WO2023274061A1 - 车辆的巡航状态的控制方法、装置、adas以及车辆 - Google Patents

车辆的巡航状态的控制方法、装置、adas以及车辆 Download PDF

Info

Publication number
WO2023274061A1
WO2023274061A1 PCT/CN2022/101098 CN2022101098W WO2023274061A1 WO 2023274061 A1 WO2023274061 A1 WO 2023274061A1 CN 2022101098 W CN2022101098 W CN 2022101098W WO 2023274061 A1 WO2023274061 A1 WO 2023274061A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
vehicle
preset
value
speed
Prior art date
Application number
PCT/CN2022/101098
Other languages
English (en)
French (fr)
Inventor
任仲超
Original Assignee
深圳市塞防科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市塞防科技有限公司 filed Critical 深圳市塞防科技有限公司
Publication of WO2023274061A1 publication Critical patent/WO2023274061A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed

Definitions

  • the embodiments of the present invention relate to the technical field of vehicle driving, and in particular, relate to a control method, device, ADAS and vehicle of a cruising state of a vehicle.
  • Cruise control is the control in the direction of the vehicle's driving speed.
  • Cruise control is a type of cruise control that automatically controls the vehicle's speed and distance from the vehicle in front, behind, or obstacles. This type of control problem boils down to the control of engine output and braking.
  • Various engine models, vehicle running models and braking process models are combined with different controller algorithms to form various cruise states.
  • the inventors found that currently, the control of the cruising state of the vehicle requires the driver in the self-driving vehicle to perform manual control according to actual road conditions, which is inconvenient.
  • the embodiments of the present application provide a control method, device, ADAS and vehicle for the cruising state of the vehicle, which overcomes or at least partially solves the need to automatically drive the driver in the vehicle according to the actual road conditions to control the cruising state of the vehicle. Problems with manual control.
  • a method for controlling the cruising state of a vehicle includes an adaptive state, and the adaptive state includes an on state and a stop state, the method includes: when the vehicle's If the cruising state is the adaptive state, vehicle information and preceding vehicle information are acquired, the vehicle information includes vehicle speed, and the preceding vehicle information includes the preceding vehicle speed;
  • the cruising state is controlled to be the stop state
  • control the cruise state to be the on state.
  • the vehicle information includes vehicle acceleration
  • the enabled state includes a starting state and a running state
  • the step of controlling the cruise state to the enabled state further includes: controlling the cruise The state is the start state; enter the step of acquiring vehicle information and preceding vehicle information; when the vehicle speed is less than a preset first value, or when the preceding vehicle speed is less than a preset second value, enter the Control the cruising state to the stop state; otherwise, judge whether the absolute value of the vehicle acceleration is greater than a preset third value; if the absolute value of the vehicle acceleration is greater than the preset third value, then control the The cruising state is the running state.
  • the method further includes returning to the step of controlling the cruising state to the start state if the absolute value of the vehicle acceleration is not greater than the preset third value.
  • the preset first value is 2 m/s
  • the preset second value is a stop speed
  • the preset third value is 0.01 m/ s2 .
  • the method further includes: judging whether there is a cruising confirmation signal; if so, controlling the cruising state to the running state, and entering the step of acquiring vehicle information and preceding vehicle information.
  • the cruising state also includes a constant speed state
  • the method further includes: judging whether there is the vehicle in front at a preset distance ahead of the vehicle; if not, controlling the vehicle Cruise in the constant speed state; if it exists, enter the step of acquiring vehicle information and preceding vehicle information.
  • the preset distance is a safe distance when the cruising state of the vehicle is a constant speed state.
  • the preset distance is between 40-80 meters.
  • the method further includes: judging whether there is a cruise confirmation signal; if so, entering the step of judging whether there is a target vehicle at a preset distance ahead of the vehicle.
  • the cruising state further includes an off state
  • the method further includes: if it does not exist, controlling the cruising state to the off state, and entering the step of judging whether there is a cruise confirmation signal step.
  • a device for controlling a cruising state of a vehicle includes an adaptive state, the adaptive state includes an on state and a stop state, and the device includes: an acquisition module, When the cruising state of the vehicle is the adaptive state, acquiring vehicle information and preceding vehicle information, the vehicle information including the vehicle speed, and the preceding vehicle information including the preceding vehicle speed;
  • the first control module is used to control the cruising state to the stop state when the speed of the vehicle is less than a preset first value, or when the speed of the preceding vehicle is less than a preset second value;
  • the second control module is configured to control the cruising state to the on state when the speed of the vehicle is not less than a preset first value and the speed of the preceding vehicle is not less than a preset second value.
  • the vehicle information includes vehicle acceleration
  • the turned-on state includes a starting state and a running state
  • the second control module includes: a first control unit, configured to control the cruise state to be the said starting state; enter the step of acquiring vehicle information and preceding vehicle information; when said vehicle speed is less than a preset first value, or, when said preceding vehicle speed is less than a preset second value, enter said control
  • the cruising state is the stopped state;
  • the first judging unit is configured to judge the absolute acceleration of the vehicle when the speed of the vehicle is not less than a preset first value and the speed of the preceding vehicle is not less than a preset second value. Whether the value is greater than a preset third value; a second control unit configured to control the cruising state to the running state if the absolute value of the vehicle acceleration is greater than the preset third value.
  • the device further includes entering the first control unit if the absolute value of the vehicle acceleration is not greater than the preset third value.
  • the preset first value is 2 m/s
  • the preset second value is a stop speed
  • the preset third value is 0.01 m/ s2 .
  • the cruising state also includes a constant speed state
  • the device further includes: a second judging module, configured to judge whether there is the vehicle in front at a preset distance ahead of the vehicle;
  • the control module is used to control the vehicle to cruise in the constant speed state if the vehicle in front does not exist in the preset distance ahead of the vehicle, otherwise enter the acquisition module.
  • the preset distance is a safe distance when the cruising state of the vehicle is a constant speed state.
  • the preset distance is between 40-80 meters.
  • the device further includes: a third judging module, configured to judge whether there is a cruise confirmation signal, and enter the second judging module if there is a cruise lack signal.
  • the cruising state further includes an off state
  • the device further includes: a fifth control module, configured to control the cruising state to be the off state if the cruising absence signal does not exist. state, enter the third judging module.
  • an ADAS includes: at least one processor, and a memory, the memory is connected to the at least one processor network, and the memory stores information that can be used by the at least one processor.
  • a processor-executable instruction the instructions being executed by the at least one processor, to enable the at least one processor to perform the method as described above.
  • a vehicle is provided, and the vehicle includes the above-mentioned ADAS.
  • the beneficial effects of the embodiments of the present application are: by acquiring vehicle information and preceding vehicle information, the vehicle information includes the vehicle speed, and the preceding vehicle information includes the preceding vehicle speed; when the vehicle speed is less than a preset first value, or, When the vehicle speed of the preceding vehicle is less than the preset second value, the cruising state is controlled to be the stopped state; otherwise, the cruising state is controlled to be the open state, and the vehicle can The cruising state of the vehicle is controlled by the cruising state of the vehicle, so that the driver does not need manual control, which is very convenient.
  • Fig. 1 is a connection relationship diagram between various components in an ADAS provided by an embodiment of the present application
  • Fig. 2 is a schematic flow chart of the first method for controlling the cruising state of the vehicle provided by the embodiment of the present application;
  • FIG. 3 is a schematic flow chart of controlling the cruising state to be on according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a second control method for a cruise state of a vehicle provided in an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a third control method for a cruising state of a vehicle provided in an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a fourth control method for a cruising state of a vehicle provided in an embodiment of the present application.
  • Fig. 7 is a schematic flow chart of a fifth control method for a cruising state of a vehicle provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a sixth method for controlling the cruising state of a vehicle provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a seventh method for controlling the cruising state of a vehicle provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a control device for a cruising state of a vehicle provided by an embodiment of the present application.
  • the embodiment of the present application provides a vehicle, which is equipped with ADAS10 (Advanced Driving Assistance System), that is, an advanced driving assistance system.
  • ADAS10 Advanced Driving Assistance System
  • the advanced driving assistance system includes various sensors installed on the vehicle, such as vehicle speed sensors, Acceleration sensors, millimeter-wave radars, lidars, single/binocular cameras, and satellite navigation, etc., sense the surrounding environment at any time during the driving process of the vehicle, collect data, identify, detect and track static and dynamic objects, and combine Navigation map data, system calculation and analysis, so as to provide data support for the automatic driving of vehicles.
  • FIG. 1 is a connection relationship diagram between various components in an ADAS 10 provided by an embodiment of the present application.
  • the ADAS 10 includes: a sensor module 101 , a network module 102 , a human-computer interaction module 103 , a display module 104 and a control module 105 .
  • the sensor module 101 , the network module 102 , the human-computer interaction module 103 and the display module 104 are respectively connected to the control module 105 .
  • the sensor module 101 includes the vehicle speed sensor, acceleration sensor, millimeter wave radar, laser radar, single/binocular camera and satellite navigation, etc.
  • the sensor module 101 is used to obtain vehicle information, and the vehicle information may include but not limited to vehicle speed , vehicle acceleration, the distance between the vehicle and the vehicle in front of the vehicle, etc.
  • the sensor module 101 is also used to acquire the information of the vehicle ahead, which may include but not limited to the speed of the vehicle ahead, the acceleration of the vehicle ahead and so on.
  • the number of preceding vehicles in front of the vehicle may be one or a plurality of vehicles.
  • the sensor module 101 also has the ability to network through wired networks such as CAN and serial ports. It can send the collected information to the control module 105 for data processing through the network, and can also send it to other vehicles, such as the front car.
  • the network module 102 is used to network with an external server.
  • the external server is used to store vehicle information and previous vehicle information.
  • the external server can also receive user control information on the vehicle, and send the control information to the The control module 105 of the vehicle.
  • the network module 102 is also used to transmit the data collected by the sensor module 101 to the external server.
  • the network module 102 can also be used to receive the location information of the preceding vehicle, and receive the preceding vehicle information sent by the preceding vehicle, or the preceding vehicle information sent by an external server.
  • the man-machine interaction module 103 is used to receive the cruising confirmation information input by the user, and send the cruising confirmation information to the control module 105, so as to control the vehicle.
  • the human-computer interaction module 103 can be used to receive input digital or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the human-computer interaction module 103 includes a touch panel 1031 and other input devices 1032 .
  • the touch panel 1031 also referred to as a touch screen, can collect touch operations of the user on or near it (for example, the user uses any suitable object or accessory such as a finger, a stylus, etc. on the touch panel 1031 or near the touch panel 1031 operate).
  • the touch panel 1031 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and sends it to the For the processor 1010, receive the command sent by the processor 1010 and execute it.
  • the touch panel 1031 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the human-computer interaction module 103 may also include other input devices 1032 .
  • other input devices 1032 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 1031 can be covered on the display panel 1041, and when the touch panel 1031 detects a touch operation on or near it, it will be sent to the processor 1010 to determine the type of the touch event, and then the processor 1010 will The type of event provides a corresponding visual output on the display panel 1041 .
  • the touch panel 1031 and the display panel 1041 are used as two independent components to realize the input and output functions of the electronic device, in some embodiments, the touch panel 1031 and the display panel 1041 can be integrated. The implementation of the input and output functions of the electronic device is not specifically limited here.
  • the display module 104 is used for displaying information input by the human-computer interaction module 103 or information provided to the user.
  • the display module 104 may include a display panel, and the display panel may be configured in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the control module 105 is used to generate control information for the vehicle according to the vehicle information of the vehicle and the preceding vehicle information of the preceding vehicle, and control the vehicle according to the generated control information.
  • the control module 105 can be used to control the cruising state of the vehicle according to the method for controlling the cruising state of the vehicle provided in this application.
  • control information may include accelerator opening and/or brake pressure of the vehicle, the vehicle may be controlled to accelerate according to the accelerator opening, and the vehicle may be controlled to brake according to the brake pressure.
  • control module 105 includes: one or more processors 1051 and a memory 1052 , one memory is taken as an example in FIG. 1 .
  • the processor 1051 and the memory 1052 may be connected through a bus or in other ways, and the connection through a bus is used as an example in the embodiment of the present application.
  • the memory 1052 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the control method of the cruising state of the vehicle in the embodiment of the present application Corresponding program instruction/module.
  • the processor 1051 runs the non-volatile software programs, instructions and modules stored in the memory 1052 to execute various functional applications and data processing of the control device of the cruising state of the vehicle, that is, to implement the vehicle in the method embodiment of the present application.
  • the control method of the cruise state can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the control method of the cruising state of the vehicle in the embodiment of the present application Corresponding program instruction/module.
  • the processor 1051 runs the non-volatile software programs, instructions and modules stored in the memory 1052 to execute various functional applications and data processing of the control device of the cruising state of the vehicle, that is, to implement the vehicle in the method embodiment of the present application.
  • the memory 1052 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by the use of the control device according to the cruising state of the vehicle Wait.
  • the memory 1052 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the storage 1052 may optionally include storages that are remotely located relative to the processor 1051, and these remote storages may be connected to the database access device through a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile networks, and combinations thereof.
  • the one or more modules are stored in the memory 1052, and when executed by the one or more processors 1051, execute the method for controlling the cruising state of the vehicle in any method embodiment of the present application.
  • the embodiment of the present application provides a non-volatile computer-readable storage medium, the non-volatile computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by ADAS10 in any method embodiment of the present application A method for controlling the cruising state of a vehicle in .
  • An embodiment of the present application provides a computer program product, including a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the control method of the cruising state of the vehicle in any method embodiment of the present application.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course can also be implemented by hardware.
  • all or part of the process in the method of the embodiment of the present application can be completed by instructing related hardware through a computer program, and the program can be stored in a computer-readable storage medium, the program During execution, it may include the procedures of the embodiments of the methods of the present application.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • Fig. 2 is a schematic flow chart of the first method for controlling the cruising state of the vehicle provided by the embodiment of the present application, and the method includes the following steps:
  • Step S101 when the cruising state of the vehicle is the adaptive state, acquire vehicle information and preceding vehicle information, the vehicle information includes the vehicle speed, and the preceding vehicle information includes the preceding vehicle speed.
  • the cruising state includes an adaptive state, and the adaptive state is to adaptively adjust the vehicle information of the vehicle according to the preceding vehicle information of the preceding vehicle in front of the vehicle, for example, adjust the speed or acceleration of the vehicle, so as to realize cruise control, That is, control in the direction of travel of the vehicle is realized.
  • the preceding vehicle in front of the vehicle is called a target vehicle, and the preceding vehicle is a vehicle at a preset distance in front of the vehicle, and the preset distance is between 40-80 meters.
  • the preceding vehicle information of the preceding vehicle closest to the vehicle in front of the vehicle is taken into consideration.
  • the self-adaptive state includes an open state and a stop state, the open state is an adaptive state, and the stop state is a stop adaptive state.
  • the adaptive state is closely related to the information of the preceding vehicle. Therefore, when the cruising state of the vehicle is the adaptive state, it is necessary to always pay attention to the vehicle information of the own vehicle and the preceding vehicle information of the preceding vehicle in front of the vehicle.
  • Step S102 when the speed of the vehicle is less than a preset first value, or when the speed of the preceding vehicle is less than a preset second value, control the cruising state to the stop state; otherwise, go to step S103.
  • the vehicle speed is less than the preset first value, it indicates that the vehicle speed is small, and then it can be inferred that the vehicle speed of the preceding vehicle in front of the vehicle is small, and if the vehicle speed of the preceding vehicle in front of the vehicle is small, it can be inferred that the vehicle speed of the preceding vehicle is small. If the preceding vehicle is about to stop or has already stopped, the cruising state can be adjusted to a stopped state.
  • the preset first value is 2 m/s.
  • the cruise state can also be adjusted to a stop state.
  • the preset second value is a stop speed.
  • the stop speed is a value less than 2 m/s, such as 0.2 m/s.
  • the cruise state is adjusted to stop state.
  • Step S103 controlling the cruising state to be the on state.
  • control the cruise state to the on state that is, continue to execute cruise control.
  • step S103 further includes the following steps:
  • Step S1031 controlling the cruising state to be the starting state.
  • step S101 When the speed of the vehicle is not less than the preset first value, and when the speed of the preceding vehicle is not less than the preset second value, control the cruising state to the start state in the open state, and then enter the step S101, enter the step of acquiring vehicle information and preceding vehicle information, and enter step S102, when the speed of the vehicle is less than a preset first value, or when the speed of the preceding vehicle is less than a preset second value, enter the step of The step of controlling the cruising state to the stop state, when it is detected again that the speed of the vehicle is not less than the preset first value, and when the speed of the vehicle in front is not less than the preset second value, then execute the step S1032.
  • Step S1032 judging whether the absolute value of the vehicle acceleration is greater than a preset third value, if yes, execute step S1033, otherwise return to step S1031.
  • the absolute value of the vehicle acceleration is greater than the preset third value, it means that the vehicle is accelerating or decelerating, and it can be inferred that the vehicle is in a driving state, not in a state about to stop running or has stopped running.
  • the step S1033. Control the cruising state to be the running state.
  • step S1031 If the absolute value of the acceleration of the vehicle is not greater than the preset third value, it indicates that the vehicle is not in the state of accelerating or decelerating, and at this time, return to step S1031.
  • the preset third value is 0.01 m/s 2 .
  • Step S1033 controlling the cruising state to be the running state.
  • the running state is the running state of the adaptive cruise, that is, the state in which the vehicle performs cruise control according to the information of the own vehicle and the information of the preceding vehicle. For example, when the vehicle in front decelerates, the vehicle in the running state of adaptive cruise decelerates, and when the vehicle in front accelerates, the vehicle in the running state of adaptive cruise accelerates.
  • control method for the cruising state of the vehicle above may rely on a mathematical model such as a finite-state self-service machine, which is referred to as a state machine for short. Its main features are as follows: (1) The state machine has a limited number of states, and different states represent different meanings. According to actual needs, the state machine can complete the prescribed tasks in different states. (2) The characters appearing in the input string can be collected together to form an alphabet. All strings processed by the state machine are strings on this alphabet. Among them, the input string represents the conditions for entering each state in the state machine. (3) The state machine reads a character from the input string in any state, and transfers to a new state according to the current state and the character read in.
  • the above start state, running state and stop state can be used as different states of the state machine, and the conditions for entering the above start state, running state or stop state can be made into character strings to form an alphabet.
  • the state machine reads a character from the character string representing the condition of entering the start state, running state or stop state, it can enter a new state according to the current state and the read-in character.
  • the current state is the start state, when it is detected that the speed of the vehicle is lower than the preset first value, or when the speed of the preceding vehicle is lower than the preset second value, that is, when the condition for entering the stop state is met, the control The cruising state is the stop state.
  • the vehicle information when the cruising state of the vehicle is the adaptive state, the vehicle information and the preceding vehicle information are obtained, the vehicle information includes the vehicle speed, the preceding vehicle information includes the preceding vehicle speed; the vehicle speed When it is less than a preset first value, or when the vehicle speed of the preceding vehicle is less than a preset second value, the cruising state is controlled to be the stop state; otherwise, the cruising state is controlled to be the on state.
  • the vehicle can control the cruising state of the vehicle according to the vehicle information, the preceding vehicle information, and the cruising state of the vehicle, so that manual control by the driver is not required, which is very convenient.
  • FIG. 4 is a schematic flowchart of a second method for controlling the cruising state of a vehicle provided by an embodiment of the present application. The method comprises the steps of:
  • Step S101a judging whether there is a cruise confirmation signal, if yes, go to step S102a, otherwise go to step S103a.
  • the cruise confirmation signal is a control signal for the vehicle to enter the cruise state
  • the cruise confirmation signal is output by the user through the ADAS of the vehicle, for example, it may be input by the user through the switch button in the human-computer interaction module.
  • the ADAS can detect the cruise confirmation signal.
  • step S101a can be performed before step S101, or can be performed before or after any step of the method steps provided in this application, that is, step S101a can be performed every preset time, that is, every preset time It is judged whether there is a cruise confirmation signal, and step S102a or step S103a is executed according to the judgment result.
  • Step S102a control the cruising state to be the running state, and enter step S101.
  • the cruise state can be controlled to be the running state.
  • the cruise state may also be controlled to be the on state.
  • step S101 is executed to further determine in the adaptive state which kind of adaptation is specifically performed in the start state, the running state or the stop state. state.
  • Step S101 when the cruising state of the vehicle is the adaptive state, acquire vehicle information and preceding vehicle information, the vehicle information includes the vehicle speed, and the preceding vehicle information includes the preceding vehicle speed.
  • Step S102 when the speed of the vehicle is less than a preset first value, or when the speed of the preceding vehicle is less than a preset second value, control the cruising state to the stop state.
  • Step S103 otherwise, control the cruising state to the on state.
  • step S102a after entering step S101, for example, step S101-step S102 or step S103 shown in FIG. 4 can be performed, and for example, step S101-step S102 shown in FIG. S1032-step S1033, or step S1031.
  • step S101 For the specific functions and implementations of step S101, step S102, step S103, step S1032, step S1033, and step S1031, reference may be made to the description in the previous embodiments, and details are not repeated here.
  • Step S103a controlling the cruising state to be off.
  • the closed state is a state in which the cruise state is closed, that is, the situation that the cruise state can be entered without user confirmation.
  • the vehicle In the closed state, the vehicle may be in a running state.
  • the off state is different from the stop state.
  • the cruise state is on, that is, the user confirms to enter the cruise state in the stop state, that is, there is a cruise confirmation signal in the stop state.
  • the above-mentioned closed state may also be a state of the state machine.
  • the vehicle by judging whether there is a cruising confirmation signal; if so, controlling the cruising state to the running state, and entering the step of acquiring vehicle information and preceding vehicle information, so that on the one hand, the vehicle can information, the information of the vehicle ahead, and the cruising state of the vehicle to control the cruising state of the vehicle, so that the driver does not need manual control, which is very convenient.
  • the first step is to perform cruise control only when the user confirms that the cruise state can be entered, so that the safety of the vehicle cruise control can be improved, and the safety of the vehicle during driving can be improved.
  • FIG. 6 is a schematic flowchart of a fourth method for controlling the cruising state of a vehicle provided by an embodiment of the present application. The method comprises the steps of:
  • Step S101b judging whether there is the vehicle in front of the preset distance ahead of the vehicle, if not, execute step S102b, otherwise enter step S101.
  • the preset distance is a safety distance when the cruising state of the vehicle is a constant speed state. In some embodiments, the preset distance is between 40-80 meters.
  • the preset distance ahead of the vehicle can be used by the vehicle relatively freely, and cruise at a constant speed can be performed at this time.
  • the number of the preceding vehicle may be one, or two or more.
  • the absence of the preceding vehicle in the preset distance ahead of the vehicle means that there is not a single preceding vehicle in the preset distance ahead of the vehicle.
  • step S101 If there is the vehicle in front of the preset distance in front of the vehicle, it means that the preset distance in front of the vehicle cannot be used freely by the vehicle, and the vehicle speed needs to be controlled. At this time, enter step S101, so as to facilitate real-time information based on vehicle information and Cruise control with information from the vehicle ahead.
  • Step S102b controlling the vehicle to cruise at the constant speed state.
  • the constant speed state is a state in which the vehicle runs at a preset fixed speed
  • the preset fixed speed can be preset according to actual conditions, for example, it can be 60 m/s.
  • Step S101 when the cruising state of the vehicle is the adaptive state, acquire vehicle information and preceding vehicle information, the vehicle information includes the vehicle speed, and the preceding vehicle information includes the preceding vehicle speed.
  • Step S102 when the speed of the vehicle is less than a preset first value, or when the speed of the preceding vehicle is less than a preset second value, control the cruising state to the stop state.
  • Step S103 otherwise, control the cruising state to the on state.
  • step S101b after entering step S101, for example, step S101-step S102 or step S103 shown in FIG. 6 may be performed, or step S101-step S102 shown in FIG. S1032-step S1033, or step S1031.
  • step S101 For the specific functions and implementations of step S101 , step S102 , step S103 , step S1032 , step S1033 and step S1031 , reference may be made to the descriptions in the previous embodiments, which will not be repeated here.
  • FIG. 8 is a schematic flowchart of a sixth method for controlling the cruising state of a vehicle provided by an embodiment of the present application. The method comprises the steps of:
  • Step S101c judging whether there is a cruise confirmation signal, if yes, go to step S101b, otherwise go to step S102c.
  • the cruise confirmation signal is a control signal for the vehicle to enter the cruise state
  • the cruise confirmation signal is output by the user through the ADAS of the vehicle, for example, it may be input by the user through the switch button in the human-computer interaction module.
  • the ADAS can detect the cruise confirmation signal.
  • step S101c may be performed before step S101b, or may be performed before or after step S102b, that is, step S101c is performed every preset time, that is, it is judged every preset time whether there is a cruise confirmation signal, and Execute step S102c or execute step S101b according to the determination result.
  • step S101b If there is the cruising confirmation signal, go to step S101b, that is, go to the step of judging whether there is the vehicle in front at the preset distance ahead of the vehicle. If there is no cruise confirmation signal, control the cruise state to the off state, and enter the step of judging whether there is a cruise confirmation signal.
  • step S101c after entering step S101b, step S101-step S102 or step S103 shown in FIG. 8 may be executed, for example, step S101-step S102 shown in FIG. S1032-step S1033, or step S1031.
  • step S101 For the specific functions and implementations of step S101 , step S102 , step S103 , step S1032 , step S1033 and step S1031 , reference may be made to the descriptions in the previous embodiments, which will not be repeated here.
  • Step S102c controlling the cruising state to be the off state.
  • the closed state is a state in which the cruise state is closed, that is, the situation that the cruise state can be entered without user confirmation.
  • the vehicle In the closed state, the vehicle may be in a running state.
  • the off state is different from the stop state.
  • the cruise state is on, that is, the user confirms to enter the cruise state in the stop state, that is, there is a cruise confirmation signal in the stop state.
  • FIG. 10 is a schematic diagram of a control device for a cruising state of a vehicle provided in an embodiment of the present application.
  • the cruising state includes an adaptive state, and the adaptive state includes an on state and a stop state.
  • the state control device 200 includes: an acquisition module 201, configured to acquire vehicle information and preceding vehicle information when the cruising state of the vehicle is the adaptive state, the vehicle information includes the vehicle speed, and the preceding vehicle information includes the preceding vehicle information Vehicle speed; the first control module 202 is used to control the cruising state to the stop state when the vehicle speed is less than a preset first value, or when the vehicle speed of the preceding vehicle is less than a preset second value; the second The control module 203 is configured to control the cruise state to the on state when the speed of the vehicle is not less than a preset first value and the speed of the preceding vehicle is not less than a preset second value.
  • the vehicle information includes vehicle acceleration
  • the open state includes start state and running state
  • the second control module 203 includes: a first control unit 2031, configured to control the cruise state to be the Start state; enter the step of acquiring vehicle information and preceding vehicle information; when the speed of the vehicle is less than a preset first value, or when the speed of the preceding vehicle is less than a preset second value, enter the control of the cruise
  • the state is the stopped state
  • the first judging unit 2032 is configured to judge the absolute value of the vehicle acceleration when the speed of the vehicle is not less than a preset first value and the speed of the preceding vehicle is not less than a preset second value Whether the value is greater than a preset third value
  • the second control unit 2033 is configured to control the cruising state to the running state if the absolute value of the vehicle acceleration is greater than the preset third value.
  • the device further includes entering the first control unit 2031 if the absolute value of the vehicle acceleration is not greater than the preset third value.
  • the preset first value is 2 m/s
  • the preset second value is a stop speed
  • the preset third value is 0.01 m/s 2 .
  • the device further includes: a first judging module 204, configured to judge whether there is a cruise confirmation signal; a third control module 205, configured to control the cruise state to The running state enters the obtaining module 201 .
  • the cruising state also includes a constant speed state
  • the device further includes: a second judging module 206, configured to judge whether there is the vehicle in front at a preset distance ahead of the vehicle; a fourth control module 207. If the vehicle in front does not exist in the preset distance ahead of the vehicle, control the vehicle to cruise at the constant speed state; otherwise, enter the acquiring module 201.
  • the preset distance is a safe distance when the cruising state of the vehicle is a constant speed state.
  • the preset distance is between 40-80 meters.
  • the device further includes: a third judging module 208, configured to judge whether there is a cruise confirmation signal, and if there is a cruise lack signal, enter the second judging module 206.
  • a third judging module 208 configured to judge whether there is a cruise confirmation signal, and if there is a cruise lack signal, enter the second judging module 206.
  • the cruising state further includes an off state
  • the device further includes: a fifth control module 209, configured to control the cruising state to the off state if the cruising absence signal does not exist, Enter the third judging module 208 .
  • the vehicle information when the cruising state of the vehicle is the adaptive state through the acquisition module 201, the vehicle information and the preceding vehicle information are acquired, the vehicle information includes the vehicle speed, and the preceding vehicle information includes the preceding vehicle speed;
  • the first control module 202 when the speed of the vehicle is less than a preset first value, or when the speed of the vehicle in front is less than a preset second value, the cruising state is controlled to be the stop state;
  • the second control Module 203 when the speed of the vehicle is not less than a preset first value, and when the speed of the preceding vehicle is not less than a preset second value, control the cruise state to the on state, so that the vehicle can
  • the front vehicle information and the cruising state of the vehicle control the cruising state of the vehicle, so that the driver does not need manual control, which is very convenient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种车辆的巡航状态的控制方法、装置、ADAS以及车辆。巡航状态控制方法包括:当车辆的巡航状态为自适应状态,则获取本车车速和前车车速;当本车车速小于预设第一值时,或者,前车车速小于预设第二值时,控制巡航状态为停止状态,否则,控制巡航状态为开启状态。

Description

车辆的巡航状态的控制方法、装置、ADAS以及车辆
本申请要求于2021年07月02日提交中国专利局、申请号为202110751295.6、申请名称为“车辆的巡航状态的控制方法、装置、ADAS以及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及车辆驾驶技术领域,特别是涉及车辆的巡航状态的控制方法、装置、ADAS以及车辆。
背景技术
随着社会科技的发展,全自动的或者半自动的自动驾驶车辆慢慢地成为研究热点。自动驾驶车辆行使过程中,需要进行巡航控制。巡航控制是在车辆的行车速度方向上的控制。车辆车速以及车辆与前车、后车或障碍物距离的自动控制巡航控制就是一种巡航控制。这类控制问题可归结为对发动机输出和刹车的控制。各种发动机模型、车辆运行模型和刹车过程模型与不同的控制器算法结合,构成了各种各样的巡航状态。
但是,在实现本发明实施例的过程中,发明人发现:目前,对车辆的巡航状态的控制需要自动驾驶车辆内的驾驶员根据实际路况等进行手动控制,不方便。
发明内容
鉴于上述问题,本申请实施例提供了车辆的巡航状态的控制方法、装置、ADAS以及车辆,克服了或者至少部分地解决了对车辆的巡航状态的控制需要自动驾驶车辆内的驾驶员根据实际路况进行手动控制的问题。
根据本申请实施例的一个方面,提供了一种车辆的巡航状态的控制方法,所述巡航状态包括自适应状态,所述自适应状态包括开启状态和停止状态,所述方法包括:当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速;
所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态;
否则,控制所述巡航状态为所述开启状态。
在一种可选的方式中,所述车辆信息包括车辆加速度,所述开启状态包括开始状态和运行状态,所述控制所述巡航状态为所述开启状态的步骤,进一步包括:控制所述巡航状态为所述开始状态;进入所述获取车辆信息和前车信息的步骤;所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,进入所述控制所述巡航状态为所述停止状态;否则,判断所述车辆加速度的绝对值是否大于预设第三值;若所述车辆加速度的绝对值大于所述预设第三值,则控制所述巡航状态为所述运行状态。
在一种可选的方式中,所述方法还包括若所述车辆加速度的绝对值不大于所述预设第三值,则返回所述控制所述巡航状态为所述开始状态的步骤。
在一种可选的方式中,所述预设第一值为2米/秒,和/或,所述预设第二值为停止速度,和/或,所述预设第三值为0.01米/秒 2
在一种可选的方式中,所述方法还包括:判断是否存在巡航确认信号;若存在,则控制所述巡航状态为所述运行状态,进入所述获取车辆信息和前车信息的步骤。
在一种可选的方式中,所述巡航状态还包括定速状态,所述方法还包括:判断所述车辆的前方预设距离是否存在所述前车;若不存在,则控制所述车辆以所述定速状态进行巡航;若存在,则进入所述获取车辆信息和前车信息的步骤。
在一种可选的方式中,所述预设距离为所述车辆的巡航状态为定速状态时的安全距离。
在一种可选的方式中,所述预设距离在40-80米之间。
在一种可选的方式中,所述方法还包括:判断是否存在巡航确认信号;若存在,则进入所述判断所述车辆的前方预设距离是否存在目标车辆的步骤。
在一种可选的方式中,所述巡航状态还包括关闭状态,所述方法还包括:若不存在,则控制所述巡航状态为所述关闭状态,进入所述判断是否存在巡航确认信号的步骤。
根据本申请实施例的一个方面,提供了一种车辆的巡航状态的控制装置,所述巡航状态包括自适应状态,所述自适应状态包括开启状态和停止状态,所述装置包括:获取模块,用于当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速;
第一控制模块,用于所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态;
第二控制模块,用于所述车辆车速不小于预设第一值时,以及所述前车车速不小于预设第二值时,控制所述巡航状态为所述开启状态。
在一种可选的方式中,所述车辆信息包括车辆加速度,所述开启状态包括开始状态和运行状态,所述第二控制模块包括:第一控制单元,用于控制所述巡航状态为所述开始状态;进入所述获取车辆信息和前车信息的步骤;所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,进入所述控制所述巡航状态为所述停止状态;第一判断单元,用于所述车辆车速不小于预设第一值时,以及所述前车车速不小于预设第二值时,判断所述车辆加速度的绝对值是否大于预设第三值;第二控制单元,用于若所述车辆加速度的绝对值大于所述预设第三值,则控制所述巡航状态为所述运行状态。
在一种可选的方式中,所述装置还包括若所述车辆加速度的绝对值不大于所述预设第三值,则进入所述第一控制单元。
在一种可选的方式中,所述预设第一值为2米/秒,和/或,所述预设第二值为停止速度,和/或,所述预设第三值为0.01米/秒 2
在一种可选的方式中,第一判断模块,用于判断是否存在巡航确认信号;第三控制模块,用于若存在所述巡航确认信号,则控制所述巡航状态为所述运行状态,进入所述获取模块。
在一种可选的方式中,所述巡航状态还包括定速状态,所述装置还包括:第二判断模块,用于判断所述车辆的前方预设距离是否存在所述前车;第四控制模块,用于若所述车辆的前方预设距离不存在所述前车,则控制所述车辆以所述定速状态进行巡航,否则进入所述获取模块。
在一种可选的方式中,所述预设距离为所述车辆的巡航状态为定速状态时的安全距离。
在一种可选的方式中,所述预设距离在40-80米之间。
在一种可选的方式中,所述装置还包括:第三判断模块,用于判断是否存在巡航确认信号,若存在所述巡航缺信号,则进入所述第二判断模块。
在一种可选的方式中,所述巡航状态还包括关闭状态,所述装置还包括:第五控制模块,用于若不存在所述巡航缺信号,则控制所述巡航状态为所述关闭状态,进入所述第三判断模块。
根据本申请实施例的一个方面,提供了一种ADAS,该ADAS包括:至少一个处理器,以及存储器,所述存储器与所述至少一个处理器网络连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
根据本申请实施例的一个方面,提供了一种车辆,所述车辆包括上述ADAS。
本申请实施例的有益效果是:通过获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速;所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态,否则,控制所述巡航状态为所述开启状态,则车辆可根据车辆信息、前车信息、车辆所处的巡航状态对车辆的巡航状态进行控制,从而不需要驾驶员手动控制,非常方便。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的一种ADAS中各部件之间的连接关系图;
图2是本申请实施例提供的第一种车辆的巡航状态的控制方法的流程示意图;
图3是本申请实施例提供的一种控制巡航状态为开启状态的流程示意图;
图4是本申请实施例提供的第二种车辆的巡航状态的控制方法的流程示意图;
图5是本申请实施例提供的第三种车辆的巡航状态的控制方法的流程示意图;
图6是本申请实施例提供的第四种车辆的巡航状态的控制方法的流程示意图;
图7是本申请实施例提供的第五种车辆的巡航状态的控制方法的流程示意图;
图8是本申请实施例提供的第六种车辆的巡航状态的控制方法的流程示意图;
图9是本申请实施例提供的第七种车辆的巡航状态的控制方法的流程示意图;
图10是本申请实施例提供的一种车辆的巡航状态的控制装置的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
此外,下面所描述的本申请各个实施例中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本申请实施例提供了一种车辆,该车辆上搭载有ADAS10(Advanced Driving Assistance System),即高级驾驶辅助***,高级驾驶辅助***包括安装在车辆上的各式各样传感器,例如车辆速度传感器、加速度传感器、毫米 波雷达、激光雷达、单/双目摄像头以及卫星导航等,在车辆行驶过程中随时来感应周围的环境,收集数据,进行静态、动态物体的辨识、侦测与追踪,并结合导航地图数据,进行***的运算与分析,从而为车辆的自动驾驶提供数据支撑。
请参阅图1,图1是本申请实施例提供的一种ADAS10中各部件之间的连接关系图。所述ADAS10包括:传感器模块101、网络模块102、人机交互模块103、显示模块104和控制模块105。所述传感器模块101、网络模块102、人机交互模块103和显示模块104分别与所述控制模块105连接。
其中,传感器模块101包括所述车辆速度传感器、加速度传感器、毫米波雷达、激光雷达、单/双目摄像头以及卫星导航等,传感器模块101用于获取车辆信息,车辆信息可以包括但不限于车辆车速、车辆加速度、车辆与车辆前方的前车之间的距离等。
其中,传感器模块101还用于获取前车信息,前车信息可以包括但不限于前车车速、前车加速度等。车辆前方的前车的数量可以是一辆,也可以是多辆。
传感器模块101还具有CAN、串口等有线网络方式进行网络的能力,其可以将采集到的信息通过所述网络方式发送给控制模块105进行数据处理,也可以发送给其他的车辆,例如所述前车。
网络模块102用于与外部服务器网络,外部服务器用于存储车辆信息、前车信息,外部服务器还可接收用户对车辆的控制信息,并将所述控制信息通过所述网络模块102发送至所述车辆的所述控制模块105。
网络模块102还用于将传感器模块101采集的数据等传送所述外部服务器。
网络模块102还可用于接收所述前车的定位信息,以及接收前车发送的所述前车信息,或者是外部服务器发送的所述前车的前车信息。
人机交互模块103用于接收用户输入的巡航确认信息,并将巡航确认信息发送控制模块105,以实现对车辆的控制。
人机交互模块103可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。具体地,人机交互模块103包括触控面板1031以及其他输入设备1032。触控面板1031,也称为触摸屏, 可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1031上或在触控面板1031附近的操作)。触控面板1031可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1010,接收处理器1010发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1031。除了触控面板1031,人机交互模块103还可以包括其他输入设备1032。具体地,其他输入设备1032可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1031可覆盖在显示面板1041上,当触控面板1031检测到在其上或附近的触摸操作后,传送给处理器1010以确定触摸事件的类型,随后处理器1010根据触摸事件的类型在显示面板1041上提供相应的视觉输出。虽然在图9中,触控面板1031与显示面板1041是作为两个独立的部件来实现电子设备的输入和输出功能,但是在某些实施例中,可以将触控面板1031与显示面板1041集成而实现电子设备的输入和输出功能,具体此处不做限定。
显示模块104用于显示由人机交互模块103输入的信息或提供给用户的信息。显示模块104可包括显示面板,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板。
控制模块105用于根据车辆的车辆信息和前车的前车信息,从而生成对车辆的控制信息,并根据生成的控制信息对车辆进行控制。例如,控制模块105可用于根据本申请提供的车辆的巡航状态的控制方法对车辆的巡航状态进行控制。
其中,控制信息可以包括车辆的油门开度和/或制动压力,根据油门开度可以控制车辆进行加速度,根据制动压力可以控制车辆进行制动。
请继续参阅图1,控制模块105包括:一个或多个处理器1051以及存储器1052,图1中以一个存储器为例。
处理器1051和存储器1052可以通过总线或者其他方式连接,本申请实施例中以通过总线连接为例。
存储器1052作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的车辆的巡航状态的控制方法对应的程序指令/模块。处理器1051通过运行存储在存储器1052中的非易失性软件程序、指令以及模块,从而执行车辆的巡航状态的控制装置的各种功能应用以及数据处理,即实现本申请方法实施例的车辆的巡航状态的控制方法。
存储器1052可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据车辆的巡航状态的控制装置的使用所创建的数据等。此外,存储器1052可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器1052可选包括相对于处理器1051远程设置的存储器,这些远程存储器可以通过网络连接至数据库访问装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动网络网及其组合。
所述一个或者多个模块存储在所述存储器1052中,当被所述一个或者多个处理器1051执行时,执行本申请任意方法实施例中的车辆的巡航状态的控制方法。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例提供了一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被ADAS10执行本申请任意方法实施例中的车辆的巡航状态的控制方法。
本申请实施例提供了一种计算机程序产品,包括存储在非易失性计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时时,使所述计算机执行本申请任意方法实施例中的车辆的巡航状态的控制方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的 单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件来实现。本领域普通技术人员可以理解实现本申请实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如本申请各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
请参阅图2,图2是本申请实施例提供的第一种车辆的巡航状态的控制方法的流程示意图,该方法包括以下步骤:
步骤S101,当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速。
所述巡航状态包括自适应状态,所述自适应状态为根据车辆前方的前车的前车信息,自适应地调整车辆的车辆信息,例如,调整车辆的速度或者加速度等,从而实现巡航控制,即实现在车辆的行驶方向上的控制。
在一些实施例中,所述车辆前方的前车被称为目标车辆,所述前车是在所述车辆前方预设距离的车辆,所述预设距离在40-80米之间。
值得说明的是,在一些实施例中,在对车辆进行巡航控制时,考虑的是车辆前方距离车辆最近的前车的前车信息。
所述自适应状态包括开启状态和停止状态,所述开启状态即开启自适应状态,所述停止状态即停止自适应状态。
所述自适应状态与前车信息息息相关,因此,在车辆的巡航状态为所述自适应状态时,需要时刻注意本车的车辆信息以及车辆前方的前车的前车信息。
步骤S102,所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态,否则,进入步骤S103。
在车辆这一端,所述车辆车速小于预设第一值表明所述车辆车速小,进而 可推断所述车辆前方的前车的车速小,所述车辆前方的前车的车速小,则推断所述前车即将停止或者已经停止,则巡航状态可调整为停止状态。
在一些实施例中,所述预设第一值为2米/秒。
在前车这一端,所述前车车速小于预设第二值表明所述前车的车速小,则推断所述前车即将停止或者已经停止,则巡航状态也可调整为停止状态。
在一些实施例中,所述预设第二值为停止速度。所述停止速度为小于2米/秒的数值,例如是0.2米/秒。
无论是在车辆这一端推断出前车的车速小,前车即将停止或者已经停止,还是在前车这一端推断出前车的车速小,前车即将停止或者已经停止,则都将巡航状态调整为停止状态。
步骤S103,控制所述巡航状态为所述开启状态。
当所述车辆车速不小于所述预设第一值,以及当所述前车车速不小于预设第二值时,控制所述巡航状态为所述开启状态,即继续执行巡航控制。
在一些实施例中,为了保障车辆的行驶安全,当所述车辆车速不小于所述预设第一值,以及当所述前车车速不小于预设第二值时,并没有立即执行巡航控制,而是先控制所述巡航状态为开始状态,开始状态为开启状态中的一种。在一些实施例中,开启状态还包括运行状态。所述开始状态相当于巡航状态的初始化状态,即车辆即将进入运行状态的状态,或者,车辆即将进入运行状态之前的准备状态。所述车辆信息包括车辆加速度,请参阅图3,步骤S103进一步的包括以下步骤:
步骤S1031,控制所述巡航状态为所述开始状态。
在当所述车辆车速不小于所述预设第一值,以及当所述前车车速不小于预设第二值时,控制所述巡航状态为所述开启状态中的开始状态,然后进入步骤S101,进入所述获取车辆信息和前车信息的步骤,以及进入步骤S102,所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,进入所述控制所述巡航状态为所述停止状态的步骤,当再次检测到所述车辆车速不小于所述预设第一值,以及当所述前车车速不小于预设第二值时,则执行步骤S1032。
步骤S1032,判断所述车辆加速度的绝对值是否大于预设第三值,若是, 则执行步骤S1033,否则返回步骤S1031。
所述车辆加速度的绝对值大于预设第三值时,表面所述车辆在加速或者减速,进而推断出所述车辆是行驶状态,而不是即将停止行使或者已经停止行使的状态,此时执行步骤S1033,控制所述巡航状态为所述运行状态。
若所述车辆的加速度的绝对值不大于所述预设第三值,则表明所述车辆并没有处在加速或者减速的状态,此时返回步骤S1031。
在一些实施例中,所述预设第三值为0.01米/秒 2
步骤S1033,控制所述巡航状态为所述运行状态。
所述运行状态为所述自适应巡航运行的状态,即车辆根据本车信息和前车信息进行巡航控制的状态。例如,前车减速,则处于自适应巡航中的运行状态的车辆减速,前车加速,则处于自适应巡航中的运行状态的车辆加速。
值得说明的是,上述车辆的巡航状态的控制方法可依赖于有限状态自助机这样的数学模型,有限状态自助机简称状态机。其主要特点有以下几个方面:(1)状态机具有有限个状态,不同的状态代表不同的意义。按照实际的需要,状态机可以在不同的状态下完成规定的任务。(2)可以将输入字符串中出现的字符汇集在一起构成一个字母表。状态机处理的所有字符串都是这个字母表上的字符串。其中,输入字符串代表进入状态机中的各个状态的条件。(3)状态机在任何一个状态下,从输入字符串中读入一个字符,根据当前状态和读入的这个字符转到新的状态。
可将上述开始状态、运行状态和停止状态作为状态机的不同的状态,将进入上开始状态、运行状态或停止状态的条件制作成字符串从而形成字母表。当状态机从表述进入上开始状态、运行状态或停止状态的条件的字符串中读入一个字符,则可根据当前状态和读入的字符进入新的状态。例如,当前状态为开始状态,当检测到所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,即满足进入停止状态的条件时,则控制所述巡航状态为所述停止状态。
在本申请实施例中,当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速;所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制 所述巡航状态为所述停止状态,否则,控制所述巡航状态为所述开启状态。通过上述方法,车辆可根据车辆信息、前车信息、车辆所处的巡航状态对车辆的巡航状态进行控制,从而不需要驾驶员手动控制,非常方便。
请参阅图4,图4是本申请实施例提供的第二种车辆的巡航状态的控制方法的流程示意图。所述方法包括以下步骤:
步骤S101a,判断是否存在巡航确认信号,若存在,则进入步骤S102a,否则进入步骤S103a。
其中,巡航确认信号为车辆进入巡航状态的控制信号,巡航确认信号为用户通过车辆的ADAS输出的,例如,可以是用户通过人机交互模块中的开关按键输入的。用户输入巡航确认信号后,ADAS可检测到所述巡航确认信号。
值得说明的是,步骤S101a可以在步骤S101之前执行,也可以是在本申请提供的方法步骤的任意一步骤之前或者之后进行,即可每隔预设时间执行步骤S101a,即每隔预设时间判断是否存在巡航确认信号,以及根据判定结果执行步骤S102a或者执行步骤S103a。
步骤S102a,控制所述巡航状态为所述运行状态,进入步骤S101。
当存在巡航控制信号后,可控制所述巡航状态为所述运行状态。当然,当判定存在巡航控制信号后,也可控制所述巡航状态为所述开启状态。
当控制所述巡航状态为所述运行状态,所述运行状态属于自适应状态,则执行步骤S101以在自适应状态中进一步地判断具体执行开始状态、运行状态或者停止状态中的何种自适应状态。
步骤S101,当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速。
步骤S102,所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态。
步骤S103,否则,控制所述巡航状态为所述开启状态。
可以理解的是,在步骤S102a之后,进入步骤S101后,可执行例如图4所示的步骤S101-步骤S102或者步骤S103,也可执行例如图5所示的步骤S101-步骤S102,或者,步骤S1032-步骤S1033,或者步骤S1031。
对于步骤S101、步骤S102、步骤S103、步骤S1032、步骤S1033和步骤 S1031的具体功能和实现方式可参考前面实施例中的描述,此处不再赘述。
步骤S103a,控制所述巡航状态为关闭状态。
其中,所述关闭状态为巡航状态关闭的状态,即没有用户确认可进入巡航状态的情况。所述关闭状态下,所述车辆可以是处于运行状态的。
需要说明的是,所述关闭状态不同于停止状态,所述停止状态下所述巡航状态是开启的,即停止状态下用户确认进入巡航状态,即停止状态下是存在巡航确认信号的。
值得说明的是,上述车辆的巡航状态的控制方法依赖于状态机这样的数学模型时,上述关闭状态也可以是状态机的一种状态。
在本申请实施例中,通过判断是否存在巡航确认信号;若存在,则控制所述巡航状态为所述运行状态,进入所述获取车辆信息和前车信息的步骤,从而一方面车辆可根据车辆信息、前车信息、车辆所处的巡航状态对车辆的巡航状态进行控制,从而不需要驾驶员手动控制,非常方便,另一方面,在判定有巡航确认信号时才进入巡航状态的控制操作的步骤,即只有在用户确认可进入巡航状态的情况下才进行巡航控制,从而可提高车辆巡航控制的安全性,提高车辆行使过程中的安全性。
请参阅图6,图6是本申请实施例提供的第四种车辆的巡航状态的控制方法的流程示意图。所述方法包括以下步骤:
步骤S101b,判断所述车辆的前方预设距离是否存在所述前车,若不存在,则执行步骤S102b,否则进入步骤S101。
其中,所述预设距离为所述车辆的巡航状态为定速状态时的安全距离。在一些实施例中,所述预设距离在40-80米之间。
若所述车辆的前方预设距离不存在所述前车,则说明车辆的前方预设距离是可以供车辆较自由行使的,此时可以定速状态进行巡航。
可以理解的是,所述前车的数量可以是一辆、或者两辆或者更多辆。所述车辆的前方预设距离不存在所述前车的含义为所述车辆的前方预设距离一辆所述前车都没有。
若所述车辆的前方预设距离存在所述前车,则说明车辆的前方预设距离不能供车辆自由行使,需要进行车辆车速等的控制,此时进入步骤S101,以便 于实时根据车辆信息以及前车信息进行巡航控制。
步骤S102b,控制所述车辆以所述定速状态进行巡航。
其中,定速状态为车辆以预设的固定的速度行使的状态,预设的固定的状态可根据实际情况进行预先设置,例如可以是60米/秒。
步骤S101,当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速。
步骤S102,所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态。
步骤S103,否则,控制所述巡航状态为所述开启状态。
可以理解的是,在步骤S101b之后,进入步骤S101后,可执行例如图6所示的步骤S101-步骤S102或者步骤S103,也可执行例如图7所示的步骤S101-步骤S102,或者,步骤S1032-步骤S1033,或者步骤S1031。
对于步骤S101、步骤S102、步骤S103、步骤S1032、步骤S1033和步骤S1031的具体功能和实现方式可参考前面实施例中的描述,此处不再赘述。
在本申请实施例中,通过判断所述车辆的前方预设距离是否存在所述前车;若不存在,则控制所述车辆以所述定速状态进行巡航;若存在,则进入所述获取车辆信息和前车信息的步骤,从而一方面车辆可根据车辆信息、前车信息、车辆所处的巡航状态对车辆的巡航状态进行控制,从而不需要驾驶员手动控制,非常方便,另一方面,在判定所述车辆的前方预设距离存在所述前车时才进入自适应巡航的控制的一系列步骤,从而在保障车辆巡航控制的安全性的前提下不增加车辆中的ADAS的计算和控制负担。
请参阅图8,图8是本申请实施例提供的第六种车辆的巡航状态的控制方法的流程示意图。所述方法包括以下步骤:
步骤S101c,判断是否存在巡航确认信号,若存在,则进入步骤S101b,否则进入步骤S102c。
其中,巡航确认信号为车辆进入巡航状态的控制信号,巡航确认信号为用户通过车辆的ADAS输出的,例如,可以是用户通过人机交互模块中的开关按键输入的。用户输入巡航确认信号后,ADAS可检测到所述巡航确认信号。
值得说明的是,步骤S101c可以在步骤S101b之前执行,也可以是在步骤S102b之前或者之后进行,即可每隔预设时间执行步骤S101c,即每隔预设时间判断是否存在巡航确认信号,以及根据判定结果执行步骤S102c或者执行步骤S101b。
若存在所述巡航确认信号,则进入步骤S101b,即进入判断所述车辆的前方预设距离是否存在所述前车的步骤。若不存在所述巡航确认信号,则控制所述巡航状态为所述关闭状态,进入所述判断是否存在巡航确认信号的步骤。
可以理解的是,在步骤S101c之后,进入步骤S101b后,可执行例如图8所示的步骤S101-步骤S102或者步骤S103,也可执行例如图9所示的步骤S101-步骤S102,或者,步骤S1032-步骤S1033,或者步骤S1031。
对于步骤S101、步骤S102、步骤S103、步骤S1032、步骤S1033和步骤S1031的具体功能和实现方式可参考前面实施例中的描述,此处不再赘述。
步骤S102c,控制所述巡航状态为所述关闭状态。
其中,所述关闭状态为巡航状态关闭的状态,即没有用户确认可进入巡航状态的情况。所述关闭状态下,所述车辆可以是处于运行状态的。
需要说明的是,所述关闭状态不同于停止状态,所述停止状态下所述巡航状态是开启的,即停止状态下用户确认进入巡航状态,即停止状态下是存在巡航确认信号的。
在控制所述巡航状态为所述关闭状态后,返回所述判断是否存在巡航确认信号的步骤,直到当存在巡航确认信号后执行接下来的步骤S101b。
在本申请实施例中,通过判断是否存在巡航确认信号;若存在,则进入所述判断所述车辆的前方预设距离是否存在目标车辆的步骤;若不存在,则控制所述巡航状态为所述关闭状态,进入所述判断是否存在巡航确认信号的步骤,从而一方面车辆可根据车辆信息、前车信息、车辆所处的巡航状态对车辆的巡航状态进行控制,从而不需要驾驶员手动控制,非常方便,另一方面,在判定有巡航确认信号时进入所述判断所述车辆的前方预设距离是否存在目标车辆的步骤,即只有在用户确认可进入巡航状态的情况下才进行巡航控制,从而可提高车辆巡航控制的安全性,提高车辆行使过程中的安全性,还一方面,在判定有巡航确认信号时进入所述判断所述车辆的前方预设距离是否存在目标车 辆的步骤,从而在保障车辆巡航控制的安全性的前提下不增加车辆中的ADAS的计算和控制负担。
请参阅图10,图10是本申请实施例提供的一种车辆的巡航状态的控制装置的示意图,所述巡航状态包括自适应状态,所述自适应状态包括开启状态和停止状态,车辆的巡航状态的控制装置200包括:获取模块201,用于当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速;第一控制模块202,用于所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态;第二控制模块203,用于所述车辆车速不小于预设第一值时,以及所述前车车速不小于预设第二值时,控制所述巡航状态为所述开启状态。
在一些实施例中,所述车辆信息包括车辆加速度,所述开启状态包括开始状态和运行状态,所述第二控制模块203包括:第一控制单元2031,用于控制所述巡航状态为所述开始状态;进入所述获取车辆信息和前车信息的步骤;所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,进入所述控制所述巡航状态为所述停止状态;第一判断单元2032,用于所述车辆车速不小于预设第一值时,以及所述前车车速不小于预设第二值时,判断所述车辆加速度的绝对值是否大于预设第三值;第二控制单元2033,用于若所述车辆加速度的绝对值大于所述预设第三值,则控制所述巡航状态为所述运行状态。
在一些实施例中,所述装置还包括若所述车辆加速度的绝对值不大于所述预设第三值,则进入所述第一控制单元2031。
在一些实施例中,所述预设第一值为2米/秒,和/或,所述预设第二值为停止速度,和/或,所述预设第三值为0.01米/秒 2
在一些实施例中,所述装置还包括:第一判断模块204,用于判断是否存在巡航确认信号;第三控制模块205,用于若存在所述巡航确认信号,则控制所述巡航状态为所述运行状态,进入所述获取模块201。
在一些实施例中,所述巡航状态还包括定速状态,所述装置还包括:第二判断模块206,用于判断所述车辆的前方预设距离是否存在所述前车;第四控 制模块207,用于若所述车辆的前方预设距离不存在所述前车,则控制所述车辆以所述定速状态进行巡航,否则进入所述获取模块201。
在一些实施例中,所述预设距离为所述车辆的巡航状态为定速状态时的安全距离。
在一些实施例中,所述预设距离在40-80米之间。
在一些实施例中,所述装置还包括:第三判断模块208,用于判断是否存在巡航确认信号,若存在所述巡航缺信号,则进入所述第二判断模块206。
在一些实施例中,所述巡航状态还包括关闭状态,所述装置还包括:第五控制模块209,用于若不存在所述巡航缺信号,则控制所述巡航状态为所述关闭状态,进入所述第三判断模块208。
在本申请实施例中,通过获取模块201当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速;通过第一控制模块202,当所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态;通过第二控制模块203,当所述车辆车速不小于预设第一值时,以及所述前车车速不小于预设第二值时,控制所述巡航状态为所述开启状态,从而车辆可根据车辆信息、前车信息、车辆所处的巡航状态对车辆的巡航状态进行控制,从而不需要驾驶员手动控制,非常方便。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种车辆的巡航状态的控制方法,所述巡航状态包括自适应状态,所述自适应状态包括开启状态和停止状态,其特征在于,所述方法包括:
    当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速;
    所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态;
    否则,控制所述巡航状态为所述开启状态。
  2. 根据权利要求1所述的方法,其特征在于,所述车辆信息包括车辆加速度,所述开启状态包括开始状态和运行状态,所述控制所述巡航状态为所述开启状态的步骤,进一步包括:
    控制所述巡航状态为所述开始状态;
    进入所述获取车辆信息和前车信息的步骤;
    所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,进入所述控制所述巡航状态为所述停止状态;
    否则,判断所述车辆加速度的绝对值是否大于预设第三值;
    若所述车辆加速度的绝对值大于所述预设第三值,则控制所述巡航状态为所述运行状态。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括若所述车辆加速度的绝对值不大于所述预设第三值,则返回所述控制所述巡航状态为所述开始状态的步骤。
  4. 根据权利要求2所述的方法,其特征在于,所述预设第一值为2米/秒,和/或,所述预设第二值为停止速度,和/或,所述预设第三值为0.01米/秒 2
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    判断是否存在巡航确认信号;
    若存在,则控制所述巡航状态为所述运行状态,进入所述获取车辆信息和前车信息的步骤。
  6. 根据权利要求1-4任意一项所述的方法,其特征在于,所述巡航状态还包括定速状态,所述方法还包括:
    判断所述车辆的前方预设距离是否存在所述前车;
    若不存在,则控制所述车辆以所述定速状态进行巡航;
    若存在,则进入所述获取车辆信息和前车信息的步骤。
  7. 根据权利要求6所述的方法,其特征在于,所述预设距离为所述车辆的巡航状态为定速状态时的安全距离。
  8. 根据权利要求7所述的方法,其特征在于,所述预设距离在40-80米之间。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    判断是否存在巡航确认信号;
    若存在,则进入所述判断所述车辆的前方预设距离是否存在目标车辆的步骤。
  10. 根据权利要求9所述的方法,其特征在于,所述巡航状态还包括关闭状态,所述方法还包括:
    若不存在,则控制所述巡航状态为所述关闭状态,进入所述判断是否存在巡航确认信号的步骤。
  11. 一种车辆的巡航状态的控制装置,所述巡航状态包括自适应状态,所述自适应状态包括开启状态和停止状态,其特征在于,所述装置包括:
    获取模块,用于当车辆的巡航状态为所述自适应状态,则获取车辆信息和前车信息,所述车辆信息包括车辆车速,所述前车信息包括前车车速;
    第一控制模块,用于所述车辆车速小于预设第一值时,或者,所述前车车速小于预设第二值时,控制所述巡航状态为所述停止状态;
    第二控制模块,用于所述车辆车速不小于预设第一值时,以及所述前车车速不小于预设第二值时,控制所述巡航状态为所述开启状态。
  12. 一种ADAS,其特征在于,包括:
    至少一个处理器;以及
    存储器,所述存储器与所述至少一个处理器网络连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-10中任一项所述的方法。
  13. 一种车辆,其特征在于,包括如权利要求12所述的ADAS。
PCT/CN2022/101098 2021-07-02 2022-06-24 车辆的巡航状态的控制方法、装置、adas以及车辆 WO2023274061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110751295.6A CN113386753B (zh) 2021-07-02 2021-07-02 车辆的巡航状态的控制方法、装置、adas以及车辆
CN202110751295.6 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023274061A1 true WO2023274061A1 (zh) 2023-01-05

Family

ID=77625117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101098 WO2023274061A1 (zh) 2021-07-02 2022-06-24 车辆的巡航状态的控制方法、装置、adas以及车辆

Country Status (2)

Country Link
CN (1) CN113386753B (zh)
WO (1) WO2023274061A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113386753B (zh) * 2021-07-02 2022-08-02 深圳市道通智能汽车有限公司 车辆的巡航状态的控制方法、装置、adas以及车辆
CN114906141A (zh) * 2022-04-20 2022-08-16 合众新能源汽车有限公司 自适应巡航控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020134602A1 (en) * 2001-03-26 2002-09-26 Nissan Motor Co., Ltd. Adaptive cruise control system for vehicle
CN106428004A (zh) * 2015-06-12 2017-02-22 株式会社万都 车辆自适应巡航控制***及其方法
CN111591290A (zh) * 2020-05-25 2020-08-28 潍柴动力股份有限公司 一种巡航控制方法、装置、终端及车辆***
CN113386753A (zh) * 2021-07-02 2021-09-14 深圳市道通智能汽车有限公司 车辆的巡航状态的控制方法、装置、adas以及车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9606381D0 (en) * 1996-03-26 1996-06-05 Jaguar Cars Cruise control systems for motor vehicles
US8131442B2 (en) * 2007-11-28 2012-03-06 GM Global Technology Operations LLC Method for operating a cruise control system for a vehicle
KR101478063B1 (ko) * 2012-11-06 2015-01-02 주식회사 만도 적응형 순항 제어 시스템 및 그 제어 방법
CN103318176B (zh) * 2013-06-28 2016-02-24 郑州宇通客车股份有限公司 一种客车自适应巡航***的控制方法
KR102563708B1 (ko) * 2018-05-14 2023-08-09 주식회사 에이치엘클레무브 선행 차량 출발 알림 장치 및 방법
CN111086512B (zh) * 2019-12-31 2021-06-04 浙江合众新能源汽车有限公司 一种被动语音开启汽车acc功能的方法及装置
CN112208527B (zh) * 2020-10-21 2022-02-08 江铃汽车股份有限公司 车辆自适应巡航***跟停工况下的发动机启停控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020134602A1 (en) * 2001-03-26 2002-09-26 Nissan Motor Co., Ltd. Adaptive cruise control system for vehicle
CN106428004A (zh) * 2015-06-12 2017-02-22 株式会社万都 车辆自适应巡航控制***及其方法
CN111591290A (zh) * 2020-05-25 2020-08-28 潍柴动力股份有限公司 一种巡航控制方法、装置、终端及车辆***
CN113386753A (zh) * 2021-07-02 2021-09-14 深圳市道通智能汽车有限公司 车辆的巡航状态的控制方法、装置、adas以及车辆

Also Published As

Publication number Publication date
CN113386753A (zh) 2021-09-14
CN113386753B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023274061A1 (zh) 车辆的巡航状态的控制方法、装置、adas以及车辆
JP5957745B1 (ja) 運転支援装置、運転支援システム、運転支援方法、運転支援プログラム及び自動運転車両
JP5945999B1 (ja) 運転支援装置、運転支援システム、運転支援方法、運転支援プログラム及び自動運転車両
JP5910903B1 (ja) 運転支援装置、運転支援システム、運転支援方法、運転支援プログラム及び自動運転車両
WO2017022196A1 (ja) 運転支援装置、運転支援システム、運転支援方法、及び自動運転車両
US11613249B2 (en) Automatic navigation using deep reinforcement learning
US8712931B1 (en) Adaptive input interface
CN107835148B (zh) 游戏角色控制方法、装置、***及游戏客户端
WO2017022198A1 (ja) 運転支援装置、運転支援システム、運転支援方法、運転支援プログラム及び自動運転車両
JP2021507434A (ja) 歩行者の意図を予測するためのシステムおよび方法
US20220355819A1 (en) Autonomous driving vehicle controlling
JP2022091936A (ja) 車路協同自動運転の制御方法、装置、電子機器及び車両
JP2017119508A (ja) 運転支援装置、運転支援システム、運転支援方法、運転支援プログラム及び自動運転車両
CN113939828A (zh) 自主车辆的车道保持控制
US20220234593A1 (en) Interaction method and apparatus for intelligent cockpit, device, and medium
KR102639605B1 (ko) 인터페이스에서의 공간 객체들의 상대적 표현 및 명확화를 위한 시스템들 및 방법들
WO2017167109A1 (zh) 飞行器的控制方法和装置
JP7495156B2 (ja) 操作体に基づく動的表示方法、装置、記憶媒体及び電子機器
JP6575915B2 (ja) 運転支援装置、運転支援システム、運転支援方法、運転支援プログラム及び自動運転車両
WO2021248857A1 (zh) 一种障碍物属性判别方法、***及智能机器人
US20210258751A1 (en) Responding to a signal indicating that an autonomous driving feature has been overridden by alerting plural vehicles
JP2018010510A (ja) 画像処理装置、画像処理方法、及びプログラム
US20230016222A1 (en) A control system for a vehicle
JP6671019B2 (ja) 運転支援装置、運転支援システム、運転支援方法、運転支援プログラム、自動運転車両及び自動運転制御システム
JP2017033539A (ja) 運転支援装置、運転支援システム、運転支援方法、運転支援プログラム及び自動運転車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831875

Country of ref document: EP

Kind code of ref document: A1