WO2023234291A1 - 溶接システムおよび溶接方法 - Google Patents

溶接システムおよび溶接方法 Download PDF

Info

Publication number
WO2023234291A1
WO2023234291A1 PCT/JP2023/020071 JP2023020071W WO2023234291A1 WO 2023234291 A1 WO2023234291 A1 WO 2023234291A1 JP 2023020071 W JP2023020071 W JP 2023020071W WO 2023234291 A1 WO2023234291 A1 WO 2023234291A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
tack
area
target member
shape data
Prior art date
Application number
PCT/JP2023/020071
Other languages
English (en)
French (fr)
Inventor
アヤーデ・ヒーブ
Original Assignee
リンクウィズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンクウィズ株式会社 filed Critical リンクウィズ株式会社
Publication of WO2023234291A1 publication Critical patent/WO2023234291A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting

Definitions

  • the present invention relates to a welding system and a welding method.
  • Patent Document 1 discloses a technique in which when a detection result by a laser sensor that detects an end face at the same time as main welding becomes larger than a predetermined reference value, the previous detection position is set as the welding position.
  • One aspect of the present invention has been made in view of this background, and is intended to realize high-quality welding when welding a position where tack welding has been performed.
  • a welding system that performs an operation of welding an abutting portion of a first target member and a second target member using a welding torch, the welding system comprising: a shape data acquisition unit that acquires shape data of a region including the abutting portion; a tack welding detection unit that detects a tack welding area where a part is tack welded based on the shape data, and a tack welding detection unit that detects a tack welding area based on the shape data; a welding system, comprising: a movement path generating section that generates a movement path of the welding torch using the shape data.
  • a welding system that performs an operation of welding an abutting portion of a first target member and a second target member using a welding torch, the welding system comprising: a shape data acquisition unit that acquires shape data of a region including the abutting portion; a tack welding detection unit that detects a tack welding area where the part is tack welded based on the shape data; and a tack welding detection unit that determines whether welding is possible based on information about the tack welding area detected by the tack welding detection unit.
  • FIG. 1 is a diagram showing an example of the overall configuration of a welding system 100 according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing how a target member is measured using the welding system 100 according to the present embodiment.
  • FIG. 3 is a diagram showing how target members are welded using the welding system 100 according to the present embodiment.
  • FIG. 3 is a diagram showing an example of the hardware configuration of the terminal 1.
  • FIG. FIG. 1 is a diagram showing an example of a functional configuration of a terminal 1.
  • FIG. FIG. 3 is a diagram showing an example of a process for detecting a tack welding area by the tack welding detection unit 104 according to the present embodiment.
  • FIG. 3 is a diagram showing an example of information stored in a weldability determination criterion storage unit 124 according to the present embodiment.
  • FIG. 4 is a diagram showing an example of conditions related to the position of tack welding stored in the weldability determination criterion storage unit 124 according to the present embodiment.
  • FIG. 4 is a diagram showing an example of conditions related to the size of tack welding stored in a weldability determination criterion storage unit 124 according to the present embodiment.
  • FIG. 4 is a diagram illustrating an example of a condition related to a distance from an adjacent tack weld, which is stored in a weldability determination criterion storage unit 124 according to the present embodiment.
  • FIG. 4 is a diagram showing an example of a condition related to a distance from an adjacent tack weld, which is stored in a weldability determination criterion storage unit 124 according to the present embodiment.
  • FIG. 4 is a diagram showing an example of the torch position and angle conditions stored in the torch position/angle condition storage unit 124 according to the present embodiment.
  • FIG. 7 is a diagram showing another example of the torch position and angle conditions stored in the torch position/angle condition storage unit 124 according to the present embodiment.
  • FIG. 3 is a diagram showing the overall control flow of the welding system according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of creating a plurality of reference lines 250.
  • FIG. 23 is a diagram showing a partially enlarged view of FIG. 22;
  • FIG. 3 is a diagram illustrating how a level difference is detected.
  • FIG. 3 is a diagram illustrating an example of generating a melt transfer path by connecting midpoints generated by a transfer path generation unit 106;
  • FIG. 1 is a diagram showing an example of a welding system 100 of this embodiment.
  • the welding system 100 of this embodiment includes a terminal 1, a working robot 2, and a controller 3.
  • the working robot 2 has at least an arm 21, a sensor 22, and a welding torch 23.
  • the terminal 1, the controller 3, and the working robot 2 are connected to each other by wire or wirelessly so that they can communicate with each other.
  • FIG. 2 is a diagram showing how the work robot 2 of the welding system 100 is used to measure the planned work route 31.
  • a scheduled work route 31 for main welding is set by the user and is generated along the butt portion 203 of the two target members 201 and 202.
  • the sensor 22 provided on the arm 21 of the work robot 2 acquires point cloud data of the shape of the surface and end face near the abutting portion 203 along the planned work route 31, and from the point cloud data.
  • tack welds and gaps existing in the butt portion 203 By detecting tack welds and gaps existing in the butt portion 203, adjusting the welding movement path 32, and determining whether or not welding is possible, high-quality welding can be achieved.
  • FIG. 3 is a diagram showing how the work robot 2 of the welding system 100 is used to weld the generated welding path 200a.
  • a movement path 32 including the target position and target angle of the welding torch is determined according to the generated welding path 200a, and the work robot 2 moves the arm 21 so that the welding torch 23 moves along the movement path 32.
  • the welding operation is performed approximately along the X-axis direction.
  • FIG. 4 is a diagram showing the hardware configuration of the terminal 1.
  • the terminal 1 may be, for example, a general-purpose computer such as a personal computer, or may be logically realized by cloud computing. Note that the illustrated configuration is an example, and other configurations may be used. For example, some functions provided in the processor 10 of the terminal 1 may be executed by an external server or another terminal.
  • the terminal 1 includes at least a processor 10, a memory 11, a storage 12, a transmitting/receiving section 13, an input/output section 14, etc., which are electrically connected to each other via a bus 15.
  • the processor 10 is an arithmetic device that controls the overall operation of the terminal 1, controls transmission and reception of data, etc. with at least the measurement robot 2 and the welding robot 3, and performs information processing necessary for application execution and authentication processing.
  • the processor 10 is a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or a CPU and a GPU, and executes programs for this system stored in the storage 12 and developed in the memory 11. Perform each information processing.
  • the memory 11 includes a main memory configured with a volatile storage device such as a DRAM (Dynamic Random Access Memory), and an auxiliary memory configured with a non-volatile storage device such as a flash memory or an HDD (Hard Disc Drive). .
  • the memory 11 is used as a work area for the processor 10, and also stores a BIOS (Basic Input/Output System) executed when the terminal 1 is started, various setting information, and the like.
  • BIOS Basic Input/Output System
  • the storage 12 stores various programs such as application programs.
  • a database storing data used for each process may be constructed in the storage 12.
  • the transmitting/receiving unit 13 connects the terminal 1 to at least the working robot 2, and transmits and receives data, etc. according to instructions from the processor.
  • the transmitter/receiver 13 is configured by wire or wirelessly, and in the case of wireless, it may be configured by, for example, a short-range communication interface such as WiFi, Bluetooth (registered trademark), and BLE (Bluetooth Low Energy). .
  • the input/output unit 14 is composed of an information output device (for example, a display) and an information input device (for example, a keyboard and a mouse), and when the terminal 1 is composed of a smartphone or a tablet terminal. In some cases, it consists of information input/output devices such as touch panels.
  • the bus 15 is commonly connected to each of the above elements and transmits, for example, address signals, data signals, and various control signals.
  • the bus 15 is commonly connected to each of the above elements and transmits, for example, address signals, data signals, and various control signals.
  • the working robot 2 includes the arm 21, the sensor 22, and the welding torch 23.
  • the illustrated configuration is an example, and the present invention is not limited to this configuration.
  • a measuring robot 2000 including an arm 2100 and a sensor 2200, and a welding robot 3000 including an arm 3100 and a welding torch 3200 are provided, and the measuring robot performs a measuring operation. It is also possible to perform the welding operation using a welding robot.
  • the movements of the arm 21 of the measuring robot 2 and the arm 31 of the welding robot 3 are controlled by the terminal 1 based on a three-dimensional robot coordinate system. Further, the operations of the arm 21 and the arm 31 may be controlled by a controller 4 connected to the measuring robot 2 and the welding robot 3 by wire or wirelessly.
  • the sensor 22 of the working robot 2 performs sensing of the first and second target members 201 and 202 based on a three-dimensional sensor coordinate system.
  • the sensor 22 is, for example, a laser sensor that operates as a three-dimensional scanner, and detects a three-dimensional point near the abutting portion 203 where the first target member 201 and the second target member forming the abutting portion 203 are abutted.
  • each point data has coordinate information of a sensor coordinate system, and the shape of the object to be inspected can be grasped from the point group.
  • the acquired three-dimensional point cloud data is used to detect the tack welding area 30 where the first and second target members 201 and 202 are tack-welded, and to detect the area between the first and second target members 201 and 202 at the butt portion 203. Used to detect gap distance. Based on the detected tack welding area 30 and information on the gap distance, a welding path 200a, which is a welding path, is further generated.
  • the senor 22 is not limited to a laser sensor, and may be an image sensor using a stereo system, for example, or may be a sensor independent of the working robot, and may be a sensor based on a three-dimensional sensor coordinate system. Any coordinate information that can be obtained is sufficient. Further, in order to make the explanation more concrete, a configuration using three-dimensional point group data will be described below as an example.
  • the user can specify the position (coordinates) based on the sensor coordinate system, so that the arm 21 and sensor 22 can
  • the configuration may be such that the operation is controlled based on the position.
  • the welding torch 23 of the work robot 2 performs a welding path 200a set approximately along the X-axis direction at the abutting portion 203 of the first and second target members 201 and 202 based on the three-dimensional sensor coordinate system. perform welding work.
  • the welding torch 23 is a tool used for welding methods by fusion welding, such as arc welding, laser welding, electron beam welding, and plasma arc welding.
  • the first and second target members 201 and 202 are welded by outputting a melting arc, laser, beam, or the like.
  • the welding torch 23 may be a discharge part for a filler material (adhesive) used in soldering such as brazing, or a discharge part for a sealant or an adhesive.
  • a predetermined calibration is performed before the work, and the robot coordinate system of the work robot 2 and the torch coordinate system are associated with each other.
  • the arm 21 and the welding torch 23 may be configured so that their operations are controlled based on the corresponding positions.
  • FIG. 5 is a block diagram illustrating functions implemented in the terminal 1.
  • the processor 10 of the terminal 1 includes a condition setting section 101, a shape data acquisition section 102, a gap/step measurement section 103, a tack welding detection section 104, a weldability determination section 105, and a movement path generation section 106. , and a welding execution section 107.
  • the storage 12 of the terminal 1 includes a condition storage section 121, a three-dimensional CAD data storage section 122, a measured shape data storage section 123, a weldability determination criterion storage section 124, and a torch position/angle condition storage section 125. .
  • the condition setting unit 101 receives input of information regarding the first and second target members 201 and 202 and information regarding the measurement conditions from the user via the input/output unit 14 of the terminal 1. For example, as information regarding the member to be welded, the user selects and inputs information such as material and shape. As information regarding the measurement conditions, the range of the measurement target, the angle of the measurement sensor, the measurement sampling period, etc. are input by the user. The input information is stored in the welding condition storage section 121.
  • the condition setting unit 101 further performs linear welding in which a linear welding path is generated by continuously performing a welding operation while moving the welding torch 23, and spot welding in which a welding operation is performed with the welding torch 23 stationary. You can also enter the weld type from .
  • the planned work route 31 can be set and input to the CAD data of the welding target member stored in the three-dimensional CAD data storage section 122. Furthermore, it is possible to set and input a position (two-dimensional plane) for performing gap measurement, which will be described later, for the work planned route 31.
  • the input information on the welding type, welding pass, and gap measurement position is stored in the welding condition storage section 121.
  • the shape data acquisition unit 102 controls, for example, the measurement robot 2 and operates the arm 21 and the sensor 22 according to instructions from the terminal 1 to obtain first and second target members including a preset work schedule route 31.
  • the three-dimensional point group data of the matching section 203 of 201 and 202 is acquired. Note that the operations of the arm 21 and the sensor 22 are set in advance so that the three-dimensional point group data of the matching section 203 can be acquired.
  • the acquired three-dimensional point group data is, for example, three-dimensional coordinate information data based on the sensor coordinate system, and is stored in the measured shape data storage unit 123.
  • the gap/level difference measurement unit 103 measures the first target member 201 and the second target member 201 based on the acquired point cloud data, information in the condition storage unit 121, and, depending on the case, information in the three-dimensional CAD data storage unit 122.
  • the gap distance between the target members 202 is measured.
  • the gap measurement is performed by acquiring point cloud data on a plane defined by a plurality of circular arcs 220 defined along the planned work route 31 as shown in FIG. Gap distance is measured based on point cloud data. A detailed method of gap measurement will be described later.
  • the step inclination ( ⁇ 2) shown in FIG. 22 is measured. A detailed method of determining the slope of the step will be described later.
  • the tack weld detection unit 104 is an area in the butt part 203 where tack welding has been performed, based on point cloud data acquired by the shape data acquisition unit 102 and stored in the measured shape data storage unit 123.
  • the tack welding area 30 is detected.
  • tack welding is often performed on the butt portion 203 by tack welding performed prior to main welding.
  • FIG. 6 shows an example of the process of detecting the tack welding area 30 by the tack welding detection unit 104.
  • FIG. 6 shows a process for detecting a tack weld area when welding the first target member 201 and the second target member 202, particularly when welding is performed in which the end surfaces of plate materials are butted together.
  • the lower side of the drawing shows the first target member 201
  • the upper side shows the second target member 202
  • the dotted line in the center shows the butt part between the target members (that is, the planned work route 31).
  • the tack welding detection unit 103 tack-welds a point group having a large value in the Z-axis direction (depth direction in the drawing) orthogonal to the first and second target members 201 and 202 from the three-dimensional point cloud data of the butt part 203. It is extracted as a welding area 30. In other words, a group of points higher than the surface of the target member is determined to be the tack welding region 30.
  • a method for extracting a point group in the tack welding region 30 is to extract a point group whose value in the Z-axis direction is larger than the average value by a predetermined distance or more, or larger than a predetermined percentage of the thickness of the target member.
  • the value in the Z-axis direction of the first target member 201 and the second target member 202 at a position away from the abutting portion 203 in the Y-axis direction may be used as a reference value, and the value determined in advance from the reference value may be A point group that is larger than a predetermined distance or larger than a predetermined percentage of the thickness of the target member may be extracted. Further, other methods may be used as long as they extract positions that are higher than the surface of the target member.
  • the tack weld detection unit 104 detects the maximum value point (the point located closest to the second target member) and the minimum value point (the point located closest to the first target member side) in the Y-axis direction of the extracted tack weld area 30. (points located at ) are detected, and the difference between these points in the Y-axis direction is detected. That is, the length of the tack welding area 30 in the Y-axis direction is detected.
  • the center of gravity position of the tack welding area 30 is detected, and the line passing through the center of gravity and connecting the point on the second target member side and the point on the first target member side is the line that has the maximum length and is tack welded. It may also be detected as the length of the region 30.
  • the weldability determination criteria storage unit 124 stores weldability determination criteria regarding the tack welding position, the size (length) of the tack welding area 30, the tack welding interval, and the gap, as shown in FIG. 7, for example. It stores criteria for determining whether or not welding is possible regarding the distance and step angle of the abutting portion. If the quality of the tack welding is not sufficiently high, there is a possibility that the positional relationship of the target parts will shift during the actual welding process, resulting in a large gap distance or step, which may deteriorate the welding quality of the actual welding. In the weldability determination criteria storage unit 124, conditions are set where the quality of tack welding is poor and actual welding should not be performed.
  • the criterion for welding failure regarding the position of tack welding is set, for example, as the position of tack welding region 30 being outside the allowable range. Conditions regarding the position of this tack welding will be explained using FIG. 8. As shown in Fig. 8, a tolerance range is set in advance in the Y-axis direction, and if the position of the point group in the tack welding area 30 in the Y-axis direction is within the range of the tolerance position, welding is determined to be OK, and the tack welding is performed. If at least part of the point group in the welding area 30 is outside the allowable range, it is determined that the welding is NG.
  • the judgment condition for welding failure regarding the size of the tack weld is set as, for example, that the width of the tack weld area 30 is smaller than the lower threshold or larger than the upper threshold.
  • Conditions regarding the size (length) of this tack welding will be explained using FIG. 9. As an example of the determination condition, as shown in FIG.
  • an allowable range is set in advance for the length (width) L1 of the tack welding area 30 in the Y-axis direction, and the length detected by the tack welding detection unit 104 If L is within the allowable range (more than the lower limit threshold and less than the upper limit threshold), it is determined that welding is OK, and the length L1 detected by the tack welding detection section 104 is outside the allowable range (below the lower limit threshold). or larger than the upper limit threshold), it is determined that welding is NG.
  • the judgment condition does not necessarily have to be the length of the tack welding area 30 in the Y-axis direction; for example, the length of the tack welding area 30 passing through the center of gravity of the tack welding area 30 and the point on the second target member side and the first target It may be the length of the longest line connecting points on the member side. Alternatively, the determination may be made based on whether other parameters related to the size of the tack welding area 30 are within a predetermined range.
  • the criterion for welding failure regarding the interval between tack welds is that the distance (interval) between adjacent tack welds is greater than a predetermined distance.
  • Conditions regarding the distance between the adjacent tack welds will be explained using FIG. 10. As shown in FIG. 10, if the adjacent distance L2 to the adjacent tack weld is less than or equal to a predetermined distance, it is determined that welding is OK, and if the adjacent distance L2 is longer than the predetermined distance, it is determined that welding is NG.
  • the adjacent distance L2 may be defined as the distance where the straight line distance is the shortest among the point groups of the adjacent tack welding areas 30, or the distance in the X direction where the distance in the X axis direction is the shortest. , or the distance in the X direction between the center of gravity positions of adjacent tack welding areas 30.
  • the criterion for welding failure regarding the gap distance is that the gap distance exceeds a predetermined threshold value.
  • a predetermined threshold value As shown in FIG. 11, if the welding type is overlap type, the gap distance n is larger than a predetermined threshold value (Th2), and if the welding type is T type, the gap distance n is larger than a predetermined threshold value (Th4), and if the welding type is J type, the gap distance n is larger than a predetermined threshold value (Th7).
  • the criterion for welding failure regarding the gap distance is that the gap distance n is larger than a predetermined threshold value (Th9), as shown in FIG.
  • step angle of the butt portion in end butt type welding exceeds a predetermined threshold value. Specifically, as shown in FIG. 12, the step angle ⁇ 2 exceeds a predetermined threshold value (Th11).
  • the weldability determination unit 105 uses the weldability determination criteria related to tack welding and gap distance, which are stored in the weldability determination criteria storage unit 124, as well as information regarding the tack welding area 30 detected by the tack welding detection unit, and the gap. Based on the information regarding the gap distance detected by the measurement unit, it is determined whether or not welding is possible. If the weldability determination unit 105 determines that welding is not possible (in other words, it is determined that welding is not permitted), welding paths and welding torch movement paths that are necessary to perform welding The generation or output of 32 is prohibited, or the user is notified via the terminal 1 or the controller 4 that the determination result of whether or not welding is "impossible". Details of the weldability determination will be described later.
  • the torch position/angle condition storage unit 124 stores the torch position and angle conditions according to the gap distance and step angle between the first target member 201 and the second target member 202, as shown in FIGS. 11 and 15. remembered.
  • the overlap type shown in FIG. 12 the type in which the first target member 201 and the second target member 202 are welded in a parallel overlapping state
  • the T type shown in FIG. mold type a type in which the end face of the first target member 201 is welded in a position where it is approximately perpendicular to the flat part of the second target member 202
  • a J-type type as shown in FIG.
  • Conditions for the position and angle of the welding torch are stored in accordance with the welding conditions.
  • the gap distance n when the gap distance n is smaller than the first threshold value (Th1), the position of the welding torch and the angle of the welding torch are at a predetermined position and a predetermined angle, respectively, as shown in FIG. ( ⁇ 1) is not changed.
  • the gap distance n is larger than the first threshold value (Th1) and smaller than the second threshold value (Th2), the position of the welding torch is changed from the predetermined position to Z as shown in FIG. 12(b). direction (the torch angle is not changed from the predetermined angle).
  • the gap distance n is larger than the second threshold value (Th2), the gap distance is too large, so welding is rejected.
  • the welding torch position is set to the member boundary position to weld, as shown in FIG. 13(a), The angle of the welding torch cannot be changed from a predetermined angle ( ⁇ 2).
  • the gap distance n is larger than the third threshold value (Th3) and smaller than the fourth threshold value (Th4)
  • the torch position is changed from the member boundary position to the Z direction as shown in FIG. 13(b). (the torch angle is not changed from the predetermined angle ( ⁇ 2)), and if the gap distance n is larger than the fourth threshold value (Th4), the gap distance is too large and welding is rejected.
  • the gap distance n is smaller than the fifth threshold value (Th5), the welding torch position and welding torch angle remain unchanged from the predetermined position and predetermined angle ( ⁇ 3), respectively.
  • the gap distance n is larger than the fifth threshold (Th5) and smaller than the sixth threshold (Th6), the torch position is changed from the predetermined position in the X direction as shown in FIG. 14(a). Shift it to the minus side, and do not change the torch angle from the specified angle.
  • the gap distance n is larger than the sixth threshold (Th6) and smaller than the seventh threshold (Th7), the torch position is changed from the predetermined position in the X direction as shown in FIG. 14(b).
  • the torch angle is changed from a predetermined angle ( ⁇ 3) to an angle ( ⁇ 3') that decreases from a predetermined angle and becomes almost parallel to the lower member. If the gap distance n is larger than the seventh threshold value (Th7), the gap distance is too large and welding is rejected.
  • the welding torch is adjusted according to the length of the gap distance between the first target member 201 and the second target member 202 in end-butt welding as shown in FIG.
  • Position and angle conditions are memorized. For example, when the gap distance n is smaller than the eighth threshold value (Th8), the position of the welding torch 23 and the angle of the welding torch 23 are not changed from the predetermined position and the predetermined angle ( ⁇ 1), respectively, and the gap distance n is larger than the eighth threshold (Th8) and smaller than the ninth threshold (Th9), the position of the welding torch 23 is shifted from the predetermined position to the positive side in the Y-axis direction (the torch angle is If the gap distance n is larger than the ninth threshold value (Th9), it is determined that welding is not possible, and an error notification is sent via the input/output unit 14 to the effect that welding should not be performed. and prohibits the execution of welding operations.
  • the surface on which the first target member 201 and the second target member 202 are placed (in FIG. 23, the Y-axis Conditions for the position and angle of the welding torch according to the inclination ( ⁇ 2) with respect to the direction) are stored.
  • the inclination ( ⁇ 2) is smaller than the tenth threshold (Th10), the position of the welding torch 23 and the angle of the welding torch 23 are not changed from the predetermined position and predetermined angle ( ⁇ 3), respectively, and the inclination ( When ⁇ 2) is larger than the 10th threshold value (Th10) and smaller than the 11th threshold value (Th11), the angle of the welding torch 23 is made larger than a predetermined angle, and the inclination ( ⁇ 2) is If it is larger than the eleventh threshold (Th11), welding is impossible because the step is too large.
  • the movement path generation unit 105 uses information in the torch position/angle condition storage unit 124 shown in FIG.
  • the position and angle of the welding torch 23 are determined at each plane position defined by the plurality of circular arcs 220 on which the gap is to be measured according to the gap distance between the target members 202, and the position and angle are determined at each of the plurality of positions.
  • a moving path 32 is generated such that the position of the welding torch 23 is the same.
  • an angle target for the attitude angle of the welding torch may be generated so that the angle of the welding torch 23 is determined at each of the plurality of positions.
  • the moving route generation unit 105 excludes information on the plane including the tack welding area 30 from the information on the position of the welding torch 23 determined at the position of each plane of the plurality of circular arcs 220 (that is, the information on the plane including the tack welding area 30).
  • the moving route 32 is generated using information on the position of the welding torch 23 determined at a position corresponding to an area other than the tack welding area 30.
  • the angle target for the attitude angle of the welding torch is determined by excluding information on the plane that includes the tack welding area 30 (that is, without using the shape data corresponding to the tack welding area 30), and by An angle target is determined using information on the angle of the welding torch 23 determined at a position corresponding to an area other than the area 30.
  • the welding type is a welding type in which the end surfaces of the plates of the first target member 201 and the second target member 202 are butted against each other as shown in FIG.
  • the position and angle of the welding torch 23 are determined, and a moving path 32 is generated such that the position and angle of the welding torch 23 are respectively determined at the plurality of positions.
  • the moving path generation unit 105 generates information on the plane including the tack welding area 30 from the information on the position of the welding torch 23 (center point of the gap) determined at the positions of the plurality of reference lines 250.
  • the moving path 32 is determined by excluding (that is, not using the shape data corresponding to the tack welding area 30) and using information on the position of the welding torch 23 determined at a position corresponding to an area other than the tack welding area 30. generate.
  • the angle target for the attitude angle of the welding torch is determined by excluding information on the plane that includes the tack welding area 30 (that is, without using the shape data corresponding to the tack welding area 30), and by An angle target is determined using information on the angle of the welding torch 23 determined at a position corresponding to an area other than the area 30.
  • the welding execution unit 106 controls the work robot 2 to execute a welding operation based on the generated movement path 32.
  • condition storage unit 121 stores information on the material and shape of the welding target member, measurement conditions, welding type, and gap measurement position input and set in the condition setting unit 101.
  • the stored information is not limited to information input by the user via the welding condition setting unit 101, but may also be information registered in the system in advance or information automatically determined by the system based on predetermined rules. Good too.
  • the three-dimensional CAD data storage unit 122 stores information on the materials and shapes of the first and second target members 201 and 202, information on the planned work route 31, and plate thickness (Z) of the first and second target members 201 and 202. information such as the thickness in the axial direction).
  • the measured shape data storage unit 123 stores point cloud data acquired by the point cloud data acquisition unit 102.
  • FIG. 16 is a diagram showing the overall control flow of the welding system.
  • welding conditions and the like are determined by the welding condition setting section 101 (step 101).
  • the condition setting unit 101 sends information on the planned work route 31 of the welding target members 201 and 202, the input welding type (T type or plate edge butt type), and shape measurement position information to the terminal 1. It is received from the user via the input/output unit 14. These pieces of information do not necessarily need to be input by the user, and may be registered in the system in advance.
  • the shape data acquisition unit 102 acquires three-dimensional point group data (step 102).
  • the working robot 2 is controlled based on the information regarding the scheduled work route 31 that is input in step 101 or set in advance, and the working robot 2 is controlled so that the first and second Three-dimensional point group data of the butt portion 203 of the target members 201 and 202 is acquired.
  • gap measurement is performed by the gap/level difference measuring section 103 (step 103).
  • the gap/step measuring unit 103 measures the gap distance of the abutting portion and the step inclination of the abutting portion based on the measured three-dimensional point group data. This will be explained in more detail below.
  • step 106 information regarding the tack welding area 30 is acquired by the tack welding detection unit 104 (step 103).
  • the weldability determining unit 105 determines whether welding is possible (step 106). In this step, weldability is determined based on the criteria stored in the weldability determination criteria storage section 124 and the information measured or detected in steps 103 and 104.
  • step 111 the process transitions to step 111, and if the weldability determination result indicates welding OK, the process transitions to step 108 (step 107). If the result of the welding determination is that the welding is NG, execution of the welding is prohibited and the user is notified that the welding is NG (step 111).
  • the moving path generation unit 106 determines the position and angle of the welding torch (step 108). In this step, based on the conditions stored in the torch position/angle condition storage unit 125 as shown in FIG. Determine the position and angle of.
  • the movement path generating section generates a movement path 32 for the welding torch (step 109). In this step, a welding torch movement path 32 is generated so that the position and angle of the welding torch are set in each two-dimensional plane generated in step 108.
  • the welding torch is controlled along the generated movement path 32 to perform welding (step 110).
  • 17-19 shows the gap distance in T-type welding (a state in which the end surface of the second target member 202 is abutted approximately perpendicularly to the flat surface of the first target member 201) as shown in FIG.
  • a specific example of measuring (step 103) and generating the travel route 32 (step 109) will be described.
  • FIG. 17(a) shows an example in which a plurality of circular arcs 220 are defined along the planned work route 31 when performing gap measurement in step 103 in T-type welding.
  • Arcs 220 are defined at predetermined intervals in the Y-axis direction along the planned work route 31 stored in the three-dimensional CAD data storage unit 122 or the like.
  • Point cloud data is acquired for each two-dimensional plane defined by each arc 220.
  • FIG. 17(b) is a diagram showing an example of point cloud data acquired for each two-dimensional plane defined by each of the circular arcs 220 described above.
  • L-shaped point cloud data is acquired along the surface shapes of the first and second target members.
  • FIG. 18A shows the positional relationship of each member in a two-dimensional plane defined by an arc 220 when measuring T-shaped target members 201 and 202.
  • FIG. 18(b) shows an example of point cloud data on a two-dimensional plane defined by the circular arc 220.
  • the gap/level difference measurement unit 103 calculates a point group indicating the lowest part (end) of the target member 201 and the surface shape of the target member 202 based on two-dimensional point cloud data as shown in FIG. 18(b). By calculating the distance to the indicated point group, the gap distance between the target members 201 and 202 is obtained.
  • the gap distance in the T-shape (a shape in which the members to be welded are substantially perpendicular to each other) shown in FIG.
  • a pair of points of the target member 201 and a point group of the second target member 202 can be defined as the distance between the pair of points where the straight-line distance between the point groups is the shortest. However, it does not necessarily have to be the distance between the point clouds where the straight-line distance is the shortest, and it is a pair of point clouds of the first target member 201 and the second target member 202 that are close to each other. It may also be defined as the distance.
  • FIGS. 19(a) and 19(b) show the measurement of the gap distance in a state where the relative positional relationship between the first target member 201 and the second target member 202 is tilted left and right from a state where they are substantially perpendicular to each other.
  • FIG. 2 is a diagram illustrating the method.
  • FIG. 19(a) shows a state in which the target member 201 is tilted in a direction away from the working robot 2. As shown in FIG. In this state, the distance between the edge position of the first target member 201 on the working robot side and the upper surface of the second target member 202 in the direction perpendicular to the upper surface of the second target member 202 is measured as the gap distance. .
  • FIG. 19(a) shows a state in which the target member 201 is tilted in a direction away from the working robot 2.
  • 19(b) shows a state in which the first target member 201 is tilted in a direction approaching the measurement robot. In this state, the distance between the edge position of the first target member 201 on the working robot 2 side and the upper surface of the second target member 202 in the direction perpendicular to the upper surface of the second target member 202 is measured as the gap distance. do.
  • the welding torch movement path 32 is generated so that the welding torch position determined in step 108 is reached in the plane position defined by the circular arc 220.
  • the surface shapes of the first and second target members cannot be measured in the plane position including the tack welding area 30, it is difficult to accurately obtain the gap distance. Therefore, it is not possible to properly judge the position of the welding torch. Therefore, in generating the moving route 32 (step 109), data including the tack welding area 30 is excluded from the information used to generate the moving route 32. Specifically, point cloud data acquired at a plane position including the tack welding area 30 shown in FIG.
  • the welding torch is moved based on point cloud data acquired at a plane position that does not include the tack welding area 30, the gap distance generated based on this, and the information on the welding torch position.
  • Generate route 32 For example, the movement path 32 of the welding torch in the tack welding area 30 is a path connecting the positions of the welding torch in a plane that does not include the tack welding area 30 adjacent to both sides of the tack welding area 30 in the Y-axis direction. It can be done.
  • FIG. 20-25 shows the measurement of the gap distance (step 103) and the generation of the movement path 32 when welding is performed with the end surfaces of the plates of the first target member 201 and the second target member 202 butted against each other.
  • a specific example of executing (step 109) will be described.
  • FIG. 20 shows an example of preprocessing when measuring the gap distance (gap) and level difference of the abutting portion 203 including the first end surface 201a and the second end surface 202a of the first and second target members 201 and 202. It shows.
  • a gap G with a gap distance n exists between the first end surface 201a and the second end surface 202a, and a plurality of tack welding regions 30 exist.
  • P1 at an arbitrary position on the first end surface 201a of the first target member 201
  • P1 at an arbitrary position on the second end surface 202a of the second target member 202 with the gap G in between.
  • P2 as the position.
  • P3 and P4 are designated on the plus side and minus side of the first end surface 201a in the X-axis direction, respectively, so as to sandwich P1.
  • the designation of P1, 2, 3, and 4 may be input by the user via the terminal 1 or controller 3, or may be automatically designated by the welding system 100.
  • point cloud search is performed by scanning the operation spheres 230 and 240 along the X-axis direction in the plus and minus sides of the X-axis with reference to the specified P1 and P2. Then, the ends of each of the first and second target members 201 and 202 are detected.
  • the radius of each operation sphere (SearchRadius) 230 from P1 is SearchRadiusV
  • the arrangement interval of the operation spheres 230 is PitchV
  • the radius of each operation sphere 240 from P2 is SearchRadiusV
  • the arrangement interval of the operation sphere (SearchRadius) 240 is PitchV
  • the points are scanned in the plus side and minus side of the X-axis direction, respectively, and the point where point cloud data (two-dimensional) on the cross-sectional plane cannot be obtained is the first terminal point.
  • the gap measurement unit 103 connects the corresponding balls with a straight line across the gap G between the operating balls 230 and 240, and creates a plurality of reference lines that are the cross section of the planned work route 31. Create 250.
  • the shortest distance between the first end surface 201a of the first target member 201 and the second end surface 202a of the second target member 202 is obtained as the gap distance n.
  • FIG. 23 is a partially enlarged view of FIG. 22.
  • the reference line 250 created in FIG. 22 is further divided.
  • the radius of each operating ball 260 is SearchRadiusU
  • the arrangement of the operating balls 260 is Scanning is performed on the plus side and the minus side in the Y-axis direction with an interval of PitchV, and a midpoint is searched for every reference line 250.
  • FIG. 24 shows how steps are detected using the position of the center of gravity of the point of the operating ball 260 in FIG. 23.
  • a step between the upper surfaces of the first target member 201 and the second target member 202, for example, in FIG.
  • the midpoint C of the line segment 280 connecting the end points 201b and 202b of the end faces 201a and 202a that can no longer be obtained is calculated.
  • the difference in height in the Z-axis direction is detected as a step.
  • the welding torch position/angle determination unit 104 determines the welding position by the welding torch 23 and the welding torch angle (step 104).
  • the welding torch position/angle determining unit 104 uses information on the torch position and angle corresponding to the gap distance and shape type, and information on welding suitability, which are stored in the torch position/angle condition storage unit 124. , determines the position of the welding torch 23 and the angle of the welding torch 23, determines the suitability of welding, and notifies the user of the determination result of suitability of welding.
  • the welding torch position/angle condition storage unit 124 stores The angles of are unchanged from the predetermined position and predetermined angle ( ⁇ 1), respectively, and if the gap distance n is larger than the first threshold value (Th1) and smaller than the second threshold value (Th2), the welding torch 23 is shifted from the predetermined position to the positive side in the Y-axis direction (the torch angle is not changed from the predetermined angle), and if the gap distance n is larger than the second threshold (Th2), it is determined that welding is not possible. Then, an error notification indicating that welding should not be performed is sent via the input/output unit 14, and execution of the welding operation is prohibited.
  • the welding torch position/angle condition storage unit 124 stores information when there is a step (deviation in the Z-axis direction) on the upper surfaces of the first target member 201 and the second target member 202.
  • the welding torch position/angle determining unit 104 has a gap surface GS formed by connecting the first end surface 201a and the second end surface 202a, and the first and second target members 201 and 202 are placed.
  • the position and angle of the welding torch 23 with respect to the gap plane GS at the gap measurement position are determined according to the information regarding the inclination ( ⁇ 2) with respect to the plane (Y-axis direction in FIG. 24) and the information in the torch position/angle condition storage unit 124. do.
  • the inclination ( ⁇ 2) is smaller than the third threshold value (Th3), the position of the welding torch 23 and the angle of the welding torch 23 are not changed from the predetermined position and the predetermined angle ( ⁇ 3), respectively, and the inclination ( If ⁇ 2) is larger than the third threshold (Th3) and smaller than the fourth threshold (Th4), the angle of the welding torch 23 is made larger than the predetermined angle, and the inclination ( ⁇ 2) is If it is larger than the fourth threshold (Th4), it is determined that welding is not possible because the step is too large, and an error notification indicating that welding should not be performed is sent via the input/output unit 14, and the welding operation is executed. prohibited. At this time, it is preferable to adjust the angle of the welding torch 23 with respect to the gap surface GS to be perpendicular to the gap surface GS in order to improve welding quality.
  • a welding path 200a is generated by connecting the midpoints generated by the moving path generating section 106 (step 109).
  • the movement path generation unit 106 is set to be substantially along the X-axis direction, and based on the position of the welding torch 23 and the angle of the welding torch 23, the movement path generation unit 106 moves the welding torch 23 defined by the movement route and angle.
  • Generate route 32 can also be defined as a moving route defined only by the position of the welding torch 23.
  • the movement path 32 of the welding torch is generated so that the position of the welding torch determined in step 108 is reached at each position of the reference line 250.
  • the gap distance and inclination ( ⁇ 2) must be accurately obtained. Therefore, the position of the welding torch cannot be determined appropriately. Therefore, in generating the moving route 32 (step 109), data including the tack welding area 30 is excluded from the information used to generate the moving route 32. Specifically, excluding the gap distance and inclination ( ⁇ 2) obtained from the reference line 250 passing through the tack welding area 30 shown in FIG.
  • a moving path 32 of the welding torch is generated based on point cloud data acquired with a reference line that does not pass through the tack welding area 30 and information on the gap distance and the position of the welding torch generated based on the data. For example, a path connecting the welding torch position (gap midpoint) determined on a reference line that does not include the tack welding area 30 adjacent to both sides of the tack welding area 30 in the X-axis direction in FIG. 25 with a straight line, This can be a moving path 32 of the welding torch in the tack welding area 30 .
  • the movement path 32 can be generated even if the gap is not on a plane. Furthermore, by welding at the center of the gap, welding can be performed with minimal input resources and energy. Furthermore, it becomes easy to change the welding conditions according to the extracted gap amount. As a result, even if there is a gap or a step in the butt portion of the target members to be welded, and the width of the gap or step is not constant, welding can be performed with high precision, and the quality of welding can be improved.
  • the working robot 2 is configured to include both a sensor 22 and a welding torch 23; It is also possible to have a configuration including a welding robot equipped with a welding robot.
  • FIG. 26 is a diagram showing an example of the overall configuration of a welding system 1000 according to another embodiment of the present invention.
  • a welding system 1000 shown in FIG. 26 includes a terminal 1, a measuring robot 2000, a welding robot 3000, and a controller 3.
  • the measuring robot 2000 includes at least an arm 2100 and a sensor 2200 mounted on the tip of the arm 2100.
  • the welding robot 3000 includes at least an arm 3100 and a welding torch 3200 mounted on the tip of the arm 3100.
  • the terminal 1 and the controller 3 are connected to the measuring robot 2000 and the welding robot 3000, respectively, by wire or wirelessly so that they can communicate with each other.
  • the sensor 2200 provided on the arm 2100 of the measurement robot 2000 acquires point cloud data of the shapes of the surfaces and end surfaces near the abutting portion 203 of the two target members 201 and 202 shown in FIG.
  • a moving route 32 is generated from the point group data according to the gaps and steps of the butt portions 203.
  • the welding robot 3000 controls the operation of the arm 3100 according to the generated movement path 32, and performs a welding operation approximately along the X-axis direction.
  • the present invention is not limited to welding applications, but can also be applied to sealing work, bonding work, etc.
  • the present invention can also be applied to a welding system that performs work such as adhesion on butt portions. In that case, the welding torch can be replaced with a discharge part that discharges the sealant or adhesive.
  • a welding system (100, 1000) that performs the work of welding a butt part (203) of a first target member (201) and a second target member (202) with a welding torch (23), a shape data acquisition unit (102) that acquires shape data of a region including the butt portion (203); a tack weld detection unit (104) that detects a tack weld area (30) where the butt portion (203) is tack welded based on the shape data;
  • the movement path (32 ) A welding system (100), comprising: a movement path generating section (106) that generates a movement path generating section (106).
  • the welding system (100, 1000) according to claim 1,
  • the shape data acquisition unit (102) measures three-dimensional point group data of a region including the butt part (203),
  • the tack welding detection unit (104) performs the tack welding on a region raised in the thickness direction of the first target member (201) or the second target member (202) based on the three-dimensional point cloud data.
  • a welding system (100) that determines a region (30).
  • (Claim 3) The welding system (100, 1000) according to any one of claims 1 and 2,
  • a gap measuring unit (103) that measures a gap distance (n) between the first target member (201) and the second target member (202) in an outer region of the tack welding region (30).
  • the welding system (100, 1000) according to any one of claims 1 to 3, A welding system (100) comprising a weldability determination section (105) that determines whether or not welding is possible based on information regarding the tack welding area (30) detected by the tack welding detection section (104).
  • (Claim 5) The welding system (100, 1000) according to any one of claims 1 to 4, When the welding capability determining unit (105) determines that welding is not possible, prohibiting the generation or output of the movement path (32) of the welding torch (23), or notifying the user that welding is not possible; Welding system (100). (Claim 6) The welding system (100, 1000) according to any one of claims 1 to 5, The weldability determination unit (105) determines that welding is possible when the position of the tack welding area (30) falls within a preset allowable position range, and determines that welding is possible when the position of the tack welding area (30) falls within a preset allowable position range. A welding system (100) that determines that welding is not possible when the welding is not performed.
  • the welding system (100, 1000) according to any one of claims 1 to 6,
  • the weldability determination unit (105) determines whether at least one of the length, area, and volume of the tack welding area (30) falls within a preset tolerance range, and A welding system (100) that determines that welding is possible when the range is within the allowable range, and determines that welding is not possible when the range is not within the allowable range.
  • the welding system (100, 1000) according to any one of claims 1 to 7, When a plurality of the tack welding regions (30) exist in the butt portion (203), The weldability determination unit (105) determines whether an adjacent distance between any of the tack welding areas (30) and another adjacent tack welding area (30) falls within a preset tolerance range.
  • a welding system (100) that determines whether or not the welding is possible, and determines that welding is possible if it falls within the tolerance range, and determines that welding is not possible if it does not fall within the tolerance range.
  • a welding system (100, 1000) that performs the work of welding a butt part (203) of a first target member (201) and a second target member (202) with a welding torch (23), a shape data acquisition unit (102) that acquires shape data of a region including the butt portion (203); a tack weld detection unit (104) that detects a tack weld area (30) where the butt portion (203) is tack welded based on the shape data;
  • a welding system (1000) comprising a weldability determining unit (105) that determines whether welding is possible based on information regarding the tack welding area (30) detected by the tack welding detection unit (104).
  • (Claim 10) The welding system (100, 1000) according to claim 9, When the welding capability determining unit (105) determines that welding is not possible, prohibiting the generation or output of the movement path (32) of the welding torch (23), or notifying the user that welding is not possible; Welding system (1000).
  • (Claim 11) The welding system (100, 1000) according to any one of claims 9 or 10, The weldability determination unit (105) determines that welding is possible when the position of the tack welding area (30) falls within a preset allowable position range, and determines that welding is possible when the position of the tack welding area (30) falls within a preset allowable position range.
  • a welding system (1000) that determines that welding is not possible when the welding is not performed.
  • the welding system (100, 1000) according to any one of claims 9 to 11,
  • the weldability determination unit (105) determines whether at least one of the length, area, and volume of the tack welding area (30) falls within a preset tolerance range, and A welding system (1000) that determines that welding is possible when the range is within the allowable range, and determines that welding is not possible when the range is not within the allowable range.
  • the welding system (100, 1000) according to any one of claims 9 to 12, When a plurality of the tack welding regions (30) exist in the butt portion (203), The weldability determination unit (105) determines whether an adjacent distance between any of the tack welding areas (30) and another adjacent tack welding area (30) falls within a preset tolerance range.
  • a welding system (1000) that determines whether or not the welding is possible, and determines that welding is possible if it falls within the tolerance range, and determines that welding is not possible if it does not fall within the tolerance range.
  • (Claim 14) This is a welding method using a welding system (100, 1000) for welding a butt part (203) of a first target member (201) and a second target member (202) with a welding torch (23). hand, obtaining shape data of a region including the butt portion (203); detecting a tack welding area (30) where the butt portion (203) is tack welded based on the shape data; The movement path (32 ), welding method.
  • (Claim 15) This is a welding method using a welding system (100, 1000) for welding a butt part (203) of a first target member (201) and a second target member (202) with a welding torch (23).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

【課題】本発明の一態様は、仮付溶接を行った位置を溶接する場合において、良質な溶接を実現させる溶接システムおよび溶接方法を提供する。 【解決手段】本発明の一態様は、第1の対象部材と第2の対象部材の突合せ部を溶接トーチにより溶接する作業を実行する溶接システムであって、前記突合せ部を含む領域の形状データを取得する形状データ取得部と、前記突合せ部を仮付溶接した仮付溶接領域を前記形状データに基づき検出する仮付溶接検出部と、前記仮付溶接領域に対応する前記形状データを用いず、前記仮付溶接領域の外側領域に対応する前記形状データを用いて、前記溶接トーチの移動経路を生成する移動経路生成部と、を備える、溶接システム、である。

Description

溶接システムおよび溶接方法
 本発明は溶接システムおよび溶接方法に関する。
 溶接ロボットを用いて、溶接対象である二つの被溶接部材の端面を突合せ溶接する場合に、本溶接動作に先立って、仮付溶接を行って二つの被溶接部材の位置がズレないようにする技術が利用されている。また、仮付溶接を行った部分は、被溶接部材の端面が仮付溶接部により隠れてしまうため、仮付溶接に影響を受けずに、被溶接部材の端面に沿って適切な経路で本溶接を行うことが課題となっている。例えば、特許文献1には、本溶接と同時に端面を検出するレーザセンサによる検出結果が所定の基準値よりも大きくなった場合に、前の検出位置を溶接位置とする技術が開示されている。
特開2016-150349号公報
 しかしながら、上記技術では、仮付溶接が行われた位置では、被溶接部材の端面が正確に判定できないため、本溶接すべき位置から実際の溶接パスの位置がずれて、溶接品質が悪化するという課題がある。または、仮付溶接の品質が一定程度確保されていないと被溶接部材の位置決めが適切にできず、溶接品質が悪化するという課題がある。
 本発明の一態様は、このような背景を鑑みてなされたものであり、仮付溶接を行った位置を溶接する場合において、良質な溶接を実現させるものである。
 本発明の一態様は、
第1の対象部材と第2の対象部材の突合せ部を溶接トーチにより溶接する作業を実行する溶接システムであって、前記突合せ部を含む領域の形状データを取得する形状データ取得部と、前記突合せ部を仮付溶接した仮付溶接領域を前記形状データに基づき検出する仮付溶接検出部と、前記仮付溶接領域に対応する前記形状データを用いず、前記仮付溶接領域の外側領域に対応する前記形状データを用いて、前記溶接トーチの移動経路を生成する移動経路生成部と、を備える溶接システム、である。
あるいは、
 第1の対象部材と第2の対象部材の突合せ部を溶接トーチにより溶接する作業を実行する溶接システムであって、前記突合せ部を含む領域の形状データを取得する形状データ取得部と、前記突合せ部を仮付溶接した仮付溶接領域を前記形状データに基づき検出する仮付溶接検出部と、前記仮付溶接検出部で検出した前記仮付溶接領域に関する情報に基づいて、溶接可否を判定する溶接可否判定部を備える、溶接システムである。
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。
 本発明の一態様によれば、仮付溶接を行った位置を溶接する場合において、良質な溶接を実現させる溶接システムおよび溶接方法を提供することができる。
本発明の一実施形態に係る溶接システム100の全体構成例を示す図。 本実施形態に係る溶接システム100を用いて対象部材を計測する様子を示す図。 本実施形態に係る溶接システム100を用いて対象部材を溶接する様子を示す図。 端末1のハードウェアの構成例を示す図。 端末1の機能構成例を示す図。 本実施形態に係る仮付溶接検出部104による仮付溶接領域の検出処理の一例を示す図。 本実施形態に係る溶接可否判定基準記憶部124に記憶された情報の一例を示す図。 本実施形態に係る溶接可否判定基準記憶部124に記憶された仮付溶接の位置に関する条件の一例を示す図。 本実施形態に係る溶接可否判定基準記憶部124に記憶された仮付溶接の大きさに関する条件の一例を示す図。 本実施形態に係る溶接可否判定基準記憶部124に記憶された隣接する仮付溶接との距離に関する条件の一例を示す図。 本実施形態に係るトーチ位置・角度条件記憶部124に記憶されたトーチ位置と角度条件の一例を示す図。 オーバーラップ型においてトーチ位置と角度を決定する一例を示す図。 T型において、トーチ位置と角度を決定する一例を示す図。 J型において、トーチ位置と角度を決定する一例を示す図。 本実施形態に係るトーチ位置・角度条件記憶部124に記憶されたトーチ位置と角度条件の他の一例を示す図。 本実施形態に係る溶接システムの全体の制御フローを示す図。 T型において、作業予定ルートに沿って複数の円弧220を定義する例を示す図。 T型において、円弧220で定義された二次元平面における各部材の位置関係とギャップ距離計測の一例を示す図。 T型において、対象部材の相対位置が傾いた状態におけるギャップ距離計測の一例を示す図。 第1の端面201aと第2の端面202aとの任意の位置にP1―P4を指定する例を示す図。 第1および第2の対象部材201、202それぞれの終端を検出する例を示す図。 複数の基準線250を作成する例を示す図。 図22の部分拡大図を示す図。 段差検出する様子を示す図。 移動経路生成部106により生成した中点を繋いで溶移動経路を生成する例を示す図。 本発明の他の実施形態に係る溶接システム1000の全体構成例を示す図。
<実施の形態の詳細>
 本発明の一実施形態に係る溶接システム100の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、添付図面において、同一または類似の要素には同一または類似の参照符号及び名称が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
図1は、本実施形態の溶接システム100の一例を示す図である。図1に示すように、本実施形態の溶接システム100では、端末1と、作業用ロボット2、コントローラ3とを有している。作業用ロボット2は、少なくともアーム21、センサ22、溶接トーチ23を有している。端末1とコントローラ3と作業用ロボット2とは、有線または無線にて互いに通信可能に接続されている。
 図2は、溶接システム100の作業用ロボット2を用いて、作業予定ルート31を計測する様子を示す図である。本溶接を予定している作業予定ルート31は、ユーザによる設定され、2つの対象部材201、202の突合せ部203に沿って生成される。本実施形態では、作業用ロボット2のアーム21に設けられたセンサ22により、作業予定ルート31に沿って突合せ部203付近の表面および端面の形状の点群データが取得され、その点群データから突合せ部203に存在する仮付溶接や隙間を検出して、溶接の移動経路32の調整や溶接可否を判定することにより、良質な溶接を実現させるものである。
 図3は、溶接システム100の作業用ロボット2を用いて、生成された溶接パス200aに対して溶接を行う様子を示す図である。生成された溶接パス200aに応じて溶接トーチの目標位置と目標角度を含む移動経路32が決定され、作業用ロボット2は、溶接トーチ23が移動経路32に沿って移動するようにアーム21の動作を制御して、略X軸方向に沿うように溶接動作を実行する。
<端末1>
 図4は、端末1のハードウェア構成を示す図である。端末1は、例えば、パーソナルコンピュータのような汎用コンピュータとしてもよいし、或いはクラウド・コンピューティングによって論理的に実現されてもよい。なお、図示された構成は一例であり、これ以外の構成を有していてもよい。例えば、端末1のプロセッサ10に設けられる一部の機能が外部のサーバや別端末により実行されてもよい。
 端末1は、少なくとも、プロセッサ10、メモリ11、ストレージ12、送受信部13、入出力部14等を備え、これらはバス15を通じて相互に電気的に接続される。
 プロセッサ10は、端末1全体の動作を制御し、少なくとも計測用ロボット2及び溶接用ロボット3とのデータ等の送受信の制御、及びアプリケーションの実行及び認証処理に必要な情報処理等を行う演算装置である。例えば、プロセッサ10はCPU(Central Processing Unit)またはGPU(Graphics Processing Unit)であり、あるいは、CPU及びGPUであり、ストレージ12に格納されメモリ11に展開された本システムのためのプログラム等を実行して各情報処理を実施する。
 メモリ11は、DRAM(Dynamic Random Access Memory)等の揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD(Hard Disc Drive)等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ11は、プロセッサ10のワークエリア等として使用され、また、端末1の起動時に実行されるBIOS(Basic Input / Output System)、及び各種設定情報等を格納する。
 ストレージ12は、アプリケーション・プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベースがストレージ12に構築されていてもよい。
 送受信部13は、端末1を少なくとも作業用ロボット2と接続し、プロセッサの指示に従い、データ等の送受信を行う。なお、送受信部13は、有線または無線により構成されおり、無線である場合には、例えば、WiFiやBluetooTh(登録商標)及びBLE(BluetooTh Low Energy)の近距離通信インターフェースにより構成されていてもよい。
 入出力部14は、例えば、端末1がパーソナルコンピュータで構成されている場合は情報出力機器(例えば、ディスプレイ)と情報入力機器(例えば、キーボードやマウス)により構成され、スマートフォンまたはタブレット端末で構成されている場合はタッチパネル等の情報入出力機器により構成されている。
 バス15は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。
<作業用ロボット2>
 図1-3に戻り、本実施形態に係る作業用ロボット2について説明する。
 上述のとおり、作業用ロボット2は、アーム21と、センサ22と、溶接トーチ23とを有する。なお、図示された構成は一例であり、この構成に限定されない。なお、図24に示すように、アーム2100と、センサ2200とを備える計測用ロボット2000と、アーム3100と、溶接トーチ3200とを備える溶接用ロボット3000を備えて、計測用ロボットにより計測動作を行い、溶接用ロボットにより溶接動作を行うようにすることも可能である。
 計測用ロボット2のアーム21及び溶接用ロボット3のアーム31は、三次元のロボット座標系に基づき、端末1にその動作を制御される。また、アーム21及びアーム31は、有線または無線で計測用ロボット2及び溶接用ロボット3と接続されたコントローラ4によりその動作を制御されてもよい。
 作業用ロボット2のセンサ22は、三次元のセンサ座標系に基づき、第1および第2の対象部材201、202のセンシングを行う。センサ22は、例えば、三次元スキャナとして動作するレーザセンサであり、センシングにより突合せ部203を形成する第1の対象部材201と第2の対象部材が突合せられている突合せ部203付近の三次元点群データを取得する。三次元点群データは、例えば、それぞれの点データがセンサ座標系の座標情報を有し、点群により検査対象物の形状を把握することが可能となる。取得した三次元点群データは、第1および第2の対象部材201、202を仮付けした仮付溶接領域30の検出、突合せ部203における第1および第2の対象部材201、202の間のギャップ距離の検出に利用される。検出された仮付溶接領域30とギャップ距離の情報に基づいて、更に、溶接を行う経路である溶接パス200aが生成される。
 なお、センサ22は、レーザセンサに限らず、例えば、ステレオ方式などを用いた画像センサなどであってもよいし、作業用ロボットとは独立したセンサであってもよく、三次元のセンサ座標系における座標情報が取得できるものであればよい。また、説明を具体化するために、以下では三次元点群データを用いた構成を一例として説明する。
 なお、作業前に所定のキャリブレーションを行い、ロボット座標系及びセンサ座標系を互いに関連付け、例えばセンサ座標系を基にユーザが位置(座標)を指定することにより、アーム21やセンサ22が対応した位置を基に動作制御されるように構成をなしてもよい。
 作業用ロボット2の溶接トーチ23は、三次元のセンサ座標系に基づき、第1および第2の対象部材201、202の突合せ部203に略X軸方向に沿って設定された溶接パス200aに対して溶接作業を行う。溶接トーチ23は、例えば、アーク溶接、レーザ溶接、電子ビーム溶接、プラズマアーク溶接などの融接による溶接方式に用いられるツールであり、溶接トーチ23から第1および第2の対象部材201、202を溶融させるアーク、レーザ、ビームなどを出力して、第1および第2の対象部材201、202を溶接する。なお、溶接トーチ23は、ろう付けなどのろう接で用いられる溶加材(接着剤)の吐出部、またはシーリング材や接着剤の吐出部であっても良い。
 なお、作業前に所定のキャリブレーションを行い、作業用ロボット2のロボット座標系、及びトーチ座標系を互いに関連付け、例えば、トーチ座標系を基にユーザが位置(座標)を指定することにより、アーム21や溶接トーチ23が対応した位置を基に動作制御されるように構成をなしてもよい。
<端末1の機能>
 図5は、端末1に実装される機能を例示したブロック図である。本実施の形態においては、端末1のプロセッサ10は、条件設定部101、形状データ取得部102、ギャップ・段差計測部103、仮付溶接検出部104、溶接可否判定部105、移動経路生成部106、溶接実行部107を有している。また、端末1のストレージ12は、条件記憶部121、三次元CADデータ記憶部122、計測形状データ記憶部123、溶接可否判定基準記憶部124、トーチ位置・角度条件記憶部125を有している。
 条件設定部101は、端末1の入出力部14を介して、第1および第2の対象部材201、202に関する情報、計測条件に関する情報の入力をユーザから受け付ける。例えば、溶接対象部材に関する情報としては、材質や形状等の情報をユーザが選択して入力する。計測条件に関する情報としては、計測対象の範囲、計測センサの角度、計測のサンプリング周期などがユーザより入力される。入力された情報は溶接条件記憶部121に記憶される。
 条件設定部101は、更に、溶接トーチ23を移動させながら連続的に溶接動作を行い線状の溶接パスを生成する線状溶接と、溶接トーチ23が静止した状態で溶接動作を行う点状溶接から、溶接タイプを入力することもできる。また、三次元CADデータ記憶部122に記憶された溶接対象部材のCADデータに対して、作業予定ルート31を設定入力することができる。また、作業予定ルート31に対して、後述するギャップ計測を行う位置(二次元平面)を設定入力することができる。入力された溶接タイプ、溶接パス、ギャップ計測位置の情報は溶接条件記憶部121に記憶される。
 形状データ取得部102は、端末1の指示により、例えば、計測用ロボット2を制御し、アーム21及びセンサ22を動作させて、予め設定した作業予定ルート31を含む第1および第2の対象部材201、202の突合せ部203の三次元点群データを取得する。なお、突合せ部203の三次元点群データを取得できるよう、アーム21及びセンサ22の動作は予め設定されている。取得した三次元点群データは、例えば、センサ座標系に基づく三次元座標情報データであり、計測形状データ記憶部123に記憶される。
 ギャップ・段差計測部103は、取得した点群データと、条件記憶部121の情報と、更に場合によっては、三次元CADデータ記憶部122の情報に基づいて、第1の対象部材201と第2の対象部材202の間のギャップ距離を計測する。当該ギャップ計測は、T型溶接の場合は、図13に示すような作業予定ルート31に沿って定義される複数の円弧220で規定される平面上の点群データを取得し、当該平面上の点群データに基づいてギャップ距離が計測される。ギャップ計測の詳細な方法は、後述する。また、図18-23に示すような板材の端面同士を突き合わせた溶接の場合は、図22に示す段差傾き(θ2)が計測される。段差傾きの詳細な方法は、後述する。
 仮付溶接検出部104は、形状データ取得部102で取得し、計測形状データ記憶部123に記憶された点群データに基づいて、突合せ部203に存在する仮付溶接が行われた領域である仮付溶接領域30を検出する。特に、第1および第2の対象部材201、202の突合せ部が長く、作業予定ルート31の距離が長い場合には、第1および第2の対象部材201、202の相対位置が少しずれると、対象部材の間のギャップ距離や段差が大きくなるため、本溶接の前に先立って行われる仮付溶接により突合せ部203に仮付溶接が行われることが多い。
仮付溶接検出部104による仮付溶接領域30の検出処理の一例を図6に示す。図6は、第1の対象部材201と第2の対象部材202の溶接であって、特に板材の端面同士を突き合わせる溶接を行う場合の仮付溶接の領域の検出処理を示す。図面下側が第1の対象部材201を、上側が第2の対象部材202を示しており、中央の点線が対象部材間の突合せ部(つまり、作業予定ルート31)を示している。仮付溶接検出部103は、突合せ部203の三次元点群データから第1と第2の対象部材201、202と直交するZ軸方向(図面の奥行方向)の値が大きい点群を仮付溶接領域30として抽出する。つまり、対象部材の表面よりも高い点群を仮付溶接領域30として判断する。仮付溶接領域30の点群の抽出方法としては、Z軸方向の値が平均値よりも、予め定めた所定距離以上大きい、又は対象部材の厚みの所定割合よりも大きい点群を抽出しても良いし、あるいは、突合せ部203からY軸方向に離れた位置における第1の対象部材201と第2の対象部材202のZ軸方向の値を基準値とし、当該基準値よりも、予め定めた所定距離以上大きい、又は対象部材の厚みの所定割合よりも大きい点群を抽出しても良い。また、対象部材の表面よりも盛り上がった位置を抽出する方法でれば、他の方法を用いても良い。
 仮付溶接検出部104は、抽出した仮付溶接領域30のY軸方向の最大値の点(最も第2の対象部材側に位置する点)と最小値の点(最も第1の対象部材側に位置する点)を検出し、これらの点のY軸方向の差分を検出する。つまり、Y軸方向における仮付溶接領域30の長さを検出する。あるいは、仮付溶接領域30の重心位置を検出し、重心位置を通り第2の対象部材側の点と第1の対象部材側の点を結ぶ線で長さが最大となる線を仮付溶接領域30の長さとして検出しても良い。
 溶接可否判定基準記憶部124は、例えば図7に示すような、仮付溶接の位置、仮付溶接領域30の大きさ(長さ)、仮付溶接の間隔に関する溶接可否判定の基準と、ギャップ距離、突合せ部の段差角度に関する溶接可否判定の基準を記憶している。仮付溶接の品質が十分に高くないと、本溶接の作業中に対象部材の位置関係にずれか生じて、ギャップ距離や段差が大きくなり、本溶接による溶接品質が悪くなる可能性があるため、溶接可否判定基準記憶部124には、仮付溶接の品質が悪く、本溶接をおこなうべきでない条件が設定されている。
仮付溶接の位置に関する溶接NGの判定条件は、例えば、仮付溶接領域30の位置が許容範囲の外側に存在すること、として設定される。この仮付溶接の位置に関する条件について図8を用いて説明する。図8に示す通り、Y軸方向に許容範囲が予め設定されており、仮付溶接領域30の点群のY軸方向の位置が許容位置の範囲内にあれば溶接OKと判断し、仮付溶接領域30の点群の少なくとも一部が許容範囲の外側にあれば溶接NGと判断する。
 次に、仮付溶接の大きさに関する溶接NGの判定条件は、例えば、仮付溶接領域30の幅が、下限しきい値よりも小さい、または上限しきい値よりも大きいこと、として設定される。この仮付溶接の大きさ(長さ)に関する条件について図9を用いて説明する。判定条件の一例として、図9に示す通り、Y軸方向の仮付溶接領域30の長さ(幅)L1に許容範囲が予め設定されており、仮付溶接検出部104にて検出した長さLが許容範囲内(下限しきい値以上かつ上限しきい値以下)である場合には溶接OKと判断し、仮付溶接検出部104にて検出した長さL1が許容範囲外(下限しきい値よりも小さい、又は上限しきい値よりも大きい)である場合には溶接NGと判断する。なお、判定条件は、必ずしもY軸方向の仮付溶接領域30の長さである必要は無く、例えば、仮付溶接領域30の重心位置を通り第2の対象部材側の点と第1の対象部材側の点を結ぶ距離最長の線の長さであっても良い。あるいは、仮付溶接領域30の大きさに関する他のパラメータが所定範囲内であるか否かに基づいて判断することとしても良い。
 次に、仮付溶接の間隔に関する溶接NGの判定条件は、隣接する仮付溶接との距離(間隔)が所定距離よりも離れていることである。この隣接する仮付溶接との距離に関する条件について図10を用いて説明する。図10に示す通り、隣接する仮付溶接との隣接距離L2が所定距離以下の場合には溶接OKと判断し、隣接距離L2が所定距離よりも長い場合には溶接NGと判断する。なお、隣接距離L2は、隣接する仮付溶接領域30の点群のうち直線距離が最短となる距離、又はX軸方向の距離が最短となるX事項方向の距離、と定義しても良いし、隣接する仮付溶接領域30の重心位置の間の直線距離又はX事項方向の距離、と定義しても良い。
次に、ギャップ距離に関する溶接NGの判定条件は、ギャップ距離が所定しきい値を超えていることである。具体的には、図11に示すように、溶接タイプがオーバーラップ型であれば、ギャップ距離nが所定しきい値(Th2)よりも大きいこと、溶接タイプがT型であれば、ギャップ距離nが所定しきい値(Th4)よりも大きいこと、溶接タイプがJ型であれば、ギャップ距離nが所定しきい値(Th7)よりも大きいことである。また、溶接タイプが端部の突合せ型である場合のギャップ距離に関する溶接NGの判定条件は、図12に示すように、ギャップ距離nが所定しきい値(Th9)よりも大きいことである。
また、端部突合せ型の溶接における突合せ部の段差角度が所定しきい値超えていることである。具体的には、図12に示すように、段差角度θ2が所定しきい値(Th11)を超えていることである。
 溶接可否判定部105は、溶接可否判定基準記憶部124に記憶された、仮付溶接とギャップ距離に関する溶接可否判定の基準と、仮付溶接検出部により検出した仮付溶接領域30に関する情報、ギャップ計測部により検出したギャップ距離に関する情報に基づいて、溶接可否を判断する。溶接可否判定部105による溶接可否の判断結果が「不可」である場合(つまり、溶接を許可しないと判断した場合)、溶接を実行するために必要な処理である溶接パスや溶接トーチの移動経路32の生成又は出力を禁止する、あるいは、溶接可否の判定結果が「不可」である旨の通知を端末1やコントローラ4を介してユーザに通知する。溶接可否判定の詳細は後述する。
 トーチ位置・角度条件記憶部124は、図11や図15に示すような、第1の対象部材201と第2の対象部材202の間のギャップ距離や段差角度に応じたトーチ位置と角度条件が記憶されている。図11に示す例では、図12に示すようなオーバーラップ型タイプ(第1の対象部材201と第2の対象部材202が平行に重なる状態で溶接されるタイプ)、図13に示すようなT型タイプ(第2の対象部材202の平面部に第1の対象部材201の端面が略垂直に突き立てられた位置で溶接されるタイプ)、図14に示すようなJ型タイプ(曲面部を有する第1の対象部材201が曲面部で前記第2の部材の平面部と溶接されるタイプ)の各溶接における、第1の対象部材201と第2の対象部材202の間のギャップ距離の長さに応じた溶接トーチの位置と角度の条件が記憶されている。
オーバーラップ型では、ギャップ距離nが第1しきい値(Th1)よりも小さい場合には、図12(a)に示すように,溶接トーチの位置と溶接トーチの角度はそれぞれ所定位置と所定角度(θ1)から変更させない。ギャップ距離nが第1しきい値(Th1)よりも大きく、第2しきい値(Th2)よりも小さい場合には、図12(b)に示すように、溶接トーチの位置を所定位置からZ方向のプラス側にシフトさせる(トーチ角度は所定角度から変更しない)。またギャップ距離nが第2しきい値(Th2)よりも大きい場合は、ギャップ距離が大き過ぎるため溶接NGとする。
 次に、T型では、ギャップ距離nが第3しきい値(Th3)よりも小さい場合には、図13(a)に示すように、溶接トーチの位置は部材境界位置を溶接する位置とし、溶接トーチの角度は所定角度(θ2)から変更せない。ギャップ距離nが第3しきい値(Th3)よりも大きく、第4しきい値(Th4)よりも小さい場合には、図13(b)に示すように、トーチ位置を部材境界位置からZ方向のプラス側にシフトさせる(トーチ角度は所定角度(θ2)から変更しない)、またギャップ距離nが第4しきい値(Th4)よりも大きい場合は、ギャップ距離が大き過ぎるため溶接NGとする。
 次に、J型では、ギャップ距離nが第5しきい値(Th5)よりも小さい場合には、溶接トーチの位置と溶接トーチの角度はそれぞれ所定位置と所定角度(θ3)から変更しない。ギャップ距離nが第5しきい値(Th5)よりも大きく、第6しきい値(Th6)よりも小さい場合には、図14(a)に示すように、トーチ位置を所定位置からX方向のマイナス側にシフトさせ、トーチ角度は所定角度から変更しない。ギャップ距離nが第6しきい値(Th6)よりも大きく、第7しきい値(Th7)よりも小さい場合には、図14(b)に示すように、トーチ位置を所定位置からX方向のマイナス側にシフトさせ、トーチ角度は所定角度(θ3)から角度減少して下側部材と並行に近くなる角度(θ3’)に変更する。ギャップ距離nが第7しきい値(Th7)よりも大きい場合は、ギャップ距離が大き過ぎるため溶接NGとする。
 また、図15に示す例では、図19に示すような端部突合せ型の溶接における、第1の対象部材201と第2の対象部材202の間のギャップ距離の長さに応じた溶接トーチの位置と角度の条件が記憶されている。例えば、ギャップ距離nが第8しきい値(Th8)よりも小さい場合には、溶接トーチ23の位置と溶接トーチ23の角度はそれぞれ所定位置と所定角度(θ1)から変更せず、ギャップ距離nが第8しきい値(Th8)よりも大きく、第9しきい値(Th9)よりも小さい場合には、溶接トーチ23の位置を所定位置からY軸方向のプラス側にシフトさせる(トーチ角度は所定角度から変更しない)、またギャップ距離nが第9しきい値(Th9)よりも大きい場合は、溶接不可と判断して、入出力部14を介して、溶接すべきでない旨のエラー通知を行うと共に、溶接動作の実行を禁止する。
 図15に示す例では、図19に示すような板材の端面同士を突き合わせた状態の溶接における、第1の対象部材201と第2の対象部材202が載置された面(図23ではY軸方向)に対する傾き(θ2)に応じた溶接トーチの位置と角度の条件が記憶されている。例えば、傾き(θ2)が第10しきい値(Th10)よりも小さい場合には、溶接トーチ23の位置と溶接トーチ23の角度はそれぞれ所定位置と所定角度(θ3)から変更せず、傾き(θ2)が第10しきい値(Th10)よりも大きく、第11しきい値(Th11)よりも小さい場合には、溶接トーチ23の角度を所定角度よりも大きくし、また、傾き(θ2)が第11しきい値(Th11)よりも大きい場合は、段差が大きすぎるため溶接不可となる。
 移動経路生成部105は、溶接タイプがオーバーラップ型、T型、J型である場合には、図11に示すトーチ位置・角度条件記憶部124の情報と、第1の対象部材201と第2の対象部材202の間のギャップ距離と、に応じて、ギャップ計測を行う複数の円弧220で定義される各平面の位置において溶接トーチ23の位置と角度を決定し、当該複数の位置においてそれぞれ決定した溶接トーチ23の位置となるような移動経路32を生成する。また、移動経路32に加えて、当該複数の位置においてそれぞれ決定した溶接トーチ23の角度となるように溶接トーチの姿勢角度の角度目標を生成しても良い。
 ここで、仮付溶接検出部104により検出された仮付溶接領域30は、溶接材により第1と第2の対象部材201,202の表面形状が覆われており、各対象部材間の境界線やギャップ距離を正しく計測することができないため、仮付溶接領域30で検出したギャップ距離の情報を利用すると、移動経路32を正確に生成できない可能性が有る。そのため、移動経路生成部105は、複数の円弧220の各平面の位置において決定した溶接トーチ23の位置の情報から、仮付溶接領域30を含む平面における情報を除外し(つまり、仮付溶接領域30に対応する形状データを用いず)、仮付溶接領域30以外の領域に対応する位置において決定した溶接トーチ23の位置の情報を用いて、移動経路32を生成する。また、溶接トーチの姿勢角度の角度目標も上記と同様に、仮付溶接領域30を含む平面における情報を除外し(つまり、仮付溶接領域30に対応する形状データを用いず)、仮付溶接領域30以外の領域に対応する位置において決定した溶接トーチ23の角度の情報を用いて、角度目標を決定する。
 或いは、溶接タイプが図20に示すような第1の対象部材201と第2の対象部材202の板材の端面同士を突き合わせた状態の溶接タイプである場合は、移動経路生成部105は、図15に示すトーチ位置・角度条件記憶部124の情報と、第1の対象部材201と第2の対象部材202の突合せ部の段差傾き(θ2)と、に応じて、段差傾きを計測する各位置において溶接トーチ23の位置と角度を決定し、当該複数の位置においてそれぞれ決定した溶接トーチ23の位置と溶接トーチ23の角度となるような移動経路32を生成する。
 ここでも、上述した通り、移動経路生成部105は、複数の基準線250の位置において決定した溶接トーチ23の位置(ギャップの中心点)の情報から、仮付溶接領域30を含む平面における情報を除外し(つまり、仮付溶接領域30に対応する形状データを用いず)、仮付溶接領域30以外の領域に対応する位置において決定した溶接トーチ23の位置の情報を用いて、移動経路32を生成する。また、溶接トーチの姿勢角度の角度目標も上記と同様に、仮付溶接領域30を含む平面における情報を除外し(つまり、仮付溶接領域30に対応する形状データを用いず)、仮付溶接領域30以外の領域に対応する位置において決定した溶接トーチ23の角度の情報を用いて、角度目標を決定する。
 溶接実行部106は、生成した移動経路32に基づいて、作業用ロボット2を制御して、溶接動作を実行する。
 条件記憶部121は、前述した通り、条件設定部101で入力設定された溶接対象部材の材質や形状、計測条件に関する情報、溶接タイプ、ギャップ計測位置の情報が記憶される。なお、記憶される情報は溶接条件設定部101を介してユーザが入力した情報に限られず、予めシステムに登録されている情報や、所定ルールに基づいてシステムが自動的に判断した情報であってもよい。
 三次元CADデータ記憶部122は、第1および第2の対象部材201、202の材質や形状の情報、作業予定ルート31の情報、第1および第2の対象部材201、202の板厚(Z軸方向の厚み)の情報の情報などを記憶する。
 計測形状データ記憶部123は、点群データ取得部102で取得された点群データが記憶される。
<制御フロー>
 図16は、溶接システムの全体の制御フローを示す図である。まず、溶接条件設定部101により溶接条件等の決定を行う(ステップ101)。このステップでは、条件設定部101により、溶接対象部材201、202の作業予定ルート31に関する情報、入力された溶接タイプ(T型又は板材端部突合せ型)、形状計測位置の情報を、端末1の入出力部14を介してユーザから受け付ける。これらの情報は、必ずしもユーザが入力する必要は無く、システムに予め登録されていても良い。
 次に、形状データ取得部102により三次元点群データを取得する(ステップ102)。このステップでは、前述したステップ101で入力される、あるいは予め設定された作業予定ルート31に関する情報に基づいて、作業用ロボット2を制御し、予め設定した作業予定ルート31を含む第1および第2の対象部材201、202の突合せ部203の三次元点群データを取得する。次に、ギャップ・段差計測部103によりギャップ計測を行う(ステップ103)。このステップにおいて、ギャップ・段差計測部103は、計測した三次元点群データに基づいて突合せ部のギャップ距離と、突合せ部の段差傾きを計測する。以下により詳細に説明する。
 次に、仮付溶接検出部104により仮付溶接領域30に関する情報を取得する(ステップ103)。次に、溶接可否判定部105により溶接の可否を判定する(ステップ106)。このステップでは、溶接可否判定基準記憶部124に記憶された判定基準と、ステップ103,104で計測又は検出した情報に基づいて、溶接可否を判定する。次に、溶接可否の判定結果が溶接NGである場合にはステップ111の処理に遷移し、溶接可否の判定結果が溶接OKである場合にはステップ108の処理に遷移する(ステップ107)。溶接可否の判定結果が溶接NGである場合には、溶接の実行を禁止すると共に、ユーザに溶接NGである旨の通知を行う(ステップ111)。
 次に、溶接可否の判定結果が溶接OKである場合には、移動経路生成部106により、溶接トーチの位置と角度を決定する(ステップ108)。このステップでは、図11に示すようなトーチ位置・角度条件記憶部125に記憶された条件に基づいて、作業予定ルート31に沿って生成される円弧220で定義される2次元平面毎に溶接トーチの位置と角度を決定する。次に、移動経路生成部により溶接トーチの移動経路32を生成する(ステップ109)。このステップでは、ステップ108で生成したそれぞれの2次元平面において設定した溶接トーチの位置と角度となるように、溶接トーチの移動経路32を生成する。次に、生成した移動経路32に沿って溶接トーチを制御し溶接を実行する(ステップ110)。
図17-19は、図13に示すようなT型タイプ(第1の対象部材201の平面部に第2の対象部材202の端面が略垂直に突合せられている状態)の溶接において、ギャップ距離の計測(ステップ103)と移動経路32の生成(ステップ109)を実行する具体例を説明する。
 図17(a)は、T型タイプの溶接において、ステップ103のギャップ計測を行う際に、作業予定ルート31に沿って複数の円弧220を定義する例を示している。三次元CADデータ記憶部122などに記憶されている作業予定ルート31に沿って、Y軸方向に所定間隔で円弧220が定義される。各円弧220で定義される二次元平面毎に点群データが取得される。図17(b)は、上記した各円弧220で定義される二次元平面毎に取得した点群データの一例を示す図である。仮付溶接領域30以外の平面においては、第1と第2の対象部材の表面形状に沿って、L字型の点群データが取得される。
図18(a)は、T型の形状タイプの対象部材201と202を測定する際の円弧220で定義された二次元平面における各部材の位置関係を示す。図18(b)は円弧220で定義された二次元平面における点群データの一例を示す。ギャップ・段差計測部103は、図18(b)に示すような二次元の点群データに基づいて、対象部材201の最下部(端部)を示す点群と、対象部材202の表面形状を示す点群との距離を算出することにより、対象部材201と202のギャップ距離を取得する。図18に示すT型(溶接対象部材が互いに略直交する形状)におけるギャップ距離は、一例として、図18(b)に示すように、断面平面上の点群データ(二次元)における第1の対象部材201の点群と第2の対象部材202の点群のペアであって、点群間の直線距離が最短となる点群のペアの間の距離で定義することができる。ただし、直線距離が最短となる点群間の距離である必要は必ずしもなく、第1の対象部材201の点群と第2の対象部材202の点群のペアであって互いに近接する点群間の距離として定義しても良い。
 また、図19(a)と図19(b)は、第1の対象部材201と第2の対象部材202の相対位置関係が互いに略直交する状態から左右にそれぞれ傾いた状態におけるギャップ距離の計測方法を示す図である。図19(a)は、作業用ロボット2から離れる方向に対象部材201が傾いた状態を示している。この状態では、第2の対象部材202の上面に垂直な方向において、第1の対象部材201の作業用ロボット側のエッジ位置と第2の対象部材202の上面との距離をギャップ距離として計測する。一方、図19(b)は、計測用ロボットに近づく方向に第1の対象部材201が傾いた状態を示している。この状態では、第2の対象部材202の上面に垂直な方向において、第1の対象部材201の作業用ロボット2側のエッジ位置と第2の対象部材202の上面との距離をギャップ距離として計測する。
移動経路32の生成(ステップ109)では、円弧220で規定される平面位置において、ステップ108で決定した溶接トーチの位置となるように溶接トーチの移動経路32が生成される。ここで、図17(b)に示すように、仮付溶接領域30を含む平面位置においては、第1と第2の対象部材の表面形状を計測できないため、正確にギャップ距離を取得することができず、溶接トーチの位置を適切に判断することができない。そのため、移動経路32の生成(ステップ109)では、移動経路32の生成に用いる情報から、仮付溶接領域30を含むデータを除外する。具体的には、図17(b)に示す仮付溶接領域30を含む平面位置で取得された点群データ、及びこれに基づいて計測されたギャップ距離、及びこれに基づいて決定された溶接トーチの位置、を除外して、仮付溶接領域30を含まない平面位置で取得された点群データ及びこれに基づいて生成されるギャップ距離、溶接トーチの位置の情報に基づいて、溶接トーチの移動経路32を生成する。例えば、仮付溶接領域30のY軸方向の両側に隣接する仮付溶接領域30を含まない平面における溶接トーチの位置を直線で結んだ経路を、仮付溶接領域30における溶接トーチの移動経路32とすることができる。
 図20-25は、第1の対象部材201と第2の対象部材202の板材の端面同士を突き合わせた状態の溶接を行う場合における、ギャップ距離の計測(ステップ103)と、移動経路32の生成(ステップ109)を実行する具体例を説明する。
 図20は、第1および第2の対象部材201、202の第1の端面201aおよび第2の端面202aを含む突合せ部203のギャップ距離(隙間)や段差を計測する際の前処理の一例を示している。図20に示すように、第1の端面201aと第2の端面202aとの間にはギャップ距離nのギャップGが存在し、複数の仮付溶接領域30が存在する。このような場合に、まず、第1の対象部材201の第1の端面201aの任意の位置にP1を指定し、ギャップGを挟んで第2の対象部材202の第2の端面202aの任意の位置にP2を指定する。また、P1を挟むように第1の端面201aのX軸方向のプラス側とマイナス側のそれぞれにP3とP4を指定する。ここで、P1,2,3,4の指定は、端末1やコントローラ3を介してユーザに入力させても、溶接システム100が自動的に指定しても良い。
 次に、図21に示すように、指定したP1、P2を基準にしてX軸方向のプラス側とマイナス側にX軸方向に沿って操作球230、240を走査していくことにより点群サーチし、第1および第2の対象部材201、202それぞれの終端を検出する。ここでは、P1から一つ一つの操作球(SearchRadius)230の半径がSearchRadiusV、操作球230の配置間隔がPitchVとなるように、同様に、P2から一つ一つの操作球240の半径がSearchRadiusV、操作球(SearchRadius)240の配置間隔がPitchVで、それぞれX軸方向のプラス側とマイナス側に走査し、断面平面上の点群データ(二次元)が取得できなくなるところをそれぞれ、第1の終端203a、204a、第2の終端203b、204bとする。
 次に、図22に示すように、ギャップ計測部103は、操作球230と操作球240のギャップGを挟んで対応する球同士を直線でつなぎ、作業予定ルート31の断面となる複数の基準線250を作成する。この際、各操作球(SearchRadius)230、240の中の点群に対して最短距離となるように、すなわち、SearchRadius内の点群同士が最短距離となるように、各球230、240のペアをつなぎ、第1の対象部材201の第1の端面201aと、第2の対象部材202の第2の端面202aとの間の最短距離をギャップ距離nとして取得する。
 図23は、図22の部分拡大図である。ここでは、図22で作成した基準線250をさらに分割する。図23に示すように、図22で作成した基準線250(位置P1とP2との間の線分)に沿って円領域を一つ一つの操作球260の半径がSearchRadiusU、操作球260の配置間隔がPitchVでY軸方向のプラス側とマイナス側に走査し、基準線250ごとに中点をサーチする。
 図24は、図23の操作球260の点の重心位置を用いて段差検出する様子を示している。図24に示すように、第1の対象部材201と第2の対象部材202の各上面の間に段差がある場合には、例えば、図24において、操作球260を走査して点群270が取得できなくなった端面201a、202aの各端点201b、202bを結んだ線分280の中点Cを算出する。ここでは、操作球260の点の重心位置の変化量が大きいため、Z軸方向の高さの差を段差として検出する。
 次に、溶接トーチ位置・角度決定部104により溶接トーチ23による溶接位置と溶接トーチの角度の決定を行う(ステップ104)。このステップにおいて、溶接トーチ位置・角度決定部104は、トーチ位置・角度条件記憶部124に記憶されている、ギャップ距離と形状タイプに対応するトーチ位置と角度の情報、溶接適否の情報に基づいて、溶接トーチ23の位置と溶接トーチ23の角度を決定すると共に、溶接適否を決定して、溶接適否の決定結果をユーザに通知する。
 例えば、溶接トーチ位置・角度条件記憶部124は、例えば、図15に示すように、ギャップ距離nが第1しきい値(Th1)よりも小さい場合には、溶接トーチ23の位置と溶接トーチ23の角度はそれぞれ所定位置と所定角度(θ1)から変更せず、ギャップ距離nが第1しきい値(Th1)よりも大きく、第2しきい値(Th2)よりも小さい場合には、溶接トーチ23の位置を所定位置からY軸方向のプラス側にシフトさせる(トーチ角度は所定角度から変更しない)、またギャップ距離nが第2しきい値(Th2)よりも大きい場合は、溶接不可と判断して、入出力部14を介して、溶接すべきでない旨のエラー通知を行うと共に、溶接動作の実行を禁止する。
 また、溶接トーチ位置・角度条件記憶部124は、図15に示す通り、第1の対象部材201と第2の対象部材202の上面に段差(Z軸方向にずれがある)がある場合には、溶接トーチ位置・角度決定部104は、第1の端面201aと第2の端面202aとを結ぶことにより形成されたギャップ面GSと、第1および第2の対象部材201、202が載置された面(図24ではY軸方向)に対する傾き(θ2)に関する情報と、トーチ位置・角度条件記憶部124の情報に応じて、ギャップ計測位置における溶接トーチ23のギャップ面GSに対する位置と角度を決定する。例えば、傾き(θ2)が第3しきい値(Th3)よりも小さい場合には、溶接トーチ23の位置と溶接トーチ23の角度はそれぞれ所定位置と所定角度(θ3)から変更せず、傾き(θ2)が第3しきい値(Th3)よりも大きく、第4しきい値(Th4)よりも小さい場合には、溶接トーチ23の角度を所定角度よりも大きくし、また、傾き(θ2)が第4しきい値(Th4)よりも大きい場合は、段差が大きすぎるため溶接不可と判断して、入出力部14を介して、溶接すべきでない旨のエラー通知を行うと共に、溶接動作の実行を禁止する。その際、溶接トーチ23のギャップ面GSに対する角度を、ギャップ面GSに対して垂直となる向きに調整することが、溶接品質の向上のために好ましい。
 次に、図25に示すように、移動経路生成部106により生成した中点を繋いで溶接パス200aを生成する(ステップ109)。このステップにおいて、移動経路生成部106は、略X軸方向に沿うように設定され、溶接トーチ23の位置と溶接トーチ23の角度に基づいて、溶接トーチ23の移動ルートと角度で定義される移動経路32を生成する。ここで、移動経路32は溶接トーチ23の位置のみで定義される移動ルートで定義することも可能である。
ここで、移動経路32の生成(ステップ109)では、基準線250お各位置において、ステップ108で決定した溶接トーチの位置となるように溶接トーチの移動経路32が生成される。ここで、図25に示すように、仮付溶接領域30を含む平面位置においては、第1と第2の対象部材の表面形状を計測できないため、正確にギャップ距離や傾き(θ2)を取得することができず、溶接トーチの位置を適切に判断することができない。そのため、移動経路32の生成(ステップ109)では、移動経路32の生成に用いる情報から、仮付溶接領域30を含むデータを除外する。具体的には、図25に示す仮付溶接領域30を通過する基準線250で取得されたギャップ距離、傾き(θ2)、及びこれに基づいて決定された溶接トーチの位置、を除外して、仮付溶接領域30を通過しない基準線で取得された点群データ及びこれに基づいて生成されるギャップ距離、溶接トーチの位置の情報に基づいて、溶接トーチの移動経路32を生成する。例えば、図25におけるX軸方向の仮付溶接領域30の両側に隣接する仮付溶接領域30を含まない基準線において決定された溶接トーチの位置(ギャップ中点)を直線で結んだ経路を、仮付溶接領域30における溶接トーチの移動経路32とすることができる。
 図20-25で説明したように、ギャップの中央に移動経路32を設定することで、ギャップが平面上になくても移動経路32の生成が可能となる。また、ギャップの中央で溶接することで、投入資源、エネルギー最小で溶接が可能となる。さらに、抽出したギャップ量に応じて溶接条件を変更することが容易となる。これにより、溶接する対象部材の突合せ部に隙間や段差があり、隙間や段差の幅は一定ではない場合であっても、作業精度よく溶接が可能となり、溶接の品質を向上させることができる。
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。
 例えば、図1では、本実施形態の溶接システム100の一例として作業用ロボット2がセンサ22と溶接トーチ23の両方を備えた構成であったが、センサを備えた計測用ロボットと、溶接トーチを備えた溶接用ロボットとを備えた構成としてもよい。
 図26は、本発明の他の実施形態に係る溶接システム1000の全体構成例を示す図である。図26に示す溶接システム1000では、端末1と、計測用ロボット2000、溶接用ロボット3000、コントローラ3とを有している。計測用ロボット2000は、少なくともアーム2100、アーム2100の先端に搭載されたセンサ2200を有している。溶接用ロボット3000は、少なくともアーム3100、アーム3100の先端に搭載された溶接トーチ3200を有している。端末1とコントローラ3は、計測用ロボット2000と溶接用ロボット3000に対してそれぞれ有線または無線にて互いに通信可能に接続されている。
 本実施形態では、計測用ロボット2000のアーム2100に設けられたセンサ2200により、図2に示す2つの対象部材201、202の突合せ部203付近の表面および端面の形状の点群データが取得され、その点群データから突合せ部203の隙間や段差に応じて移動経路32が生成される。そして、溶接用ロボット3000は、生成された移動経路32に応じてアーム3100の動作を制御して、略X軸方向に沿うように溶接動作を実行する。
 上述した実施形態では、ロボットアームを用いて溶接を行う溶接システムに本発明を適用する実施例を説明したが、本発明は溶接の用途に限らず、シーリング作業や接着作業などの二つの部材の突合せ部分に対して接着等の作業を行う溶接システムにおいても本発明を適用することは可能である。その場合には、溶接トーチは、シーリング剤又は接着剤を吐出する吐出部に置き換えることが可能である。
 最後に、本発明の実施の形態を図面及び対応する記載等を用いて以下に総括する。
(請求項1)
 第1の対象部材(201)と第2の対象部材(202)の突合せ部(203)を溶接トーチ(23)により溶接する作業を実行する溶接システム(100、1000)であって、
 前記突合せ部(203)を含む領域の形状データを取得する形状データ取得部(102)と、
 前記突合せ部(203)を仮付溶接した仮付溶接領域(30)を前記形状データに基づき検出する仮付溶接検出部(104)と、
 前記仮付溶接領域(30)に対応する前記形状データを用いず、前記仮付溶接領域(30)の外側領域に対応する前記形状データを用いて、前記溶接トーチ(23)の移動経路(32)を生成する移動経路生成部(106)と、を備える、溶接システム(100)。
(請求項2)
 請求項1に記載の溶接システム(100、1000)において、
 前記形状データ取得部(102)は、前記突合せ部(203)分を含む領域の三次元点群データを計測し、
 前記仮付溶接検出部(104)は、前記三次元点群データに基づいて、第1の対象部材(201)又は第2の対象部材(202)の厚み方向に盛り上がった領域を前記仮付溶接領域(30)と判定する、溶接システム(100)。
(請求項3)
 請求項1又は請求項2のいずれかに記載の溶接システム(100、1000)において、
前記仮付溶接領域(30)の外側領域における前記第1の対象部材(201)と前記第2の対象部材(202)の間のギャップ距離(n)を計測するギャップ計測部(103)を備え、
 前記移動経路生成部(106)は、前記ギャップ計測部(103)で計測したギャップ距離(n)に基づいて前記溶接トーチ(23)の移動経路(32)を生成する、溶接システム(100)。
(請求項4)
 請求項1ないし請求項3のいずれかに記載の溶接システム(100、1000)において、
 前記仮付溶接検出部(104)で検出した前記仮付溶接領域(30)に関する情報に基づいて、溶接可否を判定する溶接可否判定部(105)を備える、溶接システム(100)。
(請求項5)
 請求項1ないし請求項4のいずれかに記載の溶接システム(100、1000)において、
 前記溶接可否判定部(105)により溶接不可と判定された場合に、前記溶接トーチ(23)の移動経路(32)の生成又は出力を禁止する、あるいは溶接不可であることをユーザに通知する、溶接システム(100)。
(請求項6)
 請求項1ないし請求項5のいずれかに記載の溶接システム(100、1000)において、
 前記溶接可否判定部(105)は、前記仮付溶接領域(30)の位置が、予め設定された許容位置の範囲内に収まっている場合に溶接可と判定し、前記許容位置の範囲に収まっていない場合に溶接不可と判定する、溶接システム(100)。
(請求項7)
 請求項1ないし請求項6のいずれかに記載の溶接システム(100、1000)において、
 前記溶接可否判定部(105)は、前記仮付溶接領域(30)の長さ、面積、体積の少なくともいずれかが予め設定された許容範囲内に収まっているか否かを判定し、前記許容範囲に収まっている場合に溶接可と判定し、前記許容範囲に収まっていない場合に溶接不可と判定する、溶接システム(100)。
(請求項8)
 請求項1ないし請求項7のいずれかに記載の溶接システム(100、1000)において、
 前記突合せ部(203)に複数の前記仮付溶接領域(30)が存在する場合に、
 前記溶接可否判定部(105)は、任意の前記仮付溶接領域(30)と隣接する他の前記仮付溶接領域(30)の間の隣接距離が、予め設定された許容範囲内に収まっているか否かを判定し、前記許容範囲に収まっている場合に溶接可と判定し、前記許容範囲に収まっていない場合に溶接不可と判定する、溶接システム(100)。
(請求項9)
 第1の対象部材(201)と第2の対象部材(202)の突合せ部(203)を溶接トーチ(23)により溶接する作業を実行する溶接システム(100、1000)であって、
 前記突合せ部(203)を含む領域の形状データを取得する形状データ取得部(102)と、
 前記突合せ部(203)を仮付溶接した仮付溶接領域(30)を前記形状データに基づき検出する仮付溶接検出部(104)と、
 前記仮付溶接検出部(104)で検出した前記仮付溶接領域(30)に関する情報に基づいて、溶接可否を判定する溶接可否判定部(105)を備える、溶接システム(1000)。
(請求項10)
 請求項9に記載の溶接システム(100、1000)において、
 前記溶接可否判定部(105)により溶接不可と判定された場合に、前記溶接トーチ(23)の移動経路(32)の生成又は出力を禁止する、あるいは溶接不可であることをユーザに通知する、溶接システム(1000)。
(請求項11)
 請求項9又は請求項10のいずれかに記載の溶接システム(100、1000)において、
 前記溶接可否判定部(105)は、前記仮付溶接領域(30)の位置が、予め設定された許容位置の範囲内に収まっている場合に溶接可と判定し、前記許容位置の範囲に収まっていない場合に溶接不可と判定する、溶接システム(1000)。
(請求項12)
 請求項9ないし請求項11のいずれかに記載の溶接システム(100、1000)において、
 前記溶接可否判定部(105)は、前記仮付溶接領域(30)の長さ、面積、体積の少なくともいずれかが予め設定された許容範囲内に収まっているか否かを判定し、前記許容範囲に収まっている場合に溶接可と判定し、前記許容範囲に収まっていない場合に溶接不可と判定する、溶接システム(1000)。
(請求項13)
 請求項9ないし請求項12のいずれかに記載の溶接システム(100、1000)において、
 前記突合せ部(203)に複数の前記仮付溶接領域(30)が存在する場合に、
 前記溶接可否判定部(105)は、任意の前記仮付溶接領域(30)と隣接する他の前記仮付溶接領域(30)の間の隣接距離が、予め設定された許容範囲内に収まっているか否かを判定し、前記許容範囲に収まっている場合に溶接可と判定し、前記許容範囲に収まっていない場合に溶接不可と判定する、溶接システム(1000)。
(請求項14)
 第1の対象部材(201)と第2の対象部材(202)の突合せ部(203)を溶接トーチ(23)により溶接する作業を実行する溶接システム(100、1000)を用いた溶接方法であって、
 前記突合せ部(203)を含む領域の形状データを取得し、
 前記突合せ部(203)を仮付溶接した仮付溶接領域(30)を前記形状データに基づき検出し、
 前記仮付溶接領域(30)に対応する前記形状データを用いず、前記仮付溶接領域(30)の外側領域に対応する前記形状データを用いて、前記溶接トーチ(23)の移動経路(32)を生成する、溶接方法。
(請求項15)
 第1の対象部材(201)と第2の対象部材(202)の突合せ部(203)を溶接トーチ(23)により溶接する作業を実行する溶接システム(100、1000)を用いた溶接方法であって、
 前記突合せ部(203)を含む領域の形状データを取得し、
 前記突合せ部(203)を仮付溶接した仮付溶接領域(30)を前記形状データに基づき検出し、
 前記仮付溶接検出部(104)で検出した前記仮付溶接領域(30)に関する情報に基づいて、溶接可否を判定する、溶接方法。
  1   端末
  2   作業用ロボット
  3   コントローラ
  10  プロセッサ
  11  メモリ
  12  ストレージ
  13  送受信部
  14  入出力部
  15  バス
  21  アーム
  22  センサ
  23  溶接トーチ
  30  仮付溶接領域
  31  作業予定ルート
  32  移動経路
  100、1000 溶接システム
  101 条件設定部
  102 形状データ取得部
  103 ギャップ・段差計測部
  104 仮付溶接検出部
  105 溶接可否判定部
  106 移動経路生成部
  107 溶接実行部
  121 条件記憶部
  122 三次元CADデータ記憶部
  123 計測形状データ記憶部
  124 溶接可否判定基準記憶部
  125 トーチ位置・角度条件記憶部
  201 第1の対象部材
  201a 第1の端面
  201b 第1の端点
  202 第2の対象部材
  202a 第2の端面
  202b 第2の端点
  203 突合せ部
  203a、204a 第1の終端
  203b、204b 第2の終端
  220 円弧
  230、240、260 操作球
  250 基準線
  270 点群
  280 線分
  2000 計測用ロボット
  3000 溶接用ロボット
  G   ギャップ
  GS  ギャップ面
  n   ギャップ距離
  C   中点

 

Claims (15)

  1.  第1の対象部材と第2の対象部材の突合せ部を溶接トーチにより溶接する作業を実行する溶接システムであって、
     前記突合せ部を含む領域の形状データを取得する形状データ取得部と、
     前記突合せ部を仮付溶接した仮付溶接領域を前記形状データに基づき検出する仮付溶接検出部と、
     前記仮付溶接領域に対応する前記形状データを用いず、前記仮付溶接領域の外側領域に対応する前記形状データを用いて、前記溶接トーチの移動経路を生成する移動経路生成部と、を備える、溶接システム。
  2.  請求項1に記載の溶接システムにおいて、
     前記形状データ取得部は、前記突合せ部分を含む領域の三次元点群データを計測し、
     前記仮付溶接検出部は、前記三次元点群データに基づいて、第1の対象部材又は第2の対象部材の厚み方向に盛り上がった領域を前記仮付溶接領域と判定する、溶接システム。
  3.  請求項1又は2に記載の溶接システムにおいて、
    前記仮付溶接領域の外側領域における前記第1の対象部材と前記第2の対象部材の間のギャップ距離を計測するギャップ計測部を備え、
     前記移動経路生成部は、前記ギャップ計測部で計測したギャップ距離に基づいて前記溶接トーチの移動経路を生成する、溶接システム。
  4.  請求項1に記載の溶接システムにおいて、
     前記仮付溶接検出部で検出した前記仮付溶接領域に関する情報に基づいて、溶接可否を判定する溶接可否判定部を備える、溶接システム。
  5.  請求項4に記載の溶接システムにおいて、
     前記溶接可否判定部により溶接不可と判定された場合に、前記溶接トーチの移動経路の生成又は出力を禁止する、あるいは溶接不可であることをユーザに通知する、溶接システム。
  6.  請求項4に記載の溶接システムにおいて、
     前記溶接可否判定部は、前記仮付溶接領域の位置が、予め設定された許容位置の範囲内に収まっている場合に溶接可と判定し、前記許容位置の範囲に収まっていない場合に溶接不可と判定する、溶接システム。
  7.  請求項4に記載の溶接システムにおいて、
     前記溶接可否判定部は、前記仮付溶接領域の長さ、面積、体積の少なくともいずれかが予め設定された許容範囲内に収まっているか否かを判定し、前記許容範囲に収まっている場合に溶接可と判定し、前記許容範囲に収まっていない場合に溶接不可と判定する、溶接システム。
  8.  請求項4に記載の溶接システムにおいて、
     前記突合せ部に複数の前記仮付溶接領域が存在する場合に、
     前記溶接可否判定部は、任意の前記仮付溶接領域と隣接する他の前記仮付溶接領域の間の隣接距離が、予め設定された許容範囲内に収まっているか否かを判定し、前記許容範囲に収まっている場合に溶接可と判定し、前記許容範囲に収まっていない場合に溶接不可と判定する、溶接システム。
  9.  第1の対象部材と第2の対象部材の突合せ部を溶接トーチにより溶接する作業を実行する溶接システムであって、
     前記突合せ部を含む領域の形状データを取得する形状データ取得部と、
     前記突合せ部を仮付溶接した仮付溶接領域を前記形状データに基づき検出する仮付溶接検出部と、
     前記仮付溶接検出部で検出した前記仮付溶接領域に関する情報に基づいて、溶接可否を判定する溶接可否判定部を備える、溶接システム。
  10.  請求項9に記載の溶接システムにおいて、
     前記溶接可否判定部により溶接不可と判定された場合に、前記溶接トーチの移動経路の生成又は出力を禁止する、あるいは溶接不可であることをユーザに通知する、溶接システム。
  11.  請求項9に記載の溶接システムにおいて、
     前記溶接可否判定部は、前記仮付溶接領域の位置が、予め設定された許容位置の範囲内に収まっている場合に溶接可と判定し、前記許容位置の範囲に収まっていない場合に溶接不可と判定する、溶接システム。
  12.  請求項9に記載の溶接システムにおいて、
     前記溶接可否判定部は、前記仮付溶接領域の長さ、面積、体積の少なくともいずれかが予め設定された許容範囲内に収まっているか否かを判定し、前記許容範囲に収まっている場合に溶接可と判定し、前記許容範囲に収まっていない場合に溶接不可と判定する、溶接システム。
  13.  請求項9に記載の溶接システムにおいて、
     前記突合せ部に複数の前記仮付溶接領域が存在する場合に、
     前記溶接可否判定部は、任意の前記仮付溶接領域と隣接する他の前記仮付溶接領域の間の隣接距離が、予め設定された許容範囲内に収まっているか否かを判定し、前記許容範囲に収まっている場合に溶接可と判定し、前記許容範囲に収まっていない場合に溶接不可と判定する、溶接システム。
  14.  第1の対象部材と第2の対象部材の突合せ部を溶接トーチにより溶接する作業を実行する溶接システムを用いた溶接方法であって、
     前記突合せ部を含む領域の形状データを取得し、
     前記突合せ部を仮付溶接した仮付溶接領域を前記形状データに基づき検出し、
     前記仮付溶接領域に対応する前記形状データを用いず、前記仮付溶接領域の外側領域に対応する前記形状データを用いて、前記溶接トーチの移動経路を生成する、溶接方法。
  15.  第1の対象部材と第2の対象部材の突合せ部を溶接トーチにより溶接する作業を実行する溶接システムを用いた溶接方法であって、
     前記突合せ部を含む領域の形状データを取得し、
     前記突合せ部を仮付溶接した仮付溶接領域を前記形状データに基づき検出し、
     前記仮付溶接検出部で検出した前記仮付溶接領域に関する情報に基づいて、溶接可否を判定する、溶接方法。
     
PCT/JP2023/020071 2022-06-01 2023-05-30 溶接システムおよび溶接方法 WO2023234291A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022089554A JP2023176950A (ja) 2022-06-01 2022-06-01 溶接システムおよび溶接方法
JP2022-089554 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023234291A1 true WO2023234291A1 (ja) 2023-12-07

Family

ID=89024810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020071 WO2023234291A1 (ja) 2022-06-01 2023-05-30 溶接システムおよび溶接方法

Country Status (2)

Country Link
JP (1) JP2023176950A (ja)
WO (1) WO2023234291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117583771A (zh) * 2024-01-19 2024-02-23 广州森弘信息科技有限公司 基于定向基准的焊接方法、***及多轴焊接机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277045A (ja) * 1996-04-12 1997-10-28 Fanuc Ltd 多層盛り溶接における制御方法
JPH1034334A (ja) * 1996-07-19 1998-02-10 Fanuc Ltd 溶接ロボット制御システム
JP2003126962A (ja) * 2001-10-24 2003-05-08 Kobe Steel Ltd 溶接ロボットの制御装置
JP2021062442A (ja) * 2019-10-11 2021-04-22 パナソニックIpマネジメント株式会社 リペア溶接装置およびリペア溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277045A (ja) * 1996-04-12 1997-10-28 Fanuc Ltd 多層盛り溶接における制御方法
JPH1034334A (ja) * 1996-07-19 1998-02-10 Fanuc Ltd 溶接ロボット制御システム
JP2003126962A (ja) * 2001-10-24 2003-05-08 Kobe Steel Ltd 溶接ロボットの制御装置
JP2021062442A (ja) * 2019-10-11 2021-04-22 パナソニックIpマネジメント株式会社 リペア溶接装置およびリペア溶接方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117583771A (zh) * 2024-01-19 2024-02-23 广州森弘信息科技有限公司 基于定向基准的焊接方法、***及多轴焊接机器人
CN117583771B (zh) * 2024-01-19 2024-03-15 广州森弘信息科技有限公司 基于定向基准的焊接方法、***及多轴焊接机器人

Also Published As

Publication number Publication date
JP2023176950A (ja) 2023-12-13

Similar Documents

Publication Publication Date Title
CN110153534B (zh) 适应焊接变形的多层多道机器人焊接路径规划方法及***
WO2023140366A1 (ja) 作業システム、作業方法
WO2023234291A1 (ja) 溶接システムおよび溶接方法
CN111014879B (zh) 一种基于激光焊缝跟踪的机器人波纹板自动焊接方法
CN109475958B (zh) 用于建立焊接过程的焊接参数的方法
WO2023234289A1 (ja) 溶接システムおよび溶接方法
US10704897B2 (en) Method for detecting shape of butt joint of welded steel pipe, and quality control method and apparatus for welded steel pipes using the shape detecting method
CN106994545B (zh) 设定辅助装置以及设定辅助方法
CN103358308A (zh) 机器人焊枪取向规范化
US8716627B2 (en) Welding systems and methods
EP3370035B1 (en) Gap measurement device and gap measurement method
WO2020251038A1 (ja) リペア溶接制御装置およびリペア溶接制御方法
CN105537820A (zh) 焊接***以及焊接方法
JP5636148B2 (ja) 自動溶接機の位置検出システム
JP2007307612A (ja) 自動溶接方法及び自動溶接装置並びに自動溶接に用いる基準治具
JP2006187794A (ja) シームトラッキング溶接装置
WO2023234290A1 (ja) 作業経路生成システムおよび作業経路生成方法
Li et al. Multi-parameter sensing of robotic friction stir welding based on laser circular scanning
JPH09164483A (ja) 溶接経路の自動決定システム
JP2023172561A (ja) 作業システム、作業方法
CN109304543B (zh) 基于双侧基准的双光束激光焊接控制方法
JP5818009B2 (ja) 溶接部硬度評価方法
JP2016150349A (ja) 溶接システム
CN113567349B (zh) 一种焊缝界面结构的激光超声确定方法及其应用
JP2020046302A (ja) 接合部材の接合部の形状検出方法及びそれを用いた接合部材の品質管理方法並びにその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816048

Country of ref document: EP

Kind code of ref document: A1