WO2024023877A1 - プラズマ処理方法 - Google Patents

プラズマ処理方法 Download PDF

Info

Publication number
WO2024023877A1
WO2024023877A1 PCT/JP2022/028584 JP2022028584W WO2024023877A1 WO 2024023877 A1 WO2024023877 A1 WO 2024023877A1 JP 2022028584 W JP2022028584 W JP 2022028584W WO 2024023877 A1 WO2024023877 A1 WO 2024023877A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
plasma
processing method
plasma processing
frequency
Prior art date
Application number
PCT/JP2022/028584
Other languages
English (en)
French (fr)
Inventor
珠鉉 南
正人 石丸
正太 田原
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to KR1020237021297A priority Critical patent/KR20240016242A/ko
Priority to PCT/JP2022/028584 priority patent/WO2024023877A1/ja
Priority to CN202280008603.9A priority patent/CN117769757A/zh
Priority to JP2023535334A priority patent/JP7519549B2/ja
Priority to TW112124487A priority patent/TW202405937A/zh
Publication of WO2024023877A1 publication Critical patent/WO2024023877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32302Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Definitions

  • the present invention relates to a plasma processing method.
  • Fin Field Effect Transistors hereinafter also referred to as "Fin-FETs”
  • Fin-FETs Fin Field Effect Transistors
  • GAA Gate-All-Around
  • semiconductor devices continue to become smaller and have higher aspect ratios, it is expected that patterns with more complex shapes will be formed. It is required to establish a vertical machining process with high selectivity corresponding to the structure.
  • STI Fin-FET shallow trench isolation
  • One of the techniques for realizing highly accurate plasma etching is a plasma etching method using a pulsed power source.
  • the density and composition of radicals generated by decomposition of a reactive gas by plasma are measured.
  • the density and composition of the radicals are controlled by pulse modulating the power of the plasma generator at a constant cycle and controlling the duty ratio of the pulse modulation based on the measurement results.
  • Patent Document 2 high power power and low power power are alternately supplied to a high frequency coil (antenna coil) for plasma generation, and a protective film is formed by sputtering when the high power is used, and when the low power is used, a protective film is formed by sputtering.
  • a method is disclosed in which a via with a high aspect ratio is formed in a silicon substrate by performing an etching process and alternately repeating an etching process and a protective film forming process.
  • the high frequency RF bias power causes local charging, and the side surfaces of the hard mask material and the silicon substrate become negatively charged. For this reason, the trajectory of ions is bent, and the number of ions incident on the side surfaces of the silicon substrate increases, resulting in a phenomenon called side etching in which etching progresses laterally.
  • the problem of loss of verticality of etching is not taken into account.
  • An object of the present invention is to provide a technique that can realize vertical etching by controlling process conditions.
  • one of the typical plasma processing methods of the present invention is a plasma processing method for forming shallow trench isolation, which includes a first step of etching silicon with plasma, and a step of etching silicon containing silicon element. a second step of depositing a deposited film containing SiO on the mask; a third step of etching the silicon with plasma so that the etched shape is vertical; and a fourth step of depositing a deposited film containing SiO on the mask.
  • the first step to the fourth step are repeated a predetermined number of times, the plasma in the third step is generated by high frequency power modulated by the first pulse, and the plasma in the third step is The step is performed while supplying high frequency power modulated by a second pulse to the sample having silicon as a substrate, and the frequency of the first pulse in the third step is equal to the frequency of the first pulse in the third step.
  • the frequency of the second pulse is higher than that of the second pulse.
  • FIG. 1 is a diagram showing a plasma processing apparatus in which a plasma processing method according to a first embodiment of the present invention is implemented.
  • FIG. 2 is a schematic diagram showing how the plasma processing method according to the first embodiment is performed.
  • FIG. 3 is a diagram showing the relationship between pulse frequency and undercut amount when plasma generation power is pulse-modulated.
  • FIG. 4 is a diagram showing the relationship between pulse frequency and undercut amount when bias power is pulse modulated.
  • FIG. 5 is a diagram schematically showing the relationship between the bias power and the saturated ion current on the wafer, obtained in the first embodiment.
  • FIG. 6 is a diagram schematically showing the relationship between plasma generation power and plasma density when the duty ratio is 40% and the pulse frequency is 1300 Hz.
  • FIG. 7 is a diagram schematically showing the relationship between plasma generation power and plasma density when the duty ratio is 40% and the pulse frequency is 1100 Hz.
  • FIG. 8 is a diagram showing a flowchart of a method for forming an STI.
  • FIG. 9 is a diagram schematically showing a part of the silicon substrate before the STI formation process is performed.
  • FIG. 10 is a diagram schematically showing a part of the silicon substrate when the first step is performed.
  • FIG. 11 is a diagram schematically showing a part of the silicon substrate when the second step is performed.
  • FIG. 12 is a diagram schematically showing a part of the silicon substrate when the third step is performed.
  • FIG. 13 is a diagram schematically showing a part of the silicon substrate when the fourth step is performed.
  • FIG. 14 is a diagram schematically showing a part of the silicon substrate when the first to fourth steps are repeated and the trench is etched to a predetermined depth.
  • FIG. 15 is a diagram schematically showing how the first to fourth steps are repeated.
  • FIG. 16 is a diagram schematically showing a part of a silicon substrate in an etching process as a comparative example.
  • pulse modulation (hereinafter also referred to as “pulse modulation”) is to turn on when there is an output, turn off when there is no output, and repeat on and off at a predetermined frequency.
  • the predetermined frequency is also referred to as a "pulse frequency,””pulsefrequency,” or “repetition frequency.”
  • the duty ratio is the sum of the on period and the off period, that is, the ratio of the on period to one cycle of repetition.
  • Shallow Trench Isolation refers to a trench for element isolation formed by etching a silicon substrate or the like.
  • FIG. 1 is a diagram showing a plasma processing apparatus in which a plasma processing method according to a first embodiment of the present invention is implemented.
  • the plasma processing apparatus 100 includes a vacuum processing chamber 101 in which plasma processing is performed.
  • a lower electrode 103 is provided inside the vacuum processing chamber 101, and the lower electrode 103 is provided with a wafer mounting surface for holding the wafer 102.
  • the microwave transmission window 104 is made of a material such as quartz that transmits microwaves while keeping the inside of the vacuum processing chamber 101 airtight.
  • Microwaves generated from a magnetron (hereinafter also referred to as “plasma generator”) 106 pass through a microwave transmission window 104 through a waveguide 105 and propagate into the vacuum processing chamber 101 .
  • the solenoid coil 107 is provided around the vacuum processing chamber 101 and generates a magnetic field within the vacuum processing chamber 101.
  • a voltage is applied to the lower electrode 103 from a connected electrostatic adsorption power supply 108, and an electrostatic force is generated between the wafer 102 and the wafer mounting surface. The generated electrostatic force fixes the wafer 102 to the wafer mounting surface.
  • a magnetron drive power source (hereinafter also referred to as “plasma generation power source”) 113 supplies high frequency power (hereinafter also referred to as “plasma generation power”) for generating plasma to the magnetron 106.
  • the plasma generation power is also referred to as high frequency power modulated by the first pulse.
  • the substrate bias power supply 109 supplies the lower electrode 103 with bias power that is supplied to the substrate that is the sample. Bias power is also referred to as high frequency power modulated by the second pulse.
  • the magnetron drive power supply 113 and the substrate bias power supply 109 are controlled by a power control section 114.
  • the wafer loading port 110 is an opening for loading the wafer 102 into or out of the vacuum processing chamber 101.
  • the gas supply port 111 is an opening through which gas supplied to the vacuum processing chamber 101 is conducted.
  • the plasma processing apparatus 100 is also provided with a vacuum exhaust device.
  • the vacuum evacuation device has a function of reducing the pressure in the vacuum processing chamber 101 to a desired pressure and evacuating reaction products generated during the plasma processing process from the vacuum processing chamber 101.
  • the plasma processing apparatus 100 performs a plasma processing method in which a sample is subjected to plasma processing using high frequency power for generating plasma and bias power for applying a bias to the sample.
  • etching gas is supplied into the vacuum processing chamber 101 from the gas supply port 111, and the pressure inside the vacuum processing chamber 101 is adjusted to a desired pressure.
  • the wafer 102 is electrostatically attracted to the wafer mounting surface above the lower electrode 103 by applying a DC voltage of several hundred volts using the electrostatic adsorption power supply 108 .
  • the magnetron 106 oscillates microwaves with a frequency of 2.45 GHz. This microwave is propagated into the vacuum processing chamber 101 through the waveguide 105.
  • the magnetron 106 does not oscillate microwaves.
  • a magnetic field is generated within the vacuum processing chamber 101 by a solenoid coil 107, and high-density plasma 112 is generated within the vacuum processing chamber 101 due to the interaction of this magnetic field and the oscillated microwaves.
  • bias power is supplied from the substrate bias power supply 109 to the lower electrode 103.
  • the energy with which ions in the plasma enter the wafer is controlled, and the etching process of the wafer 102 is controlled.
  • pulsed plasma is generated by pulse modulating the plasma generation power supplied to the magnetron 106.
  • Pulsed plasma controls the dissociation of plasma by repeating the on-state and off-state where plasma generation power is output, thereby controlling the dissociation state of radicals and ion density.
  • the pulse frequency and duty ratio for pulse-modulated plasma are control parameters. Plasma generated by these control parameters is also called pulsed plasma.
  • the output of the substrate bias power supply 109 is also pulse-modulated, so that the pulse frequency and duty ratio can be controlled, and pulse-modulated bias power can be applied to the lower electrode 103.
  • the plasma generation power or bias power is controlled by a power control section 114.
  • the duty ratio of the plasma generation power can be changed as appropriate within the range of 10% to 90% according to the specification conditions of the plasma processing apparatus 100, and the duty ratio of the bias power can be changed within the range of 2% to 90%. It can be changed as appropriate. Normally, the bias power is controlled to be turned on only when the plasma generation power is turned on.
  • the pulse frequency of the plasma generation power can be changed as appropriate within the range of 100 Hz to 2000 Hz
  • the pulse frequency of the bias power can be changed as appropriate within the range of 100 Hz to 2000 Hz.
  • FIG. 2 is a schematic diagram showing how the plasma processing method according to the first embodiment is performed.
  • FIG. 2A is a diagram schematically showing a part of a cross section of the silicon substrate 201 before plasma processing.
  • the initial structure of the silicon substrate 201 is such that a mask 202 is formed on the silicon substrate 201.
  • the mask 202 is formed with a pattern having gaps at predetermined intervals, and the interval w1 between the gaps between adjacent masks 202 is 20 nm or less, for example, about 10 nm when used in the STI forming process.
  • the silicon substrate 201 is etched to a depth of about 130 nm, forming a trench with an aspect ratio of about 6.5.
  • the mask 202 is assumed to be a hard mask, but the type of mask is not limited to this.
  • FIG. 2(b) is a diagram showing the progress of etching of the silicon substrate 201.
  • a portion of the silicon substrate 201 defined by the gap between the masks 202 is etched to form a trench tr.
  • the processing conditions for example, a mixed gas containing halogen gas is used, and the pressure is 0.5 Pa or less.
  • FIG. 2(c) is a diagram showing how the etching of the silicon substrate 201 has further progressed.
  • a region r1 of trench tr is etched in a direction parallel to the main surface of silicon substrate 201, creating a neck shape.
  • the occurrence of such a neck shape is called an undercut.
  • the undercut amount can be evaluated as w2-w1.
  • FIG. 3 is a diagram showing the relationship between pulse frequency and undercut amount when plasma generation power is pulse-modulated. Note that the power value is set to 900 W and the duty ratio is set to 40%.
  • the amount of undercut tends to decrease as the pulse frequency increases. If the amount of undercut is suppressed to about 1 nm, a good trench shape can be obtained, but when the pulse frequency is 1300 Hz or more, the amount of undercut is suppressed to 1 nm or less.
  • FIG. 4 is a diagram showing the relationship between pulse frequency and undercut amount when bias power is pulse-modulated. Note that the power value is set to 25 W and the duty ratio is set to 2%.
  • the amount of undercut tends to decrease as the pulse frequency decreases. Further, when the pulse frequency is 500 Hz or less, the undercut amount is suppressed to about 1 nm or less.
  • the pulse frequency of the plasma generation power is higher than the pulse frequency of the bias power, and as an index for pulse modulation, if the pulse frequency of the plasma generation power is 1300 Hz or more and the pulse frequency of the bias power is 500 Hz or less, the trench shape Good results were obtained from this point of view. In this way, in the first embodiment, vertical etching can be achieved by pulse modulating both the plasma generation power and the bias power.
  • FIG. 5 is a diagram schematically showing the relationship between the bias power and the saturated ion current on the wafer, obtained in the first embodiment.
  • the solid line shows the bias power
  • the dashed line shows the saturated ion current.
  • the vertical axis is an arbitrary value
  • the horizontal axis indicating time is displayed overlapping the horizontal axis of bias power.
  • Periods p1 and p3 indicate periods during which bias power output is on, and period p2 indicates a period during which bias power output is off.
  • the saturated ion current increases, suggesting that plasma is being generated.
  • period p2 although the saturated ion current decreases, it is suggested that it does not completely disappear until the subsequent on period.
  • the inventor inferred that in the first embodiment, even during the period when the plasma generation power is off, the radicals remaining until the plasma disappears are used for the reaction. . It has been known that afterglow discharge, which is a state in which the degree of plasma dissociation is reduced, occurs after the plasma generation power is turned off until the plasma disappears. Here, the etching process using plasma will be considered.
  • radicals in the plasma are radicals with a relatively large adhesion coefficient.
  • adhesion coefficient is large, radicals tend to adhere to the surface with which they first collide. For this reason, it is considered that while radicals tend to adhere to the trench portion on the upper surface side of the silicon substrate 201 facing the plasma and etching progresses, it is difficult for radicals to reach the deep side of the trench and etching does not progress.
  • Table 1 shows the calculation results of the on period and off period of the pulse signal when the duty ratio of the pulse signal is 40%, and also compares the period of afterglow discharge with 0.5 ms. indicate. As shown here, at 1300 Hz or higher, the off period of the plasma generation power is 0.46 ms, which is shorter than the 0.5 ms at which the afterglow discharge disappears. In other words, the off time of the first pulse for modulating the plasma generation power is shorter than the time until the afterglow discharge disappears.
  • the afterglow state occupies the entire period when the plasma generation power is off, and radicals with a small adhesion coefficient are efficiently removed. can be generated.
  • the relationship between pulse frequency and duty ratio is not limited to the above values. By considering as shown here, the pulse frequency and duty ratio can be adjusted based on the duration of the afterglow discharge state.
  • FIG. 6 is a diagram schematically showing the relationship between plasma generation power and plasma density when the duty ratio is 40% and the pulse frequency is 1300 Hz.
  • FIG. 7 is a diagram schematically showing the relationship between plasma generation power and plasma density when the duty ratio is 40% and the pulse frequency is 1100 Hz.
  • the plasma density is shown in arbitrary units on the vertical axis, and is superimposed on the graph to explain the relationship with the plasma generation power.
  • an afterglow discharge state occurs in which the plasma density increases and saturates during the period when the pulse generation power is on, and decreases during the period when the pulse generation power is off.
  • the length of the off period of the pulse generation power is 0.46 ms, which is shorter than the period of afterglow discharge state of 0.50 ms.
  • the off time of the first pulse for modulating the pulse generation power is shorter than the time until the afterglow discharge disappears. Therefore, the entire period in which the plasma generation power is turned off can be occupied by afterglow discharge, and radicals with a small adhesion coefficient can be efficiently generated.
  • the length of the off period of the pulse generation power is 0.55 ms, which is longer than the period of afterglow state of 0.5 ms.
  • the afterglow discharge state disappears during the period when the pulse power is off.
  • the frequency of collisions between gas and electrons further decreases, gas dissociation does not proceed, and the amount of gas remaining in the state at the time of supply increases. Since no radicals are generated, etching becomes difficult to proceed.
  • the pulse frequency of the plasma generation power to maximize the afterglow discharge state was 1300Hz or more, but the pulse frequency was determined by the wave power for plasma generation. is set according to the duty ratio of For example, when the duty ratio of the plasma generation power is set to 20% and the frequency is constant, the off time is longer than when the duty ratio is 40%. Therefore, when changing the pulse frequency in units of 100 Hz, the lower limit of the frequency that can maximize the afterglow state is 1700 Hz, which is a higher frequency than when the duty ratio of high frequency power is 40%. In this way, if the pulse frequency of the plasma generation power that can maximize the state of afterglow discharge is changed in units of 100 Hz according to the duty ratio set between 10% and 90%, for example, Set it within the range of 300Hz to 2000Hz.
  • the time during which the output of the bias power is turned off is required to be on the order of ms.
  • bias power with a duty ratio of 2% is used.
  • the pulse frequency is 900 Hz or less.
  • the off time of the second pulse for modulating the bias power is preferably longer than the time during which local charge is removed.
  • the pulse frequency required to eliminate local charge was 900 Hz or less, but the value of the pulse frequency differs depending on the duty ratio setting. For example, when the duty ratio is set to 50%, the ratio of the period during which the pulse output is turned off becomes smaller than when the duty ratio is set to 2%. Therefore, when changing the pulse frequency in units of 100 Hz, the time required to move the charge to the electrode is 500 kHz or less as shown in Table 3. Since the time required to move the charge to the electrodes varies depending on the duty ratio value, the pulse frequency is within the range of 100Hz to 900Hz for the duty ratio within the range of 2% to 90%. It is desirable to do so.
  • the inventor set the pulse frequency of the plasma generation power within the range of 300 Hz to 2000 Hz according to the duty ratio setting in order to maximize the afterglow state as an index for pulse modulation, and It has been found that in order to eliminate local charges on the substrate, the pulse frequency of the bias power is set within the range of 100 Hz to 900 Hz depending on the duty ratio setting. Further, by setting the pulse frequency of the plasma generation power to a higher frequency, the period during which the pulse output is turned off becomes shorter, and it becomes easier to maintain the afterglow state.
  • the pulse-off period can be lengthened, which is effective in moving the charges accumulated by local charging from the wafer 102 to the lower electrode 103.
  • the frequency of the first pulse for modulating the high frequency power for plasma generation is higher than the frequency of the second pulse for modulating the high frequency bias
  • the frequency of the first pulse for modulating the high frequency power for plasma generation is higher than the frequency of the second pulse for modulating the high frequency bias. It is considered desirable that the duty ratio of the second pulse is greater than the duty ratio of the second pulse for modulating the high frequency bias.
  • the afterglow state of the plasma can be used for processing.
  • vertical etching can be achieved.
  • ⁇ Third embodiment> The inventor proposes an STI forming process based on the results of the study of the first embodiment and the second embodiment. Note that components corresponding to those in the first embodiment and the second embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 8 is a diagram showing a flowchart of a method for forming an STI. The flowchart shown here is performed on the wafer 102 on which a mask necessary for forming STI has been formed.
  • step S11 silicon is etched using plasma.
  • step of the second position a mixed gas containing a halogen gas suitable for etching a wafer is supplied into the vacuum processing chamber 101 to generate plasma, and a sample having a silicon substrate is etched by the plasma.
  • a deposited film containing silicon element is deposited on the mask.
  • a mixed gas containing SiCl 4 is supplied into the vacuum processing chamber 101 to form a deposited film containing silicon element on the mask.
  • step S13 silicon is etched using plasma so that the etched shape is vertical.
  • step S14 a mixed gas containing halogen gas suitable for etching the wafer is supplied into the vacuum processing chamber 101 to generate plasma, and the wafer is vertically moved while preventing undercuts to the pattern. etching.
  • a deposited film containing SiO is deposited on the mask.
  • a mixed gas containing O 2 is supplied into the vacuum processing chamber 101 to oxidize the mask and the surface of the deposited film deposited in the second step to form an oxide film.
  • Step S15 The step of repeating the first step to the fourth step a predetermined number of times is called an STI forming step of forming the STI of the Fin-FET.
  • the plasma in the third step S14 is generated by high frequency power (hereinafter also referred to as "plasma generation power”) modulated by the first pulse, and the third step S14 is generated by the second pulse. This is performed while supplying modulated high-frequency power (hereinafter also referred to as “bias power”) to a sample whose substrate is silicon.
  • plasma generation power high frequency power
  • bias power modulated high-frequency power
  • a silicon substrate is used as an example of the wafer 102, but the present invention is not limited thereto.
  • a substrate made of a material other than a silicon substrate may be used as the wafer 102, or the plasma treatment of this embodiment may be performed after forming a semiconductor structure on the silicon substrate.
  • FIG. 9 is a diagram schematically showing a part of the silicon substrate 201 before the STI formation process is performed.
  • the initial structure of the silicon substrate 201 is such that a mask 202 is formed on the silicon substrate 201.
  • the masks 202 are patterned at predetermined intervals, and the interval w1 between adjacent masks 202 is 20 nm or less, for example, about 10 nm.
  • the silicon substrate is etched by about 130 nm, forming a trench with an aspect ratio of about 6.5.
  • the material and film thickness of the mask 202 can be selected as appropriate.
  • the selection ratio with respect to silicon, the layer formed on the mask, the ashing performed on the mask, etc. are considered and selected.
  • Table 4 shows an example of setting conditions for the plasma generation power source 113 and the substrate bias power source 109 in each step included in the STI forming step.
  • both the plasma generation power source 113 and the substrate bias power source 109 are pulse-modulated.
  • a CW (Continuous Wave) operation is performed in which the output of the plasma generation power source 113 remains on, and the substrate bias power source 109 performs pulse modulation.
  • FIG. 10 is a diagram schematically showing a part of the silicon substrate 201 when the first step S11 is performed.
  • a trench tr is formed in a portion defined by the gap between the masks 202.
  • the first step S11 is performed while supplying pulse-modulated bias power to the lower electrode 103 on which the wafer 102 is placed. Further, the duty ratio of the first pulse for modulating the plasma generation power for generating plasma may be larger than the duty ratio of the second pulse for modulating the bias power supplied to the lower electrode 103. preferable.
  • the plasma generation power source 113 has a power value of 1200W.
  • the first pulse for modulating the high frequency power output from the plasma generation power source 113 has a duty ratio of 35% and a pulse frequency of 2000 Hz.
  • the substrate bias power supply 109 has a power value of 380W.
  • the second pulse for modulating the high frequency power output from the substrate bias power supply 109 has a duty ratio of 25% and a pulse frequency of 2000 Hz. Both plasma generation power and bias power were modulated by pulses.
  • the duty ratio (35%) of the first pulse in the first step S11 is greater than the duty ratio (25%) of the second pulse in the first step S11. big.
  • the frequency of the second pulse (100 Hz) in the third step S13 is lower than the frequency (2000 Hz) of the second pulse in the first step S11.
  • the duty ratio (2%) of the second pulse in the third step S13 is smaller than the duty ratio (25%) of the second pulse in the first step S11.
  • the frequency of the second pulse (100 Hz) in the second step S12 is lower than the frequency (2000 Hz) of the second pulse in the first step S11.
  • the duty ratio (5%) of the second pulse in the second step S12 is smaller than the duty ratio (25%) of the second pulse in the first step S11.
  • the reaction products generated during etching when the plasma power is off are exhausted through the vacuum exhaust device. It is possible to suppress reaction products from adhering to the mask 202 and the silicon substrate 201 and forming deposits. Furthermore, when the gas pressure is lowered, reaction products during etching can be further reduced. Therefore, since etching is prevented from being hindered by reaction products, etching in the vertical direction of the silicon substrate can proceed.
  • FIG. 11 is a diagram schematically showing a part of the silicon substrate 201 when the second step S12 is performed.
  • SiCl 4 gas is supplied, plasma is generated using the SiCl 4 gas, and a silicon-based deposited film 203 containing silicon element is formed on the upper surface of the mask 202 .
  • the deposited film 203 is formed on the upper surface of the mask 202, when the silicon substrate 201 is later etched more deeply, damage to the upper and side surfaces of the mask 202 can be suppressed, and the pattern of the mask can be prevented from collapsing.
  • the size of Cl ions contained in the plasma is large, and serves to suppress the deposition of a deposited film within the trench tr.
  • a deposited film may be deposited at locations other than the mask 202, the amount thereof is so small that the influence can be ignored, and therefore, this is not taken into account in FIG. This also applies to the oxide film 204 in the fourth step S14, which will be described later, and Cl ions are included in the plasma.
  • the plasma generation power source 113 has a power value of 1200 W and does not perform pulse modulation.
  • the substrate bias power supply 109 has a power value of 60, a duty ratio of 5%, and a pulse frequency of 100 Hz.
  • FIG. 12 is a diagram schematically showing a part of the silicon substrate 201 when the third step S13 is performed.
  • the trench tr is formed in a direction perpendicular to the silicon substrate 201.
  • any mixed gas containing halogen gas suitable for etching a silicon substrate is used in the vacuum processing chamber 101.
  • the halogen gas for example, fluorine gas is often used because of its high reactivity.
  • the plasma generation power source 113 has a power value of 900W.
  • the first pulse for modulating the plasma generation power output from the plasma generation power source 113 has a duty ratio of 40% and a pulse frequency of 1800 Hz.
  • the substrate bias power supply 109 has a power value of 50W.
  • the second pulse for modulating the high frequency power output from the substrate bias power supply 109 has a duty ratio of 2% and a pulse frequency of 100 Hz.
  • reaction products generated during etching when the plasma power is off are exhausted through the vacuum exhaust device, and the mask 202 This makes it possible to suppress deposits from adhering to the silicon substrate 201. Furthermore, by lowering the gas pressure, reaction products during etching are reduced and the silicon substrate can be etched in the vertical direction.
  • FIG. 13 is a diagram schematically showing a part of the silicon substrate 201 when the fourth step S14 is performed.
  • a mixed gas containing Ar and O 2 is supplied to oxidize the mask 202 and the surface of the deposited film 203 generated in the second step S12, thereby forming an oxide film 204.
  • the oxide film 204 contains SiO, but is not limited to this. It may contain SiO 2 or other oxides.
  • the plasma generation power source 113 has a power value of 700 W and does not perform pulse modulation.
  • the substrate bias power supply 109 has a power value of 60 W, a duty ratio of 25%, and a pulse frequency of 1000 Hz.
  • FIG. 14 is a diagram schematically showing a part of the silicon substrate when the first step S11 to the fourth step S14 are repeated and the trench tr is etched to a predetermined depth d1.
  • the depth d1 of the trench tr was able to reach a value necessary for forming the STI through the STI forming process.
  • etching was performed by repeating the first step S11 to the fourth step S14 six times, so that the depth of the trench was 130 nm.
  • the etching process is performed until the depth of the trench becomes 130 nm, but the etching process is not limited to this, and it is sufficient to perform the etching process to a predetermined depth that allows formation of the Fin. It is also possible to check in advance the depth of the trench, the manufacturing conditions, and the number of repetitions of the STI formation process, and to associate that the trench will reach a desired depth when the STI formation process is performed a predetermined number of times.
  • FIG. 15 is a diagram schematically showing how the first step S11 to the fourth step S14 are repeatedly performed.
  • a trench tr is formed in the first step S11.
  • a deposited film 203 is formed on the mask 202.
  • etching is performed so that the etched shape becomes even.
  • an oxide film 204 is formed on the deposited film 203.
  • the deposited film 203 and oxide film 204 formed on the mask 202 are etched.
  • the first step S11 is set to be performed for a time long enough to etch the deposited film 203 and the oxide film 204.
  • the steps from the first step S11 to the fourth step S14 are performed until the trench reaches a predetermined depth d1.
  • the depth d1 of the trench tr could be set to 130 nm by repeating the first step to the fourth step six times.
  • FIG. 16 is a diagram schematically showing a part of the silicon substrate 201 in an etching process as a comparative example.
  • a case is shown in which the trench shape in the etching process is defective.
  • FIG. 16(a) shows a case where an undercut occurs. Undercutting is thought to occur when the influence of isotropic etching is strong.
  • FIG. 16(b) shows a shape that occurs when etching progresses due to radicals with a large adhesion coefficient. When the adhesion coefficient is large, radicals tend to adhere to the surface with which they first collide.
  • radicals with a suppressed adhesion coefficient are used for etching in the third step.
  • an oxide film 204 is formed on the deposited film 203 on the mask 202 in the fourth step. This makes it possible to prevent the deposited film 203 and the mask 202 from being etched and damaged even while the trench tr is etched deeply.
  • vertical etching can be achieved by setting process conditions that use radicals with a small adhesion coefficient.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • it is possible to replace a part of the configuration in one embodiment with the configuration in another embodiment and it is also possible to add the configuration in another embodiment to the configuration in one embodiment. .
  • Vacuum processing chamber 102 Wafer 103 Lower electrode 104 Microwave transmission window 105 Waveguide 106 Magnetron 107 Solenoid coil 108 Electrostatic adsorption power supply 109 Substrate bias power supply 110 Wafer loading port 111 Gas supply port 112 Plasma 113 Power supply for plasma generation 114 Power control Part 201 Silicon substrate 202 Mask 203 Deposited film 204 Oxide film

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

本発明は、プロセス条件を制御することによって、垂直性のエッチングを実現することが可能な技術を提供する。本発明のプラズマ処理方法の一つは、Shallow Trench Isolationを形成する方法において、プラズマによりシリコンをエッチングする第一の工程と、シリコン元素を含有する堆積膜をマスクに堆積させる第二の工程と、プラズマにより、エッチング形状が垂直となるように前記シリコンをエッチングする第三の工程と、SiOを含有する堆積膜をマスクに堆積させる第四の工程とを有し、第一の工程ないし第四の工程を所定の回数、繰り返し、第三の工程のプラズマは、第一のパルスにより変調された高周波電力により生成され、第三の工程は、第二のパルスにより変調された高周波電力を前記シリコンを基板とする試料に供給しながら行われ、第三の工程における第一のパルスの周波数は、第三の工程における第二のパルスの周波数より高い。

Description

プラズマ処理方法
 本発明はプラズマ処理方法に関する。
 近年、半導体デバイスの高集積化が進み、Fin Field Effect Transistor(以下、「Fin-FET」ともいう。)と呼ばれる3次元構造のトランジスタが実用化されている。またその発展型である、ゲートがチャネルの上面-左面-右面-下面の4面で覆われているGate-All-Around(以下、「GAA」ともいう。)構造の開発も進んでいる。このような半導体デバイスの更なる微細化、高アスペクト化が進みより複雑な形状を持つパターンの形成が期待されるようになると、半導体デバイスの製造プロセス、特にドライエッチング技術には、新材料、新構造に対応した高い選択性を持つ垂直加工プロセスを構築することが要求される。
 例えば、Fin-FETのShallow trench isolation(以下、「STI」ともいう。)構造のエッチングでは、断面積が変化する形状を持つため、エッチング領域の形成条件をエッチングの途中で変化させる必要がある。このような形状をドライエッチングで実現するためには、更なるプロセスウィンドウ、すなわち最適なプロセス条件の範囲の拡大が求められる。
 高精度なプラズマエッチングを実現する技術の一つとして、パルス電源を用いたプラズマエッチング方法がある。例えば、特許文献1に開示された方法では、プラズマによる反応性ガスの分解によって生成されるラジカルの密度および組成が測定される。そして、プラズマ発生装置の電力を一定の周期にてパルス変調し、パルス変調のデューティー比を測定結果に基づいて制御することによって、ラジカルの密度および組成が制御される。
 また、特許文献2ではプラズマ発生用の高周波コイル(アンテナコイル)に高いパワーの電力と低いパワーの電力を交互に供給し、高いパワーの電力時にスパッタによる保護形成膜を行い、低いパワーの電力時にエッチング処理を行って、エッチング工程と保護膜形成工程を交互に繰り返し実施することでシリコン基板に高アスペクト比のビアを形成する方法が開示されている。
特開平09―185999号公報 特開2010―21442号公報
 上述した特許文献1に開示されたパルス放電を用いたエッチング方法においては、プラズマ生成された解離度が高い状態のプラズマがエッチングに用いられている。したがってFin-FETのような3次元構造素子の形成に適し得るエッチング処理、すなわち、エッチング領域の形成条件を途中で変更する必要があるエッチング処理への対応としては、垂直性のエッチングに適した堆積性を持つラジカル量を制御するためのプロセスウィンドウが十分ではない。
 また、特許文献2に開示されたエッチング処理においては、高周波RFバイアス電力がローカルチャージを引き起こし、ハードマスク材およびシリコン基板の側面が負に帯電してしまう。このため、イオンの軌道が曲げられ、シリコン基板の側面に入射するイオンが増えてしまい、エッチングが横方向に進行するサイドエッチングという現象が発生する。特許文献2に開示されたエッチング処理においては、エッチングの垂直性が損なわれる問題が考慮されていない。
 本発明の目的は、プロセス条件を制御することによって、垂直性のエッチングを実現することが可能な技術を提供することにある。
 上記の課題を解決するために、代表的な本発明のプラズマ処理方法の一つは、Shallow Trench Isolationを形成するプラズマ処理方法において、プラズマによりシリコンをエッチングする第一の工程と、シリコン元素を含有する堆積膜をマスクに堆積させる第二の工程と、プラズマにより、エッチング形状が垂直となるように前記シリコンをエッチングする第三の工程と、SiOを含有する堆積膜をマスクに堆積させる第四の工程とを有し、前記第一の工程ないし前記第四の工程を所定の回数、繰り返し、前記第三の工程のプラズマは、第一のパルスにより変調された高周波電力により生成され、前記第三の工程は、第二のパルスにより変調された高周波電力を前記シリコンを基板とする試料に供給しながら行われ、前記第三の工程における前記第一のパルスの周波数は、前記第三の工程における前記第二のパルスの周波数より高いことを特徴とする。
 本発明によれば、プロセス条件を制御することによって、垂直性のエッチングを実現することが可能となる。上記した以外の課題、構成および効果は、以下の実施をするための形態における説明により明らかにされる。
図1は、本発明の第1実施形態に係るプラズマ処理方法が実施されるプラズマ処理装置を示す図である。 図2は、第1実施形態に係るプラズマ処理方法が行われる様子を示す模式図である。 図3は、プラズマ生成用電力をパルス変調した場合におけるパルス周波数とアンダーカット量の関係を示す図である。 図4は、バイアス電力をパルス変調した場合におけるパルス周波数とアンダーカット量の関係を示す図である。 図5は、第1実施形態において得られた、バイアス電力とウエハ上の飽和イオン電流の関係を模式的に示す図である。 図6は、デューティー比を40%かつパルス周波数を1300Hzとした場合のプラズマ生成用電力とプラズマ密度の関係を模式的に示す図である。 図7は、デューティー比を40%かつパルス周波数を1100Hzとした場合のプラズマ生成用電力とプラズマ密度の関係を模式的に示す図である。 図8は、STIの形成方法のフローチャートを示す図である。 図9は、STIの形成工程が行われる前のシリコン基板の一部を模式的に示す図である。 図10は、第一の工程を実行した場合のシリコン基板の一部を模式的に示す図である。 図11は、第二の工程を実行した場合のシリコン基板の一部を模式的に示す図である。 図12は、第三の工程を実行した場合のシリコン基板の一部を模式的に示す図である。 図13は、第四の工程を実行した場合のシリコン基板の一部を模式的に示す図である。 図14は、第一の工程から第四の工程が繰り返され、トレンチが所定の深さまでエッチングされた場合のシリコン基板の一部を模式的に示す図である。 図15は、第一の工程から第四の工程が繰り返し行われる様子を模式的に示した図である。 図16は、比較例としてのエッチング工程におけるシリコン基板の一部を模式的に示す図である。
 以下、図面を参照して、本発明の実施形態について説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
 同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号を付して説明する場合がある。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 また、「パルス変調」(以下、「パルスにより変調」ともいう。)とは、出力がある場合をオン、出力がない場合をオフとし、オンとオフを所定の周波数で繰り返すものである。所定の周波数のことを、「パルス周波数」、「パルスの周波数」や「繰り返し周波数」ともいう。デューティー比は、オンの期間とオフの期間の和、すなわち繰り返しの一周期に対する、オンの期間の比である。
 また、「Shallow Trench Isolation」とは、シリコン基板等をエッチングすることによって形成された素子分離用の溝のことをいう。
 以下、本願発明の実施形態について、図面を参照しながら説明する。図1は、本発明の第1実施形態に係るプラズマ処理方法が実施されるプラズマ処理装置を示す図である。
<第1実施形態>
(プラズマ処理装置)
 プラズマ処理装置100は、プラズマ処理が行われる真空処理室101を備える。真空処理室101内には下部電極103が設けられ、下部電極103にはウエハ102を保持するためのウエハ載置面が設けられている。マイクロ波透過窓104は、真空処理室101内を気密に保ちつつ、石英などのマイクロ波を透過する材料によって構成されている。マグネトロン(以下、「プラズマ発生装置」ともいう。)106から発生したマイクロ波は、導波管105を通じてマイクロ波透過窓104を透過し、真空処理室101内に伝播する。また、ソレノイドコイル107は、真空処理室101の周りに設けられ、真空処理室101内に磁場を発生させる。下部電極103は、接続された静電吸着電源108から電圧を印加され、ウエハ102とウエハ載置面との間に静電力を発生させる。この発生された静電力によって、ウエハ102は、ウエハ載置面に固定される。
 マグネトロン駆動電源(以下、「プラズマ生成用電源」ともいう。)113は、プラズマを生成するための高周波電力(以下、「プラズマ生成用電力」ともいう。)をマグネトロン106に供給する。プラズマ生成用電力は、第一のパルスにより変調された高周波電力ともいう。また、基板バイアス電源109は、試料である基板に供給されるバイアス電力を下部電極103に供給する。バイアス電力は、第二のパルスにより変調された高周波電力ともいう。マグネトロン駆動電源113と基板バイアス電源109は、電力制御部114によって制御される。
 さらに、ウエハ搬入口110は、真空処理室101にウエハ102を搬入し又はそこから搬出するための開口部である。ガス供給口111は、真空処理室101に供給されるガスが導通する開口部である。
 なお、プラズマ処理装置100には真空排気装置も設けられている。真空排気装置は、真空処理室101を減圧して所望の圧力にし、プラズマ処理の過程において発生する反応生成物を真空処理室101から排気する機能を有する。
 次に、プラズマ処理装置100を用いてプラズマ処理をする場合の処理を説明する。プラズマ処理装置100は、プラズマを生成するための高周波電力と資料にバイアスを印加するためのバイアス電力を用いて、試料にプラズマ処理を施すプラズマ処理方法を行う。最初に、真空処理室101の内部を減圧した後、エッチングガスをガス供給口111から真空処理室101内に供給し、真空処理室101内を所望の圧力に調整する。
 続いて、静電吸着電源108により直流電圧を数百V印加することで、ウエハ102を下部電極103の上のウエハ載置面に静電吸着させる。その後、マグネトロン駆動電源113からプラズマ発生用電力を供給されたときに、マグネトロン106は、周波数2.45GHzのマイクロ波を発振する。このマイクロ波は、導波管105を通じて真空処理室101内に伝播される。プラズマ生成用電力が供給されないときは、マグネトロン106はマイクロ波を発振しない。
 真空処理室101内には、ソレノイドコイル107によって磁場が発生させられており、この磁場と、発振されたマイクロ波の相互作用により、真空処理室101内に高密度のプラズマ112が生成される。
 プラズマ112が生成された後、基板バイアス電源109から下部電極103にバイアス電力が供給される。バイアス電力の供給によってプラズマ中のイオンがウエハへ入射するエネルギーが制御され、ウエハ102のエッチング処理が制御される。
 そして、マグネトロン106に供給されるプラズマ生成用電力をパルス変調することで、パルスプラズマを発生させる。パルスプラズマは、プラズマ生成用電力の出力があるオンの場合と出力がないオフの場合を繰り返すことでプラズマの解離を制御し、ラジカルの解離状態やイオン密度を制御するものである。この方式では、パルス変調されたプラズマに関するパルス周波数およびデューティー比が制御パラメータとなる。これらの制御パラメータにより生じるプラズマを、パルスプラズマともいう。
 また、基板バイアス電源109の出力もパルス変調されており、パルス周波数およびデューティー比を制御でき、パルス変調されたバイアス電力を下部電極103に印加することができる。プラズマ生成用電力あるいはバイアス電力は、電力制御部114によって制御される。
 なお、プラズマ処理装置100の仕様条件に合わせて、プラズマ生成用電力のデューティー比は10%~90%の範囲内で適宜変更でき、またバイアス電力のデューティー比は2%~90%の範囲内で適宜変更できる。通常は、プラズマ生成用電力がオンの時のみ、バイアス電力がオンされるように制御される。
 また、プラズマ処理装置100の仕様条件に合わせて、プラズマ生成用電力のパルス周波数は100Hz~2000Hzの範囲内で適宜変更でき、バイアス電力のパルス周波数は100Hz~2000Hzの範囲内で適宜変更できる。
(プラズマ生成用電力とバイアス電力のパルス変調)
 従来技術において、プラズマ生成用電力とバイアス電力の両方をパルス変調した場合のアンダーカットの生成について、詳細な分析はされていなかった。そこで、発明者は、プラズマ生成用電力およびバイアス電力のいずれもパルス変調した場合に、アンダーカットの発生について検討した。
(プラズマ処理)
 以下、Shallow Trench Isolationを形成するプラズマ処理方法を説明する。図2は、第1実施形態に係るプラズマ処理方法が行われる様子を示す模式図である。図2(a)はプラズマ処理をする前のシリコン基板201の断面の一部を模式的に示す図である。図2(a)に示されるように、シリコン基板201の初期構造は、シリコン基板201の上にマスク202が形成された構造である。マスク202は所定間隔の間隙を有するパターンが形成されており、隣り合うマスク202の間隙の間隔w1は、STI形成工程に用いる場合は20nm以下であり、例えば10nm程度である。STI形成工程において、シリコン基板201は130nm程度エッチングされ、アスペクト比6.5程度のトレンチが形成される。なお、本実施形態において、マスク202はハードマスクが想定されているが、マスクの種類はこれに限定されない。
 図2(b)は、シリコン基板201のエッチングが進行する様子を示す図である。ここでは、マスク202の間隙によって規定されるシリコン基板201の部分がエッチングされ、トレンチtrが形成される。処理条件としては、例えばハロゲンガスを含む混合ガスが用いられ、圧力は0.5Pa以下とする。
 図2(c)は、シリコン基板201のエッチングがさらに進行した様子を示す図である。ここでは、トレンチtrの領域r1の部分がシリコン基板201の主面に平行な方向にエッチングされ、ネック形状が生じている。このようなネック形状が生じることを、アンダーカットが発生するという。マスク202の間隙の幅w1とし、トレンチtrの幅のうちの最も広い幅w2としたとき、アンダーカット量はw2-w1として評価することが可能である。
(パルス変調とアンダーカットの関係)
 図3は、プラズマ生成用電力をパルス変調した場合におけるパルス周波数とアンダーカット量の関係を示す図である。なお、電力値は900W、デューティー比は40%に設定されている。
 ここでは、パルス周波数が大きくなるにつれて、アンダーカット量が小さくなる傾向が示されている。アンダーカット量は1nm程度に抑えられれば良好なトレンチの形状を得ることができるところ、パルス周波数が1300Hz以上の場合にアンダーカット量が1nm以下に抑えられている。
 また、図4は、バイアス電力をパルス変調した場合におけるパルス周波数とアンダーカット量の関係を示す図である。なお、電力値は25W、デューティー比は2%に設定されている。
 ここでは、パルス周波数が小さくなるにつれて、アンダーカット量が小さくなる傾向が示されている。また、パルス周波数が500Hz以下の場合にアンダーカット量が1nm程度以下に抑えられている。
(作用・効果)
 以上に説明したように、発明者は、プラズマ生成用電力とバイアス電力のいずれもパルス変調することによって、アンダーカットが抑えられることを見いだすことができた。プラズマ生成用電力のパルス周波数は、バイアス電力のパルス周波数よりも大きく、パルス変調をする指標としては、プラズマ生成用電力のパルス周波数は1300Hz以上、バイアス電力のパルス周波数は500Hz以下、とするとトレンチ形状の観点では良好な結果を得ることができた。このように、第1実施形態においては、プラズマ生成用電力とバイアス電力のいずれもパルス変調することによって、垂直性のエッチングを実現することができる。
<第2実施形態>
(プラズマのアフターグロー放電の状態)
 図5は、第1実施形態において得られた、バイアス電力とウエハ上の飽和イオン電流の関係を模式的に示す図である。実線はバイアス電力を示し、一点鎖線は飽和イオン電流を示す。飽和イオン電流は縦軸を任意の値とし、時間を示す横軸をバイアス電力の横軸と重ねて表示した。期間p1およびp3はバイアス電力の出力がオンである期間を示し、期間p2はバイアス電力の出力がオフである期間を示す。期間p1およびp3において、飽和イオン電流が上昇しており、プラズマが生成されていることが示唆されている。一方、期間p2においては、飽和イオン電流が減少するものの、続くオンの期間まで完全に消滅していない様子が示唆されている。
 ここで、発明者は、第1実施形態においては、プラズマ生成用電力がオフの期間であっても、プラズマが消滅するまでに残されていたラジカルが反応に用いられているということを推察した。従来から、プラズマ生成用電力をオフにしてからプラズマが消滅するまでの間には、プラズマの解離度が低下した状態であるアフターグロー放電の状態が発生することが知られている。ここで、プラズマによるエッチングプロセスについて考察する。
 プラズマ生成用電力がオンの期間では、処理ガスと電子の衝突頻度が高くなりガスの解離が進む。この場合、プラズマ中のラジカルは、比較的、付着係数が大きいラジカルが大半を占めようになる。付着係数が大きいと、ラジカルは最初に衝突した面に付着しやすくなる。このため、シリコン基板201のプラズマに面した上面側のトレンチ部分にはラジカルが付着しやすくエッチングが進行する一方で、トレンチ奥側にはラジカルが到達しにくくエッチングが進まないことになると考えられる。
 一方、プラズマ生成用電力がオフの期間でアフターグロー放電の状態では、ガスと電子の衝突頻度が減少し、解離が進んでいない状態のガスの割合が大きくなる。プラズマの消失が進みプラズマ密度が低下してくると、電子とラジカルの衝突頻度はいっそう減少する。この場合、プラズマ中に含まれるラジカルは、比較的、付着係数が小さい種類のラジカルが大半を占めるようになる。付着係数が小さいラジカルは、最初に衝突した面に付着せずに、トレンチ奥まで到達する場合が増加する。トレンチの深さ方向でエッチング量の偏りが抑えられるので、シリコン基板201の面方向に対して垂直な方向の形状をもつトレンチが得られやすくなると考えられる。
 発明者は、上述のような考察を行い、第1実施形態においてアンダーカット量が抑えられた要因のひとつとして、アフターグロー放電の状態が活用できたためではないかと推察した。そこで、発明者は、アフターグロー放電の状態を効果的に活用するために、パルス変調の最適な条件を見いだすことにした。なお、第1実施形態と対応する構成には同じ符号を付し、説明は省略する。
(プラズマ生成用電力のパルス変調)
 発明者は、プラズマ生成用電力をオフにしてから、概ね0.5msでプラズマが実質的に消滅することを観測した。ガスの種類、ガスの圧力、磁場の有無等の諸条件によって値は異なるものの、消滅するまでの時間に有意な差はなかった。そのため、アフターグロー放電の状態の残存時間を0.5msとして、以降の検討を進めた。
 垂直方向のエッチングに寄与する付着係数が小さいラジカルを多く生成するためには、アフターグロー放電の状態の延べ時間を最大化する必要がある。表1は、パルス信号のデューティー比を40%としたときのパルス信号のオンの期間とオフの期間の計算結果を示し、またアフターグロー放電の状態の期間とした0.5msとを対比させて表示する。ここに示されるように、1300Hz以上でプラズマ生成用電力のオフの期間は0.46msとなり、アフターグロー放電が消滅する0.5msよりも短くなる。言い換えると、プラズマ生成用電力を変調するための第一のパルスのオフ時間は、アフターグロー放電が消滅するまでの時間より短い。このため、デューティー比を40%かつパルス周波数を1300Hzとしてプラズマ生成用電力をパルス変調する場合、プラズマ生成用電力のオフの期間全体をアフターグローの状態が占めることとなり、付着係数の小さいラジカルを効率的に生成できる。なお、パルス周波数とデューティー比の関係は上記の値に限定されない。ここに示したような考察を行うことで、アフターグロー放電の状態の期間に基づいて、パルス周波数とデューティー比を調整することができる。
Figure JPOXMLDOC01-appb-T000001
 パルス周波数とアフターグロー放電の期間の関係を視覚的に示す。図6は、デューティー比を40%かつパルス周波数を1300Hzとした場合のプラズマ生成用電力とプラズマ密度の関係を模式的に示す図である。また、図7は、デューティー比を40%かつパルス周波数を1100Hzとした場合のプラズマ生成用電力とプラズマ密度の関係を模式的に示す図である。ここで、プラズマ密度は、縦軸を任意の単位で示し、プラズマ生成電力との関係を説明するためにグラフに重ねて表示されている。
 図6に示されるように、パルス生成用電力のオンの期間においてプラズマ密度が上昇して飽和する一方、オフの期間においてプラズマ密度が減少するアフターグロー放電の状態が発生する。パルス生成用電力のオフの期間の長さは0.46msであり、アフターグロー放電の状態の期間0.50msよりも短い。言い換えると、パルス生成用電力を変調するための第一のパルスのオフ時間は、アフターグロー放電が消滅するまでの時間より短い。したがって、プラズマ生成用電力がオフとなった期間すべてをアフターグロー放電の状態で占めることができ、付着係数の小さいラジカルを効率的に生成できる。
 また、図7に示されるように、パルス生成用電力のオフの期間の長さは0.55msであり、アフターグローの状態の期間0.5msよりも長い。この場合には、パルス電力がオフの期間中にアフターグロー放電の状態が消滅する。そうすると、ガスと電子の衝突頻度がさらに低下しガスの解離が進まず、供給時の状態のままのガスが増えてくる。ラジカルが生成されないため、エッチングが進行しにくい状態になる。
 なお、プラズマ生成用電力のデューティー比を40%に設定したため、アフターグロー放電の状態を最大化するためのプラズマ発生用電力のパルス周波数は1300Hz以上となったが、パルス周波数はプラズマ生成用波電力のデューティー比に合わせて設定される。例えばプラズマ生成用電力のデューティー比を20%にした場合、周波数を一定とすると、40%と比較してオフの時間が大きくなる。このためアフターグローの状態を最大化できる周波数の下限値は、100Hz単位でパルス周波数を変化させる場合、高周波電力のデューティー比が40%の時より高い周波数である1700Hzとなる。このように、例えば10%から90%の間に設定されたデューティー比に応じて、アフターグロー放電の状態を最大化できるプラズマ生成用電力のパルス周波数を、100Hz単位でパルス周波数を変更させる場合、300Hz~2000Hzの範囲内にする。
(バイアス電力のパルス変調)
 プラズマ中に存在するほとんどのイオンは、バイアス電力により加速されてウエハに対し垂直方向に入射し、アスペクト比が高いトレンチの底面や微細パターンの底面まで達すると想定される。このため、マスク202の側面、またシリコン基板201のトレンチの側面に到達するイオンは少ないと考えられる。一方、電子は、さまざまな入射角を持ち等方的にウエハに入射するため、トレンチの底面や微細パターンの底面まで達することはイオンと比較して少ないと想定される。このため、電子は、マスク202の側面やシリコン基板201に形成されたトレンチの側面に到達して、シリコン基板に蓄積した局所的な電荷であるローカルチャージを引き起こす。このローカルチャージによってイオンの軌道が曲げられると、イオンは側面にも入射するようになりシリコン基板201へのサイドエッチング量が多くなり、アンダーカットやボーイング等の異常形状を発生させる原因となっている。
 このようなローカルチャージによるサイドエッチングを抑制するために、バイアス電力のパルス周波数を低くすることが有効である。パルス周波数が高いほど、1回の立ち上がり・立ち下がりにおける電流の継続時間は短くなる。そのため、パルス周波数が高すぎると、マスク202やシリコン基板201の側面に蓄積した電荷をウエハ102から下部電極103まで移動させるのに十分な期間の電流を発生させられなくなる。ウエハ表面の電荷が下部電極103へと抜け、ウエハに蓄積した電荷が除去されるまでにサブmsからmsのオーダーの時間が必要となることから、十分に電荷を下部電極103まで移動させるには、バイアス電力の出力がオフとなる時間がmsのオーダーとなる必要となる。
 本実施形態では、デューティー比を2%としたバイアス電力を用いている。表2に算出するように、パルス出力がオフとなる時間を1.0msより大きくなるようにするには、パルス周波数を900Hz以下に設定することが望ましい。言い換えると、バイアス電力を変調するための第二のパルスのオフ時間は、ローカルチャージが除去される時間より長いことが望ましい。
Figure JPOXMLDOC01-appb-T000002
 なお、バイアス電力のデューティー比を2%に設定したため、ローカルチャージを解消するのに必要なパルス周波数は900Hz以下となったが、パルス周波数の値はデューティー比の設定によって異なる。例えばデューティー比を50%にした場合、2%の場合と比較して、パルス出力がオフになる期間の比が小さくなる。このため電荷を電極まで移動させるために必要な時間は、100Hz単位でパルス周波数を変化させる場合、表3に示すように500kHz以下となる。このようにデューティー比の値によって電荷を電極まで移動させるために必要な時間は異なることから、2%~90%以下の範囲内のデューティー比に対し、パルス周波数はそれぞれ100Hz~900Hzの範囲内にすることが望ましい。
Figure JPOXMLDOC01-appb-T000003
(作用・効果)
 発明者は、本実施形態では、パルス変調をする指標として、アフターグローの状態を最大化するためにプラズマ生成用電力のパルス周波数をデューティー比の設定に応じて300Hz~2000Hzの範囲内とし、シリコン基板のローカルチャージを解消するためにバイアス電力のパルス周波数をデューティー比の設定に応じて100Hz~900Hzの範囲内とすることを見いだした。また、プラズマ生成用電力のパルス周波数は、より高周波にすることでパルス出力がオフとなる期間が短くなりアフターグローの状態を維持することが容易となる。
 また、バイアス電力のパルス周波数は、より低周波数にすることで、パルスオフの期間を長くできローカルチャージで蓄積した電荷をウエハ102から下部電極103まで移動させるのに有効となる。このことから、プラズマ生成用高周波電力を変調するための第一のパルスの周波数は、高周波バイアスを変調するための第二のパルスの周波数より高く、プラズマ生成用高周波電力を変調するための第一のパルスのデューティー比は、高周波バイアスを変調するための第二のパルスのデューティー比より大きいことが望ましいと考えられる。
 以上に説明したように、本実施形態によれば、プラズマ生成用電力とバイアス電力をパルス変調するときにデューティー比を適切に設定することによって、プラズマのアフターグローの状態を処理に用いることができ、垂直性のエッチングを実現することができる。
<第3実施形態>
 発明者は、第1実施形態および第2実施形態の検討の結果を踏まえて、STI形成工程を提案する。なお、第1実施形態および第2実施形態と対応する構成には同じ符号を付し、説明は省略する。
(STIの形成方法)
 以下に、STIの形成方法を説明する。図8は、STIの形成方法のフローチャートを示す図である。ここに示されるフローチャートは、STIを形成するのに必要なマスクが形成された状態のウエハ102に行われる。
 第一の工程S11において、プラズマにより、シリコンをエッチングする。第位置の工程においては、真空処理室101内にウエハのエッチングに適したハロゲンガスを含む混合ガスを供給してプラズマを発生させ、プラズマによりシリコンを基板とする試料がエッチングされる。
 第二の工程S12において、シリコン元素を含有する堆積膜をマスクに堆積させる。第二の工程においては、真空処理室101内にSiClを含む混合ガスを供給し、マスク上にシリコン元素を含有する堆積膜を形成する。
 第三の工程S13において、プラズマにより、エッチング形状が垂直となるようにシリコンをエッチングする。第三の工程S14においては、真空処理室101内にウエハのエッチングに適したハロゲンガスを含む混合ガスを供給してプラズマを発生させ、プラズマによりパターンへのアンダーカットを防ぎながらウエハを垂直方向にエッチングする。
 第四の工程S14において、SiOを含有する堆積膜をマスクに堆積させる。第四の工程S14において、真空処理室101内にOを含む混合ガスを供給し、マスクと第二の工程で堆積させた堆積膜の表面を酸化させ、酸化膜を形成する。
 第一の工程ないし第四の工程を所定の回数、繰り返し、トレンチの深さがSTIを形成するのに必要となる所定の深さかどうか判断し、所定の深さになるまでエッチング処理を繰り返す(工程S15)。第一の工程から第四の工程を所定の回数、繰り返す工程をFin-FETのSTIを形成するSTI形成工程という。
 なお、第三の工程S14のプラズマは、第一のパルスにより変調された高周波電力(以下、「プラズマ生成用電力」ともいう。)により生成され、第三の工程S14は、第二のパルスにより変調された高周波電力(以下、「バイアス電力」ともいう。)をシリコンを基板とする試料に供給しながら行われる。
(STIを形成方法の時のウエハの模式図)
 より具体的に、STIを形成する工程を説明する。なお、本実施形態において、ウエハ102としてシリコン基板を例にとって説明しているが、本発明はこれに限定されない。ウエハ102としてシリコン基板以外の材料で形成された基板を用いてもよいし、またシリコン基板上に半導体構造を形成したあとに本実施形態のプラズマ処理をするようにしてもよい。
 図9は、STI形成工程が行われる前のシリコン基板201の一部を模式的に示す図である。ここに示されるように、シリコン基板201の初期構造は、シリコン基板201の上にマスク202が形成された構造である。マスク202は所定間隔にパターニングされており、隣り合うマスク202の間隔w1は、20nm以下であり、例えば10nm程度である。STIの形成を通じて、シリコン基板は130nm程度エッチングされ、アスペクト比6.5程度のトレンチが形成される。なお、マスク202の材料および膜厚は適宜選択することができる。本実施形態においては、シリコン基板201をエッチングするためシリコンとの選択比、マスク上に形成される層、マスク上に行われるアッシングなどの条件を考慮して選択する。
 続いて、図8に示されるSTIの形成工程が行われる。ここで、表4に、STI形成工程に含まれる各工程におけるプラズマ生成用電源113と基板バイアス電源109の設定条件の一例を示す。第一の工程S11と第三の工程S13は、プラズマ生成用電源113と基板バイアス電源109のいずれもパルス変調をする。第二の工程S12と第四の工程S14は、プラズマ生成用電源113の出力はオンのままのCW(Continuous Wave)動作をし、基板バイアス電源109はパルス変調をする。
Figure JPOXMLDOC01-appb-T000004
 図10は、第一の工程S11を実行した場合のシリコン基板201の一部を模式的に示す図である。第一の工程S11でマスク202を形成した初期構造を持つシリコン基板201に第一の工程S11に係るエッチングを行うことにより、マスク202の間隙によって規定された部分にトレンチtrを形成する。処理条件としてハロゲンガスを含む混合ガスを用い、圧力を0.5Pa以下とすることが望ましい。表1に示される例では、圧力を0.45Paとした。
 第一の工程S11は、パルス変調されたバイアス電力をウエハ102が載置されている下部電極103に供給しながら行われる。またプラズマを生成するためのプラズマ生成用電力を変調するための第一のパルスのデューティー比は、下部電極103に供給されたバイアス電力を変調するための第二のパルスのデューティー比より大きいことが好ましい。
 表4に示されるように、プラズマ生成用電源113は、電力値を1200Wである。また、プラズマ生成用電源113から出力される高周波電力を変調するための第一のパルスは、デューティー比を35%、パルス周波数を2000Hzとする。基板バイアス電源109は、電力値を380Wである。また、基板バイアス電源109から出力される高周波電力を変調するための第二のパルスは、デューティー比を25%、パルス周波数を2000Hzとする。プラズマ生成用電力とバイアス電力のいずれもパルスによる変調がされた。なお、表4に示される他の値について説明すると、第一の工程S11における第一のパルスのデューティー比(35%)は、第一の工程S11における第二のパルスのデューティー(25%)より大きい。第三の工程S13における第二のパルスの周波数(100Hz)は、第一の工程S11における第二のパルスの周波数(2000Hz)より低い。第三の工程S13における第二のパルスのデューティー比(2%)は、第一の工程S11における第二のパルスのデューティー比(25%)より小さい。第二の工程S12における第二のパルスの周波数(100Hz)は、第一の工程S11における第二のパルスの周波数(2000Hz)より低い。第二の工程S12における第二のパルスのデューティー比(5%)は、第一の工程S11における第二のパルスのデューティー比(25%)より小さい。
 ここで、第一の工程をプラズマ生成用電力とバイアス電力をパルス変調させる工程とすることで、プラズマ電力がオフの時にエッチング中に発生した反応生成物が真空排気装置を介して排気されるため、マスク202とシリコン基板201に反応生成物が付着し堆積物となることを抑制することができる。また、ガス圧力を低くする場合、エッチング中の反応生成物はいっそう減少させることが可能である。このため、反応生成物によってエッチングが妨げられることが抑制されるため、シリコン基板の垂直方向のエッチングを進行させることができる。
 図11は、第二の工程S12を実行した場合のシリコン基板201の一部を模式的に示す図である。第二の工程において、SiClガスが供給されSiClガスを用いてプラズマが生成され、マスク202の上面にシリコン元素を含むシリコン系の堆積膜203が形成される。マスク202上面に堆積膜203が設けられることによって、その後シリコン基板201を更に深くエッチングする際、マスク202の上面および側面のダメージを抑えることができ、マスクが有するパターンの崩壊を防ぐことができる。なお、第二の工程S12においては、プラズマ中に含まれるClイオンのサイズが大きく、トレンチtr内に堆積膜が堆積するのを抑える働きをする。このため、マスク202以外の箇所に堆積膜は堆積しうるもののその量は影響を無視できるほど少ないため、図11においては考慮されていない。このことは、後述の第四の工程S14における酸化膜204についても同様であり、プラズマ中にClイオンが含まれるようにしている。
 表4に示されるように、プラズマ生成用電源113は、電力値を1200Wとし、パルス変調はしない。基板バイアス電源109は、電力値を60、デューティー比を5%、パルス周波数を100Hzとする。
 図12は、第三の工程S13を実行した場合のシリコン基板201の一部を模式的に示す図である。ここでは、トレンチtrは、シリコン基板201に垂直な方向に形成されている。第三の工程の処理条件として、真空処理室101内にシリコン基板のエッチングに適したハロゲンガスを含む任意の混合ガスを用いる。なお、ハロゲンガスとして、例えばフッ素ガスは反応性が高いため、多く利用される。
 表1に示されるように、プラズマ生成用電源113は、電力値を900Wとする。プラズマ生成用電源113から出力されるプラズマ生成用電力を変調するための第一のパルスは、デューティー比を40%、パルス周波数を1800Hzとする。基板バイアス電源109は、電力値を50Wとする。基板バイアス電源109から出力される高周波電力を変調するための第二のパルスは、デューティー比を2%、パルス周波数を100Hzとする。
 また、第一の工程S11と同様にプラズマ生成用電力とバイアス電力をパルス変調することで、プラズマ電力がオフの時にエッチング中に発生した反応生成物が真空排気装置を介して排気され、マスク202とシリコン基板201に付着する堆積物を抑制することができる。さらに、ガス圧力を低くすることでエッチング中の反応生成物は減少し、シリコン基板を垂直方向にエッチングすることができる。
 図13は、第四の工程S14を実行した場合のシリコン基板201の一部を模式的に示す図である。第四の工程S14では、ArとOを含む混合ガスを供給し、マスク202と第二の工程S12で生成した堆積膜203の表面を酸化させて酸化膜204を形成する。図13に示すように、酸化膜204を堆積膜203上に設けることで、シリコン基板を更に深くエッチングする際、よりマスク202の上面および側面のダメージを抑えることができ、マスク202のパターンが損傷を受けることを防ぐことができる。なお、酸化膜204は、SiOを含有するがこれに限定されない。SiOを含むこととしてもよいし、そのほかの酸化物を含むこととしてもよい。
 表1に示されるように、プラズマ生成用電源113は、電力値を700Wとし、パルス変調はしない。基板バイアス電源109は、電力値を60W、デューティー比を25%、パルス周波数を1000Hzとする。
 図14は、第一の工程S11から第四の工程S14が繰り返され、トレンチtrが所定の深さd1までエッチングされた場合のシリコン基板の一部を模式的に示す図である。ここでトレンチtrは、STI形成工程を通じて、深さd1がSTIを形成するのに必要となる値まで到達できた。
 なお、本実施形態では、第一の工程S11から第四の工程S14を6回繰り返してエッチングを行い、それによりトレンチの深さを130nmとした。なお、本実施形態ではトレンチの深さが130nmとなるまでエッチング処理したが、これに限らずFinを形成できる所定の深さまでエッチング処理すれば足りる。トレンチの深さと製造条件、STI形成工程の繰り返し回数を予め調べておき、所定の回数だけSTI形成工程をした場合にトレンチが所望の深さとなることを対応付けておくこともできる。
 図15は、第一の工程S11から第四の工程S14が繰り返し行われる様子を模式的に示した図である。第一の工程S11において、トレンチtrが形成される。第二の工程S12において、マスク202上に堆積膜203が形成される。第三の工程S13において、エッチング形状がすいちょくとなるようにエッチングが行われる。第四の工程S14において、堆積膜203に酸化膜204を形成する。第一の工程S11に戻ると、マスク202上に形成された堆積膜203および酸化膜204がエッチングされる。第一の工程S11は、堆積膜203および酸化膜204がエッチングされる程度の時間だけ行われるように設定されている。第一の工程S11から第四の工程S14までの工程を、トレンチが所定の深さd1になるまで行う。本実施形態では、第一の工程から第四の工程までを6回繰り返すことで、トレンチtrの深さd1を130nmにすることができた。
(作用・効果)
 図16は、比較例としてのエッチング工程におけるシリコン基板201の一部を模式的に示す図である。ここでは、エッチング工程におけるトレンチ形状が不良の場合を示す。図16(a)はアンダーカットが生じる場合である。アンダーカットは、等方性のエッチングの影響が強く生じた場合に起こると考えられる。一方、図16(b)は、付着係数が大きいラジカルによってエッチングが進行した場合に生じる形状である。付着係数が大きいと、ラジカルは最初に衝突した面に付着しやすくなる。シリコン基板201のプラズマに面した上面側のトレンチ部分に付着しエッチングが進行する一方、トレンチ奥側にはラジカルが付着しにくくエッチングが進まない。また、トレンチが高アスペクト比の形状を有する場合、トレンチ奥側にはラジカルが侵入しにくくなる。そのため、トレンチ奥側になるにつれてエッチングが進まず、あたかもトレンチ側壁が太るような形状になり、図16(b)に示されるようにシリコン基板201のトレンチtrがテーパ形状になる。
 これに対し、本実施形態においては、第三の工程において付着係数が抑えられたラジカルがエッチングに用いられている。これにより、図12に示すように、トレンチtrの形状を良好に保ちつつ、垂直方向のエッチングをすることが可能となる。
 また、本実施形態においては、第四の工程において、マスク202上の堆積膜203に酸化膜204を形成している。これによって、トレンチtrを深くエッチングする間にも堆積膜203やマスク202がエッチングされて損傷を受けることを防止することができる。
 以上に説明したように、本実施形態によれば、付着係数の小さい種類のラジカルを用いるプロセス条件を設定することによって、垂直性のエッチングを実現することができる。
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態における構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態における構成の一部について、他の構成の追加・削除・置換をすることも可能である。
 101 真空処理室
 102 ウエハ
 103 下部電極
 104 マイクロ波透過窓
 105 導波管
 106 マグネトロン
 107 ソレノイドコイル
 108 静電吸着電源
 109 基板バイアス電源
 110 ウエハ搬入口
 111 ガス供給口
 112 プラズマ
 113 プラズマ生成用電源
 114 電力制御部
 201 シリコン基板
 202 マスク
 203 堆積膜
 204 酸化膜

Claims (12)

  1.  Shallow Trench Isolationを形成するプラズマ処理方法において、
     プラズマによりシリコンをエッチングする第一の工程と、
     シリコン元素を含有する堆積膜をマスクに堆積させる第二の工程と、
     プラズマにより、エッチング形状が垂直となるように前記シリコンをエッチングする第三の工程と、
     SiOを含有する堆積膜をマスクに堆積させる第四の工程とを有し、
     前記第一の工程ないし前記第四の工程を所定の回数、繰り返し、
     前記第三の工程のプラズマは、第一のパルスにより変調された高周波電力により生成され、
     前記第三の工程は、第二のパルスにより変調された高周波電力を前記シリコンを基板とする試料に供給しながら行われ、
     前記第三の工程における前記第一のパルスの周波数は、前記第三の工程における前記第二のパルスの周波数より高いことを特徴とするプラズマ処理方法。
  2.  請求項1に記載のプラズマ処理方法において、
     前記第三の工程における前記第一のパルスのオフ時間は、アフターグロー放電が消滅するまでの時間より短いことを特徴とするプラズマ処理方法。
  3.  請求項2に記載のプラズマ処理方法において、
     前記第三の工程における前記第二のパルスのオフ時間は、前記試料に蓄積した電荷が除去される時間より長いことを特徴とするプラズマ処理方法。
  4.  請求項3に記載のプラズマ処理方法において、
     前記第三の工程における前記第一のパルスのデューティー比は、前記第三の工程における前記第二のパルスのデューティー比より大きいことを特徴とするプラズマ処理方法。
  5.  請求項4に記載のプラズマ処理方法において、
     前記第二の工程は、SiClガスを用いて生成されたプラズマにより前記シリコン元素を含有する堆積膜を堆積させることを特徴とするプラズマ処理方法。
  6.  請求項5に記載のプラズマ処理方法において、
     前記第一の工程における前記第一のパルスのデューティー比は、前記第一の工程における前記第二のパルスのデューティー比より大きいことを特徴とするプラズマ処理方法。
  7.  請求項6に記載のプラズマ処理方法において、
     前記第三の工程における前記第二のパルスの周波数は、前記第一の工程における前記第二のパルスの周波数より低いことを特徴とするプラズマ処理方法。
  8.  請求項7に記載のプラズマ処理方法において、
     前記第三の工程における前記第二のパルスのデューティー比は、前記第一の工程における前記第二のパルスのデューティー比より小さいことを特徴とするプラズマ処理方法。
  9.  請求項8に記載のプラズマ処理方法において、
     前記第二の工程における前記第二のパルスの周波数は、前記第一の工程における前記第二のパルスの周波数より低いことを特徴とするプラズマ処理方法。
  10.  請求項9に記載のプラズマ処理方法において、
     前記第二の工程における前記第二のパルスのデューティー比は、前記第一の工程における前記第二のパルスのデューティー比より小さいことを特徴とするプラズマ処理方法。
  11.  請求項10に記載のプラズマ処理方法において、
     前記第三の工程における前記第一のパルスの周波数は、300kHz~2000kHzの範囲内の周波数であることを特徴とするプラズマ処理方法。
  12.  請求項11に記載のプラズマ処理方法において、
     前記第三の工程における前記第二のパルスの周波数は、100kHz~900kHzの範囲内の周波数であることを特徴とするプラズマ処理方法。
PCT/JP2022/028584 2022-07-25 2022-07-25 プラズマ処理方法 WO2024023877A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237021297A KR20240016242A (ko) 2022-07-25 2022-07-25 플라스마 처리 방법
PCT/JP2022/028584 WO2024023877A1 (ja) 2022-07-25 2022-07-25 プラズマ処理方法
CN202280008603.9A CN117769757A (zh) 2022-07-25 2022-07-25 等离子体处理方法
JP2023535334A JP7519549B2 (ja) 2022-07-25 2022-07-25 プラズマ処理方法
TW112124487A TW202405937A (zh) 2022-07-25 2023-06-30 電漿處理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028584 WO2024023877A1 (ja) 2022-07-25 2022-07-25 プラズマ処理方法

Publications (1)

Publication Number Publication Date
WO2024023877A1 true WO2024023877A1 (ja) 2024-02-01

Family

ID=89705732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028584 WO2024023877A1 (ja) 2022-07-25 2022-07-25 プラズマ処理方法

Country Status (5)

Country Link
JP (1) JP7519549B2 (ja)
KR (1) KR20240016242A (ja)
CN (1) CN117769757A (ja)
TW (1) TW202405937A (ja)
WO (1) WO2024023877A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107363A (ja) * 2012-11-27 2014-06-09 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP2014204050A (ja) * 2013-04-09 2014-10-27 株式会社日立ハイテクノロジーズ プラズマ処理方法およびプラズマ処理装置
JP2014531753A (ja) * 2011-09-07 2014-11-27 ラム リサーチ コーポレーションLam Research Corporation デュアルチャンバ構成のパルスプラズマチャンバ
JP2015050440A (ja) * 2013-09-04 2015-03-16 株式会社日立ハイテクノロジーズ プラズマ処理方法
JP2017069542A (ja) * 2015-09-29 2017-04-06 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
WO2020100338A1 (ja) * 2019-06-21 2020-05-22 株式会社日立ハイテク プラズマ処理方法
JP2021503700A (ja) * 2017-11-17 2021-02-12 エーイーエス グローバル ホールディングス, プライベート リミテッド プラズマ処理源および基板バイアスの同期パルス化
JP2021534544A (ja) * 2018-08-30 2021-12-09 東京エレクトロン株式会社 プラズマ処理のための制御のシステム及び方法
JP2021534545A (ja) * 2018-08-14 2021-12-09 東京エレクトロン株式会社 プラズマ処理のための制御のシステム及び方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764575B2 (ja) 1996-08-05 1998-06-11 名古屋大学長 ラジカルの制御方法
JP2010021442A (ja) 2008-07-11 2010-01-28 Ulvac Japan Ltd プラズマ処理方法及びプラズマ処理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531753A (ja) * 2011-09-07 2014-11-27 ラム リサーチ コーポレーションLam Research Corporation デュアルチャンバ構成のパルスプラズマチャンバ
JP2014107363A (ja) * 2012-11-27 2014-06-09 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP2014204050A (ja) * 2013-04-09 2014-10-27 株式会社日立ハイテクノロジーズ プラズマ処理方法およびプラズマ処理装置
JP2015050440A (ja) * 2013-09-04 2015-03-16 株式会社日立ハイテクノロジーズ プラズマ処理方法
JP2017069542A (ja) * 2015-09-29 2017-04-06 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
JP2021503700A (ja) * 2017-11-17 2021-02-12 エーイーエス グローバル ホールディングス, プライベート リミテッド プラズマ処理源および基板バイアスの同期パルス化
JP2021534545A (ja) * 2018-08-14 2021-12-09 東京エレクトロン株式会社 プラズマ処理のための制御のシステム及び方法
JP2021534544A (ja) * 2018-08-30 2021-12-09 東京エレクトロン株式会社 プラズマ処理のための制御のシステム及び方法
WO2020100338A1 (ja) * 2019-06-21 2020-05-22 株式会社日立ハイテク プラズマ処理方法

Also Published As

Publication number Publication date
JPWO2024023877A1 (ja) 2024-02-01
CN117769757A (zh) 2024-03-26
KR20240016242A (ko) 2024-02-06
JP7519549B2 (ja) 2024-07-19
TW202405937A (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
JP6035606B2 (ja) プラズマ処理方法およびプラズマ処理装置
JP6138653B2 (ja) ドライエッチング方法
JP6298867B2 (ja) プラズマ処理方法およびプラズマ処理装置
US8801951B2 (en) Plasma processing method
JPH10150025A (ja) プラズマ反応装置
JP2001168086A (ja) 半導体装置の製造方法および製造装置
TWI759732B (zh) 電漿處理方法
WO2024023877A1 (ja) プラズマ処理方法
JP6228860B2 (ja) 半導体装置の製造方法
JP5774356B2 (ja) プラズマ処理方法
JP4061691B2 (ja) 表面加工方法
JP2000012529A (ja) 表面加工装置
JP5918886B2 (ja) プラズマ処理方法
WO2023211665A1 (en) Method to enhance etch rate and improve critical dimension of features and mask selectivity
JP6184838B2 (ja) 半導体製造方法
JPWO2020012693A1 (ja) プラズマ処理方法及びプラズマ処理装置
JPH04158517A (ja) プラズマエッチング方法及びプラズマエッチング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023535334

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280008603.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952976

Country of ref document: EP

Kind code of ref document: A1