WO2023234373A1 - 核酸の構造解析方法 - Google Patents

核酸の構造解析方法 Download PDF

Info

Publication number
WO2023234373A1
WO2023234373A1 PCT/JP2023/020361 JP2023020361W WO2023234373A1 WO 2023234373 A1 WO2023234373 A1 WO 2023234373A1 JP 2023020361 W JP2023020361 W JP 2023020361W WO 2023234373 A1 WO2023234373 A1 WO 2023234373A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
nucleic acid
mass
fragment ions
ion
Prior art date
Application number
PCT/JP2023/020361
Other languages
English (en)
French (fr)
Inventor
裕子 福山
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2023234373A1 publication Critical patent/WO2023234373A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6872Methods for sequencing involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to a method for analyzing the structure of nucleic acids using mass spectrometry.
  • Nucleic acids are biopolymers in which nucleotides consisting of bases, sugars, and phosphoric acids are linked by phosphodiester bonds, and are classified into deoxyribonucleic acids (DNA) and ribonucleic acids (RNA) depending on the sugars.
  • nucleic acids also called oligonucleotides, which are polymerized molecules of several to twenty nucleotides, can be chemically synthesized, and in recent years, research has been actively conducted on the application of oligonucleotides as nucleic acid medicines.
  • One of the methods for structural analysis of nucleic acids and oligonucleotides that is, to identify the bonding order (base sequence) of nucleotides constituting DNA or RNA, the type of chemical modification, or the site where the chemical modification has been performed is based on mass analysis.
  • a method using analysis is known. In this method, the nucleic acid to be analyzed is intentionally fragmented, and the various partial structures generated thereby are analyzed by mass spectrometry.
  • a tandem time-of-flight (TOF) mass By performing MS/MS analysis (also called MS 2 analysis) using an analyzer (MALDI-TOF/TOF-MS), we are conducting structural analysis of a nucleic acid with a molecular weight of approximately 1200, which is a polymer of four nucleotides. . Specifically, a protonated molecule ([M+H] + ) of the nucleic acid to be analyzed is first selected as a precursor ion in the mass separation section in the first stage, and then is selected by collision induced dissociation (CID) in a collision chamber.
  • CID collision induced dissociation
  • the precursor ions are dissociated to generate various fragment ions (also referred to as product ions). Then, the various fragment ions are separated in a subsequent mass separation unit, and structural analysis is performed based on the mass information of the fragment ions obtained by detecting them.
  • the MALDI method is generally a soft ionization method, which makes it difficult for ions to dissociate. It is known that the dissociation of ions is promoted when This method of dissociating ions simultaneously with ionization or immediately after ionization is called In-Source Decay (ISD).
  • ISD In-Source Decay
  • a time-of-flight mass spectrometer (MALDI-TOF-MS) having an ion source based on the MALDI method is used to analyze various fragment ions of nucleic acids generated by in-source decomposition. Structural analysis of nucleic acids is performed based on the mass information of the fragment ions obtained by mass spectrometry.
  • the present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a novel method for analyzing the structure of nucleic acids, which can detect fragment ions with high sensitivity.
  • the method for analyzing the structure of nucleic acids according to the present invention includes: A method for structural analysis of nucleic acids using an ion trap type mass spectrometer having an ion source using matrix-assisted laser desorption ionization, the method comprising: an ionization step of ionizing nucleic acids contained in the sample with the ion source; an ion dissociation step of dissociating the protonated molecules or deprotonated molecules of the nucleic acid generated in the ionization step by collision-induced dissociation inside an ion trap of the mass spectrometer to generate a plurality of fragment ions; a mass spectrometry step of acquiring mass information of the plurality of fragment ions by performing mass spectrometry on the plurality of fragment ions generated in the ion dissociation step; a structure determining step of determining at least a portion of the structure of the nucleic acid based on mass information of the plurality of fragment
  • Collision-induced dissociation by the ion trap type mass spectrometer used in the present invention has a relatively low kinetic energy of approximately 1000 eV (1 keV) or less (several to several hundred eV) at the time of collision between the collision gas and the target ion. This is called low energy collision induced dissociation (LE-CID).
  • LE-CID low energy collision induced dissociation
  • Due to multiple low-energy collisions collision energy is accumulated in sample molecules as vibrational energy, inducing dissociation of ions. The stored energy is redistributed to reflect the molecular structure, causing ions to dissociate from locations beyond the bonding limit.
  • HE-CID High Energy Collision Induced Dissociation
  • the collision energy is 1000 eV or more
  • ions are mainly generated by simple fragmentation occurring at the collision site. dissociate.
  • LE-CID and HE-CID have different ion dissociation mechanisms, and the types of fragment ions obtained are also different.
  • fragment ions can be detected with high sensitivity, and a novel method for analyzing the structure of nucleic acids that utilizes an ion dissociation method different from conventional methods can be provided.
  • FIG. 3 is a diagram showing a mass spectrum of standard nucleic acid A obtained by MS analysis in Example 1.
  • FIG. 3 is a diagram showing a product ion spectrum of standard nucleic acid A obtained by MS 2 analysis in Example 1.
  • nucleic acid Regarding the nucleic acid to be analyzed in this embodiment, the number of nucleotides as constituent units is not particularly limited, but oligonucleotides in which several to several dozen nucleotides are linked are preferred. Among these, oligonucleotides in which about 2 to 20 nucleotides are linked are preferred.
  • the nucleic acid may be a natural product obtained from living organisms or a processed product thereof, or may be an artificially synthesized chemically synthesized nucleic acid.
  • an ion trap type mass spectrometer having an ion source using the MALDI method is used.
  • the mass spectrometer includes an ion source using the MALDI method, and an ion trap that holds ions therein and has the function of separating ions according to their mass-to-charge ratio and dissociating ions by collision-induced dissociation.
  • an analytical device This device can perform not only analysis that does not involve dissociation of ions (hereinafter referred to as MS analysis), but also MS n analysis (where n is an integer of 2 or more) in which ion selection and dissociation are repeated one or more times. can.
  • the ion trap type mass spectrometer referred to herein has an ion trap for capturing ions generated by an ion source. Specifically, the ions captured in the ion trap are ejected in descending order of mass-to-charge ratio (m/z) using the mass separation function of the ion trap itself, and the ions are detected by a detector placed outside the ion trap. Contains a mass spectrometer for detection. In addition, the ions ejected all at once from the ion trap are separated according to their mass-to-charge ratio by a mass separation section placed outside the ion trap, such as a time-of-flight mass spectrometer, and then separated by a detector also placed outside. Contains a mass spectrometer for detection.
  • the type of ion trap is not particularly limited.
  • an ion trap that traps and ejects ions using a radio frequency (RF) electric field
  • an ion trap that traps ions using an electric field generated by applying a sinusoidal high-frequency voltage to a ring electrode.
  • It may be a digital ion trap that traps ions using an electric field generated by applying a rectangular wave voltage generated by switching two different voltages at high speed to a ring electrode.
  • the m/z range of ions that can be captured is controlled by changing the frequency while keeping the amplitude (voltage value) of the rectangular wave voltage constant.
  • the ion trap it is preferable to use a digital ion trap.
  • the nucleic acid structure analysis method of this embodiment includes an ionization step in which nucleic acids contained in a sample are ionized using an ion source using the MALDI method, and a protonated or deprotonated molecule of the nucleic acid generated in the ionization step is ionized inside an ion trap.
  • an ion source using the MALDI method irradiates a sample for analysis containing nucleic acids and a matrix substance with laser light, thereby ionizing the nucleic acids together with the matrix substance.
  • an appropriate material can be selected depending on the type of nucleic acid to be analyzed.
  • 3-hydroxypicolinic acid (3-HPA), 2,4-dihydroxyacetophenone (2,4-DHAP), 2,5-dihydroxybenzoic acid (2,5- dihydroxybenzoic acid (DHB), 2',4',6'-trihydroxyacetophenone monohydrate (THAP), 6-aza-2-thiothymine (6-aza- Examples include 2-thiothymine (ATT), 3-aminopyrazine-2-carboxylic acid (APCA), anthranilic acid (AA), nicotinic acid (NA), etc. .
  • 3-HPA, 2,4-DHAP, and THAP are preferably used, 3-HPA and 2,4-DHAP are more preferable, and 3-HPA is particularly preferable.
  • a mixed matrix in which two or more types of matrix substances are mixed may be used, among which a mixed matrix in which 3-HPA and 2,4-DHAP are mixed, a mixed matrix in which 3-HPA and THAP are mixed, 2,4- A matrix containing a mixture of DHAP and THAP is preferred.
  • a method for preparing a sample for analysis is to prepare a mixed solution in which a sample containing a nucleic acid and a matrix substance are mixed, and to dry the mixed solution on a sample plate of a mass spectrometer.
  • a mixed solution may be prepared in advance, and the mixed solution may be dropped onto a sample plate and dried, or the mixed solution may be prepared on a sample plate and dried as it is.
  • the sample for analysis may further contain a matrix additive.
  • a matrix additive ammonium citrate dibasic (ACD) can be used.
  • ACD ammonium citrate dibasic
  • the order in which the sample containing nucleic acid, the matrix substance, and the matrix additive are mixed is not particularly limited, but a matrix/additive mixed solution containing the matrix substance and matrix additive is prepared in advance.
  • a sample for analysis by mixing a sample solution containing a nucleic acid and the matrix/additive mixed solution.
  • the sample solution and the matrix/additive mixed solution may be dropped onto the sample plate and dried to prepare the sample for analysis. They may be dropped onto the plate, mixed and dried on the sample plate.
  • the ratio of mixing the sample solution and the matrix/additive mixed solution is not particularly limited. Preparing the matrix/additive mixed solution in advance facilitates the preparation of samples for analysis.
  • the concentration of the matrix additive in the matrix/additive mixed solution is preferably 10 to 100 mM, more preferably 30 to 70 mM, from the viewpoint of generating a sufficient amount of ions related to the molecular weight of nucleic acids.
  • the numerical range from the lower limit value to the upper limit value is expressed as "(lower limit value) to (upper limit value)" and the symbol " ⁇ " is used. includes the lower limit value itself and the upper limit value itself.
  • ion dissociation process In the ion dissociation step, all ions generated in the ionization step are first captured in an ion trap, and then separated into protonated molecules ([M+H] + ) or deprotonated molecules ([MH] ⁇ ) of the nucleic acid to be analyzed. ) is ejected from the ion trap, and the protonated molecule or the deprotonated molecule is selected as a precursor ion. Next, an inert gas such as argon is introduced into the ion trap, and the protonated or deprotonated molecules are dissociated by collision-induced dissociation. As a result, various fragment ions (product ions) derived from nucleic acids are generated.
  • Collision-induced dissociation in the ion trap type mass spectrometer used in this embodiment corresponds to low-energy collision-induced dissociation (LE-CID).
  • LE-CID low-energy collision-induced dissociation
  • collision energy is accumulated as vibrational energy within the sample molecules due to multiple collisions, inducing ion dissociation, and the accumulated energy is redistributed to reflect the molecular structure, so the bonding state of the molecules can be changed. Ions dissociate from the point beyond the limit point.
  • collision-induced dissociation in a time-of-flight mass spectrometer corresponds to high-energy collision-induced dissociation (HE-CID), in which ions simply dissociate at the collision site.
  • HE-CID high-energy collision-induced dissociation
  • the type of CID (LE-CID or HE-CID) differs depending on the mass spectrometer used, and LE-CID and HE-CID dissociate ions differently.
  • Mass spectrometry process In the mass spectrometry step, mass spectrometry (MS 2 analysis) is performed on various fragment ions derived from nucleic acids generated in the ion dissociation step.
  • mass spectrometry MS 2 analysis
  • fragment ions are ejected from the ion trap in order of decreasing mass-to-charge ratio, and the ejected ions are transferred to the outside of the ion trap.
  • Mass spectrometry is performed by detecting with a detector placed at.
  • the various fragment ions ejected all at once from the ion trap are introduced into a mass separator placed outside the ion trap.
  • Mass spectrometry is performed by separating the ions according to their mass-to-charge ratio and detecting the separated fragment ions with a detector also placed outside.
  • mass spectra product ion spectra
  • LE-CID and HE-CID have different ways of dissociating ions, so MS 2 analysis using LE-CID using an ion trap mass spectrometer is different from MS 2 analysis using HE-CID. A different product ion spectrum can be obtained.
  • peaks corresponding to various fragment ions are extracted from the mass spectrum obtained in the mass spectrometry step, various fragment ions are assigned based on the mass-to-charge ratio (mass information) shown by the peaks, and the results are Together, at least a portion of the structure of the original nucleic acid is determined. Determining the structure includes sequence analysis and identifying the type of chemical modification or the site where the chemical modification has been performed by the sequence analysis. A database search or de novo sequencing may be used to determine the structure.
  • sample solution a 100 pmol/ ⁇ L aqueous solution of standard nucleic acid A (5'-CAATGTGC-3': MW 2409.6) was prepared.
  • matrix/additive mixed solution As a matrix/additive mixed solution, a 40 mg/mL 50% acetonitrile (ACN) aqueous solution of 3-hydroxypicolinic acid (3-HPA) containing 40 mM concentration of diammonium hydrogen citrate (ACD) as a matrix additive was used. Created.
  • ACN acetonitrile
  • 3-hydroxypicolinic acid 3-HPA
  • ACD diammonium hydrogen citrate
  • sample solution prepared in 2.
  • matrix/additive mixed solution prepared above was mixed at a ratio of 1:1 (v/v), and 1 ⁇ L of the resulting mixed solution was dropped onto a sample plate (SUS plate) and dried.
  • Mass spectrometry> For mass spectrometry, a MALDI digital ion trap mass spectrometer (MALDI-DITMS, manufactured by Shimadzu Corporation, trade name: MALDImini-1) was used. 3. The analytical sample prepared in step 1 was inserted into MALDI-DITMS, and MS analysis and MS 2 analysis were performed in positive mode.
  • MALDI-DITMS MALDI digital ion trap mass spectrometer
  • FIG. 1 shows a mass spectrum obtained by MS analysis.
  • the arrows in the figure indicate the detection status of protonated molecules ([M+H] + ). From FIG. 1, it was confirmed that [M+H] + was detected with high sensitivity.
  • FIG. 2 shows a product ion spectrum obtained by MS 2 analysis for [M+H] + .
  • each peak in the mass spectrum is given the name of the fragment ion species of the corresponding oligonucleotide (general name proposed in Non-Patent Document 5).
  • This name represents the nuclear ion species as a fragment ion series according to the naming rules for nucleic acid dissociation patterns.
  • fragment ions containing a 5' end are designated as a n , b n , c n , d n
  • fragment ions containing a 3' end in the opposite direction are designated x m , y m , z m .
  • the subscripts n and m indicate the number of constituent units (by definition, the number of bases) from the corresponding end to the dissociation site. From Figure 2, the peaks of various fragment ions were detected with high sensitivity, and enough types of fragment ions could be assigned to carry out structural analysis based on w-series ions, and the entire base sequence of standard nucleic acid A could be analyzed. We were able to.
  • a nucleic acid structural analysis method includes: A method for structural analysis of nucleic acids using an ion trap type mass spectrometer having an ion source using matrix-assisted laser desorption ionization, the method comprising: an ionization step of ionizing nucleic acids contained in the sample with the ion source; an ion dissociation step of dissociating the protonated molecules or deprotonated molecules of the nucleic acid generated in the ionization step by collision-induced dissociation inside an ion trap of the mass spectrometer to generate a plurality of fragment ions; a mass spectrometry step of acquiring mass information of the plurality of fragment ions by performing mass spectrometry on the plurality of fragment ions generated in the ion dissociation step; a structure determining step of determining at least a portion of the structure of the nucleic acid based on mass information of the plurality of fragment ions obtained by the mass spectrome
  • the method for analyzing the structure of a nucleic acid described in Section 1 includes: The ionization step may be performed by irradiating a sample containing the nucleic acid, a matrix material, and a matrix additive that is diammonium hydrogen citrate with a laser beam.
  • the nucleic acid structural analysis method described in Section 2 includes:
  • the matrix material may be 3-hydroxypicolinic acid.
  • the method for analyzing the structure of a nucleic acid according to item 2 or 3 includes: When a matrix/additive mixed solution containing the matrix material and the matrix additive is prepared, the concentration of the matrix additive in the matrix/additive mixed solution may be 10 to 100 mM.
  • the nucleic acid structural analysis methods described in sections 2 to 4 include: Preparing a matrix/additive mixed solution containing the matrix material and the matrix additive,
  • the sample for analysis may be prepared by mixing the sample and the matrix/additive mixed solution.
  • the sample for analysis can be easily prepared.
  • the method for structural analysis of nucleic acids according to any one of paragraphs 1 to 5 includes:
  • the mass spectrometer may be a digital ion trap type mass spectrometer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

MALDIによるイオン源を有するイオントラップ型の質量分析装置を用いた核酸の構造解析方法であって、試料に含まれる核酸を前記イオン源でイオン化するイオン化工程と、前記イオン化工程により生成された前記核酸のプロトン付加分子又は脱プロトン分子を、前記質量分析装置のイオントラップの内部で衝突誘起解離により解離して、複数のフラグメントイオンを生成するイオン解離工程と、前記イオン解離工程により生成された複数のフラグメントイオンについて質量分析を行うことにより前記複数のフラグメントイオンの質量情報を取得する質量分析工程と、前記質量分析工程により取得された前記複数のフラグメントイオンの質量情報に基づいて前記核酸の構造の少なくとも一部を決定する構造決定工程と、を有する。これにより、フラグメントイオンを感度良く検出することができる、新規な核酸の構造解析方法を提供することができる。

Description

核酸の構造解析方法
 本発明は、質量分析を利用した核酸の構造解析方法に関する。
 核酸は、塩基と糖とリン酸からなるヌクレオチドがホスホジエステル結合で連なった生体高分子であり、糖の違いによってデオキシリボ核酸(DNA)とリボ核酸(RNA)に分類される。中でも数個から二十個程度のヌクレオチドが重合したオリゴヌクレオチドとも呼ばれる核酸は、化学的に合成することができるため、近年、オリゴヌクレオチドを核酸医薬品として応用する研究が活発に行われている。
 核酸およびオリゴヌクレオチドの構造解析方法、すなわち、DNAやRNAを構成するヌクレオチドの結合順(塩基配列)や、化学修飾の種類又は該化学修飾が施された部位を特定する方法の一つとして、質量分析を利用した方法が知られている。この方法では、解析対象である核酸を意図的に断片化し、それにより生成される多様な部分構造について質量分析を行うことにより解析を行う。
 例えば、非特許文献1に記載されている方法では、マトリックス支援レーザ脱離イオン化(Matrix Assisted Laser Desorption/Ionization:MALDI)法によるイオン源を有するタンデム型の飛行時間型(Time of Flight:TOF)質量分析装置(MALDI-TOF/TOF-MS)を用いてMS/MS分析(MS分析ともいう)を行うことにより、ヌクレオチドが4個重合した、分子量が1200程度の核酸の構造解析を行っている。具体的には、まず前段の質量分離部において、解析対象である核酸のプロトン付加分子([M+H])をプリカーサイオンとして選択し、続く衝突室で衝突誘起解離(Collision Induced Dissociation:CID)により該プリカーサイオンを解離させて各種フラグメントイオン(プロダクトイオンともいう)を生成させる。そして、後段の質量分離部で該各種フラグメントイオンを分離し、それらを検出することにより得られるフラグメントイオンの質量情報に基づいて、構造解析を行っている。
 また、MALDI法は、一般にソフトなイオン化法であるためイオンが解離しにくいが、例えば、レーザ光の強度を上げイオン化の際のエネルギーを高めたり、特殊なマトリックスを使用したりすることで、イオン化の際にイオンの解離が促進されることが知られている。このようなイオン化と同時に又はイオン化の直後にイオンを解離させる手法をインソース分解(In-Source Decay:ISD)という。非特許文献2~4に記載されている方法では、MALDI法によるイオン源を有する飛行時間型質量分析装置(MALDI-TOF-MS)を用い、インソース分解により生成される核酸の各種フラグメントイオンについて質量分析を行い、それにより得られる該フラグメントイオンの質量情報に基づいて、核酸の構造解析を行っている。
Thomas E. Andersen, 他2名, "RNA Fragmentation in MALDI Mass Spectrometry Studied by H/D-Exchange: Mechanisms of General Applicability to Nucleic Acids", Journal of the American Society for Mass Spectrometry, (米国), 2006, 17, pp.1353-1368 Nathan A. Hagan, 他5名, "Enhanced In-Source Fragmentationin MALDI-TOF-MS of Oligonucleotides Using 1,5-Diaminonapthalene", Journal of theAmerican Society for Mass Spectrometry, (米国), 2012, 23, pp.773-777 Hisao Shimizu, 他6名, "Application of high-resolution ESI and MALDI mass spectrometry to metabolite profiling of small interfering RNA duplex", Journal of Mass Spectrometry, (米国), 2012, 47, pp.1015-1022 Satoshi Kimura, 他1名, "Effect of oligonucleotide structural difference on matrix-assisted laser desorption/ionization in-source decay in comparison with collision-induced dissociation fragmentation", (米国), Rapid Communications in Mass Spectrometry, 2020, 34, e8819 Scott A. McLuckey, 他2名, "Tandem mass spectrometry of small, multiply charged oligonucleotides", Journal of the American Society for Mass Spectrometry, (米国), 1992, 3, pp. 60-70
 非特許文献1のような衝突誘起解離を利用したMS/MS分析による構造解析を行うには、フラグメントイオンを生成させるために、プリカーサーイオンであるプロトン付加分子([M+H])又は脱プロトン分子([M-H])(Mは分子、Hは水素原子)を十分な量、衝突室に導入する必要がある。しかし、核酸の質量分析ではイオン化の際に核酸が分解し易く、特に核酸の分子量が大きいほど分解され易いことから、[M+H]又は[M-H]が生成されにくい。また、[M+H]又は[M-H]とは別に核酸のアルカリ金属イオン付加体が生成され易いことから、[M+H]又は[M-H]の感度が低くなりやすい。そのため、十分な量の分子量関連イオンを衝突室に導入することが難しく、MS/MS分析による核酸の構造解析が困難になることがある。また、非特許文献2~4のようなインソース分解を利用した構造解析においては、検出される一部のフラグメントイオンの分解能や感度が低くなりやすいという問題がある。
 本発明は、上記した問題点に鑑みて成されたものであり、フラグメントイオンを感度良く検出することができる、新規な核酸の構造解析方法を提供することを目的とする。
 上記課題を解決するために成された本発明に係る核酸の構造解析方法は、
 マトリックス支援レーザ脱離イオン化法によるイオン源を有するイオントラップ型の質量分析装置を用いた核酸の構造解析方法であって、
 試料に含まれる核酸を前記イオン源でイオン化するイオン化工程と、
 前記イオン化工程により生成された前記核酸のプロトン付加分子又は脱プロトン分子を、前記質量分析装置のイオントラップの内部で衝突誘起解離により解離して、複数のフラグメントイオンを生成するイオン解離工程と、
 前記イオン解離工程により生成された複数のフラグメントイオンについて質量分析を行うことにより前記複数のフラグメントイオンの質量情報を取得する質量分析工程と、
 前記質量分析工程により取得された前記複数のフラグメントイオンの質量情報に基づいて前記核酸の構造の少なくとも一部を決定する構造決定工程と、
 を有するものである。
 本願発明者は、鋭意検討を行った結果、MALDI法によるイオン源を有するイオントラップ型の質量分析装置を用いて核酸の質量分析を行った場合、アルカリ金属イオン付加体の生成による影響が抑えられ、その結果、核酸の[M+H]又は[M-H]を感度良く検出することができるという知見を得た。これに基づき、上記質量分析装置を用いて衝突誘起解離による核酸のMS分析を行ったところ、[M+H]又は[M-H]から生成されるフラグメントイオンについても感度良く検出することができることを見出した。
 本発明で用いるイオントラップ型の質量分析装置による衝突誘起解離は、衝突ガスとターゲットイオンとの衝突時の運動エネルギーが約1000eV(1keV)以下(数~数百eV程度)と比較的低く、低エネルギー衝突誘起解離(Low Energy Collision Induced Dissociation:LE-CID)と呼ばれている。LE-CIDでは、低エネルギーの多重衝突により、衝突エネルギーが試料分子内に振動エネルギーとして蓄積され、イオンの解離が誘起される。蓄積されたエネルギーは分子構造を反映して再分配されるため、結合状態の限界点を超えた箇所からイオンが解離する。一方、衝突エネルギーが1000eV以上の高エネルギー衝突誘起解離(High Energy Collision Induced Dissociation:HE-CID)では、1回の衝突でほとんどのフラグメントイオンが生成され、衝突箇所で生じる単純開裂を主体としてイオンが解離する。このようにLE-CIDとHE-CIDとではイオンの解離機構が異なり、得られるフラグメントイオンの種類も異なる。
 本発明に係る核酸の構造解析方法によれば、フラグメントイオンを感度良く検出することができ、従来とは異なるイオン解離法を利用した新規な核酸の構造解析方法を提供することができる。
実施例1における、MS分析により得られた標準核酸Aのマススペクトルを示す図。 実施例1における、MS分析により得られた標準核酸Aのプロダクトイオンスペクトルを示す図。
 以下、本発明に係る核酸の構造解析方法の一実施形態について、説明する。
(核酸)
 本実施形態の解析対象となる核酸について、構成単位であるヌクレオチドの数は特に限定されないが、数個から数十個程度のヌクレオチドが連結したオリゴヌクレオチドが好ましい。中でも2~20個程度のヌクレオチドが連結したオリゴヌクレオチドが好ましい。また、核酸は生物から得られる天然物又はそれらの加工物であってもよく、化学的に合成された人工合成核酸であってもよい。
(質量分析装置)
 本実施形態では、MALDI法によるイオン源を有するイオントラップ型の質量分析装置を用いる。具体的には、MALDI法によるイオン源と、イオンをその内部に保持するとともに質量電荷比に応じてイオンを分離する機能及び衝突誘起解離によりイオンを解離させる機能を有するイオントラップと、を備える質量分析装置を用いる。この装置では、イオンの解離を伴わない分析(以下、MS分析と呼ぶ)だけでなく、イオンの選択と解離とを1乃至複数回繰り返すMS分析(nは2以上の整数)を行うことができる。
 ここでいうイオントラップ型の質量分析装置は、イオン源で生成されたイオンを捕捉するためのイオントラップを有するものである。具体的には、イオントラップ内に捕捉したイオンをイオントラップ自体の質量分離機能を利用して質量電荷比(m/z)の小さい順に排出し、イオントラップの外部に配置した検出器でイオンを検出する質量分析装置を含む。また、イオントラップから一斉に排出されたイオンを、例えば飛行時間型質量分析器などのイオントラップの外部に配置した質量分離部で質量電荷比に応じて分離し、同じく外部に配置した検出器で検出する質量分析装置を含む。
 イオントラップの種類は特に限定されない。高周波(Radio Frequency: RF)電場を用いてイオンの捕捉や排出を行うRFトラップの場合、正弦波状の高周波電圧をリング電極に印加することで発生する電場を利用してイオンを捕捉するイオントラップでもよく、異なる2つの電圧を高速にスイッチングすることにより生じる矩形波電圧をリング電極に印加することで発生する電場を利用してイオンを捕捉するデジタルイオントラップであってもよい。デジタルイオントラップでは、矩形波電圧の振幅(電圧値)を一定に維持したまま周波数を変化させることにより、捕捉可能なイオンのm/zの範囲が制御される。イオントラップとしては、デジタルイオントラップを用いるのが好ましい。
 本実施形態の核酸の構造解析方法は、試料に含まれる核酸をMALDI法によるイオン源でイオン化するイオン化工程と、イオン化工程により生成された核酸のプロトン付加分子または脱プロトン分子をイオントラップの内部で衝突誘起解離により解離するイオン解離工程と、イオン解離工程により生成された核酸由来の複数のフラグメントイオンについて質量分析を行う質量分析工程と、質量分析工程により取得された前記複数のフラグメントイオンの質量情報に基づいて核酸の構造を決定する構造決定工程とを有する。
(イオン化工程)
 イオン化工程では、MALDI法によるイオン源において、核酸及びマトリックス物質を含む分析用試料にレーザ光を照射することで、マトリックス物質とともに核酸をイオン化する。
 マトリックス物質としては、分析対象となる核酸の種類に応じた適宜の物質を選択することができる。例えば、3-ヒドロキシピコリン酸(3-hydroxypicolinic acid:3-HPA)、2,4-ジヒドロキシアセトフェノン(2,4-dihydroxyacetophenone:2,4-DHAP)、2,5-ジヒドロキシ安息香酸(2,5-dihydroxybenzoic acid :DHB)、2',4',6'-トリヒドロキシアセトフェノン一水和物(2',4',6'-trihydroxyacetophenone monohydrate:THAP)、6-アザ-2-チオチミン(6-aza-2-thiothymine:ATT)、3-アミノピラジン-2-カルボン酸(3-aminopyrazine-2-carboxylic acid:APCA)、アントラニル酸(anthranilic acid:AA)、ニコチン酸(nicotinic acid:NA)などが挙げられる。中でも3-HPA、2,4-DHAP、THAPを用いるのが好ましく、3-HPA、2,4-DHAPがより好ましく、3-HPAが特に好ましい。また、2種以上のマトリックス物質を混合した混合マトリックスを用いてもよく、中でも3-HPAと2,4-DHAPを混合した混合マトリックス、3-HPAとTHAPを混合した混合マトリックス、2, 4-DHAPとTHAPを混合したマトリックスが好ましい。
 分析用試料を調製する方法としては、核酸を含む試料及びマトリックス物質が混合された混合溶液を作製し、該混合溶液を質量分析装置のサンプルプレート上で乾燥することにより行う。混合溶液を予め作製し、該混合溶液をサンプルプレート上に滴下して乾燥させてもよく、該混合溶液をサンプルプレート上で作製してそのまま乾燥させてもよい。
 分析用試料は、さらに、マトリックス添加剤を含んでも良い。マトリックス添加剤としては、クエン酸水素二アンモニウム(ammonium citrate dibasic:ACD)を用いることができる。クエン酸のアンモニウム塩は、クエン酸イオンと結合するアンモニウムイオンの数に応じていくつかの種類が存在するが、本実施形態で好適に用いられるのは、1つのクエン酸イオンに対して2つのアンモニウムイオンが結合した塩である。
 分析用試料にマトリックス添加剤が含まれる場合、核酸を含む試料、マトリックス物質、マトリックス添加剤を混合する順序は特に限定されないが、マトリックス物質とマトリックス添加剤を含むマトリックス・添加剤混合溶液を予め作製し、核酸を含む試料溶液と該マトリックス・添加剤混合溶液を混合して分析用試料を作製するのが好ましい。この場合、試料溶液とマトリックス・添加剤混合溶液を予め混合した混合溶液をサンプルプレートに滴下し、乾燥させて分析用試料を調製してもよく、試料溶液、及びマトリックス・添加剤混合溶液をサンプルプレート上にそれぞれ滴下して、これらをサンプルプレート上で混合して乾燥させてもよい。試料溶液とマトリックス・添加剤混合溶液を混合する比率は特に限定されない。マトリックス・添加剤混合溶液を予め作製することにより、分析用試料の調製が容易になる。マトリックス・添加剤混合溶液中のマトリックス添加剤の濃度は、核酸の分子量関連イオンを十分な量生成させる観点から、10~100mMが好ましく、30~70mMがより好ましい。なお、本明細書では、下限値から上限値までの数値範囲を「(下限値)~(上限値)」と、記号「~」を用いて示しているが、このように示した数値範囲には下限値自体及び上限値自体が含まれる。
(イオン解離工程)
 イオン解離工程では、まず、イオン化工程により生じた全てのイオンをイオントラップ内に一旦捕捉し、解析対象である核酸のプロトン付加分子([M+H])または脱プロトン分子([M-H])以外のイオンをイオントラップから排出して、該プロトン付加分子または該脱プロトン分子をプリカーサイオンとして選択する。次いで、例えばアルゴン等の不活性ガスをイオントラップ内に導入し、衝突誘起解離によりプロトン付加分子または脱プロトン分子を解離する。これにより、核酸由来の各種フラグメントイオン(プロダクトイオン)が生成する。
 本実施形態で用いるイオントラップ型の質量分析装置における衝突誘起解離は、低エネルギー衝突誘起解離(LE-CID)に該当する。LE-CIDでは、多重衝突により試料分子内に衝突エネルギーが振動エネルギーとして蓄積されてイオンの解離が誘起され、蓄積されたエネルギーは分子構造を反映して再分配されるため、分子の結合状態の限界点を超えた箇所からイオンが解離する。一方、飛行時間型の質量分析装置における衝突誘起解離は、高エネルギー衝突誘起解離(HE-CID)に該当し、単純に衝突箇所でイオンが解離する。このように用いる質量分析装置によりCIDの種類(LE-CID又はHE-CID)が異なり、LE-CIDはHE-CIDとイオンの解離の仕方が異なっている。
(質量分析工程)
 質量分析工程では、イオン解離工程により生じた核酸由来の各種フラグメントイオンについて質量分析(MS分析)を行う。本実施形態において用いる質量分析装置が、イオントラップ自体の質量分離機能を利用するものである場合、該イオントラップから質量電荷比の小さい順にフラグメントイオンを排出し、排出されたイオンをイオントラップの外部に配置した検出器で検出することにより質量分析を行う。質量分析装置が、イオントラップではない質量分離部の質量分離機能を利用するものである場合は、イオントラップから一斉に排出された各種フラグメントイオンを、イオントラップの外部に配置した質量分離器に導入してイオンを質量電荷比に応じて分離し、分離されたフラグメントイオンを同じく外部に配置した検出器で検出することにより質量分析を行う。MS分析を行うことにより、各種フラグメントイオンのマスペクトル(プロダクトイオンスペクトル)を得ることができる。上述の通り、LE-CIDとHE-CIDではイオンの解離の仕方が異なっているため、イオントラップ型質量分析装置によるLE-CIDを利用したMS分析では、HE-CIDを利用したMS分析とは異なるプロダクトイオンスペクトルを得ることができる。
(構造決定工程)
 構造決定工程では、質量分析工程により得られたマススペクトルから各種フラグメントイオンに対応するピークを抽出し、該ピークが示す質量電荷比(質量情報)に基づいて各種フラグメントイオンを帰属し、その結果を合わせて元の核酸の構造の少なくとも一部を決定する。構造の決定には、配列解析、および配列解析により化学修飾の種類又は該化学修飾が施された部位を特定することを含む。構造の決定には、データベース検索やデノボシーケンシング(De Novo Sequencing)を利用してもよい。
 以下、本発明に係る核酸の構造解析方法を実施例によって説明するが、これは単なる例示であって、本発明はこれに限定されるものではない。
<1.試料溶液の作製>
 試料溶液として、標準核酸A(5’-CAATGTGC-3’:MW 2409.6、)の100pmol/μLの水溶液を作製した。
<2.マトリックス・添加剤混合溶液の作製>
 マトリックス・添加剤混合溶液として、40mMの濃度のクエン酸水素二アンモニウム(ACD)をマトリックス添加剤として含む、3-ヒドロキシピコリン酸(3-HPA)の40mg/mL50%アセトニトリル(acetonitrile:ACN)水溶液を作製した。
<3.分析用試料の調製>
 1.で作製した試料溶液と2.で作製したマトリックス・添加剤混合溶液を1:1(v/v)で混合し、得られた混合液1μLをサンプルプレ-ト(SUSプレ-ト)上に滴下し、乾燥した。
<4.質量分析>
 質量分析には、MALDIデジタルイオントラップ型質量分析装置(MALDI-DITMS、株式会社島津製作所製、商品名:MALDImini-1)を用いた。3.で調製した分析用試料をMALDI-DITMSに挿入し、ポジティブモードでMS分析及びMS分析を行った。
<5.結果>
 図1に、MS分析により得られたマススペクトルを示す。図中の矢印は、プロトン付加分子([M+H])の検出状況を示している。図1より、[M+H]が高感度に検出されることが確認できた。
 図2に、[M+H]に対するMS分析により得られたプロダクトイオンスペクトルを示す。図2では、マススペクトル中の各ピークに、対応するオリゴヌクレオチドのフラグメントイオン種の名称(非特許文献5で提唱された一般的名称)を付している。この名称は、核イオン種を核酸の解離パターン命名規則に従ったフラグメントイオン系列で表したものである。この命名規則では、5’末端を含むフラグメントイオンは、a、b、c、dと表記され、反対方向の3’末端を含むフラグメントイオンは、x、y、z、wと表記される。なお、添え字のnとmは、対応する末端から解離部位までの構成単位数(定義としては、塩基の数)を示す。図2より、各種フラグメントイオンのピークが感度良く検出され、w系列イオンを基本として、構造解析を行うのに十分な種類のフラグメントイオンを帰属することができ、標準核酸Aの全塩基配列を解析することができた。
 [態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)
 本発明の一態様に係る核酸の構造解析方法は、
 マトリックス支援レーザ脱離イオン化法によるイオン源を有するイオントラップ型の質量分析装置を用いた核酸の構造解析方法であって、
 試料に含まれる核酸を前記イオン源でイオン化するイオン化工程と、
 前記イオン化工程により生成された前記核酸のプロトン付加分子又は脱プロトン分子を、前記質量分析装置のイオントラップの内部で衝突誘起解離により解離して、複数のフラグメントイオンを生成するイオン解離工程と、
 前記イオン解離工程により生成された複数のフラグメントイオンについて質量分析を行うことにより前記複数のフラグメントイオンの質量情報を取得する質量分析工程と、
 前記質量分析工程により取得された前記複数のフラグメントイオンの質量情報に基づいて前記核酸の構造の少なくとも一部を決定する構造決定工程と、
 を有するものである。
 これにより、フラグメントイオンを感度良く検出することができる、新規な核酸の構造解析方法を提供することができる。
(第2項)
 第1項に記載の核酸の構造解析方法は、
 前記イオン化工程が、前記核酸を含む試料と、マトリックス物質と、クエン酸水素二アンモニウムであるマトリックス添加剤とを含む分析用試料にレーザ光を照射することにより行われるものであってもよい。
 これにより、核酸のプロトン付加分子又は脱プロトン分子がより多く生成されるためフラグメントイオンをより高感度に検出することができる。
(第3項)
 第2項に記載の核酸の構造解析方法は、
 前記マトリックス物質が、3-ヒドロキシピコリン酸であってもよい。
 これにより、核酸のプロトン付加分子又は脱プロトン分子がより多く生成されるためフラグメントイオンをより高感度に検出することができる。
(第4項)
 第2項又は第3項に記載の核酸の構造解析方法は、
 前記マトリックス物質及び前記マトリックス添加剤を含むマトリックス・添加剤混合溶液を作製した場合の該マトリックス・添加剤混合溶液中の前記マトリックス添加剤の濃度が10~100mMであってもよい。
 これにより、核酸のプロトン付加分子又は脱プロトン分子がより多く生成されるためフラグメントイオンをより高感度に検出することができる。
(第5項)
 第2項~第4項に記載の核酸の構造解析方法は、
 前記マトリックス物質及び前記マトリックス添加剤を含むマトリックス・添加剤混合溶液を予め作製し、
 前記試料と、前記マトリックス・添加剤混合溶液を混合して前記分析用試料を調製するものであってもよい。
 これにより、分析用試料を容易に調整することができる。
(第6項)
 第1項~第5項のいずれかに記載の核酸の構造解析方法は、
 前記質量分析装置がデジタルイオントラップ型の質量分析装置であってもよい。
 これにより、核酸のプロトン付加分子又は脱プロトン分子がより多く生成されるためフラグメントイオンをより高感度に検出することができる。

Claims (6)

  1.  マトリックス支援レーザ脱離イオン化法によるイオン源を有するイオントラップ型の質量分析装置を用いた核酸の構造解析方法であって、
     試料に含まれる核酸を前記イオン源でイオン化するイオン化工程と、
     前記イオン化工程により生成された前記核酸のプロトン付加分子又は脱プロトン分子を、前記質量分析装置のイオントラップの内部で衝突誘起解離により解離して、複数のフラグメントイオンを生成するイオン解離工程と、
     前記イオン解離工程により生成された複数のフラグメントイオンについて質量分析を行うことにより前記複数のフラグメントイオンの質量情報を取得する質量分析工程と、
     前記質量分析工程により取得された前記複数のフラグメントイオンの質量情報に基づいて前記核酸の構造の少なくとも一部を決定する構造決定工程と、
     を有する核酸の構造解析方法。
  2.  前記イオン化工程が、前記核酸を含む試料と、マトリックス物質と、クエン酸水素二アンモニウムであるマトリックス添加剤とを含む分析用試料にレーザ光を照射することにより行われる、請求項1に記載の核酸の構造解析方法。
  3.  前記マトリックス物質が、3-ヒドロキシピコリン酸である、請求項2に記載の核酸の構造解析方法。
  4.  前記マトリックス物質及び前記マトリックス添加剤を含むマトリックス・添加剤混合溶液を調製した場合の該マトリックス・添加剤混合溶液中の前記マトリックス添加剤の濃度が10~100mMである、請求項2に記載の核酸の構造解析方法。
  5.  前記マトリックス物質及び前記マトリックス添加剤を含むマトリックス・添加剤混合溶液を予め調製し、
     前記試料と、前記マトリックス・添加剤混合溶液を混合して前記分析用試料を調製する、請求項2に記載の核酸の構造解析方法。
  6.  前記質量分析装置がデジタルイオントラップ型の質量分析装置である、請求項1に記載の核酸の構造解析方法。
PCT/JP2023/020361 2022-05-31 2023-05-31 核酸の構造解析方法 WO2023234373A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-089236 2022-05-31
JP2022089236 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234373A1 true WO2023234373A1 (ja) 2023-12-07

Family

ID=89024942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020361 WO2023234373A1 (ja) 2022-05-31 2023-05-31 核酸の構造解析方法

Country Status (1)

Country Link
WO (1) WO2023234373A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965363A (en) * 1996-09-19 1999-10-12 Genetrace Systems Inc. Methods of preparing nucleic acids for mass spectrometric analysis
JP2002508192A (ja) * 1997-12-15 2002-03-19 シークエノム・インコーポレーテツド 核酸をシーケンスするための質量分析法
JP2002513917A (ja) * 1998-05-07 2002-05-14 シークエノム・インコーポレーテツド 高分子の赤外マトリックス補助レーザー脱着/イオン化質量分析
JP2004518420A (ja) * 2000-12-08 2004-06-24 理化学研究所 オリゴリボヌクレオチドのmaldi−tof−ms分析および/または配列決定方法
WO2006046697A1 (ja) * 2004-10-29 2006-05-04 Japan Science And Technology Agency Maldi-tof ms用基板及びそれを用いた質量分析方法
JP2008515169A (ja) * 2004-09-30 2008-05-08 ユーティ―バテル エルエルシー 超高質量範囲質量分析計システム
JP2010511409A (ja) * 2006-12-05 2010-04-15 セクエノム, インコーポレイテッド 質量分析法を用いた生体分子の検出および定量
JP2014215173A (ja) * 2013-04-25 2014-11-17 株式会社島津製作所 Maldiイオントラップ質量分析装置
JP2017501703A (ja) * 2013-12-20 2017-01-19 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 構造に基づくプローブ切断によるマルチプレックス核酸標的同定

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965363A (en) * 1996-09-19 1999-10-12 Genetrace Systems Inc. Methods of preparing nucleic acids for mass spectrometric analysis
JP2002508192A (ja) * 1997-12-15 2002-03-19 シークエノム・インコーポレーテツド 核酸をシーケンスするための質量分析法
JP2002513917A (ja) * 1998-05-07 2002-05-14 シークエノム・インコーポレーテツド 高分子の赤外マトリックス補助レーザー脱着/イオン化質量分析
JP2004518420A (ja) * 2000-12-08 2004-06-24 理化学研究所 オリゴリボヌクレオチドのmaldi−tof−ms分析および/または配列決定方法
JP2008515169A (ja) * 2004-09-30 2008-05-08 ユーティ―バテル エルエルシー 超高質量範囲質量分析計システム
WO2006046697A1 (ja) * 2004-10-29 2006-05-04 Japan Science And Technology Agency Maldi-tof ms用基板及びそれを用いた質量分析方法
JP2010511409A (ja) * 2006-12-05 2010-04-15 セクエノム, インコーポレイテッド 質量分析法を用いた生体分子の検出および定量
JP2014215173A (ja) * 2013-04-25 2014-11-17 株式会社島津製作所 Maldiイオントラップ質量分析装置
JP2017501703A (ja) * 2013-12-20 2017-01-19 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 構造に基づくプローブ切断によるマルチプレックス核酸標的同定

Similar Documents

Publication Publication Date Title
AU2010202306B2 (en) Method for increasing ionization efficiency in mass spectroscopy
Qi et al. Electron‐based fragmentation methods in mass spectrometry: an overview
De Bruycker et al. Mass spectrometry as a tool to advance polymer science
US7476853B2 (en) Ion fragmentation by reaction with neutral particles
Smith et al. Evaluating atmospheric pressure solids analysis probe (ASAP) mass spectrometry for the analysis of low molecular weight synthetic polymers
US20040155180A1 (en) Mass spectrometry methods using electron capture by ions
JP5727503B2 (ja) 多重タンデム質量分析法
WO2023234372A1 (ja) 核酸の質量分析方法
EP2534669B1 (en) Mass spectrometer incorporating hydrogen-deuterium exchange
WO2023234373A1 (ja) 核酸の構造解析方法
CN110571128A (zh) 一种多段式四极杆电极***及其串联方法
Mormann et al. Improvement of electron capture efficiency by resonant excitation
CN210668276U (zh) 一种多段式四极杆电极***
WO2023234374A1 (ja) 核酸の分析方法及びそれに用いるマトリックス
US7045777B2 (en) Combined chemical/biological agent mass spectrometer detector
WO2023233690A1 (ja) 試料分子の構造解析方法
Murray et al. IUPAC standard definitions of terms relating to mass spectrometry
EP3971943A1 (en) Using real time search results to dynamically exclude product ions that may be present in the master scan
Peterkin Ion Isolation And Gas-Phase Charge Reduction For The Analysis of Protein Mixtures
Pepi et al. Electron Detachment Dissociation (EDD) and Negative Electron Transfer Dissociation (NETD)
AU2013206434B2 (en) Method for increasing ionization efficiency in mass spectroscopy
MURRAY et al. IUPAC Provisional Recommendations For Peer Review Only
Williams et al. Fragmentation of macromolecular ions
Stanford 2 Mass Analyzers and MS/MS Methods for Microbial Detection and Identification
Kuril Navigating Mass Spectrometry: A Comprehensive Guide to Basic Concepts and Techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816130

Country of ref document: EP

Kind code of ref document: A1