所述第一信令被用于激活或去激活空间元素(spatial element)的数量。
作为一个实施例,所述空间要素包括TCI状态。
作为一个实施例,所述空间要素包括TCI状态,天线元素(antenna element),天线面板(antenna panel),天线端口(antenna port),逻辑(logical)天线端口,发送射频通道(TxRU,Transmit Radio Unit),发收节点(TRxP,Transmission Reception Point)中的至少之一。
作为一个实施例,所述第一信令被用于指示第一值。
作为一个实施例,所述第一值与空间元素有关。
作为一个实施例,所述第一值被用于指示空间元素的调整。
作为一个实施例,所述第一值被用于确定调整后的空间元素。
作为一个实施例,所述第一值被用于指示调整后的空间元素。
作为一个实施例,所述第一值指示一个TCI状态。
作为一个实施例,所述第一值指示至少一个TCI状态。
作为一个实施例,所述第一值是一个TCI状态的索引。
作为一个实施例,所述第一值是一个TCI状态组的索引。
作为一个实施例,所述第一值是非负整数。
作为一个实施例,所述第一值是整数。
作为一个实施例,所述第一值是实数。
作为一个实施例,所述第一值是一个索引组。
作为一个实施例,所述第一值是一个索引。
作为一个实施例,所述第一值是一个标识。
作为一个实施例,所述第一值是一个比特序列。
作为一个实施例,所述第一RS资源池包括至少一个RS资源,所述第一RS资源池中的所述至少一个RS资源包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源或者SS/PBCH(Synchronization Signal/Physical Broadcast CHannel)块(Block)资源中的至少之一。
作为一个实施例,所述第一RS资源池包括至少一个RS资源,所述第一RS资源池中的任一RS资源是CSI-RS资源。
作为一个实施例,所述第一RS资源池包括至少一个RS资源,所述第一RS资源池中的任一RS资源是周期性CSI-RS资源。
作为一个实施例,所述第一RS资源池包括的RS资源的数量最大为2,所述第一RS资源池包括的RS资源的数量最大为2。
作为一个实施例,所述第二RS资源池包括所述第一RS资源集合和所述第二RS资源集合;所述第一RS资源池包括第三RS资源集合和第四RS资源集合;所述第一RS资源集合、所述第二RS资源集合、第三RS资源集合和第四RS资源集合中的每个集合所包括的RS资源的数量最大为K。
作为一个实施例,一个RS资源的所述索引被用于标识所述一个RS资源。
作为一个实施例,一个RS资源的所述索引是所述一个RS资源的配置索引。
作为一个实施例,一个RS资源的所述索引包括所述一个RS资源的配置索引。
作为一个实施例,一个周期性CSI-RS资源的索引是所述一个周期性CSI-RS资源的配置索引。
作为一个实施例,一个周期性CSI-RS资源的索引包括所述一个周期性CSI-RS资源的配置索引。
作为一个实施例,一个CSI-RS资源的索引是NZP-CSI-RS-ResourceId。
作为一个实施例,一个CSI-RS资源的索引是NZP-CSI-RS-ResourceId。
作为一个实施例,一个CSI-RS资源的索引是csi-RS-Index。
作为一个实施例,一个SS/PBCH块资源的索引是SSB-Index。
作为一个实施例,一个SS/PBCH块资源的索引是ssb-Index。
作为一个实施例,所述第二RS资源池和所述第一RS资源池不同。
作为一个实施例,所述第二RS资源池中的至少一个RS资源不属于所述第一RS资源池。
作为一个实施例,所述第二RS资源池中的至少一个RS资源不是被所述第一更高层消息集合配置或激活的。
作为一个实施例,所述第二RS资源池中的任一RS资源不是被所述第一更高层消息集合配置或激活的。
作为一个实施例,所述第二RS资源池中的至少一个RS资源是被隐式的确定的。
作为一个实施例,所述第二RS资源池中的任一RS资源是被隐式的确定的。
作为一个实施例,所述第二RS资源池中的至少一个RS资源是根据所述第一节点监测PDCCH使用的至少一个CORESET的TCI状态所指示的RS资源集合中的至少一个RS资源索引确定的。
作为一个实施例,所述第二RS资源池中的每个RS资源是根据所述第一节点监测PDCCH使用的至少一个CORESET的TCI状态所指示的RS资源集合中的至少一个RS资源索引确定的。
作为一个实施例,所述第二RS资源池包括至少一个RS资源,所述第二RS资源池中的所述至少一个RS资源包括CSI-RS资源或者SS/PBCH块资源中的至少之一。
作为一个实施例,所述第二RS资源池包括至少一个RS资源,所述第二RS资源池中的任一RS资源是CSI-RS资源。
作为一个实施例,所述第二RS资源池包括至少一个RS资源,所述第二RS资源池中的任一RS资源是周期性CSI-RS资源。
作为一个实施例,所述第一RS资源池包括至少一个RS资源,所述第一RS资源池中的任一RS资源是周期性CSI-RS资源;所述第二RS资源池包括至少一个RS资源,所述第二RS资源池中的任一RS资源是周期性CSI-RS资源。
作为一个实施例,所述第二RS资源池包括至少一个周期性CSI-RS资源,所述第二RS资源池包括的任一周期性CSI-RS资源的索引与所述第一BWP中所述第一节点监测PDCCH使用的一个CORESET的 TCI状态所指示的RS资源集合中的一个RS资源索引相同。
作为一个实施例,所述第二RS资源池中的一个RS资源属于所述第一RS资源池。
作为一个实施例,所述第二RS资源池中的至少一个RS资源属于所述第一RS资源池。
作为一个实施例,所述第二RS资源池中的每个RS资源都依赖CORESET的TCI状态。
作为一个实施例,所述第二RS资源池中的每个RS资源都依赖CORESET的TCI状态。
作为一个实施例,所述第一信令被用于确定所述第二RS资源池。
作为一个实施例,所述句子“所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态”的意思包括:所述第二RS资源池中的仅一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述句子“所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态”的意思包括:所述第二RS资源池中的每个RS资源都依赖CORESET的TCI状态。
作为一个实施例,所述句子“所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态”的意思包括:所述第二RS资源池中的至少一个RS资源的索引与所述第一BWP中所述第一节点为了监测PDCCH使用的CORESET的TCI状态所指示的RS资源集合中的RS资源索引相同。
作为一个实施例,所述句子“所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态”的意思包括:所述第二RS资源池中的每个RS资源的索引与所述第一BWP中所述第一节点为了监测PDCCH使用的一个CORESET的TCI状态所指示的RS资源集合中的一个RS资源索引相同。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G***的网络架构200。LTE,LTE-A及未来5G***的网络架构200称为EPS(Evolved Packet System,演进分组***)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组***)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特 网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一更高层消息集合生成于所述RRC子层306。
作为一个实施例,所述第一更高层消息集合生成于所述RRC子层306和所述MAC子层302。
作为一个实施例,所述目标计数器生成于所述MAC子层302。
作为一个实施例,所述第一计数器和所述第二计数器生成于所述MAC子层302。
作为一个实施例,所述第一更高层消息集合生成于所述MAC子层352。
作为一个实施例,所述目标计数器生成于所述MAC子层352。
作为一个实施例,所述第一计数器和所述第二计数器生成于所述MAC子层352。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接 收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存 储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;接收第一信令,所述第一信令所属的协议层是RRC层之下的协议层;作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;其中,所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;接收第一信令,所述第一信令所属的协议层是RRC层之下的协议层;作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;其中,所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;发送第一信令,所述第一信令所属的协议层是RRC层之下的协议层;其中,作为所述第一信令的接收者接收所述第一信令的响应,所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;发送第一信令,所述第一信令所属的协议层是RRC层之下的协议层;其中,作为所述第一信令的接收者接收所述第一信令的响应,所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一更高层消息集合;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一更高层消息集合。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第一节点U01和第二节点N02分别是通过空中接口传输的两个通信节点。
对于第一节点U01,在步骤S5101中接收第一更高层消息集合;在步骤S5102中接收第一信令;在步骤S5103中作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;
对于第二节点N02,在步骤S5201中发送第一更高层消息集合;在步骤S5202中发送第一信令。
在实施例5中,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;所述第一信令所属的协议层是RRC层之下的协议层;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第一更高层消息集合不被用于配置CORESET的TCI状态。
作为一个实施例,所述第一更高层消息集合不包括RRC IE(Information Element,信息元素)ControlResourceSet。
作为一个实施例,所述第一更高层消息集合不包括名称包括tci-StatesPDCCH的消息。
作为一个实施例,所述第一更高层消息集合不包括名称包括tci-StatesPDCCH的域。
作为一个实施例,所述第一RS资源池和所述第二RS资源池中的仅所述第二RS资源池包括至少一个RS资源依赖CORESET(COntrol REsource SET,控制资源集合)的TCI(Transmission Configuration Indication,传输配置指示)状态(state)。
典型的,所述第一更高层消息集合包括至少一个更高层消息。
典型的,所述第一更高层消息集合包括RRC消息。
典型的,所述第一更高层消息集合包括RRC消息或者MAC CE消息中的至少RRC消息。
作为一个实施例,所述第一更高层消息集合包括RRC消息和MAC CE消息。
典型的,所述第一更高层消息集合包括一个或多个RRC IE中的部分或全部域。
典型的,所述第一更高层消息集合包括一个RRC IE中的部分或全部域。
作为一个实施例,所述第一更高层消息集合包括RRC IE RadioLinkMonitoringConfig中的部分域。
作为一个实施例,所述第一更高层消息集合包括RRC IE中的名称包括failureDetectionResourcesToAddModList的域。
作为一个实施例,所述第一更高层消息集合包括RRC IE RadioLinkMonitoringConfig中的failureDetectionResourcesToAddModList域。
作为一个实施例,所述第一更高层消息集合包括RRC IE RadioLinkMonitoringConfig中的failureDetectionSet1域和failureDetectionSet2域。
作为一个实施例,所述第一更高层消息集合包括RRC IE中的名称包括failureDetectionSet1的域和名称包括failureDetectionSet2的域。
作为一个实施例,所述第一更高层消息集合包括RRC IE中的至少一个名称包括failureDetectionSet的域。
作为一个实施例,所述第一更高层消息集合中的所述RRC消息的名称包括failureDetectionResources。
作为一个实施例,所述第一更高层消息集合中的所述RRC消息的名称包括failureDetectionSet。
作为一个实施例,所述第一更高层消息集合中的所述RRC消息包括RRC IE RadioLinkMonitoringConfig中的failureDetectionSet1域和failureDetectionSet2域,所述第一更高层消息集合中的所述MAC CE消息包括BFD-RS IndicationMAC CE。
作为一个实施例,所述第一更高层消息集合中的所述MAC CE消息是BFD-RS Indication MAC CE。
作为一个实施例,所述第一更高层消息集合中的所述MAC CE消息的名称包括BFD-RS Indication MAC CE。
作为一个实施例,所述第一更高层消息集合中的所述MAC CE消息的名称包括BFD。
作为一个实施例,所述第一更高层消息集合包括RRC IE RadioLinkMonitoringConfig中的failureDetectionSet1域和failureDetectionSet2域,以及BFD-RS Indication MAC CE。
典型的,当RRC IE RadioLinkMonitoringConfig中的failureDetectionSet1域或者failureDetectionSet2域指示的RS资源数量大于2时,BFD-RS Indication MAC CE从failureDetectionSet1或者failureDetectionSet2中激活一个或二个RS资源。
作为一个实施例,RRC IE RadioLinkMonitoringConfig,failureDetectionResourcesToAddModList域,failureDetectionSet1域和failureDetectionSet2域的具体定义参见3GPP TS38.331的第6.3.2章节。
作为一个实施例,BFD-RS Indication MAC CE的具体定义参见3GPP TS38.321的第5.18.25章节。
典型的,所述第一RS资源池中的每个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,所述第一更高层消息集合包括所述第一RS资源池所包括的每个RS资源的索引。
作为一个实施例,所述第一更高层消息集合包括所述第一RS资源池所包括的每个RS资源的索引。
作为一个实施例,所述第一更高层消息集合包括RRC消息和MAC CE消息;所述第一更高层消息集合中的RRC消息被用于为第一BWP配置目标RS资源池,所述第一更高层消息集合中的MAC CE消息被用于从所述目标RS资源池中激活所述第一RS资源池。
作为一个实施例,所述第一更高层消息集合包括RRC消息和MAC CE消息;所述第一RS资源池属于目标RS资源池,所述第一更高层消息集合中的所述RRC消息包括所述目标RS资源池所包括的每个RS资源的索引,所述第一更高层消息集合中的所述MAC CE消息从所述目标RS资源池中激活所述第一RS资源池。
作为一个实施例,所述第一更高层消息集合包括RRC消息和MAC CE消息;所述第一RS资源池属于目标RS资源池,所述第一更高层消息集合中的所述RRC消息包括所述目标RS资源池所包括的每个RS资源的索引,所述第一更高层消息集合中的所述MAC CE消息从所述目标RS资源池中激活所述第一RS资源池。
作为一个实施例,参考CORESET池包括被配置给所述第一BWP的至少一个CORESET。
作为一个实施例,所述第一接收机接收参考RRC消息,所述参考RRC消息被用于配置所述参考CORESET池;所述参考RRC消息包括至少一个RRC IE中的部分或全部域。
作为上述实施例的一个子实施例,所述第二发射机发送参考RRC消息,所述参考RRC消息被用于配置所述参考CORESET池;所述参考RRC消息包括至少一个RRC IE中的部分或全部域。
典型的,所述参考RRC消息包括RRC IE中的controlResourceSetToAddModList域。
典型的,所述参考RRC消息包括RRC IE中的名称包括controlResourceSetToAddModList的域。
作为一个实施例,作为接收第一信令的响应,确定所述第二RS资源池。
作为一个实施例,所述第一节点不被配置RRC IE RadioLinkMonitoringConfig中的failureDetectionResourcesToAddModList域。
作为一个实施例,所述第一节点不被配置RRC IE RadioLinkMonitoringConfig中的failureDetectionSet1域和failureDetectionSet2域。
作为一个实施例,所述第一更高层消息集合被用于配置所述第一BWP的至少一个CORESET的TCI状态。
作为一个实施例,所述第一更高层消息集合包括RRC IE中的controlResourceSetToAddModList域。
作为一个实施例,所述第一更高层消息集合包括至少一个RRC IE(Information Element,信息元素)ControlResourceSet中的部分或全部域。
作为一个实施例,所述第一更高层消息集合包括至少一个RRC IE ControlResourceSet。
作为一个实施例,所述第一更高层消息集合包括至少一个RRC IE ControlResourceSet中的tci-StatesPDCCH的域。
作为一个实施例,所述第一更高层消息集合包括至少一个RRC IE中的名称包括tci-StatesPDCCH的域。
作为一个实施例,所述第一更高层消息集合被用于配置所述参考CORESET池。
作为一个实施例,所述第一RS资源池和所述第二RS资源池中的任一RS资源依赖CORESET的TCI状态。
作为一个实施例,参考CORESET池包括被配置给所述第一BWP的至少一个CORESET,所述第一RS资源池中的任一RS资源依赖所述参考CORESET池中的一个CORESET的TCI状态;所述第二RS资源池中的任一RS资源依赖所述参考CORESET池中的一个CORESET的TCI状态。
作为一个实施例,给定RS资源是所述第一RS资源池包括的任一RS资源的索引,所述给定RS资源与给定TCI状态所指示的RS资源集合中的一个RS资源索引相同,所述给定TCI状态是所述第一BWP中所述第一节点监测PDCCH使用的一个CORESET的TCI状态。
作为一个实施例,给定RS资源是所述第二RS资源池包括的任一RS资源的索引,所述给定RS资源与给定TCI状态所指示的RS资源集合中的一个RS资源索引相同,所述给定TCI状态是所述第一BWP 中所述第一节点监测PDCCH使用的一个CORESET的TCI状态。
作为一个实施例,所述第一RS资源池中的任一RS资源依赖第一CORESET组中的一个CORESET的TCI状态,第一CORESET组中的任一CORESET的TCI状态被所述第一RS资源池中的一个RS资源所依赖;所述第二RS资源池中的任一RS资源依赖第二CORESET组中的一个CORESET的TCI状态,第二CORESET组中的任一CORESET的TCI状态被所述第二RS资源池中的一个RS资源所依赖;所述第一CORESET组包括所述参考CORESET池中的至少一个CORESET,所述第二CORESET组包括所述参考CORESET池中的至少一个CORESET。
作为一个实施例,所述第一信令被用于确定所述第一CORESET组和所述第二CORESET组是否相同。
作为一个实施例,所述参考CORESET池按照所对应的搜索空间的PDCCH监测周期的升序排列,第一CORESET组包括所述参考CORESET池中的第1,…,K个CORESET,K是正整数。
作为一个实施例,所述参考CORESET池按照所对应的搜索空间的PDCCH监测周期的升序排列,所述第一信令被用于从所述参考CORESET池中确定所述第二CORESET组。
作为上述实施例的一个子实施例,所述第一信令被用于确定第一RS资源,目标CORESET池包括在所述参考CORESET池中的所述第一RS资源所依赖的CORESET(s)之外的至少一个CORESET,所述第二CORESET组包括所述目标CORESET池中的第1,…,K个CORESET,K是正整数。
作为上述实施例的一个子实施例,所述第一信令被用于确定第一RS资源组,目标CORESET池包括所述参考CORESET池中的所述第一RS资源组中的任一RS资源所依赖的CORESET(s)之外的至少一个CORESET,所述第二CORESET组包括所述目标CORESET池中的第1,…,K个CORESET,K是正整数。
作为一个实施例,所述K是由capabilityparametername指示的。
作为一个实施例,所述K是所述第一节点的能力参数。
作为一个实施例,所述K是根据所述第一节点的能力确定的。
作为一个实施例,所述K是所述第一节点上报给所述第一更高层消息集合的发送者的。
作为一个实施例,所述K是由所述第一更高层消息集合的发送者配置的。
作为一个实施例,所述K是由基站配置的。
作为一个实施例,所述K不大于2。
作为一个实施例,所述K大于2。
作为一个实施例,所述K等于1。
作为一个实施例,所述第三RS资源集合中的任一RS资源依赖所述第一CORESET子池中的一个CORESET的TCI状态,所述第四RS资源集合中的任一RS资源依赖所述第二CORESET子池中的一个CORESET的TCI状态;所述第一RS资源集合中的任一RS资源依赖所述第一CORESET子池中的一个CORESET的TCI状态,所述第二RS资源集合中的任一RS资源依赖所述第二CORESET子池中的一个CORESET的TCI状态。
作为一个实施例,所述第三RS资源集合中的任一RS资源依赖第三CORESET组中的一个CORESET的TCI状态,所述第三CORESET组中的任一CORESET的TCI状态被所述第三RS资源集合中的一个RS资源所依赖;所述第三CORESET组属于所述第一CORESET池;所述第四RS资源集合中的任一RS资源依赖第四CORESET组中的一个CORESET的TCI状态,所述第四CORESET组中的任一CORESET的TCI状态被所述第四RS资源集合中的一个RS资源所依赖;所述第四CORESET组属于所述第二CORESET池;所述第一RS资源集合中的任一RS资源依赖第五CORESET组中的一个CORESET的TCI状态,所述第五CORESET组中的任一CORESET的TCI状态被所述第一RS资源集合中的一个RS资源所依赖;所述第五CORESET组属于所述第一CORESET池;所述第二RS资源集合中的任一RS资源依赖第六CORESET组中的一个CORESET的TCI状态,所述第六CORESET组中的任一CORESET的TCI状态被所述第二RS资源集合中的一个RS资源所依赖;所述第六CORESET组属于所述第二CORESET池。
作为一个实施例,所述第一信令被用于确定所述第三CORESET组和所述第五CORESET组是否相同,所述第一信令被用于确定所述第四CORESET组和所述第六CORESET组是否相同。
作为一个实施例,所述第一CORESET子池按照所对应的搜索空间的PDCCH监测周期的升序(ascending order)排列,第三CORESET组包括所述第一CORESET池中的第1,…,K个CORESET,K 是正整数。
作为一个实施例,所述第二CORESET子池按照所对应的搜索空间的PDCCH监测周期的升序排列,第四CORESET组包括所述第二CORESET子池中的第1,…,K个CORESET,K是正整数。
作为一个实施例,所述第一CORESET子池按照所对应的搜索空间的PDCCH监测周期由小到大的顺序排列,所述第一信令被用于从所述第一CORESET子池中确定所述第五CORESET组。
作为上述实施例的一个子实施例,所述第一信令被用于确定第一RS资源,第一目标CORESET子池包括在所述第一CORESET子池中的所述第一RS资源所依赖CORESET(s)之外的至少一个CORESET,所述第五CORESET组包括所述第一目标CORESET子池中的前K个CORESET,K是正整数。
作为上述实施例的一个子实施例,所述第一信令被用于确定第一RS资源组,第一目标CORESET池包括在所述第一CORESET子池中的所述第一RS资源组中的任一RS资源所依赖的CORESET(s)之外的至少一个CORESET,所述第五CORESET组包括所述第一目标CORESET池中的前K个CORESET,K是正整数。
作为一个实施例,所述第二CORESET子池按照所对应的搜索空间的PDCCH监测周期由小到大的顺序排列,所述第一信令被用于从所述第二CORESET子池中确定所述第六CORESET组。
作为上述实施例的一个子实施例,所述第一信令被用于确定第一RS资源,第二目标CORESET子池包括在所述第二CORESET子池中的所述第一RS资源所依赖的CORESET(s)之外的至少一个CORESET,所述第六CORESET组包括所述第二目标CORESET子池中的前K个CORESET,K是正整数。
作为上述实施例的一个子实施例,所述第一信令被用于确定第一RS资源组,第二目标CORESET池包括在所述第二CORESET子池中的被所述第一RS资源组中的任一RS资源所依赖的CORESET(s)之外的至少一个CORESET,所述第六CORESET组包括所述第二目标CORESET池中的前K个CORESET,K是正整数。
作为一个实施例,所述第一RS资源池被所述第一更高层消息集合配置用于无线链路质量评估(assess)。
作为一个实施例,无线链路质量评估被用于波束失败监测。
作为一个实施例,无线链路质量评估包括无线链路质量是否差于参考阈值的判定。
作为一个实施例,所述无线链路质量是RSRP。
作为一个实施例,所述无线链路质量是L1-RSRP。
作为一个实施例,所述无线链路质量是SINR。
作为一个实施例,所述无线链路质量是L1-SINR。
作为一个实施例,所述无线链路质量是BLER。
作为一个实施例,所述无线链路质量是假设的(hypothetical)BLER。
作为一个实施例,根据第一RS资源池和第二RS资源池中的仅所述第二RS资源池评估所述第一BWP的无线链路质量。
作为一个实施例,“根据给定RS资源池评估无线链路质量”的意思包括:根据给定RS资源池中的所有RS资源评估无线链路质量。
作为一个实施例,所述无线链路质量是RSRP,L1-RSRP,SINR或L1-SINR中之一,“根据给定RS资源池评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源池中的所有RS资源的测量得到的RSRP,L1-RSRP,SINR或L1-SINR中的最大值。
作为一个实施例,所述无线链路质量是BLER,“根据给定RS资源池评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源池中的所有RS资源测量得到的BLER的最小值。
作为一个实施例,所述无线链路质量是假设的BLER,“根据给定RS资源池评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源池中的所有RS资源测量得到的假设的BLER的最小值。
作为一个实施例,所述无线链路质量是RSRP,L1-RSRP,SINR或L1-SINR中之一,“根据给定RS资源池评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源池中的所有RS资源的测量得到的RSRP,L1-RSRP,SINR或L1-SINR中的平均值。
作为一个实施例,所述无线链路质量是BLER,“根据给定RS资源池评估无线链路质量”的意思包括: 所述无线链路质量是基于所述给定RS资源池中的所有RS资源测量得到的BLER的平均值。
作为一个实施例,所述无线链路质量是假设的BLER,“根据给定RS资源池评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源池中的所有RS资源测量得到的假设的BLER的平均值。
作为一个实施例,所述给定RS资源池是所述第二RS资源池。
作为一个实施例,所述给定RS资源池是所述第一RS资源集合。
作为一个实施例,所述给定RS资源池是所述第二RS资源集合。
作为一个实施例,给定CORESET是所述第一BWP中的一个CORESET;所述句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源不是被所述第一更高层消息集合配置或激活的。
作为一个实施例,给定CORESET是所述第一BWP中的一个CORESET;所述句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源不是被所述第一更高层消息集合配置或激活的;所述给定RS资源与所述第一RS资源池中的一个RS资源相同,或者所述给定RS资源不同于所述第一RS资源池中的任一RS资源相同。
作为一个实施例,给定CORESET是所述第一BWP中的一个CORESET;所述句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源是根据所述给定CORESET的TCI状态确定的。
作为一个实施例,给定CORESET是所述第一BWP中的一个CORESET;所述句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源是根据所述第一节点监测PDCCH使用的所述给定CORESET的TCI状态确定的。
作为一个实施例,给定CORESET是所述第一BWP中的一个CORESET;所述句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源不是被所述第一更高层消息集合配置或激活的;所述给定RS资源的索引与所述给定CORESET的TCI状态所指示的一个RS资源的索引相同。
作为一个实施例,给定CORESET是所述第一BWP中的一个CORESET;所述句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源的索引与所述给定CORESET的TCI状态所指示的一个RS资源的索引相同。
作为一个实施例,给定CORESET是所述第一BWP中的一个CORESET;所述句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:给定TCI状态是所述第一BWP中所述第一节点监测PDCCH使用的所述给定CORESET的TCI状态,所述给定RS资源的索引与所述给定TCI状态所指示的RS资源集合中的一个RS资源索引相同。
作为一个实施例,给定CORESET是所述第一BWP中的一个CORESET;所述句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源是周期性CSI-RS资源,给定TCI状态是所述第一BWP中所述第一节点监测PDCCH使用的所述给定CORESET的TCI状态,所述给定RS资源的索引与所述给定TCI状态所指示的RS资源集合中的一个RS资源索引相同。
作为一个实施例,给定RS资源池是所述第一RS资源池,或者,给定RS资源池是所述第三RS资源集合;所述句子“所述第一RS资源与所述给定RS资源池关联”的意思包括:所述第一RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,给定RS资源池是所述第一RS资源池,或者,给定RS资源池是所述第三RS资源集合;所述句子“所述第一RS资源与所述给定RS资源池关联”的意思包括:所述第一RS资源属于所述给定RS资源池。
作为一个实施例,给定RS资源池是所述第一RS资源池,或者,给定RS资源池是所述第三RS资源集合;所述句子“所述第一RS资源与所述给定RS资源池关联”的意思包括:所述第一RS资源与所述给定RS资源池中的一个RS资源相关联。
作为一个实施例,给定RS资源池是所述第一RS资源池,或者,给定RS资源池是所述第三RS资源集合;所述句子“所述第一RS资源与所述给定RS资源池关联”的意思包括:所述第一RS资源与所述给定RS资源池中的一个RS资源是准共址的。
作为一个实施例,给定RS资源池是所述第一RS资源池,或者,给定RS资源池是所述第三RS资源集合;所述句子“所述第一RS资源与所述给定RS资源池关联”的意思包括:所述第一RS资源与所述给定RS资源池中的一个RS资源具有相同的准共址(Quasi Co-Location,QCL)参数。
作为一个实施例,给定RS资源池是所述第一RS资源池,或者,给定RS资源池是所述第三RS资源集合;所述句子“所述第一RS资源与所述给定RS资源池关联”的意思包括:所述第一RS资源与所述给定RS资源池中的一个RS资源具有相同的准共址关系。
作为一个实施例,给定RS资源池是所述第一RS资源池,或者,给定RS资源池是所述第三RS资源集合;所述句子“所述第一RS资源与所述给定RS资源池关联”的意思包括:所述第一RS资源与所述给定RS资源池中的一个RS资源具有相同的准共址假设。
作为一个实施例,一个TCI状态指示至少一个RS资源及其中每个RS资源所对应的准共址参数的类型。
作为一个实施例,所述准共址参数的类型包括TypeA,TypeB,TypeC和TypeD。
作为一个实施例,类型为TypeA的准共址参数包括多普勒位移(Doppler shift),多普勒扩展(Doppler spread),平均延时(average delay),延时扩展(delay spread)。
作为一个实施例,类型为TypeB的准共址参数包括多普勒位移(Doppler shift),多普勒扩展(Doppler spread)。
作为一个实施例,类型为TypeC的准共址参数包括多普勒位移(Doppler shift),平均延时(average delay)。
作为一个实施例,类型为TypeD的准共址参数包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述TypeA,所述TypeB,所述TypeC和所述TypeD的具体定义参见3GPP TS38.214的第5.1.5章节。
作为一个实施例,所述准共址参数包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay),或空间接收参数(Spatial Rx parameter)中的一种或者多种。
作为一个实施例,所述准共址参数包括多普勒位移(Doppler shift),多普勒扩展(Doppler spread)。
作为一个实施例,所述准共址参数包括多普勒位移(Doppler shift),平均延时(average delay)。
作为一个实施例,所述准共址参数包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述准共址参数包括空间发送参数或空间接收参数中的至少之一。
作为一个实施例,所述准共址参数包括空域接收滤波器(Spatial Domain Receive Filter)。
作为一个实施例,所述准共址参数包括空域滤波器(Spatial Domain Filter)。
作为一个实施例,所述准共址参数包括空域发送滤波器(spatial domain transmit filter)或空域接收滤波器中(spatial domain receive filter)的至少之一。
作为一个实施例,句子“两个RS资源是准共址”的意思包括:所述两个RS资源的准共址参数相同;句子“两个RS资源不是准共址”的意思包括:所述两个RS资源的准共址参数不相同。
作为一个实施例,句子“两个RS资源是准共址”的意思包括:所述第一节点设备假设相同的准共址参数被用于接收所述两个RS资源;句子“两个RS资源不是准共址”的意思包括:所述第一节点设备不假设相同的准共址参数被用于接收所述两个RS资源。
作为一个实施例,句子“两个RS资源是准共址”的意思包括:所述第一节点设备假设相同的准共址参数被用于发送或接收所述两个RS资源;句子“两个RS资源不是准共址”的意思包括:所述第一节点设备不假设相同的准共址参数被用于发送或接收所述两个RS资源。
作为一个实施例,句子“两个RS资源是准共址”的意思包括:所述两个RS资源具有相同的准共址特性;句子“两个RS资源是准共址”的意思包括:所述两个RS资源具有不同的准共址特性。
作为一个实施例,句子“两个RS资源是准共址”的意思包括:所述两个RS资源具有相同的空间接收参数(Spatial Rx parameter);句子“两个RS资源不是准共址”的意思包括:所述两个RS资源具有不同的空间接收参数。
作为一个实施例,句子“两个RS资源是准共址”的意思包括:所述两个RS资源具有相同的准共址 关系;句子“两个RS资源是准共址”的意思包括:所述两个RS资源具有不同的准共址关系。
作为一个实施例,句子“两个RS资源是准共址”的意思包括:所述两个RS资源具有相同的准共址假设;句子“两个RS资源是准共址”的意思包括:所述两个RS资源具有不同的准共址假设。
实施例6
实施例6示例了根据本申请的一个实施例的第一信令的示意图;如附图6所示。
在实施例6中,所述第一信令被用于确定第一RS资源,所述第一RS资源与所述第一RS资源池关联。
作为一个实施例,所述第一信令被用于指示所述第一RS资源。
作为一个实施例,所述第一RS资源被去激活(deactivated)。
作为一个实施例,所述第一信令被用于指示所述第一节点不对测量所述第一RS资源进行测量。
作为一个实施例,作为接收所述第一信令的响应,所述第一节点不对所述第一RS资源进行测量。
作为一个实施例,所述第一信令被用于指示第一RS资源组,所述第一RS资源是所述第一RS资源组中的一个RS资源。
作为一个实施例,所述第一信令被用于指示第一值,所述第一值被用于指示所述第一RS资源。
作为一个实施例,所述第一信令被用于指示第一值,所述第一值被用于指示第一RS资源组,所述第一RS资源是所述第一RS资源组中的一个RS资源。
作为一个实施例,所述第一信令被用于指示第一值,所述第一值被用于确定所述第一RS资源。
作为一个实施例,所述第一信令被用于指示第一值,所述第一值被用于确定第一RS资源组,所述第一RS资源是所述第一RS资源组中的一个RS资源。
作为一个实施例,所述句子“所述第一值被用于确定所述第一RS资源”的意思包括:所述第一值指示所述第一RS资源的索引。
作为一个实施例,所述句子“所述第一值被用于确定所述第一RS资源”的意思包括:所述第一值和所述第一RS资源具有对应关系。
作为一个实施例,所述句子“所述第一值被用于确定所述第一RS资源”的意思包括:所述第一值和所述第一RS资源有关。
作为一个实施例,所述句子“所述第一值被用于确定所述第一RS资源组”的意思包括:所述第一值指示所述第一RS资源组的索引。
作为一个实施例,所述句子“所述第一值被用于确定所述第一RS资源组”的意思包括:所述第一值指示所述第一RS资源组包括的每个RS资源的索引。
作为一个实施例,所述句子“所述第一值被用于确定所述第一RS资源组”的意思包括:所述第一值和所述第一RS资源组具有对应关系。
作为一个实施例,所述句子“所述第一值被用于确定所述第一RS资源组”的意思包括:所述第一值和所述第一RS资源组有关。
作为一个实施例,所述第一信令是DCI,所述第一信令中的一个域被用于确定第一RS资源。
作为一个实施例,所述第一信令是DCI,所述第一信令中的多个域共同被用于确定第一RS资源。
作为一个实施例,“一个RS资源被去激活”的意思包括:所述第一节点不对测量所述一个RS资源进行测量。
作为一个实施例,“一个RS资源被去激活”的意思包括:所述第一节点释放所述一个RS资源。
作为一个实施例,“一个RS资源被去激活”的意思包括:所述第一节点认为所述一个RS资源不存在。
作为一个实施例,“一个RS资源被激活”的意思包括:所述第一节点对测量所述一个RS资源进行测量。
作为一个实施例,“一个RS资源被激活”的意思包括:所述第一节点认为所述一个RS资源存在。
实施例7
实施例7示例了根据本申请的一个实施例的第二RS资源池的示意图;如附图7所示。
在实施例7中,所述第二RS资源池中的至少一个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,所述第二RS资源池中的仅一个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,所述第二RS资源池中的部分RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,所述第二RS资源池中的至少一个RS资源不是被所述第一更高层消息集合配置或激活的。
作为一个实施例,给定RS资源是所述第二RS资源池中的一个RS资源,句子“所述给定RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述给定RS资源的索引是被所述第一更高层消息集合配置或激活的。
作为一个实施例,给定RS资源是所述第二RS资源池中的一个RS资源,句子“所述给定RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述给定RS资源的索引不是被所述第一更高层消息集合配置或激活的,所述给定RS资源的索引与所述第一更高层消息集合配置或激活的一个索引相同。
作为一个实施例,给定RS资源是所述第二RS资源池中的一个RS资源,句子“所述给定RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述给定RS资源的索引是根据所述第一节点监测PDCCH使用的至少一个CORESET的TCI状态所指示的RS资源集合中的至少一个RS资源索引确定的,所述给定RS资源的索引与所述第一更高层消息集合配置或激活的一个索引相同。
作为一个实施例,给定RS资源是所述第二RS资源池中的一个RS资源,句子“所述给定RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述给定RS资源的索引与所述第一更高层消息集合配置或激活的一个索引相同。
作为一个实施例,给定RS资源是所述第二RS资源池中的一个RS资源,句子“所述给定RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述给定RS资源属于所述第一RS资源池。
作为一个实施例,给定RS资源是所述第二RS资源池中的一个RS资源,句子“所述给定RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述给定RS资源的索引与所述第一RS资源池中的一个RS资源的索引相同。
作为一个实施例,给定RS资源是所述第二RS资源池中的一个RS资源,句子“所述给定RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述给定RS资源与所述第一RS资源池中的一个RS资源是准共址。
实施例8
实施例8示例了根据本申请的一个实施例的第一服务小区的波束失败恢复的示意图;如附图8所示。
在实施例8中,当目标计数器的值等于或大于目标阈值时,本申请中的所述第一节点触发针对第一服务小区的波束失败恢复;其中,所述第一BWP是所述第一服务小区的一个BWP;每当根据所述第二RS资源池评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
作为一个实施例,所述无线链路质量是RSRP,L1-RSRP,SINR或L1-SINR中之一;短语“根据所述第二RS资源池评估的所述无线链路质量差于参考阈值”的意思包括:根据所述第二RS资源池评估的所述无线链路质量小于所述参考阈值。
作为上述实施例的一个子实施例,所述参考阈值的单位是dBm或者dB。
作为一个实施例,所述无线链路质量是BLER;短语“根据所述第二RS资源池评估的所述无线链路质量差于参考阈值”的意思包括:根据所述第二RS资源池评估的所述无线链路质量大于所述参考阈值。
作为上述实施例的一个子实施例,所述参考阈值是BLER阈值。
作为一个实施例,所述无线链路质量是假设的(hypothetical)BLER;短语“根据所述第二RS资源池评估的所述无线链路质量差于参考阈值”的意思包括:根据所述第二RS资源池评估的所述无线链路质量大于所述参考阈值。
作为一个实施例,所述参考阈值是实数。
作为一个实施例,所述参考阈值是非负实数。
作为一个实施例,所述参考阈值是不大于1的非负实数。
作为一个实施例,所述参考阈值是Qout_L。
作为一个实施例,所述参考阈值是Qout_L,Qout_LR_SSB或Qout_LR_CSI-RS中之一。
作为一个实施例,Qout_LR,Qout_LR_SSB和Qout_LR_CSI-RS的定义参见3GPP TS38.133。
作为一个实施例,所述参考阈值由RRC参数rlmInSyncOutOfSyncThreshold配置。
作为一个实施例,所述参考阈值是rlmInSyncOutOfSyncThreshold的默认值(default value)。
作为一个实施例,rlmInSyncOutOfSyncThreshold的具体定义参见3GPP TS38.213的第6章节。
作为一个实施例,rlmInSyncOutOfSyncThreshold的定义参见3GPP TS38.133。
典型的,所述句子“当目标计数器的值等于或大于目标阈值时”的意思是指:当且仅当目标计数器的值等于或大于目标阈值时。
典型的,所述句子“当目标计数器的值等于或大于目标阈值时”的意思是指:作为目标计数器的值等于或大于目标阈值的响应。
典型的,所述第一节点在MAC层维护所述目标计数器。
典型的,所述第一节点的MAC实体维护所述目标计数器。
典型的,每当所述第一节点的MAC实体(entity)接收到来自物理层的针对所述第一服务小区的波束失败事件指示时,启动(start)或重启(restart)目标计时器,并且所述目标计数器的值加1。
典型化的,所述目标计数器是BFI_COUNTER。
作为一个实施例,所述第一节点设备包括:
作为接收所述第一信令的响应,设置所述目标计数器为0。
作为一个实施例,作为接收所述第一信令的响应,启动或重启(restart)所述目标计时器。
典型的,当所述目标计时器过期(expire)时,设置所述目标计数器为0。
典型的,所述目标计时器是beamFailureDetectionTimer。
作为一个实施例,所述目标计数器是BFI_COUNTER。
作为一个实施例,所述目标计数器的初始值是0。
作为一个实施例,所述目标阈值是正整数。
作为一个实施例,所述目标阈值是beamFailureInstanceMaxCount。
作为一个实施例,所述目标阈值由RRC参数配置的。
作为一个实施例,配置所述目标阈值的RRC参数包括RadioLinkMonitoringConfig IE的beamFailureInstanceMaxCount域中的全部或部分信息。
作为一个实施例,所述目标计时器是beamFailureDetectionTimer。
作为一个实施例,所述目标计时器的初始值是正整数。
作为一个实施例,所述目标计时器的初始值是正实数。
作为一个实施例,所述目标计时器的初始值的单位是波束失败检测RS的Qout,LR汇报周期。
作为一个实施例,所述目标计时器的初始值由更高层参数beamFailureDetectionTimer配置。
作为一个实施例,所述目标计时器的初始值由一个IE配置的。
作为一个实施例,配置所述目标计时器的初始值的IE的名称里包括RadioLinkMonitoring。
作为一个实施例,当针对所述第一服务小区的波束失败恢复被触发时,针对所述第一服务小区的波束失败恢复过程包括发送所述第一信号。
作为一个实施例,所述第一信号包括随机接入前导(contention-based Random Access Preamble),BFR MAC CE,Truncated BFR MAC CE,Enhanced BFR MAC CE,或者Truncated Enhanced BFR MAC CE中的至少之一。
作为一个实施例,针对所述第一服务小区的所述波束失败恢复(Beam Failure Recovery,BFR)包括随机接入过程。
作为一个实施例,针对所述第一服务小区的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送随机接入前导,发送BFR MAC CE,发送Truncated BFR MAC CE,发送Enhanced BFR MAC CE,或者发送Truncated Enhanced BFR MAC CE中的至少之一。
作为一个实施例,所述随机接入前导是基于竞争的随机接入前导(contention-based Random Access Preamble)。
作为一个实施例,所述随机接入前导是免竞争的随机接入前导(contention-free Random Access Preamble)。
作为一个实施例,针对所述第一服务小区的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送BFR MAC CE,Truncated BFR MAC CE,Enhanced BFR MAC CE或者Truncated Enhanced BFR MAC CE中之一。
作为一个实施例,针对所述第一服务小区的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送名称包括BFR的MAC CE。
作为一个实施例,所述波速失败恢复过程参见3GPP TS38.321的第5.17章节。
作为一个实施例,所述波速失败恢复过程参见3GPP TS38.213的第6章节。
实施例9
实施例9示例了根据本申请的一个实施例的第一RS资源集合和第二RS资源集合的示意图;如附图9所示。
在实施例9中,所述行为根据第二RS资源池评估所述第一BWP的无线链路质量包括:根据第一RS资源集合和第二RS资源集合分别评估无线链路质量;其中,所述第二RS资源池包括所述第一RS资源集合和所述第二RS资源集合;所述第一RS资源池包括第三RS资源集合和第四RS资源集合;参考CORESET池包括被配置给所述第一BWP的多个CORESET,所述参考CORESET池包括第一CORESET子池和第二CORESET子池,所述第一CORESET子池包括至少一个CORESET,所述第二CORESET子池包括至少一个CORESET;所述第一RS资源集合中的至少一个RS资源依赖所述第一CORESET子池中的至少一个CORESET的TCI状态。
作为一个实施例,所述第一RS资源集合中的任一RS资源依赖所述第一CORESET子池中的一个CORESET的TCI状态。
作为一个实施例,所述第一RS资源集合中的部分RS资源依赖所述第一CORESET子池中的CORESET(s)的TCI状态。
作为一个实施例,所述第二RS资源集合中的至少一个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,所述第二RS资源集合中的至少一个RS资源依赖所述第二CORESET子池中的至少一个CORESET的TCI状态。
作为一个实施例,所述第二RS资源集合中的每个RS资源依赖所述第二CORESET子池中的至少一个CORESET的TCI状态。
作为一个实施例,所述第一RS资源集合中的每个RS资源依赖所述第一CORESET子池中的至少一个CORESET的TCI状态,所述第二RS资源集合中的每个RS资源依赖所述第二CORESET子池中的至少一个CORESET的TCI状态。
典型的,所述第三RS资源集合和所述第四RS资源集合分别被所述第一更高层消息集合配置或激活用于无线链路质量评估。
典型的,所述第一RS资源集合和所述第三RS资源集合对应,所述第二RS资源集合和所述第四RS资源集合对应。
典型的,所述第一RS资源集合和所述第三RS资源集合都对应第一CORESET子池,所述第二RS资源集合和所述第四RS资源集合都对应第二COREST子池。
典型的,所述第一CORESET子池的索引为0,所述第二CORESET子池的索引为1。
典型的,所述第一CORESET子池包括对应CORESETPoolIndex为0的至少一个CORESET,所述第二CORESET子池包括对应CORESETPoolIndex为1的至少一个CORESET。
作为一个实施例,所述第一信令被用于确定第一RS资源,所述第一RS资源与所述第三RS资源集合关联。
典型的,所述第一更高层消息集合包括第一RRC消息和第二RRC消息,所述第三RS资源集合被所述第一RRC消息配置,所述第四RS资源集合被所述第二RRC消息配置。
作为一个实施例,所述第一RRC消息包括RRC IE RadioLinkMonitoringConfig中的failureDetectionSet1 域,所述第二RRC消息包括RRC IE RadioLinkMonitoringConfig中的failureDetectionSet2域。
作为一个实施例,所述第一RRC消息被用于配置所述第一CORESET子池,所述第二RRC消息被用于配置所述第二CORESET子池。
实施例10
实施例10示例了根据本申请的另一个实施例的第一RS资源集合和第二RS资源集合的示意图;如附图10所示。
在实施例10中,所述第一RS资源集合中的每个RS资源依赖CORESET的TCI状态,所述第二RS资源集合中的每个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源不是被所述第一更高层消息集合配置或激活的。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源不是被所述第一更高层消息集合配置或激活的;所述一个RS资源与所述第一RS资源池中的一个RS资源相同,或者所述一个RS资源不同于所述第一RS资源池中的任一RS资源相同。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源是根据一个CORESET的TCI状态确定的。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源是根据所述第一节点监测PDCCH使用的一个CORESET的TCI状态确定的。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源是根据所述第一节点监测PDCCH使用的至少一个CORESET的TCI状态确定的。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源不是被所述第一更高层消息集合配置或激活的;所述一个RS资源的索引与一个CORESET的TCI状态所指示的一个RS资源的索引相同。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源的索引与一个CORESET的TCI状态所指示的一个RS资源的索引相同。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源的索引与一个CORESET的TCI状态所指示的一个RS资源的索引相同。
作为一个实施例,所述句子“一个RS资源依赖CORESET的TCI状态”的意思包括:所述一个RS资源的索引与所述第一BWP中所述第一节点监测PDCCH使用的一个CORESET的TCI状态所指示的一个RS资源集合中的一个RS资源索引相同。
作为一个实施例,“一个RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述一个RS资源是被所述第一更高层消息集合配置或激活的。
作为一个实施例,“一个RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述一个RS资源不是被所述第一更高层消息集合配置或激活的,所述一个RS资源的索引与所述第一RS资源池中的一个RS资源的索引相同。
作为一个实施例,“一个RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述第一更高层消息集合包括所述一个RS资源的索引。
作为一个实施例,“一个RS资源依赖所述第一更高层消息集合的配置”的意思包括:所述第一更高层消息集合包括所述一个RS资源的索引。
实施例11
实施例11示例了根据本申请的一个实施例的第一RS资源集合的波束失败事件指示和第二RS资源集合的波束失败事件指示的示意图;如附图6所示。
在实施例11中,每当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一节点的物理层向更高层发送针对所述第二RS 资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数。
典型的,针对所述第一RS资源集合的波束失败事件指示(beam failure instance indication)的统计和针对所述第二RS资源集合的波束失败事件指示的统计是分别进行的。
典型的,针对所述第一RS资源集合的波束失败检测(beam failure detection)和针对所述第二RS资源集合的波束失败检测是分别进行的。
典型的,所述第一RS资源集合的波束失败恢复和所述第二RS资源集合的波束失败恢复是分别被触发的。
典型的,所述第一RS资源集合和所述第二RS资源集合是2个波束失败检测RS集合,波束失败检测是每(per)波束失败检测RS集合进行的。
典型的,所述第一RS资源集合和所述第二RS资源集合是2个波束失败检测RS集合,波束失败恢复是每(per)波束失败检测RS集合进行的。
典型化的,所述第一RS资源集合和所述第二RS资源集合分别对应两个BFI_COUNTER。
典型的,所述第一RS资源集合对应第一计数器,所述第二RS资源集合对应第二计数器。
典型的,当第一计数器的值等于或大于第一阈值时,针对所述第一RS资源集合的波束失败恢复被触发;当所述第二计数器的值等于或大于第二阈值时,针对所述第二RS资源集合的BFR被触发。
典型的,所述句子“当第一计数器的值等于或大于第一阈值时”的意思是指:当且仅当第一计数器的值等于或大于第一阈值时。
典型的,所述句子“当第一计数器的值等于或大于第一阈值时”的意思是指:作为第一计数器的值等于或大于第一阈值的响应。
典型的,所述句子“当第二计数器的值等于或大于第二阈值时”的意思是指:当且仅当第二计数器的值等于或大于第二阈值时。
典型的,所述句子“当第二计数器的值等于或大于第二阈值时”的意思是指:作为第二计数器的值等于或大于第二阈值的响应。
作为一个实施例,所述第一节点设备包括:
作为接收所述第一信令的响应,设置所述第一计数器为0;
其中,所述第一RS资源集合中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第一节点设备包括:
作为接收所述第一信令的响应,设置所述第二计数器为0;
其中,所述第二RS资源集合中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第一节点设备包括:
作为接收所述第一信令的响应,设置所述第一计数器为0,并且设置所述第二计数器为0;
其中,所述第一RS资源集合中的至少一个RS资源依赖CORESET的TCI状态,所述第二RS资源集合中的至少一个RS资源依赖CORESET的TCI状态。
典型的,所述第一节点在MAC层维护所述第一计数器,所述第一节点在MAC层维护所述第二计数器。
典型的,所述第一节点的MAC实体维护所述第一计数器,所述第一节点的MAC实体维护所述第二计数器。
典型的,每当所述第一节点的MAC实体(entity)接收到来自物理层的针对所述第一RS资源集合的波束失败事件指示时,启动(start)或重启(restart)第一计时器,并且所述第一计数器的值加1;每当所述第一节点的MAC实体(entity)接收到来自物理层的针对所述第二RS资源集合的波束失败事件指示时,启动(start)或重启(restart)第二计时器,并且所述第二计数器的值加1。
典型的,所述第一计数器和所述第二计数器是2个BFI_COUNTER。
作为一个实施例,作为接收所述第一信令的响应,启动或重启(restart)所述第一计时器;
其中,所述第一RS资源集合中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,作为接收所述第一信令的响应,启动或重启(restart)所述第二计时器;
其中,所述第二RS资源集合中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,作为接收所述第一信令的响应,启动(start)或重启(restart)所述第一计时器,并且启动或重启(restart)所述第二计时器;
其中,所述第一RS资源集合中的至少一个RS资源依赖CORESET的TCI状态,所述第二RS资源集合中的至少一个RS资源依赖CORESET的TCI状态。
典型的,当所述第一计时器过期(expire)时,设置所述第一计数器为0;当所述第二计时器过期(expire)时,设置所述第二计数器为0。
作为一个实施例,所述第一计时器和所述第二计时器是2个beamFailureDetectionTimer。
典型的,所述第一计数器的初始值是0,所述第二计数器的初始值是0。
作为一个实施例,所述第一阈值是正整数,所述第二阈值是正整数。
作为一个实施例,所述第一阈值和所述第一阈值是分别被配置的beamFailureInstanceMaxCount-r17。
作为一个实施例,所述第一阈值的名称包括beamFailureInstanceMaxCount,所述第二阈值的名称包括beamFailureInstanceMaxCount。
作为一个实施例,所述第一阈值和所述第二阈值是分别被RRC参数配置的。
作为一个实施例,所述第一阈值和所述第二阈值相同。
作为一个实施例,所述第一阈值和所述第二阈值不同。
作为一个实施例,所述第一阈值和所述第二阈值是由一个RRC IE中的部分或全部域配置的。
作为一个实施例,配置所述第一阈值和所述第二阈值的RRC消息包括RadioLinkMonitoringConfig IE的两个beamFailureInstanceMaxCount-r17域。
作为一个实施例,配置所述第一阈值和所述第二阈值的RRC消息分别包括RadioLinkMonitoringConfigIE的两个failureDetectionSet1-r17域中的部分或全部信息。
作为一个实施例,配置所述第一阈值和所述第二阈值的RRC消息分别包括RadioLinkMonitoringConfig IE中的名称包括failureDetectionSet1的域中的部分或全部信息,配置所述第一阈值和所述第二阈值的RRC消息分别包括RadioLinkMonitoringConfig IE中的名称包括failureDetectionSet2的域中的部分或全部信息。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值相同。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值不同。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值是分别由RRC参数配置的。
作为一个实施例,所述第一计时器的和所述第二计时器分别是2个beamFailureDetectionTimer-r17。
作为一个实施例,所述第一计时器和所述第二计时器的名称都包括beamFailureDetectionTimer-r17。
作为一个实施例,所述第一计时器的初始值是正整数,所述第二计时器的初始值是正整数。
作为一个实施例,所述第一计时器的初始值是正实数,所述第二计时器的初始值是正实数。
作为一个实施例,所述第一计时器的初始值的单位和所述第二计时器的初始值的单位都是波束失败检测RS的Qout,LR汇报周期。
作为一个实施例,所述第一计时器的初始值和所述第一计时器的初始值分别由2个更高层参数beamFailureDetectionTimer-r17配置。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值分别由2个名称包括beamFailureDetectionTimer-r17的更高层参数配置。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值由一个IE配置的。
作为一个实施例,配置所述第一计时器的初始值和和所述第二计时器的初始值的IE的名称包括RadioLinkMonitoring。
典型的,当针对所述第一RS资源集合的波束失败恢复和针对所述第二RS资源集合的波束失败恢复都被触发,并且所述第一RS资源集合或所述第二RS资源集合的波束失败恢复过程都没有成功完成时,发起(initiate)随机接入过程。
作为一个实施例,针对所述第一RS资源集合的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送BFR MAC CE,Truncated BFR MAC CE,Enhanced BFR MAC CE或者Truncated Enhanced BFR MAC CE中之一;针对所述第二RS资源集合的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送BFR  MAC CE,Truncated BFR MAC CE,Enhanced BFR MAC CE或者Truncated Enhanced BFR MAC CE中之一。
作为一个实施例,针对所述第一RS资源集合的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送名称包括BFR的MAC CE,针对所述第二RS资源集合的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送名称包括BFR的MAC CE。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图12所示。在附图12中,第一节点设备中的处理装置1200包括第一接收机1201或者第一收发机1202中的至少所述第一接收机1201,其中所述第一收发机1202是可选的。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一收发机1202包括实施例4中的{天线452,发射器/接收器454,接收处理器456,发射处理器468,多天线接收处理器458,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
第一接收机1201,接收第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;接收第一信令,所述第一信令所属的协议层是RRC层之下的协议层;作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;
在实施例12中,所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第一信令被用于确定第一RS资源,所述第一RS资源与所述第一RS资源池关联。
作为一个实施例,所述第二RS资源池中的至少一个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,所述第一节点设备包括:
第一收发机1202,当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;
其中,所述第一BWP是所述第一服务小区的一个BWP;每当根据所述第二RS资源池评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
作为一个实施例,所述行为根据第二RS资源池评估所述第一BWP的无线链路质量包括:根据第一RS资源集合和第二RS资源集合分别评估无线链路质量;
其中,所述第二RS资源池包括所述第一RS资源集合和所述第二RS资源集合;所述第一RS资源池包括第三RS资源集合和第四RS资源集合;参考CORESET池包括被配置给所述第一BWP的多个CORESET,所述参考CORESET池包括第一CORESET子池和第二CORESET子池,所述第一CORESET子池包括至少一个CORESET,所述第二CORESET子池包括至少一个CORESET;所述第一RS资源集合中的至少一个RS资源依赖所述第一CORESET子池中的至少一个CORESET的TCI状态。
作为一个实施例,所述第一RS资源集合中的每个RS资源依赖CORESET的TCI状态,所述第二RS资源集合中的每个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,每当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一节点的物理层向更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数。
作为一个实施例,所述第一节点设备包括:
所述第一收发机1202,发送第一信号;
其中,针对所述第一服务小区的波束失败恢复被触发;针对所述第一服务小区的波束失败恢复过程包 括发送所述第一信号。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图13所示。在附图13中,第二节点设备中的处理装置1300包括第二发射机1301或者第二收发机1302中的至少所述第二发射机1301,其中所述第二收发机1302是可选的。
作为一个实施例,所述第二节点设备是基站备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二收发机1302包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
第二发射机1301,发送第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;发送第一信令,所述第一信令所属的协议层是RRC层之下的协议层;
在实施例13中,作为所述第一信令的接收者接收所述第一信令的响应,所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
作为一个实施例,所述第一信令被用于确定第一RS资源,所述第一RS资源与所述第一RS资源池关联。
作为一个实施例,所述第二RS资源池中的至少一个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,所述第一信令的所述接收者在当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;其中,所述第一BWP是所述第一服务小区的一个BWP;每当根据所述第二RS资源池评估的所述无线链路质量差于参考阈值时,所述第一信令的所述接收者的物理层向所述第一信令的所述接收者的更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
作为一个实施例,所述行为所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量包括:所述第一信令的所述接收者根据第一RS资源集合和第二RS资源集合分别评估无线链路质量;
其中,所述第二RS资源池包括所述第一RS资源集合和所述第二RS资源集合;所述第一RS资源池包括第三RS资源集合和第四RS资源集合;参考CORESET池包括被配置给所述第一BWP的多个CORESET,所述参考CORESET池包括第一CORESET子池和第二CORESET子池,所述第一CORESET子池包括至少一个CORESET,所述第二CORESET子池包括至少一个CORESET;所述第一RS资源集合中的至少一个RS资源依赖所述第一CORESET子池中的至少一个CORESET的TCI状态。
作为一个实施例,所述第一RS资源集合中的每个RS资源依赖CORESET的TCI状态,所述第二RS资源集合中的每个RS资源依赖所述第一更高层消息集合的配置。
作为一个实施例,每当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一信令的所述接收者的物理层向所述第一信令的所述接收者的更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一信令的所述接收者的物理层向所述第一信令的所述接收者的更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数。
作为一个实施例,所述第二节点设备包括:
第二收发机1302,接收第一信号;
其中,针对所述第一服务小区的波束失败恢复被触发;针对所述第一服务小区的波束失败恢复过程包括所述第一信令的所述接收者发送所述第一信号。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者***设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。基于说明书中所描述的实施例所做出的任何变化和修改,如果能获得类似的部分或者全部技术效果,应当被视为显而易见并属于本发明的保护范围。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;接收第一信令,所述第一信令所属的协议层是RRC层之下的协议层;作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;
    其中,所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一信令被用于确定第一RS资源,所述第一RS资源与所述第一RS资源池关联。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第二RS资源池中的至少一个RS资源依赖所述第一更高层消息集合的配置。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,包括:
    第一收发机,当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;
    其中,所述第一BWP是所述第一服务小区的一个BWP;每当根据所述第二RS资源池评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
  5. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述行为根据第二RS资源池评估所述第一BWP的无线链路质量包括:根据第一RS资源集合和第二RS资源集合分别评估无线链路质量;
    其中,所述第二RS资源池包括所述第一RS资源集合和所述第二RS资源集合;所述第一RS资源池包括第三RS资源集合和第四RS资源集合;参考CORESET池包括被配置给所述第一BWP的多个CORESET,所述参考CORESET池包括第一CORESET子池和第二CORESET子池,所述第一CORESET子池包括至少一个CORESET,所述第二CORESET子池包括至少一个CORESET;所述第一RS资源集合中的至少一个RS资源依赖所述第一CORESET子池中的至少一个CORESET的TCI状态。
  6. 根据权利要求5所述的第一节点设备,其特征在于,所述第一RS资源集合中的每个RS资源依赖CORESET的TCI状态,所述第二RS资源集合中的每个RS资源依赖所述第一更高层消息集合的配置。
  7. 根据权利要求5或6所述的第一节点设备,其特征在于,每当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一节点的物理层向更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;发送第一信令,所述第一信令所属的协议层是RRC层之下的协议层;
    其中,作为所述第一信令的接收者接收所述第一信令的响应,所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;
    接收第一信令,所述第一信令所属的协议层是RRC层之下的协议层;
    作为接收所述第一信令的响应,根据第二RS资源池评估所述第一BWP的无线链路质量;
    其中,所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一更高层消息集合,所述第一更高层消息集合被用于为第一BWP配置第一RS资源池,所述第一RS资源池被用于无线链路质量评估;
    发送第一信令,所述第一信令所属的协议层是RRC层之下的协议层;
    其中,作为所述第一信令的接收者接收所述第一信令的响应,所述第一信令的所述接收者根据第二RS资源池评估所述第一BWP的无线链路质量;所述第二RS资源池中的至少一个RS资源依赖CORESET的TCI状态。
PCT/CN2023/110511 2022-08-07 2023-08-01 一种被用于无线通信的节点中的方法和装置 WO2024032424A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210940839.8A CN117579238A (zh) 2022-08-07 2022-08-07 一种被用于无线通信的节点中的方法和装置
CN202210940839.8 2022-08-07

Publications (1)

Publication Number Publication Date
WO2024032424A1 true WO2024032424A1 (zh) 2024-02-15

Family

ID=89850830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110511 WO2024032424A1 (zh) 2022-08-07 2023-08-01 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117579238A (zh)
WO (1) WO2024032424A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200052769A1 (en) * 2018-08-09 2020-02-13 Comcast Cable Communications, Llc Resource Management for Beam Failure Recovery Procedures
CN111543024A (zh) * 2020-04-09 2020-08-14 北京小米移动软件有限公司 波束失败的检测方法、装置、设备及可读存储介质
CN114762262A (zh) * 2019-11-25 2022-07-15 三星电子株式会社 用于网络协作通信中波束故障恢复的方法和装置
CN114828035A (zh) * 2021-01-18 2022-07-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200052769A1 (en) * 2018-08-09 2020-02-13 Comcast Cable Communications, Llc Resource Management for Beam Failure Recovery Procedures
CN114762262A (zh) * 2019-11-25 2022-07-15 三星电子株式会社 用于网络协作通信中波束故障恢复的方法和装置
CN111543024A (zh) * 2020-04-09 2020-08-14 北京小米移动软件有限公司 波束失败的检测方法、装置、设备及可读存储介质
CN114828035A (zh) * 2021-01-18 2022-07-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "3GPP TSG RAN WG1 Meeting #94bis R1-1810253", REMAINING ISSUES ON BM AND BFR, 12 October 2018 (2018-10-12), XP051517667 *

Also Published As

Publication number Publication date
CN117579238A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020233405A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2021031950A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021213251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018040815A1 (zh) 一种支持广播信号的无线通信***中的方法和装置
WO2024032424A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037412A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093877A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202413A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032801A1 (zh) 用于无线通信的方法和装置
WO2022257866A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179471A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027608A1 (zh) 一种用于无线通信的方法和装置
WO2024022342A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024146498A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207703A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851645

Country of ref document: EP

Kind code of ref document: A1