WO2023282214A1 - 空間光変調ユニットおよび露光装置 - Google Patents

空間光変調ユニットおよび露光装置 Download PDF

Info

Publication number
WO2023282214A1
WO2023282214A1 PCT/JP2022/026503 JP2022026503W WO2023282214A1 WO 2023282214 A1 WO2023282214 A1 WO 2023282214A1 JP 2022026503 W JP2022026503 W JP 2022026503W WO 2023282214 A1 WO2023282214 A1 WO 2023282214A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial light
substrate
light modulator
controller
slm
Prior art date
Application number
PCT/JP2022/026503
Other languages
English (en)
French (fr)
Inventor
泰仁 窪田
恭志 水野
正紀 加藤
昌樹 西村
仁 水野
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020237042454A priority Critical patent/KR20240006636A/ko
Priority to JP2023533112A priority patent/JPWO2023282214A1/ja
Priority to CN202280033807.8A priority patent/CN117377910A/zh
Publication of WO2023282214A1 publication Critical patent/WO2023282214A1/ja
Priority to US18/394,369 priority patent/US20240126176A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • G02B7/1815Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation with cooling or heating systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Definitions

  • the present invention relates to spatial light modulation units and exposure apparatuses.
  • This application claims priority based on Japanese Patent Application No. 2021-111623 filed on July 5, 2021, the content of which is incorporated herein.
  • an exposure apparatus that irradiates a substrate with illumination light through an optical system
  • light modulated by a spatial light modulator is passed through a projection optical system, and an image of this light is projected onto a resist coated on the substrate.
  • An exposure apparatus that forms an image and performs exposure is known (see, for example, Patent Document 1).
  • Another aspect of the present invention is a spatial light modulation unit used in an exposure apparatus that exposes an exposure pattern onto a photosensitive substrate while moving the photosensitive substrate in a scanning direction, the spatial light modulator having a plurality of elements. , a controller for controlling the spatial light modulator according to the exposure pattern, a supply section for supplying power to the spatial light modulator and the controller, and an SLM substrate on which the spatial light modulator and the controller are mounted.
  • the SLM substrate includes a first substrate on which the spatial light modulator is mounted and to which part of the supply section is connected, and a second substrate on which the controller is mounted and to which the other part of the supply section is connected. and a second surface of the second substrate on which the controller is mounted intersects the first surface of the first substrate on which the spatial light modulator is mounted.
  • Another aspect of the present invention is a spatial light modulation unit used in an exposure apparatus that exposes an exposure pattern onto a photosensitive substrate while moving the photosensitive substrate in a scanning direction, the spatial light modulator having a plurality of elements.
  • a controller for controlling the spatial light modulator according to the exposure pattern an SLM substrate on which the spatial light modulator and the controller are mounted, and a heat sink, wherein the spatial light modulator is mounted on the SLM substrate. Mounted on the front side, the controller is mounted on the back side of the SLM substrate, and the heat sink contacts the controller.
  • a photosensitive device comprising a spatial light modulator having a plurality of elements, a controller controlling the plurality of elements, and an SLM substrate mounting the spatial light modulator and the controller.
  • a substrate stage that holds a photosensitive substrate and moves relative to the spatial light modulation unit in a scanning direction; and an image of a pattern formed by the plurality of elements controlled by the controller. onto the photosensitive substrate, and the controller is mounted on the SLM substrate side by side in the scanning direction with respect to the spatial light modulator.
  • Another aspect of the present invention includes an illumination optical system, a spatial light modulator illuminated by light from the illumination optical system, and a projection optical system for irradiating a substrate with the light emitted from the spatial light modulator. and a stage that holds the substrate, wherein the illumination optical system and the spatial light modulator are arranged side by side in the scanning direction.
  • Another aspect of the present invention includes a stage that moves a substrate in a scanning direction, a spatial light modulator, an illumination optical system that illuminates the spatial light modulator from the scanning direction, and a mirror of the spatial light modulator. a projection optical system for irradiating a substrate with reflected light, wherein the mirror of the spatial light modulator is tilted with respect to the scanning direction.
  • FIG. 1 is a perspective view showing an exposure apparatus using a spatial light modulation unit according to a first embodiment
  • FIG. It is a side view which shows the outline of an exposure apparatus. It is a top view which shows a spatial-light-modulation unit.
  • 3 is a side view of the spatial light modulation unit according to the first embodiment
  • FIG. 4 is a plan view of a plurality of spatial light modulation units according to the first embodiment arranged side by side
  • FIG. 10 is a plan view of a modification 1A of the spatial light modulation unit according to the first embodiment
  • FIG. 10 is a plan view of Modification 1B of the spatial light modulation unit according to the first embodiment
  • FIG. 10 is a plan view of a modification 1C of the spatial light modulation unit according to the first embodiment
  • FIG. 11 is a side view of a spatial light modulation unit according to a second embodiment
  • FIG. 10 is a developed plan view of the spatial light modulation unit according to the second embodiment
  • FIG. 10 is a plan view of a plurality of spatial light modulation units according to the second embodiment arranged side by side
  • FIG. 11 is a developed plan view of a modified example 2A of the spatial light modulation unit 1 according to the second embodiment
  • FIG. 11 is a developed plan view of a modified example 2B of the spatial light modulation unit 1 according to the second embodiment
  • FIG. 11 is a developed plan view of a modified example 2C of the spatial light modulation unit 1 according to the second embodiment
  • FIG. 11 is a side view of a spatial light modulation unit according to a third embodiment
  • FIG. 10 is a plan view of a modification of the spatial light modulation unit according to the first embodiment, in which a plurality of spatial light modulation units are arranged
  • FIG. 10 is a plan view of a modification of the spatial light modulation unit according to the first embodiment, in which a plurality of spatial light modulation units are arranged;
  • FIG. 1 is a perspective view showing an exposure apparatus 100 using a spatial light modulation unit 1 according to the first embodiment.
  • FIG. 2 is a side view showing an outline of the exposure apparatus 100.
  • FIG. 3 is a view in the direction of arrow A in FIG. 2, which is a plan view of the spatial light modulation unit 1 according to the first embodiment.
  • FIG. 4 is a side view of the spatial light modulation unit 1 according to the first embodiment.
  • FIG. 5 is a view in the direction of arrow A in FIG. 2, which is a plan view of a plurality of spatial light modulation units 1 according to the first embodiment arranged side by side.
  • FIG. 3 is a view in the direction of arrow A in FIG. 2, which is a plan view of a plurality of spatial light modulation units 1 according to the first embodiment arranged side by side.
  • FIG. 5 is a view in the direction of arrow A in FIG. 2, which is a plan view of a plurality of spatial light modulation units 1 according to the first embodiment arranged
  • FIG. 6 is a plan view of a modification 1A of the spatial light modulation unit 1 according to the first embodiment.
  • FIG. 7 is a plan view of a modification 1B of the spatial light modulation unit 1 according to the first embodiment.
  • FIG. 8 is a plan view of a modification 1C of the spatial light modulation unit 1 according to the first embodiment.
  • 16 and 17 are plan views of modifications of the spatial light modulation units according to the first embodiment in which a plurality of spatial light modulation units are arranged.
  • a direction crossing (or perpendicular to) the first direction along the photosensitive surface 10a of the photosensitive substrate 10 is referred to as a second direction X2.
  • a direction that intersects (or is perpendicular to) the first direction X1 and the second direction X2 is called a third direction X3.
  • the exposure apparatus 100 includes a substrate stage 4 that supports a photosensitive substrate 10, and an exposure apparatus main body 2 that performs scanning exposure to expose the photosensitive substrate 10 with a predetermined exposure pattern. ing.
  • the photosensitive substrate 10 has, for example, a rectangular shape in plan view.
  • the photosensitive substrate 10 has a photosensitive surface 10 a coated with a photosensitive material on a surface layer facing the spatial light modulation unit 1 .
  • the photosensitive substrate 10 is, for example, a glass substrate for display.
  • the base plate B is installed on the floor via a plurality of anti-vibration bases BB.
  • the base plate B is a substrate extending in the first direction X1, and the substrate stage 4, which will be described later, is mounted on the upper surface Ba.
  • a guide (not shown) is provided on the upper surface Ba of the base plate B to guide the substrate stage 4 along the first direction X1.
  • the column 3 has a pair of horizontal members 31 extending in the second direction X2, and leg portions 32 extending downward from both ends of the horizontal members 31 and connected to the base plate B. Since the load of the optical surface plate 21 is applied to the leg portion 32 , a vibration isolating table (not shown) may be arranged at the connecting portion between the base plate B and the leg portion 32 . Three V-grooves are formed at appropriate positions on the lower surface of the optical platen 21 or the upper surface of the horizontal member 31 . The optical surface plate 21 is placed on a pair of horizontal members 31 with the upper surface 21a horizontal, via rotatable balls fitted in the three V-grooves.
  • the exposure unit 20 causes the light supplied from the light source 61 of the light source unit 6 to enter the spatial light modulation unit 1 , and irradiates the photosensitive substrate 10 with light of a preset exposure pattern.
  • the exposure unit 20 includes a spatial light modulation unit 1 and an illumination projection module for illuminating the spatial light modulation unit 1 with light from the light source 61 of the light source unit 6 and exposing the pattern on the spatial light modulation unit 1 onto the photosensitive substrate 10. 7 and .
  • the illumination projection module 7 is provided on the optical platen 21 .
  • the illumination projection module 7 includes an illumination module (illumination optical system) 7A and a projection module (projection optical system) 7B.
  • the illumination module 7A illuminates the spatial light modulator 11 of the spatial light modulation unit 1 (see FIG. 3, for example).
  • the projection module 7B irradiates the photosensitive substrate 10 with the light reflected by the mirrors of the spatial light modulator 11 .
  • a plane including the optical axis of the illumination light that illuminates the spatial light modulator 11 and the optical axis of the projection module 7B is provided parallel to the scanning direction S. As shown in FIG.
  • the illumination module 7A causes the laser light L (hereinafter sometimes simply referred to as light L) output from the light source 61 of the light source unit 6 shown in FIG.
  • the illumination module 7A includes an optical fiber 71, a collimating lens 721, a fly-eye lens 723, a main condenser lens 724, and a mirror 725, as shown in FIG.
  • the number of lighting modules 7A is the same as that of the projection modules 7B in a one-to-one relationship.
  • the illumination module 7A takes in the laser light L emitted from the optical fiber 71, passes through the collimator lens 721, the fly-eye lens 723, and the main condenser lens 724, and converts the laser light L into the spatial light modulation unit. 1 for almost uniform illumination.
  • a quartz fiber for example, is used as the optical fiber 71 .
  • a laser beam L output from a light source 61 is guided by an optical fiber 71 and enters a collimator lens 721 .
  • the collimating lens 721 converts the light that is emitted from the optical fiber 71 and spreads into parallel light and emits the parallel light.
  • the intensity (power) of light emitted from the optical fiber 71 is appropriately adjusted by a movable ND filter (not shown).
  • a movable filter is a filter having a transmittance distribution, and by changing a region through which light passes, the intensity of light after passing through the filter can be changed.
  • the light that has passed through the collimator lens 721 passes through a fly-eye lens 723 and a main condenser lens 724, is reflected by a mirror 725, and enters the spatial light modulation unit 1 at a predetermined reflection angle.
  • the illumination module 7A and the light source unit 6 can be considered to illuminate the spatial light modulation unit 1 together, and the two may be collectively referred to as an illumination system.
  • the projection module 7B is supported by the optical platen 21 and arranged between the spatial light modulation unit 1 and the photosensitive substrate 10, as shown in FIG.
  • the projection module 7B projects, exposes, and forms an image of the pattern on the spatial light modulation unit 1 onto the photosensitive substrate 10.
  • the projection module 7B consists of several lenses.
  • the projection module 7B appropriately adjusts the magnification by adjusting the magnification for projecting one pixel of the spatial light modulation unit 1 by reducing it to a predetermined size, and by driving the lens in the third direction X3 to adjust the focus. and a focus adjustment unit.
  • a plurality of rows of the projection modules 7B are provided on the optical platen 21 along the first direction X1.
  • the spatial light modulation unit 1 modulates illumination light to create an exposure pattern.
  • the spatial light modulation unit 1 has an OFF light absorption plate (not shown).
  • a digital mirror device is adopted as an example.
  • the spatial light modulation unit 1 has a plurality of elements (mirrors in a digital mirror device). A plurality of elements constituting the spatial light modulation unit 1 can be individually and periodically controlled. Therefore, rather than emitting continuous light, the light source 61 emits pulsed light at a constant period based on the period in which the elements are individually controlled, or emits light in a pulsed manner for a predetermined period of time. is preferred.
  • the spatial light modulation unit 1 can be driven in six degrees of freedom, namely, the first direction X1, the second direction X2, the third direction X3, and the ⁇ X1, ⁇ X2, and ⁇ X3 directions rotating around the respective axes X1, X2, and X3. It is preferably held on the SLM stage.
  • the position and attitude of the spatial light modulation unit 1 are corrected by the deviation of the substrate stage 4 from the target value, for example, by driving the SLM stage.
  • An exposure unit 20 including an SLM stage is supported by an optical platen 21 .
  • FIG. 3 is a view in the direction of arrow A in FIG. 2, which is a plan view of the spatial light modulation unit 1 according to the first embodiment.
  • FIG. 4 is a side view of the spatial light modulation unit 1 according to the first embodiment.
  • FIG. 5 is a view in the direction of arrow A in FIG. 2, which is a plan view of a plurality of spatial light modulation units 1 according to the first embodiment arranged side by side.
  • the spatial light modulation unit 1 according to the first embodiment is used in an exposure apparatus 100 that exposes a photosensitive substrate 10 with an exposure pattern while moving the photosensitive substrate 10 in the scanning direction S. As shown in FIG. A spatial light modulation unit 1 according to the first embodiment is supported by an optical platen 21 . Specifically, as shown in FIG. 5 , a plurality of spatial light modulation units 1 are arranged with their planes facing the photosensitive substrate 10 .
  • the number of pixels of the spatial light modulator 11 can be increased and/or the update speed can be increased.
  • the controller 12 is arranged side by side in the scanning direction S with respect to the spatial light modulator 11 . Therefore, the interval between the spatial light modulators 11 adjacent to each other in the second direction X2 intersecting the scanning direction S can be shortened. Therefore, the spatial light modulators 11 can be densely arranged in the second direction X2 intersecting the scanning direction S. Therefore, it is possible to increase the exposure area of the exposure pattern exposed by one scan, and to increase the throughput. Further, by increasing the updating speed of the spatial light modulator 11, the moving speed of the substrate stage 4 in the scanning direction S can be increased. Throughput can be increased.
  • the spatial light modulator 11 has a rectangular or square shape in plan view. Also, the longitudinal direction of the spatial light modulator 11 (the direction parallel to the sides forming the rectangular or square shape) may be along the scanning direction S, or may be along the second direction X2 intersecting the scanning direction S. good too.
  • the spatial light modulator 11 is mounted on the front surface 13a of the SLM substrate 13, as shown in FIG. The spatial light modulator 11 is exposed facing the photosensitive substrate 10 (or the substrate stage 4).
  • the controller 12 controls multiple elements of the spatial light modulator 11 according to the exposure pattern.
  • the controller 12 may be, for example, a PLD (programmable logic device) such as an FPGA (field-programmable gate array).
  • the controller 12 is mounted on the back surface 13b of the SLM substrate 13, as shown in FIG.
  • the controller 12 is exposed in the space on the back surface 13b side of the SLM substrate 13 .
  • the SLM substrate 13 has a rectangular shape in plan view. Also, the longitudinal direction of the SLM substrate 13 (the direction parallel to the long sides of the rectangle) is along the scanning direction S. As shown in FIG.
  • the longitudinal direction of the spatial light modulator 11 is along the second direction X2 intersecting the scanning direction S
  • the longitudinal direction of the SLM substrate 13 is along the scanning direction S.
  • the plurality of elements (not shown) of the spatial light modulator 11 can be densely arranged in the second direction X2, and the SLM substrates 13 can be densely arranged in the second direction X2. Therefore, the throughput, which is the information amount of the exposure pattern exposed by one scan, can be increased.
  • the spatial light modulation unit 1 has a power supply circuit 14 connected to a power cable C1 connected to the outside of the SLM board 13, and a communication circuit 15 connected to a data communication cable C2 connected to the outside of the SLM board 13.
  • the power supply circuit 14 and the communication circuit 15 are arranged along the scanning direction S with respect to the spatial light modulator 11 and the controller 12 .
  • the data communication speed and power efficiency can be improved, and the spatial light modulator 11 adjacent in the second direction X2 can be installed. The distance between them and the dimension of the SLM substrate 13 in the second direction X2 can be reduced.
  • the spatial light modulation unit 1 may have a heat sink 16 as shown in FIG.
  • the heat sink 16 is arranged not on the front side surface 13a of the SLM substrate 13, but on the rear side surface 13b of the SLM substrate 13.
  • the spatial light modulator 11 is mounted on the front surface 13 a of the SLM substrate 13
  • the controller 12 is mounted on the rear surface 13 b of the SLM substrate 13 .
  • the spatial light modulator 11 is functionally mounted on the front surface 13a facing the photosensitive substrate 10. As shown in FIG. Here, it is preferable that the heat sink 16 is in contact with the controller 12 .
  • the controller 12 can be cooled from the back surface 13b of the SLM substrate 13, so that the temperature rise of the spatial light modulation unit 1 due to the heat generated from the controller 12 can be efficiently suppressed, and the influence on the exposure performance can be suppressed.
  • the heat sink 16 is made of, for example, a metal material with high thermal conductivity.
  • the heat sink 16 may have a channel 16T for passing a fluid coolant such as water.
  • the flow path 16T communicates with one end of a cooling pipe 16P outside the heat sink 16, and the other end of the cooling pipe 16P communicates with a coolant pump (not shown). Thereby, the cooling performance of the controller 12 or the spatial light modulator 11 by the heat sink 16 can be effectively improved.
  • the SLM substrate 13 may have a Peltier element 17 arranged on the rear side surface 13 b of the SLM substrate 13 and in contact with the heat sink 16 .
  • the SLM substrate 13 may have an intermediate portion (not shown) in contact with the spatial light modulator 11 and the Peltier element 17 .
  • the Peltier element 17 is in contact with the spatial light modulator 11 through this intermediate portion. That is, the spatial light modulator 11 may be in direct contact with the Peltier element 17, or may be in contact via an intermediate portion made of metal such as copper or aluminum.
  • the spatial light modulator 11, controller 12, power supply circuit 14, and communication circuit 15 are arranged side by side in the longitudinal direction of the SLM substrate 13, and the longitudinal direction of the SLM substrate 13 is the scanning direction.
  • the spatial light modulator 11 and the illumination module 7A may be arranged side by side in the scanning direction. If a digital mirror device (DMD) is used as the spatial light modulator 11, the ON-state mirror of the DMD should be tilted in the scanning direction.
  • the spatial light modulator 11, the controller 12, the power circuit 14, the communication circuit 15, and the lighting module 7A are arranged side by side in the longitudinal direction of the SLM substrate 13, and the longitudinal direction of the SLM substrate 13 is scanned. You may arrange
  • DMD digital mirror device
  • FIG. 6 is a plan view of a modification 1A of the spatial light modulation unit 1 according to the first embodiment.
  • the controller 12 is arranged side by side in the scanning direction S with respect to the spatial light modulator 11 .
  • the modification 1A of the spatial light modulating unit 1 according to the first embodiment differs from the spatial light modulating unit 1 according to the first embodiment shown in FIG. degree) has a spatial light modulator 11 arranged at an angle.
  • the longitudinal direction of the photosensitive substrate 10 and the lateral direction of the spatial light modulator 11 are parallel, whereas the longitudinal direction of the photosensitive substrate 10 and the spatial light modulation are parallel to each other. It is not parallel to the lateral direction of the vessel 11.
  • the width and position of the exposure pattern can be set in units finer than one element (one mirror) among a plurality of elements without obliquely arranging the entire SLM substrate 13 .
  • the spatial light modulator 11 may be mounted on the SLM substrate 13 so that the arrangement direction in which the plurality of elements are arranged is along the direction crossing the scanning direction S.
  • the spatial light modulator 11 may be mounted on the SLM substrate 13 so that the arrangement direction in which the plurality of elements are arranged is along the direction orthogonal to the scanning direction S.
  • FIG. 7 is a plan view of a modification 1B of the spatial light modulation unit 1 according to the first embodiment.
  • the controller 12 is arranged side by side in the scanning direction S with respect to the spatial light modulator 11 .
  • the spatial light modulation unit 1 according to the first embodiment shown in FIG. It comprises a controller 12 having a first controller 12A arranged on one side and a second controller 12B arranged on the other side.
  • the controllers 12 that control the plurality of elements of the spatial light modulator 11 are provided on both sides of the spatial light modulator 11 in the scanning direction S. As shown in FIG. As described above, the controllers 12 are provided on both sides of the spatial light modulator 11 in the scanning direction S. Therefore, even if a plurality of controllers 12 are provided on a single SLM substrate 13 in order to improve the processing speed, Also, the controller 12 can be placed in close proximity to the spatial light modulator 11 . In addition, a plurality of controllers 12 can be arranged on a single SLM substrate 13 while maintaining short intervals between the spatial light modulators 11 adjacent in the second direction X2 intersecting the scanning direction S. Therefore, the throughput, which is the information amount of the exposure pattern exposed by one scan, can be increased.
  • FIG. 8 is a plan view of a modification 1C of the spatial light modulation unit 1 according to the first embodiment.
  • the controller 12 is arranged side by side in the scanning direction S with respect to the spatial light modulator 11 .
  • a controller 12 having a first controller 12A and a third controller 12C arranged on one side and a second controller 12B and a fourth controller 12D arranged on the other side.
  • the controllers 12 are arranged side by side in a second direction X2 intersecting the scanning direction S with respect to the first controller 12A arranged on one side in the scanning direction S of the spatial light modulator 11 and the first controller 12A. and a third controller 12C.
  • the controller 12 includes the first controller 12A arranged on one side of the spatial light modulator 11 in the scanning direction S, and the third controller 12C arranged side by side in the second direction X2 intersecting the scanning direction S. Therefore, even if a plurality of controllers 12 are provided on a single SLM substrate 13 in order to improve the processing speed, the controllers 12 can be arranged close to the spatial light modulator 11. can.
  • controllers 12 can be arranged on a single SLM substrate 13 while keeping the distance between the spatial light modulators 11 adjacent in the second direction X2 intersecting the scanning direction S short. Therefore, the throughput, which is the information amount of the exposure pattern exposed by one scan, can be increased.
  • FIG. 9 is a side view of the spatial light modulation unit 1 according to the second embodiment.
  • FIG. 10 is a developed plan view of the spatial light modulation unit 1 according to the second embodiment.
  • FIG. 11 is a plan view of a plurality of spatial light modulation units 1 according to the second embodiment arranged side by side.
  • FIG. 12 is a developed plan view of Modification 2A of the spatial light modulation unit 1 according to the second embodiment.
  • FIG. 13 is a developed plan view of Modification 2B of the spatial light modulation unit 1 according to the second embodiment.
  • FIG. 14 is a developed plan view of Modification 2C of the spatial light modulation unit 1 according to the second embodiment.
  • the spatial light modulation unit 1 according to the second embodiment exposes the photosensitive substrate 10 with an exposure pattern while moving the photosensitive substrate 10 in the scanning direction S, similarly to the spatial light modulation unit 1 according to the first embodiment. Used in device 100 .
  • the spatial light modulating unit 1 according to the second embodiment is supported by an optical surface plate 21, like the spatial light modulating unit 1 according to the first embodiment. Specifically, as shown in FIG. 11 , a plurality of spatial light modulation units 1 are arranged with their planes facing the photosensitive substrate 10 .
  • the spatial light modulation unit 1 has a spatial light modulator 11 having a plurality of elements (not shown), and controls the plurality of elements of the spatial light modulator 11 according to the exposure pattern.
  • Controller 12 first controller 12A, second controller 12B
  • supply unit (not shown) for supplying power to spatial light modulator 11 and controller 12, and SLM board on which spatial light modulator 11 and controller 12 are mounted 13 and.
  • the SLM substrate 13 includes a first substrate 131 on which the spatial light modulator 11 is mounted and a part of the supply unit is connected, and a second substrate 131 on which the controller 12 is mounted and the other portion of the supply unit is connected. 132 and . Then, as shown in FIG.
  • the second surface 132S of the second substrate 132 on which the controller 12 is mounted intersects the first surface 131S of the first substrate 131 on which the spatial light modulator 11 is mounted. are doing. Thereby, even if both the spatial light modulator 11 and the controller 12 are mounted on the SLM substrate 13, the dimension in the scanning direction S can be reduced. Therefore, the SLM substrates 13 can be densely arranged along the scanning direction S. FIG. Therefore, the distance in the scanning direction S required for one scan for irradiating the exposure pattern can be shortened, and the time for one scan can be shortened. Note that the front side surface 131a and the front side surface 132a of the first substrate 131 may not be on the same plane. The SLM substrate 13 may be in a bent state. The size in the scanning direction S can also be reduced by any of these. Therefore, the SLM substrates 13 can be densely arranged along the scanning direction S. FIG.
  • the first substrate 131 is the substrate on which the spatial light modulator 11 is mounted in the SLM substrate 13 .
  • the first substrate 131 is appropriately supported by the optical surface plate 21 via an SLM stage, which will be described later, and the front surface 131a is directed toward the photosensitive substrate 10 (or the substrate stage 4 on which the photosensitive substrate 10 is placed). They are arranged so as to be orthogonal to the three directions X3.
  • the second substrate 132 is a substrate on which the spatial light modulator 11 is not mounted in the SLM substrate 13 . That is, the spatial light modulator 11 is mounted on the first substrate 131 and the spatial light modulator 11 is not mounted on the second substrate 132 .
  • the second substrate 132 is supported by the optical surface plate 21 via an SLM stage (see FIG. 15), which will be described later. are placed.
  • the second surface 132S is preferably perpendicular to the scanning direction S (first direction X1). That is, the front side surface 132a of the second substrate 132 is preferably orthogonal to the scanning direction S (first direction X1). As a result, the dimension of the SLM substrate 13 in the scanning direction S can be reduced, and the space above the rear side surface 131b of the first substrate 131 can be used for arranging an SLM stage, for example.
  • the second board 132 is mounted with the controller 12 (second controller 12B).
  • the controller 12 is mounted on the back surface 132b of the second substrate 132. As shown in FIG. Thereby, the controller 12 can be arranged at a position where it is easy to contact the heat sink 16 .
  • the heat sink 16 is formed in a plate shape having an L-shaped cross section along the first substrate 131 and the second substrate 132 in side view.
  • the SLM substrate 13 has a bent portion 134 that connects and bends the first substrate 131 and the second substrate 132 .
  • the bent portion 134 has a third thickness t3 thinner than the first thickness t1 of the first substrate 131 and the second thickness t2 of the second substrate 132 .
  • the bending rigidity (geographical moment of inertia about the weak axis) of the bent portion 134 can be made smaller than the bending rigidity of each of the first substrate 131 and the second substrate 132 . Therefore, as shown in FIGS.
  • the SLM substrate 13 in the spatial light modulation unit 1 in the unfolded state that is, the front surface 131a of the first substrate 131 and the front surface 132a of the second substrate 132.
  • the SLM substrate 13 is formed including a core layer 13A and a surface layer 13B covering the core layer 13A, as shown in FIG. Then, the core layer 13A at the bent portion 134 may be exposed.
  • the bent portion 134 may be, for example, a portion of the SLM substrate 13 in which the core layer 13A and a surface layer such as a resist are laminated, and the core material remaining after the surface layer is removed is exposed.
  • the flexural rigidity of the bent portion 134 is relatively small, so that the SLM substrate 13 having an L-shaped cross section is formed such that the front side surface 131a of the first substrate 131 and the front side surface 132a of the second substrate 132 are the same. It can be easily formed by bending the SLM substrate 13 in a flat state at the bending portion 134 .
  • the SLM substrate 13 may include a third substrate (not shown). That is, the SLM substrate 13 may include a third substrate in addition to the first substrate 131 and the second substrate 132 described above.
  • the third surface, which is an extension of the front surface of the third substrate preferably intersects at least one of the first surface 131S and the second surface 132S. Furthermore, it is preferable that the third surface, which is an extension of the front surface of the third substrate, is orthogonal to at least one of the first surface 131S and the second surface 132S.
  • the space above the rear side surface 131b of the first substrate 131 on which the spatial light modulator 11 is mounted can be used to three-dimensionally and densely arrange members including the controller 12 .
  • the spatial light modulation unit 1 includes a heat sink 16.
  • the spatial light modulator 11 is mounted on the front surface 131 a of the SLM substrate 13 .
  • the controller 12 is mounted on the back surface 132b of the SLM substrate 13.
  • heat sink 16 is in contact with controller 12 .
  • the rear surface of the second substrate 132 is positioned above the rear surface 131b of the first substrate 131 and the rear surface of the second substrate 132.
  • the heat sink 16 can be arranged by effectively utilizing the space 132b in the scanning direction S.
  • the SLM substrate 13 has a Peltier element 17 arranged on the rear side surface 131 b of the SLM substrate 13 and in contact with the heat sink 16 .
  • the spatial light modulator 11 is in contact with the Peltier element 17 . Thereby, the spatial light modulator 11 mounted on the front side surface 131 a of the SLM substrate 13 can be cooled by the heat sink 16 on the back side surface 131 b of the SLM substrate 13 .
  • FIG. 12 is a plan view of a modification 2A of the spatial light modulation unit 1 according to the second embodiment.
  • the first substrate 131 is mounted with the spatial light modulator 11 and the first controller 12A.
  • a second controller 12B is mounted on the second board 132 .
  • the modification 2A of the spatial light modulation unit 1 according to the second embodiment is arranged so that the second substrate 132 intersects the second direction X2. That is, as shown in FIG.
  • the unfolded SLM substrate 13 is rotated and bent around the bending portion 134 in the first direction X1 (see FIG. 9).
  • the space above the rear side surface 131b of the first substrate 131 is utilized to, for example, combine the plurality of controllers 12 into a single spatial light modulation unit 1. can be mounted on
  • FIG. 13 is a plan view of Modification 2B of the spatial light modulation unit 1 according to the second embodiment.
  • the spatial light modulator 11 is mounted on the first substrate 131 .
  • the controller 12 is not mounted on the first board 131 .
  • the controller 12 is mounted on the second board 132 .
  • the second substrate 132 is arranged so as to cross the second direction X2. That is, as shown in FIG.
  • the unfolded SLM substrate 13 is rotated and bent around the bending portion 134 in the first direction X1 (see FIG. 9).
  • the space above the rear side surface 131b of the first substrate 131 is utilized to, for example, combine the plurality of controllers 12 into a single spatial light modulation unit 1. can be mounted on
  • FIG. 14 is a plan view of Modification 2B of the spatial light modulation unit 1 according to the second embodiment.
  • the spatial light modulator 11 and the controller 12 are mounted on the first substrate 131 side by side in the first direction X1.
  • the controller 12 is not mounted on the second board 132 .
  • the second substrate 132 is arranged so as to cross the second direction X2. That is, as shown in FIG.
  • the unfolded SLM substrate 13 is in a bent state (see FIG. 9) rotated in the first direction X1 around the bending portion 134.
  • FIG. 14 the unfolded SLM substrate 13 is in a bent state (see FIG. 9) rotated in the first direction X1 around the bending portion 134.
  • FIG. 14 the space above the rear side surface 131b of the first substrate 131 is utilized to, for example, combine the plurality of controllers 12 into a single spatial light modulation unit 1. can be mounted on
  • the spatial light modulation unit 1 includes a spatial light modulator 11 having a plurality of elements (not shown), and a controller 12 that controls the plurality of elements of the spatial light modulator 11 according to the exposure pattern. , SLM substrate 13 on which spatial light modulator 11 and controller 12 are mounted, and heat sink 16 .
  • the spatial light modulator 11 is mounted on the front surface 131 a of the SLM substrate 13 .
  • the controller 12 is mounted on the back surface 131b of the SLM substrate 13.
  • heat sink 16 is in contact with controller 12 . Accordingly, the space above the back side surface 131b of the first substrate 131 can be effectively utilized to dispose the heat sink 16. As shown in FIG.
  • the SLM substrate 13 has a Peltier element 17 arranged on the rear side surface 131 b of the SLM substrate 13 and in contact with the heat sink 16 .
  • the spatial light modulator 11 is in contact with the Peltier element 17 . Thereby, the spatial light modulator 11 mounted on the front side surface 131 a of the SLM substrate 13 can be cooled by the heat sink 16 on the back side surface 131 b of the SLM substrate 13 .
  • the heat sink 16 as shown in FIG. 15, is supported by an SLM stage 18 rotatable about a reference axis P orthogonal to the reflecting surface of the spatial light modulator 11. Thereby, the position of the spatial light modulation unit 1 can be corrected.
  • the heat sink 16 is preferably supported by an SLM stage 18 movable along the photosensitive surface 10a of the photosensitive substrate 10 in the scanning direction S and the second direction X2 intersecting the scanning direction S. Thereby, the position of the spatial light modulation unit 1 in the scanning direction S and the second direction X2 intersecting the scanning direction S can be corrected.
  • the heat sink 16 is preferably supported by an SLM stage 18 movable with 6 degrees of freedom.
  • the scanning direction S (first direction X1), the second direction X2 intersecting the scanning direction S, the third direction X3 orthogonal to the first direction X1 and the second direction X2, the first direction X1, It is possible to correct the position of the spatial light modulation unit 1 in six degrees of freedom in the ⁇ X1, ⁇ X2, and ⁇ X3 directions rotating around the second direction X2 and the third direction X3, respectively.
  • the heat sink 16 may have a channel 16T through which a fluid coolant such as water passes.
  • the flow path 16T communicates with one end of a cooling pipe 16P outside the heat sink 16, and the other end of the cooling pipe 16P communicates with a coolant pump (not shown).
  • a coolant pump not shown
  • the spatial light modulator 11 is preferably arranged on the upstream side of the channel 16T from the controller 12. Thereby, it is possible to effectively suppress the temperature rise of the spatial light modulator 11, which has a relatively large influence on the exposure performance.
  • the spatial light modulation unit 1 is used in the exposure device 100 that exposes the photosensitive substrate 10 with an exposure pattern while moving the photosensitive substrate 10 in the scanning direction S.
  • the spatial light modulation unit 1 includes a spatial light modulator 11 having a plurality of elements, a controller 12 controlling the plurality of elements of the spatial light modulator 11 according to an exposure pattern, and the spatial light modulator 11 and the controller 12. and an SLM substrate 13 that The controller 12 is arranged side by side in the scanning direction S with respect to the spatial light modulator 11 .
  • the controller 12 is mounted on the SLM substrate 13. Therefore, the data communication speed can be improved as compared with the case where the controller for controlling the spatial light modulator is mounted on a separate board separated from the board on which the spatial light modulator is mounted via wiring, connectors, and the like. Therefore, the number of pixels of the spatial light modulator 11 can be increased, and the updating speed can be increased. Further, the controller 12 is arranged side by side in the scanning direction S with respect to the spatial light modulator 11 . Therefore, the interval between the spatial light modulators 11 adjacent to each other in the second direction X2 intersecting the scanning direction S can be shortened. Therefore, the spatial light modulators 11 can be densely arranged in the second direction X2 intersecting the scanning direction S. Therefore, the throughput, which is the information amount of the exposure pattern exposed by one scan, can be increased.
  • the controller 12 has the first controller 12A arranged on one side in the scanning direction S of the spatial light modulator 11 and the second controller 12B arranged on the other side.
  • the controller 12 includes the first controller 12A arranged on one side of the spatial light modulator 11 in the scanning direction S, and the first controller 12A intersecting the scanning direction S with the first controller 12A. It has a third controller 12C arranged side by side in the two directions X2.
  • the spatial light modulation unit 1 is connected to the power supply circuit 14 connected to the power cable C1 connected to the outside of the SLM board 13, and the data communication cable C2 connected to the outside of the SLM board 13.
  • the power supply circuit 14 and the communication circuit 15 are arranged along the scanning direction S with respect to the spatial light modulator 11 and the controller 12 .
  • the spatial light modulation unit 1 includes the heat sink 16, the spatial light modulator 11 is mounted on the front surface 13a of the SLM substrate 13, and the controller 12 is mounted on the back surface of the SLM substrate 13. 13 b , the heat sink 16 contacts the controller 12 .
  • the SLM substrate 13 has the Peltier element 17 arranged on the rear side surface 13 b of the SLM substrate 13 and in contact with the heat sink 16 , and the spatial light modulator 11 is in contact with the Peltier element 17 .
  • the spatial light modulator 11 is mounted on the SLM substrate 13 so that the arrangement direction in which the plurality of elements are arranged is along the direction crossing the scanning direction S. As shown in FIG.
  • the spatial light modulator 11 is mounted on the SLM substrate 13 so that the arrangement direction of the plurality of elements is along the direction perpendicular to the scanning direction.
  • the spatial light modulation unit 1 is used in the exposure device 100 that exposes the photosensitive substrate 10 with an exposure pattern while moving the photosensitive substrate 10 in the scanning direction S.
  • the spatial light modulation unit 1 supplies power to a spatial light modulator 11 having a plurality of elements, a controller 12 that controls the spatial light modulator 11 according to an exposure pattern, and the spatial light modulator 11 and the controller 12. It comprises a supply section and an SLM board 13 on which the spatial light modulator 11 and the controller 12 are mounted.
  • the dimension in the scanning direction S can be reduced even if both the spatial light modulator 11 and the controller 12 are mounted on the SLM substrate 13 . Therefore, the SLM substrates 13 can be densely arranged along the scanning direction S. FIG. Therefore, the distance in the scanning direction S required for one scan for irradiating the exposure pattern can be shortened, and the time for one scan can be shortened.
  • the SLM substrate 13 has the bending portion 134 that connects the first substrate 131 and the second substrate 132 and bends. It has a third thickness t3 that is thinner than the thickness t1 and the second thickness t2 of the second substrate 132 .
  • the SLM substrate 13 is formed including the core layer 13A and the surface layer 13B covering the core layer 13A, and the core layer 13A is exposed at the bent portion 134 .
  • the spatial light modulation unit 1 includes the heat sink 16, the spatial light modulator 11 is mounted on the front surface 131a of the SLM substrate 13, and the controller 12 is mounted on the back surface of the SLM substrate 13. 131 b , the heat sink 16 is in contact with the controller 12 .
  • the SLM substrate 13 has the Peltier element 17 arranged on the back side surface 131 b of the SLM substrate 13 and in contact with the heat sink 16 , and the spatial light modulator 11 is in contact with the Peltier element 17 .
  • the spatial light modulation unit 1 is used in an exposure apparatus that exposes the photosensitive substrate 10 with an exposure pattern while moving the photosensitive substrate 10 in the scanning direction S.
  • the spatial light modulation unit 1 includes a spatial light modulator 11 having a plurality of elements, a controller 12 controlling the spatial light modulator 11 according to an exposure pattern, and an SLM substrate 13 on which the spatial light modulator 11 and the controller 12 are mounted. and a heat sink 16.
  • the spatial light modulator 11 is mounted on the front surface 131 a of the SLM substrate 13
  • the controller 12 is mounted on the back surface 131 b of the SLM substrate 13
  • the heat sink 16 contacts the controller 12 .
  • the SLM substrate 13 has the Peltier element 17 arranged on the rear side surface 131 b of the SLM substrate 13 and in contact with the heat sink 16 , and the spatial light modulator 11 is in contact with the Peltier element 17 .
  • the heat sink 16 is supported by the SLM stage 18 rotatable about the reference axis P perpendicular to the reflecting surface of the spatial light modulator 11 .
  • the heat sink 16 is supported by the SLM stage 18 which is movable along the photosensitive surface 10a of the photosensitive substrate 10 in the scanning direction S and the second direction X2 intersecting the scanning direction S. .
  • the heat sink 16 is supported by the SLM stage 18 movable with six degrees of freedom.
  • the heat sink 16 has the channel 16T through which the coolant passes, and the spatial light modulator 11 is arranged upstream of the channel 16T from the controller 12 .
  • the exposure apparatus 100 includes the spatial light modulator 11 having a plurality of elements, the controller 12 controlling the plurality of elements, and the SLM substrate on which the spatial light modulator 11 and the controller 12 are mounted. 13, a substrate stage 4 that holds a photosensitive substrate 10 and moves relative to the spatial light modulation unit 1 in a scanning direction S, and a plurality of elements controlled by a controller 12. and a projection optical system for projecting an image of the formed pattern onto the photosensitive substrate 10 .
  • the controller 12 is mounted on the SLM substrate 13 side by side in the scanning direction S with respect to the spatial light modulator 11 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

空間光変調ユニット(1)は、感光基板(10)を走査方向(S)に移動させながら、感光基板(10)に露光パターンを露光する露光装置に用いる。空間光変調ユニット(1)は、複数の素子を有する空間光変調器(11)と、露光パターンに応じて複数の素子を制御するコントローラ(12)と、空間光変調器(11)及びコントローラ(12)を搭載するSLM基板(13)と、を備えている。そして、コントローラ(12)は、空間光変調器(11)に対して走査方向(S)に並んで配置される。

Description

空間光変調ユニットおよび露光装置
 本発明は、空間光変調ユニットおよび露光装置に関する。
 本願は、2021年7月5日に出願された特願2021-111623号に基づき優先権を主張し、その内容をここに援用する。
 従来、光学系を介して基板に照明光を照射する露光装置として、空間光変調器を利用して変調した光を投影光学系に通し、この光による像を基板に塗布されているレジスト上に結像させて露光する露光装置が知られている(例えば特許文献1参照)。
特開2005-266779号公報
 本発明の一態様は、感光基板を走査方向に移動させながら、前記感光基板に露光パターンを露光する露光装置に用いる空間光変調ユニットであって、複数の素子を有する空間光変調器と、前記露光パターンに応じて前記複数の素子を制御するコントローラと、前記空間光変調器及び前記コントローラを搭載するSLM基板と、を備え、前記コントローラは、前記空間光変調器に対して前記走査方向に並んで配置される。
 本発明の他の一態様は、感光基板を走査方向に移動させながら、前記感光基板に露光パターンを露光する露光装置に用いる空間光変調ユニットであって、複数の素子を有する空間光変調器と、前記露光パターンに応じて前記空間光変調器を制御するコントローラと、前記空間光変調器と前記コントローラとへ電力を供給する供給部と、前記空間光変調器及び前記コントローラを搭載するSLM基板と、を備え、前記SLM基板は、前記空間光変調器を搭載し、前記供給部の一部が連結された第1基板と、前記コントローラを搭載し、前記供給部の他部が連結された第2基板と、を備え、前記第2基板のうち前記コントローラが搭載された第2面は、前記第1基板のうち前記空間光変調器が搭載された第1面に対して交差する。
 本発明の他の一態様は、感光基板を走査方向に移動させながら、前記感光基板に露光パターンを露光する露光装置に用いる空間光変調ユニットであって、複数の素子を有する空間光変調器と、前記露光パターンに応じて前記空間光変調器を制御するコントローラと、前記空間光変調器及び前記コントローラを搭載するSLM基板と、ヒートシンクと、を備え、前記空間光変調器は、前記SLM基板の表側面に搭載され、前記コントローラは、前記SLM基板の裏側面に搭載され、前記ヒートシンクは、前記コントローラに接する。
 本発明の他の一態様は、感光装置であって、複数の素子を有する空間光変調器と、前記複数の素子を制御するコントローラと、前記空間光変調器及び前記コントローラを搭載するSLM基板と、を有する空間光変調ユニットと、感光基板を保持し、前記空間光変調ユニットに対して、走査方向へ移動する基板ステージと、前記コントローラにより制御された前記複数の素子で形成されたパターンの像を、前記感光基板上に投影する投影光学系と、を備え、前記コントローラは、前記空間光変調器に対して前記走査方向に並んでSLM基板上に搭載される。
 本発明の他の一態様は、照明光学系と、前記照明光学系からの光によって照明される空間光変調器と、前記空間光変調器から出射される光を基板に照射する投影光学系と、前記基板を保持するステージと、を備え、前記照明光学系と前記空間光変調器とは、前記走査方向に並んで配置される、露光装置を提供する。
 本発明の他の一態様は、基板を走査方向に移動させるステージと、空間光変調器と、前記走査方向から前記空間光変調器を照明する照明光学系と、前記空間光変調器のミラーで反射される光を基板に照射する投影光学系と、を備え、前記空間光変調器の前記ミラーは、前記走査方向に対して傾斜する、露光装置を提供する。
第1実施形態に係る空間光変調ユニットを用いた露光装置を示す斜視図である。 露光装置の概略を示す側面図である。 空間光変調ユニットを示す平面図である。 第1実施形態に係る空間光変調ユニットの側面図である。 複数並べられた第1実施形態に係る空間光変調ユニットの平面図である。 第1実施形態に係る空間光変調ユニットの変形例1Aの平面図である。 第1実施形態に係る空間光変調ユニットの変形例1Bの平面図である。 第1実施形態に係る空間光変調ユニットの変形例1Cの平面図である。 第2実施形態に係る空間光変調ユニットの側面図である。 第2実施形態に係る空間光変調ユニットの展開平面図である。 複数並べられた第2実施形態に係る空間光変調ユニットの平面図である。 第2実施形態に係る空間光変調ユニット1の変形例2Aの展開平面図である。 第2実施形態に係る空間光変調ユニット1の変形例2Bの展開平面図である。 第2実施形態に係る空間光変調ユニット1の変形例2Cの展開平面図である。 第3実施形態に係る空間光変調ユニットの側面図である。 複数並べられた第1実施形態に係る空間光変調ユニットの変形例の平面図である。 複数並べられた第1実施形態に係る空間光変調ユニットの変形例の平面図である。
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第1実施形態に係る空間光変調ユニット1を用いた露光装置100を示す斜視図である。図2は、露光装置100の概略を示す側面図である。図3は、図2におけるA矢視図であり、第1実施形態に係る空間光変調ユニット1の平面図である。図4は、第1実施形態に係る空間光変調ユニット1の側面図である。図5は、図2におけるA矢視図であり、複数並べられた第1実施形態に係る空間光変調ユニット1の平面図である。図6は、第1実施形態に係る空間光変調ユニット1の変形例1Aの平面図である。図7は、第1実施形態に係る空間光変調ユニット1の変形例1Bの平面図である。図8は、第1実施形態に係る空間光変調ユニット1の変形例1Cの平面図である。図16、図17は、複数並べられた第1実施形態に係る空間光変調ユニットの変形例の平面図である。
 なお、以下、感光基板10に対する露光時に、空間光変調ユニット1に対して感光基板10(又は感光基板10と供に移動する基板ステージ4)が移動する方向を、走査方向S又は第1方向X1という。感光基板10の感光面10aに沿って、第1方向に交差(又は直交)する方向を第2方向X2という。第1方向X1と第2方向X2とに交差(又は直交)する方向を第3方向X3という。
 図1に示すように、露光装置100は、空間光変調ユニット1を備える露光ユニット20を介して感光基板10に照明光を照射する装置である。
 露光装置100は、図2に示すように、空間光変調ユニット1で変調した光を投影光学系となる照明投影モジュール7に通し、この光による像を感光基板10の感光面10aにある感光材料(レジストともいう。)上に結像させて露光するものである。
 露光装置100は、感光基板10を走査方向に移動させながら、感光基板10に露光パターンを露光する。空間光変調ユニット1は、このような露光装置100に用いられる。
 図1に示すように、露光装置100は、感光基板10を支持する基板ステージ4と、感光基板10に対して所定の露光パターンを露光するために走査露光を行う露光装置本体2と、を備えている。
(感光基板)
 感光基板10は、例えば、平面視で矩形の形状である。感光基板10は、空間光変調ユニット1に対向する表層に塗布された感光材料を感光面10aに有している。感光基板10は、例えば、ディスプレイ用のガラス基板である。
(基板ステージ)
 基板ステージ4は、照明投影モジュール7を介して投影される露光パターンの像に対して感光基板10を高精度に位置決めするためのものである。基板ステージ4は、図1に示すように、第1方向X1、第2方向X2及び第3方向X3と、各軸X1、X2、X3回りに回転するθX1、θX2及びθX3方向との、6自由度に駆動する。
 基板ステージ4は、上面4aに、感光基板10を載置した状態で、感光基板10を保持する。
(露光装置本体)
 露光装置本体2は、露光ユニット20と、光学定盤21と、アライメント系22と、オートフォーカス系23と、を有している。
 光学定盤21は、平板状に形成され、基板ステージ4を載置させた第1方向X1に延びるベースプレートBを跨ぐように設けられた門型のコラム3の上部に固定されている。
 光学定盤21は、ベースプレートBの第1方向X1の中央部分に配置されている。
 ベースプレートBは、床面に複数の防振台BBを介して設置されている。ベースプレートBは、第1方向X1に延びた基盤であり、上面Baに後述する基板ステージ4が搭載されている。ベースプレートBの上面Baには、第1方向X1に沿って基板ステージ4を案内するガイド(図示省略)が設けられている。
 コラム3は、第2方向X2に延びる一対の横架材31と、横架材31の両端から下方に延びてベースプレートBに連結される脚部32と、を有している。なお、脚部32には、光学定盤21の荷重がかかることから、ベースプレートBと脚部32との連結部に防振台(図示省略)を配置してもよい。光学定盤21の下面又は横架材31の上面には、3つのV溝が適宜の位置に形成されている。光学定盤21は、一対の横架材31上に、上面21aを水平にした状態で、3つのV溝のそれぞれに嵌った回転自在なボールを介して、載置される。
 光学定盤21には、照明投影モジュール7、アライメント系22及びオートフォーカス系23が搭載されている。そして、光学定盤21には、露光光を感光基板10の感光面10aに導くために、厚さ方向に貫通する複数の第1貫通孔21bが設けられている。
(露光ユニット)
 露光ユニット20は、光源ユニット6の光源61から供給された光を、空間光変調ユニット1に入射させ、予め設定された露光パターンの光を感光基板10に向けて照射する。
 露光ユニット20は、空間光変調ユニット1と、光源ユニット6の光源61からの光により空間光変調ユニット1を照明し空間光変調ユニット1上のパターンを感光基板10に露光するための照明投影モジュール7と、を備えている。
(光源ユニット)
 光源ユニット6としては、例えば、干渉性の高いレーザを光源61とする光源ユニット、半導体レーザタイプのUV-LDのような光源61を用いた光源ユニット、又は、レンズリレー式のリターダによる光源ユニットを採用することができる。光源61は、例えば、405nm又は365nmの波長を出射する、ランプ又はレーザダイオードであってよい。
(照明投影モジュール)
 照明投影モジュール7は、光学定盤21に設けられている。図2に示すように、照明投影モジュール7は、照明モジュール(照明光学系)7Aと、投影モジュール(投影光学系)7Bと、を備えている。照明モジュール7Aは、空間光変調ユニット1の空間光変調器11(例えば図3参照)を照明する。投影モジュール7Bは、空間光変調器11のミラーで反射される光を感光基板10に照射する。空間光変調器11を照明する照明光の光軸と投影モジュール7Bの光軸とを含む平面が走査方向Sに平行に設けられる。
(照明モジュール7A)
 照明モジュール7Aは、図1に示す光源ユニット6の光源61から出力されたレーザ光L(以下、単に、光Lという場合がある。)を空間光変調ユニット1に入射させるものである。照明モジュール7Aは、図2に示すように、光ファイバ71と、コリメートレンズ721と、フライアイレンズ723と、メインコンデンサーレンズ724と、ミラー725と、を備えている。
 照明モジュール7Aは、投影モジュール7Bと一対一の関係で同数である。照明モジュール7Aは、図2に示すように、光ファイバ71から射出されたレーザ光Lを取り込み、コリメートレンズ721、フライアイレンズ723、及びメインコンデンサーレンズ724を経たレーザ光Lを、空間光変調ユニット1に対してほぼ均一に照明する。
 光ファイバ71としては、例えば、石英のファイバが用いられる。光源61から出力されるレーザ光Lは、光ファイバ71で導かれてコリメートレンズ721に入射される。コリメートレンズ721は、光ファイバ71から出射して広がる光を平行光に変換して出射する。光ファイバ71から射出される光の強度(パワー)は、可動式NDフィルタ(不図示)によって適宜調整される。可動式フィルタとは、透過率分布を有するフィルタであり、光が通る領域を変更することで、フィルタ透過後の光の強度を変更することができる。コリメートレンズ721を通過した光は、フライアイレンズ723と、メインコンデンサーレンズ724を通過して、ミラー725によって反射され、所定の反射角度で空間光変調ユニット1に入射する。なお、照明モジュール7Aと光源ユニット6とは、両者により空間光変調ユニット1を照明するものであるとも考えられ、2つを併せて照明系と表現をしてもよい。
(投影モジュール7B)
 投影モジュール7Bは、図2に示すように、光学定盤21に支持され、空間光変調ユニット1と感光基板10との間に配置されている。投影モジュール7Bは、空間光変調ユニット1上のパターンの像を感光基板10上に投影、露光、形成するものである。投影モジュール7Bは、いくつかのレンズで構成されている。投影モジュール7Bは、適宜、空間光変調ユニット1の1画素を所定の大きさに縮小して投影するための倍率を調整する倍率調整部と、レンズの第3方向X3への駆動によるフォーカスを調整するフォーカス調整部と、を備えている。
 投影モジュール7Bは、光学定盤21において第1方向X1に沿って複数列設けられている。
(空間光変調ユニット1)
 空間光変調ユニット1は、照明光を変調し露光パターンを作るものである。空間光変調ユニット1は、OFF光吸収板(不図示)を備える。空間光変調ユニット1としては、一例として、デジタルミラーデバイスが採用される。空間光変調ユニット1は、複数の素子(デジタルミラーデバイスではミラー)を備えている。空間光変調ユニット1を構成する複数の素子は、それぞれ、個別に、また周期的に制御できるようになっている。このため、光源61は、連続光を発光するものであるよりも、素子が個別に制御される周期に基づいて一定周期のパルス発光するものや、所定の時間だけパルス的に発光するものであることが好ましい。
 空間光変調ユニット1は、第1方向X1、第2方向X2及び第3方向X3と、各軸X1、X2、X3回りに回転するθX1、θX2及びθX3方向との、6自由度に駆動可能なSLMステージに保持されることが好ましい。空間光変調ユニット1の位置及び姿勢は、SLMステージの駆動によって、例えば、基板ステージ4の目標値に対する偏差分、補正される。SLMステージを含む露光ユニット20は、光学定盤21に支持されている。
(第1実施形態)
 第1実施形態に係る空間光変調ユニット1について説明する。
 図3は、図2におけるA矢視図であり、第1実施形態に係る空間光変調ユニット1の平面図である。図4は、第1実施形態に係る空間光変調ユニット1の側面図である。図5は、図2におけるA矢視図であり、複数並べられた第1実施形態に係る空間光変調ユニット1の平面図である。
 第1実施形態に係る空間光変調ユニット1は、感光基板10を走査方向Sに移動させながら、感光基板10に露光パターンを露光する露光装置100に用いられる。
 第1実施形態に係る空間光変調ユニット1は、光学定盤21に支持されている。
 詳細には、図5に示すように、空間光変調ユニット1は、平面を感光基板10に向けた状態で、複数、並べられている。
 空間光変調ユニット1は、図3から図5に示すように、複数の素子(不図示)を有する空間光変調器11と、露光パターンに応じて複数の素子(空間光変調器11)を制御するコントローラ12と、空間光変調器11及びコントローラ12を搭載するSLM基板13と、を備えている。
 ここで、コントローラ12は、空間光変調器11に対して走査方向Sに並んで配置されている。このように、コントローラ12は、SLM基板13上に搭載されている。したがって、空間光変調器を制御するコントローラを、空間光変調器を搭載した基板から配線及びコネクタ等を介して離れた、別置きの基板に搭載した場合と比べて、データ通信速度を向上できる。よって、空間光変調器11の画素数を多くできたり、または/および更新速度を高くしたりすることができる。また、コントローラ12は、空間光変調器11に対して走査方向Sに並んで配置されている。このため、走査方向Sに交差する第2方向X2に隣接する空間光変調器11同士の間隔を短くできる。したがって、空間光変調器11を、走査方向Sに交差する第2方向X2に密に配置できる。よって、1回の走査で露光する露光パターンの露光面積を大きくすることができ、スループットを高くすることができる。また、空間光変調器11の更新速度を高くすることで、基板ステージ4の走査方向Sへの移動速度を早くすることができ、結果として感光基板10の1枚当たりの露光時間が短くなり、スループットを高くすることができる。
 空間光変調器11は、平面視において長方形状又は正方形状である。また、空間光変調器11の長手方向(長方形状又は正方形状を構成する辺と平行な方向)は、走査方向Sに沿っていてよく、走査方向Sに交差する第2方向X2に沿っていてもよい。空間光変調器11は、図4に示すように、SLM基板13の表側面13aに搭載されている。空間光変調器11は、感光基板10(又は基板ステージ4)に対向して露出している。
 コントローラ12は、露光パターンに応じて空間光変調器11の複数の素子を制御する。コントローラ12は、例えば、FPGA(field-programmable gate array)等のPLD(programmable logic device)であってよい。コントローラ12は、図4に示すように、SLM基板13の裏側面13bに搭載されている。コントローラ12は、SLM基板13の裏側面13b側の空間に露出している。
 SLM基板13は、平面視において長方形状である。また、SLM基板13の長手方向(長方形の長辺と平行な方向)は、走査方向Sに沿っている。
 このように、空間光変調器11の長手方向は、走査方向Sに交差する第2方向X2に沿い、SLM基板13の長手方向は、走査方向Sに沿っている。これにより、空間光変調器11が有する複数の素子(不図示)を、第2方向X2に密に配置できると共に、SLM基板13を第2方向X2に密に配置できる。よって、1回の走査で露光する露光パターンの情報量であるスループットを大きくできる。
 空間光変調ユニット1は、SLM基板13の外部に繋がる電源ケーブルC1に接続される電源回路14と、SLM基板13の外部に繋がるデータ通信ケーブルC2に接続される通信回路15と、を有している。ここで、電源回路14及び通信回路15は、空間光変調器11及びコントローラ12に対して走査方向Sに沿って並んでいる。これにより、電源回路及び通信回路15をSLM基板13とは別置きの基板に搭載した場合と比べて、データ通信速度及び電源効率を向上できるとともに、第2方向X2に隣接する空間光変調器11同士の間隔及びSLM基板13の第2方向X2の寸法を小さくできる。
 空間光変調ユニット1は、図4に示すように、ヒートシンク16を備えていてもよい。なお、ヒートシンク16は、SLM基板13の表側面13aに配置されずに、SLM基板13の裏側面13bに配置されている。
 そして、空間光変調器11は、SLM基板13の表側面13aに搭載され、コントローラ12は、SLM基板13の裏側面13bに搭載されている。なお、空間光変調器11は、機能上、感光基板10に対向した状態で、表側面13aに搭載されている。
 ここで、ヒートシンク16は、コントローラ12に接していることが好ましい。これにより、SLM基板13の裏側面13bからコントローラ12を冷却できるので、コントローラ12からの発熱による空間光変調ユニット1の温度上昇を効率的に抑え、露光性能への影響を抑制できる。
 ヒートシンク16は、熱伝導率の高い、例えば、金属材料で形成されている。
 ヒートシンク16は、水等の流体状の冷媒を通す流路16Tを有していてもよい。流路16Tは、ヒートシンク16の外部の冷却配管16Pの一端に連通している、冷却配管16Pの他端は、冷媒ポンプ(不図示)に連通している。これにより、ヒートシンク16によるコントローラ12又は空間光変調器11の冷却性能を効果的に向上できる。
 ここで、空間光変調器11は、コントローラ12より、流路16Tの上流側に配置されることが好ましい。これにより、露光性能への影響が比較的大きい空間光変調器11の温度上昇を効果的に抑制できる。
 SLM基板13は、SLM基板13の裏側面13bに配置されてヒートシンク16に接するペルチェ素子17を有していてもよい。また、SLM基板13は、空間光変調器11とペルチェ素子17とに接する中間部(不図示)を備えていてもよい。そして、ペルチェ素子17は、この中間部を介して空間光変調器11に接することが好ましい。すなわち、空間光変調器11は、ペルチェ素子17に直接的に接してもよく、銅、アルミニウム等の金属製の中間部を介して接していてもよい。これにより、空間光変調器11がSLM基板13の表側面13aに搭載されていても、SLM基板13の裏側面13bから空間光変調器11を冷却することができる。よって、空間光変調器11の冷却とコントローラ12の冷却とを兼ねることができる。
 なお、図16に示すように、空間光変調器11、コントローラ12、電源回路14及び通信回路15がSLM基板13の長尺方向に並んで配置され、SLM基板13の長尺方向が走査方向に対して傾けて配置され、空間光変調器11と照明モジュール7Aが走査方向に並んで配置されてもよい。空間光変調器11としてデジタルミラーデバイス(DMD)を用いる場合、DMDのオン状態のミラーは走査方向に傾斜すると良い。図17に示すように、空間光変調器11、コントローラ12、電源回路14、通信回路15及び照明モジュール7AがSLM基板13の長尺方向に並んで配置され、SLM基板13の長尺方向が走査方向に対して傾けて配置されてもよい。空間光変調器11としてデジタルミラーデバイス(DMD)を用いる場合、DMDのオン状態のミラーは走査方向に傾斜すると良い。
(変形例1A)
 次に、第1実施形態に係る空間光変調ユニット1の変形例1Aについて説明する。なお、第1実施形態に係る空間光変調ユニット1と共通する事項については、説明を省略する場合がある。
 図6は、第1実施形態に係る空間光変調ユニット1の変形例1Aの平面図である。
 図6に示すように、コントローラ12は、空間光変調器11に対して走査方向Sに並んで配置されている。
 ここで、第1実施形態に係る空間光変調ユニット1の変形例1Aは、図5に示す第1実施形態に係る空間光変調ユニット1とは異なり、走査方向Sを基準として若干(例えば、5度)傾けて配置された空間光変調器11を有している。すなわち、第1実施形態に係る空間光変調ユニット1における感光基板10の長手方向と空間光変調器11の短手方向とは平行であるのに対して、感光基板10の長手方向と空間光変調器11の短手方向とは平行でない。これにより、SLM基板13の全体を斜めに配置しなくても、複数の素子における1素子(1ミラー)よりも細かい単位で露光パターンの幅や位置を設定できる。
 また、空間光変調器11は、複数の素子が配列される配列方向が走査方向Sと交差する方向に沿うように、SLM基板13上に搭載されてよい。
 また、空間光変調器11は、複数の素子が配列される配列方向が走査方向Sと直交する方向に沿うように、SLM基板13上に搭載されてもよい。
(変形例1B)
 次に、第1実施形態に係る空間光変調ユニット1の変形例1Bについて説明する。なお、第1実施形態に係る空間光変調ユニット1と共通する事項については、説明を省略する場合がある。
 図7は、第1実施形態に係る空間光変調ユニット1の変形例1Bの平面図である。
 図7に示すように、コントローラ12は、空間光変調器11に対して走査方向Sに並んで配置されている。
 ここで、第1実施形態に係る空間光変調ユニット1の変形例1Bは、図5に示す第1実施形態に係る空間光変調ユニット1とは異なり、空間光変調器11の走査方向Sにおける一方側に配置される第1コントローラ12Aと、他方側に配置される第2コントローラ12Bを有するコントローラ12を備えている。すなわち、空間光変調器11の複数の素子を制御するコントローラ12が、空間光変調器11の走査方向Sにおける両側に設けられている。このように、コントローラ12は、空間光変調器11の走査方向Sにおける両側に設けられているので、処理速度を向上させるためにコントローラ12を単一のSLM基板13に複数設けた場合であっても、コントローラ12を空間光変調器11に近接させて配置することができる。また、走査方向Sに交差する第2方向X2に隣接する空間光変調器11同士の間隔を短く維持したまま、複数のコントローラ12を単一のSLM基板13の上に配置できる。よって、1回の走査で露光する露光パターンの情報量であるスループットを大きくできる。
(変形例1C)
 次に、第1実施形態に係る空間光変調ユニット1の変形例1Cについて説明する。なお、第1実施形態に係る空間光変調ユニット1と共通する事項については、説明を省略する場合がある。
 図8は、第1実施形態に係る空間光変調ユニット1の変形例1Cの平面図である。
 図8に示すように、コントローラ12は、空間光変調器11に対して走査方向Sに並んで配置されている。
 ここで、第1実施形態に係る空間光変調ユニット1の変形例1Cは、図5に示す第1実施形態に係る空間光変調ユニット1とは異なり、空間光変調器11の走査方向Sにおける一方側に配置される第1コントローラ12A及び第3コントローラ12Cと、他方側に配置される第2コントローラ12B及び第4コントローラ12Dと、を有するコントローラ12を備えている。すなわち、コントローラ12は、空間光変調器11の走査方向Sにおける一方側に配置される第1コントローラ12Aと、第1コントローラ12Aに対して走査方向Sに交差する第2方向X2に並んで配置される第3コントローラ12Cとを有している。
 このように、コントローラ12は、空間光変調器11の走査方向Sにおける一方側に配置される第1コントローラ12Aと、走査方向Sに交差する第2方向X2に並んで配置される第3コントローラ12Cとを有しているので、処理速度を向上させるためにコントローラ12を単一のSLM基板13に複数設けた場合であっても、コントローラ12を空間光変調器11に近接させて配置することができる。また、走査方向Sに交差する第2方向X2に隣接する空間光変調器11同士の間隔を短く維持したまま、更に多くのコントローラ12を単一のSLM基板13の上に配置できる。よって、1回の走査で露光する露光パターンの情報量であるスループットを大きくできる。
(第2実施形態)
 次に、第2実施形態に係る空間光変調ユニット1について説明する。
 図9は、第2実施形態に係る空間光変調ユニット1の側面図である。図10は、第2実施形態に係る空間光変調ユニット1の展開平面図である。図11は、複数並べられた第2実施形態に係る空間光変調ユニット1の平面図である。図12は、第2実施形態に係る空間光変調ユニット1の変形例2Aの展開平面図である。図13は、第2実施形態に係る空間光変調ユニット1の変形例2Bの展開平面図である。図14は、第2実施形態に係る空間光変調ユニット1の変形例2Cの展開平面図である。
 第2実施形態に係る空間光変調ユニット1は、第1実施形態に係る空間光変調ユニット1と同様に、感光基板10を走査方向Sに移動させながら、感光基板10に露光パターンを露光する露光装置100に用いられる。
 第2実施形態に係る空間光変調ユニット1は、第1実施形態に係る空間光変調ユニット1と同様に、光学定盤21に支持されている。
 詳細には、図11に示すように、空間光変調ユニット1は、平面を感光基板10に向けた状態で、複数、並べられている。
 空間光変調ユニット1は、図9から図14に示すように、複数の素子(不図示)を有する空間光変調器11と、露光パターンに応じて空間光変調器11の複数の素子を制御するコントローラ12(第1コントローラ12A,第2コントローラ12B)と、空間光変調器11とコントローラ12とへ電力を供給する供給部(不図示)と、空間光変調器11及びコントローラ12を搭載するSLM基板13と、を備えている。
 ここで、SLM基板13は、空間光変調器11を搭載し、供給部の一部が連結された第1基板131と、コントローラ12を搭載し、供給部の他部が連結された第2基板132と、を備えている。そして、図9に示すように、第2基板132のうちコントローラ12が搭載された第2面132Sは、第1基板131のうち空間光変調器11が搭載された第1面131Sに対して交差している。これにより、SLM基板13に、空間光変調器11及びコントローラ12を両方とも搭載しても、走査方向Sにおける寸法を小さくできる。したがって、SLM基板13を、走査方向Sに沿って密に配置できる。よって、露光パターンを照射するための1回の走査に必要な走査方向Sにおける距離を短縮でき、1回の走査時間を短縮できる。
 なお、第1基板131の表側面131aと表側面132aとは、同一平面上にない関係となっていてもよい。SLM基板13は、折れ曲がった状態となっていてよい。これらのいずれかによっても、走査方向Sにおける寸法を小さくできる。したがって、SLM基板13を、走査方向Sに沿って密に配置できる。
 第1基板131は、SLM基板13において、空間光変調器11を搭載する基板である。第1基板131は、適宜、後述するSLMステージを介して光学定盤21に支持された状態で、表側面131aを、感光基板10(又は感光基板10を載せる基板ステージ4)に向けて、第3方向X3に対して直交するように、配置されている。
 第2基板132は、SLM基板13において、空間光変調器11を搭載しない基板である。すなわち、第1基板131に空間光変調器11を搭載し、第2基板132には、空間光変調器11を搭載していない。
 第2基板132は、適宜、後述するSLMステージ(図15参照)を介して光学定盤21に支持された状態で、表側面131aを、第1方向及び第2方向に対して交差するように配置されている。
 第2面132Sは、走査方向S(第1方向X1)に対して垂直であることが好ましい。すなわち、第2基板132の表側面132aは、走査方向S(第1方向X1)に直交していることが好ましい。これにより、SLM基板13の走査方向Sにおける寸法を小さくできるとともに、第1基板131の裏側面131bより上方の空間を、例えば、SLMステージの配置等に利用できる。
 第2基板132は、コントローラ12(第2コントローラ12B)を搭載している。コントローラ12は、第2基板132の裏側面132bに搭載されている。これにより、コントローラ12を、ヒートシンク16に接触させ易い位置に配置できる。
 ヒートシンク16は、図9に示すように、側面視において、第1基板131及び第2基板132に沿うL字状の断面を有する板状に形成されている。
 SLM基板13は、第1基板131と第2基板132とを連結して屈曲する屈曲部134を有している。そして、屈曲部134は、第1基板131の第1板厚t1及び第2基板132の第2板厚t2より薄い第3板厚t3を有している。これにより、屈曲部134の曲げ剛性(弱軸回りの断面二次モーメント)を第1基板131及び第2基板132のそれぞれの曲げ剛性と比較して小さくできる。よって、図10及び図12から図14に示すような、展開された状態の空間光変調ユニット1におけるSLM基板13、すなわち、第1基板131の表側面131aと第2基板132の表側面132aとが同一平面上に揃っている状態のSLM基板13を、屈曲部134において、例えば、直角に折り曲げることで、図9に示すような、L字形状の断面を有するSLM基板13を形成できる。
 SLM基板13は、図9に示すように、芯層13Aと、芯層13Aを覆う表層13Bとを含んで形成されている。そして、屈曲部134における芯層13Aは露出していてよい。屈曲部134は、例えば、芯層13Aとレジスト等の表層とを積層したSLM基板13において、表層が取り除かれて残った芯材を露出させた部分であってよい。これにより、屈曲部134の曲げ剛性が比較的小さくなっているので、L字形状の断面を有するSLM基板13を、第1基板131の表側面131aと第2基板132の表側面132aとが同一平面上に揃っている状態のSLM基板13から、屈曲部134で折り曲げて形成し易くできる。
 SLM基板13は、不図示の第3基板を備えてもよい。すなわち、SLM基板13は、上述の第1基板131及び第2基板132に加えて、第3基板を備えていてよい。そして、第3基板における表側面を延長した第3面は、第1面131Sと第2面132Sの少なくとも1つと交差していることが好ましい。さらに、第3基板における表側面を延長した第3面は、第1面131Sと第2面132Sの少なくとも1つと直交していることが好ましい。これにより、空間光変調器11が搭載された第1基板131の裏側面131bの上方の空間を利用して、コントローラ12を含む部材を三次元的に密に配置できる。
 空間光変調ユニット1は、ヒートシンク16を備えている。空間光変調器11は、SLM基板13の表側面131aに搭載されている。コントローラ12は、SLM基板13の裏側面132bに搭載されている。ここで、ヒートシンク16は、コントローラ12に接している。これにより、図9に示すように、SLM基板13が折れ曲がったL字形状の断面を有する場合であっても、第1基板131の裏側面131bの上方で、かつ、第2基板132の裏側面132bの走査方向Sの空間を有効に利用して、ヒートシンク16を配置できる。
 SLM基板13は、SLM基板13の裏側面131bに配置されてヒートシンク16に接するペルチェ素子17を有している。そして、空間光変調器11は、ペルチェ素子17に接している。これにより、SLM基板13の表側面131aに搭載された空間光変調器11を、SLM基板13の裏側面131bにあるヒートシンク16で冷却できる。
(変形例2A)
 次に、第2実施形態に係る空間光変調ユニット1の変形例2Aについて説明する。なお、第1実施形態に係る空間光変調ユニット1又は第2実施形態に係る空間光変調ユニット1と共通する事項については、説明を省略する場合がある。
 図12は、第2実施形態に係る空間光変調ユニット1の変形例2Aの平面図である。
 第1基板131には、空間光変調器11及び第1コントローラ12Aが搭載されている。
 第2基板132には、第2コントローラ12Bが搭載されている。
 ここで、第2実施形態に係る空間光変調ユニット1の変形例2Aは、第2基板132が第2方向X2に対して交差するように配置されている。すなわち、図12に示すように、展開されたSLM基板13が、屈曲部134を中心に、第1方向X1周りに回転して折れ曲がった状態(図9参照)になっている。これにより、第1基板131の平面視における面積を小さく抑制しつつ、第1基板131の裏側面131bの上方の空間を利用して、例えば、複数のコントローラ12を単一の空間光変調ユニット1に搭載できる。
(変形例2B)
 次に、第2実施形態に係る空間光変調ユニット1の変形例2Bについて説明する。なお、第1実施形態に係る空間光変調ユニット1又は第2実施形態に係る空間光変調ユニット1と共通する事項については、説明を省略する場合がある。
 図13は、第2実施形態に係る空間光変調ユニット1の変形例2Bの平面図である。
 第1基板131には、空間光変調器11が搭載されている。第1基板131には、コントローラ12が搭載されていない。
 第2基板132には、コントローラ12が搭載されている。
 ここで、第2実施形態に係る空間光変調ユニット1の変形例2Bは、第2基板132が第2方向X2に対して交差するように配置されている。すなわち、図13に示すように、展開されたSLM基板13が、屈曲部134を中心に、第1方向X1周りに回転して折れ曲がった状態(図9参照)になっている。これにより、第1基板131の平面視における面積を小さく抑制しつつ、第1基板131の裏側面131bの上方の空間を利用して、例えば、複数のコントローラ12を単一の空間光変調ユニット1に搭載できる。
(変形例2C)
 次に、第2実施形態に係る空間光変調ユニット1の変形例2Cについて説明する。なお、第1実施形態に係る空間光変調ユニット1又は第2実施形態に係る空間光変調ユニット1と共通する事項については、説明を省略する場合がある。
 図14は、第2実施形態に係る空間光変調ユニット1の変形例2Bの平面図である。
 第1基板131には、空間光変調器11及びコントローラ12が、第1方向X1に並んで搭載されている。
 第2基板132には、コントローラ12が搭載されていない。
 ここで、第2実施形態に係る空間光変調ユニット1の変形例2Bは、第2基板132が第2方向X2に対して交差するように配置されている。すなわち、図14に示すように、展開されたSLM基板13が、屈曲部134を中心に、第1方向X1周りに回転して折れ曲がった状態(図9参照)になっている。これにより、第1基板131の平面視における面積を小さく抑制しつつ、第1基板131の裏側面131bの上方の空間を利用して、例えば、複数のコントローラ12を単一の空間光変調ユニット1に搭載できる。
(第3実施形態)
 次に、第3実施形態に係る空間光変調ユニット1について説明する。
 図15は、第3実施形態に係る空間光変調ユニット1の側面図である。
 第3実施形態に係る空間光変調ユニット1は、第1実施形態に係る空間光変調ユニット1及び第2実施形態に係る空間光変調ユニット1と同様に、感光基板10を走査方向Sに移動させながら、感光基板10に露光パターンを露光する露光装置100に用いられる。
 第3実施形態に係る空間光変調ユニット1は、第1実施形態に係る空間光変調ユニット1及び第2実施形態に係る空間光変調ユニット1と同様に、光学定盤21に支持されている。
 詳細には、図11に示すように、空間光変調ユニット1は、平面を感光基板10に向けた状態で、複数、並べられている。
 空間光変調ユニット1は、図15に示すように、複数の素子(不図示)を有する空間光変調器11と、露光パターンに応じて空間光変調器11の複数の素子を制御するコントローラ12と、空間光変調器11及びコントローラ12を搭載するSLM基板13と、ヒートシンク16と、を備えている。空間光変調器11は、SLM基板13の表側面131aに搭載されている。コントローラ12は、SLM基板13の裏側面131bに搭載されている。
 ここで、ヒートシンク16は、コントローラ12に接している。これにより、第1基板131の裏側面131bの上方の空間を有効に利用して、ヒートシンク16を配置できる。
 SLM基板13は、SLM基板13の裏側面131bに配置されてヒートシンク16に接するペルチェ素子17を有している。そして、空間光変調器11は、ペルチェ素子17に接している。これにより、SLM基板13の表側面131aに搭載された空間光変調器11を、SLM基板13の裏側面131bにあるヒートシンク16で冷却できる。
 ヒートシンク16は、図15に示すように、空間光変調器11の反射面に直交する基準軸Pを中心に回動可能なSLMステージ18に支持される。これにより、空間光変調ユニット1の位置を補正することができる。
 ヒートシンク16は、感光基板10の感光面10aに沿って、走査方向S及び走査方向Sに交差する第2方向X2に移動可能なSLMステージ18に支持されることが好ましい。これにより、走査方向S及び走査方向Sに交差する第2方向X2における空間光変調ユニット1の位置を補正することができる。
 ヒートシンク16は、6自由度で移動可能なSLMステージ18に支持されることが好ましい。これにより、走査方向S(第1方向X1)と、走査方向Sに交差する第2方向X2と、第1方向X1及び第2方向X2に直交する第3方向X3、並びに、第1方向X1、第2方向X2、第3方向X3のそれぞれの回りに回転するθX1方向、θX2方向及びθX3方向の、6自由度における空間光変調ユニット1の位置を補正することができる。
 ヒートシンク16は、水等の流体状の冷媒を通す流路16Tを有していてよい。流路16Tは、ヒートシンク16の外部の冷却配管16Pの一端に連通している、冷却配管16Pの他端は、冷媒ポンプ(不図示)に連通している。これにより、ヒートシンク16によるコントローラ12又は空間光変調器11の冷却性能を効果的に向上できる。
 ここで、空間光変調器11は、コントローラ12より、流路16Tの上流側に配置されることが好ましい。これにより、露光性能への影響の比較的大きい空間光変調器11の温度上昇を効果的に抑制できる。
 以上、本発明の実施形態について説明したが、ここで本発明と上記実施形態とにおける対応関係について補足して説明する。
(1)上記実施形態において、空間光変調ユニット1は、感光基板10を走査方向Sに移動させながら、感光基板10に露光パターンを露光する露光装置100に用いる。空間光変調ユニット1は、複数の素子を有する空間光変調器11と、露光パターンに応じて空間光変調器11の複数の素子を制御するコントローラ12と、空間光変調器11及びコントローラ12を搭載するSLM基板13と、を備えている。そして、コントローラ12は、空間光変調器11に対して走査方向Sに並んで配置されている。
 このような構成の空間光変調ユニット1では、コントローラ12は、SLM基板13上に搭載されている。したがって、空間光変調器を制御するコントローラを、空間光変調器を搭載した基板から配線及びコネクタ等を介して離れた、別置きの基板に搭載した場合と比べて、データ通信速度を向上できる。よって、空間光変調器11の画素数を多くでき、更新速度を高くすることができる。また、コントローラ12は、空間光変調器11に対して走査方向Sに並んで配置されている。このため、走査方向Sに交差する第2方向X2に隣接する空間光変調器11同士の間隔を短くできる。したがって、空間光変調器11を、走査方向Sに交差する第2方向X2に密に配置できる。よって、1回の走査で露光する露光パターンの情報量であるスループットを大きくできる。
(2)また、上記実施形態において、コントローラ12は、空間光変調器11の走査方向Sにおける一方側に配置される第1コントローラ12Aと、他方側に配置される第2コントローラ12Bとを有する。
(3)また、上記実施形態において、コントローラ12は、空間光変調器11の走査方向Sにおける一方側に配置される第1コントローラ12Aと、第1コントローラ12Aに対して走査方向Sに交差する第2方向X2に並んで配置される第3コントローラ12Cを有する。
(4)また、上記実施形態において、空間光変調ユニット1は、SLM基板13の外部に繋がる電源ケーブルC1に接続される電源回路14と、SLM基板13の外部に繋がるデータ通信ケーブルC2に接続される通信回路15と、を有し、電源回路14及び通信回路15は、空間光変調器11及びコントローラ12に対して走査方向Sに沿って並ぶ。
(5)また、上記実施形態において、空間光変調ユニット1は、ヒートシンク16を備え、空間光変調器11は、SLM基板13の表側面13aに搭載され、コントローラ12は、SLM基板13の裏側面13bに搭載され、ヒートシンク16は、コントローラ12に接する。
(6)また、上記実施形態において、SLM基板13は、SLM基板13の裏側面13bに配置されてヒートシンク16に接するペルチェ素子17を有し、空間光変調器11は、ペルチェ素子17に接する。
(7)また、空間光変調器11とペルチェ素子17とに接する中間部を備え、ペルチェ素子17は、中間部を介して空間光変調器11に接する。
(8)また、空間光変調器11は、複数の素子が配列される配列方向が走査方向Sと交差する方向に沿うように、SLM基板13上に搭載される。
(9)また、空間光変調器11は、複数の素子が配列される配列方向が前記走査方向と直交する方向に沿うように、SLM基板13上に搭載される。
(10)上記実施形態において、空間光変調ユニット1は、感光基板10を走査方向Sに移動させながら、感光基板10に露光パターンを露光する露光装置100に用いる。空間光変調ユニット1は、複数の素子を有する空間光変調器11と、露光パターンに応じて空間光変調器11を制御するコントローラ12と、空間光変調器11とコントローラ12とへ電力を供給する供給部と、空間光変調器11及びコントローラ12を搭載するSLM基板13と、を備えている。SLM基板13は、空間光変調器11を搭載し、供給部の一部が連結された第1基板131と、コントローラ12を搭載し、供給部の他部が連結された第2基板132と、を備えている。第2基板132のうちコントローラ12が搭載された第2面132Sは、第1基板131のうち空間光変調器11が搭載された第1面131Sに対して交差する。
 このような構成の空間光変調ユニット1では、SLM基板13に、空間光変調器11及びコントローラ12を両方とも搭載しても、走査方向Sにおける寸法を小さくできる。したがって、SLM基板13を、走査方向Sに沿って密に配置できる。よって、露光パターンを照射するための1回の走査に必要な走査方向Sにおける距離を短縮でき、1回の走査時間を短縮できる。
(11)また、上記実施形態において、SLM基板13は、第1基板131と第2基板132とを連結して屈曲する屈曲部134を有し、屈曲部134は、第1基板131の第1板厚t1及び第2基板132の第2板厚t2より薄い第3板厚t3を有する。
(12)また、上記実施形態において、SLM基板13は、芯層13Aと、芯層13Aを覆う表層13Bとを含んで形成されており、屈曲部134における芯層13Aは露出している。
(13)また、上記実施形態において、第2面132Sは、走査方向Sに対して垂直である。
(14)また、上記実施形態において、SLM基板13は、第3基板133を備え、第3基板133における表側面133aを延長した第3面133Sは、第1面131Sと第2面132Sの少なくとも1つと交差する。
(15)また、上記実施形態において、空間光変調ユニット1は、ヒートシンク16を備え、空間光変調器11は、SLM基板13の表側面131aに搭載され、コントローラ12は、SLM基板13の裏側面131bに搭載され、ヒートシンク16は、コントローラ12に接する。
(16)また、上記実施形態において、SLM基板13は、SLM基板13の裏側面131bに配置されてヒートシンク16に接するペルチェ素子17を有し、空間光変調器11は、ペルチェ素子17に接する。
(17)また、上記実施形態において、空間光変調器11とペルチェ素子17とに接する中間部を備え、ペルチェ素子17は、中間部を介して空間光変調器11に接する。
(18)上記実施形態において、空間光変調ユニット1は、感光基板10を走査方向Sに移動させながら、感光基板10に露光パターンを露光する露光装置に用いる。空間光変調ユニット1は、複数の素子を有する空間光変調器11と、露光パターンに応じて空間光変調器11を制御するコントローラ12と、空間光変調器11及びコントローラ12を搭載するSLM基板13と、ヒートシンク16と、を備えている。空間光変調器11は、SLM基板13の表側面131aに搭載され、コントローラ12は、SLM基板13の裏側面131bに搭載され、ヒートシンク16は、コントローラ12に接する。
(19)また、上記実施形態において、SLM基板13は、SLM基板13の裏側面131bに配置されてヒートシンク16に接するペルチェ素子17を有し、空間光変調器11は、ペルチェ素子17に接する。
(20)また、上記実施形態において、空間光変調器11とペルチェ素子17とに接する中間部を備えている。ペルチェ素子17は、中間部を介して空間光変調器11に接する。
(21)また、上記実施形態において、ヒートシンク16は、空間光変調器11の反射面に直交する基準軸Pを中心に回動可能なSLMステージ18に支持される。
(22)また、上記実施形態において、ヒートシンク16は、感光基板10の感光面10aに沿って、走査方向S及び走査方向Sに交差する第2方向X2に移動可能なSLMステージ18に支持される。
(23)また、上記実施形態において、ヒートシンク16は、6自由度で移動可能なSLMステージ18に支持される。
(24)また、上記実施形態において、ヒートシンク16は、冷媒を通す流路16Tを有し、空間光変調器11は、コントローラ12より、流路16Tの上流側に配置される。
(25)また、上記実施形態において、露光装置100は、複数の素子を有する空間光変調器11と、複数の素子を制御するコントローラ12と、空間光変調器11及びコントローラ12を搭載するSLM基板13と、を有する空間光変調ユニット1と、感光基板10を保持し、空間光変調ユニット1に対して、走査方向Sへ移動する基板ステージ4と、コントローラ12により制御された複数の素子で形成されたパターンの像を、感光基板10上に投影する投影光学系と、を備えている。コントローラ12は、空間光変調器11に対して走査方向Sに並んでSLM基板13上に搭載される。
(26)上記実施形態において、露光装置100は、走査方向に基板を移動させながら前記基板を露光する。露光装置100は、照明光学系(照明モジュール)7Aと、照明光学系7Aからの光によって照明される空間光変調器11と、空間光変調器11から出射される光を基板に照射する投影光学系(投影モジュール)7Bと、基板を保持して前記走査方向に移動するステージ4と、を備えている。照明光学系7Aと空間光変調器11とは、走査方向Sに並んで配置される。
(27)上記実施形態において、露光装置100は、基板を走査方向Sに移動させるステージ4と、空間光変調器11と、空間光変調器11を照明する照明光学系(照明モジュール)7Aと、空間光変調器11のミラーで反射される光を基板に照射する投影光学系(投影モジュール)7Bと、を備える。空間光変調器11を照明する照明光の光軸と投影光学系(投影モジュール)7Bの光軸とを含む平面が走査方向Sに平行に設けられる。
(28)また、上記実施形態において、空間光変調器11のミラーは、走査方向Sに対して傾斜する。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
1…空間光変調ユニット
2…露光装置本体
3…コラム
4…基板ステージ
4a…上面
6…光源ユニット
7…照明投影モジュール
7A…照明モジュール
7B…投影モジュール
10…感光基板
10a…感光面
11…空間光変調器
12…コントローラ
12A…第1コントローラ
12B…第2コントローラ
12C…第3コントローラ
12D…第4コントローラ
13…SLM基板
13a…表側面
13A…芯層
13b…裏側面
13B…表層
14…電源回路
15…通信回路
16…ヒートシンク
16P…冷却配管
16T…流路
17…ペルチェ素子
18…SLMステージ
20…露光ユニット
21…光学定盤
21a…上面
21b…第1貫通孔
22…アライメント系
23…オートフォーカス系
31…横架材
32…脚部
61…光源
71…光ファイバ
100…露光装置
131…第1基板
131a…表側面
131b…裏側面
131S…第1面
132…第2基板
132a…表側面
132b…裏側面
132S…第2面
133…第3基板
133a…表側面
133S…第3面
134…屈曲部
721…コリメートレンズ
723…フライアイレンズ
724…メインコンデンサーレンズ
725…ミラー
B…ベースプレート
Ba…上面
BB…防振台
C1…電源ケーブル
C2…データ通信ケーブル
L…レーザ光(光)
P…基準軸
S…走査方向
t1…第1板厚
t2…第2板厚
t3…第3板厚
X1…第1方向、軸
X2…第2方向、軸
X3…第3方向、軸

Claims (28)

  1.  感光基板を走査方向に移動させながら、前記感光基板に露光パターンを露光する露光装置に用いる空間光変調ユニットであって、
     複数の素子を有する空間光変調器と、
     前記露光パターンに応じて前記複数の素子を制御するコントローラと、
     前記空間光変調器及び前記コントローラを搭載するSLM基板と、を備え、
     前記コントローラは、前記空間光変調器に対して前記走査方向に並んで配置される、空間光変調ユニット。
  2.  前記コントローラは、前記空間光変調器の前記走査方向における一方側に配置される第1コントローラと、他方側に配置される第2コントローラとを有する、請求項1に記載の空間光変調ユニット。
  3.  前記コントローラは、前記空間光変調器の前記走査方向における一方側に配置される第1コントローラと、前記第1コントローラに対して前記走査方向に交差する第2方向に並んで配置される第3コントローラを有する、請求項1又は請求項2に記載の空間光変調ユニット。
  4.  前記空間光変調ユニットは、前記SLM基板の外部に繋がる電源ケーブルに接続される電源回路と、前記SLM基板の外部に繋がるデータ通信ケーブルに接続される通信回路と、を有し、
     前記電源回路及び前記通信回路は、前記空間光変調器及び前記コントローラに対して前記走査方向に沿って並ぶ、請求項1から請求項3のいずれか1項に記載の空間光変調ユニット。
  5.  前記空間光変調ユニットは、ヒートシンクを備え、
     前記空間光変調器は、前記SLM基板の表側面に搭載され、
     前記コントローラは、前記SLM基板の裏側面に搭載され、
     前記ヒートシンクは、前記コントローラに接する、請求項1から請求項4のいずれか1項に記載の空間光変調ユニット。
  6.  前記SLM基板は、前記SLM基板の裏側面に配置されて前記ヒートシンクに接するペルチェ素子を有し、
     前記空間光変調器は、前記ペルチェ素子に接する、請求項5に記載の空間光変調ユニット。
  7.  前記空間光変調器と前記ペルチェ素子とに接する中間部を備え、
     前記ペルチェ素子は、前記中間部を介して前記空間光変調器に接する、請求項6に記載の空間光変調ユニット。
  8.  前記空間光変調器は、前記複数の素子が配列される配列方向が前記走査方向と交差する方向に沿うように、前記SLM基板上に搭載される、請求項1から請求項7のいずれか1項に記載の空間光変調ユニット。
  9.  前記空間光変調器は、前記複数の素子が配列される配列方向が前記走査方向と直交する方向に沿うように、前記SLM基板上に搭載される、請求項1から請求項7のいずれか1項に記載の空間光変調ユニット。
  10.  感光基板を走査方向に移動させながら、前記感光基板に露光パターンを露光する露光装置に用いる空間光変調ユニットであって、
     複数の素子を有する空間光変調器と、
     前記露光パターンに応じて前記空間光変調器を制御するコントローラと、
     前記空間光変調器と前記コントローラとへ電力を供給する供給部と、
     前記空間光変調器及び前記コントローラを搭載するSLM基板と、を備え、
     前記SLM基板は、
     前記空間光変調器を搭載し、前記供給部の一部が連結された第1基板と、
     前記コントローラを搭載し、前記供給部の他部が連結された第2基板と、を備え、
     前記第2基板のうち前記コントローラが搭載された第2面は、前記第1基板のうち前記空間光変調器が搭載された第1面に対して交差する、空間光変調ユニット。
  11.  前記SLM基板は、前記第1基板と前記第2基板とを連結して屈曲する屈曲部を有し、
     前記屈曲部は、前記第1基板の第1板厚及び前記第2基板の第2板厚より薄い第3板厚を有する、請求項10に記載の空間光変調ユニット。
  12.  前記SLM基板は、芯層と、前記芯層を覆う表層とを含んで形成されており、
     前記屈曲部における前記芯層は露出している、請求項11に記載の空間光変調ユニット。
  13.  前記第2面は、前記走査方向に対して垂直である、請求項10から請求項12のいずれか1項に記載の空間光変調ユニット。
  14.  前記SLM基板は、第3基板を備え、
     前記第3基板における表側面を延長した第3面は、前記第1面と前記第2面の少なくとも1つと交差する、請求項10から請求項13のいずれか1項に記載の空間光変調ユニット。
  15.  前記空間光変調ユニットは、ヒートシンクを備え、
     前記空間光変調器は、前記SLM基板の表側面に搭載され、
     前記コントローラは、前記SLM基板の裏側面に搭載され、
     前記ヒートシンクは、前記コントローラに接する、請求項10から請求項14のいずれか1項に記載の空間光変調ユニット。
  16.  前記SLM基板は、前記SLM基板の裏側面に配置されて前記ヒートシンクに接するペルチェ素子を有し、
     前記空間光変調器は、前記ペルチェ素子に接する、請求項15に記載の空間光変調ユニット。
  17.  前記空間光変調器と前記ペルチェ素子とに接する中間部を備え、
     前記ペルチェ素子は、前記中間部を介して前記空間光変調器に接する、請求項16に記載の空間光変調ユニット。
  18.  感光基板を走査方向に移動させながら、前記感光基板に露光パターンを露光する露光装置に用いる空間光変調ユニットであって、
     複数の素子を有する空間光変調器と、
     前記露光パターンに応じて前記空間光変調器を制御するコントローラと、
     前記空間光変調器及び前記コントローラを搭載するSLM基板と、
     ヒートシンクと、を備え、
     前記空間光変調器は、前記SLM基板の表側面に搭載され、
     前記コントローラは、前記SLM基板の裏側面に搭載され、
     前記ヒートシンクは、前記コントローラに接する、空間光変調ユニット。
  19.  前記SLM基板は、前記SLM基板の裏側面に配置されて前記ヒートシンクに接するペルチェ素子を有し、
     前記空間光変調器は、前記ペルチェ素子に接する、請求項18に記載の空間光変調ユニット。
  20.  前記空間光変調器と前記ペルチェ素子とに接する中間部を備え、
     前記ペルチェ素子は、前記中間部を介して前記空間光変調器に接する、請求項19に記載の空間光変調ユニット。
  21.  前記ヒートシンクは、前記空間光変調器の反射面に直交する基準軸を中心に回動可能なSLMステージに支持される、請求項18から請求項20のいずれか1項に記載の空間光変調ユニット。
  22.  前記ヒートシンクは、前記感光基板の感光面に沿って、前記走査方向及び前記走査方向に交差する第2方向に移動可能なSLMステージに支持される、請求項18から請求項21のいずれか1項に記載の空間光変調ユニット。
  23.  前記ヒートシンクは、6自由度で移動可能なSLMステージに支持される、請求項18から請求項22のいずれか1項に記載の空間光変調ユニット。
  24.  前記ヒートシンクは、冷媒を通す流路を有し、
     前記空間光変調器は、前記コントローラより、前記流路の上流側に配置される
    請求項18から請求項23のいずれか1項に記載の空間光変調ユニット。
  25.  複数の素子を有する空間光変調器と、前記複数の素子を制御するコントローラと、前記空間光変調器及び前記コントローラを搭載するSLM基板と、を有する空間光変調ユニットと、
     感光基板を保持し、前記空間光変調ユニットに対して、走査方向へ移動する基板ステージと、
     前記コントローラにより制御された前記複数の素子で形成されたパターンの像を、前記感光基板上に投影する投影光学系と、を備え、
     前記コントローラは、前記空間光変調器に対して前記走査方向に並んでSLM基板上に搭載される、露光装置。
  26.  走査方向に基板を移動させながら前記基板を露光する露光装置であって、
     照明光学系と、
     前記照明光学系からの光によって照明される空間光変調器と、
     前記空間光変調器から出射される光を基板に照射する投影光学系と、
     前記基板を保持して前記走査方向に移動するステージと、を備え、
     前記照明光学系と前記空間光変調器とは、走査方向に並んで配置される、
    露光装置。
  27.  基板を走査方向に移動させるステージと、
     空間光変調器と、
     前記空間光変調器を照明する照明光学系と、
     前記空間光変調器のミラーで反射される光を基板に照射する投影光学系と、を備え、
     前記空間光変調器を照明する照明光の光軸と前記投影光学系の光軸とを含む平面が前記走査方向に平行に設けられる、
    露光装置。
  28.  前記空間光変調器の前記ミラーは、前記走査方向に対して傾斜する、請求項27に記載の露光装置。
PCT/JP2022/026503 2021-07-05 2022-07-01 空間光変調ユニットおよび露光装置 WO2023282214A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237042454A KR20240006636A (ko) 2021-07-05 2022-07-01 공간 광변조 유닛 및 노광 장치
JP2023533112A JPWO2023282214A1 (ja) 2021-07-05 2022-07-01
CN202280033807.8A CN117377910A (zh) 2021-07-05 2022-07-01 空间光调变单元及曝光装置
US18/394,369 US20240126176A1 (en) 2021-07-05 2023-12-22 Spatial light modulation unit and exposure apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021111623 2021-07-05
JP2021-111623 2021-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/394,369 Continuation US20240126176A1 (en) 2021-07-05 2023-12-22 Spatial light modulation unit and exposure apparatus

Publications (1)

Publication Number Publication Date
WO2023282214A1 true WO2023282214A1 (ja) 2023-01-12

Family

ID=84800658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026503 WO2023282214A1 (ja) 2021-07-05 2022-07-01 空間光変調ユニットおよび露光装置

Country Status (6)

Country Link
US (1) US20240126176A1 (ja)
JP (1) JPWO2023282214A1 (ja)
KR (1) KR20240006636A (ja)
CN (1) CN117377910A (ja)
TW (1) TW202307587A (ja)
WO (1) WO2023282214A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267472A (ja) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd 画像形成装置
JP2006343684A (ja) * 2005-06-10 2006-12-21 Dainippon Screen Mfg Co Ltd パターン描画装置
JP2008242169A (ja) * 2007-03-28 2008-10-09 Orc Mfg Co Ltd 露光描画装置
JP2013197452A (ja) * 2012-03-22 2013-09-30 Hitachi High-Technologies Corp 露光装置及び露光方法
JP2015144156A (ja) * 2014-01-31 2015-08-06 株式会社Screenホールディングス パターン描画装置およびパターン描画方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266779A (ja) 2004-02-18 2005-09-29 Fuji Photo Film Co Ltd 露光装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267472A (ja) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd 画像形成装置
JP2006343684A (ja) * 2005-06-10 2006-12-21 Dainippon Screen Mfg Co Ltd パターン描画装置
JP2008242169A (ja) * 2007-03-28 2008-10-09 Orc Mfg Co Ltd 露光描画装置
JP2013197452A (ja) * 2012-03-22 2013-09-30 Hitachi High-Technologies Corp 露光装置及び露光方法
JP2015144156A (ja) * 2014-01-31 2015-08-06 株式会社Screenホールディングス パターン描画装置およびパターン描画方法

Also Published As

Publication number Publication date
US20240126176A1 (en) 2024-04-18
CN117377910A (zh) 2024-01-09
JPWO2023282214A1 (ja) 2023-01-12
TW202307587A (zh) 2023-02-16
KR20240006636A (ko) 2024-01-15

Similar Documents

Publication Publication Date Title
US6870554B2 (en) Maskless lithography with multiplexed spatial light modulators
KR101895825B1 (ko) 조명 장치, 조명 방법, 노광 장치, 노광 방법 및 디바이스 제조 방법
AU2003226932B2 (en) Light modulating engine
TWI448833B (zh) An exposure device and a light source device
US20090219491A1 (en) Method of combining multiple Gaussian beams for efficient uniform illumination of one-dimensional light modulators
KR100908548B1 (ko) 노광 장치 및 노광 방법
TWI504464B (zh) Defect correction device
JP2018112755A (ja) 照明光学装置、照明方法、露光装置、露光方法、およびデバイス製造方法
JP2006186302A (ja) 走査型露光用光源ユニット
WO2023282214A1 (ja) 空間光変調ユニットおよび露光装置
JP2004330536A (ja) 露光ヘッド
CN112965340A (zh) 一种紧凑型无掩模光刻***及其曝光方法
JP2009210726A (ja) マスクレス露光装置
KR101342473B1 (ko) 광빔의 축간 피치 변환 장치 및 기판 노광 장치
JP2003337428A (ja) 露光装置
JP6283798B2 (ja) 露光装置および照明ユニット
KR102675375B1 (ko) 조명 광학계, 노광 장치 및 물품의 제조 방법
WO2022215692A1 (ja) 露光装置、デバイス製造方法、フラットパネルディスプレイの製造方法および露光方法
JP2011119596A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2006251207A (ja) 画像記録システム、画像記録方法、変換装置および変換方法
JP2008298845A (ja) 描画装置
WO2013115208A1 (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
KR20240019288A (ko) 노광 장치, 노광 방법 및 전자 디바이스의 제조 방법
TW202144921A (zh) 光學裝置、曝光裝置、平板顯示器的製造方法及器件製造方法
KR100863071B1 (ko) 405나노미터 레이저다이오드를 이용한 멀티노광장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837630

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033807.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237042454

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042454

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023533112

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837630

Country of ref document: EP

Kind code of ref document: A1