WO2024011802A1 - 液压***及其故障诊断方法 - Google Patents

液压***及其故障诊断方法 Download PDF

Info

Publication number
WO2024011802A1
WO2024011802A1 PCT/CN2022/132377 CN2022132377W WO2024011802A1 WO 2024011802 A1 WO2024011802 A1 WO 2024011802A1 CN 2022132377 W CN2022132377 W CN 2022132377W WO 2024011802 A1 WO2024011802 A1 WO 2024011802A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
hydraulic
pressure
pressure value
temperature
Prior art date
Application number
PCT/CN2022/132377
Other languages
English (en)
French (fr)
Inventor
王建伟
李富红
刘永诚
李明升
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2024011802A1 publication Critical patent/WO2024011802A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/041Removal or measurement of solid or liquid contamination, e.g. filtering

Definitions

  • the present disclosure relates to the field of oilfield solid pressure, and in particular, to a hydraulic system and a fault diagnosis method thereof.
  • Hydraulic systems are widely used in the field of oil field pressure stabilization.
  • the hydraulic system includes hydraulic oil, power device, control device, execution device and auxiliary device (such as oil tank).
  • hydraulic oil is the working medium that transmits energy in the hydraulic system.
  • a power device (such as a hydraulic pump) is connected to the motor and is configured to convert mechanical energy provided by the motor into pressure energy of the hydraulic oil, thereby providing power to the hydraulic oil.
  • Control devices such as various hydraulic valves, are configured to control the pressure, flow, and direction of hydraulic oil.
  • the execution device (such as an oil cylinder and a hydraulic motor) is connected to the load and is configured to convert the pressure energy of the hydraulic oil into the mechanical energy of the load, thereby driving the load.
  • some embodiments of the present disclosure provide a hydraulic system.
  • the hydraulic system includes an oil tank, an oil suction pipeline, a plurality of hydraulic motors, a hydraulic pump and a controller.
  • the inlet of the hydraulic pump is connected to the oil tank through the oil suction pipeline, and the outlet of the hydraulic pump is connected to the plurality of hydraulic motors; the hydraulic pump is configured to pump oil in the oil tank into among the multiple hydraulic motors.
  • the controller is configured to: when the hydraulic pump is in a working state, obtain a first temperature value inside the oil tank and a first pressure value inside the oil suction pipeline; when the first pressure value is less than or When the temperature is equal to the first pressure threshold and the first temperature value is less than the first temperature threshold, the first status information and the first prompt information are issued.
  • the first status information is used to indicate that the first pressure value is abnormal
  • the first prompt information is used to prompt the operation of the first temperature value when the first temperature value is less than the first temperature threshold.
  • the first pressure value restores normal operation.
  • some embodiments of the present disclosure provide a fault diagnosis method for a hydraulic system.
  • the hydraulic system includes an oil tank, an oil suction pipeline, a plurality of hydraulic motors and a hydraulic pump.
  • the inlet of the hydraulic pump is connected to the oil tank through the oil suction pipeline, and the outlet of the hydraulic pump is connected to the plurality of hydraulic motors; the hydraulic pump is configured to pump oil in the oil tank into among the multiple hydraulic motors.
  • the method includes: when the hydraulic pump is in a working state, obtaining a first temperature value inside the oil tank and a first pressure value inside the oil suction pipeline; when the first pressure value is less than or equal to the first When the pressure threshold is reached and the first temperature value is less than the first temperature threshold, the first status information and the first prompt information are issued.
  • the first status information is used to indicate that the first pressure value is abnormal
  • the first prompt information is used to prompt the operation of the first temperature value when the first temperature value is less than the first temperature threshold.
  • the first pressure value restores normal operation.
  • Figure 1 is a structural diagram of a hydraulic system according to some embodiments.
  • Figure 2 is a flow chart of a fault diagnosis method for a hydraulic system according to some embodiments
  • Figure 3 is a partial structural diagram of a hydraulic system according to some embodiments.
  • Figure 4 is another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 5 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 6 is another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 7 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 8 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 9 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 10 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 11 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 12 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 13 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 14 is another partial structural diagram of a hydraulic system according to some embodiments.
  • Figure 15 is yet another flowchart of a fault diagnosis method for a hydraulic system according to some embodiments.
  • Figure 16 is a hardware structure diagram of a controller according to some embodiments.
  • Reminder device 401 communication interface 402; display 403.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more unless otherwise specified.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • words such as “exemplarily” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present disclosure is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplarily” or “for example” is intended to present the relevant concepts in a concrete manner.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • some embodiments of the present disclosure provide a hydraulic system.
  • the hydraulic system can obtain the real-time operating parameters of each component in the hydraulic system during the working process (such as the temperature value inside the oil tank, the pressure value inside the oil suction pipeline), and based on the real-time operating parameters and the preset parameter thresholds The size relationship between them can identify the fault source in the hydraulic system. Therefore, according to different fault sources, corresponding status information can be sent to indicate the fault occurring in the hydraulic system to maintenance personnel, and corresponding prompt information can be sent to prompt maintenance personnel how to troubleshoot the fault. In this way, the hydraulic system can automatically identify the source of faults during work without the need for manual identification by maintenance personnel, thus improving the efficiency of fault diagnosis of the hydraulic system. Moreover, the hydraulic system can prompt troubleshooting operation methods based on the fault source, which helps to improve the troubleshooting efficiency of the hydraulic system and can also reduce the requirements for the operating level of maintenance personnel.
  • the hydraulic system 10 includes an oil tank 101, an oil suction pipeline 109, a shut-off valve 102, an oil suction filter 103, a hydraulic pump 104, a pressure gauge 105, a drain pipeline 110, a pipeline filter 106, and a multi-way valve. 107. Multiple hydraulic motors 108, oil cylinders 112, oil return lines 111, thermostats 113, radiators 114, oil return filters 115, controllers 200 and sensing systems 300.
  • hydraulic system 10 may include more or fewer components than shown in FIG. 1 .
  • the hydraulic system 10 may combine, disassemble or replace certain components in FIG. 1 .
  • Each component shown in Figure 1 may be hardware, software, or a combination of software and hardware.
  • FIG. 1 takes the hydraulic system 10 including four hydraulic motors 108 as an example for illustrative explanation. The present disclosure does not limit the number of hydraulic motors 108 included in the hydraulic system 10 .
  • the oil tank 101 may also be called a hydraulic oil tank, which is a container that stores hydraulic oil (hereinafter referred to as oil) required for the operation of the hydraulic system 10 .
  • oil hydraulic oil
  • the oil tank 101 is configured to dissipate heat generated when the hydraulic system 10 operates.
  • the oil tank 101 is configured to release gas from the oil.
  • the hydraulic pump 104 communicates with the oil tank 101 through the oil suction line 109 , and the hydraulic pump 104 communicates with the plurality of hydraulic motors 108 through the oil drain line 110 . In this way, the hydraulic pump 104 can pump the oil in the oil tank 101 into the plurality of hydraulic motors 108 .
  • hydraulic pump 104 may be a variable displacement piston pump.
  • hydraulic system 10 also includes an engine or electric machine.
  • the engine or the electric machine is connected to the hydraulic pump 104 and coupled to the controller 200 .
  • the engine or the motor can start to work under the control of the controller 200, thereby driving the hydraulic pump 104 to run, so that the hydraulic pump 104 enters a working state.
  • the hydraulic pump 104 is configured with a Load Sensing (LS) valve.
  • the LS valve is configured to feed back the working pressure of the hydraulic system 10 to the hydraulic pump 104 so that the hydraulic pump 104 adjusts its own displacement according to the working pressure.
  • the working pressure of the hydraulic system 10 refers to the pressure generated by the load squeezing the oil when the hydraulic system 10 drives the load to move.
  • the shut-off valve 102 and the suction filter 103 are disposed in the suction line 109 .
  • the shut-off valve 102 is configured to control the connection and disconnection of the oil suction line 109 .
  • the oil suction filter 103 is configured to filter impurities in the oil entering the hydraulic pump 104 from the oil tank 101 to prevent the impurities from being inhaled by the hydraulic pump 104, thereby preventing the hydraulic system 10 from being contaminated and improving the working reliability of the hydraulic system 10.
  • the pressure gauge 105 is disposed on the hydraulic pump 104 and is configured to detect the pressure value inside the hydraulic pump 104 .
  • the pressure gauge 105 includes a switching mechanism, a sensitive component (eg, a Bourdon tube, a bellows, a bellows), and a pointer.
  • the conversion mechanism can transmit the elastic deformation of the sensitive component to the pointer, causing the pointer to rotate to display the pressure value.
  • line filter 106 is disposed in drain line 110 .
  • the pipeline filter 106 is configured to filter impurities in the oil pumped by the hydraulic pump 104 to the plurality of hydraulic motors 108 to avoid contaminating the plurality of hydraulic motors 108 .
  • the multi-way valve 107 is coupled to the controller 200 to receive control signals from the controller 200 .
  • the multi-way valve 107 is provided between the hydraulic pump 104 and the plurality of hydraulic motors 108 . In this case, after the hydraulic pump 104 pumps oil into the multi-way valve 107 through the drain line 110, the multi-way valve 107 transmits the oil to the plurality of hydraulic motors 108.
  • the multi-way valve 107 includes a plurality of valve plates 1071 that are respectively connected with a plurality of hydraulic motors 108 to control the operation of the plurality of hydraulic motors 108 respectively.
  • the hydraulic system 10 includes other actuating devices (such as the oil cylinder 112)
  • the multiple valve plates 1071 of the multi-way valve 107 are respectively connected with the other actuating devices and the multiple hydraulic motors 108 to respectively control the other actuating devices.
  • the execution device and the plurality of hydraulic motors 108 work.
  • the multi-way valve 107 includes five valve plates 1071 , four of the five valve plates 1071 are respectively connected to the four hydraulic motors 108 , and another of the five valve plates 1071 1071 is connected with the oil cylinder 112.
  • the above-mentioned valve plate 1071 can control the start and stop of the hydraulic motor 108 or the oil cylinder 112. That is, when the electric control part on the valve plate 1071 is energized, the valve core on the valve plate 1071 opens, thereby controlling the hydraulic motor 108 or the oil cylinder 112 connected with the valve plate 1071 to start working; When the power is partially cut off, the valve core on the valve plate 1071 is closed, thereby controlling the hydraulic motor 108 or the oil cylinder 112 connected to the valve plate 1071 to stop working.
  • the above-mentioned valve plate 1071 can control the operating speed of the hydraulic motor 108 or the oil cylinder 112 . That is, when the electronic control part on the valve plate 1071 is supplied with different control signals, the valve core on the valve plate 1071 opens at different opening degrees, thereby controlling the flow rate of the oil output by the valve plate 1071, and thereby controlling the flow of oil output by the valve plate 1071. The operating speed of the hydraulic motor 108 or the oil cylinder 112 that the valve plate 1071 communicates with.
  • the operating speed of the hydraulic motor 108 refers to the rotation speed of the hydraulic motor 108; the operating speed of the oil cylinder 112 refers to the reciprocating or swinging speed of the oil cylinder 112.
  • the oil cylinder 112 is a hydraulic cylinder, and hydraulic cylinders are generally used to achieve linear reciprocating motion or swing.
  • the following description mainly takes the oil cylinder 112 as a single-rod piston hydraulic cylinder as an example.
  • the oil cylinder 112 includes a cylinder barrel, a piston 1121, a piston rod 1122, a rod cavity 1123 and a rodless cavity 1124.
  • the rod cavity 1123 is the cavity where the piston rod 1122 is located, and the rodless cavity 1124 is the cavity where the piston rod 1122 is not installed.
  • the piston 1121 will move toward the rodless chamber 1124 under the pressure of the oil.
  • the piston rod 1122 retracts, and the oil cylinder 112 is in The second state (i.e. retracted state).
  • the piston 1121 will move in a direction away from the rodless chamber 1124 under the pressure of the oil.
  • the piston rod 1122 extends, and the oil cylinder 112 is in the first position. state (i.e.
  • the piston rod 1122 of the oil cylinder 112 can be made to reciprocate, thereby driving the load connected to the piston rod 1122.
  • the multi-way valve 107 is connected to the oil tank 101 through the oil return pipeline 111. In the direction from the multi-way valve 107 to the oil tank 101, the thermostat 113, the radiator 114 and the oil return filter 115 are sequentially disposed on the return line. Oil line 111.
  • Thermostat 113 is an automatic temperature regulating device.
  • the radiator 114 is configured to reduce the temperature of the oil flowing back into the oil tank 101 from the multi-way valve 107 .
  • the oil return filter 115 is configured to filter impurities in the oil flowing back to the oil tank 101 to prevent impurities from entering the oil tank 101 .
  • the thermostat 113 includes an inlet 1131 of the thermostat, a first outlet 1132 of the thermostat, a second outlet 1133 of the thermostat, a temperature sensing component and a valve core of the thermostat.
  • the valve core of the thermostat is open, after the oil in the oil return line 111 enters the thermostat 113 from the inlet 1131 of the thermostat, the thermostat 113 can obtain the temperature of the oil through the temperature sensing component. .
  • the oil will be transmitted to the oil return filter 115 through the second outlet 1133 of the thermostat, and then return to the oil tank 101. If the temperature of the oil is greater than the set temperature value of the thermostat 113, the oil will be transmitted to the radiator 114 through the first outlet 1132 of the thermostat. After the temperature is reduced by the radiator 114, it will be filtered by the return oil. The device 115 returns to the fuel tank 101.
  • the temperature of the oil returned to the oil tank 101 can be prevented from being too high, thereby preventing the temperature of the oil provided by the oil tank 101 to the entire hydraulic system 10 from being too high, and preventing the working temperature of each component in the hydraulic system 10 from being too high, which may cause It is beneficial to improve the reliability of the hydraulic system 10.
  • the controller 200 refers to a device that can generate operation control signals according to instruction operation codes and timing signals to instruct the hydraulic system 10 to execute control instructions.
  • the controller 200 can be a central processing unit (CPU), a general-purpose processor network processor (Network Processor, NP), a digital signal processor (Digital Signal Processing, DSP), a microprocessor, a microprocessor Controller, Programmable Logic Device (PLD) or any combination thereof.
  • the controller 200 may also be other devices with processing functions, such as circuits, devices or software modules, which is not limited by this disclosure.
  • controller 200 can be used to control the operation of various components within the hydraulic system 10 so that the various components of the hydraulic system 10 operate to achieve various predetermined functions of the hydraulic system.
  • the controller 200 can control various valve bodies (such as the multi-way valve 107) inside the hydraulic system 10 through electric, pneumatic or hydraulic means.
  • the present disclosure is specific to the controller 200 controlling various valves inside the hydraulic system 10. There are no restrictions on the physical form.
  • sensing system 300 is coupled to controller 200 .
  • the sensing system 300 includes, for example, at least one temperature sensor and at least one pressure sensor, so that the controller 200 can obtain the temperature value of at least one location and the pressure value of at least one location in the hydraulic system 10 .
  • the above-mentioned hydraulic system 10 further includes at least one of the following: a reminder device 401 , a communication interface 402 and a display 403 .
  • the reminder device 401, the communication interface 402 and the display 403 are respectively coupled to the controller 200.
  • the reminder device 401 is configured to emit status information to indicate the source of a fault in the hydraulic system 10 .
  • the reminder device 401 may include a speaker.
  • the speaker can play corresponding status information according to the instructions of the controller 200 .
  • the status information includes sound information.
  • the present disclosure is not limited to this.
  • display 403 is configured to display a control interface of hydraulic system 10 .
  • the display 403 is configured to display prompt information to prompt an operation method for troubleshooting the source of the fault.
  • the prompt information includes text, graphics and other information.
  • the above-mentioned reminder device 401 can also be configured to issue prompt information, and the above-mentioned display 403 can also be configured to display status information. This disclosure does not limit the manner of issuing status information or prompt information.
  • communication interface 402 can communicate with external devices or servers according to various communication protocol types.
  • the communication interface 402 may include at least one of a wireless communication technology (WIFI) component, a Bluetooth component, a wired Ethernet component, a Near Field Communication (NFC) component and other communication protocol chips, or an infrared receiver.
  • the communication interface 402 may be configured to communicate with other devices or communication networks (eg, Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN)).
  • the controller 200 may communicate with the terminal device through the communication interface 402. In this case, the above status information and prompt information can be sent through the user's terminal device.
  • hydraulic system 10 may also include a power supply device configured to power various components.
  • the power device includes a battery and a power management chip, and the battery can be coupled to the controller 200 through the power management chip. In this way, the controller 200 can perform power consumption management and the like on the hydraulic system 10 .
  • the above fault diagnosis method includes step S101 and step S102.
  • maintenance personnel can issue fault diagnosis instructions to the hydraulic system 10 through the terminal device or the display 403, etc.
  • the hydraulic system 10 turns on the fault diagnosis function, so that the controller 200 executes the above step S101.
  • the hydraulic system 10 can automatically turn on the fault diagnosis function after working for a preset period of time.
  • the preset time period can be set by the maintenance personnel themselves, or the preset time period can also be preset by the manufacturer when the hydraulic system 10 leaves the factory.
  • the above preset time period may be 12 hours.
  • the hydraulic system 10 automatically turns on the fault diagnosis function after starting to work.
  • the above-mentioned first temperature value may be the temperature value of the oil inside the oil tank 101 .
  • sensing system 300 includes a first temperature sensor 301 and a first pressure sensor 304.
  • the first temperature sensor 301 is disposed in the oil tank 101 and is configured to detect the first temperature value;
  • the first pressure sensor 304 is disposed in the oil suction line 109 and is configured to detect the first pressure value.
  • the controller 200 is coupled with the first temperature sensor 301 and the first pressure sensor 304 to obtain the first temperature value and the first pressure value.
  • the first pressure sensor 304 may be disposed between the oil suction filter 103 and the hydraulic pump 104 .
  • the hydraulic pump 104 is configured to pump the oil in the oil tank 101 to the plurality of hydraulic motors 108 through the oil suction pipeline 109 . Therefore, the first pressure value inside the oil suction pipeline 109 can reflect the smoothness of the hydraulic pump 104 in sucking oil. For example, the larger the first pressure value is, the smoother the hydraulic pump 104 can absorb oil.
  • the first status information is used to indicate that the first pressure value is abnormal; the first prompt information is used to prompt an operation to restore the first pressure value to normal when the first temperature value is less than the first temperature threshold.
  • the hydraulic pump 104 if it is detected that the first pressure value is less than or equal to the first pressure threshold, it means that the first pressure value is abnormal, reflecting that the hydraulic pump 104 is not smoothly absorbing oil. In this case, it can be considered that the hydraulic pump 104 is in an abnormal state.
  • a shut-off valve 102 is provided on the oil suction pipeline 109, it may be that the shut-off valve 102 is not opened, causing the oil suction pipeline 109 to be disconnected and the hydraulic pump 104 to be unable to suck oil. It may also be that the temperature of the oil in the oil tank 101 is too low, causing the hydraulic pump 104 to be unable to successfully suck out the oil in the oil tank 101 . If the oil suction line 109 is provided with an oil suction filter 103, the oil suction line 109 may be clogged due to too many impurities in the oil suction filter 103, thus causing the hydraulic pump 104 to have difficulty in suctioning oil.
  • the first temperature value is detected to be less than the first temperature threshold, it means that the temperature of the oil in the oil tank 101 is too low, and the failure of the hydraulic pump 104 to absorb oil may be related to the fact that the temperature of the oil in the oil tank 101 is too low.
  • the first prompt information is used to prompt at least one of the following: opening the shut-off valve 102, reducing the rotation speed of the hydraulic pump 104, or replacing the oil suction filter 103.
  • the first prompt information may prompt the maintenance personnel to open the shut-off valve 102 first. If the shut-off valve 102 is in an open state, it means that the poor oil suction of the hydraulic pump 104 is related to the low temperature of the oil in the oil tank 101 .
  • the first prompt information may prompt the maintenance personnel to reduce the rotation speed of the hydraulic pump 104 to restore the first pressure value to normal.
  • the first pressure value can return to normal. Therefore, if the first pressure value has not returned to normal after the rotational speed of the hydraulic pump 104 is reduced to less than the rotational speed threshold, it means that the oil suction filter 103 is clogged. In this case, maintenance personnel need to be instructed to replace the oil suction filter 103 . It should be noted that when the first pressure value increases to be greater than the first pressure threshold, it can be considered that the first pressure value returns to normal.
  • the above-mentioned first pressure threshold, first temperature threshold and rotation speed threshold may be preset by the manufacturer when the hydraulic system 10 leaves the factory, or the first pressure threshold, first temperature threshold and rotation speed threshold may also be It is set by the maintenance personnel themselves.
  • the above-mentioned first pressure threshold may be negative 0.2 bar; the above-mentioned first temperature threshold may be 0°C.
  • the manner in which the controller 200 sends the first status information, the first prompt information, and other status information and prompt information may refer to the foregoing embodiments and will not be described in detail below.
  • the content of the first status information may include "the hydraulic pump is not suctioning oil smoothly”; the content of the first prompt information may include "( 1) Check whether the shut-off valve is open. If the shut-off valve is closed, please open the shut-off valve; (2) Please reduce the speed of the hydraulic pump.
  • the first pressure value inside the oil suction pipeline is restored after reducing the speed, If it is normal, please maintain the corresponding speed for a period of time, or use heating measures to wait until the first temperature value inside the tank rises above 0°C, then increase the speed of the hydraulic pump; (3) If the speed of the hydraulic pump drops below the speed threshold If the first pressure value has not returned to normal, please replace the oil suction filter.”
  • the hydraulic system 10 can detect the first pressure value inside the oil suction pipeline 109 and the first temperature value inside the oil tank 101 when the hydraulic pump 104 is in a working state, and can detect the first pressure value inside the oil tank 101 when the hydraulic pump 104 is in the working state.
  • a pressure value is less than or equal to the first pressure threshold and the first temperature value is less than the first temperature threshold, it is determined that the first pressure value inside the oil suction pipeline 109 is abnormal, the hydraulic pump 104 is not suctioning oil smoothly, and the first pressure value is abnormal and related to the first temperature value.
  • the first status information can be sent to remind the maintenance personnel that the hydraulic pump 104 is in an abnormal state, so that the maintenance personnel can perform fault diagnosis on the hydraulic pump 104 in a targeted manner.
  • the fault source in the hydraulic system 10 can be quickly identified, realizing intelligent fault diagnosis of the hydraulic system 10 .
  • the fault diagnosis efficiency of the hydraulic system 10 is also improved.
  • the first prompt message is sent when the first temperature value is less than the first temperature threshold to guide the maintenance personnel to perform operations to restore the first pressure value to normal. This not only helps to improve
  • the fault repair efficiency of the hydraulic system 10 also enables maintenance personnel to perform maintenance work with relatively simple training, thus reducing the requirements for the maintenance personnel's operational level.
  • the above fault diagnosis method further includes step S201.
  • the second prompt information is used to prompt an operation to restore the first pressure value to normal when the first temperature value is greater than or equal to the first temperature threshold.
  • the reasons for the poor oil suction of the hydraulic pump 104 may include: the shut-off valve 102 is not opened, the temperature of the oil in the oil tank 101 is too low, or the oil suction pipeline 109 is blocked by impurities in the oil suction filter 103, etc. Therefore, if it is detected that the first temperature value is greater than or equal to the first temperature threshold, the controller 200 can determine that the temperature of the oil in the oil tank 101 is in a normal state, thereby determining the relationship between the poor oil suction of the hydraulic pump 104 and the first temperature value.
  • the second prompt information is used to prompt at least one of the following: opening the shut-off valve 102 or replacing the oil suction filter 103.
  • the second prompt information may first prompt the maintenance personnel to open the shut-off valve 102. If the shut-off valve 102 is in an open state, the maintenance personnel may be prompted to replace the oil suction filter 103.
  • the content of the second prompt message may include "(1) Check whether the shut-off valve is in an open state. If the shut-off valve is in a closed state, please open it. Shut-off valve; (2) If the shut-off valve is open, please replace the oil suction filter.”
  • the hydraulic system 10 in the above embodiment can detect that the first pressure value inside the oil suction pipe 109 is less than or equal to the first pressure threshold and the first temperature value inside the oil tank 101 is greater than or equal to the first temperature threshold. It is determined that the first pressure value inside the oil suction pipe 109 is abnormal, and the first pressure value abnormality has nothing to do with the first temperature value. At this time, the controller 200 may, while sending the above-mentioned first status information, send a second prompt message when the first temperature value is greater than or equal to the first temperature threshold, so as to guide the maintenance personnel to restore the first pressure value to normal. operation, thereby improving the fault repair efficiency of the hydraulic system 10 and reducing the requirements on the operating level of maintenance personnel.
  • the above fault diagnosis method further includes step S301 and step S302.
  • sensing system 300 includes a second temperature sensor 302 .
  • the second temperature sensor 302 is disposed in the drain line 110 and is configured to detect the second temperature value.
  • the controller 200 is coupled to the second temperature sensor 302 to obtain the second temperature value.
  • the second status information is used to indicate that the second temperature value is abnormal; the third prompt information is used to prompt an operation to restore the second temperature value to normal.
  • the temperature value of the hydraulic pump 104 during operation should be maintained within a certain temperature range. If the hydraulic pump 104 operates at a relatively high temperature, it may easily malfunction, affecting the normal operation of the hydraulic system 10 . Therefore, the operating temperature of the hydraulic pump 104 needs to be monitored.
  • the second temperature value inside the drain pipeline 110 can reflect the operating temperature of the hydraulic pump 104 . If it is determined that the second temperature value is greater than or equal to the second temperature threshold, it indicates that the operating temperature of the hydraulic pump 104 is too high.
  • the excessively high operating temperature of the hydraulic pump 104 may be related to the first temperature value inside the oil tank 101. If it is detected that the first temperature value is less than or equal to the third temperature threshold, it indicates that the first temperature value is in a normal state, that is, the operating temperature of the hydraulic pump 104 is too high and has nothing to do with the first temperature value.
  • the second temperature threshold and the third temperature threshold may be preset by the manufacturer when the hydraulic system 10 leaves the factory, or may be set by maintenance personnel themselves.
  • the second temperature threshold may be 85°C; the third temperature threshold may be 50°C.
  • the controller 200 may determine that the second temperature value is abnormal, and the second temperature value is abnormal and The first temperature value is irrelevant. At this time, the controller 200 may determine that the cause of the abnormality of the second temperature value includes: the rotation speed of the hydraulic pump 104 is too high, or the temperature value of the bearing of the hydraulic pump 104 is too high.
  • the content of the second status information may include "the operating temperature of the hydraulic pump is high”; the content of the third prompt information may include "( 1) Please confirm the working speed of the hydraulic pump. Please ensure that the working speed of the hydraulic pump is between 600rpm and 2200rpm; (2) Check the temperature of the hydraulic pump bearing. The temperature should be lower than 110°C. If the temperature exceeds 110°C, stop the machine immediately. and inspect the hydraulic pump.”
  • the controller 200 can send the third status information indicating the abnormality of the second temperature value, so that the maintenance personnel can perform targeted maintenance on the hydraulic pump 104 , thereby improving the fault diagnosis efficiency of the hydraulic system 10 .
  • the third prompt message is sent to guide the maintenance personnel to perform operations to restore the second temperature value to normal, thereby improving the fault repair efficiency of the hydraulic system 10 and also reducing the operations for the maintenance personnel. level requirements.
  • the above fault diagnosis method further includes step S401 and step S402.
  • sensing system 300 includes second pressure sensor 305 and third pressure sensor 306 .
  • the second pressure sensor 305 is disposed at the outlet 1042 of the hydraulic pump and is configured to detect the second pressure value;
  • the third pressure sensor 306 is disposed at the LS port of the hydraulic pump 104 and is configured to detect the The third pressure value.
  • the controller 200 is coupled with the second pressure sensor 305 and the third pressure sensor 306 to obtain the second pressure value and the third pressure value.
  • the hydraulic pump 104 needs to pump oil out of the hydraulic pump 104 at a certain pressure value, so that the oil can be pumped to each hydraulic motor through the drain pipeline 110. 108, thereby ensuring the normal operation of the hydraulic system 10.
  • the certain pressure value may be called the preset pressure value of the hydraulic pump 104 or the standby pressure value of the hydraulic pump 104 .
  • the hydraulic pump 104 is provided with a pressure setting screw.
  • the preset pressure value of the hydraulic pump 104 increases; when the pressure setting screw is rotated (such as loosened) in the second direction opposite to the first direction When tightening the screw, the preset pressure value of the hydraulic pump 104 decreases.
  • the controller 200 needs to determine whether the set pressure value of the hydraulic pump 104 is appropriate by obtaining the second pressure value at the outlet 1042 of the hydraulic pump.
  • the third status information is used to indicate that the second pressure value and the third pressure value are abnormal; the fourth prompt information is used to prompt an operation to restore the second pressure value and the third pressure value to normal.
  • the controller 200 may determine that the multi-way valve 107 has leaked, and the leak may have caused the preset pressure value of the hydraulic pump 104 to be too low. .
  • the reason why the preset pressure value of the hydraulic pump 104 is too low may be that the pressure setting screw is loose.
  • the fourth prompt information sent by the controller 200 can be used to prompt at least one of the following: adjusting the preset pressure value of the hydraulic pump 104, checking whether the pressure setting screw of the hydraulic pump 104 is loose, or checking Check whether the multi-way valve 107 is leaking.
  • the content of the third status information may include "the set pressure value of the hydraulic pump is too low"; the content of the fourth prompt information may include It can include "(1) The setting range of the preset pressure value of the hydraulic pump is between 280psi and 300psi; (2) Check whether the pressure setting screw of the hydraulic pump is loose. If the screw is loose, please readjust the preset value of the hydraulic pump. Pressure value; (3) Check whether the multi-way valve is leaking. If leakage occurs and the leakage is too large, please replace the multi-way valve.”
  • the above-mentioned second pressure threshold and the third pressure threshold can be preset by the manufacturer when the hydraulic system 10 leaves the factory, or the above-mentioned second pressure threshold and the third pressure threshold can also be set by maintenance personnel themselves.
  • the second pressure threshold may be 270 psi; the third pressure threshold may be 0.
  • the second pressure value at the outlet 1042 of the hydraulic pump when it is detected that the second pressure value at the outlet 1042 of the hydraulic pump is less than or equal to the second pressure threshold, it can be determined that the current preset pressure value of the hydraulic pump 104 is too low and cannot be guaranteed. normal operation of the hydraulic system 10. And when it is detected that the third pressure value fed back by the multi-way valve 107 to the hydraulic pump 104 is less than or equal to the third pressure threshold, it can be determined that the multi-way valve 107 may be leaking, causing the hydraulic pump 104 to fail. The preset pressure value is too low.
  • the controller 200 can send third status information indicating that the second pressure value and the third pressure value of the hydraulic pump 104 are abnormal, so that the maintenance personnel can perform targeted maintenance on the hydraulic pump 104, thereby improving the efficiency of the hydraulic pump 104. Fault diagnosis efficiency of hydraulic system 10.
  • the fourth prompt message is sent to guide the maintenance personnel to perform operations to restore the second pressure value and the third pressure value to normal, thereby improving the fault repair efficiency of the hydraulic system 10 and simplifying the maintenance personnel.
  • the operations that need to be performed reduce the requirements for the operation level of maintenance personnel.
  • the fault diagnosis method performed by the controller 200 also involves a fault diagnosis method for the hydraulic motor 108 .
  • the above fault diagnosis method also includes step S501 and step S502.
  • sensing system 300 includes a plurality of fourth pressure sensors.
  • the plurality of fourth pressure sensors are correspondingly disposed on the plurality of hydraulic motors 108 and configured to detect the fourth pressure values of the plurality of hydraulic motors 108 .
  • the controller 200 is coupled to each of the plurality of fourth pressure sensors to obtain the fourth pressure values of the plurality of hydraulic motors 108 .
  • the fourth pressure value is generated by the load connected to the hydraulic motor 108 squeezing the oil.
  • the fourth status information is used to indicate that the fourth pressure value of any hydraulic motor 108 is abnormal.
  • the lower limit of the pressure value range may be the product of the fourth pressure threshold and the first ratio
  • the upper limit of the pressure value range may be the product of the fourth pressure threshold and the second ratio.
  • the first ratio is greater than zero and less than one
  • the second ratio is greater than one.
  • the first ratio may be 95%
  • the second ratio may be 105%
  • the fourth pressure threshold can be preset by the manufacturer when the hydraulic system 10 leaves the factory, or can be set by maintenance personnel themselves.
  • the controller 200 may determine that the fourth pressure value of the hydraulic motor 108 is abnormal, that is, determine that the hydraulic motor 108 is in an abnormal state.
  • the controller 200 sends the fifth status information to indicate that the fourth pressure value of the hydraulic motor 108 is abnormal, thereby reminding the maintenance personnel to perform a fault check on the hydraulic motor 108 so that the maintenance personnel can perform targeted inspections.
  • the hydraulic motor 108 performs fault diagnosis without the need for maintenance personnel to troubleshoot the entire hydraulic system 10 based on personal experience, thereby quickly identifying the source of faults in the hydraulic system 10 and realizing intelligent fault diagnosis of the hydraulic system 10. In addition, it also improves The fault diagnosis efficiency of the hydraulic system 10 is improved.
  • the above fault diagnosis method further includes step S601 and step S602.
  • sensing system 300 includes multiple rotational speed sensors.
  • the plurality of rotation speed sensors are correspondingly arranged in the plurality of hydraulic motors 108 and configured to detect the operating rotation speed values of the plurality of hydraulic motors 108 .
  • the controller 200 is coupled to each of the plurality of rotational speed sensors to obtain the operating rotational speed values of the plurality of hydraulic motors 108 .
  • the fifth status information is used to indicate that the operating speed value of any hydraulic motor 108 is abnormal.
  • the lower limit of the working speed value range may be the product of the preset speed value and the third ratio
  • the upper limit of the working speed value range may be the product of the preset speed value and the fourth ratio.
  • the third ratio is greater than zero and less than one; the fourth ratio is greater than one.
  • the third ratio may be 90%; the fourth ratio may be 110%.
  • the preset rotation speed value can be preset by the manufacturer when the hydraulic system 10 leaves the factory, or can be set by the maintenance personnel themselves.
  • the controller 200 may determine that the rotation speed of the hydraulic motor 108 is abnormal, that is, determine that the hydraulic motor 108 is in an abnormal state.
  • the controller 200 sends the sixth status information to indicate that the hydraulic motor 108 rotates abnormally, thereby reminding the maintenance personnel to perform a fault check on the hydraulic motor 108 so that the maintenance personnel can perform targeted inspections on the hydraulic motor 108 Performing fault diagnosis eliminates the need for maintenance personnel to troubleshoot the entire hydraulic system 10 based on personal experience, thus improving the fault diagnosis efficiency of the hydraulic system 10 .
  • the above fault diagnosis method further includes step S701 and step S702.
  • sensing system 300 includes a plurality of flow sensors.
  • the plurality of flow sensors are correspondingly arranged in the plurality of hydraulic motors 108 and configured to detect input flow values of the plurality of hydraulic motors 108 .
  • the controller 200 is coupled to each of the flow sensors to obtain the input flow values of the hydraulic motors 108 .
  • the input flow rate that the hydraulic motor 108 can handle is limited. If the oil flow from the valve plate 1071 is too large, the hydraulic motor 108 connected to the valve plate 1071 may be damaged, affecting the normal operation of the hydraulic system 10 .
  • the sixth status information is used to indicate that the input flow value of any hydraulic motor 108 is abnormal.
  • the lower limit of the flow value range may be the product of the preset flow value and the fifth ratio
  • the upper limit of the flow value range may be the product of the preset flow value and the sixth ratio.
  • the fourth ratio is greater than zero and less than one
  • the sixth ratio is greater than one.
  • the fourth ratio may be 98%
  • the fifth ratio may be 102%.
  • the preset flow value can be preset by the manufacturer when the hydraulic system 10 leaves the factory, or can be set by the maintenance personnel themselves.
  • the controller 200 may determine that the input flow rate of the hydraulic motor 108 is abnormal, that is, determine that the hydraulic motor 108 is in an abnormal state.
  • the controller 200 sends the seventh status information to indicate that the input flow of the hydraulic motor 108 is abnormal, that is, to remind the maintenance personnel to check the valve plate 1071 corresponding to the hydraulic motor 108, so that the maintenance personnel can perform targeted inspections.
  • the fault diagnosis of the valve plate 1071 corresponding to the hydraulic motor 108 is effectively performed, eliminating the need for maintenance personnel to troubleshoot the entire hydraulic system 10 based on personal experience, thereby improving the fault diagnosis efficiency of the hydraulic system 10 .
  • the fault diagnosis method performed by the controller 200 also involves a fault diagnosis method for the oil cylinder 112. As shown in Figure 10, the above fault diagnosis method also includes step S801 and step S802.
  • sensing system 300 includes fifth and sixth pressure sensors.
  • the fifth pressure sensor is disposed in the rodless chamber 1123 and is configured to detect the fifth pressure value;
  • the sixth pressure sensor is disposed in the rodless chamber 1124 and is configured to detect the sixth pressure value.
  • the controller 200 is coupled to both the fifth pressure sensor and the sixth pressure sensor to obtain the fifth pressure value and the sixth pressure value.
  • the seventh state information is used to indicate an abnormal pressure value when the oil cylinder 112 is in the first state.
  • the sixth pressure value will be greater than the fifth pressure value to ensure that the piston 1121 and the piston rod 1122 are driven away from the rodless chamber 1124 by the pressure difference. move in the direction.
  • the fifth pressure value at this time will be greater than a certain value to ensure that the oil in the rod cavity 1123 flows out of the rod cavity 1123 through the valve plate 1071 connected with the oil cylinder 112 .
  • the certain value is the above-mentioned fifth pressure threshold.
  • the fifth pressure threshold can be set by a maintenance personnel based on personal experience or experimental data, for example.
  • the controller 200 may determine that the pressure value when the oil cylinder 112 is in the first state is abnormal, Then the seventh status message is sent to indicate that the oil cylinder 112 is in an abnormal state, that is, to remind the maintenance personnel to check the oil cylinder 112, so that the maintenance personnel can perform targeted fault diagnosis on the oil cylinder 112 without the need for the maintenance personnel to conduct a complete fault diagnosis based on personal experience.
  • the hydraulic system 10 performs fault diagnosis, which improves the fault diagnosis efficiency of the hydraulic system 10 .
  • the above fault diagnosis method further includes step S901 and step S902.
  • the controller 200 may obtain the seventh pressure value and the eighth pressure value respectively through the fifth pressure sensor and the sixth pressure sensor in S801.
  • the eighth state information is used to indicate an abnormal pressure value when the oil cylinder 112 is in the second state.
  • the seventh pressure value is usually greater than the eighth pressure value, and the eighth pressure value is usually greater than the fifth pressure threshold.
  • the controller 200 can determine that the oil cylinder 112 is in The pressure value in the second state is abnormal, and then the eighth state information is sent to indicate that the oil cylinder 112 is in an abnormal state, that is, to remind the maintenance personnel to check the oil cylinder 112, so that the maintenance personnel can perform targeted faults on the oil cylinder 112. Diagnosis eliminates the need for maintenance personnel to troubleshoot the entire hydraulic system 10 based on personal experience, which improves the efficiency of fault diagnosis of the hydraulic system 10 .
  • the above fault diagnosis method also includes step S1001 and step S1002.
  • the hydraulic system 10 includes a first differential pressure switch 116 .
  • the first pressure difference switch 116 is disposed on the pipeline filter 106 and is configured to detect the first pressure difference. For example, when the first pressure difference is greater than the rated pressure of the first pressure difference switch 116, the first pressure difference switch 116 will be turned on.
  • the controller 200 may be coupled to the first pressure difference switch 116 to determine the size of the first pressure difference based on whether the first pressure difference switch 116 is turned on.
  • sensing system 300 includes two seventh pressure sensors.
  • the two seventh pressure sensors are respectively disposed at both ends of the pipeline filter 106 to detect the pressure values at both ends of the pipeline filter 106 .
  • the controller 200 is coupled with the two seventh pressure sensors to obtain the first pressure difference value according to the pressure values measured by the two seventh pressure sensors respectively.
  • the fifth prompt information is used to prompt the operation of reducing the first pressure difference.
  • the controller 200 may determine that the pressure difference across the pipeline filter 106 is large, which may be caused by the oil in the tank 101 It is caused by low temperature and high viscosity, or it may be caused by the pipeline filter 106 being blocked by impurities. If it is detected that the first temperature value is greater than or equal to the fourth temperature threshold, it means that the temperature of the oil in the oil tank 101 is not too low. Therefore, the controller 200 can determine the cause of the large pressure difference between the two ends of the pipeline filter 106. It is because there are too many impurities in the filter element in the pipeline filter 106.
  • the hydraulic pump 104 may fail to smoothly pump oil into the oil cylinder 112 and the plurality of hydraulic motors 108 .
  • the fourth temperature threshold can be set by maintenance personnel based on personal experience or experimental data.
  • the fourth pressure threshold may be 25°C.
  • the fourth temperature threshold may be the same as the first temperature threshold, or may be different.
  • the fifth prompt message sent by the controller 200 may be, for example, a prompt to replace the pipeline filter.
  • the filter element of device 106 The filter element of device 106.
  • the maintenance personnel can promptly replace the filter element of the pipeline filter 106 based on the fifth prompt information to ensure the normal operation of the hydraulic system 10.
  • the above fault diagnosis method also includes step S1101 and step S1102.
  • sensing system 300 includes a third temperature sensor 303.
  • the third temperature sensor 303 is disposed at the first outlet 1132 of the thermostat and is configured to detect the third temperature value.
  • the controller 200 is coupled to the third temperature sensor 303 to obtain the third temperature value.
  • the sixth prompt information is used to prompt the operation of lowering the first temperature value.
  • the temperature of the oil entering the thermostat 113 is less than or equal to the set temperature value of the thermostat 113, it means that the temperature of the oil is relatively low. If it flows directly into the oil tank 101, it will not cause the oil tank 101 to collapse. The temperature of the oil in the oil increases, so the oil can return to the oil tank 101 from the second outlet 1133 of the thermostat via the oil return filter 115 .
  • the temperature of the oil entering the thermostat 113 is greater than the set temperature value of the thermostat 113, it means that the temperature of the oil is relatively high and needs to be transferred to the radiator 114 for heat dissipation through the first outlet 1132 of the thermostat. Then it returns to the oil tank 101 through the oil return filter 115.
  • the controller 200 may determine that the oil returned to the oil tank 101 via the thermostat 113 actually increases the temperature of the oil in the oil tank 101 , further indicating that the temperature of the oil is actually higher.
  • the controller 200 may determine that the valve core of the thermostat is not If it is turned on, it is determined that the thermostat 113 is not working properly.
  • the fifth temperature threshold can be set by maintenance personnel based on personal experience or experimental data. Therefore, the sixth prompt information sent by the controller 200 may be, for example, a prompt to open the valve core of the thermostat 113 .
  • the maintenance personnel can promptly open the filter element of the thermostat 113 based on the sixth prompt information to ensure the normal operation of the hydraulic system 10.
  • the troubleshooting efficiency of the hydraulic system 10 is also improved.
  • the above fault diagnosis method also includes step S1201 and step S1202.
  • the hydraulic system 10 includes a second differential pressure switch 117 .
  • the second pressure difference switch 117 is provided on the oil return filter 115 and is configured to detect the second pressure difference value.
  • the controller 200 is coupled to the second pressure difference switch 117 to obtain the second pressure difference value.
  • the working principle of the second differential pressure switch 117 is similar to the working principle of the first differential pressure switch 116 and will not be described again here.
  • sensing system 300 includes two eighth pressure sensors.
  • the two eighth pressure sensors are respectively disposed at both ends of the oil return filter 115 to detect the pressure values at both ends of the oil return filter 115 .
  • the controller 200 is coupled with the two eighth pressure sensors to obtain the second pressure difference value according to the pressure values measured by the two eighth pressure sensors respectively.
  • the seventh prompt information is used to prompt the operation of reducing the second pressure difference.
  • the controller 200 may determine that the pressure difference across the oil return filter 115 is large, which may be caused by the oil in the oil tank 101 It is caused by the low temperature and high viscosity of the liquid, or it may be caused by the oil return filter 115 being blocked by impurities.
  • the controller 200 can determine that the temperature of the oil in the oil tank 101 is not too low, and further can determine the cause of the large pressure difference across the oil return filter 115 , it means that there are too many impurities in the filter element in the oil return filter 115. Therefore, when it is detected that the second pressure difference is greater than the second pressure difference threshold and the first temperature value is greater than or equal to the fourth temperature threshold, the seventh prompt information sent by the controller 200 may, for example, be a prompt to replace the Oil filter 115 filter element.
  • the maintenance personnel can promptly replace the filter element of the oil return filter 115 based on the seventh prompt information to ensure the normal operation of the hydraulic system 10.
  • embodiments of the present disclosure provide corresponding hardware structures and/or software modules that perform each function.
  • Persons skilled in the art should easily realize that, in conjunction with the modules and algorithm steps of each example described in the embodiments disclosed herein, the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered to be beyond the scope of this disclosure.
  • Embodiments of the present disclosure can divide the controller 200 into functional modules according to the above method examples.
  • each functional module can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the division of modules in the embodiments of the present disclosure is exemplary and is only a logical function division. There may be other division methods in actual implementation.
  • the hydraulic system 10 can detect the pressure values of multiple components (such as the first pressure value inside the oil suction pipeline 109, the outlet of the hydraulic pump 104) when the hydraulic pump 104 is in the working state.
  • the second pressure value at 1042 and temperature value (for example, the first temperature value inside the oil tank 101, the second temperature value inside the drain pipeline 110) and other operating parameters, and use these operating parameters and the preset threshold to determine Whether each component in the hydraulic system 10 has failed and the reasons for the failure.
  • status information including the faulty component can be sent out so that maintenance personnel can perform targeted repairs on the faulty component, thereby improving the fault diagnosis efficiency of the hydraulic system 10; status information including the cause of the fault can also be sent out.
  • prompt information to guide the maintenance personnel to gradually eliminate the fault according to the prompt information, thereby improving the fault repair efficiency of the hydraulic system 10 .
  • Some embodiments of the present disclosure also provide a fault diagnosis method for a hydraulic system.
  • the hydraulic system may be, for example, the hydraulic system 10 in the aforementioned embodiment, and the method includes a fault diagnosis method performed by the controller 200 in the hydraulic system 10 .
  • the beneficial effects of this method include at least the beneficial effects of the hydraulic system 10 in the aforementioned embodiments, which will not be described again here.
  • the controller 3000 includes a processor 3001 and, for example, a memory 3002 and a communication interface 3003 coupled to the processor 3001 .
  • the processor 3001, the memory 3002 and the communication interface 3003 are coupled by a bus 3004.
  • the processor 3001 may be a CPU, NP, DSP, microprocessor, microcontroller, PLD or any combination thereof.
  • the processor 3001 can also be any other device with processing functions, such as a circuit, device or software module.
  • the processor 3001 may also include multiple CPUs, and the processor 3001 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor here may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 3002 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (Random Access Memory, RAM) or other type that can store information and instructions.
  • Dynamic storage device it can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disk storage, optical disk storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer This disclosure does not place any restrictions on any other media that can be accessed.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • optical disk storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu
  • the memory 3002 may exist independently or may be integrated with the processor 3001. Among them, the memory 3002 may contain computer program code.
  • the processor 3001 is used to execute the computer program code stored in the memory 3002, thereby implementing the fault diagnosis method of the hydraulic system provided by the above embodiments of the present disclosure.
  • Communication interface 3003 may be used to communicate with other devices or communication networks (eg, Ethernet, RAN, WLAN, etc.).
  • the communication interface 3003 may be a module, a circuit, a transceiver, or any device capable of communication.
  • the bus 3004 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • Bus 3004 can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one line is used in Figure 16, but it does not mean that there is only one bus or one type of bus.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium.
  • the computer-readable storage medium includes computer-executable instructions. When the computer-executed instructions are run on a computer, they cause the computer to execute the fault diagnosis method for the hydraulic system provided in the above embodiments. .
  • Some embodiments of the present disclosure also provide a computer program product, which can be directly loaded into the memory and contains software code. After being loaded and executed by the computer, the computer program product can realize the hydraulic system provided by the above embodiments. Troubleshooting methods.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units. Integrated units may be stored in a readable storage medium if they are implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the embodiments of the present disclosure is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium , including several instructions to cause a device (which can be a microcontroller, a chip, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

公开了一种液压***,包括:油箱(101)、吸油管路(109)、多个液压马达(108)、液压泵(104)和控制器(200);控制器(200)被配置为:在液压泵(104)处于工作状态时,获取油箱(101)内部的第一温度值和吸油管路(109)内部的第一压力值;在第一压力值小于或等于第一压力阈值且第一温度值小于第一温度阈值的情况下,发出第一状态信息和第一提示信息;第一状态信息用于指示第一压力值异常;第一提示信息用于在第一温度值小于第一温度阈值的情况下,提示进行使第一压力值恢复正常的操作;还公开了该液压***的故障诊断方法。

Description

液压***及其故障诊断方法
本申请要求于2022年07月15日提交的、申请号为202210831297.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及油田固压领域,尤其涉及一种液压***及其故障诊断方法。
背景技术
液压***被广泛应用于油田固压领域。液压***包括液压油、动力装置、控制装置、执行装置和辅助装置(例如油箱)等。其中,液压油是液压***中传递能量的工作介质。动力装置(例如液压泵)与电机连接,且被配置为将电机提供的机械能转换为液压油的压力能,从而为液压油提供动力。控制装置(例如各种液压阀)被配置为控制液压油的压力、流量和方向。执行装置(例如油缸和液压马达)与负载连接,且被配置为将液压油的压力能转换为负载的机械能,从而驱动负载。
发明内容
一方面,本公开一些实施例提供一种液压***。所述液压***包括油箱、吸油管路、多个液压马达、液压泵以及控制器。所述液压泵的入口通过所述吸油管路与所述油箱连通,所述液压泵的出口与所述多个液压马达连通;所述液压泵被配置为将所述油箱中的油液泵入所述多个液压马达中。所述控制器被配置为:在所述液压泵处于工作状态时,获取所述油箱内部的第一温度值和所述吸油管路内部的第一压力值;在所述第一压力值小于或等于第一压力阈值、且所述第一温度值小于第一温度阈值的情况下,发出第一状态信息和第一提示信息。其中,所述第一状态信息用于指示所述第一压力值异常;所述第一提示信息用于在所述第一温度值小于所述第一温度阈值的情况下、提示进行使所述第一压力值恢复正常的操作。
另一方面,本公开一些实施例提供一种液压***的故障诊断方法。所述液压***包括油箱、吸油管路、多个液压马达以及液压泵。所述液压泵的入口通过所述吸油管路与所述油箱连通,所述液压泵的出口与所述多个液压马达连通;所述液压泵被配置为将所述油箱中的油液泵入所述多个液压马达中。所述方法包括:在所述液压泵处于工作状态时,获取所述油箱内部的第一温度值和所述吸油管路内部的第一压力值;在所述第一压力值小于或等于第一压力阈值、且所述第一温度值小于第一温度阈值的情况下,发出第一状态信息和第一提示信息。其中,所述第一状态信息用于指示所述第一压力值异常;所述第一提示信息用于在所述第一温度值小于所述第一温度阈值的情况下、提示进行使所述第一压力值恢复正常的操作。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的液压***的一个结构图;
图2为根据一些实施例的液压***的故障诊断方法的一个流程图;
图3为根据一些实施例的液压***的一个局部结构图;
图4为根据一些实施例的液压***的故障诊断方法的另一个流程图;
图5为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图6为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图7为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图8为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图9为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图10为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图11为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图12为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图13为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图14为根据一些实施例的液压***的另一个局部结构图;
图15为根据一些实施例的液压***的故障诊断方法的又一个流程图;
图16为根据一些实施例的控制器的硬件结构图。
附图标记:
液压***10;
油箱101;关断阀102;吸油过滤器103;液压泵104;液压泵的入口1041;液压泵的出口1042;压力表105;管路过滤器106;多路阀107;阀片1071;液压马达108;吸油管路109;泄油管路110;回油管路111;油缸112;活塞1121;活塞杆1122;有杆腔1123;无杆腔1124;节温器113;节温器的入口1131;节温器的第一出口1132;节温器的第二出口1133;散热器114;回油过滤器115;第一压差开关116;第二压差开关117;
控制器200;
第一温度传感器301;第二温度传感器302;第三温度传感器303;第一压力传感器304;第二压力传感器305;第三压力传感器306;
提醒装置401;通信接口402;显示器403。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
在本公开实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
由于液压***中的各部件和液压油都是在封闭油路内工作的,液压***的运行工况无法被直观的观测出。因此,在相关技术中,在液压***发生故障后,维修人员需要在观察、触摸和拆卸部件后,基于经验判断出该液压***中的故障源(即发生故障的部件和原因),再针对该故障源作相应的处理。因此,相关技术中的液压***对维修人员的操作水平要求较高,且出现故障后的诊断过程繁琐,难以快速地识别出故障源,导致该液压***的故障诊断效率较低。所以,如何提升液压***的故障诊断效率是亟待解决的问题。
基于此,本公开一些实施例提供一种液压***。该液压***能够获取液压***中的各部件在工作过程中的实时运行参数(例如油箱内部的温度值、吸油管路内部的压力值),并根据该实时运行参数和预先设定的参数阈值之间的大小关系,识别出液压***中的故障源。从而可以根据不同的故障源,发出对应的状态信息来指示维修人员液压***中发生的故障,以及发出对应的提示信息来提示维修人员排除此故障的操作方法。如此,该液压***可以自动识别工作中的故障源,无需维修人员人工识别,从而提升了液压***的故障诊断效率。并且,该液压***可以针对故障源提示排除故障的操作方法,有助于提升液压***的故障排除效率,也能够降低对维修人员的操作水平的要求。
下面主要结合附图,对本公开一些实施例提供的液压***的结构进行示例性说明。
如图1所示,液压***10包括油箱101、吸油管路109、关断阀102、吸油过滤器103、液压泵104、压力表105、泄油管路110、管路过滤器106、多路阀107、多个液压马达108、油缸112、回油管路111、节温器113、散热器114、回油过滤器115和控制器200和传感***300。
需要说明的是,本公开实施例示意的结构并不构成对液压***10的限定。在本公开另一些实施例中,液压***10可以包括比图1所示的更多或更少的部件。或者,液压***10可以对图1中的某些部件进行组合、拆分或替换等。图1所示的各个部件可以为硬件、软件或软件与硬件的组合。另外,图1以液压***10包括四个液压马达108为例,进行示例性说明,本公开对液压***10中包括的液压马达108的数量不作限制。
在一些实施例中,油箱101也可以称作液压油箱,是存储液压***10工作所需的液压油(以下简称为油液)的容器。示例性地,油箱101被配置为散发液压***10工作时所产生的热量。或者,油箱101被配置为释放油液中的气体。
在一些实施例中,液压泵104通过吸油管路109与油箱101连通,液压泵104通过泄油管路110与多个液压马达108连通。这样,液压泵104可以将油箱101中的油液泵入多个液压马达108中。示例性地,液压泵104可以是变量柱塞泵。
在一些实施例中,液压***10还包括发动机或电机。该发动机或该电机与液压泵104连接,且与控制器200耦接。该发动机或该电机可以在控制器200的控制下开始工作,从而带动液压泵104运行,使该液压泵104进入工作状态。
在一些实施例中,液压泵104配置有负载敏感(Load Sensing,LS)阀。该LS阀被配置为将液压***10的工作压力反馈到液压泵104上,以使液压泵104根据该工作压力调节自身的排量。需要说明的是,液压***10的工作压力是指该液压***10驱动负载运动的过程中,负载挤压油液而产生的压力。
在一些实施例中,关断阀102和吸油过滤器103设置在吸油管路109中。在一些实施例中,关断阀102被配置为控制吸油管路109的连通与断开。吸油过滤器103被配置为过滤从油箱101进入液压泵104的油液中的杂质,以避免该杂质被液压泵104吸入,从而可以防止液压***10被污染,提高液压***10的工作可靠性。
在一些实施例中,压力表105设置于液压泵104上,且被配置为检测液压泵104内部的压力值。示例性地,压力表105包括转换机构、敏感部件(例如波登管、膜盒、波纹管) 和指针。该转换机构可以将敏感部件的弹性形变传导至指针,引起指针转动来显示压力值。
在一些实施例中,管路过滤器106设置在泄油管路110中。管路过滤器106被配置为过滤液压泵104向多个液压马达108泵入的油液中的杂质,以避免污染该多个液压马达108。
在一些实施例中,多路阀107与控制器200耦接,以接收来自控制器200的控制信号。多路阀107设置于液压泵104与多个液压马达108之间。在这种情况下,在液压泵104通过泄油管路110将油液泵入多路阀107后,由该多路阀107将该油液传输至多个液压马达108中。
在一些实施例中,多路阀107包括多个阀片1071,该多个阀片1071分别与多个液压马达108连通,以分别控制该多个液压马达108工作。
需要说明的是,当液压***10中包括其他执行装置(例如油缸112)时,多路阀107的多个阀片1071分别与该其他执行装置和多个液压马达108连通,以分别控制该其他执行装置和该多个液压马达108工作。
例如,参照图1,多路阀107包括五个阀片1071,五个阀片1071中的四个阀片1071分别与四个液压马达108连通,且五个阀片1071中的另一个阀片1071与油缸112连通。
在一些示例中,上述阀片1071可以控制液压马达108或油缸112启停。即,在阀片1071上的电控部分通电时,该阀片1071上的阀芯开启,从而控制与该阀片1071连通的液压马达108或油缸112开始工作;在阀片1071上的电控部分断电时,该阀片1071上的阀芯关闭,从而控制与该阀片1071连通的液压马达108或油缸112停止工作。
在一些示例中,上述阀片1071可以控制液压马达108或油缸112的运行速度。即,当阀片1071上的电控部分通入不同的控制信号时,该阀片1071上的阀芯以不同的开度开启,从而控制该阀片1071输出的油液的流量,进而控制与该阀片1071连通的液压马达108或油缸112的运行速度。
需要说明的是,液压马达108的运行速度是指该液压马达108的转速;油缸112的运行速度是指该油缸112做往复运动或摆动的速度。
在一些实施例中,油缸112为液压缸,液压缸一般用于实现直线往复运动或者摆动。以下主要以油缸112为单杆活塞式液压缸为例进行说明,参照图1,油缸112包括缸筒、活塞1121、活塞杆1122、有杆腔1123和无杆腔1124。
有杆腔1123是活塞杆1122所在的腔体,无杆腔1124是未设置活塞杆1122的腔体。当来自液压泵104的油液从有杆腔1123进入油缸112时,活塞1121会在油液的压力下向靠近无杆腔1124的方向移动,此时,活塞杆1122回缩,该油缸112处于第二状态(即回缩状态)。类似地,当油液从无杆腔1124进入油缸112时,活塞1121会在油液的压力下向远离无杆腔1124的方向移动,此时,活塞杆1122伸出,该油缸112处于第一状态(即伸出状态)。这样,通过控制油液进入油缸112的有杆腔1123或无杆腔1124内,可以使该油缸112的活塞杆1122做往复运动,从而驱动与该活塞杆1122相连的负载。
在一些实施例中,多路阀107通过回油管路111与油箱101连通,在多路阀107至油箱101的方向上,节温器113、散热器114和回油过滤器115依次设置在回油管路111中。
节温器113是一种自动调温装置。散热器114被配置为降低由多路阀107回流至油箱101中的油液的温度。回油过滤器115被配置为过滤回流至油箱101的油液中的杂质,以避免杂质进入油箱101。
节温器113包括节温器的入口1131、节温器的第一出口1132、节温器的第二出口1133、感温组件和节温器的阀芯。在节温器的阀芯开启的情况下,回油管路111中的油液从节温器的入口1131进入节温器113后,该节温器113可以通过感温组件获取该油液的温度。
若该油液的温度小于或等于节温器113的设定温度值,则该油液会经节温器的第二出口1133传输至回油过滤器115,然后回到油箱101。若该油液的温度大于节温器113的设定温度值,则该油液会经节温器的第一出口1132传输至散热器114,经散热器114降低温 度后,再经回油过滤器115回到油箱101。
这样,可以防止回到油箱101中的油液的温度过高,从而防止该油箱101提供给整个液压***10的油液的温度过高,避免液压***10中各个部件的工作温度过高,有利于提高液压***10的可靠性。
需要说明的是,上述设定温度值可以由液压***10的管理人员或制造商预先设定。在一些实施例中,控制器200是指可以根据指令操作码和时序信号,产生操作控制信号,指示液压***10执行控制指令的装置。示例性地,控制器200可以为中央处理器(Central Processing Unit,CPU)、通用处理器网络处理器(Network Processor,NP)、数字信号处理器(Digital Signal Processing,DSP)、微处理器、微控制器、可编程逻辑器件(Programmable Logic Device,PLD)或它们的任意组合。控制器200还可以是其它具有处理功能的装置,例如电路、器件或软件模块,本公开对此不做限制。
此外,控制器200可以用于控制液压***10内部中各部件工作,以使得液压***10各个部件运行实现液压***的各预定功能。
在一些实施例中,控制器200可以通过电动、气动或者液动的方式控制液压***10内部的各个阀体(例如多路阀107),本公开对控制器200控制液压***10内部的各个阀体的方式不作限制。
在一些实施例中,传感***300与控制器200耦接。传感***300例如包括至少一个温度传感器和至少一个压力传感器,以使控制器200可以获取液压***10中的至少一个部位的温度值和至少一个部位的压力值。
需要说明的是,关于上述至少一个温度传感器和至少一个压力传感器的设置方式,将在后续实施例中进行示例性说明。
在一些实施例中,如图1所示,上述液压***10还包括以下至少之一:提醒装置401、通信接口402和显示器403。提醒装置401、通信接口402和显示器403分别与控制器200耦接。
在一些实施例中,提醒装置401被配置为发出状态信息,以指示液压***10中的故障源。示例性地,提醒装置401可以包括扬声器。该扬声器可以根据控制器200的指示,播放相应的状态信息。在这种情况下,状态信息包括声音信息。当然,本公开并不限于此。
在一些实施例中,显示器403被配置为显示液压***10的控制界面。示例性地,显示器403被配置为显示提示信息,以提示排除故障源的操作方法。在这种情况下,提示信息包括文字、图形等信息。
需要说明的是,上述提醒装置401也可以被配置为发出提示信息,上述显示器403也可以被配置为显示状态信息,本公开对发出状态信息或提示信息的方式不作限制。
在一些实施例中,通信接口402可以根据各种通信协议类型,与外部设备或服务器进行通信。例如,通信接口402可以包括无线通信技术(WIFI)组件、蓝牙组件、有线以太网组件、近距离无线通信技术(Near Field Communication,NFC)组件等通信协议芯片,或者红外接收器中的至少一种。通信接口402可以被配置为与其他设备或通信网络(例如以太网、无线接入网(Radio Access Network,RAN)、无线局域网(Wireless Local Area Networks,WLAN))通信。示例性地,控制器200可以通过通信接口402与终端设备进行通信。在这种情况下,上述状态信息和提示信息可以通过用户的终端设备发出。
在一些实施例中,液压***10还可以包括电源装置,该电源装置被配置为给各个部件供电。示例性地,该电源装置包括电池和电源管理芯片,电池可以通过电源管理芯片与控制器200耦接。这样,可以通过控制器200对液压***10进行功耗管理等。
下面主要结合附图,对上述控制器200识别故障源、以及发出状态信息和提示信息的故障诊断方法进行示例性说明。
如图2所示,上述故障诊断方法包括步骤S101和步骤S102。
S101、在液压泵104处于工作状态时,获取油箱101内部的第一温度值和吸油管路109内部的第一压力值。
在一些实施例中,在液压***10的工作过程中,维修人员可以通过终端设备或显示器403等,向液压***10下发故障诊断指令。响应于该故障检测指令,液压***10开启故障诊断功能,以使控制器200执行上述步骤S101。
在另一些实施例中,液压***10可以在工作预设时长后,自动开启故障诊断功能。需要说明的是,该预设时长可以由维修人员自行设定,或者,该预设时长也可以在液压***10出厂时由制造商预先设定。例如,上述预设时长可以为12小时。
在又一些实施例中,液压***10在开始工作后,自动开启故障诊断功能。
需要说明的是,上述第一温度值可以是油箱101内部的油液的温度值。
在一些实施例中,如图3所示,传感***300包括第一温度传感器301和第一压力传感器304。该第一温度传感器301设置在油箱101中,且被配置为检测所述第一温度值;该第一压力传感器304设置在吸油管路109中,且被配置为检测所述第一压力值。控制器200与第一温度传感器301和第一压力传感器304耦接,以获取所述第一温度值和所述第一压力值。示例性地,如图3所示,当关断阀102和吸油过滤器103设置在吸油管路109中时,第一压力传感器304可以设置在吸油过滤器103和液压泵104之间。
可以理解的是,由于液压泵104被配置为通过吸油管路109将油箱101中的油液泵送至多个液压马达108中。因此,吸油管路109内部的第一压力值可以反映液压泵104吸取油液的顺畅性。示例性地,第一压力值越大,则液压泵104吸取油液越顺畅。
油箱101中的油液的温度越低,则该油液的粘度越大、流动性越差,液压泵104吸取油液的阻力越大。因此,油箱101内部的第一温度值会影响上述第一压力值。
S102、在第一压力值小于或等于第一压力阈值、且第一温度值小于第一温度阈值的情况下,发出第一状态信息和第一提示信息。
需要说明的是,第一状态信息用于指示第一压力值异常;第一提示信息用于在第一温度值小于第一温度阈值的情况下、提示进行使第一压力值恢复正常的操作。
在液压泵104的工作过程中,若检测到第一压力值小于或等于第一压力阈值,则说明第一压力值异常,反映出液压泵104吸油不畅。在这种情况下,可以认为液压泵104处于异常状态。
在该情况下,若吸油管路109上设置有关断阀102,则可能是由于关断阀102未开启,导致吸油管路109断开、液压泵104无法吸取油液。也可能是由于油箱101中的油液的温度过低,导致液压泵104无法将油箱101中的油液顺利吸出。若吸油管路109上设置有吸油过滤器103,则可能是由于吸油过滤器103中的杂质过多,导致吸油管路109堵塞,从而导致液压泵104吸油不畅。
若检测到第一温度值小于第一温度阈值,则说明油箱101中的油液的温度过低,液压泵104吸油不畅可能与油箱101中的油液的温度过低有关。示例性地,第一提示信息用于提示以下至少之一:开启关断阀102、降低液压泵104的转速、或更换吸油过滤器103。例如,第一提示信息可以先提示维修人员开启关断阀102。若关断阀102处于开启状态,则说明液压泵104吸油不畅与油箱101中的油液的温度过低有关。在这种情况下,第一提示信息可以提示维修人员降低液压泵104的转速,以使第一压力值恢复正常。在这种情况下,若吸油过滤器103未被堵塞,则当液压泵104的转速降低至小于预设的转速阈值后,第一压力值可以恢复正常。因此,若液压泵104的转速降低至小于该转速阈值后,第一压力值仍未恢复正常,则说明吸油过滤器103被堵塞,在这种情况下,需要指示维修人员更换吸油过滤器103。需要说明的是,当第一压力值增大至大于第一压力阈值时,可以认为第一压力值恢复正常。
在一些实施例中,上述第一压力阈值、第一温度阈值和转速阈值可以由制造商在液压***10出厂时预先设定,或者,该第一压力阈值、第一温度阈值和转速阈值也可以由维修人员自行设定。例如,上述第一压力阈值可以为负0.2bar;上述第一温度阈值可以为0℃。
示例性地,控制器200发出第一状态信息、第一提示信息以及其他状态信息和提示信息的方式,可以参照前述实施例,以下不再赘述。
示例性地,以控制器200通过显示器403发出第一状态信息和第一提示信息为例,第一状态信息的内容可以包括“液压泵吸油不畅”;第一提示信息的内容可以包括“(1)检查关断阀是否处于打开状态,若关断阀处于关闭状态,请打开关断阀;(2)请降低液压泵的转速,若降低转速后,吸油管路内部的第一压力值恢复正常,则请维持对应转速运转一段时间、或采用加热措施待油箱内部的第一温度值升到0℃以上之后,再提高液压泵的转速;(3)若液压泵的转速降低至小于转速阈值后,第一压力值仍未恢复正常,则请更换吸油过滤器”。
本公开一些实施例提供的液压***10,在液压泵104处于工作状态时,可以对吸油管路109内部的第一压力值和油箱101内部的第一温度值进行检测,并可以在检测到第一压力值小于或等于第一压力阈值、且第一温度值小于第一温度阈值时,判定吸油管路109内部的第一压力值异常、液压泵104吸油不畅,且第一压力值异常与第一温度值有关。此时可以发出第一状态信息来提醒维修人员液压泵104处于异常状态,以便维修人员可以有针对性地对液压泵104进行故障诊断,无需维修人员基于个人经验对整个液压***10进行故障排查,从而可以快速识别出液压***10中的故障源,实现了液压***10故障诊断的智能化,此外,还提升了液压***10的故障诊断效率。且在发出第一状态信息的同时,针对第一温度值小于第一温度阈值的情况发出第一提示信息,以指引维修人员进行使第一压力值恢复正常的操作,这样,不仅有助于提升液压***10的故障修复效率,也能使维修人员经过相对简单的培训就可以进行维修工作,从而降低了对维修人员的操作水平的要求。
在一些实施例中,如图4所示,在步骤S101之后,上述故障诊断方法还包括步骤S201。
S201、在第一压力值小于或等于第一压力阈值、且第一温度值大于或等于第一温度阈值的情况下,发出第一状态信息和第二提示信息。
其中,第二提示信息用于在第一温度值大于或等于第一温度阈值的情况下、提示进行使第一压力值恢复正常的操作。
由上述S102可知,导致液压泵104吸油不畅的原因可能包括:关断阀102未开启、油箱101中的油液的温度过低或吸油过滤器103中的杂质堵塞了吸油管路109等。因此,若检测到第一温度值大于或等于第一温度阈值,则控制器200可以确定油箱101中的油液的温度处于正常状态,从而可以确定导致液压泵104吸油不畅与第一温度值无关。示例性地,第二提示信息用于提示以下至少之一:开启关断阀102、或更换吸油过滤器103。例如,第二提示信息可以先提示维修人员开启关断阀102,若关断阀102处于开启状态,则提示维修人员更换吸油过滤器103。
示例性地,以控制器200通过显示器403发出第二提示信息为例,第二提示信息的内容可以包括“(1)检查关断阀是否处于打开状态,若关断阀处于关闭状态,请打开关断阀;(2)若关断阀处于开启状态,请更换吸油过滤器”。
上述实施例中的液压***10,在检测到吸油管路109内部的第一压力值小于或等于第一压力阈值、且油箱101内部的第一温度值大于或等于第一温度阈值的时,可以判定吸油管路109内部的第一压力值异常,且第一压力值异常与第一温度值无关。此时,控制器200可以在发出上述第一状态信息的同时,针对第一温度值大于或等于第一温度阈值的情况发出第二提示信息,以指引维修人员进行使第一压力值恢复正常的操作,从而能够提升液压***10的故障修复效率,降低对维修人员的操作水平的要求。
在一些实施例中,如图5所示,上述故障诊断方法还包括步骤S301和步骤S302。
S301、在液压泵104处于工作状态时,获取第一温度值和泄油管路110内部的第二温度值。
在一些实施例中,参照图3,传感***300包括第二温度传感器302。该第二温度传感器302设置在泄油管路110中,且被配置为检测所述第二温度值。控制器200与该第二温度传感器302耦接,以获取所述第二温度值。
S302、在第二温度值大于或等于第二温度阈值、且第一温度值小于或等于第三温度 阈值的情况下,发出第二状态信息和第三提示信息。
其中,第二状态信息用于指示第二温度值异常;第三提示信息用于提示进行使第二温度值恢复正常的操作。
需要说明的是,通常情况下,液压泵104在工作过程中的温度值应保持在一定温度区间范围内。若液压泵104以较高温度运行,则容易发生故障,影响液压***10的正常运行。因此,需要监控液压泵104的运行温度。
由于液压泵的出口1042通过泄油管路110与各个液压马达108连通,所以泄油管路110内部的第二温度值能够反映液压泵104的运行温度。若确定第二温度值大于或等于第二温度阈值,则说明液压泵104的运行温度过高。
可以理解的是,由于液压泵104需要从油箱101中吸取油液,因此,液压泵104的运行温度过高可能与油箱101内部的第一温度值有关。若检测到第一温度值小于或等于第三温度阈值,则说明第一温度值处于正常状态,也就是说,液压泵104的运行温度过高与第一温度值无关。
需要说明的是,第二温度阈值和第三温度阈值可以在液压***10出厂时由制造商预先设定,也可以由维修人员自行设定。例如,第二温度阈值可以为85℃;第三温度阈值可以为50℃。
故在检测到第二温度值大于或等于第二温度阈值、且第一温度值小于或等于第三温度阈值的情况下,控制器200可以判定第二温度值异常,且第二温度值异常与第一温度值无关。此时,控制器200可以确定引起第二温度值异常的原因包括:液压泵104的转速过高,或液压泵104轴承的温度值过高。
示例性地,以控制器200通过显示器403发出第二状态信息和第三提示信息为例,第二状态信息的内容可以包括“液压泵运行温度高”;第三提示信息的内容可以包括“(1)请确定液压泵工作转速,请确保液压泵工作转速在600rpm至2200rpm之间;(2)检测液压泵轴承的温度,该温度应低于110℃,若该温度超过110℃,需立即停机并对液压泵进行检测”。
上述实施例中的液压***10,在检测到泄油管路110内部的第二温度值大于或等于第二温度阈值时,可以判定液压泵104的运行温度过高,且在油箱101内部的第一温度值小于或等于第三温度阈值时,可以判定引起液压泵104的运行温度过高与第一温度值无关。在此情况下,控制器200可以发出用于指示第二温度值异常的第三状态信息,以便于维修人员有针对性性地对液压泵104进行检修,从而提升了液压***10的故障诊断效率。且在发出第三状态信息的同时,发出第三提示信息,以指引维修人员进行使第二温度值恢复正常的操作,从而提升了液压***10的故障修复效率,也降低了对维修人员的操作水平的要求。
在一些实施例中,如图6所示,上述故障诊断方法还包括步骤S401和步骤S402。
S401、在液压泵104处于工作状态时,获取液压泵的出口1042处的第二压力值和多路阀107向液压泵104反馈的第三压力值。
在一些实施例中,参照图3,传感***300包括第二压力传感器305和第三压力传感器306。该第二压力传感器305设置在液压泵的出口1042处,且被配置为检测所述第二压力值;该第三压力传感器306设置在液压泵104的LS口处,且被配置为检测所述第三压力值。控制器200与该第二压力传感器305和该第三压力传感器306耦接,以获取所述第二压力值和所述第三压力值。
需要说明的是,在液压***10的工作过程中,液压泵104需要以一定的压力值将油液泵出该液压泵104,以使该油液能够通过泄油管路110泵入至各个液压马达108,从而保证液压***10的正常运行。其中,一定的压力值可以称作液压泵104的预设压力值,也可以称作液压泵104的待命压力值。示例性地,液压泵104上设置有压力设定螺钉。当沿第一方向旋转(如拧紧)该压力设定螺钉时,液压泵104的预设压力值升高;当沿与所述第一方向相反的第二方向旋转(如松动)该压力设定螺钉时,该液压泵104的预设压力值降低。
因此,为了保证液压***10的正常运行,控制器200需要通过获取液压泵的出口1042处的第二压力值,判断液压泵104的设定压力值是否合适。
S402、在第二压力值小于或等于第二压力阈值、且第三压力值小于或等于第三压力阈值的情况下,发出第三状态信息和第四提示信息。
其中,第三状态信息用于指示第二压力值和第三压力值异常;第四提示信息用于提示进行使第二压力值和第三压力值恢复正常的操作。
需要说明的是,在检测到第二压力值小于或等于第二压力阈值的情况下,说明当前液压泵104的预设压力值过低,无法保证液压***10的正常运行。在检测到第三压力值小于或等于第三压力阈值的情况下,控制器200可以判断出多路阀107发生了漏损,且该漏损可能导致了液压泵104的预设压力值过低。另外,液压泵104的预设压力值过低的原因有可能是压力设定螺钉松动。
所以在该情况下,控制器200发出的第四提示信息,例如可以用于提示以下至少之一:调整液压泵104的预设压力值、检查液压泵104的压力设定螺钉是否松动、或检查多路阀107是否出现漏损情况。
示例性地,以控制器200通过显示器403发出第三状态信息和第四提示信息为例,第三状态信息的内容可以包括“液压泵的设定压力值过低”;第四提示信息的内容可以包括“(1)液压泵的预设压力值的设定范围在280psi至300psi之间;(2)检查液压泵的压力设定螺钉是否松动,如果螺钉松动,请重新调整液压泵的预设压力值;(3)检查多路阀是否出现漏损情况,若出现漏损且漏损过大,请更换多路阀”。
需要说明的是,上述第二压力阈值和第三压力阈值可以由制造商在液压***10出厂时预先设定,或者,上述第二压力阈值和第三压力阈值也可以由维修人员自行设定。例如,第二压力阈值可以为270psi;第三压力阈值可以为0。
上述实施例中的液压***10,在检测到液压泵的出口1042处的第二压力值小于或等于第二压力阈值的情况下,可以判定当前液压泵104的预设压力值过低,无法保证液压***10的正常运行。且在检测到多路阀107向液压泵104反馈的第三压力值小于或等于第三压力阈值的情况下,可以判定可能是多路阀107发生了漏损情况,从而导致了液压泵104的预设压力值过低。在此情况下,控制器200可以发出用于指示液压泵104的第二压力值和第三压力值异常的第三状态信息,以便于维修人员有针对性地对液压泵104进行检修,提升了液压***10的故障诊断效率。且在发出第四状态信息的同时,发出第四提示信息,以指引维修人员进行使第二压力值和第三压力值恢复正常的操作,从而能够提升液压***10的故障修复效率,简化维修人员需要进行的操作,降低对维修人员的操作水平的要求。
上文主要描述了针对液压泵104进行的故障诊断方法,在一些实施例中,控制器200所执行的故障诊断方法还涉及针对液压马达108的故障诊断方法。如图7所示,上述故障诊断方法还包括步骤S501和步骤S502。
S501、在液压泵104处于工作状态时,获取多个液压马达108中的各个液压马达108内部的第四压力值。
在一些实施例中,传感***300包括多个第四压力传感器。该多个第四压力传感器对应设置在多个液压马达108上,且被配置为检测该多个液压马达108的所述第四压力值。控制器200与该多个第四压力传感器均耦接,以获取该多个液压马达108的所述第四压力值。示例性地,第四压力值由液压马达108连接的负载挤压油液后产生。
S502、在多个液压马达108中的任一个液压马达108的第四压力值位于压力值范围之外时,发出第四状态信息。
其中,第四状态信息用于指示该任一个液压马达108的第四压力值异常。
在一些实施例中,压力值范围的下限可以为第四压力阈值与第一比值的乘积,压力值范围的上限可以为第四压力阈值与第二比值的乘积。其中,第一比值大于零、且小于一;第二比值大于一。例如,第一比值可以为95%;第二比值可以为105%。另外,第四压力阈值可以由制造商在液压***10出厂时预先设定,也可以由维修人员自行设定。
若检测到任一个液压马达108的第四压力值位于压力值范围之外,则控制器200可以确定该液压马达108的第四压力值异常,也即确定该液压马达108处于异常状态。
在此情况下,控制器200发出第五状态信息,以指示该液压马达108的第四压力值异常,从而提醒维修人员对该液压马达108进行故障检查,以使得维修人员能够有针对性地对该液压马达108进行故障诊断,无需维修人员基于个人经验对整个液压***10进行故障排查,进而可以快速识别出液压***10中故障源,实现了液压***10故障诊断的智能化,此外,还提升了对液压***10的故障诊断效率。
在一些实施例中,如图8所示,上述故障诊断方法还包括步骤S601和步骤S602。
S601、在液压泵104处于工作状态时,获取多个液压马达108中的各个液压马达108的工作转速值。
在一些实施例中,传感***300包括多个转速传感器。该多个转速传感器对应设置在多个液压马达108中,且被配置为检测该多个液压马达108的工作转速值。控制器200与该多个转速传感器均耦接,以获取该多个液压马达108的工作转速值。
S602、在多个液压马达108中的任一个液压马达108的工作转速值位于转速值范围之外时,发出第五状态信息。
其中,第五状态信息用于指示该任一个液压马达108的工作转速值异常。
在一些实施例中,工作转速值范围的下限可以为预设转速值与第三比值的乘积,工作转速值范围的上限可以为预设转速值与第四比值的乘积。其中第三比值大于零、且小于一;第四比值大于一。例如,第三比值可以为90%;第四比值可以为110%。另外,预设转速值可以由制造商在液压***10出厂时预先设定,也可以由维修人员自行设定。
若检测到任一个液压马达108的工作转速值位于转速值范围之外,则控制器200可以确定该液压马达108的转速异常,也即确定该液压马达108处于异常状态。
在此情况下,控制器200发出第六状态信息,以指示该液压马达108转速异常,从而提醒维修人员对该液压马达108进行故障检查,以使得维修人员能够有针对性地对该液压马达108进行故障诊断,无需维修人员基于个人经验对整个液压***10进行故障排查,进而提升了液压***10的故障诊断效率。
在一些实施例中,如图9所示,上述故障诊断方法还包括步骤S701和步骤S702。
S701、在液压泵104处于工作状态时,获取多个液压马达108中的各个液压马达108的输入流量值。
在一些实施例中,传感***300包括多个流量传感器。该多个流量传感器对应设置在多个液压马达108中,且被配置为检测该多个液压马达108的输入流量值。控制器200与该多个流量传感器均耦接,以获取该多个液压马达108的输入流量值。
需要说明的是,液压马达108可处理的输入流量是有限的。若来自阀片1071的油液流量过大,易导致与该阀片1071连通的液压马达108损坏,影响液压***10的正常工作。
S702、在多个液压马达108中的任一个液压马达108的输入流量值位于流量值范围之外时,发出第六状态信息。
其中,第六状态信息用于指示该任一个液压马达108的输入流量值异常。
在一些实施例中,流量值范围的下限可以为预设流量值与第五比值的乘积,流量值范围的上限可以为预设流量值与第六比值的乘积。其中,第四比值大于零、且小于一;第六比值大于一。例如,第四比值可以为98%;第五比值可以为102%。另外,预设流量值可以由制造商在液压***10出厂时预先设定,也可以由维修人员自行设定。
若检测到任一个液压马达108的输入流量值位于流量值范围之外,控制器200可以确定该液压马达108的输入流量异常,也即确定该液压马达108处于异常状态。
在此情况下,控制器200发出第七状态信息,以指示该液压马达108输入流量异常,也即提醒维修人员对该液压马达108对应的阀片1071进行检查,以使得维修人员能够有针对性地对该液压马达108对应的阀片1071进行故障诊断,无需维修人员基于个人经验对整个液压***10进行故障排查,进而提升了液压***10的故障诊断效率。
在一些实施例中,控制器200所执行的故障诊断方法还涉及针对油缸112的故障诊断 方法。如图10所示,上述故障诊断方法还包括步骤S801和步骤S802。
S801、在液压泵104处于工作状态、且油缸112处于第一状态时,获取有杆腔1123内部的第五压力值和无杆腔1124内部的第六压力值。
在一些实施例中,传感***300包括第五压力传感器和第六压力传感器。第五压力传感器设置在有杆腔1123中,且被配置为检测所述第五压力值;第六压力传感器设置在无杆腔1124中,且被配置为检测所述第六压力值。控制器200与第五压力传感器和第六压力传感器均耦接,以获取所述第五压力值和所述第六压力值。
S802、在第六压力值小于或等于第五压力值、且第五压力值小于或等于第五压力阈值的情况下,发出第七状态信息。
其中,第七状态信息用于指示油缸112处于第一状态时的压力值异常。
需要说明的是,通常情况下,当油缸112处于第一状态时,第六压力值会大于第五压力值,以保证活塞1121和活塞杆1122在压力差的推动下、向远离无杆腔1124的方向移动。并且,此时的第五压力值会大于一定值,以保证有杆腔1123中的油液通过与该油缸112相连通的阀片1071流出该有杆腔1123。其中,该一定值即上述的第五压力阈值,该第五压力阈值例如可以由维修人员基于个人经验或实验数据等设置。
因此,在检测到第六压力值小于或等于第五压力值、且第五压力值小于或等于第五压力阈值的情况下,控制器200可以确定油缸112处于第一状态时的压力值异常,进而发出第七状态信息,以指示油缸112处于异常状态,也即提醒维修人员对油缸112进行检查,以使得维修人员能够有针对性地对油缸112进行故障诊断,无需维修人员基于个人经验对整个液压***10进行故障排查,提升了液压***10的故障诊断效率。
在一些实施例中,如图11所示,上述故障诊断方法还包括步骤S901和步骤S902。
S901、在液压泵104处于工作状态、且油缸112处于第二状态时,获取有杆腔1123的第七压力值和无杆腔1124的第八压力值。
在一些实施例中,控制器200可以通过S801中的第五压力传感器和第六压力传感器,分别获取第七压力值和第八压力值。
S902、在第七压力值小于或等于第八压力值、且第八压力值小于或等于第五压力阈值的情况下,发出第八状态信息。
其中,第八状态信息用于指示油缸112处于第二状态时的压力值异常。
与S802中的原理类似,油缸112处于第二状态时,第七压力值通常会大于第八压力值,且第八压力值通常会大于第五压力阈值。
因此,上述实施例中的液压***10,在检测到第七压力值小于或等于第八压力值、且第八压力值小于或等于第五压力阈值的情况下,控制器200可以确定油缸112处于第二状态时的的压力值异常,进而发出第八状态信息,以指示油缸112处于异常状态,也即提醒维修人员对油缸112进行检查,从而使得维修人员能够有针对性地对油缸112进行故障诊断,无需维修人员基于个人经验对整个液压***10进行故障排查,提升了液压***10的故障诊断效率。
在一些实施例中,如图12所示,上述故障诊断方法还包括步骤S1001和步骤S1002。
S1001、在液压泵104处于工作状态时,获取第一温度值和管路过滤器106两端的第一压力差值。
在一些实施例中,参照图3,液压***10包括第一压差开关116。该第一压差开关116设置在管路过滤器106上,且被配置为检测所述第一压力差值。示例性地,当第一压力差值大于该第一压差开关116的额定压力时,该第一压差开关116会被导通。控制器200可以与第一压差开关116耦接,以根据该第一压差开关116的导通与否,判断第一压力差值的大小。
在另一些实施例中,传感***300包括两个第七压力传感器。该两个第七压力传感器分别设置在管路过滤器106两端,以检测管路过滤器106两端的压力值。控制器200与该两个第七压力传感器耦接,以根据该两个第七压力传感器各自测得的压力值,获取第一压力差值。
S1002、在第一压力差值大于第一压力差值阈值、且第一温度值大于或等于第四温度阈值的情况下,发出第五提示信息。
其中,第五提示信息用于提示进行减小第一压力差值的操作。
需要说明的是,若检测到第一压力差值大于第一压力差值阈值,则控制器200可以确定管路过滤器106两端的压差较大,这可能是由油箱101中的油液的温度较低、粘度较大引起的,也有可能是由管路过滤器106被杂质堵塞了引起的。若检测到第一温度值大于或等于第四温度阈值,则说明油箱101中的油液的温度未过低,因此控制器200可以确定引起管路过滤器106两端压差较大的原因,是管路过滤器106中的滤芯处杂质过多。在该种情况下,可能出现液压泵104无法顺利将油液泵入油缸112和多个液压马达108中等故障。其中,第四温度阈值可以由维修人员基于个人经验或实验数据等设置。例如,第四压力阈值可以为25℃。另外,第四温度阈值与上述第一温度阈值可以相同,也可以不相同。
因此,在检测到第一压力差值大于第一压力差值阈值、且第一温度值大于或等于第四温度阈值时,控制器200发出的第五提示信息,例如可以是提示更换管路过滤器106的滤芯。
如此,维修人员可以基于第五提示信息及时更换管路过滤器106的滤芯,保证液压***10的正常运行,无需基于个人经验诊断液压***10中产生故障的部件,提升了液压***10的故障诊断效率的同时,也提升了液压***10的故障排除效率。
在一些实施例中,如图13所示,上述故障诊断方法还包括步骤S1101和步骤S1102。
S1101、在液压泵104处于工作状态时,获取第一温度值和节温器的第一出口1132处的第三温度值。
在一些实施例中,如图14所示,传感***300包括第三温度传感器303。该第三温度传感器303设置在节温器的第一出口1132处,且被配置为检测所述第三温度值。控制器200与该第三温度传感器303耦接,以获取所述第三温度值。
S1102、在第三温度值小于第五温度阈值,且第一温度值大于或等于第五温度阈值的情况下,发出第六提示信息。
其中,第六提示信息用于提示进行降低第一温度值的操作。
可以理解的是,当进入节温器113的油液的温度小于或等于节温器113的设定温度值时,说明该油液的温度较低,若直接流入油箱101也不会造成油箱101中的油液的温度升高,因此,该油液可以从节温器的第二出口1133经由回油过滤器115回到油箱101。
当进入节温器113的油液的温度大于节温器113的设定温度值时,说明该油液的温度较高,需经过节温器的第一出口1132传输至散热器114中散热,再经由回油过滤器115回到油箱101中。
因此,当检测到节温器的第一出口1132处的第三温度值小于第五温度阈值时,说明进入节温器113的油液没有经节温器的第一出口1132流出、而是经节温器的第二出口1133流出的,进而说明该油液的温度应该较低。然而,在检测到第一温度值大于或等于第五温度阈值时,控制器200可以确定经由节温器113回到油箱101中的油液,实际上升高了该油箱101中的油液的温度,进而说明该油液的温度实际上较高。
因此,上述实施例中的液压***10,在第三温度值小于第五温度阈值、且第一温度值大于或等于第五温度阈值的情况下,控制器200可以确定节温器的阀芯未开启,即确定该节温器113未正常工作。其中,第五温度阈值可以由维修人员基于个人经验或实验数据等设置。因此,控制器200发出的第六提示信息,例如可以是提示开启节温器113的阀芯。
如此,维修人员可以基于第六提示信息及时开启节温器113的滤芯,保证液压***10正常运行,无需基于个人经验诊断液压***10中产生故障的部件,提升了液压***10的故障诊断效率,此外,还提升了液压***10的故障排除效率。
在一些实施例中,如图15所示,上述故障诊断方法还包括步骤S1201和步骤S1202。
S1201、在液压泵104处于工作状态时,获取第一温度值和回油过滤器115两端的第二压力差值。
在一些实施例中,参照图14,液压***10包括第二压差开关117。该第二压差开关 117设置在回油过滤器115上,且被配置为检测所述第二压力差值。控制器200与该第二压差开关117耦接,以获取所述第二压力差值。其中,第二压差开关117的工作原理与第一压差开关116的工作原理类似,在此不再赘述。
在另一些实施例中,传感***300包括两个第八压力传感器。该两个第八压力传感器分别设置在回油过滤器115两端,以检测回油过滤器115两端的压力值。控制器200与该两个第八压力传感器耦接,以根据该两个第八压力传感器各自测得的压力值,获取第二压力差值。
S1202、在第二压力差值大于第二压力差值阈值、且第一温度值大于或等于第四温度阈值的情况下,发出第七提示信息。
其中,第七提示信息用于提示进行减小第二压力差值的操作。
需要说明的是,在检测到第二压力差值大于第二压力差值阈值的情况下,控制器200可以确定回油过滤器115两端的压差较大,这可能是由油箱101中的油液的温度较低、粘度较大引起的,也有可能是由回油过滤器115被杂质堵塞了引起的。在检测到第一温度值大于或等于第四温度阈值时,控制器200可以确定油箱101中的油液的温度未过低,进而可以确定引起回油过滤器115两端的压差较大的原因,是回油过滤器115中的滤芯处杂质过多。因此,在检测到第二压力差值大于第二压力差值阈值、且第一温度值大于或等于第四温度阈值的情况下,控制器200发出的第七提示信息,例如可以是提示更换回油过滤器115的滤芯。
如此,维修人员可以基于第七提示信息及时更换回油过滤器115的滤芯,保证液压***10的正常运行,无需基于个人经验诊断液压***10中产生故障的部件,提升了液压***10的故障诊断效率,此外,还提升了液压***10的故障排除效率。
需要说明的是,上文主要从方法的角度对本公开实施例提供的方案进行了介绍。为了实现上述功能,本公开实施例提供了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
本公开实施例可以根据上述方法示例对控制器200进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。示例性地,本公开实施例中对模块的划分是示例性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
综上所述,本公开一些实施例提供的液压***10,在液压泵104处于工作状态时,可以检测多个部件的压力值(例如吸油管路109内部的第一压力值、液压泵的出口1042处的第二压力值)和温度值(例如,油箱101内部的第一温度值、泄油管路110内部的第二温度值)等运行参数,并利用这些运行参数和预设的阈值,判断液压***10中的各个部件是否发生了故障以及发生故障的原因。在液压***10中发生了故障时,可以发出包括故障部件的状态信息,以使维修人员有针对性地对该故障部件进行检修,从而提升液压***10的故障诊断效率;还可以发出包括故障原因的提示信息,以指引维修人员根据该提示信息逐步排除故障,从而提升液压***10的故障修复效率。
本公开一些实施例还提供一种液压***的故障诊断方法。该液压***例如可以为前述实施例中的液压***10,该方法包括上述液压***10中的控制器200所执行的故障诊断方法。此外,该方法所具备的有益效果,至少包括前述各个实施例中的液压***10所具备的有益效果,在此不再赘述。
本公开一些实施例还提供一种控制器3000。如图16所示,该控制器3000包括处理器3001,示例性地,还包括与处理器3001耦接的存储器3002和通信接口3003。处理器3001、存储器3002和通信接口3003通过总线3004耦接。
处理器3001可以是CPU、NP、DSP、微处理器、微控制器、PLD或它们的任意组合。处理器3001还可以是其它任意具有处理功能的装置,例如电路、器件或软件模块。处理器3001也可以包括多个CPU,并且处理器3001可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器3002可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本公开对此不作任何限制。存储器3002可以是独立存在,也可以和处理器3001集成在一起。其中,存储器3002中可以包含计算机程序代码。处理器3001用于执行存储器3002中存储的计算机程序代码,从而实现本公开上述实施例提供的液压***的故障诊断方法。
通信接口3003可以用于与其他设备或通信网络(例如以太网、RAN、WLAN等)通信。通信接口3003可以是模块、电路、收发器或者任何能够实现通信的装置。
总线3004可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线3004可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
本公开一些实施例还提供一种计算机可读存储介质,计算机可读存储介质包括计算机执行指令,当计算机执行指令在计算机上运行时,使得计算机执行如上述实施例提供的液压***的故障诊断方法。
本公开一些实施例还提供一种计算机程序产品,该计算机程序产品可直接加载到存储器中,并含有软件代码,该计算机程序产品经由计算机载入并执行后能够实现上述实施例提供的液压***的故障诊断方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种液压***,包括:
    油箱;
    吸油管路;
    多个液压马达;
    液压泵,所述液压泵的入口通过所述吸油管路与所述油箱连通,所述液压泵的出口与所述多个液压马达连通;所述液压泵被配置为将所述油箱中的油液泵入所述多个液压马达中;以及
    控制器,被配置为:
    在所述液压泵处于工作状态时,获取所述油箱内部的第一温度值和所述吸油管路内部的第一压力值;
    在所述第一压力值小于或等于第一压力阈值、且所述第一温度值小于第一温度阈值的情况下,发出第一状态信息和第一提示信息;其中,所述第一状态信息用于指示所述第一压力值异常;所述第一提示信息用于在所述第一温度值小于所述第一温度阈值的情况下、提示进行使所述第一压力值恢复正常的操作。
  2. 根据权利要求1所述的液压***,其中,所述控制器还被配置为:
    在所述第一压力值小于或等于所述第一压力阈值、且所述第一温度值大于或等于所述第一温度阈值的情况下,发出所述第一状态信息和第二提示信息;所述第二提示信息用于在所述第一温度值大于或等于所述第一温度阈值的情况下、提示进行使所述第一压力值恢复正常的操作。
  3. 根据权利要求1或2所述的液压***,还包括:
    泄油管路,所述液压泵的出口通过所述泄油管路与所述多个液压泵连通;
    所述控制器还被配置为:
    在所述液压泵处于工作状态时,获取所述第一温度值和所述泄油管路内部的第二温度值;
    在所述第二温度值大于或等于第二温度阈值、且所述第一温度值小于或等于第三温度阈值的情况下,发出第二状态信息和第三提示信息;其中,所述第二状态信息用于指示所述第二温度值异常;所述第三提示信息用于提示进行使所述第二温度值恢复正常的操作。
  4. 根据权利要求1至3中任一项所述的液压***,还包括:
    多路阀,设置于所述液压泵与所述多个液压马达之间,且包括多个阀片;所述多个阀片与所述多个液压马达对应连通;
    所述控制器还被配置为:
    在所述液压泵处于工作状态时,获取所述液压泵的出口处的第二压力值和所述多路阀向所述液压泵反馈的第三压力值;
    在所述第二压力值小于或等于第二压力阈值、且所述第三压力值小于或等于第三压力阈值的情况下,发出第三状态信息和第四提示信息;其中,所述第三状态信息用于指示所述第二压力值和所述第三压力值异常;所述第四提示信息用于提示进行使所述第二压力值和所述第三压力值恢复正常的操作。
  5. 根据权利要求1至4中任一项所述的液压***,其中,所述控制器还被配置为:
    在所述液压泵处于工作状态时,获取所述多个液压马达中的各个液压马达内部的第四压力值;
    在所述多个液压马达中的任一个液压马达的所述第四压力值位于压力值范围之外时,发出第四状态信息;其中,所述第四状态信息用于指示所述任一个液压马达的所述第四压力值异常。
  6. 根据权利要求1至5中任一项所述的液压***,所述控制器还被配置为:
    在所述液压泵处于工作状态时,获取所述多个液压马达中的各个液压马达的工作转速值;
    在所述多个液压马达中的任一个液压马达的所述工作转速值位于转速值范围之外时, 发出第五状态信息;其中,所述第五状态信息用于指示所述任一个液压马达的所述工作转速值异常。
  7. 根据权利要求1至6中任一项所述的液压***,所述控制器还被配置为:
    在所述液压泵处于工作状态时,获取所述多个液压马达中的各个液压马达的输入流量值;
    在所述多个液压马达中的任一个液压马达的所述输入流量值位于流量值范围之外时,发出第六状态信息;其中,所述第六状态信息用于指示所述任一个液压马达的所述输入流量值异常。
  8. 根据权利要求1至7中任一项所述的液压***,还包括:
    油缸,与所述液压泵的出口连通;所述油缸包括有杆腔和无杆腔;
    所述控制器还被配置为:
    在所述液压泵处于工作状态、且所述油缸处于第一状态时,获取所述有杆腔内部的第五压力值和所述无杆腔内部的第六压力值;
    在所述第六压力值小于或等于所述第五压力值、且所述第五压力值小于或等于第五压力阈值的情况下,发出第七状态信息;其中,所述第七状态信息用于指示所述油缸处于所述第一状态时的压力值异常。
  9. 根据权利要求8所述的液压***,其中,所述控制器还被配置为:
    在所述液压泵处于工作状态、且所述油缸处于第二状态时,获取所述有杆腔的第七压力值和所述无杆腔的第八压力值;
    在所述第七压力值大于所述第八压力值、且所述第八压力值大于所述第五压力阈值的情况下,发出第八状态信息;其中,所述第八状态信息用于指示所述油缸处于所述第二状态时的压力值异常。
  10. 根据权利要求1至9中任一项所述的液压***,还包括:
    管路过滤器,设置于所述液压泵的出口与所述多个液压马达之间;
    节温器,所述节温器的入口与所述多个液压马达连通,所述节温器的第一出口和第二出口与所述油箱连通;以及
    回油过滤器,设置于所述节温器与所述油箱之间;
    所述控制器还被配置为执行以下至少之一:
    在所述液压泵处于工作状态时,获取所述第一温度值和所述管路过滤器两端的第一压力差值;
    在所述第一压力差值大于第一压力差值阈值、且所述第一温度值大于或等于第四温度阈值的情况下,发出第五提示信息;其中,所述第五提示信息用于提示进行减小所述第一压力差值的操作;
    或者,
    在所述液压泵处于工作状态时,获取所述第一温度值和所述节温器的所述第一出口处的第三温度值;
    在所述第三温度值小于第五温度阈值、且所述第一温度值大于或等于所述第五温度阈值的情况下,发出第六提示信息;其中,所述第六提示信息用于提示进行降低所述第一温度值的操作;
    或者,
    在所述液压泵处于工作状态时,获取所述第一温度值和所述回油过滤器两端的第二压力差值;
    在所述第二压力差值大于第二压力差值阈值、且所述第一温度值大于或等于第四温度阈值的情况下,发出第七提示信息;其中,所述第七提示信息用于提示进行减小所述第二压力差值的操作。
  11. 一种液压***的故障诊断方法,其中,所述液压***包括:
    油箱;
    吸油管路;
    多个液压马达;以及
    液压泵,所述液压泵的入口通过所述吸油管路与所述油箱连通,所述液压泵的出口与所述多个液压马达连通;所述液压泵被配置为将所述油箱中的油液泵入所述多个液压马达中;
    所述方法包括:
    在所述液压泵处于工作状态时,获取所述油箱内部的第一温度值和所述吸油管路内部的第一压力值;
    在所述第一压力值小于或等于第一压力阈值、且所述第一温度值小于第一温度阈值的情况下,发出第一状态信息和第一提示信息;其中,所述第一状态信息用于指示所述第一压力值异常;所述第一提示信息用于在所述第一温度值小于所述第一温度阈值的情况下、提示进行使所述第一压力值恢复正常的操作。
  12. 根据权利要求11所述的方法,在所述获取所述油箱内部的所述第一温度值和所述吸油管路内部的所述第一压力值之后,所述方法还包括:
    在所述第一压力值小于或等于所述第一压力阈值、且所述第一温度值大于或等于所述第一温度阈值的情况下,发出所述第一状态信息和第二提示信息;其中,所述第二提示信息用于在所述第一温度值大于或等于所述第一温度阈值的情况下、提示进行使所述第一压力值恢复正常的操作。
  13. 根据权利要求11或12所述的方法,其中,所述液压***还包括:
    泄油管路,所述液压泵的出口通过所述泄油管路与所述多个液压泵连通;
    所述方法还包括:
    在所述液压泵处于工作状态时,获取所述第一温度值和所述泄油管路内部的第二温度值;
    在所述第二温度值大于或等于第二温度阈值、且所述第一温度值小于或等于第三温度阈值的情况下,发出第二状态信息和第三提示信息;其中,所述第二状态信息用于指示所述第二温度值异常;所述第三提示信息用于提示进行使所述第二温度值恢复正常的操作。
  14. 根据权利要求11至13中任一项所述的方法,其中,所述液压***还包括:
    多路阀,设置于所述液压泵与所述多个液压马达之间,且包括多个阀片;所述多个阀片与所述多个液压马达对应连通;
    所述方法还包括:
    在所述液压泵处于工作状态时,获取所述液压泵的出口处的第二压力值和所述多路阀向所述液压泵反馈的第三压力值;
    在所述第二压力值小于或等于第二压力阈值、且所述第三压力值小于或等于第三压力阈值的情况下,发出第三状态信息和第四提示信息;其中,所述第三状态信息用于指示所述第二压力值和所述第三压力值异常;所述第四提示信息用于提示进行使所述第二压力值和所述第三压力值恢复正常的操作。
  15. 根据权利要求11至14中任一项所述的方法,还包括:
    在所述液压泵处于工作状态时,获取所述多个液压马达中的各个液压马达内部的第四压力值;
    在所述多个液压马达中的任一个液压马达的所述第四压力值位于压力值范围之外时,发出第四状态信息;其中,所述第四状态信息用于指示所述任一个液压马达的所述第四压力值异常。
  16. 根据权利要求11至15中任一项所述的方法,还包括:
    在所述液压泵处于工作状态时,获取所述多个液压马达中的各个液压马达的工作转速值;
    在所述多个液压马达中的任一个液压马达的所述工作转速值位于转速值范围之外时,发出第五状态信息;其中,所述第五状态信息用于指示所述任一个液压马达的所述工作转速值异常。
  17. 根据权利要求11至16中任一项所述的方法,还包括:
    在所述液压泵处于工作状态时,获取所述多个液压马达中的各个液压马达的输入流量值;
    在所述多个液压马达中的任一个液压马达的所述输入流量值位于流量值范围之外时,发出第六状态信息;其中,所述第六状态信息用于指示所述任一个液压马达的所述输入流量值异常。
  18. 根据权利要求11至17中任一项所述的方法,其中,所述液压***还包括:
    油缸,与所述液压泵的出口连通;所述油缸包括有杆腔和无杆腔;
    所述方法还包括:
    在所述液压泵处于工作状态、且所述油缸处于第一状态时,获取所述有杆腔内部的第五压力值和所述无杆腔内部的第六压力值;
    在所述第六压力值小于或等于所述第五压力值、且所述第五压力值小于或等于第五压力阈值的情况下,发出第七状态信息;其中,所述第七状态信息用于指示所述油缸处于所述第一状态时的压力值异常。
  19. 根据权利要求18所述的方法,还包括:
    在所述液压泵处于工作状态、且所述油缸处于第二状态时,获取所述有杆腔的第七压力值和所述无杆腔的第八压力值;
    在所述第七压力值小于或等于所述第八压力值、且所述第八压力值小于或等于所述第五压力阈值的情况下,发出第八状态信息;其中,所述第八状态信息用于指示所述油缸处于所述第二状态时的压力值异常。
  20. 根据权利要求11至19中任一项所述的方法,其中,所述液压***还包括:
    管路过滤器,设置于所述液压泵的出口与所述多个液压马达之间;
    节温器,所述节温器的入口与所述多个液压马达连通,所述节温器的第一出口和第二出口与所述油箱连通;以及
    回油过滤器,设置于所述节温器与所述油箱之间;
    所述方法还包括以下至少之一:
    在所述液压泵处于工作状态时,获取所述第一温度值和所述管路过滤器两端的第一压力差值;
    在所述第一压力差值大于第一压力差值阈值、且所述第一温度值大于或等于第四温度阈值的情况下,发出第五提示信息;所述第五提示信息用于提示进行减小所述第一压力差值的操作;
    或者,
    在所述液压泵处于工作状态时,获取所述第一温度值和所述节温器的所述第一出口处的第三温度值;
    在所述第三温度值小于第五温度阈值、且所述第一温度值大于或等于所述第五温度阈值的情况下,发出第六提示信息;其中,所述第六提示信息用于提示进行降低所述第一温度值的操作;
    或者,
    在所述液压泵处于工作状态时,获取所述第一温度值和所述回油过滤器两端的第二压力差值;
    在所述第二压力差值大于第二压力差值阈值、且所述第一温度值大于或等于第四温度阈值的情况下,发出第七提示信息;其中,所述第七提示信息用于提示进行减小所述第二压力差值的操作。
PCT/CN2022/132377 2022-07-15 2022-11-16 液压***及其故障诊断方法 WO2024011802A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210831297.0A CN115263862A (zh) 2022-07-15 2022-07-15 一种液压***及其故障诊断方法
CN202210831297.0 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024011802A1 true WO2024011802A1 (zh) 2024-01-18

Family

ID=83766592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132377 WO2024011802A1 (zh) 2022-07-15 2022-11-16 液压***及其故障诊断方法

Country Status (2)

Country Link
CN (1) CN115263862A (zh)
WO (1) WO2024011802A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115263862A (zh) * 2022-07-15 2022-11-01 烟台杰瑞石油装备技术有限公司 一种液压***及其故障诊断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338137A (zh) * 2011-08-25 2012-02-01 中联重科股份有限公司 检测液压阀的方法、控制器和装置、检测液压回路故障的方法和装置以及故障处理***
US20150252822A1 (en) * 2014-03-05 2015-09-10 Bomag Gmbh Method For Operating A Hydraulic System Of A Self-Propelled Paver, Hydraulic System, Especially For Using The Method, And Paver With Such A Hydraulic System
JP2017048706A (ja) * 2015-09-01 2017-03-09 ジヤトコ株式会社 車両用駆動制御装置及び車両用駆動制御装置の制御方法
CN114233617A (zh) * 2021-12-27 2022-03-25 三一汽车制造有限公司 泵送***及其故障诊断方法和装置、存储介质、工程机械
CN115263862A (zh) * 2022-07-15 2022-11-01 烟台杰瑞石油装备技术有限公司 一种液压***及其故障诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338137A (zh) * 2011-08-25 2012-02-01 中联重科股份有限公司 检测液压阀的方法、控制器和装置、检测液压回路故障的方法和装置以及故障处理***
US20150252822A1 (en) * 2014-03-05 2015-09-10 Bomag Gmbh Method For Operating A Hydraulic System Of A Self-Propelled Paver, Hydraulic System, Especially For Using The Method, And Paver With Such A Hydraulic System
JP2017048706A (ja) * 2015-09-01 2017-03-09 ジヤトコ株式会社 車両用駆動制御装置及び車両用駆動制御装置の制御方法
CN114233617A (zh) * 2021-12-27 2022-03-25 三一汽车制造有限公司 泵送***及其故障诊断方法和装置、存储介质、工程机械
CN115263862A (zh) * 2022-07-15 2022-11-01 烟台杰瑞石油装备技术有限公司 一种液压***及其故障诊断方法

Also Published As

Publication number Publication date
CN115263862A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024011802A1 (zh) 液压***及其故障诊断方法
CN106659081B (zh) 一种液冷服务器散热控制***及其控制方法
JP2015202562A (ja) 作動液冷却システム及びその作動方法
CN104956161A (zh) 便携式制冷剂回收单元的载荷控制
JP2021532304A (ja) 井戸管理システム
CN114286585B (zh) 负压液冷***
CN107247432B (zh) 螺杆式空压机冷却***故障的远程自动判定方法
CN105422430A (zh) 柴油机水泵控制***及其控制方法
JP6510890B2 (ja) 給水装置、監視装置、及び、給水システム
US20230086225A1 (en) Well management system
KR20170142356A (ko) Wcdma를 이용한 원격 고장진단모듈을 구비한 공기압축시스템
JP2007100976A (ja) ガスエンジン駆動式空気調和機の故障診断装置及びその方法
EP2664775B1 (en) Gas engine system with detection function of abnormality occurrence of gas pressure detection mechanism
CN104198203A (zh) 一种空调器运行检测方法和装置
TWI820524B (zh) 具失效自我預知功能的驅動器
JP6760723B2 (ja) 給水装置
CN107271163A (zh) 用于冷却器的本地诊断和验证***及方法
CN212203211U (zh) 基于物联网协议的节能控制阀
CN110805542B (zh) 一种冷却水控制方法、装置、***及计算机可读介质
CN103486099B (zh) 篦冷机备用泵联锁装置及其控制方法
CN114689308A (zh) 止回阀故障检测装置及止回阀故障检测方法
CN203962353U (zh) 一种隔膜泵隔膜破裂的监控报警装置
JP2005309724A (ja) 異常診断システム及び異常診断方法
CN102865641B (zh) 逆向回流消除装置及方法
KR101659567B1 (ko) 리크 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950910

Country of ref document: EP

Kind code of ref document: A1