WO2024016650A1 - 一种液体橡胶光伏封装组合物、封装方法和光伏组件 - Google Patents

一种液体橡胶光伏封装组合物、封装方法和光伏组件 Download PDF

Info

Publication number
WO2024016650A1
WO2024016650A1 PCT/CN2023/076254 CN2023076254W WO2024016650A1 WO 2024016650 A1 WO2024016650 A1 WO 2024016650A1 CN 2023076254 W CN2023076254 W CN 2023076254W WO 2024016650 A1 WO2024016650 A1 WO 2024016650A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid rubber
photovoltaic
conjugated diene
rubber
Prior art date
Application number
PCT/CN2023/076254
Other languages
English (en)
French (fr)
Inventor
徐力
唐国栋
侯宏兵
周光大
林建华
Original Assignee
杭州福斯特应用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州福斯特应用材料股份有限公司 filed Critical 杭州福斯特应用材料股份有限公司
Publication of WO2024016650A1 publication Critical patent/WO2024016650A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J115/00Adhesives based on rubber derivatives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of photovoltaic packaging, and specifically to a liquid rubber photovoltaic packaging composition, packaging method and photovoltaic module.
  • Solar energy is a promising new energy source to solve the energy crisis and achieve the goal of "carbon neutrality".
  • Solar cells are composed of silicon wafers, a material that can convert solar energy into electrical energy when exposed to sunlight.
  • high-purity silicon is more expensive and is easily corroded by water vapor, dust, etc. in the air and gradually fails. Therefore, the industry needs to reduce the thickness of the cells as much as possible, and use packaging materials to "glue" the cells between the upper and lower substrates to make photovoltaic modules, which not only improves the strength but also protects the cells from damage.
  • the influence of external environmental factors meets the requirements for photovoltaic modules to be used for more than 25 years.
  • the encapsulation materials and various compounding agents are first mixed evenly, and then extruded to form a solid film, which is cut into the required shape and spread on the cell sheets and on the Between the substrate, cells and lower substrate, the final high-temperature lamination cross-links the packaging material.
  • the current thickness of battery cells is generally around 200 microns.
  • the solid material has a certain modulus, which may easily cause the battery cells to break, or the bubbles may not be easily removed from between the battery cells and the substrate, thus reducing the quality of the product. Rate.
  • EVA ethylene-vinyl acetate copolymer
  • the main purpose of the present invention is to provide a liquid rubber photovoltaic packaging composition, packaging method and photovoltaic module to solve the problems of poor moisture resistance and water resistance of EVA packaging film in the prior art.
  • a liquid rubber photovoltaic encapsulation composition which composition includes: 100 parts by mass of conjugated diene liquid rubber, 0.01-15 parts by mass of cross-linking agent, 0.1-15 parts by mass 8 parts by mass of a tackifier, wherein the viscosity of the conjugated diene liquid rubber at 25°C is 20 to 20000 mPa ⁇ s, and the glass transition temperature of the conjugated diene liquid rubber is less than or equal to -70°C.
  • the proportion of 1,4-structural units in the microstructure of the conjugated diene liquid rubber is between 50% and 100%, preferably 70% to 90%; preferably, the conjugated diene liquid rubber is at 25°C.
  • the viscosity is 1000 ⁇ 10000mPa ⁇ s.
  • the number average molar molecular weight of the conjugated diene liquid rubber is 1,000 to 50,000 g/mol, and the molecular weight distribution index of the conjugated diene liquid rubber is preferably between 1.01 and 3.00.
  • the conjugated diene liquid rubber is preferably Selected from liquid poly Any one or more of butadiene rubber, liquid styrene-butadiene rubber, liquid polyisoprene rubber, and liquid nitrile rubber; further preferably, the molecular chain of the conjugated diene liquid rubber also includes functional groups, preferably functional groups
  • the sexual group is selected from any one or more of hydroxyl group, carboxyl group, primary amino group, secondary amino group, aldehyde group, carbonyl group, oxime group, epoxy group and bromine group.
  • the cross-linking agent is isocyanate, azo compounds, carboxylic acid compounds, alcohol compounds, acid chloride compounds, epoxy substances, amine compounds, sulfur, sulfur-containing compounds, selenium, tellurium, peroxide, Any one or more of metal oxides and quinone compounds, preferably the mass part of the cross-linking agent is 1 to 5 parts by mass; and/or the tackifier is selected from the polymerization of conjugated dienes containing polar groups Any one or more of substances and silane coupling agents, wherein the conjugated diene polymer containing polar groups is epoxidized polybutadiene liquid rubber, epoxidized liquid nitrile rubber, epoxy Any one or more of liquid styrene-butadiene rubber and epoxidized liquid polyisoprene rubber, and the silane coupling agent is ⁇ -(methacryloyloxy)propyltrimethoxysilane, vinyl tris(2- Any one or more of methoxyethoxy)si
  • the tackifier includes a conjugated silane containing a polar group.
  • the mass ratio of the diene polymer and the silane coupling agent, and the conjugated diene polymer containing polar groups and the silane coupling agent is 1:0.1 ⁇ 1, and the mass part of the tackifier is preferably 0.1 ⁇ 1 3 parts by mass.
  • the liquid rubber photovoltaic encapsulation composition also includes: 0.1 to 3 parts by mass of an anti-aging agent and/or 0.1 to 2 parts by mass of an auxiliary cross-linking agent.
  • the anti-aging agent is selected from 2,2'-methylene bis(4 -Methyl-6-tert-butylphenol), 2,6-di-tert-butyl-p-cresol, 2,4,6-tri-tert-butylphenol, antioxidant 1010, antioxidant 1076 any one or more
  • the preferred co-crosslinking agents are zinc dimethacrylate, zinc diacrylate, 2-thiol benzothiazole, tetramethylthiuram disulfide, diphenylguanidine, dibutyltin dilaurate, 2, Any one or more of 4,6-tris(dimethylaminomethyl)phenol.
  • a packaging method for photovoltaic modules includes: step S1, mixing and degassing each component of the liquid rubber photovoltaic packaging composition to form a packaging liquid.
  • the liquid rubber photovoltaic packaging composition The material is the above-mentioned liquid rubber photovoltaic encapsulation composition; step S2, the encapsulation liquid is arranged between the upper substrate, the cell unit and the lower substrate to form a packaging preparation; step S3, degassing and solidifying the packaging preparation, Get photovoltaic modules.
  • step S2 includes: disposing the encapsulation liquid on the side of the upper substrate and the lower substrate facing the battery unit, and stacking the upper substrate, battery unit and lower substrate in sequence; or stacking the upper substrate, battery unit and lower substrate
  • the molds are formed by layering them in sequence, and then the encapsulating liquid is filled into the mold.
  • step S1 includes: adjusting the viscosity of the packaging liquid to 1000-10000 mPa ⁇ s by adjusting the temperature of the packaging liquid.
  • the curing temperature is 100 to 300°C.
  • step S3 are performed under vacuum conditions, and preferably the vacuum gauge pressure of the vacuum is -0.95 to -0.99 atm.
  • a photovoltaic module includes a lower substrate, a cell unit and an upper substrate.
  • the pores between the lower substrate, the cell unit and the upper substrate are filled with encapsulating glue, wherein the encapsulating glue It is formed by curing the above-mentioned liquid rubber photovoltaic encapsulating composition.
  • the conjugated diene liquid rubber obtained by homopolymerization of the conjugated diene itself or copolymerization with other monomers has good fluidity at room temperature, especially the viscosity at 25°C. It is a conjugated diene liquid rubber with a temperature range of 20 to 20000 mPa ⁇ s. If it is applied to photovoltaic packaging materials, it is less likely to rupture the cells during curing than the solid packaging method. It is also relatively convenient to remove air bubbles, which can simplify the operation. And further improve the product yield rate. Conjugated diene liquid rubber has the advantages of low polarity and good insulation properties.
  • the photovoltaic modules encapsulated by it have better moisture resistance and waterproofness, and can effectively suppress the PID effect.
  • conjugated diene liquid rubber is easy to mix evenly with various compounding agents, has abundant sources, and is low in cost.
  • Using conjugated diene liquid rubber as a photovoltaic encapsulation material and encapsulating it using a liquid encapsulation method can simplify the operation process and manufacture Photovoltaic modules with lower cost and better performance have good application prospects.
  • the glass transition temperature of conjugated diene liquid rubber is no higher than -70°C, the molecular chain has good flexibility, and the cured product has good elasticity even at extremely low temperatures, so it is expected to expand the use of photovoltaic modules. temperature range.
  • Figure 1 shows a schematic diagram of a photovoltaic module structure according to an embodiment of a liquid rubber photovoltaic packaging composition, packaging method and photovoltaic module according to the present invention
  • a liquid rubber photovoltaic encapsulating composition in a typical embodiment of the present application, includes: 100 parts by mass of conjugated diene liquid rubber, 0.01-15 parts by mass of cross-linking agent , 0.1 to 8 parts by mass of a tackifier, wherein the viscosity of the conjugated diene liquid rubber at 25°C is 20 to 20000 mPa ⁇ s, and the glass transition temperature of the conjugated diene liquid rubber is less than or equal to -70°C.
  • Conjugated diene liquid rubber obtained by homopolymerization of conjugated diene itself or copolymerization with other monomers has good fluidity at room temperature, especially the viscosity of 20 to 20000 mPa ⁇ s at 25°C. If conjugated diene liquid rubber is applied to photovoltaic packaging materials, it is less likely to rupture cells during curing than solid packaging methods. It is also relatively convenient to remove air bubbles, which can simplify operations and further improve product yields. . Conjugated diene liquid rubber is polar It has the advantages of low temperature and good insulation performance, so the photovoltaic modules encapsulated using it have better moisture resistance and waterproofness, and can effectively suppress the PID effect.
  • conjugated diene liquid rubber is easy to mix evenly with various compounding agents, has abundant sources, and is low in cost.
  • conjugated diene liquid rubber as a photovoltaic encapsulation material and encapsulating it using a liquid encapsulation method can simplify the operation process and manufacture Photovoltaic modules with lower cost and better performance have good application prospects.
  • the glass transition temperature of conjugated diene liquid rubber is no higher than -70°C, the molecular chain has good flexibility, and the cured product has good elasticity even at extremely low temperatures, so it is expected to expand the use of photovoltaic modules. temperature range.
  • Conjugated diene monomers will produce two microstructures, 1,4- and 1,2-, during polymerization.
  • Increasing the proportion of 1,4-structure and lowering the glass transition temperature can significantly improve the flexibility of the molecular chain, thereby making The elasticity and flexibility of the cured product become better. Therefore, controlling the 1,4-content and glass transition temperature in the microstructure of conjugated diene liquid rubber can better protect the encapsulated cells from cracks.
  • the proportion of 1,4-structural units in the microstructure of the conjugated diene liquid rubber is between 50% and 100%, preferably between 70% and 90%.
  • the conjugated diene liquid rubber with the above microstructural characteristics has excellent molecular chain flexibility and the elasticity of the cured product has been further improved.
  • the above-mentioned conjugated diene liquid rubber can be selected from conjugated diene homopolymers or copolymers commonly used in the prior art.
  • the viscosity of the conjugated diene liquid rubber at 25°C is 1,000 to 10,000 mPa ⁇ s.
  • the number average molar molecular mass (Mn) of the conjugated diene liquid rubber is preferably 1,000 to 50,000 g/mol, and the molecular weight distribution index of the conjugated diene liquid rubber is preferably between 1.01 and 3.00.
  • the conjugated diene liquid rubber is selected from any one or more of liquid polybutadiene rubber, liquid styrene-butadiene rubber, liquid polyisoprene rubber, and liquid nitrile rubber.
  • the above-mentioned rubbers are all common conjugated diene liquid rubbers with stable sources and low costs.
  • the above-mentioned conjugated diene liquid rubber may have other functional groups other than carbon-carbon double bonds.
  • the molecular chain of the above-mentioned conjugated diene liquid rubber also includes functional groups.
  • the above-mentioned functional groups are selected from the group consisting of hydroxyl group, carboxyl group, primary amine group, secondary amine group, aldehyde group, carbonyl group, oxime group, and epoxy group. , any one or more of bromine groups.
  • cross-linking agent and tackifier can be selected from varieties commonly used in the prior art.
  • the cross-linking agent is selected from isocyanates, azo compounds, carboxylic acid compounds, alcohol compounds, acid chloride compounds, epoxy substances, amine compounds, sulfur, sulfur-containing compounds, selenium Any one or more of tellurium, peroxide, metal oxide, and quinone compounds can better improve the strength and elasticity of liquid rubber after curing.
  • isocyanates, polyols, azo compounds, peroxides, and sulfur are preferred.
  • the mass part of the cross-linking agent is 1 to 5 parts by mass.
  • the use of a tackifier can enhance the bonding force between the liquid rubber photovoltaic encapsulation composition and the cell sheet, back sheet or front sheet.
  • the tackifier is selected from the group consisting of Any one or more of conjugated diene polymers with polar groups and silane coupling agents, wherein the conjugated diene polymers with polar groups are epoxidized polybutadiene liquid rubber , any one or more of epoxidized liquid nitrile rubber, epoxidized liquid styrene-butadiene rubber, and epoxidized liquid polyisoprene rubber, and the silane coupling agent is ⁇ -(methacryloyloxy)propyl Trimethoxysilane, vinyl tris(2-methoxy Any one or more of ethoxysilane, vinyltrimethoxysilane, and ⁇ -glycidoxypropyltrimethoxys
  • the above-mentioned various conjugated diene polymers containing polar groups can be commercialized products or can be produced by oneself.
  • the content of polar groups can be adjusted by self-production.
  • the above-mentioned tackifier includes a conjugated diene polymer containing a polar group and a silane coupling agent, and the conjugated diene polymer containing a polar group and a silane coupling agent are The mass ratio is 1:0.1 ⁇ 1 to achieve better viscosity increasing performance.
  • the mass part of the above-mentioned tackifier is 0.1-3 mass parts.
  • the composition also includes 0.1 to 3 parts by mass of an anti-aging agent and/or 0.1 to 2 parts by mass. Mass parts of co-crosslinking agent.
  • the above-mentioned anti-aging agents include but are not limited to 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 2,6-di-tert-butyl-p-cresol, 2,4,6-tris Any one or more of tert-butylphenol, antioxidant 1010, and antioxidant 1076.
  • Preferred co-crosslinking agents include but are not limited to zinc dimethacrylate, zinc diacrylate, and 2-mercaptobenzothiazole. , any one or more of tetramethylthiuram disulfide, diphenylguanidine, dibutyltin dilaurate, and 2,4,6-tris(dimethylaminomethyl)phenol.
  • a packaging method for photovoltaic modules includes: step S1, mixing and degassing each component of the liquid rubber photovoltaic packaging composition to form a packaging liquid,
  • the liquid rubber photovoltaic encapsulation composition is the above-mentioned liquid rubber photovoltaic encapsulation composition;
  • Step S2 the encapsulation liquid is placed between the upper substrate, the cell unit and the lower substrate to form a packaging preparation;
  • Step S3 the packaging preparation is removed gas and curing treatment to obtain photovoltaic modules.
  • the conjugated diene liquid rubber used in this application has good fluidity at room temperature. Therefore, using it as a packaging material combined with the above packaging method for photovoltaic module packaging can be easily mixed with various compounding agents and cured. Compared with the solid packaging method, it is less likely to cause the battery cells to rupture, and it is relatively convenient to remove air bubbles, which can simplify the operation and further improve the product yield rate. Moreover, conjugated diene liquid rubber has the advantages of low polarity and good insulation properties. The resulting photovoltaic module has better moisture resistance and waterproofness, and can effectively suppress the PID effect. Moreover, conjugated diene liquid rubber is abundant in sources and low in cost.
  • conjugated diene liquid rubber as photovoltaic packaging material and encapsulating it using liquid encapsulation method can simplify the operation process, produce lower cost and better performance.
  • Photovoltaic modules have good application prospects.
  • the glass transition temperature of conjugated diene liquid rubber is no higher than -70°C, the molecular chain has good flexibility, and the cured product has good elasticity even at extremely low temperatures, so it is expected to expand the use of photovoltaic modules. temperature range.
  • the above-mentioned step S2 includes: placing the encapsulation liquid on the side of the upper substrate and the lower substrate facing the battery unit, and stacking the upper substrate, battery unit and lower substrate in sequence; this method It can ensure that the encapsulation liquid is placed at all required placement positions on the upper substrate and the lower substrate.
  • the above step S2 includes: sequentially stacking the upper substrate, the battery unit and the lower substrate to form a mold, and then filling the encapsulation liquid into the mold.
  • the above embodiment is highly efficient and facilitates process implementation. Through the above method, high-quality packaging preparations can be easily prepared.
  • the above-mentioned step S1 includes: adjusting the viscosity of the packaging liquid to 1000-10000 mPa ⁇ s by adjusting the temperature of the packaging liquid, which is helpful for step S2. and step S3 can be performed efficiently, and packaging efficiency and packaging quality can be improved. Generally, when the viscosity is lower than this range, the temperature needs to be lowered to increase the viscosity.
  • the temperature needs to be raised to decrease the viscosity.
  • the opposite is true, such as some conjugated products with hydroxyl groups.
  • diene interacts with isocyanate cross-linking agent, due to the slight rise in temperature High can initiate partial polymerization reaction, and increasing the temperature can also increase the viscosity. But the temperature must be lower than 100°C, otherwise it will cause premature curing of the rubber.
  • the curing of the packaging preparation can be performed with reference to the existing technology.
  • the curing temperature is 100 to 300°C.
  • the packaging preparation prepared in the above step S2 bubbles may be generated in the packaging liquid.
  • degassing is performed first and then solidified to prevent the generation of bubbles and ensure the packaging layer. Strength of.
  • the above-described degassing and curing processes are performed under vacuum conditions, which can effectively avoid the formation of bubbles due to volume changes of the packaging material during the curing process, improve the adhesion between layers, and improve the packaging quality.
  • the vacuum gauge pressure of the vacuum is -0.95 to -0.99 atm.
  • a photovoltaic module in another typical embodiment of the present application, includes a lower substrate 1, a cell unit 3, and an upper substrate 4.
  • the lower substrate 1, the cell unit The pores between 3 and the upper substrate 4 are filled with encapsulating glue 2, where the encapsulating glue 2 is cured from the above-mentioned liquid rubber photovoltaic encapsulating composition.
  • the encapsulating glue formed after curing the conjugated diene liquid rubber of the liquid rubber photovoltaic encapsulating composition of the present application has the advantages of low polarity and good insulation performance.
  • the photovoltaic modules encapsulated by using the encapsulating glue are more moisture-resistant and waterproof, and can It effectively suppresses the PID effect; at the same time, the encapsulant also has high elasticity at low temperatures, so it can expand the operating temperature range of photovoltaic modules.
  • tackifier epoxidized liquid styrene-butadiene rubber is as follows: dissolve liquid styrene-butadiene rubber (Evonik) in 1,2-dichloroethane, add hydrogen peroxide (30%) and the method reported in the patent (CN 109678991A) Catalyst, after reacting at 60°C for 2 hours, filter the reaction liquid, and remove the solvent from the filtrate to obtain epoxidized liquid styrene-butadiene rubber.
  • the glass transition temperature Tg -75°C, the viscosity at 25°C is 2000mPa ⁇ s;
  • the cross-linking agent is selected from dicumyl peroxide, and the weight is 10g; thickening The agent is selected from epoxidized liquid styrene-butadiene rubber and vinyl tris(2-methoxyethoxy)silane, with weights of 20g and 10g respectively;
  • the anti-aging agent is selected from 2,4,6-tri-tert-butylphenol, The weight is 5g;
  • the auxiliary cross-linking agent is selected from 2-thiol benzenethiazole, and the weight is 3g; mix evenly in an internal mixer at room temperature and then degas in a vacuum.
  • Liquid encapsulation Apply the encapsulation liquid evenly on the side of the upper substrate (tempered glass) and lower substrate (back plate) of the photovoltaic cell facing the cell sheet, and stack them in sequence in the order of upper substrate, cell sheet, and lower substrate. Finally, vacuum (vacuum gauge pressure is -0.98atm) to remove bubbles, and the temperature is raised to 180°C under vacuum. After it is completely solidified, the photovoltaic module can be obtained.
  • tackifier epoxidized liquid nitrile rubber is as follows: dissolve liquid nitrile rubber (Goodrich Company) in 1,2-dichloroethane, add hydrogen peroxide (30%) and patent (CN 109678991 A) report After reacting for 2 hours at 60°C, the reaction liquid was filtered, and the solvent was removed from the filtrate to obtain epoxidized liquid nitrile rubber.
  • the cross-linking agent is selected from dicumyl peroxide, and the weight is 10g; thickening
  • the agent is selected from epoxidized liquid nitrile rubber and vinyltrimethoxysilane, with weights of 20g and 10g respectively;
  • the anti-aging agent is selected from 2,2'-methylenebis(4-methyl-6-tert-butyl) Phenol), the weight is 5g;
  • the co-crosslinking agent is selected from 2-thiol benzenethiazole, the weight is 3g; mix evenly in an internal mixer at room temperature and then degas in a
  • Liquid encapsulation Apply the encapsulation liquid evenly on the side of the upper substrate (tempered glass) and lower substrate (back plate) of the photovoltaic cell facing the cell sheet, and stack them in sequence in the order of upper substrate, cell sheet, and lower substrate. Finally, vacuum (vacuum gauge pressure is -0.98 atm) to remove bubbles, and the temperature is raised to 150°C under vacuum. After it is completely solidified, the photovoltaic module can be obtained.
  • tackifier epoxidized polybutadiene liquid rubber is as follows: Dissolve polybutadiene liquid rubber (Evonik) in 1,2-dichloroethane, add hydrogen peroxide (30%) and patented (CN For the catalyst reported in 109678991 A), after reacting at 60°C for 2 hours, the reaction liquid is filtered, and the solvent is removed from the filtrate to obtain epoxidized polybutadiene liquid rubber.
  • Ethanolamine weighing 98.8g and 9.8g respectively
  • the tackifier is selected from epoxidized polybutadiene liquid rubber and ⁇ -(methacryloyloxy)propyltrimethoxysilane, weighing 10g and 5g respectively
  • anti- The aging agent is selected from 2,2'-methylenebis(4-methyl-6-tert-butylphenol), with a weight of 5g
  • the cross-linking agent is selected from dibutyltin dilaurate, with a weight of 1g; at room temperature, Mix evenly in the internal mixer and then degas in vacuum.
  • Liquid encapsulation Apply the encapsulation liquid evenly on the side of the upper substrate (tempered glass) and lower substrate (tempered glass) of the photovoltaic cell facing the cell sheet, and stack them in sequence in the order of upper substrate, cell sheet, and lower substrate. Finally, vacuum (vacuum gauge pressure is -0.98 atm) to remove bubbles, and the temperature is raised to 100°C under vacuum. After it is completely solidified, the photovoltaic module can be obtained.
  • the co-crosslinking agent is 2,4,6-tris(dimethylaminomethyl)phenol, and the weight is 2g; mix evenly in an internal mixer at room temperature
  • Liquid encapsulation The upper substrate, battery cells and lower substrate are stacked in sequence to form a mold, and then the encapsulation liquid is filled into the mold so that the space between the battery cells and the upper and lower substrates is filled with the encapsulation liquid. Finally, vacuum (vacuum gauge pressure is -0.98 atm) to remove bubbles, and the temperature is raised to 120°C under vacuum. After it is completely solidified, the photovoltaic module can be obtained.
  • tackifier epoxidized liquid polyisoprene rubber is as follows: Dissolve liquid polyisoprene rubber (Evonik) in 1,2-dichloroethane, add hydrogen peroxide (30%) and patented (CN 109678991 A ) reported catalyst, after reacting at 60°C for 2 hours, the reaction liquid was filtered, and the solvent was removed from the filtrate to obtain epoxidized liquid polyisoprene rubber.
  • Liquid encapsulation The upper substrate, battery cells and lower substrate are stacked in sequence to form a mold, and then the encapsulation liquid is filled into the mold so that the space between the battery cells and the upper and lower substrates is filled with the encapsulation liquid. Finally, vacuum (vacuum gauge pressure is -0.98 atm) to remove bubbles, and the temperature is raised to 160°C under vacuum. After it is completely solidified, the photovoltaic module can be obtained.
  • Liquid encapsulation Apply the encapsulation liquid evenly on the side of the upper substrate (tempered glass) and lower substrate (tempered glass) of the photovoltaic cell facing the cell sheet, and stack them in sequence in the order of upper substrate, cell sheet, and lower substrate. Finally, vacuum (vacuum gauge pressure is -0.98 atm) to remove bubbles, and the temperature is raised to 130°C under vacuum. After it is completely solidified, the photovoltaic module can be obtained.
  • Liquid encapsulation Heat the encapsulation liquid at 80°C to reduce its viscosity to about 2000 mPa ⁇ s, and then evenly apply the encapsulation liquid on the upper substrate (tempered glass) and lower substrate (tempered glass) of the photovoltaic cell facing the cell sheet on one side, and are stacked in the order of upper substrate, battery sheet, and lower substrate. Finally, vacuum (vacuum gauge pressure is -0.98atm) to remove bubbles, and the temperature is raised to 130°C under vacuum. After it is completely solidified, the photovoltaic module can be obtained.
  • Evonik liquid styrene-butadiene rubber
  • Evonik liquid styrene-butadiene rubber
  • Evonik liquid styrene-butadiene rubber
  • Evonik liquid styrene-butadiene rubber
  • Example 1 The difference from Example 1 is that the tackifier is the epoxidized liquid styrene-butadiene rubber of Example 1, and the weight is 30g.
  • Example 2 The difference from Example 1 is that the tackifier is selected from vinyl tris(2-methoxyethoxy)silane, and the weight is 30g.
  • Example 1 The difference from Example 1 is that no anti-aging agent and co-crosslinking agent were added.
  • Example 1 The difference from Example 1 is that the vacuum gauge pressure during vacuuming is -0.95 atm.
  • Example 2 The difference from Example 1 is that the weight of the cross-linking agent is 1 g.
  • Example 2 The difference from Example 1 is that the weight of the cross-linking agent is 150 g.
  • Example 1 The difference from Example 1 is that the tackifier is selected from the epoxidized liquid styrene-butadiene rubber and vinyl tris(2-methoxyethoxy)silane in Example 1, with weights of 72.7g and 7.3g respectively.
  • the tackifier is selected from the epoxidized liquid styrene-butadiene rubber and vinyl tris(2-methoxyethoxy)silane in Example 1, with weights of 72.7g and 7.3g respectively.
  • Example 2 The difference from Example 1 is that the tackifier is vinyl tris(2-methoxyethoxy)silane, and the weight is 1 g.
  • Evonik liquid styrene-butadiene rubber
  • Example 2 The difference from Example 1 is that the curing temperature is 300°C.
  • Example 7 The difference from Example 7 is that the encapsulating liquid is heated at 50° C. to reduce its viscosity to about 10,000 mPa ⁇ s.
  • Example 1 The difference from Example 1 is that the vacuum gauge pressure during vacuuming is -0.99 atm.
  • Example 1 The difference from Example 1 is that the vacuum gauge pressure during vacuuming is -0.90 atm.
  • Evonik liquid styrene-butadiene rubber
  • EVA packaging In terms of parts by mass, take 100 parts of ethylene-vinyl acetate copolymer with a VA (vinyl acetate) mass content of 20%, add 0.8 parts of tert-butyl peroxyisopropyl carbonate and 0.8 parts of triethylene glycol Dimethacrylate, 0.1 part 2-hydroxy -4-n-Octyloxybenzophenone, 0.2 parts of silane coupling agent, 0.1 parts of bis-2,2,6,6 tetramethylpiperidinol sebacate. The above components are premixed, melt extruded, cast into films, cooled, cut and rolled to prepare EVA film.
  • the viscosity of the conjugated diene liquid rubber was measured using a rotational rheometer (measurement temperature was 25°C), and the Tg of the conjugated diene liquid rubber was measured using DSC.
  • volume resistivity and PID tests were performed on the laminates prepared from the packaging materials of the examples and comparative examples.
  • the volume resistivity was tested in accordance with GB/T 1410-2006, and the PID test was tested in accordance with IEC TS 62804-1:2015.
  • the test results are shown in Table 1.
  • conjugated diene liquid rubber obtained by homopolymerization of conjugated diene itself or copolymerization with other types of monomers, at room temperature It has good fluidity at 25°C, especially conjugated diene liquid rubber with a viscosity of 20 to 20000 mPa ⁇ s at 25°C. If it is applied to photovoltaic packaging materials, curing is more difficult than with solid packaging methods. It is relatively convenient to rupture the battery cells and eliminate air bubbles, which can simplify the operation and further improve the product yield. Conjugated diene liquid rubber has the advantages of low polarity and good insulation properties.
  • the photovoltaic modules encapsulated by it have better moisture resistance and waterproofness, and can effectively suppress the PID effect.
  • conjugated diene liquid rubber is easy to mix evenly with various compounding agents, has abundant sources, and is low in cost.
  • Using conjugated diene liquid rubber as a photovoltaic encapsulation material and encapsulating it using a liquid encapsulation method can simplify the operation process and manufacture Photovoltaic modules with lower cost and better performance have good application prospects.
  • the glass transition temperature of conjugated diene liquid rubber is no higher than -70°C, the molecular chain has good flexibility, and the cured product has good elasticity even at extremely low temperatures, so it is expected to expand the use of photovoltaic modules. temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Material Composition (AREA)

Abstract

本发明提供了一种液体橡胶光伏封装组合物、封装方法和光伏组件,液体橡胶光伏封装组合物包括:100质量份共轭二烯烃类液体橡胶、0.01~15质量份交联剂、0.1~8质量份增粘剂,其中共轭二烯烃类液体橡胶在25℃时的粘度为20~20000mPa·s,共轭二烯烃类液体橡胶的玻璃化转变温度不高于-70℃。共轭二烯烃通过自身的均聚或者和其他类单体共聚得到的共轭二烯烃类液体橡胶,在常温下具有良好的流动性,将其应用于光伏封装材料,在固化时相比固体封装法更不容易使电池片破裂,排除气泡也相对方便,可简化操作,并进一步提高产品的良品率。

Description

一种液体橡胶光伏封装组合物、封装方法和光伏组件 技术领域
本发明涉及光伏封装领域,具体而言,涉及一种液体橡胶光伏封装组合物、封装方法和光伏组件。
背景技术
太阳能作为一种可再生能源,是解决能源危机、实现“碳中和”目标中极具前景的新型能源。太阳能电池片是由硅片组成,在阳光照射下可以将太阳能转化成电能的一种材料。然而,高纯度硅的价格较贵,且容易受空气中的水汽、灰尘等的侵蚀而逐渐失效。因此,工业上需要尽可能减小电池片的厚度,并将电池片用封装材料“黏”在上、下两块基板之间制成光伏组件,在提高强度的同时亦可以保护电池片免受外界环境因素的影响,满足光伏组件使用25年以上的要求。
但是,现在的光伏组件普遍采用固体封装法封装,即首先将封装材料和各类配合剂混合均匀,然后通过挤出制成固体膜,并裁剪成所需要的形状,分别铺在电池片和上基板、电池片和下基板之间,最后高温层压使封装材料交联。然而,目前电池片的厚度一般在200微米左右,层压时会因为固体材料具有一定的模量而容易导致电池片碎裂,或者因气泡不易从电池片和基板之间排除而降低产品的良品率。而且,固体封装材料有时难以和各种助剂混合均匀,在裁剪时也容易造成边角料的浪费。另一方面,传统的封装材料往往需要使用乙烯-醋酸乙烯共聚物(EVA),因其极性过大导致材料的抗潮性、耐水性不佳,在使用过程中会逐渐产生小分子醋酸,使电池片产生PID效应,从而影响光伏组件的使用寿命。因此,实现光伏组件封装技术的改进,并开发新型封装材料,是非常有意义的。
发明内容
本发明的主要目的在于提供一种液体橡胶光伏封装组合物、封装方法和光伏组件,以解决现有技术中EVA封装胶膜抗潮性、耐水性不佳的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种液体橡胶光伏封装组合物,该组合物包括:100质量份共轭二烯烃类液体橡胶、0.01~15质量份交联剂、0.1~8质量份增粘剂,其中共轭二烯烃类液体橡胶在25℃时的粘度为20~20000mPa·s,共轭二烯烃类液体橡胶的玻璃化转变温度小于等于-70℃。
进一步地,共轭二烯烃类液体橡胶微观结构中1,4-结构单元的比例在50%~100%之间,优选为70%~90%;优选共轭二烯烃类液体橡胶在25℃时的粘度为1000~10000mPa·s。
进一步地,共轭二烯烃类液体橡胶的数均摩尔分子质量为1000~50000g/mol,优选共轭二烯烃类液体橡胶的分子量分布指数在1.01~3.00之间,优选共轭二烯烃类液体橡胶选自液体聚 丁二烯橡胶、液体丁苯橡胶、液体聚异戊橡胶、液体丁腈橡胶中任意一种或多种;进一步优选共轭二烯烃类液体橡胶的分子链中还包括功能性基团,优选功能性基团选自羟基、羧基、伯胺基、仲胺基、醛基、羰基、肟基、环氧基、溴基中的任意一种或多种。
进一步地,交联剂为异氰酸酯、偶氮类化合物、羧酸类化合物、醇类化合物、酰氯类化合物、环氧类物质、胺类化合物、硫磺、含硫化合物、硒、碲、过氧化物、金属氧化物、醌类化合物中的任意一种或多种,优选交联剂的质量份为1~5质量份;和/或增粘剂选自含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂中的任意一种或多种,其中含有极性基团的共轭二烯烃类聚合物为环氧化聚丁二烯液体橡胶、环氧化液体丁腈橡胶、环氧化液体丁苯橡胶、环氧化液体聚异戊橡胶中的任意一种或多种,硅烷偶联剂为γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、乙烯基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷中的任意一种或多种,优选增粘剂包括含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂,且含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂的质量比为1∶0.1~1,优选增粘剂的质量份为0.1~3质量份。
进一步地,液体橡胶光伏封装组合物还包括:0.1~3质量份抗老化剂和/或0.1~2质量份助交联剂,优选抗老化剂选自2,2’-亚甲基双(4-甲基-6-叔丁基苯酚)、2,6-二叔丁基对甲酚、2,4,6-三叔丁基苯酚、抗氧剂1010、抗氧剂1076中的任意一种或多种,优选助交联剂为二甲基丙烯酸锌、二丙烯酸锌、2-硫醇基苯骈噻唑、二硫化四甲基秋兰姆、二苯胍、二月桂酸二丁基锡、2,4,6-三(二甲胺基甲基)苯酚中的任意一种或多种。
根据本发明的另一方面,提供了一种光伏组件的封装方法,该封装方法包括:步骤S1,将液体橡胶光伏封装组合物各组分混合并脱气制成封装液,液体橡胶光伏封装组合物为上述的液体橡胶光伏封装组合物;步骤S2,使封装液设置在上基板、电池片单元和下基板之间,形成封装预备件;步骤S3,对封装预备件进行脱气、固化处理,得到光伏组件。
进一步地,步骤S2包括:将封装液设置在上基板和下基板中面向电池片单元的一面上,将上基板、电池片单元和下基板依次层叠;或者将上基板、电池片单元和下基板依次层叠制成模具,然后将封装液灌装入模具中。
进一步地,步骤S1包括:通过调节封装液的温度将封装液的粘度调节至1000~10000mPa·s。
进一步地,固化的温度为100~300℃。
进一步地,步骤S3的脱气和固化在真空条件下进行,优选真空的真空表压为-0.95~-0.99atm。
根据本发明的另一方面,提供了一种光伏组件,该光伏组件包括下基板、电池片单元和上基板,下基板、电池片单元和上基板之间的孔隙填充有封装胶,其中封装胶为上述的液体橡胶光伏封装组合物固化而成。
应用本发明的技术方案,共轭二烯烃通过自身的均聚或者和其他类单体共聚得到的共轭二烯烃类液体橡胶,在常温下具有良好的流动性,尤其是在25℃时的粘度为20~20000mPa·s的共轭二烯烃类液体橡胶,如将其应用于光伏封装材料,在固化时相比固体封装法更不容易使电池片破裂,排除气泡也相对方便,可简化操作,并进一步提高产品的良品率。共轭二烯烃类液体橡胶具有极性低、绝缘性能好等优点,因此利用其封装的光伏组件的抗潮性和防水性更好,可有效抑制PID效应。同时共轭二烯烃类液体橡胶便于和各种配合剂混合均匀,来源丰富,成本低廉,采用共轭二烯烃类液体橡胶作为光伏封装材料并采用液体封装的方法进行封装,能够简化操作流程,制得成本更低、性能更优异的光伏组件,具有很好的应用前景。另一方面,共轭二烯烃类液体橡胶的玻璃化转变温度不高于-70℃,分子链柔顺性能较好,固化物即使在极低温下也具有较好的弹性,因此有望拓宽光伏组件使用的温度范围。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种液体橡胶光伏封装组合物、封装方法和光伏组件的实施例的光伏组件构成示意图;
其中,上述附图包括以下附图标记:
1、下基板;2、封装胶;3、电池片单元;4、上基板。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如本申请背景技术所分析的,固体封装光伏组件良品率较低,传统的封装材料比如EVA抗潮性、耐水性不佳,使用过程中会逐渐产生小分子醋酸,使电池片产生PID效应,光伏组件的使用寿命不够理想。本申请为了解决上述EVA封装胶膜抗潮性、耐水性不佳的问题,提供了一种液体橡胶光伏封装组合物、封装方法和光伏组件。
在本申请一种典型的实施方式中,提供了一种液体橡胶光伏封装组合物,该液体橡胶光伏封装组合物包括:100质量份共轭二烯烃类液体橡胶、0.01~15质量份交联剂、0.1~8质量份增粘剂,其中共轭二烯烃类液体橡胶在25℃时的粘度为20~20000mPa·s,共轭二烯烃类液体橡胶的玻璃化转变温度小于等于-70℃。
共轭二烯烃通过自身的均聚或者和其他类单体共聚得到的共轭二烯烃类液体橡胶,在常温下具有良好的流动性,尤其是在25℃时的粘度为20~20000mPa·s的共轭二烯烃类液体橡胶,如将其应用于光伏封装材料,在固化时相比固体封装法更不容易使电池片破裂,排除气泡也相对方便,可简化操作,并进一步提高产品的良品率。共轭二烯烃类液体橡胶具有极性 低、绝缘性能好等优点,因此利用其封装的光伏组件的抗潮性和防水性更好,可有效抑制PID效应。同时共轭二烯烃类液体橡胶便于和各种配合剂混合均匀,来源丰富,成本低廉,采用共轭二烯烃类液体橡胶作为光伏封装材料并采用液体封装的方法进行封装,能够简化操作流程,制得成本更低、性能更优异的光伏组件,具有很好的应用前景。另一方面,共轭二烯烃类液体橡胶的玻璃化转变温度不高于-70℃,分子链柔顺性能较好,固化物即使在极低温下也具有较好的弹性,因此有望拓宽光伏组件使用的温度范围。
共轭二烯烃单体在聚合时会产生1,4-和1,2-两种微观结构,增加1,4-结构的比例并降低玻璃化转变温度可显著提高分子链的柔顺性,进而使固化物的弹性和柔韧性变好。因此,控制共轭二烯烃类液体橡胶微观结构中的1,4-含量和玻璃化转变温度,可以更好地保护封装后的电池片不产生隐裂。在本申请的一些实施例中,共轭二烯烃类液体橡胶微观结构中1,4-结构单元的比例在50%~100%之间,优选为70~90%。具有上述微观结构特点的共轭二烯烃类液体橡胶,分子链柔顺性极佳,固化物的弹性也有进一步改善。
上述共轭二烯烃类液体橡胶可以从现有技术中常用的共轭二烯烃均聚物或者共聚物中选择。在本申请的一些实施例中,为了提高共轭二烯烃类液体橡胶的施工性能,优选述共轭二烯烃类液体橡胶在25℃时的粘度为1000~10000mPa·s。优选共轭二烯烃类液体橡胶的数均摩尔分子质量(Mn)为1000~50000g/mol,优选共轭二烯烃类液体橡胶的分子量分布指数在1.01~3.00之间。
在一些实施例中,共轭二烯烃类液体橡胶选自液体聚丁二烯橡胶、液体丁苯橡胶、液体聚异戊橡胶、液体丁腈橡胶中任意一种或多种。上述各橡胶均为常见的共轭二烯烃类液体橡胶,来源稳定、成本较低。
上述的共轭二烯烃类液体橡胶可以具有除碳碳双键以外的其他官能团,为了提高共轭二烯烃类液体橡胶的性能,例如增加其强度、弹性、耐候性或者耐老化性能,优选地,上述共轭二烯烃类液体橡胶的分子链中还包括功能性基团,优选上述功能性基团选自羟基、羧基、伯胺基、仲胺基、醛基、羰基、肟基、环氧基、溴基中的任意一种或多种。
上述交联剂和增粘剂可以从现有技术中常用的品种中进行选择。
在本申请的一些实施例中,交联剂选自异氰酸酯、偶氮类化合物、羧酸类化合物、醇类化合物、酰氯类化合物、环氧类物质、胺类化合物、硫磺、含硫化合物、硒、碲、过氧化物、金属氧化物、醌类化合物中的任意一种或多种,可以更好的提高液体橡胶固化后的强度和弹性。优选为异氰酸酯和多醇类、偶氮类化合物、过氧化物、硫磺。在一些实施例中,交联剂的质量份为1~5质量份。
增粘剂的使用可以增强液体橡胶光伏封装组合物与电池片、背板或前板的结合力,为了提高增粘剂在橡胶中的分散性,在一些实施例中,增粘剂选自含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂中的任意一种或多种,其中含有极性基团的共轭二烯烃类聚合物为环氧化聚丁二烯液体橡胶、环氧化液体丁腈橡胶、环氧化液体丁苯橡胶、环氧化液体聚异戊橡胶中的任意一种或多种,硅烷偶联剂为γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、乙烯基三(2-甲氧基 乙氧基)硅烷、乙烯基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷中的任意一种或多种。上述各种含有极性基团的共轭二烯烃类聚合物可以采用商品化的产品也可以自行制作,自行制作可以调整极性基团的含量。在一些实施例中,上述增粘剂包括含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂,且含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂的质量比为1∶0.1~1,实现更优的增粘性能。在一些实施例,上述增粘剂的质量份为0.1~3质量份。
为了进一步提高上述液体橡胶光伏封装组合物的耐老化性和强度,延长使用寿命,在本申请的一些实施例中,在组合物中还包括0.1~3质量份抗老化剂和/或0.1~2质量份助交联剂。上述抗老化剂包括但不限于2,2’-亚甲基双(4-甲基-6-叔丁基苯酚)、2,6-二叔丁基对甲酚、2,4,6-三叔丁基苯酚、抗氧剂1010、抗氧剂1076中的任意一种或多种,优选助交联剂包括但不限于二甲基丙烯酸锌、二丙烯酸锌、2-硫醇基苯骈噻唑、二硫化四甲基秋兰姆、二苯胍、二月桂酸二丁基锡、2,4,6-三(二甲胺基甲基)苯酚中的任意一种或多种。
在本申请的另一种典型的实施方式中,提供了一种光伏组件的封装方法,该封装方法包括:步骤S1,将液体橡胶光伏封装组合物各组分混合并脱气制成封装液,液体橡胶光伏封装组合物为上述的液体橡胶光伏封装组合物;步骤S2,使封装液设置在上基板、电池片单元和下基板之间,形成封装预备件;步骤S3,对封装预备件进行脱气、固化处理,得到光伏组件。
本申请应用的共轭二烯烃类液体橡胶,在常温下具有良好的流动性,因此利用其为封装材料结合上述封装方法用于光伏组件封装,则能便于和各种配合剂混合均匀,在固化时相比固体封装法更不容易使电池片破裂,排除气泡也相对方便,可简化操作,并进一步提高产品的良品率。而且,共轭二烯烃类液体橡胶具有极性低、绝缘性能好等优点,得到的光伏组件的抗潮性和防水性更好,可有效抑制PID效应。而且,共轭二烯烃类液体橡胶来源丰富,成本低廉,采用共轭二烯烃类液体橡胶作为光伏封装材料并采用液体封装的方法进行封装,能够简化操作流程,制得成本更低、性能更优异的光伏组件,具有很好的应用前景。另一方面,共轭二烯烃类液体橡胶的玻璃化转变温度不高于-70℃,分子链柔顺性能较好,固化物即使在极低温下也具有较好的弹性,因此有望拓宽光伏组件使用的温度范围。
上述步骤S2的实现方式有多种,比如上述步骤S2包括:将封装液设置在上基板和下基板中面向电池片单元的一面上,将上基板、电池片单元和下基板依次层叠;该方法可以保证将封装液设置在上基板和下基板的所有需设置位置。或者上述步骤S2包括:将上基板、电池片单元和下基板依次层叠制成模具,然后将封装液灌装入模具中。上述实施方式效率较高,便于工艺实施。通过上述方法,可以方便的制备高质量封装预备件。
当封装液的粘度较低时其流动性较高,便于对电池片的高质量密封,但是粘度过低导致其定型难度增加,影响加工效率。封装液的粘度调节方式可以有多种,在本申请的一些实施例中,上述步骤S1中包括:通过调节封装液的温度将封装液的粘度调节至1000~10000mPa·s,有助于步骤S2和步骤S3的高效进行,并提高封装效率和封装质量。一般的,当粘度低于该范围时,需要降低温度以增加粘度,反之粘度高于该范围时,升高温度来减小粘度,有些情况下与此相反,比如某些带有羟基的共轭二烯烃与异氰酸酯交联剂作用时,由于温度稍微升 高可以引发部分聚合反应,提高温度也可以使粘度增加。但温度必须低于100℃,否则会引起橡胶的提前固化。
在本申请中,封装预备件的固化可参照现有技术进行,在一些优选的实施例中,固化温度为100~300℃。
通过上述步骤S2制备的封装预备件,封装液内可能会产生气泡,为了避免气泡对组件的影响,在接下来的步骤S3中,先进行脱气再进行固化处理,防止产生气泡,保证封装层的强度。在本申请的一些实施例中,上述脱气和固化处理在真空条件下进行,可以有效避免固化处理过程中因封装材料体积变化形成气泡,而且提高层间的粘结力,提高封装质量。综合考虑处理效果和对真空设备的要求,优选所述真空的真空表压为-0.95~-0.99atm。
在本申请的另一个典型的实施方式中,提供了一种光伏组件,如图1所示,该光伏组件包括下基板1、电池片单元3和上基板4,其下基板1、电池片单元3和上基板4之间的孔隙填充有封装胶2,其中封装胶2为上述液体橡胶光伏封装组合物固化而成。
本申请液体橡胶光伏封装组合物的共轭二烯烃类液体橡胶固化后形成的封装胶具有极性低、绝缘性能好等优点,采用其封装得到的光伏组件更具抗潮性和防水性,可有效抑制PID效应;同时该封装胶在低温下也具有较高的弹性,因此,可以扩展光伏组件的使用温度范围。下面将结合实施例和对比例进一步说明本发明的有益效果。
实施例1
增粘剂环氧化液体丁苯橡胶的制备过程如下:将液体丁苯橡胶(赢创)溶于1,2-二氯乙烷中,加入双氧水(30%)和专利(CN 109678991A)报道的催化剂,60℃下反应2h后,将反应液过滤,得到的滤液除去溶剂即得环氧化液体丁苯橡胶。
封装液的制备:共轭二烯烃类液体橡胶选自液体丁苯橡胶(赢创),重量为1000g,数均摩尔分子质量Mn=3000g/mol,分子量分布指数微观结构中1,4-%=70%,玻璃化转变温度Tg=-75℃,25℃时的粘度为2000mPa·s;交联剂选自过氧化二异丙苯,重量为10g;增粘剂选自环氧化液体丁苯橡胶和乙烯基三(2-甲氧基乙氧基)硅烷,重量分别为20g、10g;抗老化剂选自2,4,6-三叔丁基苯酚,重量为5g;助交联剂选自2-硫醇基苯骈噻唑,重量为3g;常温下在密炼机中混合均匀后真空脱气。
液体封装:将封装液均匀涂布在光伏电池上基板(钢化玻璃)和下基板(背板)中面向电池片的一面上,并按照上基板、电池片、下基板的顺序依次层叠。最后抽真空(真空表压为-0.98atm)脱除气泡,并在真空下将温度升至180℃,待其完全固化后即可得到光伏组件。
实施例2
增粘剂环氧化液体丁腈橡胶的制备过程如下:将液体丁腈橡胶(Goodrich公司)溶于1,2-二氯乙烷中,加入双氧水(30%)和专利(CN 109678991 A)报道的催化剂,60℃下反应2h后,将反应液过滤,得到的滤液除去溶剂即得环氧化液体丁腈橡胶。
封装液的制备:共轭二烯烃类液体橡胶选自聚丁二烯液体橡胶(赢创),重量为1000g,数均摩尔分子质量Mn=5000g/mol,分子量分布指数微观结构中1,4-%=80%,玻璃化转变温度Tg=-95℃,25℃时的粘度为3500mPa·s;交联剂选自过氧化二异丙苯,重量为10g;增粘剂选自环氧化液体丁腈橡胶和乙烯基三甲氧基硅烷,重量分别为20g、10g;抗老化剂选自2,2’-亚甲基双(4-甲基-6-叔丁基苯酚),重量为5g;助交联剂选自2-硫醇基苯骈噻唑,重量为3g;常温下在密炼机中混合均匀后真空脱气。
液体封装:将封装液均匀涂布在光伏电池上基板(钢化玻璃)和下基板(背板)中面向电池片的一面上,并按照上基板、电池片、下基板的顺序依次层叠。最后抽真空(真空表压为-0.98atm)脱除气泡,并在真空下将温度升至150℃,待其完全固化后即可得到光伏组件。
实施例3
增粘剂环氧化聚丁二烯液体橡胶的制备过程如下:将聚丁二烯液体橡胶(赢创)溶于1,2-二氯乙烷中,加入双氧水(30%)和专利(CN 109678991 A)报道的催化剂,60℃下反应2h后,将反应液过滤,得到的滤液除去溶剂即得环氧化聚丁二烯液体橡胶。
封装液的制备:共轭二烯烃类液体橡胶选自端羟基聚丁二烯液体橡胶(赢创),重量为1000g,数均摩尔分子质量Mn=3000g/mol,分子量分布指数微观结构中1,4-%=95%,玻璃化转变温度Tg=-100℃,25℃时的粘度为1000mPa·s;交联剂选自异佛尔酮二异氰酸酯和三羟甲基丙烷三乙醇胺,重量分别为98.8g、9.8g;增粘剂选自环氧化聚丁二烯液体橡胶和γ-(甲基丙烯酰氧)丙基三甲氧基硅烷,重量分别为10g、5g;抗老化剂选自2,2’-亚甲基双(4-甲基-6-叔丁基苯酚),重量为5g;助交联剂选自二月桂酸二丁基锡,重量为1g;常温下在密炼机中混合均匀后真空脱气。
液体封装:将封装液均匀涂布在光伏电池上基板(钢化玻璃)和下基板(钢化玻璃)中面向电池片的一面上,并按照上基板、电池片、下基板的顺序依次层叠。最后抽真空(真空表压为-0.98atm)脱除气泡,并在真空下将温度升至100℃,待其完全固化后即可得到光伏组件。
实施例4
封装液的制备:共轭二烯烃类液体橡胶选自端伯胺基液体丁腈橡胶(Goodrich公司),重量为1000g,数均摩尔分子质量Mn=10000g/mol,分子量分布指数微观结构中1,4-%=85%,玻璃化转变温度Tg=-80℃,25℃时的粘度为9000mPa·s;交联剂为丙三醇二缩水甘油醚,重量为15g;增粘剂为环氧化聚丁二烯液体橡胶(同实施例3)和γ-缩水甘油醚氧丙基三甲氧基硅烷,重量分别为10g、10g;抗老化剂为抗氧剂1010,重量为5g;助交联剂为2,4,6-三(二甲胺基甲基)苯酚,重量为2g;常温下在密炼机中混合均匀后真空脱气。
液体封装:将上基板、电池片和下基板依次层叠制成模具,而后将封装液灌装入模具中,使电池片和上、下基板之间充满封装液。最后抽真空(真空表压为-0.98atm)脱除气泡,并在真空下将温度升至120℃,待其完全固化后即可得到光伏组件。
实施例5
增粘剂环氧化液体聚异戊橡胶的制备过程如下:将液体聚异戊橡胶(赢创)溶于1,2-二氯乙烷中,加入双氧水(30%)和专利(CN 109678991 A)报道的催化剂,60℃下反应2h后,将反应液过滤,得到的滤液除去溶剂即得环氧化液体聚异戊橡胶。
封装液的制备:共轭二烯烃类液体橡胶选自液体聚异戊橡胶(赢创),重量为1000g,数均摩尔分子质量为Mn=10000g/mol,分子量分布指数为微观结构中1,4-%=80%,玻璃化转变温度Tg=-90℃,25℃时的粘度为8700mPa·s;交联剂选自过氧化二苯甲酰,重量为10g;增粘剂选自环氧化液体聚异戊橡胶和乙烯基三甲氧基硅烷,重量分别为30g、10g;抗老化剂选自2,2’-亚甲基双(4-甲基-6-叔丁基苯酚),重量为5g;助交联剂选自二硫化四甲基秋兰姆,重量为2g;常温下在密炼机中混合均匀后真空脱气。
液体封装:将上基板、电池片和下基板依次层叠制成模具,而后将封装液灌装入模具中,使电池片和上、下基板之间充满封装液。最后抽真空(真空表压为-0.98atm)脱除气泡,并在真空下将温度升至160℃,待其完全固化后即可得到光伏组件。
实施例6
封装液的制备:共轭二烯烃类液体橡胶选自环氧化聚丁二烯液体橡胶(来源同实施例3的增粘剂环氧化聚丁二烯烃液体橡胶),重量为1000g,数均摩尔分子质量为Mn=3000g/mol,分子量分布指数为微观结构中1,4-%=90%,玻璃化转变温度为Tg=-95℃,25℃时的粘度为1500mPa·s;交联剂选自三乙烯四胺,重量为30g;增粘剂选自环氧化液体丁腈橡胶(同实施例2)和乙烯基三(2-甲氧基乙氧基)硅烷,重量分别为20g、10g;抗老化剂选自2,2’-亚甲基双(4-甲基-6-叔丁基苯酚),重量为5g;助交联剂选自2,4,6-三(二甲胺基甲基)苯酚,重量为2g;常温下在密炼机中混合均匀后真空脱气。
液体封装:将封装液均匀涂布在光伏电池上基板(钢化玻璃)和下基板(钢化玻璃)中面向电池片的一面上,并按照上基板、电池片、下基板的顺序依次层叠。最后抽真空(真空表压为-0.98atm)脱除气泡,并在真空下将温度升至130℃,待其完全固化后即可得到光伏组件。
实施例7
封装液的制备:共轭二烯烃类液体橡胶选自环氧化聚丁二烯液体橡胶(来源同实施例3的增粘剂环氧化聚丁二烯烃液体橡胶),重量为1000g,数均摩尔分子质量为Mn=50000g/mol,分子量分布指数为微观结构中1,4-%=80%,玻璃化转变温度为Tg=-70℃,25℃时的粘度为20000mPa·s;交联剂选自三乙烯四胺,重量为20g;增粘剂选自液体环氧化丁腈橡胶(同实施例1)和乙烯基三(2-甲氧基乙氧基)硅烷,重量分别为20g、10g;抗老化剂选自2,2’-亚甲基双(4-甲基-6-叔丁基苯酚),重量为5g;助交联剂选自2,4,6-三(二甲胺基甲基)苯酚,重量为2g;常温下在密炼机中混合均匀后真空脱气。
液体封装:将封装液在80℃下加热,使其粘度减小至约2000mPa·s,此后将封装液均匀涂布在光伏电池上基板(钢化玻璃)和下基板(钢化玻璃)中面向电池片的一面上,并按照上基板、电池片、下基板的顺序依次层叠。最后抽真空(真空表压为-0.98atm)脱除气泡,并在真空下将温度升至130℃,待其完全固化后即可得到光伏组件。
实施例8
与实施例1的不同在于,共轭二烯烃类液体橡胶选自液体丁苯橡胶(赢创):玻璃化转变温度Tg=-70℃,分子量分布指数微观结构中1,4-%=60%,25℃时的粘度为2500mPa·s。
实施例9
与实施例1的不同在于,共轭二烯烃类液体橡胶选自液体丁苯橡胶(赢创):微观结构中1,4-%=50%,分子量分布指数玻璃化转变温度Tg=-70℃,25℃时的粘度为3500mPa·s。
实施例10
与实施例1的不同在于,共轭二烯烃类液体橡胶选自液体丁苯橡胶(赢创):数均摩尔分子质量为1000g/mol,分子量分布指数玻璃化转变温度Tg=-105℃,微观结构中1,4-%=95%,25℃时的粘度为20mPa·s;液体封装时,将封装液在封装前降温至5℃,使其粘度增加至约1000mPa·s。
实施例11
与实施例1的不同在于,共轭二烯烃类液体橡胶选自液体丁苯橡胶(赢创):数均摩尔分子质量为50000g/mol,分子量分布指数玻璃化转变温度Tg=-75℃,微观结构中1,4-%=55%,25℃时的粘度为15000mPa·s;液体封装时,将封装液在封装前升温至70℃,使其粘度减小至约2000mPa·s。
实施例12
与实施例1的不同在于,增粘剂为实施例1的环氧化液体丁苯橡胶,重量为30g。
实施例13
与实施例1的不同在于,增粘剂选自乙烯基三(2-甲氧基乙氧基)硅烷,重量为30g。
实施例14
与实施例1的不同在于,未加入抗老化剂和助交联剂。
实施例15
与实施例1的不同在于,抽真空时的真空表压为-0.95atm。
实施例16
与实施例1的不同在于,交联剂的重量为1g。
实施例17
与实施例1的不同在于,交联剂的重量为150g。
实施例18
与实施例1的不同在于,增粘剂选自实施例1的环氧化液体丁苯橡胶和乙烯基三(2-甲氧基乙氧基)硅烷,重量分别为72.7g、7.3g
实施例19
与实施例1的不同在于,增粘剂为乙烯基三(2-甲氧基乙氧基)硅烷,重量为1g。
实施例20
与实施例1的不同在于,共轭二烯烃类液体橡胶选自液体丁苯橡胶(赢创):分子量分布指数微观结构中1,4-%=70%,玻璃化转变温度Tg=-75℃,25℃时的粘度为2000mPa·s。
实施例21
与实施例1的不同在于,固化温度为300℃。
实施例22
与实施例7的不同在于,将封装液在50℃下加热,使其粘度减小至约10000mPa·s。
实施例23
与实施例1的不同在于,抽真空时的真空表压为-0.99atm。
实施例24
与实施例1的不同在于,抽真空时的真空表压为-0.90atm。
实施例25
与实施例1的不同在于,共轭二烯烃类液体橡胶选自液体丁苯橡胶(赢创):数均摩尔分子质量为10000g/mol,分子量分布指数微观结构中1,4-%=30%,玻璃化转变温度Tg=-60℃,25℃时的粘度为12000mPa·s。。
对比例1
EVA封装:以质量份数计,取100份VA(醋酸乙烯)质量含量为20%的乙烯-醋酸乙烯酯共聚物,加入0.8份叔丁基过氧化碳酸异丙酯、0.8份三乙二醇二甲基丙烯酸酯、0.1份2-羟基 -4-正辛氧基二苯甲酮、0.2份硅烷偶联剂、0.1份癸二酸双-2,2,6,6四甲基哌啶醇酯。将上述组分经预混合、熔融挤出、流延成膜、冷却、分切和收卷等工序,制得EVA胶膜。封装时,按照钢化玻璃、EVA胶膜、电池片、EVA胶膜、钢化玻璃的顺序依次层叠。在145℃下抽真空(真空表压为-0.99atm)脱除气泡,固化15分钟后可得到EVA封装光伏组件。
实施例中共轭二烯烃类液体橡胶的粘度采用旋转流变仪测定(测定温度为25℃),共轭二烯烃类液体橡胶的Tg用DSC测定。
同时,对实施例和对比例的封装材料制备层压件进行体积电阻率和PID测试,体积电阻率依据GB/T 1410-2006进行测试,PID试验依据IEC TS 62804-1:2015进行测试。测试结果如表1所示。
表1

从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:共轭二烯烃通过自身的均聚或者和其他类单体共聚得到的共轭二烯烃类液体橡胶,在常温下具有良好的流动性,尤其是在25℃时的粘度为20~20000mPa·s的共轭二烯烃类液体橡胶,如将其应用于光伏封装材料,在固化时相比固体封装法更不容易使电池片破裂,排除气泡也相对方便,可简化操作,并进一步提高产品的良品率。共轭二烯烃类液体橡胶具有极性低、绝缘性能好等优点,因此利用其封装的光伏组件的抗潮性和防水性更好,可有效抑制PID效应。同时共轭二烯烃类液体橡胶便于和各种配合剂混合均匀,来源丰富,成本低廉,采用共轭二烯烃类液体橡胶作为光伏封装材料并采用液体封装的方法进行封装,能够简化操作流程,制得成本更低、性能更优异的光伏组件,具有很好的应用前景。另一方面,共轭二烯烃类液体橡胶的玻璃化转变温度不高于-70℃,分子链柔顺性能较好,固化物即使在极低温下也具有较好的弹性,因此有望拓宽光伏组件使用的温度范围。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种液体橡胶光伏封装组合物,其特征在于,所述液体橡胶光伏封装组合物包括:100质量份共轭二烯烃类液体橡胶、0.01~15质量份交联剂、0.1~8质量份增粘剂,其中所述共轭二烯烃类液体橡胶在25℃时的粘度为20~20000mPa·s,所述共轭二烯烃类液体橡胶的玻璃化转变温度小于等于-70℃。
  2. 根据权利要求1所述的液体橡胶光伏封装组合物,其特征在于,所述共轭二烯烃类液体橡胶微观结构中1,4-结构单元的比例在50%~100%之间。
  3. 根据权利要求1所述的液体橡胶光伏封装组合物,其特征在于,所述共轭二烯烃类液体橡胶在25℃时的粘度为1000~10000mPa·s。
  4. 根据权利要求1所述的液体橡胶光伏封装组合物,其特征在于,所述共轭二烯烃类液体橡胶的数均摩尔分子质量为1000~50000g/mol。
  5. 根据权利要求4所述的液体橡胶光伏封装组合物,其特征在于,所述共轭二烯烃类液体橡胶的分子量分布指数在1.01~3.00之间,所述共轭二烯烃类液体橡胶选自液体聚丁二烯橡胶、液体丁苯橡胶、液体聚异戊橡胶、液体丁腈橡胶中任意一种或多种。
  6. 根据权利要求5所述的液体橡胶光伏封装组合物,其特征在于,所述共轭二烯烃类液体橡胶的分子链中还包括功能性基团,所述功能性基团选自羟基、羧基、伯胺基、仲胺基、醛基、羰基、肟基、环氧基、溴基中的任意一种或多种。
  7. 根据权利要求1所述的液体橡胶光伏封装组合物,其特征在于,
    所述交联剂为异氰酸酯、偶氮类化合物、羧酸类化合物、醇类化合物、酰氯类化合物、环氧类物质、胺类化合物、硫磺、含硫化合物、硒、碲、过氧化物、金属氧化物、醌类化合物中的任意一种或多种,所述交联剂的质量份为1~5质量份;
    和/或所述增粘剂选自含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂中的任意一种或多种,其中所述含有极性基团的共轭二烯烃类聚合物为环氧化聚丁二烯液体橡胶、环氧化液体丁腈橡胶、环氧化液体丁苯橡胶、环氧化液体聚异戊橡胶中的任意一种或多种,所述硅烷偶联剂为γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、乙烯基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷中的任意一种或多种,所述增粘剂的质量份为0.1~3质量份。
  8. 根据权利要求7所述的液体橡胶光伏封装组合物,其特征在于,所述增粘剂包括含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂,且含有极性基团的共轭二烯烃类聚合物和硅烷偶联剂的质量比为1∶0.1~1。
  9. 根据权利要求1至8任一项所述的液体橡胶光伏封装组合物,其特征在于,所述液体橡胶光伏封装组合物还包括:0.1~3质量份抗老化剂和/或0.1~2质量份助交联剂,所述抗老化剂包括2,2’-亚甲基双(4-甲基-6-叔丁基苯酚)、2,6-二叔丁基对甲酚、2,4,6-三叔丁基苯酚、抗氧剂1010、抗氧剂1076中的任意一种或多种,所述助交联剂包括二甲基丙烯酸 锌、二丙烯酸锌、2-硫醇基苯骈噻唑、二硫化四甲基秋兰姆、二苯胍、二月桂酸二丁基锡、2,4,6-三(二甲胺基甲基)苯酚中的任意一种或多种。
  10. 一种光伏组件的封装方法,其特征在于,所述封装方法包括:
    步骤S1,将液体橡胶光伏封装组合物各组分混合并脱气制成封装液,所述液体橡胶光伏封装组合物为权利要求1至9中任一项所述的液体橡胶光伏封装组合物;
    步骤S2,使所述封装液设置在上基板、电池片单元和下基板之间,形成封装预备件;
    步骤S3,对所述封装预备件进行脱气、固化处理,得到光伏组件。
  11. 根据权利要求10所述的封装方法,其特征在于,所述步骤S2包括:
    将所述封装液设置在所述上基板和所述下基板中面向所述电池片单元的一面上,将所述上基板、所述电池片单元和所述下基板依次层叠;
    或者将所述上基板、所述电池片单元和所述下基板依次层叠制成模具,然后将所述封装液灌装入所述模具中。
  12. 根据权利要求10所述的封装方法,其特征在于,所述步骤S1包括:通过调节所述封装液的温度将所述封装液的粘度调节至1000~10000mPa·s。
  13. 根据权利要求10所述的封装方法,其特征在于,所述固化的温度为100~300℃。
  14. 根据权利要求10所述的封装方法,其特征在于,所述步骤S3的所述脱气和所述固化在真空条件下进行。
  15. 根据权利要求14所述的封装方法,其特征在于,所述真空的真空表压为-0.95~-0.99atm。
  16. 一种光伏组件,所述光伏组件包括下基板、电池片单元和上基板,所述下基板、所述电池片单元和所述上基板之间的孔隙填充有封装胶,其特征在于,所述封装胶为权利要求1至9中任一项所述的液体橡胶光伏封装组合物固化而成。
PCT/CN2023/076254 2022-07-22 2023-02-15 一种液体橡胶光伏封装组合物、封装方法和光伏组件 WO2024016650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210865812.7A CN114933873B (zh) 2022-07-22 2022-07-22 一种液体橡胶光伏封装组合物、封装方法和光伏组件
CN202210865812.7 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024016650A1 true WO2024016650A1 (zh) 2024-01-25

Family

ID=82868418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076254 WO2024016650A1 (zh) 2022-07-22 2023-02-15 一种液体橡胶光伏封装组合物、封装方法和光伏组件

Country Status (2)

Country Link
CN (1) CN114933873B (zh)
WO (1) WO2024016650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933873B (zh) * 2022-07-22 2022-10-28 杭州福斯特应用材料股份有限公司 一种液体橡胶光伏封装组合物、封装方法和光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105802548A (zh) * 2016-05-27 2016-07-27 苏州度辰新材料有限公司 一种用于双玻光伏组件的白色封装胶膜及其制备方法
CN106029817A (zh) * 2014-02-28 2016-10-12 古河电气工业株式会社 电子设备密封用树脂组合物及电子设备
WO2022127070A1 (zh) * 2020-12-17 2022-06-23 杭州福斯特应用材料股份有限公司 封装组合物、组合物、封装胶膜、电子元器件及太阳能电池组件
CN114933873A (zh) * 2022-07-22 2022-08-23 杭州福斯特应用材料股份有限公司 一种液体橡胶光伏封装组合物、封装方法和光伏组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054396A (ja) * 2010-09-01 2012-03-15 Hitachi Kasei Polymer Co Ltd 太陽電池バックシート用接着剤組成物及び太陽電池バックシート
CN105062379B (zh) * 2015-09-23 2018-04-27 上海康达化工新材料股份有限公司 一种用于双玻光伏组件的密封胶带及其制备方法
US10526473B2 (en) * 2018-04-11 2020-01-07 Fina Technology, Inc. Curable liquid rubber compositions and methods of manufacturing the same
CN108795124B (zh) * 2018-06-26 2020-10-16 乐凯胶片股份有限公司 一种光伏用聚烯烃封装胶膜
CN109439268B (zh) * 2018-10-31 2021-09-17 烟台德邦科技股份有限公司 一种光伏叠瓦组件用低Tg、低银含量的导电胶
CN111454668B (zh) * 2020-04-13 2022-04-15 杭州福斯特应用材料股份有限公司 共挤胶膜、太阳能电池组件及双层玻璃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029817A (zh) * 2014-02-28 2016-10-12 古河电气工业株式会社 电子设备密封用树脂组合物及电子设备
US20160362587A1 (en) * 2014-02-28 2016-12-15 Furukawa Electric Co., Ltd. Resin composition for sealing electronic device, and electronic device
CN105802548A (zh) * 2016-05-27 2016-07-27 苏州度辰新材料有限公司 一种用于双玻光伏组件的白色封装胶膜及其制备方法
WO2022127070A1 (zh) * 2020-12-17 2022-06-23 杭州福斯特应用材料股份有限公司 封装组合物、组合物、封装胶膜、电子元器件及太阳能电池组件
CN114933873A (zh) * 2022-07-22 2022-08-23 杭州福斯特应用材料股份有限公司 一种液体橡胶光伏封装组合物、封装方法和光伏组件

Also Published As

Publication number Publication date
CN114933873B (zh) 2022-10-28
CN114933873A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2024016650A1 (zh) 一种液体橡胶光伏封装组合物、封装方法和光伏组件
TWI592430B (zh) 太陽電池密封材料及太陽電池模組
JP5465813B2 (ja) 太陽電池封止用シートセット
WO2010140343A1 (ja) エチレン系樹脂組成物、太陽電池封止材およびそれを用いた太陽電池モジュール
JP5964326B2 (ja) 太陽電池封止材および太陽電池モジュール
JP6281563B2 (ja) 太陽電池モジュール及びその製造方法
US20200350602A1 (en) Curable resin composition, fuel cell using same, and sealing method using same
WO2021253612A1 (zh) 胶膜及包含其的电子器件
TWI606068B (zh) 太陽電池封裝材以及太陽電池模組
EP4166618A1 (en) Adhesive film, composition for forming same and electronic device
JP2011249758A (ja) 太陽電池封止材用evaシートおよびその製造方法
JP2013132755A (ja) 多層シート及びその利用
WO2017114291A1 (zh) 密封胶带组合物和密封胶带及其用途
WO2012144484A1 (ja) 燃料電池用接着性シール部材
CN110003843A (zh) 一种电力复合绝缘子修补胶及其制备方法
CN115368681A (zh) 一种抗撕裂性三元乙丙橡胶模压板及其制备方法
JP2013004646A (ja) 太陽電池モジュール用封止材組成物
KR101678984B1 (ko) 태양전지용 봉지재 시트 및 이를 포함하는 태양전지 모듈
CN106715571A (zh) 密封片、太阳能电池模块以及密封片的制造方法
WO2014050294A1 (ja) 積層体の製法および積層体
JP2014056675A (ja) 二次電池用シール材及び二次電池用シール材組成物
JP3051314B2 (ja) リン酸型燃料電池用ガスケットおよびその製造法
JP2010168479A (ja) エチレンプロピレンジエンゴム組成物及びそれを用いて形成される成形品
CN111675857A (zh) 一种燃料电池用密封材料及其制备方法
WO2014050293A1 (ja) 積層体およびその製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841728

Country of ref document: EP

Kind code of ref document: A1