WO2023202413A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023202413A1
WO2023202413A1 PCT/CN2023/087436 CN2023087436W WO2023202413A1 WO 2023202413 A1 WO2023202413 A1 WO 2023202413A1 CN 2023087436 W CN2023087436 W CN 2023087436W WO 2023202413 A1 WO2023202413 A1 WO 2023202413A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
cell
information block
node
frequency resource
Prior art date
Application number
PCT/CN2023/087436
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023202413A1 publication Critical patent/WO2023202413A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular, to designs and devices for uplink control information transmission in wireless communications.
  • CPC Conditional PSCell change, conditional primary and secondary cell change
  • CPA Conditional PSCell addition, conditional primary and secondary cell addition
  • L1/L2 inter-cell mobility management may lead to faster cell changes, especially for special When the change of the cell (SpCell) occurs at the granularity of the time slot (Slot), this will have an impact on the transmission of UCI (Uplink Control Information) of the physical layer.
  • SpCell change of the cell
  • Slot time slot
  • this application discloses a solution. It should be noted that although the above description is based on the scenario of L1/L2 mobility, this application is also applicable to other scenarios such as interference measurement, and achieves similar technical effects in ground terminals in communication scenarios that support L1/L2 mobility. In addition, adopting unified solutions for different application areas (including but not limited to UCI) can also help reduce hardware complexity and cost. In the case of no conflict, the embodiments and features in the embodiments in any node of this application can be applied to any other node, and vice versa. The embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method in a first node for wireless communication, including:
  • the PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • HARQ-ACK Hybrid Automatic Repeat reQuest Acknowledgment, Hybrid Automatic Repeat Request Acknowledgment
  • the first information block is received, and the first information block is used to indicate that the first information block is targeted to the first cell starting from the first time ceasing execution of the first set of operations and ceasing execution of the second set of operations for the first cell starting at a second time;
  • the first operation set includes monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used for scheduling the targeted cell, and sending PRACH (Physical Random Access Channel, Physical Random Access Channel) on the targeted cell.
  • PRACH Physical Random Access Channel
  • the second operation set includes sending HARQ-ACK on the PUCCH (Physical Uplink Control Channel, physical uplink control channel) of the targeted cell; the second time is not earlier than the first time, and the second time is related to whether the PDCCH is monitored in the first time-frequency resource set.
  • a technical feature of the above method is that when the serving cell, especially SpCell, is dynamically switched, the transmission of HARQ-ACK after the dynamic switching signaling is received and before it takes effect is still performed in the original cell, while other transmissions are still performed in the original cell. Non-UCI operations are transferred to the serving cell after dynamic handover.
  • the DCI detected in the first time-frequency resource set is used to determine the first signal
  • the second information block includes the HARQ of the first signal determined by the DCI.
  • the second information block is feedback for the first signal.
  • first information block is used to indicate performing the first set of operations for the second cell starting from the third time and performing the second set of operations for the second cell starting from the fourth time;
  • the third time is not earlier than the first time, and the fourth time is not earlier than the second time.
  • a technical feature of the above method is that: the first information block switches the first operation and the second operation of the first node from the first cell to the second cell. .
  • the first signaling is used to determine the second signal; the time domain resources occupied by the first signaling are later than the time domain resources occupied by the first information block, and the first The time domain resources occupied by the signaling are earlier than the first time.
  • the third information block is feedback for the second signal.
  • the frequency domain resource occupied by the third information block belongs to the second cell.
  • the frequency domain resource occupied by the third information block belongs to the first cell, and the third information block is delayed to be sent.
  • the first node gives up sending feedback for the second signal.
  • a technical feature of the above method is that: for the HARQ-ACK corresponding to the DCI scheduled data after the dynamic handover signaling is received, the first node will send the HARQ-ACK in the serving cell after the handover. ACK, or wait for the serving cell before handover to be switched back again before sending HARQ-ACK, or give up HARQ-ACK transmission.
  • both the first cell and the second cell belong to a first cell set
  • the first cell set includes M1 serving cells
  • the M1 serving cells are respectively associated with M1 identities.
  • any identity among the M1 identities is an index other than the serving cell index.
  • both the first cell and the second cell belong to a first cell set
  • the first cell set includes M1 serving cells
  • the M1 serving cells are respectively associated to the same index
  • the target signaling is used to trigger the reception of the first information block.
  • This application discloses a method in a second node for wireless communication, including:
  • the PDCCH is sent in the first time-frequency resource set, and the HARQ-ACK associated with the DCI detected in the first time-frequency resource set is received on the first cell; the first information block is sent, and the first information block is sent.
  • An information block is used to indicate to stop performing the first set of operations for the first cell starting from the first time and to stop performing the second set of operations for the first cell starting from the second time;
  • the recipient of the first information block includes a first node
  • the first operation set includes the first node monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used for scheduling the targeted cell, and Send at least one of the three PRACHs on the targeted cell
  • the second operation set includes the first node sending HARQ-ACK on the PUCCH of the targeted cell
  • the second time is not earlier than the first One time, the second time is related to whether the PDCCH is monitored in the first time-frequency resource set.
  • the DCI detected in the first time-frequency resource set is used to determine the first signal
  • the second information block includes the HARQ of the first signal determined by the DCI.
  • the second information block is feedback for the first signal.
  • the first information block is used to instruct the first node to perform the first operation set for the second cell starting from the third time and to perform the second operation set starting from the fourth time.
  • the first signaling is used to determine the second signal; the time domain resources occupied by the first signaling are later than the time domain resources occupied by the first information block, and the first The time domain resources occupied by the signaling are earlier than the first time.
  • the third information block is feedback for the second signal.
  • the frequency domain resource occupied by the third information block belongs to the second cell.
  • the frequency domain resource occupied by the third information block belongs to the first cell, and the third information block is delayed to be sent.
  • the second node gives up receiving feedback for the second signal.
  • both the first cell and the second cell belong to a first cell set
  • the first cell set includes M1 serving cells
  • the M1 serving cells are respectively associated with M1 identities.
  • any identity among the M1 identities is an index other than the serving cell index.
  • both the first cell and the second cell belong to a first cell set
  • the first cell set includes M1 serving cells
  • the M1 serving cells are respectively associated to the same index
  • the target signaling is used to trigger the reception of the first information block.
  • This application discloses a first node for wireless communication, including:
  • the first receiver monitors the PDCCH in the first time-frequency resource set, and the HARQ-ACK associated with the DCI detected in the first time-frequency resource set is sent on the first cell; receives the first information block, the first information block being used to indicate to stop executing the first set of operations for the first cell starting from the first time and to stop executing the second set of operations for the first cell starting from the second time;
  • the first operation set includes at least one of monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used for scheduling the targeted cell, and sending the PRACH on the targeted cell;
  • the second The operation set includes sending HARQ-ACK on the PUCCH of the targeted cell; the second time is not earlier than the first time, and the second time is related to whether PDCCH is monitored in the first time-frequency resource set .
  • This application discloses a second node for wireless communication, including:
  • the second transmitter sends the PDCCH in the first time-frequency resource set, and the HARQ-ACK associated with the DCI detected in the first time-frequency resource set is received on the first cell; sends the first information block, the first information block being used to indicate to stop executing the first set of operations for the first cell starting from the first time and to stop executing the second set of operations for the first cell starting from the second time;
  • the recipient of the first information block includes a first node
  • the first operation set includes the first node monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used for scheduling the targeted cell, and Send at least one of the three PRACHs on the targeted cell
  • the second operation set includes the first node sending HARQ-ACK on the PUCCH of the targeted cell
  • the second time is not earlier than the first a time, and the second time is related to whether PDCCH is monitored in the first time-frequency resource set. close.
  • the advantage of this application is to improve the stability and reliability of UCI transmission.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of a first information block according to an embodiment of the present application
  • Figure 6 shows a flow chart of a first signal according to an embodiment of the present application
  • Figure 7 shows a flow chart of a second signal according to an embodiment of the present application.
  • Figure 8 shows a flow chart of target signaling according to an embodiment of the present application
  • Figure 9 shows a schematic diagram of the first time and the second time according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of the third time and the fourth time according to an embodiment of the present application.
  • Figure 11 shows a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 12 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of a first node, as shown in Figure 1.
  • each block represents a step.
  • the first node in this application monitors the PDCCH in the first time-frequency resource set in step 101, and is associated with the HARQ-ACK of the DCI detected in the first time-frequency resource set. is sent on the first cell; receiving in step 102 a first information block used to indicate to stop performing the first set of operations for the first cell starting from the first time and starting from the second time The first cell stops performing the second set of operations.
  • the first operation set includes at least one of monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used for scheduling the targeted cell, and sending the PRACH on the targeted cell;
  • the second operation set includes sending HARQ-ACK on the PUCCH of the targeted cell; the second time is not earlier than the first time, and the second time is consistent with whether monitoring is performed in the first time-frequency resource set to PDCCH.
  • the first time-frequency resource set includes at least one CORESET (Control Resource Set, control resource set).
  • CORESET Control Resource Set, control resource set.
  • the first time-frequency resource set includes at least one CORESET in the frequency domain.
  • the first time-frequency resource set is associated with a search space (Search Space).
  • the first time-frequency resource set is associated with a search space set (Search Space Set).
  • the first time-frequency resource set occupies a positive integer number of REs (Resource Elements, resource particles) greater than 1.
  • the first time-frequency resource set is before the first time in the time domain.
  • the first time-frequency resource set includes search spaces on multiple cells.
  • the first time-frequency resource set includes at least one PDCCH MO (Monitoring Occasion, monitoring opportunity) in the time domain.
  • PDCCH MO Monitoring Occasion, monitoring opportunity
  • the first time-frequency resource set includes the most recent PDCCH MO before the first time in the time domain.
  • the first information block is transmitted through physical layer signaling.
  • the physical layer channel occupied by the first information block includes PDCCH.
  • the first information block is transmitted through MAC (Medium Access Control, Media Access Control) CE (Control Elements, control particles).
  • MAC Medium Access Control, Media Access Control
  • CE Control Elements, control particles
  • the first information block is used for candidate cell (Cell) handover.
  • the first information block is used for serving (Serving) cell switching.
  • the first information block is used for SpCell switching.
  • the first information block is an activation command.
  • the first information block is a switch command.
  • the first information block is a turn-on command.
  • the first information block is a turn-off command.
  • the first cell is a serving cell.
  • the first cell is a SpCell.
  • the first cell is a candidate cell.
  • the first cell is a selected cell.
  • the first cell is a turned-off cell.
  • the first cell is a switched-off cell.
  • the first cell supports dynamic switching (Dynamic Switch).
  • the first time and the second time are each a time slot.
  • the first time and the second time are one OFDM symbol respectively.
  • the first time and the second time are respectively the starting time of an OFDM symbol.
  • the first time and the second time are respectively the starting time of a time slot.
  • the reception of the first information block ends (Ending) at time slot n, and the first time is a time slot.
  • the first time is no later than the time slot (n+k1), and the k1 is a positive integer.
  • the first time is not earlier than the time slot (n+k), and the k is a positive integer.
  • the first time is not later than the time slot (n+k1), the k1 is a positive integer; and the first time is not earlier than the time slot (n+k) , the k is a positive integer.
  • the value of k1 is related to the capability of the first node.
  • the value of k1 complies with the minimum requirement in TS 38.133.
  • the value of k is related to the SCS (Subcarrier Spacing) adopted by the first cell.
  • the value of k is related to the number of time slots in the next subframe of the SCS adopted by the first cell.
  • the value of k is related to the ability of the first node to decode PDCCH.
  • the value of k is related to the capability (Capability) of the first node.
  • the value of k is related to the Category of the first node.
  • the reception of the first information block ends (Ending) at time slot n, and the second time is a time slot.
  • the second time is no later than the time slot (n+k2), and the k2 is a positive integer.
  • the second time is not earlier than the time slot (n+k3), and the k3 is a positive integer.
  • the second time is not later than the time slot (n+k2), the k2 is a positive integer; and the first time is not earlier than the time slot (n+k3) , the k3 is a positive integer.
  • the value of k2 is related to the capability of the first node.
  • the value of k2 complies with the minimum requirement in TS 38.133.
  • the value of k3 is related to the SCS adopted by the first cell.
  • the value of k3 is related to the number of time slots in the next subframe of the SCS adopted by the first cell.
  • the value of k3 is related to the ability of the first node to decode PDCCH.
  • the value of k3 is related to the capability (Capability) of the first node.
  • the value of k3 is related to the Category of the first node.
  • the value of k3 is related to m, and the first node sends the HARQ-ACK of the detected DCI in subframe (n+m).
  • the value of k3 is related to m, and the first node sends the PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel) scheduled by the detected DCI in subframe (n+m). HARQ-ACK of downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the first time is no later than the second time.
  • the second time is later than the first time.
  • the first time is earlier than the second time.
  • the targeted cell includes the first cell.
  • the targeted cells include all activated serving cells of the first node.
  • the targeted cells include all enabled candidate cells of the first node.
  • the targeted cells include all enabled candidate cells of the first node.
  • the targeted cells include all selected cells of the first node.
  • the targeted cells include all enabled SpCells of the first node.
  • the first set of operations includes monitoring a physical downlink control channel on the targeted cell.
  • the first set of operations includes monitoring the PDCCH used for scheduling the targeted cell.
  • the first set of operations includes sending PRACH on the targeted cell.
  • the first set of operations includes receiving PDSCH on the targeted cell.
  • the second set of operations includes sending HARQ-ACK on the PUSCH (Physical Uplink Shared Channel) of the targeted cell.
  • PUSCH Physical Uplink Shared Channel
  • the second set of operations includes sending CSI (Channel State Information) on the PUCCH of the targeted cell.
  • CSI Channel State Information
  • the second set of operations includes sending CSI on the PUSCH of the targeted cell.
  • the meaning of the second time related to whether the PDCCH is monitored in the first time-frequency resource set includes: the first node monitors the PDCCH in the first time-frequency resource set. , the second time is determined; the first node does not monitor the PDCCH in the first time-frequency resource set, and the second time does not exist.
  • the meaning of the second time related to whether the PDCCH is monitored in the first time-frequency resource set includes: the first node monitors the PDCCH in the first time-frequency resource set. , the second time is determined; the first node does not monitor the PDCCH in the first time-frequency resource set, and the second time is equal to the first time.
  • monitoring the PDCCH includes: receiving the PDCCH.
  • monitoring the PDCCH includes blindly detecting the PDCCH.
  • monitoring the PDCCH includes: detecting the PDCCH.
  • monitoring the PDCCH includes: decoding the PDCCH.
  • monitoring the PDCCH includes demodulating the PDCCH.
  • monitoring the PDCCH includes: energy monitoring the PDCCH.
  • Embodiment 2 illustrates a schematic diagram of the network architecture, as shown in Figure 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called EPS (Evolved Packet System) 200 or some other suitable term.
  • EPS 200 may include a UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network, 5G Core) Network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet Services 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network, 5G Core
  • HSS Home Subscriber Server, home subscriber server
  • Internet Services 230 Internet Services
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP, or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP TRP
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN 210 through S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is the control node that handles signaling between UE 201 and EPC/5G-CN 210. Basically, MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE 201 is a terminal capable of supporting dynamic switching of serving cells.
  • the UE201 is a terminal that supports carrier aggregation.
  • the gNB 203 corresponds to the second node in this application.
  • the gNB 203 supports dynamic switching of serving cells.
  • the gNB 203 supports carrier aggregation.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture for the control plane 300 between communicating node devices (gNB, UE or RSU in V2X): Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support from a first communication node device to a second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using the connection between the second communication node device and the first communication node device. Inter-RRC signaling is used to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to Reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate a schedule of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate a schedule of the first communication node device.
  • monitoring the generation of PDCCH in the first time-frequency resource set is performed by the PHY301 or PHY351.
  • monitoring the generation of PDCCH in the first time-frequency resource set is performed by the MAC 302 or MAC 352.
  • the first information block in this application is generated from the PHY301 or PHY351.
  • the first information block in this application is generated by the MAC302 or MAC352.
  • the first signal in this application is generated from the PHY301 or PHY351.
  • the first signal in this application is generated by the MAC302 or MAC352.
  • the second information block in this application is generated from the PHY301 or PHY351.
  • the second information block in this application is generated by the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the first signaling in this application is generated by the MAC302 or MAC352.
  • the second signal in this application is generated from the PHY301 or PHY351.
  • the second signal in this application is generated by the MAC302 or MAC352.
  • the second signal in this application is generated from the RRC 306.
  • the third information block in this application is generated from the PHY301 or PHY351.
  • the third information block in this application is generated from the MAC302 or MAC352.
  • the third information block in this application is generated from the RRC306.
  • the target signaling in this application is generated in the PHY301 or PHY351.
  • the target signaling in this application is generated in the MAC302 or MAC352.
  • the target signaling in this application is generated in the RRC306.
  • the first node is a terminal.
  • the second node is a terminal.
  • the second node is a TRP (Transmitter Receiver Point, Transmitter Receiver Point).
  • TRP Transmitter Receiver Point, Transmitter Receiver Point
  • the second node is a cell.
  • the second node is an eNB.
  • the second node is a base station.
  • the second node is used to manage multiple TRPs.
  • the second node is a node used to manage multiple cells.
  • the first node can access multiple cells simultaneously.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 at least: first monitors the PDCCH in the first time-frequency resource set, and is associated with the HARQ of the DCI detected in the first time-frequency resource set.
  • the cell stops executing the second set of operations;
  • the first set of operations includes at least one of monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used to schedule the targeted cell, and sending PRACH on the targeted cell.
  • the second operation set includes sending HARQ-ACK on the PUCCH of the targeted cell; the second time is not earlier than the first time, and the second time is the same as the first time-frequency resource. It is related to whether PDCCH is detected in the set.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: first The PDCCH is monitored in the first time-frequency resource set, and the HARQ-ACK associated with the DCI detected in the first time-frequency resource set is sent on the first cell; then the first information block is received, and the first information block is received. An information block is used to indicate that the first operation set is stopped for the first cell starting from the first time and the second operation set is stopped for the first cell starting from the second time; the first operation set is included in the targeted cell.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 at least: first transmits the PDCCH in the first time-frequency resource set, and the HARQ-ACK associated with the DCI detected in the first time-frequency resource set is received on the first cell. Receive; and then transmit a first information block, the first information block being used to indicate to stop performing the first set of operations for the first cell starting from the first time and to stop performing the second set of operations for the first cell starting from the second time.
  • the recipient of the first information block includes a first node, and the first operation set includes the first node monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used to schedule the targeted cell, and Send at least one of the three PRACHs on the targeted cell; the second operation set includes the first node sending HARQ-ACK on the PUCCH of the targeted cell; the second time is not earlier than the first time, and the second time is related to whether the PDCCH is monitored in the first time-frequency resource set.
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions.
  • the program of computer-readable instructions generates actions when executed by at least one processor.
  • the actions include: firstly The PDCCH is sent in the first time-frequency resource set, and the HARQ-ACK associated with the DCI detected in the first time-frequency resource set is received on the first cell; and then the first information block is sent, the The first information block is used to indicate to stop performing the first set of operations for the first cell starting from the first time and to stop performing the second set of operations for the first cell starting from the second time; the recipient of the first information block includes The first node, the first operation set includes the first node monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used for scheduling the targeted cell, and sending the PRACH on the targeted cell.
  • the second operation set includes the first node sending HARQ-ACK on the PUCCH of the targeted cell; the second time is not earlier than the first time, and the second time is the same as in the It is related to whether the PDCCH is detected in the first time-frequency resource set.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a UE.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used in Monitor PDCCH in the first time-frequency resource set; the antenna 420, the At least the first four of the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit the PDCCH in the first time-frequency resource set.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive The first information block; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit First information block.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive The first signal; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit the first signal. A signal.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the third Two information blocks; at least the first four of the antenna 420, the receiver 418, the multi-antenna reception processor 472, the reception processor 470, and the controller/processor 475 are used to receive the second Two information blocks.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used in Receive the first signaling in the second time-frequency resource set; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 At least the first four are used to send the first signaling in the second time-frequency resource set.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used in The second signal is received in the third time-frequency resource set; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 The first four are used to send the second signal in the third time-frequency resource set.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the third Three information blocks; at least the first four of the antenna 420, the receiver 418, the multi-antenna reception processor 472, the reception processor 470, and the controller/processor 475 are used to receive the third information block. Three information blocks.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the target Signaling; at least the first four of the antenna 420, the receiver 418, the multi-antenna reception processor 472, the reception processor 470, and the controller/processor 475 are used to receive the target signal. make.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive from Stop executing the first operation set for the first cell from the first time and stop executing the second operation set for the first cell from the second time; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471 , the transmit processor 416, at least the first four of the controller/processors 475 are used to stop performing the first set of operations for the first cell starting from the first time and starting from the second time for the first cell Stop executing the second set of operations.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to obtain from Stop executing a first set of operations for the first cell from a second time and stop executing a second set of operations for the first cell from a second time; the antenna 420, the receiver 418, the multi-antenna reception processor 472, At least the first four of the receive processor 470 and the controller/processor 475 are configured to perform a first set of operations starting from a first time for the first cell and starting from a second time for the first cell. Execute a second set of operations.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive from The first set of operations is performed for the second cell starting from the third time and the second set of operations is performed for the second cell starting from the fourth time; the antenna 420, the transmitter 418, the multi-antenna transmission process At least the first four of the controller 471, the transmit processor 416, and the controller/processor 475 are used to perform the first set of operations for the second cell starting from the third time and starting from the fourth time.
  • the second cell performs the second set of operations.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to obtain from performing the first set of operations for the second cell starting from the third time and performing the second set of operations for the second cell starting from the fourth time; the antenna 420, the receiver 418, the multiple antennas At least the first four of the receive processor 472, the receive processor 470, the controller/processor 475 are used to perform the first set of operations for the second cell starting from the third time and starting from the fourth time Start performing the second set of operations for the second cell.
  • Embodiment 5 illustrates a flow chart of the first information block, as shown in FIG. 5 .
  • the first node U1 and the second node N2 communicate through a wireless link.
  • the part marked by the dotted box F0 in the figure is optional.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 5 can be used in Embodiments 6 to 8; similarly, in the case of no conflict, any of the embodiments 6 to 8 can be used.
  • Embodiments, sub-embodiments and subsidiary embodiments of 1 can be used for Embodiment 5.
  • step S10 For the first node U1 , in step S10, monitor the PDCCH in the first time-frequency resource set; in step S11, receive the first information block; in step S12, stop executing the first operation set for the first cell from the first time and stop executing the second set of operations for the first cell starting from the second time; in step S13, starting executing the first set of operations for the second cell starting from the third time and starting executing the second set of operations for the second cell starting from the fourth time. Second set of operations.
  • step S20 the PDCCH is sent in the first time-frequency resource set; in step S21, the first information block is sent.
  • the first operation set includes at least one of monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used for scheduling the targeted cell, and sending PRACH on the targeted cell;
  • the second operation set includes sending HARQ-ACK on the PUCCH of the targeted cell; the second time is not earlier than the first time, and the second time is consistent with whether monitoring is performed in the first time-frequency resource set to PDCCH.
  • the first information block is used to indicate performing the first set of operations for the second cell starting from the third time and performing the second set of operations for the second cell starting from the fourth time.
  • the third time is not earlier than the first time
  • the fourth time is not earlier than the second time.
  • the second cell is a serving cell.
  • the second cell is a Spcell.
  • the second cell is a candidate cell.
  • the second cell is a selected cell.
  • the second cell is a turned-off cell.
  • the second cell is a switched-off cell.
  • the second cell supports dynamic switching (Dynamic Switch).
  • the third time is equal to the first time.
  • the fourth time is equal to the second time.
  • the third time is a time slot.
  • the fourth time is a time slot.
  • the first node determines the third time by itself.
  • the first node determines the fourth time by itself.
  • the third time is later than the first time.
  • the third time and the first time belong to the same radio frame.
  • the fourth time is later than the second time.
  • the fourth time and the second time belong to the same radio frame.
  • the time interval between the third time and the first time is equal to T1.
  • the unit of T1 is milliseconds.
  • the T1 is less than 1 millisecond.
  • the T1 is equal to the duration of a positive integer number of time slots.
  • the T1 is equal to the time required for the first node to switch between two serving cells.
  • the T1 is equal to the time required for the first node to dynamically switch between two candidate cells.
  • the time interval between the fourth time and the second time is equal to T2.
  • the unit of T2 is milliseconds.
  • the T2 is less than 1 millisecond.
  • the T2 is equal to the duration of a positive integer number of time slots.
  • the T2 is equal to the time required for the first node to switch between two serving cells.
  • the T2 is equal to the time required for the first node to dynamically switch between two candidate cells.
  • the first cell and the second cell both belong to a first cell set, and the first cell set includes M1 serving cells, and the M1 serving cells are respectively associated with M1 identities, and the M1 Any one of the identities is an index outside the serving cell index.
  • At least one serving cell among the M1 serving cells is a special cell (Spcell).
  • Spcell special cell
  • the first cell and the second cell both belong to a first cell set, the first cell set includes M1 serving cells, and any serving cell among the M1 serving cells is a candidate cell. .
  • the first cell and the second cell both belong to a first cell set, and the first cell set includes M1 serving cells, and the M1 serving cells are respectively associated with the same index.
  • the first cell set is configured through RRC signaling.
  • the first operation includes: the second node transmits a physical downlink control channel on the targeted cell, sends a PDCCH for scheduling the targeted cell, and receives a PRACH on the targeted cell. At least one.
  • the first operation includes: the second node sends a physical downlink control channel on the targeted cell, sends a PDCCH for scheduling the targeted cell, and receives a PRACH on the targeted cell.
  • the first operation includes: the second node sending a physical downlink control channel on the targeted cell.
  • the first operation includes: sending a PDCCH used for scheduling a targeted cell.
  • the first operation includes: receiving PRACH on the targeted cell.
  • the second operation includes: the second node receives HARQ-ACK on the PUCCH of the targeted cell.
  • the second operation set includes: the second node receives HARQ-ACK on the PUSCH of the targeted cell.
  • the second operation set includes: the second node receives CSI on the PUCCH of the targeted cell.
  • the second operation set includes: the second node receives CSI on the PUSCH of the targeted cell.
  • Embodiment 6 illustrates a flow chart of the first signal, as shown in FIG. 6 .
  • the first node U3 and the second node N4 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 6 can be used in Embodiments 5 to 8; similarly, in the case of no conflict, any of the embodiments in Embodiments 5 to 8 can be used.
  • Embodiments, sub-embodiments and subsidiary embodiments of 1 can be used for Embodiment 6.
  • the first signal is received in step S30 and the second information block is sent in step S31.
  • the first signal is sent in step S40 and the second information block is received in step S41.
  • the DCI detected in the first time-frequency resource set is used to determine the first signal
  • the second information block includes the first signal determined by the DCI.
  • the HARQ-ACK and the second information block are feedback for the first signal.
  • the DCI is used to schedule the first signal.
  • the DCI is used to indicate the time domain resources occupied by the first signal.
  • the DCI is used to indicate frequency domain resources occupied by the first signal.
  • the DCI is used to indicate the MCS (Modulation and Coding Scheme) adopted by the first signal.
  • MCS Modulation and Coding Scheme
  • the DCI is used to indicate the NDI (New Data Indicator) corresponding to the first signal.
  • the DCI is used to indicate the RV (Redundancy Version, redundancy version) corresponding to the first signal. Book).
  • the physical layer channel occupied by the second information block includes PUCCH.
  • the physical layer channel occupied by the second information block includes PUSCH.
  • the physical layer channel occupied by the first signal includes PDSCH.
  • the transmission channel occupied by the first signal includes DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first signal is generated by a TB (Transport Block).
  • the frequency domain resources occupied by the first signal belong to the first cell.
  • the frequency domain resources occupied by the second information block belong to the first cell.
  • the time domain resources occupied by the first signal are earlier than the time domain resources occupied by the first information block.
  • the time domain resources occupied by the first signal are no later than the time domain resources occupied by the first information block.
  • the time domain resource occupied by the first signal is no later than the time domain resource occupied by the first information block and earlier than the first time.
  • the time domain resource occupied by the second information block is located after the first time and before the second time.
  • step S30 is located after step S11 and before step S12 in Embodiment 5.
  • step S40 is located after step S21 in embodiment 5.
  • step S31 is located after step S11 in embodiment 5 and before step S12.
  • Embodiment 7 illustrates a flow chart of the second signal, as shown in FIG. 7 .
  • the first node U5 and the second node N6 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 7 can be used in Embodiments 5 to 8; similarly, in the case of no conflict, any of the embodiments in Embodiments 5 to 8 can be used.
  • Embodiments, sub-embodiments and subsidiary embodiments of 1 can be used for Embodiment 7.
  • step S50 the first signaling is received in the second time-frequency resource set, in step S51, the second signal is received in the third time-frequency resource set, and in step S52, the third information block is sent. .
  • step S60 the first signaling is sent in the second time-frequency resource set, in step S61, the second signal is sent in the third time-frequency resource set, and in step S62, the third information block is received.
  • the first signaling is used to determine the second signal, and the third information block is feedback for the second signal; the time domain resources occupied by the first signaling are later than The time domain resources occupied by the first information block, and the time domain resources occupied by the first signaling are earlier than the first time.
  • the frequency domain resources occupied by the second time-frequency resource set belong to the second cell.
  • the frequency domain resources occupied by the second time-frequency resource set belong to the first cell.
  • the frequency domain resources occupied by the second time-frequency resource set and the frequency domain resources occupied by the first time-frequency resource set include the same CORESET.
  • the second time-frequency resource set and the first time-frequency resource set are associated with the same CORESET.
  • the frequency domain resource occupied by the third information block belongs to the second cell.
  • the first signaling is used to schedule the second signal.
  • the first signaling is used to indicate the time domain resources occupied by the second signal.
  • the first signaling is used to indicate frequency domain resources occupied by the second signal.
  • the first signaling is used to indicate the MCS adopted by the second signal.
  • the first signaling is used to indicate the NDI corresponding to the second signal.
  • the first signaling is used to indicate the RV corresponding to the second signal.
  • the physical layer channel occupied by the third information block includes PUCCH.
  • the physical layer channel occupied by the third information block includes PUSCH.
  • the physical layer channel occupied by the second signal includes PDSCH.
  • the transmission channel occupied by the second signal includes DL-SCH.
  • the second signal is generated by a TB.
  • the frequency domain resources occupied by the second signal belong to the first cell.
  • the time domain resources occupied by the second signal are later than the time domain resources occupied by the first information block, and the time domain resources occupied by the second signal are earlier than the first time. .
  • the frequency domain resource occupied by the third information block belongs to the first cell, and the third information block is delayed to be sent.
  • the meaning of delayed sending includes: the first signaling is not used to determine the time domain resources occupied by the third information block.
  • the delayed transmission means that the time domain resource occupied by the third information block is located after the fourth time.
  • the meaning of delayed transmission includes: the time domain resource occupied by the third information block is located in the first node and starts to perform the first operation set again for the first cell and starts to perform the first operation set for the first cell. After executing the second set of operations again.
  • the first node gives up sending feedback for the second signal.
  • step S50 is located after step S11 and before step S12 in Embodiment 5.
  • step S60 is located after step S21 in embodiment 5.
  • step S50 is located after step S12 in embodiment 5.
  • step S50 is located after step S13 in embodiment 5.
  • Embodiment 8 illustrates a flow chart of target signaling, as shown in Figure 8.
  • the first node U7 and the second node N8 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 8 can be used in Embodiments 5 to 7; similarly, in the case of no conflict, any of the embodiments in Embodiments 5 to 7 can be used.
  • Embodiments, sub-embodiments and subsidiary embodiments of 1 can be used for Embodiment 8.
  • target signaling is sent in step S70.
  • target signaling is received in step S80.
  • the target signaling is used to trigger the reception of the first information block.
  • the first information block is feedback for the target signaling.
  • the first information block is an acknowledgment for the target signaling.
  • the target signaling includes layer 1 measurement results.
  • the target signaling includes layer 1 reporting.
  • step S70 is located before step S10 in embodiment 5.
  • the step S70 is located before the step S11 in Embodiment 5 and after the step S10.
  • step S80 is located before step S20 in embodiment 5.
  • step S80 is located before step S21 and after step S20 in Embodiment 5.
  • Embodiment 9 illustrates a schematic diagram of the first time and the second time, as shown in FIG. 9 .
  • the first node receives the first information block at the target time; and the first node stops executing the first set of operations for the first cell from the first time, and starts from the second time Start to stop executing the second set of operations for the first cell; the target time to the first time in the figure belong to the first time window, and the first time to the second time belong to the second time window.
  • the target time is a time slot.
  • the target time is one OFDM symbol.
  • the target time is the starting time of an OFDM symbol.
  • the target time is the starting time of a time slot.
  • the DCI in the first time-frequency resource set is received before the target time.
  • the DCI in the first time-frequency resource set is received in the first time window.
  • the first signal is received before the target time.
  • the first signal is received in the first time window.
  • the second information block is sent in the first time window.
  • the second information block is sent in the second time window.
  • Embodiment 10 illustrates a schematic diagram of the third time and the fourth time, as shown in FIG. 10 .
  • the first node receives the first information block at a target time; and performs the first set of operations for the second cell starting from the third time and starting from the fourth time.
  • the second cell executes the second operation set; the target time to the third time in the figure belong to the third time window, and the third time to the fourth time belong to the fourth time window.
  • the target time is a time slot.
  • the target time is one OFDM symbol.
  • the target time is the starting time of an OFDM symbol.
  • the target time is the starting time of a time slot.
  • the third time window includes the first time window.
  • the fourth time window includes the second time window.
  • Embodiment 11 illustrates a schematic diagram of an application scenario, as shown in Figure 11.
  • the first cell and the second cell are both serving cells of the first node, and the first node performs layer 1/layer 2 communication between the first cell and the second cell. Dynamic switching.
  • the first cell is a SpCell.
  • the second cell is a SpCell.
  • the SpCell is a cell in a first cell set.
  • the first cell set includes the first cell and the second cell. community.
  • Embodiment 12 illustrates a structural block diagram in a first node, as shown in Figure 12.
  • the first node 1200 includes a first receiver 1201.
  • the first receiver 1201 monitors the PDCCH in the first time-frequency resource set, and the HARQ-ACK associated with the DCI detected in the first time-frequency resource set is sent on the first cell; receiving the first An information block, the first information block being used to indicate to stop performing the first set of operations for the first cell starting from the first time and to stop performing the second set of operations for the first cell starting from the second time;
  • the first operation set includes at least one of monitoring the physical downlink control channel on the targeted cell, monitoring the PDCCH used for scheduling the targeted cell, and sending the PRACH on the targeted cell;
  • the second operation set includes sending HARQ-ACK on the PUCCH of the targeted cell; the second time is not earlier than the first time, and the second time is consistent with whether monitoring is performed in the first time-frequency resource set to PDCCH.
  • the first receiver 1201 receives the first signal
  • the first transceiver 1202 sends the second information block
  • the DCI detected in the first time-frequency resource set is used to determine the first signal
  • the second information block includes the HARQ of the first signal determined by the DCI.
  • the second information block is feedback for the first signal.
  • the first transceiver 1202 performs the first set of operations for the second cell starting from the third time and the second set of operations starting from the fourth time for the second cell;
  • first information block is used to indicate performing the first set of operations for the second cell starting from the third time and performing the second set of operations for the second cell starting from the fourth time;
  • the third time is not earlier than the first time, and the fourth time is not earlier than the second time.
  • the first receiver 1201 receives the first signaling in the second time-frequency resource set, and receives the second signal in the third time-frequency resource set;
  • the first transceiver 1202 sends the third information block
  • the first signaling is used to determine the second signal, and the third information block is feedback for the second signal; the time domain resource occupied by the first signaling is later than that of the second signal.
  • the time domain resources occupied by the first information block, and the time domain resources occupied by the first signaling are earlier than the first time; the frequency domain resources occupied by the third information block belong to the second cell .
  • the first cell and the second cell both belong to a first cell set
  • the first cell set includes M1 serving cells
  • the M1 serving cells are respectively associated with M1 identities, so Any of the M1 identities is an index other than the serving cell index.
  • the first cell and the second cell both belong to a first cell set
  • the first cell set includes M1 serving cells
  • the M1 serving cells are respectively associated with the same index.
  • the first transmitter 1203 sends target signaling
  • the target signaling is used to trigger the reception of the first information block.
  • the first receiver 1201 includes at least the first four of the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, and controller/processor 459 in Embodiment 4.
  • the first transceiver 1202 includes the antenna 452, receiver/transmitter 454, multi-antenna reception processor 458, multi-antenna transmission processor 457, reception processor 456, and transmission processor in Embodiment 4. 468. At least the first 6 of the controller/processor 459.
  • the first transmitter 1203 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in Embodiment 4.
  • Embodiment 13 illustrates a structural block diagram in the second node, as shown in Figure 13.
  • the second node 1300 includes a second transmitter 1301.
  • the second transmitter 1301 sends the PDCCH in the first time-frequency resource set, and the HARQ-ACK associated with the DCI detected in the first time-frequency resource set is received on the first cell; sending the first An information block, the first information block being used to indicate to stop performing the first set of operations for the first cell starting from the first time and to stop performing the second set of operations for the first cell starting from the second time;
  • the recipient of the first information block includes a first node, and the first operation set includes the first node monitoring the physical downlink control channel on the targeted cell, and monitoring the control channel used for scheduling the targeted cell. At least one of PDCCH and PRACH is sent on the targeted cell; the second operation set includes the first node sending HARQ-ACK on the PUCCH of the targeted cell; the second time is not earlier than The first time and the second time are related to whether the PDCCH is monitored in the first time-frequency resource set.
  • the second transmitter 1301 sends the first signal
  • the second transceiver 1302 receives the second information block
  • the DCI detected in the first time-frequency resource set is used to determine the first signal
  • the second information block includes the HARQ of the first signal determined by the DCI.
  • the second information block is feedback for the first signal.
  • the second transceiver 1302 performs the first set of operations for the second cell starting from the third time and the second set of operations starting from the fourth time for the second cell;
  • the first information block is used to instruct the first node to perform the first operation set for the second cell starting from the third time and to perform the second operation set starting from the fourth time.
  • the second transmitter 1301 sends the first signaling in the second time-frequency resource set, and sends the second signal in the third time-frequency resource set;
  • the first signaling is used to determine the second signal; the time domain resources occupied by the first signaling are later than the time domain resources occupied by the first information block, and the first The time domain resources occupied by the signaling are earlier than the first time.
  • the second transceiver 1302 receives the third information block
  • the third information block is feedback for the second signal.
  • the frequency domain resources occupied by the third information block belong to the second cell.
  • the frequency domain resources occupied by the third information block belong to the first cell, and the third information block is delayed to be sent.
  • the second node gives up receiving feedback for the second signal.
  • the first cell and the second cell both belong to a first cell set
  • the first cell set includes M1 serving cells
  • the M1 serving cells are respectively associated with M1 identities, so Any of the M1 identities is an index other than the serving cell index.
  • the first cell and the second cell both belong to a first cell set
  • the first cell set includes M1 serving cells
  • the M1 serving cells are respectively associated with the same index.
  • the second receiver 1303 receives target signaling
  • the target signaling is used to trigger the reception of the first information block.
  • the second transmitter 1301 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in Embodiment 4.
  • the second transceiver 1302 includes the antenna 420, transmitter/receiver 418, multi-antenna transmit processor 471, multi-antenna receive processor 472, transmit processor 416, and receive processor in Embodiment 4. 470. At least the first 6 of the controller/processor 475.
  • the second receiver 1303 includes at least the first four of the antenna 420, receiver 418, multi-antenna receiving processor 472, receiving processor 470, and controller/processor 475 in Embodiment 4.
  • the first node in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, transportation vehicles, vehicles, RSUs, aircraft, aircraft, none Human-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but is not limited to macro cell base station, micro cell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, air base station , RSU, UAV, test equipment, such as transceiver device or signaling tester that simulates some functions of the base station, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先在第一时频资源集合中监测PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被发送;随后接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;所述第一操作集合与PDCCH或PRACH有关;所述第二操作集合与PUCCH有关;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。本申请改进服务小区动态切换场景下上行控制信息的传输方式,以增加***性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及无线通信中的上行控制信息传输的设计方案和装置。
背景技术
在Release-17***中,CPC(Conditional PSCell change,条件的主副小区改变)和CPA(Conditional PSCell addition,条件的主副小区添加)被广泛讨论,并被标准化。在CPC/CPA中,终端需要在完成对目标PSCell的随机接入后释放CPC/CPA配置,因此,终端没有机会再没有CPC/CPA预先配置的情况下操作后续的CPC/CPA,这将会增加小区变化的延迟以及增加信令开销。
在Release-18课题的讨论中,针对CPC/CPA的问题,一种新的面向L1/L2的小区间移动性的机制和过程被重新设计。
发明内容
相较于传统的服务小区的激活/去激活(Activation/Deactivation),以及Release-17中讨论的CPC/CPA,L1/L2的小区间移动性管理可能会导致更快的小区变化,尤其是特殊小区(SpCell)的变化,当变化是以时隙(Slot)的颗粒度发生时,这将会对物理层的UCI(Uplink Control Information)的传输产生影响。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述基于L1/L2移动性的场景,本申请也适用于其他场景比如干扰测量,并取得类似在支持L1/L2移动性的通信场景中的地面终端中的技术效果。此外,不同应用领域(包括但不限于UCI)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到其他任一节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
进一步的,在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS(Technical Specification)36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
在第一时频资源集合中监测PDCCH(Physical Downlink Control Channel,物理下行控制信道),被关联到在所述第一时频资源集合中被检测出的DCI(Downlink Control Information,下行控制信息)的HARQ-ACK(Hybrid Automatic Repeat reQuest Acknowledgement,混合自动重传请求确认)在第一小区上被发送;接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
其中,所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH(Physical Random Access Channel,物理随机接入信道)三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH(Physical Uplink Control Channel,物理上行控制信道)上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
作为一个实施例,上述方法的一个技术特征在于:当服务小区,尤其是SpCell被动态切换时,在动态切换信令接收到之后,且生效之前的HARQ-ACK的传输仍然在原小区进行,而其它非UCI的操作则转移到动态切换后的服务小区进行。
根据本申请的一个方面,包括:
接收第一信号;
发送第二信息块;
其中,在所述第一时频资源集合中检测出的所述DCI被用于确定所述第一信号,所述第二信息块包括所述DCI所确定的所述第一信号的所述HARQ-ACK,所述第二信息块是针对所述第一信号的反馈。
根据本申请的一个方面,包括:
从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合;
其中,所述第一信息块被用于指示从所述第三时间开始针对第二小区执行所述第一操作集合以及从所述第四时间开始针对第二小区执行所述第二操作集合;所述第三时间不早于所述第一时间,所述第四时间不早于所述第二时间。
作为一个实施例,上述方法的一个技术特征在于:所述第一信息块将所述第一节点的所述第一操作和所述第二操作从所述第一小区切换到所述第二小区。
根据本申请的一个方面,包括:
在第二时频资源集合中接收第一信令,且在第三时频资源集合中接收第二信号;
其中,所述第一信令被用于确定所述第二信号;所述第一信令所占用的时域资源晚于所述第一信息块所占用的时域资源,且所述第一信令所占用的时域资源早于所述第一时间。
根据本申请的一个方面,包括:
发送第三信息块;
所述第三信息块是针对所述第二信号的反馈。
根据本申请的一个方面,所述第三信息块所占用的频域资源属于所述第二小区。
根据本申请的一个方面,所述第三信息块所占用的频域资源属于所述第一小区,所述第三信息块被延迟发送。
根据本申请的一个方面,所述第一节点放弃发送针对所述第二信号的反馈。
作为一个实施例,上述方法的一个技术特征在于:对于在动态切换信令接收到之后的DCI调度的数据所对应的HARQ-ACK,所述第一节点会在切换后的服务小区中发送HARQ-ACK,或者等待切换前的服务小区被重新切换回后发送HARQ-ACK,或者放弃HARQ-ACK传输。
根据本申请的一个方面,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到M1个身份,所述M1个身份中的任一身份都是服务小区索引之外的索引。
根据本申请的一个方面,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到一个相同的索引。
根据本申请的一个方面,包括:
发送目标信令;
其中,所述目标信令被用于触发所述第一信息块的接收。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
在第一时频资源集合中发送PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被接收;发送第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
其中,所述第一信息块的接收者包括第一节点,所述第一操作集合包括所述第一节点在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括所述第一节点在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
根据本申请的一个方面,包括:
发送第一信号;
接收第二信息块;
其中,在所述第一时频资源集合中检测出的所述DCI被用于确定所述第一信号,所述第二信息块包括所述DCI所确定的所述第一信号的所述HARQ-ACK,所述第二信息块是针对所述第一信号的反馈。
根据本申请的一个方面,包括:
从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合;
其中,所述第一信息块被用于指示所述第一节点从所述第三时间开始针对第二小区执行所述第一操作集合以及从所述第四时间开始针对第二小区执行所述第二操作集合;所述第三时间不早于所述第一时间,所述第四时间不早于所述第二时间。
根据本申请的一个方面,包括:
在第二时频资源集合中发送第一信令,且在第三时频资源集合中发送第二信号;
其中,所述第一信令被用于确定所述第二信号;所述第一信令所占用的时域资源晚于所述第一信息块所占用的时域资源,且所述第一信令所占用的时域资源早于所述第一时间。
根据本申请的一个方面,包括:
接收第三信息块;
所述第三信息块是针对所述第二信号的反馈。
根据本申请的一个方面,所述第三信息块所占用的频域资源属于所述第二小区。
根据本申请的一个方面,所述第三信息块所占用的频域资源属于所述第一小区,所述第三信息块被延迟发送。
根据本申请的一个方面,所述第二节点放弃接收针对所述第二信号的反馈。
根据本申请的一个方面,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到M1个身份,所述M1个身份中的任一身份都是服务小区索引之外的索引。
根据本申请的一个方面,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到一个相同的索引。
根据本申请的一个方面,包括:
接收目标信令;
其中,所述目标信令被用于触发所述第一信息块的接收。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,在第一时频资源集合中监测PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被发送;接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
其中,所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,在第一时频资源集合中发送PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被接收;发送第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
其中,所述第一信息块的接收者包括第一节点,所述第一操作集合包括所述第一节点在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括所述第一节点在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有 关。
作为一个实施例,和传统方案相比,本申请的优势在于:提高UCI传输的稳定性和可靠性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信息块的流程图;
图6示出了根据本申请的一个实施例的第一信号的流程图;
图7示出了根据本申请的一个实施例的第二信号的流程图;
图8示出了根据本申请的一个实施例的目标信令的流程图;
图9示出了根据本申请的一个实施例的第一时间和第二时间的示意图;
图10示出了根据本申请的一个实施例的第三时间和第四时间的示意图;
图11示出了根据本申请的一个实施例的应用场景的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中在第一时频资源集合中监测PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被发送;在步骤102中接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合。
实施例1中,所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
作为一个实施例,所述第一时频资源集合包括至少一个CORESET(Control Resource Set,控制资源集合)。
作为一个实施例,所述第一时频资源集合在频域上包括至少一个CORESET。
作为一个实施例,所述第一时频资源集合被关联到一个搜索空间(Search Space)。
作为一个实施例,所述第一时频资源集合被关联到一个搜索空间集合(Search Space Set)。
作为一个实施例,所述第一时频资源集合占用大于1的正整数个REs(Resource Elements,资源颗粒)。
作为一个实施例,所述第一时频资源集合在时域上在所述第一时间之前。
作为一个实施例,所述第一时频资源集合包括在多个小区上的搜索空间。
作为一个实施例,所述第一时频资源集合在时域上包括至少一个PDCCH MO(Monitoring Occasion,监测时机)。
作为一个实施例,所述第一时频资源集合在时域上包括在所述第一时间之前的最近的一个PDCCH MO。
作为一个实施例,所述第一信息块通过物理层信令传输。
作为一个实施例,所述第一信息块所占用的物理层信道包括PDCCH。
作为一个实施例,所述第一信息块通过MAC(Medium Access Control,媒体接入控制)CE(Control Elements,控制颗粒)传输。
作为一个实施例,所述第一信息块被用于候选(Candidate)小区(Cell)切换。
作为一个实施例,所述第一信息块被用于服务(Serving)小区切换。
作为一个实施例,所述第一信息块被用于SpCell的切换。
作为一个实施例,所述第一信息块是一个activation command。
作为一个实施例,所述第一信息块是一个switch command。
作为一个实施例,所述第一信息块是一个turn-on command。
作为一个实施例,所述第一信息块是一个turn-off command。
作为一个实施例,所述第一小区是一个服务小区。
作为一个实施例,所述第一小区是一个SpCell。
作为一个实施例,所述第一小区是一个候选小区。
作为一个实施例,所述第一小区是一个选中(Selected)小区。
作为一个实施例,所述第一小区是一个被关闭(Turn-off)小区。
作为一个实施例,所述第一小区是一个被切换关闭(Switch-off)小区。
作为一个实施例,所述第一小区支持动态切换(Dynamic Switch)。
作为一个实施例,所述第一时间和所述第二时间分别是一个时隙。
作为一个实施例,所述第一时间和所述第二时间分别是一个OFDM符号。
作为一个实施例,所述第一时间和所述第二时间分别是一个OFDM符号的起始时刻。
作为一个实施例,所述第一时间和所述第二时间分别是一个时隙的起始时刻。
作为一个实施例,所述第一信息块的接收在时隙n结束(Ending),所述第一时间是一个时隙。
作为该实施例的一个子实施例,所述第一时间不迟于时隙(n+k1)时隙,所述k1是正整数。
作为该实施例的一个子实施例,所述第一时间不早于时隙(n+k),所述k是正整数。
作为该实施例的一个子实施例,所述第一时间不迟于时隙(n+k1)时隙,所述k1是正整数;且所述第一时间不早于时隙(n+k),所述k是正整数。
作为上述子实施例的一个附属实施例,所述k1的值与所述第一节点的能力有关。
作为上述子实施例的一个附属实施例,所述k1的值符合TS 38.133中的最小需求(minimum requirement)。
作为上述子实施例的一个附属实施例,所述k的值与所述第一小区所采用的SCS(Subcarrier Spacing,子载波间隔)有关。
作为上述子实施例的一个附属实施例,所述k的值与所述第一小区在采用的SCS下一个子帧中时隙的数量有关。
作为上述子实施例的一个附属实施例,所述k的值与所述第一节点解码PDCCH的能力有关。
作为上述子实施例的一个附属实施例,所述k的值与所述第一节点的能力(Capability)有关。
作为上述子实施例的一个附属实施例,所述k的值与所述第一节点的Category有关。
作为一个实施例,所述第一信息块的接收在时隙n结束(Ending),所述第二时间是一个时隙。
作为该实施例的一个子实施例,所述第二时间不迟于时隙(n+k2)时隙,所述k2是正整数。
作为该实施例的一个子实施例,所述第二时间不早于时隙(n+k3),所述k3是正整数。
作为该实施例的一个子实施例,所述第二时间不迟于时隙(n+k2)时隙,所述k2是正整数;且所述第一时间不早于时隙(n+k3),所述k3是正整数。
作为上述子实施例的一个附属实施例,所述k2的值与所述第一节点的能力有关。
作为上述子实施例的一个附属实施例,所述k2的值符合TS 38.133中的最小需求(minimum requirement)。
作为上述子实施例的一个附属实施例,所述k3的值与所述第一小区所采用的SCS有关。
作为上述子实施例的一个附属实施例,所述k3的值与所述第一小区在采用的SCS下一个子帧中时隙的数量有关。
作为上述子实施例的一个附属实施例,所述k3的值与所述第一节点解码PDCCH的能力有关。
作为上述子实施例的一个附属实施例,所述k3的值与所述第一节点的能力(Capability)有关。
作为上述子实施例的一个附属实施例,所述k3的值与所述第一节点的Category有关。
作为上述子实施例的一个附属实施例,所述k3的值与m有关,所述第一节点在子帧(n+m)发送被检测出的DCI的HARQ-ACK。
作为上述子实施例的一个附属实施例,所述k3的值与m有关,所述第一节点在子帧(n+m)发送被检测出的DCI所调度的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的HARQ-ACK。
作为一个实施例,所述第一时间不晚于所述第二时间。
作为一个实施例,所述第二时间晚于所述第一时间。
作为一个实施例,所述第一时间早于所述第二时间。
作为一个实施例,所述所针对的小区包括所述第一小区。
作为一个实施例,所述所针对的小区包括所述第一节点所有被激活的服务小区。
作为一个实施例,所述所针对的小区包括所述第一节点所有被开启的候选小区。
作为一个实施例,所述所针对的小区包括所述第一节点所有被开启的候选小区。
作为一个实施例,所述所针对的小区包括所述第一节点所有被选中的小区。
作为一个实施例,所述所针对的小区包括所述第一节点所有被开启的SpCell。
作为一个实施例,所述第一操作集合包括在所针对小区上监听物理下行控制信道。
作为一个实施例,所述第一操作集合包括监听用于调度所针对小区的PDCCH。
作为一个实施例,所述第一操作集合包括在所针对小区上发送PRACH。
作为一个实施例,所述第一操作集合包括在所针对小区上接收PDSCH。
作为一个实施例,所述第二操作集合包括在所针对小区的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上发送HARQ-ACK
作为一个实施例,所述第二操作集合包括在所针对小区的PUCCH上发送CSI(Channel State Information,信道状态信息)。
作为一个实施例,所述第二操作集合包括在所针对小区的PUSCH上发送CSI。
作为一个实施例,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关的意思包括:所述第一节点在所述第一时频资源集合中监测到所述PDCCH,所述第二时间被确定;所述第一节点在所述第一时频资源集合中没有监测到所述PDCCH,所述第二时间不存在。
作为一个实施例,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关的意思包括:所述第一节点在所述第一时频资源集合中监测到所述PDCCH,所述第二时间被确定;所述第一节点在所述第一时频资源集合中没有监测到所述PDCCH,所述第二时间等于所述第一时间。
作为一个实施例,所述监测PDCCH包括:接收所述PDCCH。
作为一个实施例,所述监测PDCCH包括:盲检测所述PDCCH。
作为一个实施例,所述监测PDCCH包括:检测所述PDCCH。
作为一个实施例,所述监测PDCCH包括:解码所述PDCCH。
作为一个实施例,所述监测PDCCH包括:解调所述PDCCH。
作为一个实施例,所述监测PDCCH包括:能量监测所述PDCCH。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220 和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是具有支持服务小区动态切换的能力的终端。
作为一个实施例,所述UE201是支持载波聚合的终端。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203支持服务小区动态切换。
作为一个实施例,所述gNB203支持支持载波聚合。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resouce Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以 减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,本申请中的在所述第一时频资源集合中监测PDCCH的生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的在所述第一时频资源集合中监测PDCCH的生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信息块生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信息块生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信息块生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信息块生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信号生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息块生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信息块生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信息块生成于所述RRC306。
作为一个实施例,本申请中的所述目标信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述目标信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述目标信令生成于所述RRC306。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第二节点是一个终端。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点是一个小区(Cell)。
作为一个实施例,所述第二节点是一个eNB。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
作为一个实施例,所述第一节点能够同时接入多个小区。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先在第一时频资源集合中监测PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被发送;随后接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先在第一时频资源集合中监测PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被发送;随后接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先在第一时频资源集合中发送PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被接收;随后发送第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;所述第一信息块的接收者包括第一节点,所述第一操作集合包括所述第一节点在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括所述第一节点在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先在第一时频资源集合中发送PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被接收;随后发送第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;所述第一信息块的接收者包括第一节点,所述第一操作集合包括所述第一节点在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括所述第一节点在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第一时频资源集合中监测PDCCH;所述天线420,所述 发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第一时频资源集合中发送PDCCH。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息块;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息块。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第二信息块;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第二信息块。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第二时频资源集合中接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第二时频资源集合中发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第三时频资源集合中接收第二信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第三时频资源集合中发送第二信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第三信息块;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第三信息块。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送目标信令;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收目标信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合;所述天线420,所述接收器418,所述多天线 接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合。
实施例5
实施例5示例了一个第一信息块的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。图中虚线框F0标识的部分是可选的。在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被用于实施例6至8中;同样的,在不冲突的情况下,实施例6至8中任一的实施例、子实施例和附属实施例能够被用于实施例5。
对于第一节点U1,在步骤S10中在第一时频资源集合中监测PDCCH;在步骤S11中接收第一信息块;在步骤S12中从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;在步骤S13中从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合。
对于第二节点N2,在步骤S20中在第一时频资源集合中发送PDCCH;在步骤S21中发送第一信息块。
实施例5中,所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
典型的,所述第一信息块被用于指示从所述第三时间开始针对第二小区执行所述第一操作集合以及从所述第四时间开始针对第二小区执行所述第二操作集合;所述第三时间不早于所述第一时间,所述第四时间不早于所述第二时间。
作为一个实施例,所述第二小区是一个服务小区。
作为一个实施例,所述第二小区是一个Spcell。
作为一个实施例,所述第二小区是一个候选(Candidate)小区。
作为一个实施例,所述第二小区是一个选中(Selected)小区。
作为一个实施例,所述第二小区是一个被关闭(Turn-off)小区。
作为一个实施例,所述第二小区是一个被切换关闭(Switch-off)小区。
作为一个实施例,所述第二小区支持动态切换(Dynamic Switch)。
作为一个实施例,所述第三时间等于所述第一时间。
作为一个实施例,所述第四时间等于所述第二时间。
作为一个实施例,所述第三时间是一个时隙。
作为一个实施例,所述第四时间是一个时隙。
作为一个实施例,所述第一节点自行确定所述第三时间。
作为一个实施例,所述第一节点自行确定所述第四时间。
作为一个实施例,所述第三时间晚于所述第一时间。
作为一个实施例,所述第三时间和所述第一时间属于同一个无线帧。
作为一个实施例,所述第四时间晚于所述第二时间。
作为一个实施例,所述第四时间和所述第二时间属于同一个无线帧。
作为一个实施例,所述第三时间和所述第一时间之间的时间间隔等于T1。
作为该实施例的一个子实施例,所述T1的单位是毫秒。
作为该实施例的一个子实施例,所述T1小于1毫秒。
作为该实施例的一个子实施例,所述T1等于正整数个时隙的持续时间。
作为该实施例的一个子实施例,所述T1等于所述第一节点在两个服务小区之间切换所需要的时间。
作为该实施例的一个子实施例,所述T1等于所述第一节点在两个候选小区之间进行动态切换所需要的时间。
作为一个实施例,所述第四时间和所述第二时间之间的时间间隔等于T2。
作为该实施例的一个子实施例,所述T2的单位是毫秒。
作为该实施例的一个子实施例,所述T2小于1毫秒。
作为该实施例的一个子实施例,所述T2等于正整数个时隙的持续时间。
作为该实施例的一个子实施例,所述T2等于所述第一节点在两个服务小区之间切换所需要的时间。
作为该实施例的一个子实施例,所述T2等于所述第一节点在两个候选小区之间进行动态切换所需要的时间。
典型的,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到M1个身份,所述M1个身份中的任一身份都是服务小区索引之外的索引。
作为一个实施例,所述M1个服务小区中至少包括一个服务小区是特殊小区(Spcell)。
作为一个实施例,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区中任一服务小区都是候选小区。
典型的,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到一个相同的索引。
作为一个实施例,所述第一小区集合通过RRC信令配置。
作为一个实施例,所述第一操作包括:所述第二节点在所针对小区上发送物理下行控制信道、发送用于调度所针对小区的PDCCH、和在所针对小区上接收PRACH三者中的至少之一。
作为一个实施例,所述第一操作包括:所述第二节点在所针对小区上发送物理下行控制信道、发送用于调度所针对小区的PDCCH、和在所针对小区上接收PRACH。
作为一个实施例,所述第一操作包括:所述第二节点在所针对小区上发送物理下行控制信道。
作为一个实施例,所述第一操作包括:发送用于调度所针对小区的PDCCH。
作为一个实施例,所述第一操作包括:在所针对小区上接收PRACH。
作为一个实施例,所述第二操作包括:所述第二节点在所针对小区的PUCCH上接收HARQ-ACK。
作为一个实施例,所述第二操作集合包括:所述第二节点在所针对小区的PUSCH上接收HARQ-ACK
作为一个实施例,所述第二操作集合包括:所述第二节点在所针对小区的PUCCH上接收CSI。
作为一个实施例,所述第二操作集合包括:所述第二节点在所针对小区的PUSCH上接收CSI。
实施例6
实施例6示例了一个第一信号的流程图,如附图6所示。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被用于实施例5至8中;同样的,在不冲突的情况下,实施例5至8中任一的实施例、子实施例和附属实施例能够被用于实施例6。
对于第一节点U3,在步骤S30中接收第一信号,在步骤S31中发送第二信息块。
对于第二节点N4,在步骤S40中发送第一信号,在步骤S41中接收第二信息块。
实施例6中,在所述第一时频资源集合中检测出的所述DCI被用于确定所述第一信号,所述第二信息块包括所述DCI所确定的所述第一信号的所述HARQ-ACK,所述第二信息块是针对所述第一信号的反馈。
作为一个实施例,所述DCI被用于调度所述第一信号。
作为一个实施例,所述DCI被用于指示所述第一信号所占用的时域资源。
作为一个实施例,所述DCI被用于指示所述第一信号所占用的频域资源。
作为一个实施例,所述DCI被用于指示所述第一信号所采用的MCS(Modulation and Coding Scheme,调制编码方式)。
作为一个实施例,所述DCI被用于指示所述第一信号所对应的NDI(New Data Indicator,新数据指示)。
作为一个实施例,所述DCI被用于指示所述第一信号所对应的RV(Redundancy Version,冗余版 本)。
作为一个实施例,所述第二信息块所占用的物理层信道包括PUCCH。
作为一个实施例,所述第二信息块所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述第一信号所占用的传输信道包括DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第一信号由一个TB(Transport Block,传输块)生成。
作为一个实施例,所述第一信号所占用的频域资源属于所述第一小区。
作为一个实施例,所述第二信息块所占用的频域资源属于所述第一小区。
作为一个实施例,所述第一信号所占用的时域资源早于所述第一信息块所占用的时域资源。
作为一个实施例,所述第一信号所占用的时域资源不晚于所述第一信息块所占用的时域资源。
作为一个实施例,所述第一信号所占用的时域资源不晚于所述第一信息块所占用的时域资源,且早于所述第一时间。
作为一个实施例,所述第二信息块所占用的时域资源位于所述第一时间之后且所述第二时间之前。
作为一个实施例,所述步骤S30位于实施例5中的步骤S11之后,且步骤S12之前。
作为一个实施例,所述步骤S40位于实施例5中的步骤S21之后。
作为一个实施例,所述步骤S31位于实施例5中的步骤S11之后,且步骤S12之前。
实施例7
实施例7示例了一个第二信号的流程图,如附图7所示。在附图7中,第一节点U5与第二节点N6之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被用于实施例5至8中;同样的,在不冲突的情况下,实施例5至8中任一的实施例、子实施例和附属实施例能够被用于实施例7。
对于第一节点U5,在步骤S50中在第二时频资源集合中接收第一信令,在步骤S51中在第三时频资源集合中接收第二信号,在步骤S52中发送第三信息块。
对于第二节点N6,在步骤S60中在第二时频资源集合中发送第一信令,在步骤S61中在第三时频资源集合中发送第二信号,在步骤S62中接收第三信息块。
实施例7中,所述第一信令被用于确定所述第二信号,所述第三信息块是针对所述第二信号的反馈;所述第一信令所占用的时域资源晚于所述第一信息块所占用的时域资源,且所述第一信令所占用的时域资源早于所述第一时间。
作为一个实施例,所述第二时频资源集合所占用的频域资源属于所述第二小区。
作为一个实施例,所述第二时频资源集合所占用的频域资源属于所述第一小区。
作为一个实施例,所述第二时频资源集合所占用的频域资源与所述第一时频资源集合所占用的频域资源包括同一个CORESET。
作为一个实施例,所述第二时频资源集合与所述第一时频资源集合被关联到同一个CORESET。
典型的,所述第三信息块所占用的频域资源属于所述第二小区。
作为一个实施例,所述第一信令被用于调度所述第二信号。
作为一个实施例,所述第一信令被用于指示所述第二信号所占用的时域资源。
作为一个实施例,所述第一信令被用于指示所述第二信号所占用的频域资源。
作为一个实施例,所述第一信令被用于指示所述第二信号所采用的MCS。
作为一个实施例,所述第一信令被用于指示所述第二信号所对应的NDI。
作为一个实施例,所述第一信令被用于指示所述第二信号所对应的RV。
作为一个实施例,所述第三信息块所占用的物理层信道包括PUCCH。
作为一个实施例,所述第三信息块所占用的物理层信道包括PUSCH。
作为一个实施例,所述第二信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述第二信号所占用的传输信道包括DL-SCH。
作为一个实施例,所述第二信号由一个TB生成。
作为一个实施例,所述第二信号所占用的频域资源属于所述第一小区。
作为一个实施例,所述第二信号所占用的时域资源晚于所述第一信息块所占用的时域资源,且所述第二信号所占用的时域资源早于所述第一时间。
典型的,所述第三信息块所占用的频域资源属于所述第一小区,所述第三信息块被延迟发送。
作为一个实施例,所述延迟发送的意思包括:所述第一信令不被用于确定所述第三信息块所占用的时域资源。
作为一个实施例,所述延迟发送的意思包括:所述第三信息块所占用的时域资源位于所述第四时间之后。
作为一个实施例,所述延迟发送的意思包括:所述第三信息块所占用的时域资源位于所述第一节点开始针对第一小区再次执行所述第一操作集合以及开始针对第一小区再次执行所述第二操作集合之后。
典型的,所述第一节点放弃发送针对所述第二信号的反馈。
作为一个实施例,所述步骤S50位于实施例5中的步骤S11之后,且步骤S12之前。
作为一个实施例,所述步骤S60位于实施例5中的步骤S21之后。
作为一个实施例,所述步骤S50位于实施例5中的步骤S12之后。
作为一个实施例,所述步骤S50位于实施例5中的步骤S13之后。
实施例8
实施例8示例了一个目标信令的流程图,如附图8所示。在附图8中,第一节点U7与第二节点N8之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例8中的实施例、子实施例和附属实施例能够被用于实施例5至7中;同样的,在不冲突的情况下,实施例5至7中任一的实施例、子实施例和附属实施例能够被用于实施例8。
对于第一节点U7,在步骤S70中发送目标信令。
对于第二节点N8,在步骤S80中接收目标信令。
实施例8中,所述目标信令被用于触发所述第一信息块的接收。
作为一个实施例,所述第一信息块是针对所述目标信令的反馈。
作为一个实施例,所述第一信息块是针对所述目标信令的确认。
作为一个实施例,所述目标信令包括层1的测量结果。
作为一个实施例,所述目标信令包括层1的汇报。
作为一个实施例,所述步骤S70位于实施例5中的步骤S10之前。
作为一个实施例,所述步骤S70位于实施例5中的步骤S11之前,且步骤S10之后。
作为一个实施例,所述步骤S80位于实施例5中的步骤S20之前。
作为一个实施例,所述步骤S80位于实施例5中的步骤S21之前,且步骤S20之后。
实施例9
实施例9示例了一个第一时间和第二时间的示意图,如附图9所示。在附图9中,所述第一节点在目标时间接收到所述第一信息块;且所述第一节点从第一时间开始针对第一小区停止执行第一操作集合,并从第二时间开始针对第一小区停止执行第二操作集合;图中所述目标时间到所述第一时间属于第一时间窗,所述第一时间到所述第二时间属于第二时间窗。
作为一个实施例,所述目标时间是一个时隙。
作为一个实施例,所述目标时间是一个OFDM符号。
作为一个实施例,所述目标时间是一个OFDM符号的起始时刻。
作为一个实施例,所述目标时间是一个时隙的起始时刻。
作为一个实施例,所述第一时频资源集合中的所述DCI在所述目标时间之前被接收。
作为一个实施例,所述第一时频资源集合中的所述DCI在所述第一时间窗被接收。
作为一个实施例,所述第一信号在所述目标时间之前被接收。
作为一个实施例,所述第一信号所述第一时间窗被接收。
作为一个实施例,所述第二信息块所述第一时间窗被发送。
作为一个实施例,所述第二信息块所述第二时间窗被发送。
实施例10
实施例10示例了一个第三时间和第四时间的示意图,如附图10所示。在附图10中,所述第一节点在目标时间接收到所述第一信息块;且从第三时间开始针对第二小区执行所述第一操作集合以及从所述第四时间开始针对第二小区执行所述第二操作集合;图中所述目标时间到所述第三时间属于第三时间窗,所述第三时间到所述第四时间属于第四时间窗。
作为一个实施例,所述目标时间是一个时隙。
作为一个实施例,所述目标时间是一个OFDM符号。
作为一个实施例,所述目标时间是一个OFDM符号的起始时刻。
作为一个实施例,所述目标时间是一个时隙的起始时刻。
作为一个实施例,所述第三时间窗包括所述第一时间窗。
作为一个实施例,所述第四时间窗包括所述第二时间窗。
实施例11
实施例11示例了一个应用场景的示意图,如附图11所示。在附图11中,第一小区和第二小区都是所述第一节点的服务小区,所述第一节点在所述第一小区和所述第二小区之间进行层1/层2的动态切换。
作为一个实施例,所述第一小区是一个SpCell。
作为一个实施例,所述第二小区是一个SpCell。
作为一个实施例,所述第一节点在给定时刻只会存在一个SpCell,所述SpCell是第一小区集合中的一个小区,所述第一小区集合包括所述第一小区和所述第二小区。
实施例12
实施例12示例了一个第一节点中的结构框图,如附图12所示。附图12中,第一节点1200包括第一接收机1201。
第一接收机1201,在第一时频资源集合中监测PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被发送;接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
实施例12中,所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
作为一个实施例,其特征在于包括:
所述第一接收机1201,接收第一信号;
第一收发机1202,发送第二信息块;
其中,在所述第一时频资源集合中检测出的所述DCI被用于确定所述第一信号,所述第二信息块包括所述DCI所确定的所述第一信号的所述HARQ-ACK,所述第二信息块是针对所述第一信号的反馈。
作为一个实施例,其特征在于包括:
第一收发机1202,从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合;
其中,所述第一信息块被用于指示从所述第三时间开始针对第二小区执行所述第一操作集合以及从所述第四时间开始针对第二小区执行所述第二操作集合;所述第三时间不早于所述第一时间,所述第四时间不早于所述第二时间。
作为一个实施例,其特征在于包括:
所述第一接收机1201,在第二时频资源集合中接收第一信令,且在第三时频资源集合中接收第二信号;
第一收发机1202,发送第三信息块;
其中,所述第一信令被用于确定所述第二信号,所述第三信息块是针对所述第二信号的反馈;所述第一信令所占用的时域资源晚于所述第一信息块所占用的时域资源,且所述第一信令所占用的时域资源早于所述第一时间;所述第三信息块所占用的频域资源属于所述第二小区。
作为一个实施例,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到M1个身份,所述M1个身份中的任一身份都是服务小区索引之外的索引。
作为一个实施例,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到一个相同的索引。
作为一个实施例,其特征在于包括:
第一发射机1203,发送目标信令;
其中,所述目标信令被用于触发所述第一信息块的接收。
作为一个实施例,所述第一接收机1201包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一收发机1202包括实施例4中的天线452、接收器/发射器454、多天线接收处理器458、多天线发射处理器457、接收处理器456、发射处理器468、控制器/处理器459中的至少前6者。
作为一个实施例,所述第一发射机1203包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例13
实施例13示例了一个第二节点中的结构框图,如附图13所示。附图13中,第二节点1300包括第二发射机1301。
第二发射机1301,在第一时频资源集合中发送PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被接收;发送第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
实施例13中,所述第一信息块的接收者包括第一节点,所述第一操作集合包括所述第一节点在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括所述第一节点在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
作为一个实施例,包括:
所述第二发射机1301,发送第一信号;
第二收发机1302,接收第二信息块;
其中,在所述第一时频资源集合中检测出的所述DCI被用于确定所述第一信号,所述第二信息块包括所述DCI所确定的所述第一信号的所述HARQ-ACK,所述第二信息块是针对所述第一信号的反馈。
作为一个实施例,包括:
第二收发机1302,从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合;
其中,所述第一信息块被用于指示所述第一节点从所述第三时间开始针对第二小区执行所述第一操作集合以及从所述第四时间开始针对第二小区执行所述第二操作集合;所述第三时间不早于所述第一时间,所述第四时间不早于所述第二时间。
作为一个实施例,包括:
所述第二发射机1301,在第二时频资源集合中发送第一信令,且在第三时频资源集合中发送第二信号;
其中,所述第一信令被用于确定所述第二信号;所述第一信令所占用的时域资源晚于所述第一信息块所占用的时域资源,且所述第一信令所占用的时域资源早于所述第一时间。
作为一个实施例,包括:
第二收发机1302,接收第三信息块;
所述第三信息块是针对所述第二信号的反馈。
作为一个实施例,所述第三信息块所占用的频域资源属于所述第二小区。
作为一个实施例,所述第三信息块所占用的频域资源属于所述第一小区,所述第三信息块被延迟发送。
作为一个实施例,所述第二节点放弃接收针对所述第二信号的反馈。
作为一个实施例,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到M1个身份,所述M1个身份中的任一身份都是服务小区索引之外的索引。
作为一个实施例,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到一个相同的索引。
作为一个实施例,包括:
第二接收机1303,接收目标信令;
其中,所述目标信令被用于触发所述第一信息块的接收。
作为一个实施例,所述第二发射机1301包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二收发机1302包括实施例4中的天线420、发射器/接收器418、多天线发射处理器471、多天线接收处理器472、发射处理器416、接收处理器470、控制器/处理器475中的至少前6者。
作为一个实施例,所述第二接收机1303包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于无线通信中的第一节点,其特征在于包括:
    第一接收机,在第一时频资源集合中监测PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被发送;接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
    其中,所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
  2. 根据权利要求1所述的第一节点,其特征在于包括:
    所述第一接收机,接收第一信号;
    第一收发机,发送第二信息块;
    其中,在所述第一时频资源集合中检测出的所述DCI被用于确定所述第一信号,所述第二信息块包括所述DCI所确定的所述第一信号的所述HARQ-ACK,所述第二信息块是针对所述第一信号的反馈。
  3. 根据权利要求1或2所述的第一节点,其特征在于包括:
    第一收发机,从第三时间开始针对第二小区执行所述第一操作集合以及从第四时间开始针对第二小区执行所述第二操作集合;
    其中,所述第一信息块被用于指示从所述第三时间开始针对第二小区执行所述第一操作集合以及从所述第四时间开始针对第二小区执行所述第二操作集合;所述第三时间不早于所述第一时间,所述第四时间不早于所述第二时间。
  4. 根据权利要求3所述的第一节点,其特征在于包括:
    所述第一接收机,在第二时频资源集合中接收第一信令,且在第三时频资源集合中接收第二信号;
    第一收发机,发送第三信息块;
    其中,所述第一信令被用于确定所述第二信号,所述第三信息块是针对所述第二信号的反馈;所述第一信令所占用的时域资源晚于所述第一信息块所占用的时域资源,且所述第一信令所占用的时域资源早于所述第一时间;所述第三信息块所占用的频域资源属于所述第二小区。
  5. 根据权利要求3或4所述的第一节点,其特征在于,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到M1个身份,所述M1个身份中的任一身份都是服务小区索引之外的索引。
  6. 根据权利要求3至5中任一权利要求所述的第一节点,其特征在于,所述第一小区和所述第二小区都属于第一小区集合,所述第一小区集合包括M1个服务小区,所述M1个服务小区分别被关联到一个相同的索引。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于包括:
    第一发射机,发送目标信令;
    其中,所述目标信令被用于触发所述第一信息块的接收。
  8. 一种用于无线通信中的第二节点,其特征在于包括:
    第二发射机,在第一时频资源集合中发送PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被接收;发送第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
    其中,所述第一信息块的接收者包括第一节点,所述第一操作集合包括所述第一节点在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括所述第一节点在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
  9. 一种用于无线通信中的第一节点中的方法,其特征在于包括:
    在第一时频资源集合中监测PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被发送;接收第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
    其中,所述第一操作集合包括在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
  10. 一种用于无线通信中的第二节点中的方法,其特征在于包括:
    在第一时频资源集合中发送PDCCH,被关联到在所述第一时频资源集合中被检测出的DCI的HARQ-ACK在第一小区上被接收;发送第一信息块,所述第一信息块被用于指示从第一时间开始针对第一小区停止执行第一操作集合以及从第二时间开始针对第一小区停止执行第二操作集合;
    其中,所述第一信息块的接收者包括第一节点,所述第一操作集合包括所述第一节点在所针对小区上监听物理下行控制信道、监听用于调度所针对小区的PDCCH、和在所针对小区上发送PRACH三者中的至少之一;所述第二操作集合包括所述第一节点在所针对小区的PUCCH上发送HARQ-ACK;所述第二时间不早于所述第一时间,所述第二时间与在所述第一时频资源集合中是否监测到PDCCH有关。
PCT/CN2023/087436 2022-04-20 2023-04-11 一种被用于无线通信的节点中的方法和装置 WO2023202413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210417586.6 2022-04-20
CN202210417586.6A CN116980092A (zh) 2022-04-20 2022-04-20 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023202413A1 true WO2023202413A1 (zh) 2023-10-26

Family

ID=88419097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087436 WO2023202413A1 (zh) 2022-04-20 2023-04-11 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116980092A (zh)
WO (1) WO2023202413A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972302A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种通信方法、装置及设备
WO2021067190A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Multiple downlink control information (dci) message handling for multiple control resource set (coreset) groups
CN113225156A (zh) * 2020-02-06 2021-08-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20220029746A1 (en) * 2018-11-27 2022-01-27 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving harq-ack feedback in wireless communication system
CN113994753A (zh) * 2019-06-25 2022-01-28 瑞典爱立信有限公司 用于多个trp上的pdsch传输的联合harq反馈的***和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972302A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种通信方法、装置及设备
US20220029746A1 (en) * 2018-11-27 2022-01-27 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving harq-ack feedback in wireless communication system
CN113994753A (zh) * 2019-06-25 2022-01-28 瑞典爱立信有限公司 用于多个trp上的pdsch传输的联合harq反馈的***和方法
WO2021067190A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Multiple downlink control information (dci) message handling for multiple control resource set (coreset) groups
CN113225156A (zh) * 2020-02-06 2021-08-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN116980092A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
US11201656B2 (en) Method and device in UE and base station for multi-antenna transmission
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113225156B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020020004A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2023051406A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023280192A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022184080A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022188749A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114257274B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202413A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207703A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024125277A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023216894A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027608A1 (zh) 一种用于无线通信的方法和装置
WO2024032424A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179471A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024017068A1 (zh) 一种用于无线通信的方法和装置
WO2024037474A1 (zh) 一种用于无线通信的方法和装置
WO2023116482A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791068

Country of ref document: EP

Kind code of ref document: A1