WO2023248922A1 - 鋼材処理方法及び電磁鋼板 - Google Patents

鋼材処理方法及び電磁鋼板 Download PDF

Info

Publication number
WO2023248922A1
WO2023248922A1 PCT/JP2023/022263 JP2023022263W WO2023248922A1 WO 2023248922 A1 WO2023248922 A1 WO 2023248922A1 JP 2023022263 W JP2023022263 W JP 2023022263W WO 2023248922 A1 WO2023248922 A1 WO 2023248922A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
diffusion
steel
mass
layer
Prior art date
Application number
PCT/JP2023/022263
Other languages
English (en)
French (fr)
Inventor
悠士 中河原
則和 岡田
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2023248922A1 publication Critical patent/WO2023248922A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present disclosure relates to a steel processing method and an electrical steel sheet.
  • a technology that reduces loss in electrical steel sheets by forming a plating layer on the surface of electrical steel sheets through aluminizing treatment (hot-dip aluminum plating), and creating a state in which the Al concentration is graded from the surface through subsequent diffusion treatment in a non-oxidizing atmosphere. is known (for example, see Patent Documents 1 and 2).
  • German Patent Invention No. 102005004037 European Patent Application No. 1260598 International Publication No. 2021/155280 pamphlet Special table 2018-509522 publication
  • the present disclosure aims to manufacture an electrical steel sheet in which Al is appropriately diffused at a relatively low cost.
  • a steel material processing method in which a steel material for an electrical steel sheet having an aluminum-containing layer formed on the surface is subjected to a diffusion treatment in an oxidizing atmosphere.
  • FIG. 1 is a flowchart schematically showing the flow of each process included in the steel processing method according to the present embodiment.
  • FIG. 2 is a diagram schematically showing the cross-sectional structure of a steel material obtained by aluminizing treatment.
  • FIG. 2 is a diagram schematically showing a cross-sectional structure of a steel material obtained by diffusion treatment.
  • FIG. 2 is an explanatory diagram of a desired aluminum diffusion mode, and is a diagram showing an example of an aluminum diffusion mode in a steel material obtained by the steel processing method of the present embodiment.
  • 2 is a flowchart schematically showing the flow of each step included in the steel processing method according to Comparative Example 1. It is a flowchart which shows roughly the flow of each process included in the steel processing method of another comparative example.
  • FIG. 3 is a diagram schematically showing an Al concentration profile of a steel material obtained in Comparative Example 2.
  • FIG. FIG. 2 is an explanatory diagram of a method (part 1) for calculating the amount of Al intrusion.
  • FIG. 7 is an explanatory diagram of a method (part 2) for calculating the amount of Al intrusion.
  • FIG. 3 is a plot diagram showing the relationship between Al gradient plate thickness ratio ⁇ (Al intrusion amount plate thickness ratio) ⁇ 0.5 and magnetic flux density reduction rate.
  • FIG. 2 is a plot diagram showing the relationship between Al penetration amount plate thickness ratio and magnetic flux density reduction rate.
  • FIG. 1 is a flowchart schematically showing the flow of each step included in the steel processing method according to the present embodiment.
  • FIG. 2 is a diagram schematically showing the cross-sectional structure of a steel material obtained by aluminizing treatment (steel material after aluminizing treatment).
  • the steel material processing method of this embodiment first includes a step (step S100) of preparing a steel material (base material) with a desired plate thickness.
  • a steel material having a desired thickness can be obtained, for example, by rolling a material obtained by casting or the like (for example, in the form of a steel slab or a steel billet).
  • the desired sheet thickness is arbitrary, but preferably may be approximately the same as the thickness of the final product (eg, electrical steel sheet) manufactured via the present method. In this case, a rolling step after the next aluminizing step is not necessary, and manufacturing costs can be reduced.
  • the desired thickness of the steel material is arbitrary, but may be, for example, from 0.20 mm to 0.35 mm, and more preferably from 0.25 mm to 0.30 mm.
  • the steel material is for electrical steel sheets, and preferably contains Si and Al.
  • Si and Al are added to the steel material, the magnetocrystalline anisotropy decreases and hysteresis loss decreases.
  • the addition of Si and Al increases the electrical resistance of the steel material, which also contributes to reducing eddy current loss. Therefore, the addition of Si and Al leads to a reduction in iron loss (hysteresis loss and eddy current loss) of the steel material.
  • excessive addition of Si and Al not only lowers the magnetic flux density but also lowers the workability in the steel manufacturing process (rolling, pressing, etc.).
  • an electromagnetic steel sheet as a final product can be pressed into a desired shape to form a rotor core, a stator core, etc. of a rotating electrical machine.
  • the steel material (base material) preferably contains Si in a range of greater than 0.00 mass% and 7.00 mass% or less, and greater than 0.00 mass%. and Al in a range of 2.00% by mass or less.
  • the steel material processing method of this embodiment includes an aluminum-containing layer forming step (step S102) of forming an aluminum-containing layer (see reference numeral 20 in FIG. 2) on the steel material.
  • the aluminum-containing layer can be formed, for example, by aluminizing treatment.
  • the aluminum-containing layer is in the form of a plated layer having a thickness in the range of 2 ⁇ m or more and 30 ⁇ m or less.
  • a plating layer having a thickness of 2 ⁇ m or more and 30 ⁇ m or less may be formed by gas wiping or the like.
  • the aluminum-containing layer may be formed by applying an aluminum-containing slurry instead of the aluminizing treatment.
  • an aluminum-containing slurry it is disadvantageous that it is difficult to infiltrate the interior of the steel sheet in the subsequent diffusion treatment.
  • the composition of the aluminum-containing layer (plated layer) may be only aluminum, for example, in the case of an aluminum-containing layer formed by sputtering or the like.
  • the composition of the aluminum-containing layer (plating layer) includes one or more of iron (Fe), silicon (Si), and manganese (Mn) in addition to aluminum.
  • it contains Al, Fe, and Si.
  • Al is contained in a range of 20% by mass or more and 100% by mass or less
  • Fe is contained in a range of 0.00% by mass or more and 80% by mass or less, and 0.00% by mass or more and 15% by mass or less.
  • % or less of Si may be a single layer or a multilayer.
  • the steel material on which an aluminum-containing layer has been formed is treated as a pretreatment before the subsequent diffusion treatment step. It is possible to eliminate or reduce the need for processing to reduce the plate thickness by rolling or the like.
  • the steel material on which the aluminum-containing layer is formed may be subjected to a process of reducing the plate thickness by rolling or the like.
  • the steel material processing method of this embodiment includes a diffusion treatment step (step S104) in which the steel material on which the aluminum-containing layer is formed is subjected to a diffusion treatment in an oxidizing atmosphere.
  • the diffusion treatment is a treatment for forming a state in which the Al concentration is graded from the surface of the steel material based on the Al contained in the aluminum-containing layer. That is, the diffusion treatment forms an Al diffusion layer (see reference numeral 32 in FIG. 3) by diffusing Al contained in the aluminum-containing layer from the surface of the steel material in the thickness direction. As will be described later with reference to FIG. 4, the Al diffusion layer has an Al concentration gradient (change gradient) in such a manner that the Al concentration increases closer to the surface in the thickness direction.
  • the diffusion treatment in an oxidizing atmosphere can also form an insulating film (see reference numeral 30 in FIG. 3) on the surface of the steel material. That is, the diffusion treatment in an oxidizing atmosphere oxidizes the aluminum-containing layer on the surface of the steel material, thereby forming an oxide layer as an insulating film on the surface of the steel material.
  • an oxide layer based on aluminum and iron contained in the aluminum-containing layer and oxygen contained in the oxidizing atmosphere is formed simultaneously with the Al diffusion layer.
  • the oxide layer is a single or composite oxide of Al, Fe, Si, and Mn, but may contain other elements depending on the components contained in the aluminum-containing layer.
  • the oxide layer may contain 20-80% by weight of Al or Fe. This facilitates the formation of a desired oxide layer, which will be described later.
  • oxidizing atmosphere has the same general meaning, but it is a concept that excludes an atmosphere that does not substantially contain oxygen, and a concept that includes reactions conducted in the atmosphere. It is. Therefore, this embodiment does not require vacuum equipment. That is, manufacturing costs can be reduced. Moreover, continuous processing is possible, and manufacturing efficiency can be improved.
  • the diffusion process may be performed for a predefined processing time (hereinafter also referred to as "diffusion time”) under predefined temperature conditions.
  • the diffusion temperature is too low, not only will it take time for the formation of the oxide layer and the penetration and diffusion of Al, but also the desired oxide layer will not be obtained. In this case, sufficient insulation cannot be obtained. Conversely, if the diffusion temperature is too high, the desired oxide layer cannot be obtained as well. Furthermore, if the diffusion time is too short or too long, the desired aluminum diffusion pattern described below cannot be obtained.
  • the diffusion treatment is preferably carried out at a temperature in the range of 900°C or higher and 1200°C or lower (hereinafter also referred to as "diffusion temperature") for 0.1 minute or more and 1920°C. Diffusion times in the range of minutes or less may be performed. Thereby, as will be described later, it is possible to facilitate both the formation of a desired oxide layer and the realization of a desired aluminum diffusion pattern.
  • the details of the manufacturing conditions (temperature conditions and processing time) related to the diffusion treatment are determined depending on the thickness of the aluminum-containing layer obtained in step S102 (i.e., plating thickness), etc. It may be adapted so that both aspects (intrusion amount and inclination state) can be obtained at the same time.
  • the temperature condition is a concept that includes not only the diffusion temperature but also the rate of temperature increase to the diffusion temperature, the rate of cooling from the diffusion temperature, and the like.
  • the desired thickness of the oxide layer is basically arbitrary as long as it functions as an insulating film, but it is desirable that the thickness be as thin as possible. On the other hand, if the oxide layer is too thick, the total magnetic flux of the steel material will decrease. With this in mind, the desired thickness of the oxide layer is in the range of 1 ⁇ m or more and 25 ⁇ m or less.
  • the desired aluminum diffusion mode is basically arbitrary as long as the Al diffusion layer has an Al concentration gradient (change gradient), but preferred ranges of various parameters will be described later with reference to FIG. 4.
  • FIG. 4 is an explanatory diagram of a desired diffusion mode of aluminum, and is a diagram showing an example of a diffusion mode of aluminum in a steel material obtained by the steel processing method of the present embodiment.
  • the upper side schematically shows a cross-sectional view of the steel material
  • the lower side shows the diffusion mode of aluminum in the thickness direction of the steel material.
  • the diffusion mode of aluminum in the steel material is shown as an Al concentration profile of the steel material in the thickness direction, with the horizontal axis representing the distance from the center of the thickness of the steel material and the vertical axis representing the Al concentration. Note that the Al concentration profile of the steel material in the thickness direction may have symmetry with respect to the center of the plate thickness.
  • d1 represents the thickness of the insulating film
  • d2 represents the depth of Al diffusion.
  • ⁇ 1 represents the Al concentration in the insulating film
  • ⁇ 2 represents the Al concentration at the surface of the Al diffusion layer.
  • the Al diffusion layer has an Al concentration gradient (change gradient) in such a manner that the Al concentration increases closer to the surface in the thickness direction. Specifically, in the Al diffused layer, it is largest at the surface of the Al diffused layer (that is, at the interface with the oxide layer), and gradually decreases toward the center of the plate thickness.
  • the Al concentration at the surface of the Al diffused layer (hereinafter also referred to as "surface Al concentration of the Al diffused layer") is low, the above-mentioned iron loss reduction effect cannot be obtained, and if it is too high, the above-mentioned This may lead to a decrease in magnetic flux density and a decrease in workability in steel manufacturing processes (rolling, pressing, etc.). Further, as described above, if the Al diffusion depth is too shallow, the above-mentioned iron loss reduction effect cannot be obtained, and if it is too deep, as described above, there is a possibility that the magnetic flux density will be reduced.
  • the surface Al concentration of the Al diffusion layer is preferably in the range of 1.50% by mass or more and 10.00% by mass or less.
  • FIG. 5 is a flowchart schematically showing the flow of each step included in the steel processing method according to Comparative Example 1.
  • the steel processing method according to Comparative Example 1 is the same as the steel processing method according to the present embodiment in the preparation step (step S100) and the aluminum-containing layer forming step (step S102), but differs thereafter.
  • the steel processing method according to Comparative Example 1 includes a diffusion treatment step (step S104') in which a steel material on which an aluminum-containing layer is formed is subjected to a diffusion treatment in a non-oxidizing atmosphere.
  • the diffusion processing conditions other than the atmosphere may be the same as those in the above-described diffusion processing step (step S104).
  • Such a diffusion treatment in a non-oxidizing atmosphere is different from the diffusion treatment in an oxidizing atmosphere performed in the steel processing method according to the present embodiment, and because it is a non-oxidizing atmosphere, no oxide layer is formed.
  • the steel material processing method according to Comparative Example 1 includes a step (step S106') of forming an insulating film on the steel material that has undergone the diffusion treatment in a non-oxidizing atmosphere.
  • the insulating film may be a film different from the oxide layer.
  • Comparative Example 1 vacuum equipment is required for the diffusion treatment in a non-oxidizing atmosphere.
  • an oxide layer can be formed as an insulating film by diffusion treatment in an oxidizing atmosphere. That is, the diffusion treatment in an oxidizing atmosphere is a treatment that can simultaneously obtain a desired oxide layer and a desired aluminum diffusion mode.
  • an electrical steel sheet in which Al is appropriately diffused in a manner having an Al concentration gradient (change gradient) can be manufactured at a relatively low cost.
  • FIG. 6 is a flowchart schematically showing the flow of each step included in the steel processing method of another comparative example (hereinafter also referred to as "comparative example 2").
  • the steel material processing method according to Comparative Example 2 is the same as the steel material processing method according to the present embodiment in the preparation step (step S100) and the aluminum-containing layer forming step (step S102), and the subsequent steps are different.
  • the steel material processing method according to Comparative Example 2 includes a treatment step (step S104'') in which a steel material on which an aluminum-containing layer is formed is subjected to grain growth promotion treatment in an oxidizing atmosphere.
  • the acceleration treatment differs from the diffusion treatment in an oxidizing atmosphere performed in the steel treatment method according to the present embodiment in that it is performed under conditions such that the Al concentration is diffused to be uniform inside the steel.
  • the diffusion temperature tends to be significantly higher and the diffusion time tends to be significantly longer than the diffusion treatment in an oxidizing atmosphere performed in the steel processing method according to the present embodiment.
  • FIG. 7 is a diagram schematically showing the Al concentration profile of the steel material obtained in Comparative Example 2, and is contrasted with the lower side of FIG. 4 in the case of this embodiment.
  • the Al diffusion layer has approximately the same Al concentration on the surface of the Al diffusion layer and at the center of the thickness of the steel material. That is, the Al concentration is approximately constant from the surface of the Al diffusion layer to the center of the thickness of the steel material (see concentration ⁇ 3). In such steel materials, sufficient iron loss reduction effect due to Al intrusion cannot be obtained.
  • the desired oxide layer and desired aluminum diffusion mode can be achieved without increasing the diffusion temperature excessively and without increasing the diffusion time excessively. It is possible to obtain a steel material having That is, from the viewpoint of energy efficiency and production efficiency, it is possible to efficiently produce an electromagnetic steel sheet with good characteristics in which reduction in magnetic flux density and the like are difficult to occur.
  • an electrical steel sheet in which Al is appropriately diffused in a manner having an Al concentration gradient (change gradient) can be manufactured at a relatively low cost.
  • the inventor of the present application prepared three types of steel materials (denoted as steel types A, B, and C) having the component characteristics shown in Table 1 below, and as a result of processing based on the steel processing method according to the present embodiment, Table 2 The results were obtained. Specifically, in Example 1, a ring-shaped test piece with an outer diameter of 64 mm and an inner diameter of 50 mm was cut out from a steel plate having the chemical composition shown in Table 1 using a laser, and the test piece was subjected to aluminizing treatment. , the plating thickness shown in Table 2 was obtained. Then, after the aluminizing treatment, a diffusion treatment was performed under the conditions shown in Table 2.
  • Example 5 a veneer test piece was cut out using a laser from a steel plate having the chemical composition shown in Table 1, and the test piece was similarly aluminized to obtain the plating thickness shown in Table 2. . Then, after the aluminizing treatment, a diffusion treatment was performed under the conditions shown in Table 2. Although the shape of the test piece differs depending on whether it is a ring shape or a single plate (rectangular shape with a size of 20 x 50 mm), the test results (for example, iron loss reduction rate, magnetic flux density reduction rate, etc.) are substantially different. It does not affect.
  • the conditions shown in Table 2 indicate the presence or absence of annealing.
  • the annealing conditions were held at 750° C. for 60 minutes and then furnace cooled, but any conditions may be set. Annealing affects test results in that it reduces the effects of laser cutting (eg, increased iron loss). Note that in the case of steel plates used for rotors, annealing may be unnecessary.
  • the three types of steel materials (denoted as steel types A, B, and C) all contain 0 to 7.00 mass% of Si, 0 to 1.00 mass% of Mn, and 0 to 2.00 mass% of Al. include. Although a base material having such a composition is suitable, it is not limited thereto. In addition, in Table 2, mass% represents mass%.
  • Evaluation 1 in Tables 3 and 4 is an evaluation based on FE (Field Emission)-EPMA (Electron Probe Micro Analyzer) analysis.
  • the Al concentration and Fe concentration related to the oxide layer in Evaluation 1 may be the concentration at or near the center of the oxide layer. Note that the Fe concentration tends to be higher on the surface side of the oxide layer.
  • the iron loss of evaluation 2 according to Table 5 it is the result of AC magnetic measurement, and the magnetic flux density of evaluation 2 is the result of DC magnetic measurement.
  • the diffusion depth to plate thickness ratio is a value obtained by dividing the diffusion depth by the plate thickness.
  • the magnetic flux density represents the magnetic flux density (B50) at a magnetizing force of 5000 A/m
  • the iron loss represents the iron loss (W10/400) at a frequency of 400 Hz and a magnetic flux density of 1.0 T.
  • the iron loss reduction rate is a rate obtained by dividing the amount of reduction from the iron loss of the untreated product by the iron loss of the untreated product.
  • the iron loss reduction rate was greater than 0% at a frequency of 400 Hz and a magnetic flux density of 1 T, and the magnetic flux density decreased at 5 kA/m.
  • the ratio is 25% or less, and good characteristics are obtained.
  • the diffusion depth to plate thickness ratio was too large, so the magnetic flux density reduction rate (reduction rate relative to the untreated product) was relatively large. However, it remains below 25%.
  • the surface Al concentration of the diffusion layer is too high, the magnetic flux density reduction rate is relatively large, exceeding 25%.
  • the plating thickness is preferably 50 ⁇ m or less, and preferably 30 ⁇ m or less (20% or less of the plate thickness). More preferred.
  • the surface Al concentration of the diffusion layer is preferably 14.0% by mass or less, and more preferably less than 10.0% by mass.
  • the atmosphere was a low oxygen potential atmosphere instead of the atmosphere.
  • a low oxygen potential atmosphere is an atmosphere containing oxygen, hydrogen, and argon, and has a significantly lower oxygen concentration than the atmosphere. Therefore, as shown in evaluation 1 of Tables 3 and 4, the thickness of the oxide layer becomes relatively small.
  • the thickness of the oxide layer is preferably 1 ⁇ m or more in order to ensure the necessary electrical insulation as an insulating film. Note that the oxide layer may be a single layer or a multilayer, and in the case of a multilayer, it is desirable that the total thickness is 1 ⁇ m or more.
  • the inventor of the present application calculated the Al penetration amount plate thickness ratio (unit: mass %) and the Al inclination gradient plate thickness ratio x (Al penetration amount plate thickness ratio) ⁇ 0.5 (unit: Two evaluation parameters were used: mass % ⁇ 1.5/[ ⁇ m] ⁇ 2). Note that the symbol " ⁇ " in ⁇ 0.5 and ⁇ 2 represents a power; for example, ⁇ 0.5 represents a power of 0.5. Note that the symbol "*" in Table 4 represents multiplication.
  • the three vertices of the triangle are, as shown in Figure 8, a position on the base material surface and corresponding to the surface Al concentration, a position on the base material surface and corresponding to the center Al concentration, and a position on the base material surface corresponding to the central Al concentration, and a position corresponding to the diffusion of aluminum from the base material surface.
  • This corresponds to a position that is inward by the depth and corresponds to the central Al concentration.
  • Al penetration amount (surface Al concentration + center Al concentration - base material Al concentration x 2) x aluminum diffusion depth x 1/2
  • the amount of Al intrusion corresponds to the area S12 of the trapezoid shown by the dashed line in FIG.
  • the four vertices of the trapezoid are, as shown in FIG. A position that is inward by the diffusion depth and corresponds to the central Al concentration, and a position that is inward from the base material surface by the aluminum diffusion depth and corresponds to the base material Al concentration.
  • the case where aluminum diffusion depth ⁇ base material plate thickness/2 corresponds to the case where the diffusion depth to plate thickness ratio is 0.50 or more in Table 3.
  • the base material Al concentration corresponds to the base material components in Table 2 (see also D0 in FIG. 9).
  • the base material plate thickness corresponds to the plate thickness in Table 2, and is the thickness of the entire plate excluding the thickness of the oxide layer.
  • the Al gradient plate thickness ratio is the gradient of change in aluminum concentration with respect to the change in the thickness direction in the Al diffusion layer.
  • Figure 10 plots the results of each example and comparative example, with the horizontal axis representing the Al slope thickness ratio x (Al penetration thickness ratio) ⁇ 0.5 and the vertical axis representing the magnetic flux density reduction rate.
  • FIG. 10 also shows curves obtained by interpolating these plot points.
  • the magnetic flux density reduction rate can be suppressed to about 25% or less.
  • two plot points where the magnetic flux density reduction rate exceeds 25% correspond to Comparative Examples 1 and 4. Each plot point where the magnetic flux density reduction rate is within 25% corresponds to each example.
  • FIG. 11 is a plot diagram in which the results of each example and comparative example are plotted, with the horizontal axis representing the Al penetration amount and plate thickness ratio, and the vertical axis representing the magnetic flux density reduction rate. Note that FIG. 11 also shows straight lines obtained by interpolation for these plot points.
  • the diffusion treatment may be performed immediately after forming the Al-containing layer, or may be performed after forming the Al-containing layer and performing processing such as pressing.
  • the formation of the Al-containing layer may be realized by vapor deposition, sputtering, colorizing, shot peening, foil bonding, etc. other than aluminizing or slurry.
  • Aluminum-containing layer (aluminum-containing layer), 30... Insulating coating (oxide layer), 32... Al diffusion layer (aluminum diffusion layer)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Alが適切に拡散された電磁鋼板を比較的低いコストで製造する。 表面にアルミ含有層が形成された電磁鋼板用の鋼材に対して、酸化雰囲気での拡散処理を行う、鋼材処理方法が開示される。鋼材は、好ましくは、0.00質量%よりも大きく7.00質量%以下のSiと、0.00質量%よりも大きく2.00質量%以下のAlとを含む。アルミ含有層は、好ましくは、2μm以上30μm以下の厚みのめっき層の形態であり、めっき層の組成は、Alを含み、その他、Fe等を更に含んでもよい。拡散処理は、好ましくは、鋼材表面から内部に向けてAl濃度が徐々に低下する変化勾配が得られるような処理条件で実行される。

Description

鋼材処理方法及び電磁鋼板
 本開示は、鋼材処理方法及び電磁鋼板に関する。
 アルミナイジング処理(溶融アルミニウムめっき処理)により電磁鋼板表面にめっき層を形成し、その後の無酸化雰囲気での拡散処理により表面からAl濃度が傾斜した状態をつくり、電磁鋼板の低損失化を図る技術が知られている(例えば、特許文献1、2参照)。
 また、電磁鋼板の表面にAlを含有したスラリーを塗付し、その後の無酸化雰囲気での拡散処理により表面からAl濃度が傾斜した状態をつくり、電磁鋼板の低損失化を図る技術が知られている(例えば、特許文献3参照)。
 また、アルミナイジング処理により電磁鋼板表面にめっき層を形成し、その後の酸化雰囲気での高温長時間拡散処理によりAlを侵入させ、Al濃度が増した方向性電磁鋼板を実現することにより、電磁鋼板の低損失化を図る技術が知られている(例えば、特許文献4参照)。
独国特許発明第102005004037号明細書 欧州特許出願公開第1260598号明細書 国際公開第2021/155280号パンフレット 特表2018-509522号公報
 しかしながら、上記のような従来技術では、Alが適切に拡散された電磁鋼板を比較的低いコストで製造することが難しい。
 そこで、1つの側面では、本開示は、Alが適切に拡散された電磁鋼板を比較的低いコストで製造することを目的とする。
 1つの側面では、表面にアルミニウム含有層が形成された電磁鋼板用の鋼材に対して、酸化雰囲気での拡散処理を行う、鋼材処理方法が提供される。
 1つの側面では、本開示によれば、Alが適切に拡散された電磁鋼板を比較的低いコストで製造することが可能となる。
本実施形態による鋼材処理方法に含まれる各工程の流れを概略的に示すフローチャートである。 アルミナイジング処理により得られる鋼材の断面構造を模式的に示す図である。 拡散処理により得られる鋼材の断面構造を模式的に示す図である。 所望のアルミの拡散態様の説明図であり、本実施形態の鋼材処理方法により得られる鋼材におけるアルミの拡散態様の一例を示す図である。 比較例1による鋼材処理方法に含まれる各工程の流れを概略的に示すフローチャートである。 他の比較例の鋼材処理方法に含まれる各工程の流れを概略的に示すフローチャートである。 比較例2により得られる鋼材のAl濃度プロフィールを概略的に示す図である。 Al侵入量の算出方法(その1)の説明図である。 Al侵入量の算出方法(その2)の説明図である。 Al傾斜勾配板厚比×(Al侵入量板厚比)^0.5と磁束密度低下率との関係を示すプロット図である。 Al侵入量板厚比と磁束密度低下率との関係を示すプロット図である。
 以下、添付図面を参照しながら各実施形態について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。また、以下の説明において、各種物質については、アルミニウムをアルミ(又はAl)と称するように、一般的に知られている略語や化学記号で特定する場合がある。
 図1は、本実施形態による鋼材処理方法に含まれる各工程の流れを概略的に示すフローチャートである。図2は、アルミナイジング処理により得られる鋼材(アルミナイジング処理後の鋼材)の断面構造を模式的に示す図である。
 本実施形態の鋼材処理方法は、まず、所望の板厚の鋼材(母材)を準備する工程(ステップS100)を含む。所望の板厚の鋼材は、例えば、鋳造等で得られる材料(例えば鋼スラブないし鋼片の形態)を圧延することで得ることができる。所望の板厚は、任意であるが、好ましくは、本方法を介して製造される最終製品(例えば電磁鋼板)の厚みと略同じであってよい。この場合、次のアルミナイジング工程の後の圧延工程が不要となり、製造コストの低減を図ることができる。
 鋼材に係る所望の板厚は、任意であるが、例えば0.20mmから0.35mmであってよく、より好ましくは、0.25mmから0.30mmである。
 本実施形態では、鋼材は、電磁鋼板用であり、好ましくは、Si及びAlを含む。鋼材にSi及びAlを添加すると、結晶磁気異方性が低下し、ヒステリシス損失が低減するためである。また、Si及びAlの添加は、鋼材の電気抵抗を高めるため、渦電流損失の低減にも寄与するためである。従って、Si及びAlの添加は、鋼材の鉄損(ヒステリシス損失及び渦電流損失)の低減につながる。他方、Si及びAlを過剰に添加すると磁束密度を低下させるだけでなく、鋼材の製造工程(圧延やプレス等)における加工性も低下させる。なお、最終製品としての例えば電磁鋼板は、回転電機のロータコアやステータコア等を形成するために所望の形状へとプレス加工等されうる。このような背反事項を考慮して、鋼材(母材)は、好ましくは、0.00質量%よりも大きくかつ7.00質量%以下の範囲内でSiと、0.00質量%よりも大きくかつ2.00質量%以下の範囲内でAlとを含む。
 ついで、本実施形態の鋼材処理方法は、鋼材にアルミ含有層(図2の符号20参照)を形成するアルミ含有層形成工程(ステップS102)を含む。アルミ含有層は、例えば、アルミナイジング処理により形成できる。例えば、アルミ含有層は、例えば、2μm以上かつ30μm以下の範囲内の厚みのめっき層の形態である。例えば、ガスワイプ等により2μm以上かつ30μm以下の範囲内の厚みのめっき層を形成してもよい。
 なお、変形例では、アルミ含有層は、アルミナイジング処理に代えて、アルミ含有のスラリーを塗布する処理により形成されてもよい。ただし、アルミ含有のスラリーの塗布の場合、後続する拡散処理で鋼板の内部へAlを侵入させるのが難しい点が不利である。
 アルミ含有層(めっき層)の組成は、例えばスパッタリング等により形成されるアルミ含有層の場合、アルミニウムのみであってもよい。あるいは、アルミ含有層(めっき層)の組成は、アルミに加えて、鉄(Fe)と、ケイ素(Si)と、マンガン(Mn)のいずれか一つ以上を含むものである。好ましくは、Alと、Feと、Siとを含む。例えば、めっき層においては、20質量%以上かつ100質量%以下の範囲内でAlと、0.00質量%以上かつ80質量%以下の範囲内でFeと、0.00質量%以上かつ15質量%以下の範囲内でSiとを含んでよい。なお、めっき層は、単層であってもよいし、複層であってもよい。
 なお、本実施形態の鋼材処理方法は、上述したように所望の板厚の鋼材を準備することで、後続する拡散処理工程の前の前処理として、アルミ含有層が形成された鋼材に対して圧延等により板厚を低減する処理を行う必要性を、無くす又は低減することができる。ただし、変形例では、アルミ含有層が形成された鋼材に対して圧延等により板厚を低減する処理を実行してもよい。
 ついで、本実施形態の鋼材処理方法は、アルミ含有層が形成された鋼材に対して、酸化雰囲気での拡散処理を行う拡散処理工程(ステップS104)を含む。
 拡散処理は、アルミ含有層に含まれているAlに基づいて、鋼材表面からAl濃度が傾斜した状態を形成するための処理である。すなわち、拡散処理は、アルミ含有層に含まれているAlを、鋼材表面から厚み方向に拡散させることで、Al拡散層(図3の符号32参照)を形成する。Al拡散層は、図4を参照して後述するが、厚み方向で表面側であるほどAl濃度が高くなる態様でAl濃度の傾斜(変化勾配)を有する。
 また、本実施形態では、酸化雰囲気での拡散処理は、鋼材表面に絶縁被膜(図3の符号30参照)を形成することもできる。すなわち、酸化雰囲気での拡散処理は、鋼材表面上のアルミ含有層を酸化させることで、鋼材表面上に絶縁被膜としての酸化物層を形成する。この際、アルミニウム含有層に含まれるアルミニウム、鉄及び酸化雰囲気に含まれる酸素に基づく酸化物層がAl拡散層と同時に形成される。酸化物層は、Al、Fe、Si、Mnの単独、もしくは複合酸化物であるが、アルミ含有層に含まれる成分に応じて、その他の元素を含んでもよい。例えば、酸化物層は、AlもしくはFeを20~80質量%含んでよい。これにより、後述する所望の酸化物層の形成が容易となる。
 本明細書でいう「酸化雰囲気」とは、一般的な意味のとおりであるが、実質的には、酸素を実質的に含まない雰囲気を除外する概念であり、大気中で行う反応を含む概念である。従って、本実施形態では、真空設備が不要である。すなわち、製造コストの低減を図ることができる。また、連続処理が可能であり、製造効率を高めることができる。
 拡散処理は、あらかじめ規定された温度条件下で、あらかじめ規定された処理時間(以下、「拡散時間」とも称する)だけ実行されてもよい。
 ここで、拡散温度が低すぎると、酸化物層の形成や、Alの侵入及び拡散に時間がかかるだけでなく、所望の酸化物層が得られない。この場合、十分な絶縁が得られない。また、逆に、拡散温度が高すぎても、同様に所望の酸化物層が得られない。また、拡散時間が短すぎたり、長すぎたりすると、後述する所望のアルミの拡散態様が得られない。
 そこで、このような背反事項を考慮して、拡散処理は、好ましくは、900℃以上かつ1200℃以下の範囲内の温度(以下、「拡散温度」とも称する)で、0.1分以上かつ1920分以下の範囲内の拡散時間で実行されてもよい。これにより、後述するように、所望の酸化物層の形成と所望のアルミの拡散態様の実現の双方を容易化できる。
 なお、拡散処理に係る製造条件(温度条件や処理時間)の詳細は、ステップS102で得られるアルミ含有層の厚み(すなわちめっき厚)等に応じて、所望の酸化物層と所望のアルミの拡散態様(侵入量や傾斜状態)とが同時に得られるように適合されてよい。なお、温度条件は、拡散温度だけではなく、拡散温度への昇温速度や拡散温度からの冷却速度等を含む概念である。
 所望の酸化物層の厚さは、絶縁被膜として機能する限り基本的に任意であるが、厚さは可能な限り薄い方が望ましい。他方、酸化物層の厚さが厚すぎると鋼材の総磁束量が減少してしまう。この点を考慮して、所望の酸化物層の厚さは1μm以上かつ25μm以下の範囲内である。
 所望のアルミの拡散態様は、Al拡散層がAl濃度の傾斜(変化勾配)を有する態様であれば基本的に任意であるが、各種パラメータの好ましい範囲について、図4を参照して後述する。
 図4は、所望のアルミの拡散態様の説明図であり、本実施形態の鋼材処理方法により得られる鋼材におけるアルミの拡散態様の一例を示す図である。図4には、上側には、鋼材の断面図が模式的に示され、下側には、鋼材の厚み方向でのアルミの拡散態様が示されている。なお、鋼材におけるアルミの拡散態様は、横軸を鋼材の板厚中心からの距離とし、縦軸をAl濃度として、厚み方向での鋼材のAl濃度プロフィールとして示されている。なお、厚み方向での鋼材のAl濃度プロフィールは、板厚中心に関して対称性を有してよい。図4において、d1は、絶縁被膜の厚みを表し、d2は、Alの拡散深さを表す。また、図4において、α1は、絶縁被膜でのAl濃度を表し、α2は、Al拡散層の表面でのAl濃度を表す。
 図4に示すように、本実施形態では、Al拡散層は、厚み方向で表面側であるほどAl濃度が高くなる態様でAl濃度の傾斜(変化勾配)を有する。具体的には、Al拡散層においては、Al拡散層の表面(すなわち酸化物層との境界面)で最も大きく、板厚中心に向かうにつれて徐々に小さくなる。
 ここで、Al拡散層の表面でのAl濃度(以下、「Al拡散層の表面Al濃度」とも称する)が低いと、上述した鉄損低減効果が得られず、高すぎると、上述したように、磁束密度の低下や、鋼材の製造工程(圧延やプレス等)における加工性の低下を招く可能性がある。また、上述したようにAlの拡散深さが浅すぎると、上述した鉄損低減効果が得られず、深すぎると、上述したように、磁束密度の低下等を招く可能性がある。
 このような背反事項を考慮して、Al拡散層の表面Al濃度は、好ましくは、1.50質量%以上かつ10.00質量%以下の範囲内である。
 次に、図5を参照して、比較例による鋼材処理方法との対比により、本実施形態の効果を更に説明する。
 図5は、比較例1による鋼材処理方法に含まれる各工程の流れを概略的に示すフローチャートである。
 比較例1による鋼材処理方法は、本実施形態による鋼材処理方法に対して、準備工程(ステップS100)及びアルミ含有層形成工程(ステップS102)は同じであり、それ以降が異なる。
 具体的には、比較例1による鋼材処理方法は、アルミ含有層が形成された鋼材に対して、無酸化雰囲気での拡散処理を行う拡散処理工程(ステップS104’)を含む。雰囲気以外の拡散処理条件は、上述した拡散処理工程(ステップS104)と同じであってよい。このような無酸化雰囲気での拡散処理は、本実施形態による鋼材処理方法で行う酸化雰囲気での拡散処理とは異なり、無酸化雰囲気であるがゆえに、酸化物層が形成されない。
 ついで、比較例1による鋼材処理方法は、無酸化雰囲気での拡散処理を受けた鋼材に対して、絶縁被膜を形成する工程(ステップS106’)を含む。なお、この場合、絶縁被膜は、酸化物層とは異なる被膜でありうる。
 このような比較例1では、無酸化雰囲気での拡散処理のため真空設備が必要となる。
 これに対して、本実施形態では、上述したように、酸化雰囲気での拡散処理を利用することで、真空設備等が不要であり、製造コストの低減を図ることができる。また、連続処理が可能であり、製造効率を高めることができる。
 また、このような比較例1では、無酸化雰囲気での拡散処理の後に、絶縁被膜を形成するための工程を別途追加する必要がある。
 これに対して、本実施形態では、上述したように、酸化雰囲気での拡散処理により絶縁被膜として酸化物層を形成できる。すなわち、酸化雰囲気での拡散処理は、所望の酸化物層と所望のアルミの拡散態様とを同時に得ることができる処理である。
 このようにして本実施形態の鋼材処理方法によれば、Al濃度の傾斜(変化勾配)を有する態様でAlが適切に拡散された電磁鋼板を、比較的低いコストで製造できる。
 図6は、他の比較例(以下、「比較例2」とも称する)の鋼材処理方法に含まれる各工程の流れを概略的に示すフローチャートである。
 比較例2による鋼材処理方法は、本実施形態による鋼材処理方法に対して、準備工程(ステップS100)及びアルミ含有層形成工程(ステップS102)は同じであり、それ以降が異なる。
 具体的には、比較例2による鋼材処理方法は、アルミ含有層が形成された鋼材に対して、酸化雰囲気での結晶粒成長促進処理を行う処理工程(ステップS104”)を含む。結晶粒成長促進処理は、本実施形態による鋼材処理方法で行う酸化雰囲気での拡散処理に対して、Al濃度が鋼材の内部で均一となるように拡散させるような条件で実行される点が異なる。具体的には、結晶粒成長促進処理は、本実施形態による鋼材処理方法で行う酸化雰囲気での拡散処理に対して、拡散温度が有意に高く、かつ、拡散時間が有意に長い傾向となる。
 図7は、比較例2により得られる鋼材のAl濃度プロフィールを概略的に示す図であり、本実施形態の場合の図4の下側と対比をなす。
 図7に示すように、Al拡散層は、Al拡散層の表面と鋼材の板厚中心とで略同じAl濃度を有する。すなわち、Al濃度は、Al拡散層の表面から鋼材の板厚中心まで略一定(濃度α3参照)である。このような鋼材では、Al侵入による十分な鉄損低減効果は得られない。
 これに対して、本実施形態では、上述したように、拡散温度を過度に高くすることなく、かつ、拡散時間を過度に長くすることなく、所望の酸化物層と所望のアルミの拡散態様とを有する鋼材を得ることができる。すなわち、エネルギ効率や製造効率の観点から効率的に、磁束密度の低下等が生じがたい良好な特性の電磁鋼板を製造できる。
 このようにして本実施形態の鋼材処理方法によれば、Al濃度の傾斜(変化勾配)を有する態様でAlが適切に拡散された電磁鋼板を、比較的低いコストで製造できる。
 次に、本願発明者が本実施形態による鋼材処理方法を利用して実際に処理した鋼材に関するいくつかの実施例について説明する。
 本願発明者は、以下の表1の成分特性を有する3種類(鋼種A、B、Cと表記)の鋼材を準備して、本実施形態による鋼材処理方法に基づく処理を行った結果、表2の結果を得た。具体的には、実施例1等では、表1の化学成分を有する鋼板から、外径64mm、内径50mmのリング形状の試験片をレーザにより切り出し、当該試験片に対して、アルミナイジング処理を施し、表2のめっき厚が得られた。ついで、アルミナイジング処理後、表2の条件で拡散処理を行った。実施例5等では、表1の化学成分を有する鋼板から、単板の試験片をレーザにより切り出し、当該試験片に対して、同様にアルミナイジング処理を施し、表2のめっき厚が得られた。ついで、アルミナイジング処理後、表2の条件で拡散処理を行った。なお、試験片の形態は、リング形状か単板(サイズ20×50mmの矩形形状)かで相違があるが、試験結果(例えば、鉄損低減率や磁束密度低下率等)には実質的に影響しない。
 また、表2に示す条件には、焼鈍の有無が示されている。焼鈍条件としては、750℃×60min保持後、炉冷で実行されたが、任意である。焼鈍は、レーザにより切り出しの影響(例えば鉄損の増加)を低減する点で、試験結果に影響する。なお、ロータに使用する鋼板の場合、焼鈍は不要とされてよい。
 なお、3種類(鋼種A、B、Cと表記)の鋼材は、いずれも、Siを0~7.00質量%、Mnを0~1.00質量%、Alを0~2.00質量%含む。このような組成の母材が好適であるが、これに限られない。なお、表2中、mass%は、質量%を表す。
 その結果、表3、4及び表5の結果が得られた。表3、4に係る評価1についてはFE(Field Emission)―EPMA(Electron Probe Micro Analyzer)分析による評価である。評価1における酸化物層に係るAl濃度やFe濃度は、酸化物層の中心又はその近傍での濃度であってよい。なお、Fe濃度は、酸化物層の表面側で高くなる傾向がある。表5に係る評価2の鉄損については、交流磁気測定結果であり、評価2の磁束密度については直流磁気測定結果である。なお、拡散深さ板厚比とは、拡散深さを板厚で除算した値である。表5中、磁束密度は、磁化力5000A/mにおける磁束密度(B50)を表し、鉄損は、周波数400Hz、磁束密度1.0Tにおける鉄損(W10/400)を表す。また、表5中、鉄損低減率は、未処理品の鉄損からの低減量を、未処理品の鉄損で除算して得られる率である。
 表3、4の評価1及び表5の評価2から分かるように、各実施例はいずれも、周波数400Hz、磁束密度1Tでの鉄損低減率0%より大きく、5kA/mでの磁束密度低下率25%以下であり、良好な特性が得られている。
 表3、4の評価1及び表5の評価2から分かるように、実施例3では、拡散深さ板厚比が大きすぎるため、磁束密度低下率(未処理品に対する低下率)が比較的大きくなったものの、25%以下に収まっている。他方、比較例1では、拡散層の表面Al濃度が高すぎるため、磁束密度低下率が比較的大きくなっており、25%を超えてしまう。かかる評価結果からは、本実施形態の鋼材処理方法においては、Al侵入量を抑制するために、めっき厚が50μm以下であることが好ましく、30μm以下(板厚の20%以下)であることが更に好ましい。また、拡散層の表面Al濃度が14.0質量%以下であることが好ましく、10.0質量%未満であることが更に好ましいことが、分かる。
 実施例6、7及び比較例2、3は、表2に示すように、雰囲気が大気であるのに代えて、低酸素ポテンシャル雰囲気とされている。低酸素ポテンシャル雰囲気は、酸素、水素、及びアルゴンを含む雰囲気であり、大気に比べて酸素濃度が有意に低い。このため、表3、4の評価1に示すように、酸化物層の厚みが比較的小さくなる。酸化物層の厚みは、絶縁被膜としての必要な電気的絶縁性を確保するために、上述したように1μm以上であることが望ましい。なお、酸化物層は、単層又は複層となるが、複層の場合は、全体として1μm以上であることが望ましい。酸化物層が厚い程、鉄損が小さくなることを期待できる(例えば比較例2、3と実施例8、9との間の有意差について参照)。
 表3、4に示すように、本願発明者は、Al侵入量板厚比(単位:質量%)と、Al傾斜勾配板厚比×(Al侵入量板厚比)^0.5(単位:質量%^1.5/[μm]^2)の2つの評価パラメータを利用した。なお、^0.5や^2における記号“^”は、べき乗を表し、例えば、^0.5は、0.5乗を表す。なお、表4中の記号“*”は、乗算を表す。
 Al侵入量板厚比は、Al拡散層におけるアルミの侵入量(以下、「Al侵入量」とも称する)を、アルミの拡散深さと、母材板厚中心におけるアルミニウムの濃度(以下、「中央Al濃度」とも称する)とに基づいて算出した場合に、Al侵入量を母材板厚で除した値である。具体的には、本試験では、Al侵入量は、アルミの拡散深さと、表面Al濃度と、中央Al濃度とに基づいて以下のように算出された。
アルミの拡散深さ<母材板厚/2の場合、Al侵入量=(表面Al濃度-中央Al濃度)×アルミの拡散深さ×1/2
この場合、Al侵入量は、図8に一点鎖線で示す三角形の面積S11に対応する。この際、三角形の3つの頂点は、図8に示すように、母材表面かつ表面Al濃度に対応する位置と、母材表面かつ中央Al濃度に対応する位置と、母材表面からアルミの拡散深さだけ内側かつ中央Al濃度に対応する位置に対応する。
アルミの拡散深さ≧母材板厚/2の場合、Al侵入量=(表面Al濃度+中央Al濃度-母材Al濃度×2)×アルミの拡散深さ×1/2
この場合、Al侵入量は、図9に一点鎖線で示す台形の面積S12に対応する。この際、台形の4つの頂点は、図9に示すように、母材表面かつ表面Al濃度に対応する位置と、母材表面かつ母材Al濃度に対応する位置と、母材表面からアルミの拡散深さだけ内側かつ中央Al濃度に対応する位置と、母材表面からアルミの拡散深さだけ内側かつ母材Al濃度に対応する位置に対応する。
アルミの拡散深さ≧母材板厚/2の場合とは、表3において拡散深さ板厚比が0.50以上の場合に対応する。なお、母材Al濃度は、表2の母材成分に対応する(図9のDも参照)。また、母材板厚は、表2の板厚に対応し、全体から酸化物層の厚さを除いた板厚である。
 Al傾斜勾配板厚比は、Al拡散層における厚み方向の変化に対するアルミ濃度の変化勾配である。Al傾斜勾配板厚比は、Al傾斜勾配を母材板厚で除した値である。具体的には、本試験では、Al傾斜勾配は、以下のように算出された。
Al傾斜勾配=(表面Al濃度-中央Al濃度)/アルミの拡散深さ
なお、母材板厚は、表2の板厚に対応し、全体から酸化物層の厚さを除いた板厚である。なお、上述したAl侵入量板厚比と同様に、アルミの拡散深さ≧母材板厚/2の場合、アルミの拡散深さ=母材板厚/2とされてよい。
 図10は、横軸に、Al傾斜勾配板厚比×(Al侵入量板厚比)^0.5を取り、縦軸に磁束密度低下率を取り、各実施例及び比較例の結果をプロットしたプロット図である。なお、図10には、これらのプロット点に対する補間による曲線が併せて示されている。
 図10からわかるように、Al傾斜勾配板厚比×(Al侵入量板厚比)^0.5が0.000400以下であれば、磁束密度低下率を約25%以下に抑えることができる。なお、図10において、磁束密度低下率が25%を超える2つのプロット点は、比較例1、4に対応する。磁束密度低下率が25%以内の各プロット点は、各実施例に対応する。
 図11は、横軸にAl侵入量板厚比を取り、縦軸に磁束密度低下率を取り、各実施例及び比較例の結果をプロットしたプロット図である。なお、図11には、これらのプロット点に対する補間による直線が併せて示されている。
 図11からわかるように、Al侵入量板厚比が5.50以下である場合、磁束密度低下率を約25%以下に抑えることを期待できる。なお、図11において、磁束密度低下率が25%を超える2つのプロット点は、比較例1、4に対応する。磁束密度低下率が25%以内の各プロット点は、各実施例に対応する。比較例1、4に対応するプロット点も、Al侵入量板厚比が5.50以下であるが、例えば図10を参照して上述したように、Al傾斜勾配板厚比×(Al侵入量板厚比)^0.5が0.000400以下である条件を満たないため、かかる条件により除外できる。
 以上、各実施形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施形態の構成要素を全部又は複数を組み合わせることも可能である。
 例えば、上述した実施形態において、拡散処理は、Al含有層形成後すぐに実施されてもよいし、Al含有層形成後、プレス等の加工を行った後に実施されてもよい。また、Al含有層の形成は、アルミナイジングやスラリー以外でも、蒸着、スパッタ、カロライジング、ショットピーニング、箔の接合等により実現されてもよい。
20・・・アルミ含有層(アルミニウム含有層)、30・・・絶縁被膜(酸化物層)、32・・・Al拡散層(アルミニウム拡散層)

Claims (10)

  1.  表面にアルミニウム含有層が形成された電磁鋼板用の鋼材に対して、酸化雰囲気での拡散処理を行う、鋼材処理方法。
  2.  前記アルミニウム含有層が形成される前の前記鋼材は、0.00質量%よりも大きく7.00質量%以下の範囲内でケイ素(Si)と、0.00質量%よりも大きく2.00質量%以下の範囲内でアルミニウム(Al)と、0.00質量%よりも大きく1.00質量%以下の範囲内でマンガン(Mn)とを含む、請求項1に記載の鋼材処理方法。
  3.  前記アルミニウム含有層は、2μm以上30μm以下の範囲内の厚みのめっき層の形態であり、
     前記めっき層の組成は、アルミニウム(Al)からなり、又は、アルミニウム(Al)に加えて、鉄(Fe)、ケイ素(Si)及びマンガン(Mn)のいずれか一つ以上を含む、請求項2に記載の鋼材処理方法。
  4.  前記拡散処理は、鋼材表面から板厚中心に向けてアルミニウム濃度が徐々に低下する変化勾配が得られるような処理条件で実行される、請求項2に記載の鋼材処理方法。
  5.  前記拡散処理は、900℃以上1200℃以下の範囲内の温度で、かつ、0.1分以上1920分以下の範囲内の時間で、実行される、請求項2に記載の鋼材処理方法。
  6.  前記拡散処理は、前記アルミニウム含有層に含まれるアルミニウムに基づくアルミニウム拡散層と、前記アルミニウム含有層に含まれるアルミニウム及び前記酸化雰囲気に含まれる酸素に基づく酸化物層とを同時に形成する、請求項1から5のうちのいずれか1項に記載の鋼材処理方法。
  7.  母材表面上の絶縁被膜を形成する酸化物層であって、アルミニウム、鉄、ケイ素、マンガンのいずれか一つ以上を含む酸化物層と、
     母材表面から母材板厚中心に向けてアルミニウム濃度が徐々に低下するアルミニウム拡散層とを含む、電磁鋼板。
  8.  前記酸化物層は、1μm以上25μm以下の範囲内の厚さであり、アルミニウム又は鉄を20質量%以上80質量%以下の範囲内で含む、請求項7に記載の電磁鋼板。
  9.  前記アルミニウム拡散層における厚み方向の変化に対する前記アルミニウム濃度の変化勾配を、Al傾斜勾配とし、Al傾斜勾配を母材板厚で除した値を、Al傾斜勾配板厚比とし、
    かつ、前記アルミニウム拡散層におけるアルミニウムの侵入量を、前記アルミニウム拡散層におけるアルミニウムの拡散深さと、母材表面及び母材板厚中心におけるアルミニウムの濃度とに基づいて算出した場合に、前記侵入量を母材板厚で除した値を、Al侵入量板厚比としたとき、
     Al傾斜勾配板厚比×(Al侵入量板厚比)1/2が、0より大きく0.000400以下の範囲内である、請求項7又は8に記載の電磁鋼板。
  10.  前記Al侵入量板厚比が、0より大きく5.50以下の範囲内である、請求項9に記載の電磁鋼板。
PCT/JP2023/022263 2022-06-21 2023-06-15 鋼材処理方法及び電磁鋼板 WO2023248922A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-099368 2022-06-21
JP2022099368 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023248922A1 true WO2023248922A1 (ja) 2023-12-28

Family

ID=89379878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022263 WO2023248922A1 (ja) 2022-06-21 2023-06-15 鋼材処理方法及び電磁鋼板

Country Status (1)

Country Link
WO (1) WO2023248922A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138648A (ja) * 1993-10-01 1995-05-30 Kawasaki Steel Corp 方向性けい素鋼板の鉄損低減方法および低鉄損方向性けい素鋼板
JP2018509522A (ja) * 2014-12-24 2018-04-05 ポスコPosco 磁気的性質に優れた方向性電磁鋼板およびその製造方法
CN108425069A (zh) * 2018-05-31 2018-08-21 马鞍山钢铁股份有限公司 一种具有优异耐热、耐高温氧化性热浸镀层钢板及生产方法
KR20210080002A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138648A (ja) * 1993-10-01 1995-05-30 Kawasaki Steel Corp 方向性けい素鋼板の鉄損低減方法および低鉄損方向性けい素鋼板
JP2018509522A (ja) * 2014-12-24 2018-04-05 ポスコPosco 磁気的性質に優れた方向性電磁鋼板およびその製造方法
CN108425069A (zh) * 2018-05-31 2018-08-21 马鞍山钢铁股份有限公司 一种具有优异耐热、耐高温氧化性热浸镀层钢板及生产方法
KR20210080002A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법

Similar Documents

Publication Publication Date Title
EP1739694A1 (en) Soft magnetic material, dust core and method for producing soft magnetic material
JP4616935B2 (ja) 無方向性電磁鋼板及びその製造方法
JP6794704B2 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
JP2009256750A (ja) 圧粉磁心用粉末とその製造方法
WO2013111751A1 (ja) 電磁鋼板
JP2015088529A (ja) 圧粉磁心、磁心用粉末およびそれらの製造方法
JP6805978B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2020190026A (ja) 無方向性電磁鋼板およびその製造方法
JP2012112015A (ja) 無方向性電磁鋼板およびその製造方法
WO2023248922A1 (ja) 鋼材処理方法及び電磁鋼板
JPH11293422A (ja) 高周波鉄損の極めて低い珪素鋼板
JP2005303006A (ja) 圧粉磁心の製造方法および圧粉磁心
JP6623533B2 (ja) Fe系金属板
JP7331802B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2000045053A (ja) 鉄損の低い方向性珪素鋼板
JP6191774B2 (ja) 軟磁性粉末用原料粉末および圧粉磁芯用軟磁性粉末
KR20090079056A (ko) 무방향성 전기강판의 제조 방법 및 이를 이용하여 제조된무방향성 전기강판
JPH11256289A (ja) 高周波鉄損の低い珪素鋼板
JPH11293424A (ja) 飽和磁束密度が高く高周波鉄損の低い珪素鋼板
JP6504027B2 (ja) 軟磁性粉末用の原料粉末並びに圧粉磁芯用軟磁性粉末およびその製造方法
EP4135172A1 (en) Method for processing magnetic steel sheet and method for manufacturing motor and motor core
JP3948113B2 (ja) 軟磁性薄帯
JP2000328226A (ja) 高周波特性に優れたモータ用珪素鋼板およびその製造方法
JP2010140968A (ja) 軟磁性材料およびその製造方法
CN106906424B (zh) 减少其反复磁化损耗的部件以及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827108

Country of ref document: EP

Kind code of ref document: A1