WO2023234162A1 - 中空粒子含有エラストマー組成物及びその製造方法 - Google Patents

中空粒子含有エラストマー組成物及びその製造方法 Download PDF

Info

Publication number
WO2023234162A1
WO2023234162A1 PCT/JP2023/019464 JP2023019464W WO2023234162A1 WO 2023234162 A1 WO2023234162 A1 WO 2023234162A1 JP 2023019464 W JP2023019464 W JP 2023019464W WO 2023234162 A1 WO2023234162 A1 WO 2023234162A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
hollow particles
hollow
elastomer composition
parts
Prior art date
Application number
PCT/JP2023/019464
Other languages
English (en)
French (fr)
Inventor
真司 渡邉
有信 堅田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2023234162A1 publication Critical patent/WO2023234162A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present disclosure relates to an elastomer composition containing hollow particles and a method for producing the same.
  • Elastomer products focus on the rubber-like elasticity or flexibility of elastomer materials such as rubber, and are used in a wide range of fields for various applications such as shock absorbers, fluid barrier packings, and tubes.
  • an elastomer composition prepared by mixing a base elastomer with necessary components depending on the application is kneaded in a molten state, and the base elastomer is crosslinked while being molded by extrusion molding, compression molding, or other methods.
  • Elastomer products in various forms such as parts, coatings, and filling chips can be obtained.
  • Patent Document 1 aims to provide a rubber composition for vulcanization molding that has excellent dimensional stability, good surface properties, and can effectively produce lightweight rubber products.
  • a base rubber having a specific Mooney viscosity at 100° C. is composed of an outer shell made of a thermoplastic resin and a blowing agent that is encapsulated in the outer shell and vaporizes when heated.
  • Patent Document 1 In the method of producing a foamed elastomer molded article by mixing a foaming agent into the base elastomer, it is difficult to control the size of the pores formed by foaming, so the dimensional stability of the resulting elastomer product is poor.
  • One of the technical challenges of the method of Patent Document 1 is to obtain a foamed elastomer molded article with excellent dimensional stability, but further improvement in dimensional stability is required.
  • a molding material containing hollow particles in a base resin as a method of introducing a large number of microscopic pores into a molded object to impart properties or functions such as weight reduction, insulation, and opacity.
  • Patent Documents 2 and 3 In a molding material containing hollow particles in a base resin, the cavities of the hollow particles contained in the molding material become pores, so there is no need to control the size of the pores formed by foaming.
  • a molding material containing hollow particles in a base elastomer is required to have hollow particles that are not easily crushed during molding, maintain high dimensional stability, and that the properties or functions provided by the hollow particles are not easily impaired. Furthermore, in order to produce a molding material containing hollow particles in a base elastomer, it is required that the hollow particles are not easily crushed when kneading a raw material mixture containing the base elastomer and hollow particles. In particular, when mixing hollow particles into a base elastomer, kneading with a strong shear force such as roll kneading is performed as final kneading, compared to when hollow particles are mixed into a base resin other than an elastomer. This generates high shear force, which tends to crush hollow particles during kneading.
  • the present disclosure has been achieved in view of the above problems, and provides a hollow particle-containing elastomer in which the hollow particles are not easily crushed during the molding process, maintain high dimensional stability, and whose properties or functions imparted by the hollow particles are not easily impaired.
  • the purpose is to provide a composition.
  • the present disclosure provides that the hollow particles are not easily crushed in the process of kneading the raw material mixture containing the base elastomer and the hollow particles, the percentage of voids remaining after kneading is stable, and the characteristics or functions imparted by the hollow particles are
  • An object of the present invention is to provide a method for producing an elastomer composition containing hollow particles that is not damaged by the process.
  • the present disclosure includes at least a base elastomer and hollow particles,
  • the hollow particles include a shell containing a resin and a hollow portion surrounded by the shell, and the shell contains 50 parts by mass or more of crosslinkable monomer units in 100 parts by mass of the total monomer units as the resin.
  • a sheet-like hollow particle-containing elastomer molded body is produced by press-molding the hollow particle-containing elastomer composition using a hot press at 120° C. at a pressure of 1 MPa or less.
  • the specific gravity of the obtained elastomer molded body is measured, and the percentage of voids remaining in the hollow particles in the elastomer molded body is calculated according to the following formula (D).
  • the present disclosure also provides a method for producing a hollow particle-containing elastomer composition
  • a method for producing a hollow particle-containing elastomer composition comprising at least a base elastomer and hollow particles, At least a base elastomer, a shell containing a resin, and a hollow portion surrounded by the shell, the shell containing at least 50 parts by mass of crosslinkable monomer units in 100 parts by mass of the total monomer units as the resin.
  • the raw material mixture is pre-kneaded using a closed kneader at a temperature such that the storage elastic modulus G' obtained by dynamic viscoelasticity measurement performed after the homogenization treatment is 2.5 MPa or less, Immediately after pre-kneading the raw material mixture, or after preheating at a temperature at which the storage elastic modulus G' obtained by dynamic viscoelasticity measurement performed after the homogenization treatment is 2.5 MPa or less, the homogenization treatment is performed.
  • a method for producing an elastomer composition containing hollow particles which is kneaded at a temperature such that the storage modulus G' obtained by dynamic viscoelasticity measurement after treatment is 2.5 MPa or less.
  • the hollow particle-containing elastomer composition of the present disclosure has increased strength due to the shell made of a resin containing a polymer with a high content of crosslinkable monomer units, and the hollow particles do not lose strength even in high-temperature environments thanks to the crosslinked structure. Because it contains particles, the hollow particles are less likely to be crushed during the molding process, maintain high dimensional stability, and the properties or functions provided by the hollow particles are less likely to be impaired. Therefore, according to the hollow particle-containing elastomer composition of the present disclosure, a hollow particle-containing molded article having high dimensional stability and excellent properties or functions can be obtained.
  • the method for producing the hollow particle-containing elastomer composition of the present disclosure has enhanced strength due to the shell made of a resin containing a polymer with a high content of crosslinkable monomer units, and can also be used in high-temperature environments thanks to the crosslinked structure. Hollow particles that do not reduce strength are used, and the storage modulus G' at 60°C of the raw material mixture containing the base elastomer and the hollow particles is 2.5 MPa or less, and the storage modulus G' of the raw material mixture is 2.5 MPa.
  • the hollow particles When molding an elastomer composition containing hollow particles, the hollow particles may be crushed by pressure and heating during molding. Further, when kneading a raw material mixture containing a base elastomer and hollow particles in order to produce a hollow particle-containing elastomer composition, the hollow particles may be crushed.
  • a higher shear force is generated than when hollow particles are mixed into a base resin other than an elastomer, so the hollow particles are likely to be crushed during kneading.
  • the hollow particles when hollow particles with a large porosity are used, the hollow particles generally have a thin shell thickness or a large particle size, so they are more likely to be crushed.
  • the researchers of the present disclosure have investigated the storage elasticity at 60°C of an elastomer composition in which hollow particles having a shell made of a resin containing a polymer containing a certain amount or more of crosslinkable monomer units are blended into a base elastomer.
  • the ratio G' is 2.5 MPa or less, the hollow particles are difficult to collapse when molded using the elastomer composition, so the porosity of the hollow particles present inside the obtained elastomer molded body is maintained. It has been found that the properties or functions provided by the hollow particles are not likely to be lost.
  • the researchers of the present disclosure have homogenized a raw material mixture in which hollow particles having shells made of a resin containing a polymer containing a certain amount or more of crosslinkable monomer units are blended into a base elastomer. If the storage modulus G' at 60° C. measured later is 2.5 MPa or less, the porosity of the hollow particles present inside the elastomer composition obtained by kneading the raw material mixture cannot be maintained. It has been found that the properties or functions imparted by the hollow particles are unlikely to be lost. The present disclosure has been accomplished based on the above findings.
  • the hollow particle-containing elastomer composition of the present disclosure includes at least a base elastomer and hollow particles,
  • the hollow particles include a shell containing a resin and a hollow portion surrounded by the shell, and the shell contains 50 parts by mass or more of crosslinkable monomer units in 100 parts by mass of the total monomer units as the resin.
  • a sheet-like hollow particle-containing elastomer molded body is produced by press-molding the hollow particle-containing elastomer composition using a hot press at 120° C. at a pressure of 1 MPa or less.
  • the specific gravity of the obtained elastomer molded body is measured, and the percentage of voids remaining in the hollow particles in the elastomer molded body is calculated according to the following formula (D).
  • a method for producing an elastomer composition containing hollow particles of the present disclosure is a method for producing the elastomer composition containing hollow particles, comprising: At least a base elastomer, a shell containing a resin, and a hollow portion surrounded by the shell, the shell containing at least 50 parts by mass of crosslinkable monomer units in 100 parts by mass of the total monomer units as the resin. preparing a raw material mixture containing hollow particles containing a polymer containing a material having a storage modulus G' of 2.5 MPa or less at 60° C.
  • the raw material mixture is pre-kneaded using a closed kneader at a temperature such that the storage elastic modulus G' obtained by dynamic viscoelasticity measurement performed after the homogenization treatment is 2.5 MPa or less, Immediately after pre-kneading the raw material mixture, or after preheating at a temperature at which the storage elastic modulus G' obtained by dynamic viscoelasticity measurement performed after the homogenization treatment is 2.5 MPa or less, the homogenization process is performed. It is characterized by kneading at a temperature at which the storage elastic modulus G' obtained by dynamic viscoelasticity measurement performed after the treatment is 2.5 MPa or less.
  • in a numerical range means that the numerical values described before and after it are included as the lower limit and upper limit.
  • (meth)acrylate represents each of acrylate and methacrylate
  • (meth)acrylic represents each of acrylic and methacryl
  • (meth)acryloyl represents each of acryloyl and methacryloyl. .
  • a polymerizable monomer is a compound having a functional group capable of addition polymerization (in the present disclosure, it may be simply referred to as a polymerizable functional group).
  • a compound having an ethylenically unsaturated bond as a functional group capable of addition polymerization is generally used.
  • a polymerizable monomer having only one polymerizable functional group is referred to as a non-crosslinkable monomer, and a polymerizable monomer having two or more polymerizable functional groups is referred to as a crosslinkable monomer. to be called.
  • a crosslinking monomer is a polymerizable monomer that forms a crosslinking bond in a resin through a polymerization reaction.
  • the hollow particle-containing elastomer composition of the present disclosure is applicable to elastomer molded articles such as elastomer members, elastomer members integrally molded with parts of other materials, coatings, and filling chip materials by melt molding methods such as extrusion molding and compression molding. It is a molding material for manufacturing.
  • the hollow particle-containing elastomer composition of the present disclosure has various effects, such as weight reduction, heat insulation, low dielectric constant, light reflection/scattering, and retention of functional components such as antibacterial agents, by containing hollow particles. properties can be imparted to the elastomer molded body.
  • elastomer molded articles produced using the elastomer composition can be used, for example, as light reflecting materials, heat insulating materials, sound insulating materials, and low Materials such as dielectric materials, overcoat materials or undercoat materials that require heat insulation, cushioning properties, light reflection properties, antibacterial properties, etc., cushioning materials for footwear such as sports shoes and sandals, Examples include home appliance parts, bicycle parts, stationery, tools, hollow particle-containing filaments for 3D printers, and buoyancy materials made of syntactic foam.
  • the hollow particle-containing elastomer composition of the present disclosure does not contain a blowing agent to make the elastomer molded body porous, and uses hollow particles that have already been formed into a hollow shape. The resulting dimensional variation of the elastomer molded body does not occur.
  • the hollow particle-containing elastomer composition of the present disclosure has increased strength due to the shell made of a resin containing a polymer with a high content of cross-linkable monomer units, and the strength decreases even in high-temperature environments thanks to the cross-linked structure. Since the hollow particles contain hollow particles that are not easily crushed during the molding process, they maintain high dimensional stability, and the properties or functions provided by the hollow particles are unlikely to be impaired. Therefore, according to the hollow particle-containing elastomer composition of the present disclosure, a hollow particle-containing molded article having high dimensional stability and excellent properties or functions can be obtained.
  • the hollow particle-containing elastomer composition of the present disclosure is suitable for storage at 60° C. as determined by dynamic viscoelasticity measurement, from the viewpoint of reducing collapse of the hollow particles within the elastomer composition during kneading of the hollow particle-containing elastomer composition. It is characterized by an elastic modulus of 2.5 MPa or less, preferably 1.7 MPa or less. Further, the lower limit of the storage modulus G' is not particularly limited, but in order to maintain the hardness of the molded article obtained from the elastomer composition, it is preferably 0.5 MPa or more, and preferably 0.8 MPa or more. More preferred.
  • the storage modulus at 60° C. of the hollow particle-containing elastomer composition can be determined from the temperature dependence curve of the storage modulus obtained by dynamic viscoelasticity measurement of the hollow particle-containing elastomer composition.
  • general methods applied to the measurement of dynamic viscoelasticity of resins can be appropriately implemented, for example, by the following method.
  • Method of dynamic viscoelasticity measurement Dynamic viscoelasticity measurements are performed using a measuring device such as a model name HAAKE MARK III (manufactured by Thermo Fisher Scientific) or a rotating plate rheometer (model name ARES-G2, manufactured by TA Instruments) using a parallel plate. Alternatively, using a crosshatch plate, it is carried out under the following conditions.
  • the test piece can be produced, for example, by using the hollow particle-containing elastomer composition of the present disclosure to produce a sheet with a thickness of 2 mm using a press machine at 160°C, and punching the sheet into a shape of 20 mm ⁇ using a punching machine.
  • the storage elastic modulus G' obtained by dynamic viscoelasticity measurement at 60°C of a hollow particle-containing elastomer composition is determined by the amount of plasticizer added, the amount of hollow particles added, the particle diameter of the hollow particles, the surface composition of the hollow particles, and the hollow particles. It can be adjusted by changing one or more factors such as the type of organic or inorganic fine particles other than the particles (for example, carbon, silica, etc.) and the amount added. Among the above factors, in particular, the amount of plasticizer added and the amount of hollow particles added can be a major factor in the change in the storage modulus G'.
  • the storage elastic modulus G' of the hollow particle-containing elastomer composition can be reduced, and by decreasing the amount of plasticizer added, the storage elastic modulus G' of the hollow particle-containing elastomer composition can be reduced. ' can be made larger.
  • the amount of plasticizer added is usually 35 parts by mass per 100 parts by mass of the base elastomer in order to adjust the storage modulus G' obtained by dynamic viscoelasticity measurement of the hollow particle-containing elastomer composition to 2.5 MPa or less. The amount may be increased or decreased as appropriate within the range of 100 parts by mass, preferably 45 to 90 parts by mass.
  • the storage elastic modulus G' of the elastomer composition containing hollow particles can be increased, and by decreasing the amount of hollow particles added, the storage elastic modulus G' of the elastomer composition containing hollow particles can be increased.
  • the ratio G' can be made small.
  • the amount of hollow particles to be added is determined based on the storage modulus G' obtained by dynamic viscoelasticity measurement of the hollow particle-containing elastomer composition, while considering the balance with the contribution of the hollow particles to the objectives such as weight reduction, heat insulation, and cushioning properties. In order to adjust the pressure to 2.5 MPa or less, the amount is usually increased or decreased as appropriate in the range of 5 to 80 parts by mass based on 100 parts by mass of the base elastomer.
  • Base material elastomer As the base material, an elastomer, that is, a polymer having rubber-like elasticity, can be used. Examples of the elastomer include, but are not limited to, rubber, thermoplastic elastomer, and the like.
  • Examples of rubber include natural rubber, isoprene rubber, butadiene rubber (BR), styrene butadiene rubber (SBR), chloroprene rubber, acrylonitrile butadiene rubber, ethylene- ⁇ -olefin copolymer rubber, ethylene-propylene-diene terpolymer ( Ethylene- ⁇ -olefin-non-conjugated diene copolymer rubber such as EPDM), halogenated ethylene- ⁇ -olefin-non-conjugated diene copolymer rubber, sulfonated ethylene- ⁇ -olefin-non-conjugated diene copolymer rubber, Maleated ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, butyl rubber, isobutylene isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, urethane rubber, silicone rubber, chlorosulfonated poly
  • thermoplastic elastomers generally exhibit rubber-like elasticity at room temperature (25° C.), and have the property of being plasticized and moldable at high temperatures.
  • thermoplastic elastic polymers conventionally used as molding resins can be used, such as urethane elastomers, styrene elastomers, olefin elastomers, amide elastomers, and ester elastomers. Can be mentioned.
  • These base material elastomers can be used alone or in combination of two or more.
  • Base elastomers include ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, butadiene rubber, styrene butadiene rubber, natural rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, butyl rubber, fluororubber, silicone rubber, acrylonitrile butadiene.
  • It preferably contains at least one selected from rubber, chloroprene rubber, acrylic rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, urethane rubber, isobutylene isoprene rubber, polysulfide rubber, propylene oxide rubber, and epichlorohydrin rubber, It is more preferable to include at least one selected from ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, butadiene rubber, styrene-butadiene rubber, natural rubber, isoprene rubber, and acrylic rubber, and ethylene- ⁇ -olefin-nonconjugated It is more preferable to contain at least one selected from diene copolymer rubber, butadiene rubber, and styrene-butadiene rubber, and more preferably to contain ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber.
  • Ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber is a random copolymer of ethylene, ⁇ -olefin, and nonconjugated diene.
  • ⁇ -olefins include propylene, 1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1- Examples include decene, 1-undecene, 1-dodecene, and the like. Among these, propylene, 1-hexene, and 1-octene are preferred, and propylene is particularly preferred.
  • ⁇ -olefins can be used alone or in combination of two or more.
  • the molar ratio of ethylene and ⁇ -olefin is not particularly limited, but is preferably 40/60 to 95/5, more preferably 50/50 to 85/15. , more preferably 60/40 to 80/20.
  • non-conjugated dienes include 1,4-hexadiene, 3-methyl-1,4-hexadiene, 1,7-octadiene, 1,9-decadiene, 5-ethylidene-2-norbornene, and 5-isopropylidene-2-norbornene.
  • 5-isobutenyl-2-norbornene cyclopentadiene, dicyclopentadiene, norbornadiene, and the like.
  • 5-ethylidene-2-norbornene and dicyclopentadiene are preferred.
  • These non-conjugated dienes can be used alone or in combination of two or more.
  • Examples of butadiene rubber include low cis BR, high cis BR, high trans BR, and the like. Furthermore, as the butadiene rubber, modified BR into which a nitrogen atom-containing functional group, a silicon atom-containing functional group, an oxygen atom-containing functional group, etc. are introduced may be used.
  • Examples of styrene-butadiene rubber (SBR) include solution polymerization SBR and emulsion polymerization SBR. Furthermore, acid-modified SBR may be used as the styrene-butadiene rubber.
  • Acid-modified SBR products include Nipol LX206 (manufactured by Zeon Corporation), Nipol LX209 (manufactured by Zeon Corporation), BM-430B (manufactured by Zeon Corporation), and BM-451B (manufactured by Zeon Corporation). Can be mentioned.
  • the ethylene- ⁇ -olefin proportion to the entire base elastomer is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. It is even more preferable.
  • the preferred upper limit of the mass percentage of the rubber selected from ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, butadiene rubber, and styrene-butadiene rubber in the entire base elastomer is 100% by mass.
  • the mass percentage of the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber in the entire base elastomer is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. It is even more preferable that there be.
  • the preferred upper limit of the mass percentage of the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber in the entire base elastomer is 100% by mass.
  • the iodine value of the base elastomer is not particularly limited, but it is preferably 5 to 50 g/100 g, more preferably 10 to 40 g/100 g, even more preferably 15 to 30 g/100 g.
  • an elastomer composition with high crosslinking efficiency can be obtained, and an elastomer composition that can provide a vulcanized elastomer product with excellent compression set resistance and excellent environmental deterioration resistance. You can get things.
  • the base elastomer includes an elastomer having styrene monomer units, such as styrene-butadiene rubber or styrene thermoplastic elastomer
  • the present disclosure can be achieved by changing the content of styrene monomer units in the base elastomer.
  • the stiffness of the elastomer composition can be adjusted.
  • the content of styrene monomer units in the base elastomer is too large, the rigidity when melt-kneading the elastomer composition and its raw material mixture will also increase, so the storage modulus G' during melt-kneading will increase. It may be difficult to reduce the temperature to a sufficiently low level.
  • the content of styrene monomer units in the base elastomer is preferably 0% by mass or more and 60% by mass or less, and preferably 0% by mass or more and 50% by mass or less based on the total mass of the base elastomer. is more preferable.
  • the Mooney viscosity (ML (1+4) 100°C) of the base elastomer measured in accordance with JIS K6300 is preferably 20 or more and 75 or less, more preferably 20 or more and 60 or less, and more preferably 20 or more and 55 or less.
  • Mooney viscosity “ML(1+4) 100°C”
  • M Mooney unit
  • L L-shaped rotor
  • 1+4" preheating time of 1 minute and rotor rotation time of 4 minutes
  • “100 °C'' means that the measurement temperature is 100°C.
  • the hollow particles used in the present disclosure are particles that include a shell (outer shell) containing resin and a hollow portion surrounded by the shell.
  • the hollow portion is a hollow space that is clearly distinguished from the shell of the hollow particle formed of a resin material.
  • the shell of the hollow particle may have a porous structure, but in that case, the hollow part should have a size that can be clearly distinguished from a large number of microscopic spaces uniformly distributed within the porous structure. have.
  • the hollow particles of the present disclosure preferably have a solid shell from the viewpoint of pressure resistance and the like.
  • the hollow portions of hollow particles can be confirmed, for example, by SEM observation of a cross section of the particles, or by TEM observation of the particles as they are. Further, the hollow portions of the hollow particles of the present disclosure may be filled with a gas such as air, may be in a vacuum or reduced pressure state, or may contain a solvent.
  • the hollow particles used in the present disclosure have increased strength due to the shell made of a resin containing a polymer with a high content of cross-linkable monomer units, and the strength does not decrease even in high-temperature environments thanks to the cross-linked structure. It has excellent properties and is difficult to crush when kneaded with other materials and when molded after kneading, and when added to molded products, it provides various effects such as weight reduction, heat insulation, sound insulation, vibration damping, light scattering, etc. Another use is for molded bodies because it is highly effective as an encapsulating material that can encapsulate useful ingredients such as fragrances, medicines, agricultural chemicals, and ink components into the hollow interior by means of immersion treatment, reduced pressure, or pressure immersion treatment.
  • the hollow particles used in the present disclosure do not easily collapse even after undergoing a process that is subjected to loads such as external pressure or shear force such as kneading or injection molding, and their porosity does not easily decrease. It is particularly suitable for use as an additive for the body.
  • the hollow particles used in the present disclosure preferably have a porosity of 50% or more, more preferably 60% or more, and still more preferably 65% or more.
  • the porosity is greater than or equal to the above lower limit, it also has excellent properties such as light weight, heat resistance, heat insulation, and dielectric properties.
  • the upper limit of the porosity of the hollow particles is not particularly limited, but from the viewpoint of suppressing a decrease in the pressure resistance of the hollow particles, it is preferably 90% or less, more preferably 85% or less, and still more preferably 80% or less.
  • the porosity of the hollow particles is calculated from the apparent density D 1 and true density D 0 of the hollow particles.
  • the method for measuring the apparent density D1 of hollow particles is as follows. First, a volumetric flask with a capacity of 100 cm 3 is filled with approximately 30 cm 3 of hollow particles, and the mass of the filled hollow particles is accurately weighed. Next, the volumetric flask filled with hollow particles is accurately filled with isopropanol up to the marked line indicating the volume of 100 cm 3 while being careful not to introduce air bubbles. The mass of isopropanol added to the volumetric flask is accurately weighed, and the apparent density D 1 (g/cm 3 ) of the hollow particles is calculated based on the following formula (I).
  • Apparent density D 1 [mass of hollow particles] / (100 - [mass of isopropanol] ⁇ [specific gravity of isopropanol at measurement temperature])
  • the apparent density D1 corresponds to the specific gravity of the entire hollow particle when the hollow part is considered to be a part of the hollow particle.
  • the method for measuring the true density D 0 of hollow particles is as follows. After the hollow particles are pre-pulverized, a volumetric flask with a capacity of 100 cm 3 is filled with about 10 g of crushed hollow particles, and the mass of the filled crushed pieces is accurately weighed. After that, add isopropanol to the volumetric flask in the same way as the measurement of the apparent density above, accurately weigh the mass of isopropanol, and calculate the true density D 0 (g/cm 3 ) of the hollow particles based on the following formula (II). do.
  • the porosity (%) of the hollow particles is calculated by the following formula (III) using the apparent density D 1 and the true density D 0 of the hollow particles.
  • Formula (III): Porosity (%) 100 - (apparent density D 1 / true density D 0 ) x 100
  • the crushability of hollow particles can be expressed by the void remaining ratio measured according to the press test method below.
  • Press test method A mixture of polypropylene resin and hollow particles having a mass ratio of polypropylene resin: hollow particles of 90:10 was melted and mixed at 200°C, placed in a mold for a hot press machine, and further heated at 200°C for 15 minutes. The cylinder was stirred and then placed on a hot press machine set at 80°C, and the cylinder heated to 80°C was placed in a mold. When the surface temperature of the mold reached 140°C, it was pressurized at 15 MPa. The mixture is taken out of the mold and pressed at a pressure of 1 MPa or less using a hot press set at 200° C. to form a sheet.
  • the specific gravity of the obtained sheet-like molded body is measured, and the void remaining ratio of the hollow particles is calculated according to the following formula (D).
  • Vacancy remaining rate (%) ⁇ (ca)/(c-b) ⁇ 100
  • Formula (D) The meanings of the symbols in formula (D) are as follows. a: Specific gravity of the sheet-shaped molded product after press molding, b: Specific gravity of the compact assuming that voids are maintained (calculated value) c: Specific gravity of the molded body assuming that all hollow particles are crushed (calculated value)
  • the specific gravity of the molded product after press molding was measured by an underwater displacement method in accordance with JIS K 7112.
  • a molded product assuming that the voids are maintained is a molded product that assumes that the hollow particles mixed with the polypropylene resin are not crushed even after the hot pressing process and maintains the porosity before mixing. means.
  • P A represents the amount of hollow particles added
  • P G represents the specific gravity of the hollow particles
  • R A represents the amount of base elastomer added
  • R G represents the specific gravity of the base elastomer.
  • polypropylene resin used in the above press test a polypropylene resin having an MFR (melt flow rate) at 230° C. of 10 to 30 g/min, preferably 15 to 25 g/min can be used.
  • MFR melt flow rate
  • product name: Novatec PP manufactured by Nippon Polypropylene Co., Ltd., grade: MA1B (MFR at 230° C. is 21 g/min), etc. can be mentioned.
  • the effectiveness is maintained without reduction, and the dimensional stability during molding is also high.
  • the void remaining rate is 100%.
  • the hollow particles used in the present disclosure can achieve a void residual rate of 80% or more, and even 100%, according to the above test method.
  • the lower limit of the volume average particle diameter of the hollow particles used in the present disclosure is preferably 5.0 ⁇ m or more, more preferably 6.0 ⁇ m or more, and still more preferably 7.0 ⁇ m or more, and the upper limit is preferably 40 ⁇ m or more. .0 ⁇ m or less, more preferably 30.0 ⁇ m or less, even more preferably 20.0 ⁇ m or less.
  • the volume average particle diameter of the hollow particles is equal to or larger than the above lower limit value, it is easy to achieve both high porosity and excellent pressure resistance, and since the cohesiveness of the hollow particles is reduced, excellent dispersibility can be exhibited. I can do it.
  • the volume average particle diameter of the hollow particles is less than or equal to the above upper limit value, the uniformity of the shell is likely to be improved, so that hollow particles with excellent pressure resistance are likely to be obtained.
  • the particle size of the hollow particles of the present disclosure can be adjusted by, for example, the content of the dispersion stabilizer relative to the total mass of the polymerizable monomer and the hydrophobic solvent.
  • the thickness of the shell of the hollow particles used in the present disclosure is not particularly limited, but from the viewpoint of improving pressure resistance, it is preferably 0.30 ⁇ m or more, more preferably 0.40 ⁇ m or more, and still more preferably 0.50 ⁇ m or more. , more preferably 0.60 ⁇ m or more, and from the viewpoint of increasing the porosity, preferably 3.00 ⁇ m or less, more preferably 2.00 ⁇ m or less, still more preferably 1.50 ⁇ m or less.
  • the thickness of the shell of the hollow particle is determined by calculating the inner diameter r of the hollow particle using the following formula (1) using the volume average particle diameter R and the porosity of the hollow particle, and calculating the inner diameter r and the volume average The value is calculated by the following formula (2) using the particle size R.
  • Formula (1): 4/3 ⁇ (R/2) 3 ⁇ (porosity/100) 4/3 ⁇ (r/2) 3
  • Shell thickness (R-r)/2 Note that the porosity in the above formula (1) is a numerical value expressed as a percentage.
  • the particle size distribution (volume average particle diameter (Dv)/number average particle diameter (Dn)) of the hollow particles used in the present disclosure may be, for example, 1.1 or more and 2.5 or less. When the particle size distribution is 2.5 or less, particles with less variation in compressive strength characteristics and heat resistance among particles can be obtained. Further, since the particle size distribution is 2.5 or less, for example, when manufacturing a sheet-like molded article to which hollow particles of the present disclosure are added, a product with uniform thickness can be manufactured.
  • the volume average particle size (Dv) and number average particle size (Dn) of the hollow particles are obtained by, for example, measuring the particle size of the hollow particles with a particle size distribution measuring device, and calculating the number average and volume average, respectively. The values can be the number average particle size (Dn) and the volume average particle size (Dv) of the particles.
  • the particle size distribution is defined as the volume average particle diameter divided by the number average particle diameter.
  • the shape of the hollow particles used in the present disclosure is not particularly limited as long as a hollow part is formed inside, and examples thereof include a spherical shape, an ellipsoidal shape, an amorphous shape, and the like. Among these, spherical shapes are preferred from the viewpoint of ease of manufacture and pressure resistance.
  • the hollow particles used in the present disclosure may have one or more hollow portions, but from the viewpoint of maintaining a good balance between high porosity and mechanical strength, one or two hollow portions may be provided. It is preferable to have only one hollow part, and preferably one to have only one hollow part.
  • the number ratio of particles having only one hollow portion is preferably 90% or more, more preferably 95% or more, and still more preferably more than 95%.
  • the shell provided in the hollow particle and the partition wall that partitions adjacent hollow parts when the hollow particle has two or more may be porous, but from the viewpoint of improving pressure resistance, it is preferable to It is preferable that
  • the hollow particles used in the present disclosure may have an average circularity of 0.950 to 0.995.
  • An example of the shape of the hollow particles of the present disclosure is a bag made of a thin film and swollen with gas, whose cross-sectional view is as shown in the hollow particle 10 in FIG. 1 (5).
  • a thin film is provided on the outside and the inside is filled with gas. Note that the particle shape can be confirmed by, for example, SEM or TEM.
  • the hollow particles of the present disclosure have a thermal decomposition initiation temperature of preferably 150 to 400°C, more preferably 200 to 350°C. Hollow particles having a thermal decomposition start temperature within the above range have excellent heat resistance.
  • the thermal decomposition initiation temperature of hollow particles means the temperature at which the mass decreases by 5%, and is measured using a TG-DTA device in an air atmosphere with an air flow rate of 230 mL/min and a temperature increase rate of 10°C/min. Can be measured.
  • the content of hollow particles in the elastomer composition is not particularly limited, but is usually 5 to 80 parts by weight based on 100 parts by weight of the base elastomer.
  • the hollow particles can be prepared by, for example, preparing a liquid mixture containing a polymerizable monomer, a hydrophobic solvent, a polymerization initiator, a dispersion stabilizer, and an aqueous medium; By suspending the mixed liquid, a suspension in which droplets of a monomer composition containing the polymerizable monomer, the hydrophobic solvent, and the polymerization initiator are dispersed in the aqueous medium is prepared.
  • a precursor composition containing precursor particles having a hollow portion surrounded by a shell containing a resin and encapsulating the hydrophobic solvent in the hollow portion is prepared. It can be obtained by a manufacturing method including steps.
  • the above production method involves suspending a mixed solution containing a polymerizable monomer, a hydrophobic solvent, a polymerization initiator, a dispersion stabilizer, and an aqueous medium, so that the polymerizable monomer and the hydrophobic solvent undergo phase separation. Then, a suspension in which droplets having a distribution structure in which the polymerizable monomer is unevenly distributed on the surface side and a hydrophobic solvent is unevenly distributed in the center is dispersed in an aqueous medium is prepared, and this suspension is It follows the basic technology of hardening the surface of droplets by subjecting them to a polymerization reaction to form hollow particles having hollow parts filled with a hydrophobic solvent.
  • the polymerizable monomer and hydrophobicity can be combined in the droplets of the monomer composition dispersed in the suspension.
  • the solvent undergoes sufficient phase separation and the suspension is subjected to a polymerization reaction
  • the polymerization reaction of the polymerizable monomer proceeds uniformly, forming a shell with excellent uniformity in composition and thickness. It is estimated that
  • the method for producing hollow particles includes a step of preparing a liquid mixture, a step of preparing a suspension, and a step of subjecting the suspension to a polymerization reaction, and may further include steps other than these. Further, as long as it is technically possible, two or more of the above steps and other additional steps may be performed simultaneously as one step, or the order may be changed. For example, the preparation and suspension of the mixed liquid may be performed simultaneously in one process, such as by simultaneously adding the materials for preparing the mixed liquid and performing the suspension.
  • a preferred example of a method for producing hollow particles includes a production method including the following steps.
  • (1) Mixed liquid preparation process A process of preparing a mixed liquid containing a polymerizable monomer, a hydrophobic solvent, a polymerization initiator, a dispersion stabilizer, and an aqueous medium
  • (2) Suspension process By suspending the mixed liquid a step of preparing a suspension in which droplets of a monomer composition containing a polymerizable monomer, a hydrophobic solvent, and a polymerization initiator are dispersed in an aqueous medium
  • Polymerization step Polymerization of the suspension Step of preparing a precursor composition including precursor particles having a hollow part surrounded by a shell containing a resin and containing a hydrophobic solvent in the hollow part by subjecting to reaction
  • Solvent removal step Precursor particles
  • FIG. 1 is a schematic diagram showing an example of the manufacturing method of the present disclosure.
  • (1) to (5) in FIG. 1 correspond to each of the above steps (1) to (5).
  • White arrows between each figure indicate the order of each step.
  • FIG. 1 is only a schematic diagram for explanation, and the manufacturing method of the present disclosure is not limited to what is shown in the figure.
  • the structures, dimensions, and shapes of the materials used in the manufacturing method of the present disclosure are not limited to the structures, dimensions, and shapes of the various materials in these figures.
  • FIG. 1 (1) is a schematic cross-sectional view showing one embodiment of a mixed liquid in a mixed liquid preparation step.
  • the mixed liquid includes an aqueous medium 1 and a low polarity material 2 dispersed in the aqueous medium 1.
  • the low polarity material 2 means a material that has low polarity and is difficult to mix with the aqueous medium 1.
  • the low polarity material 2 includes a polymerizable monomer, a hydrophobic solvent, and a polymerization initiator.
  • (2) of FIG. 1 is a schematic cross-sectional view showing one embodiment of a suspension in a suspension step. The suspension comprises an aqueous medium 1 and droplets 8 of a monomer composition dispersed in the aqueous medium 1.
  • the droplet 8 of the monomer composition contains a polymerizable monomer, a hydrophobic solvent, and a polymerization initiator, but the distribution within the droplet is nonuniform.
  • the hydrophobic solvent 4a and the material 4b containing the polymerizable monomer other than the hydrophobic solvent undergo phase separation, the hydrophobic solvent 4a is unevenly distributed in the center, and the hydrophobic solvent It has a structure in which the other material 4b is unevenly distributed on the surface side, and a dispersion stabilizer (not shown) is attached to the surface.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a precursor composition including precursor particles containing a hydrophobic solvent in a hollow portion obtained by a polymerization process.
  • the precursor composition includes an aqueous medium 1 and precursor particles 9 that are dispersed in the aqueous medium 1 and include a hydrophobic solvent 4a in the hollow portion.
  • the shell 6 forming the outer surface of the precursor particle 9 is formed by polymerization of the polymerizable monomer in the droplet 8 of the monomer composition, and is formed by polymerization of the polymerizable monomer in the droplet 8 of the monomer composition. Contains coalescence as a resin.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the precursor particles after the solid-liquid separation step.
  • FIG. 1 shows a state in which the aqueous medium 1 has been removed from the state of (3) of FIG. 1 above.
  • (5) of FIG. 1 is a schematic cross-sectional view showing one embodiment of the hollow particles after the solvent removal step.
  • (5) of FIG. 1 shows a state in which the hydrophobic solvent 4a is removed from the state of (4) of FIG. 1 above.
  • This step is a step of preparing a mixed liquid containing a polymerizable monomer, a hydrophobic solvent, a polymerization initiator, a dispersion stabilizer, and an aqueous medium.
  • the liquid mixture may further contain other materials within a range that does not impair the effects of the present disclosure.
  • the materials of the mixed liquid will be explained in the following order: (A) polymerizable monomer, (B) hydrophobic solvent, (C) polymerization initiator, (D) dispersion stabilizer, and (E) aqueous medium.
  • (A) Polymerizable monomer As the polymerizable monomer, known polymerizable monomers conventionally used for producing hollow particles can be used, and there are no particular limitations on the polymerizable monomer. contains a crosslinkable monomer. When the polymerizable monomer contains a crosslinking monomer, the crosslinking density of the shell can be increased, so a shell with excellent strength is likely to be formed, the hollow particles are likely to become spherical, and there are molecules inside the particle from the shell. Clearly defined hollow areas are likely to be formed.
  • the polymerizable monomer is preferably a polymerizable monomer whose polymerizable functional group is a (meth)acryloyl group or a vinyl group; ) Acrylic monomers containing an acryloyl group are more preferred.
  • a stable polymerization reaction means that the reactivity of the polymerization reaction is good and that the polymerization reaction proceeds uniformly.
  • the polymerizable monomer contains an acrylic monomer and a hydrocarbon monomer because the polymerization reaction is easily stabilized and the pressure resistance of the hollow particles can be improved.
  • the reaction rate of the hydrocarbon monomer increases, which improves the reactivity of the entire polymerizable monomer and stabilizes the polymerization reaction. It is estimated that it is easy.
  • the polymerizable monomer contains an acrylic monomer and a hydrocarbon monomer, the compatibility with the hydrophobic solvent becomes appropriate, so that when the suspension is subjected to a polymerization reaction, It is presumed that the pressure resistance of the hollow particles is improved because the polymerization reaction of the polymerizable monomer tends to proceed uniformly and the formed shell tends to have excellent uniformity in composition, thickness, etc.
  • hydrocarbon monomer one whose polymerizable functional group is a vinyl group is preferable because the polymerization reaction is easily stabilized.
  • a polymerizable monomer having a (meth)acryloyl group as a polymerizable functional group is referred to as an acrylic monomer
  • a crosslinkable monomer having a (meth)acryloyl group as a polymerizable functional group is referred to as an acrylic monomer.
  • a crosslinkable acrylic monomer is referred to as a crosslinkable acrylic monomer
  • a non-crosslinkable monomer having a (meth)acryloyl group as a polymerizable functional group is referred to as a non-crosslinkable acrylic monomer.
  • At least one polymerizable functional group may be a (meth)acryloyl group, but it is preferable that all polymerizable functional groups are (meth)acryloyl groups.
  • a polymerizable monomer consisting of carbon and hydrogen is referred to as a hydrocarbon monomer
  • a crosslinkable monomer consisting of carbon and hydrogen is referred to as a crosslinkable hydrocarbon monomer
  • a polymerizable monomer consisting of carbon and hydrogen is referred to as a crosslinkable hydrocarbon monomer.
  • a non-crosslinking monomer consisting of is called a non-crosslinking hydrocarbon monomer.
  • crosslinkable acrylic monomers and crosslinkable hydrocarbon monomers are preferred.
  • crosslinkable acrylic monomers include allyl (meth)acrylate, vinyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, 2-hydroxy -3-(meth)acrylic Bifunctional crosslinkable acrylic monomers such as propyl (meth)acrylate; and trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate; ) acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol poly(meth)acrylate, and ethoxylated
  • crosslinkable hydrocarbon monomer examples include difunctional crosslinkable hydrocarbon monomers such as divinylbenzene, divinyldiphenyl, and divinylnaphthalene. Further, examples of the crosslinkable monomer include crosslinkable allyl monomers such as diallyl phthalate. These crosslinkable monomers can be used alone or in combination of two or more.
  • the crosslinkable monomer preferably contains a trifunctional or higher functional crosslinkable monomer having three or more polymerizable functional groups.
  • the trifunctional or higher functional crosslinkable monomer the above trifunctional or higher functional crosslinkable acrylic monomer is preferable, and among them, pentaerythritol tetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, ethoxylated trimethylol Propane tri(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol poly(meth)acrylate are preferred, pentaerythritol tetra(meth)acrylate, and trimethylolpropane tri(meth)acrylate. More preferred are meth)acrylates.
  • the crosslinkable monomer is a bifunctional crosslinkable monomer having only two polymerizable functional groups and a polymerizable functional group. It is more preferable to include a trifunctional or higher functional crosslinking monomer having three or more of the following.
  • the bifunctional crosslinkable monomer is preferably at least one selected from the group consisting of the above bifunctional crosslinkable acrylic monomers and the above bifunctional crosslinkable hydrocarbon monomers.
  • the bifunctional crosslinkable acrylic monomers ethylene glycol di(meth)acrylate and pentaerythritol di(meth)acrylate are preferred, and ethylene glycol di(meth)acrylate is more preferred.
  • difunctional crosslinkable hydrocarbon monomers divinylbenzene is preferred.
  • the content of the crosslinkable monomer is 50 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 70 parts by mass, based on 100 parts by mass of the polymerizable monomer, in order to improve the pressure resistance of the hollow particles. It is at least 80 parts by mass, more preferably at least 80 parts by mass.
  • the content of the crosslinkable monomer is equal to or higher than the above lower limit, hollow portions are likely to be formed within the particles, making the particles more likely to become spherical.Furthermore, the crosslinking density of the shell can be increased, so that the hollow particles can be easily formed. It also has the advantage of being able to improve solvent resistance, strength, heat resistance, etc.
  • the polymerizable monomer may contain a non-crosslinkable monomer as long as the effects of the present disclosure are not impaired, and in that case, the content of the crosslinkable monomer is greater than the amount of the polymerizable monomer. For example, it may be 95 parts by mass or less or 90 parts by mass or less in 100 parts by mass. Note that the content of crosslinkable monomers is the total content of bifunctional crosslinkable monomers and trifunctional or higher functional crosslinkable monomers.
  • the content of the trifunctional or higher functional crosslinkable monomer is set to Out of 100 parts by mass, the lower limit is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and even more preferably It is 30 parts by mass or less.
  • the crosslinkable monomer includes a bifunctional crosslinkable monomer and a trifunctional or higher functional crosslinkable monomer
  • the bifunctional crosslinkable monomer and The lower limit of the content of the trifunctional crosslinkable monomer is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, with respect to 100 parts by mass of the total mass of the trifunctional or higher crosslinkable monomers, More preferably, it is 20 parts by mass or more, and the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less.
  • the polymerizable monomer may contain a non-crosslinkable monomer to the extent that the effects of the present disclosure are not impaired.
  • non-crosslinkable monomers include alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and lauryl (meth)acrylate.
  • Non-crosslinked acrylics such as esters, glycidyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, (meth)acrylic acid, (meth)acrylamide, N-methylol (meth)acrylamide, N-butoxymethyl (meth)acrylamide, etc.
  • Aromatic vinyl monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, p-methylstyrene, ethylvinylbenzene, ethylvinylbiphenyl, ethylvinylnaphthalene, monoolefin monomers such as ethylene, propylene, butylene, etc.
  • non-crosslinkable hydrocarbon monomers such as diene monomers such as mercury, butadiene, and isoprene; carboxylic acid vinyl ester monomers such as vinyl acetate; halogenated aromatic vinyl monomers such as halogenated styrene; Examples include halogenated vinyl monomers such as vinyl chloride; halogenated vinylidene monomers such as vinylidene chloride; vinylpyridine monomers; and the like.
  • These non-crosslinking monomers can be used alone or in combination of two or more.
  • the non-crosslinkable monomers preferred are (meth)acrylic acid alkyl esters and aromatic vinyl monomers, from the viewpoint of easily stabilizing the polymerization reaction and suppressing a decrease in the pressure resistance of hollow particles. Vinyl monomers are more preferred.
  • the (meth)acrylic acid alkyl esters butyl acrylate and methyl methacrylate are preferred.
  • aromatic vinyl monomers ethylvinylbenzene is preferred.
  • the content of the acrylic monomer is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, based on 100 parts by mass of the polymerizable monomer.
  • the contents of the acrylic monomer and the hydrocarbon monomer in 100 parts by mass of the polymerizable monomer are as follows: Preferably it is 80 parts by mass or more, more preferably 90 parts by mass or more, still more preferably 98 parts by mass or more, even more preferably 99 parts by mass or more.
  • the polymerizable monomer contains an acrylic monomer and a hydrocarbon monomer
  • the total amount of the acrylic monomer and hydrocarbon monomer is 100 parts by mass in order to improve the pressure resistance of the hollow particles.
  • the lower limit of the hydrocarbon monomer content is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, even more preferably 30 parts by mass or more, and the upper limit is preferably 90 parts by mass. parts, more preferably 80 parts by mass or less.
  • the content of the polymerizable monomer in the mixed liquid is not particularly limited, but from the viewpoint of the balance of the porosity, particle size, and mechanical strength of the hollow particles, the total mass of the components in the mixed liquid excluding the aqueous medium is 100%.
  • the lower limit is preferably 30% by mass or more, more preferably 40% by mass or more, and the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less.
  • the content of the polymerizable monomer relative to 100% by mass of the total mass of solids excluding the hydrophobic solvent among the materials forming the oil phase in the mixed liquid is preferably It is 95% by mass or more, more preferably 97% by mass or more.
  • the solid content refers to all components excluding the solvent, and liquid polymerizable monomers and the like are included in the solid content.
  • the hydrophobic solvent used in the production method of the present disclosure is a non-polymerizable and poorly water-soluble organic solvent.
  • the hydrophobic solvent acts as a spacer material that forms a hollow space inside the particle.
  • a suspension in which droplets of the monomer composition containing a hydrophobic solvent are dispersed in an aqueous medium is obtained.
  • a hydrophobic solvent with low polarity tends to collect inside the droplets of the monomer composition.
  • the hydrophobic solvent is distributed inside the droplet, and other materials other than the hydrophobic solvent are distributed around the droplet according to their respective polarities. Then, in the polymerization step described below, an aqueous dispersion containing precursor particles containing a hydrophobic solvent is obtained. That is, as the hydrophobic solvent gathers inside the particle, a hollow portion filled with the hydrophobic solvent is formed inside the obtained precursor particle.
  • the hydrophobic solvent can be appropriately selected from known hydrophobic solvents, and is not particularly limited.
  • esters such as ethyl acetate and butyl acetate; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, etc.
  • hydrocarbon solvents among which hydrocarbon solvents are preferably used.
  • hydrocarbon solvents include linear hydrocarbon solvents such as pentane, hexane, heptane, octane, 2-methylbutane and 2-methylpentane, and cyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and cycloheptane. and aromatic hydrocarbons such as benzene, toluene, and xylene.
  • These hydrophobic solvents can be used alone or in combination of two or more.
  • phase separation between the polymerizable monomer and the hydrophobic solvent is likely to occur within the droplets of the monomer composition, so the hydrophobic solvent should be It is preferable to select an organic solvent that has lower solubility in water than the monomer.
  • the polymerizable monomer contains an acrylic monomer and a hydrocarbon monomer
  • chain hydrocarbon solvents chain hydrocarbon solvents having 5 to 8 carbon atoms are preferred, and at least one selected from the group consisting of pentane, hexane, heptane and octane is more preferred.
  • the polymerizable monomer contains an acrylic monomer but not a hydrocarbon monomer
  • a hydrocarbon solvent having 4 to 7 carbon atoms it is preferable to use a hydrocarbon solvent having 5 to 7 carbon atoms.
  • the hydrocarbon solvent may be aromatic hydrocarbons or aliphatic hydrocarbons, but among them, aliphatic hydrocarbons are preferable, and cyclic hydrocarbon solvents are more preferable. At least one selected from the group consisting of cyclohexane, cycloheptane and methylcyclohexane is more preferred.
  • a combination of a polymerizable monomer and a hydrophobic solvent as described above because the pressure resistance of the hollow particles is likely to be improved.
  • a combination of polymerizable monomers including acrylic monomers and hydrocarbon monomers and the above-mentioned preferred hydrophobic solvent is used, the uniformity of the shell is improved, and the pressure resistance of the hollow particles is improved. This is preferable because it improves properties.
  • the boiling point of the hydrophobic solvent is preferably 130°C or lower, more preferably 100°C or lower, in view of being easily removed in the solvent removal step described below. From the viewpoint of ease of use, the temperature is preferably 50°C or higher, more preferably 60°C or higher.
  • the hydrophobic solvent is a mixed solvent containing multiple types of hydrophobic solvents and has multiple boiling points, the boiling point of the solvent with the highest boiling point among the solvents contained in the mixed solvent must be below the above upper limit value. It is preferable that the boiling point of the solvent with the lowest boiling point among the solvents contained in the mixed solvent is equal to or higher than the above lower limit.
  • the hydrophobic solvent used in the manufacturing method of the present disclosure preferably has a dielectric constant of 2.0 or less at 20°C.
  • the dielectric constant is one of the indicators indicating the high polarity of a compound.
  • the dielectric constant of the hydrophobic solvent is sufficiently small, such as 2.0 or less, it is considered that phase separation proceeds rapidly in the droplets of the monomer composition, and hollows are likely to be formed.
  • Examples of hydrophobic solvents having a dielectric constant of 2.0 or less at 20°C are as follows. The value in parentheses is the relative dielectric constant. Pentane (1.8), hexane (1.9), heptane (1.9), octane (1.9), cyclohexane (2.0).
  • dielectric constant at 20°C please refer to known documents (for example, "Chemical Handbook Basics” edited by the Chemical Society of Japan, revised 4th edition, Maruzen Co., Ltd., published September 30, 1993, II-498 to II-503). page) and other technical information.
  • Examples of the method for measuring the dielectric constant at 20°C include a dielectric constant test conducted at a measurement temperature of 20°C in accordance with JIS C 2101:1999, 23.
  • the porosity of the hollow particles can be adjusted.
  • the polymerization reaction proceeds with the oil droplets containing the polymerizable monomer etc. encapsulating the hydrophobic solvent, so the higher the content of the hydrophobic solvent, the higher the porosity of the resulting hollow particles. It tends to be higher.
  • the content of the hydrophobic solvent in the mixed liquid is 50 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the polymerizable monomer, so that the particle diameter of the hollow particles can be easily controlled.
  • the content of the hydrophobic solvent in the mixed liquid is more preferably 70 parts by mass or more and 300 parts by mass or less, and even more preferably 90 parts by mass or more and 200 parts by mass or less, per 100 parts by mass of the polymerizable monomer. It is.
  • the mixed liquid contains an oil-soluble polymerization initiator as a polymerization initiator.
  • Methods for polymerizing droplets of the monomer composition after suspending a mixed solution include an emulsion polymerization method using a water-soluble polymerization initiator and a suspension polymerization method using an oil-soluble polymerization initiator. Suspension polymerization can be carried out by using an agent.
  • the oil-soluble polymerization initiator is not particularly limited as long as it is lipophilic and has a solubility in water of 0.2% by mass or less, and examples thereof include benzoyl peroxide, lauroyl peroxide, and t-butyl peroxide-2-ethylhexane.
  • organic peroxides such as noate, t-butylperoxydiethyl acetate, t-butylperoxypivalate; 2,2'-azobis(2,4-dimethylvaleronitrile), azobisisobutyronitrile, 2, Examples include azo compounds such as 2'-azobis(4-methoxy-2,4-dimethylvaleronitrile).
  • the content of the polymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and even more preferably It is 1 to 5 parts by mass.
  • the content of the polymerization initiator is at least the above lower limit value, the polymerization reaction can proceed sufficiently, and when it is at or below the above upper limit value, there is little risk that the oil-soluble polymerization initiator will remain after the polymerization reaction is completed, which is expected. There is also a small risk that side reactions will occur.
  • Dispersion stabilizer is an agent that disperses droplets of the monomer composition in an aqueous medium in the suspension step.
  • the particle size of droplets in a suspension can be easily controlled, the particle size distribution of the obtained hollow particles can be narrowed, and the strength of the hollow particles can be improved by suppressing the shell from becoming too thin. From the viewpoint of suppressing the decrease, it is preferable to use an inorganic dispersion stabilizer as the dispersion stabilizer.
  • inorganic dispersion stabilizers include sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate, and magnesium carbonate; phosphates such as calcium phosphate; metals such as aluminum oxide and titanium oxide.
  • examples include inorganic compounds such as oxides; metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, and ferric hydroxide; These inorganic dispersion stabilizers can be used alone or in combination of two or more.
  • poorly water-soluble metal salts such as the above-mentioned sulfates, carbonates, phosphates, and metal hydroxides are preferred, metal hydroxides are more preferred, and magnesium hydroxide is particularly preferred.
  • poorly water-soluble means that the solubility in 100 g of water is preferably 0.5 g or less.
  • a state in which a sparingly water-soluble inorganic dispersion stabilizer is dispersed in an aqueous medium in the form of colloidal particles that is, a colloidal dispersion containing sparingly water-soluble inorganic dispersion stabilizer colloidal particles is disclosed. It is preferable to use it in the state. Thereby, in addition to being able to narrow the particle size distribution of the droplets of the monomer composition, the amount of residual inorganic dispersion stabilizer in the obtained hollow particles can be easily suppressed to a low level by washing.
  • a colloidal dispersion containing poorly water-soluble inorganic dispersion stabilizer colloidal particles is, for example, at least one selected from alkali metal hydroxides and alkaline earth metal hydroxides, and a water-soluble polyvalent metal salt (hydroxide). (excluding alkaline earth metal salts) in an aqueous medium.
  • alkali metal hydroxide salts include lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like.
  • alkaline earth metal hydroxide salts include barium hydroxide and calcium hydroxide.
  • the water-soluble polyvalent metal salt may be any water-soluble polyvalent metal salt other than the compounds corresponding to the alkaline earth metal hydroxides, but examples include magnesium chloride, magnesium phosphate, magnesium sulfate, etc.
  • magnesium metal salts, calcium metal salts, and aluminum metal salts are preferred, magnesium metal salts are more preferred, and magnesium chloride is particularly preferred.
  • the water-soluble polyvalent metal salts can be used alone or in combination of two or more.
  • the method of reacting at least one selected from the above-mentioned alkali metal hydroxide salts and alkaline earth metal hydroxide salts with the above-mentioned water-soluble polyvalent metal salts in an aqueous medium is not particularly limited. Examples include a method of mixing at least one aqueous solution selected from alkali metal salts and alkaline earth metal hydroxide salts with an aqueous solution of a water-soluble polyvalent metal salt.
  • the content of the dispersion stabilizer is not particularly limited, but is preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of the total weight of the polymerizable monomer and hydrophobic solvent. It is. When the content of the dispersion stabilizer is at least the above lower limit, the droplets of the monomer composition can be sufficiently dispersed so as not to coalesce in the suspension. On the other hand, if the content of the dispersion stabilizer is below the above upper limit, it is possible to prevent the viscosity of the suspension from increasing during granulation and avoid the problem of the suspension clogging the granulator. can. Further, the content of the dispersion stabilizer is preferably 0.5 to 15 parts by mass, more preferably 0.5 to 10 parts by mass, per 100 parts by mass of the aqueous medium.
  • the aqueous medium refers to a medium selected from the group consisting of water, a hydrophilic solvent, and a mixture of water and a hydrophilic solvent.
  • a mixture of water and a hydrophilic solvent it is important that the overall polarity of the mixture does not become too low from the viewpoint of forming droplets of the monomer composition.
  • the mass ratio of water and hydrophilic solvent may be set to 99:1 to 50:50.
  • the hydrophilic solvent in the present disclosure is not particularly limited as long as it is sufficiently miscible with water and does not cause phase separation.
  • the hydrophilic solvent include alcohols such as methanol and ethanol; tetrahydrofuran (THF); dimethyl sulfoxide (DMSO), and the like.
  • the content of the aqueous medium is not particularly limited, but from the viewpoint of keeping the particle size and porosity of the hollow particles within the preferred ranges described below, the lower limit is set based on 100 parts by mass of the polymerizable monomer contained in the mixed liquid. is preferably 200 parts by mass or more, more preferably 400 parts by mass or more, still more preferably 600 parts by mass or more, and the upper limit is preferably 1000 parts by mass or less, more preferably 800 parts by mass or less.
  • the liquid mixture may further contain other materials different from the materials (A) to (E) described above, as long as the effects of the present disclosure are not impaired.
  • a mixed solution is obtained by mixing each of the above-mentioned materials and other materials as necessary, and stirring the mixture as appropriate.
  • an oil phase containing lipophilic materials such as (A) a polymerizable monomer, (B) a hydrophobic solvent, and (C) a polymerization initiator is combined with (D) a dispersion stabilizer and (E) They are dispersed in an aqueous phase containing an aqueous medium or the like with a particle diameter of several mm.
  • the state of dispersion of these materials in the liquid mixture can be observed with the naked eye depending on the type of material.
  • the mixed liquid may be obtained by simply mixing the above-mentioned materials and other materials as necessary and stirring as appropriate.
  • a liquid mixture by separately preparing in advance an oil phase containing a hydrophobic solvent, a hydrophobic solvent, and a polymerization initiator, and an aqueous phase containing a dispersion stabilizer and an aqueous medium, and then mixing these.
  • a colloidal dispersion in which a poorly water-soluble inorganic dispersion stabilizer is dispersed in an aqueous medium in the form of colloidal particles can be preferably used as the aqueous phase.
  • the suspension process is a process of preparing a suspension in which droplets of the monomer composition containing a hydrophobic solvent are dispersed in an aqueous medium by suspending the above-mentioned mixture.
  • the suspension method for forming droplets of the monomer composition is not particularly limited, and any known suspension method can be employed. Examples of the dispersing machine used when preparing the suspension include Milder (product name) manufactured by Pacific Kiko Co., Ltd., Cavitron (product name) manufactured by Eurotech Co., Ltd., and In-line dispersing machine manufactured by IKA.
  • Examples include horizontal or vertical in-line dispersion machines such as DISPAX-REACTOR (registered trademark) DRS (product name); emulsification dispersion machines such as Homomixer MARK II series manufactured by Primix Co., Ltd., and the like.
  • DISPAX-REACTOR registered trademark
  • DRS product name
  • emulsification dispersion machines such as Homomixer MARK II series manufactured by Primix Co., Ltd., and the like.
  • droplets of the monomer composition containing the lipophilic material and having a particle size of about 5 to 40 ⁇ m are uniformly dispersed in an aqueous medium.
  • Such droplets of the monomer composition are difficult to observe with the naked eye, but can be observed using a known observation device such as an optical microscope.
  • the hydrophobic solvent with low polarity tends to collect inside the droplets.
  • the resulting droplet has a hydrophobic solvent distributed inside it and a material other than the hydrophobic solvent distributed around its periphery.
  • FIG. 2 is a schematic diagram showing one embodiment of a suspension in a suspension step.
  • the droplet 8 of the monomer composition in FIG. 2 is shown schematically in its cross section. Note that FIG. 2 is merely a schematic diagram, and the suspension in the present disclosure is not necessarily limited to that shown in FIG. 2.
  • a part of FIG. 2 corresponds to (2) of FIG. 1 described above.
  • FIG. 2 shows that droplets 8 of the monomer composition and the polymerizable monomer 4c dispersed in the aqueous medium 1 are dispersed in the aqueous medium 1.
  • the droplets 8 are formed by surrounding the oil-soluble monomer composition 4 with the dispersion stabilizer 3.
  • the monomer composition contains an oil-soluble polymerization initiator 5, a polymerizable monomer, and a hydrophobic solvent (none of which are shown).
  • the droplets 8 are minute oil droplets containing the monomer composition 4, and the oil-soluble polymerization initiator 5 generates polymerization initiation radicals inside the minute oil droplets. Therefore, precursor particles having a desired particle size can be produced without excessively growing minute oil droplets.
  • an oil-soluble polymerization initiator there is no opportunity for the polymerization initiator to come into contact with the polymerizable monomer 4c dispersed in the aqueous medium 1. Therefore, by using an oil-soluble polymerization initiator, it is possible to suppress the formation of extra resin particles such as solid particles having a relatively small particle size, in addition to the intended resin particles having hollow parts.
  • This process involves subjecting the suspension obtained in the above-mentioned suspension process to a polymerization reaction to form a hollow part surrounded by a shell containing a resin, and a hydrophobic solvent is added to the hollow part.
  • This is a step of preparing a precursor composition containing precursor particles encapsulating.
  • the precursor particles are formed by polymerizing the polymerizable monomer contained in the droplets of the monomer composition, and the shell of the precursor particles contains a polymer of the polymerizable monomer as a resin.
  • the polymerization temperature is preferably 40 to 90°C, more preferably 50 to 80°C.
  • the reaction time for polymerization is preferably 1 to 48 hours, more preferably 4 to 36 hours.
  • a polymerizable monomer may be further added during the polymerization reaction of the polymerizable monomer in the suspension to perform the polymerization reaction. By performing the polymerization reaction in two stages in the polymerization process, the pressure resistance of the hollow particles may be improved in some cases.
  • the shell portion of the droplet of the monomer composition containing the hydrophobic solvent is polymerized, so as mentioned above, the interior of the resulting precursor particles is filled with the hydrophobic solvent. A hollow section is formed.
  • This step is a step of obtaining a solid component containing precursor particles by solid-liquid separating the precursor composition containing precursor particles obtained by the above-mentioned polymerization step.
  • the method for solid-liquid separation of the precursor composition is not particularly limited, and any known method can be used.
  • solid-liquid separation methods include centrifugation, filtration, static separation, etc. Among these, centrifugation or filtration can be adopted, and from the viewpoint of ease of operation, centrifugation is preferred. may be adopted.
  • an arbitrary step such as a preliminary drying step may be performed before the solvent removal step described below is performed.
  • the pre-drying step include a step of pre-drying the solid content obtained after the solid-liquid separation step using a drying device such as a dryer or a drying device such as a hand dryer.
  • This step is a step of removing the hydrophobic solvent contained in the precursor particles obtained by the solid-liquid separation step. By removing the hydrophobic solvent contained in the precursor particles in air, the hydrophobic solvent inside the precursor particles is replaced with air, and hollow particles filled with gas are obtained.
  • in air in this process means an environment where there is no liquid outside the precursor particles, and a very small amount of the hydrophobic solvent that does not affect the removal of the hydrophobic solvent outside the precursor particles. This means an environment where only 100% of liquid exists.
  • “In air” can also be translated as a state in which the precursor particles are not present in the slurry, or a state in which the precursor particles are present in a dry powder. That is, in this step, it is important to remove the hydrophobic solvent in an environment where the precursor particles are in direct contact with external gas.
  • the method for removing the hydrophobic solvent in the precursor particles in air is not particularly limited, and any known method can be employed. Examples of the method include a vacuum drying method, a heat drying method, a flash drying method, or a combination of these methods.
  • the heating temperature needs to be higher than the boiling point of the hydrophobic solvent and lower than the maximum temperature at which the shell structure of the precursor particles does not collapse.
  • the heating temperature may be, for example, 50 to 200°C, 70 to 200°C, or 100 to 200°C.
  • the drying atmosphere is not particularly limited and can be appropriately selected depending on the use of the hollow particles.
  • Examples of the drying atmosphere include air, oxygen, nitrogen, argon, and the like. Further, by once filling the inside of the hollow particle with gas and then drying it under reduced pressure, hollow particles whose insides are temporarily in a vacuum state can also be obtained.
  • Another method is to remove the hydrophobic solvent contained in the precursor particles in a slurry containing precursor particles and an aqueous medium without solid-liquid separation of the slurry-like precursor composition obtained in the polymerization step. May be removed.
  • the hydrophobic solvent contained in the precursor particles can be removed by bubbling an inert gas into the precursor composition at a temperature equal to or higher than the boiling point of the hydrophobic solvent minus 35°C. can.
  • the hydrophobic solvent is a mixed solvent containing multiple types of hydrophobic solvents and has multiple boiling points
  • the boiling point of the hydrophobic solvent in the solvent removal step is the boiling point of the solvent contained in the mixed solvent.
  • the boiling point of the solvent with the highest boiling point that is, the highest boiling point of the plurality of boiling points.
  • the temperature when bubbling the inert gas into the precursor composition is preferably a temperature equal to or higher than the boiling point of the hydrophobic solvent minus 30°C in order to reduce the residual amount of the hydrophobic solvent in the hollow particles.
  • the temperature is more preferably 20° C. or higher.
  • the temperature during bubbling is usually higher than the polymerization temperature in the polymerization step.
  • the temperature during bubbling may be 50°C or more and 100°C or less.
  • the inert gas to be bubbled is not particularly limited, and examples thereof include nitrogen, argon, and the like.
  • Bubbling conditions are appropriately adjusted depending on the type and amount of the hydrophobic solvent so as to remove the hydrophobic solvent encapsulated in the precursor particles, and are not particularly limited. Bubbling may be carried out at an amount of /min for 1 to 10 hours. In this method, a slurry of hollow particles containing an aqueous medium is obtained. By drying the hollow particles obtained by solid-liquid separation of this slurry and removing the aqueous medium contained in the hollow particles, hollow particles whose hollow portions are occupied by gas are obtained.
  • a method for obtaining hollow particles whose hollow parts are filled with gas by removing a hydrophobic solvent in the precursor particles in air after solid-liquid separation of a slurry-like precursor composition After removing the hydrophobic solvent contained in the precursor particles in a slurry containing an aqueous medium, solid-liquid separation is performed, and the aqueous medium in the hollow particles is removed in the air, so that the hollow parts are filled with gas.
  • the former method has the advantage that the hollow particles are less likely to be crushed during the process of removing the hydrophobic solvent, while the latter method uses bubbling with an inert gas. This has the advantage that the amount of residual hydrophobic solvent is reduced.
  • the hydrophobic organic solvent contained in the precursor particles is removed without solid-liquid separation of the slurry-like precursor composition obtained in the polymerization step.
  • the method include, for example, a method of evaporating and distilling the hydrophobic organic solvent contained in the precursor particles from the precursor composition under a predetermined pressure (high pressure, normal pressure, or reduced pressure); Alternatively, a method may be used in which an inert gas such as nitrogen, argon, helium, or water vapor is introduced into the precursor composition under normal pressure or reduced pressure and the precursor composition is evaporated and distilled off.
  • the cleaning process is a process in which an acid or alkali is added to remove the dispersion stabilizer remaining in the precursor composition containing precursor particles before the solvent removal process. This is a process to be carried out.
  • the dispersion stabilizer used is an inorganic dispersion stabilizer that is soluble in acid, it is preferable to add an acid to the precursor composition containing precursor particles and perform washing.
  • an acid is added to the precursor composition containing precursor particles to adjust the pH to preferably 6.5 or less, more preferably 6. It is preferable to adjust as follows.
  • inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, etc.
  • organic acids such as formic acid and acetic acid can be used, but because they have a high removal efficiency of the dispersion stabilizer and a small burden on the manufacturing equipment. , particularly sulfuric acid.
  • the hollow part re-replacement process is a process of replacing the gas or liquid inside the hollow particle with another gas or liquid. By such substitution, it is possible to change the environment inside the hollow particle, selectively confine molecules inside the hollow particle, and modify the chemical structure inside the hollow particle according to the purpose.
  • the hollow particles used in the present disclosure include a polymer of the above-mentioned polymerizable monomer as a main component of the shell, and the polymer forms the skeleton of the shell of the hollow particle.
  • the polymer contained in the shell contains a crosslinkable monomer unit in order to improve pressure resistance.
  • the content of crosslinkable monomer units in 100 parts by mass of all monomer units of the above polymer is 50 parts by mass or more, preferably 60 parts by mass or more, more preferably 70 parts by mass or more, even more preferably is 80 parts by mass or more.
  • the above-mentioned polymer may contain non-crosslinkable monomer units within a range that does not impair the effects of the present disclosure, and in that case, the content of cross-linkable monomer units is equal to or less than that of the above-mentioned polymer. For example, it may be 95 parts by mass or less or 90 parts by mass or less out of 100 parts by mass of all monomer units.
  • the polymer contained in the shell contains a trifunctional or higher functional crosslinkable monomer unit.
  • the lower limit of the content of trifunctional or higher crosslinkable monomer units in 100 parts by mass of all monomer units of the polymer is preferably 10 parts by mass or more, more preferably 20 parts by mass or more,
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less.
  • the polymer contained in the shell contains a bifunctional crosslinkable monomer unit and a trifunctional or higher functional crosslinkable monomer unit.
  • a bifunctional crosslinkable monomer unit and a trifunctional or higher functional crosslinkable monomer unit In a total of 100 parts by mass, the content of trifunctional or higher-functional crosslinkable monomer units is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 20 parts by mass or more, while , preferably 50 parts by mass or less, more preferably 40 parts by mass or less.
  • a crosslinkable monomer unit derived from a bifunctional crosslinkable monomer may be referred to as a "bifunctional crosslinkable monomer unit", and a crosslinkable monomer unit derived from a trifunctional or higher functional crosslinkable monomer may be referred to as a "bifunctional crosslinkable monomer unit”.
  • a crosslinkable monomer unit derived from a trifunctional or more functional crosslinkable monomer unit may be referred to as a "trifunctional or higher functional crosslinkable monomer unit.”
  • the polymer contained in the shell preferably contains an acrylic monomer unit because the uniformity of the shell is likely to be improved.
  • the content of the acrylic monomer unit is not particularly limited, but is preferably 10 parts by mass or more, more preferably 20 parts by mass or more based on 100% by mass of the total monomer units.
  • the hollow particles used in the present disclosure have the advantage that the above-mentioned polymer contained in the shell is composed of acrylic monomer units and hydrocarbon monomer units, since the uniformity of the shell is easily improved and the pressure resistance is improved. It is preferable to include.
  • the total content of acrylic monomer units and hydrocarbon monomer units in 100 parts by mass of all monomer units of the above polymer is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, and still more preferably is 98 parts by mass or more, more preferably 99 parts by mass or more.
  • the acrylic monomer unit and the hydrocarbon monomer unit are In a total of 100 parts by mass of units, the content of hydrocarbon monomer units is preferably 10 parts by mass or more as a lower limit, more preferably 20 parts by mass or more, still more preferably 30 parts by mass or more, and as an upper limit. is preferably 90 parts by mass or less, more preferably 80 parts by mass or less.
  • the content of the polymer synthesized from the polymerizable monomer is preferably 96% by mass or more, more preferably 97% by mass or more based on 100% by mass of the total solid content of the shell. It is.
  • the content of the polymer is preferably equal to or higher than the lower limit, it is possible to suppress a decrease in the pressure resistance of the hollow particles. That is, from the viewpoint of suppressing a decrease in the pressure resistance of the hollow particles, the content of components other than the above polymer is preferably 4% by mass or less, more preferably 3% by mass or less in 100% by mass of the total solid content of the shell. It is.
  • components other than the above polymer contained in the hollow particles used in the present disclosure include, for example, a polymerizable monomer remaining unreacted, a polymer different from the polymer of the above polymerizable monomer, Examples include decomposition products of polymerization initiators and low molecular compounds contained as impurities in raw materials for polymerizable monomers. Those with a low boiling point (for example, a boiling point of 200° C. or lower) are usually removed during the manufacturing process of hollow particles, but those with a high boiling point (for example, a boiling point of 250° C. or higher) may remain without being removed.
  • a low boiling point for example, a boiling point of 200° C. or lower
  • a high boiling point for example, a boiling point of 250° C. or higher
  • a plasticizer is added as necessary to keep the storage modulus G' of the hollow particle-containing elastomer composition measured under predetermined conditions to a certain value or less.
  • the plasticizer those commonly used in applications such as automotive materials, general plastics, and rubber products, or those that impart flexibility can be used.
  • petroleum softeners such as process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt, and petrolatum
  • coal tar softeners such as coal tar and coal tar pitch
  • fatty oil-based softeners tall oil; waxes such as beeswax, carnauba wax, and lanolin; fatty acids and fatty acid salts such as ricinoleic acid, palmitic acid, barium stearate, calcium stearate, and zinc laurate; petroleum resins, atactic polypropylene , synthetic polymer substances such as coumaron indene resin; ester plasticizers such as dioctyl phthalate, dioctyl adipate, and dioctyl sebacate; carbonate ester plasticizers such as diisododecyl carbonate; other microcrystalline waxes, sub(factice), Liquid polybutadiene, modified liquid polybutadiene, liquid thiokol, hydrocarbon synthetic lubricating oil, etc. can be used as the plasticizer. These plasticizers can be used alone or in combination of two or more.
  • the plasticizer has reactive active sites that bond with the base elastomer, and It is preferable to include a plasticizer selected from the group consisting of polymers having an average molecular weight of 1,000 or more and 100,000 or less (hereinafter sometimes referred to as "reactive active site-containing plasticizer").
  • the above-mentioned reactive active point-containing plasticizer not only functions as a plasticizer during melt-kneading of the elastomer composition and its raw material mixture, but also functions as a plasticizer during melt-kneading of the elastomer composition and its raw material mixture or a molded article using the elastomer composition.
  • the plasticizer itself binds to the base elastomer molecules and integrates with the matrix in the elastomer composition and its raw material mixture, so bleeding of the plasticizer can be prevented. In particular, when a large amount of plasticizer is used, the plasticizer tends to bleed.
  • the above-mentioned plasticizer containing reactive active sites can be used. preferable.
  • the polymer skeleton which is the main body in the molecular structure of the plasticizer containing reactive active sites, has appropriate compatibility and softening or fluidity during melt-kneading of the elastomer composition and its raw material mixture, and functions as a plasticizer. It may have any chemical structure as long as it is possible to do so; for example, a hydrocarbon polymer structure that may contain heteroatoms such as oxygen, nitrogen, or silicon in its main chain or side chain.
  • a skeleton having the following is exemplified.
  • the reactive active site that binds to the base elastomer means a chemical structure that has the function of forming a chemical, physical, or physicochemical bond with the reactive active site that exists on the base elastomer.
  • the reactive active site-containing plasticizer When the reactive active site-containing plasticizer has two or more reactive active sites in one molecule that bond with the base elastomer, the reactive active site-containing plasticizer causes cross-linking between two base elastomer molecules via the plasticizer. Since the plasticizer and matrix form a structure and are highly integrated, it is highly effective in preventing plasticizer bleed.
  • the reactive active point-containing plasticizer has two or more reactive active sites in one molecule and the reactive active sites can also bind to hollow particles
  • the reactive active site-containing plasticizer has two or more reactive active sites in one molecule, It not only forms a crosslinked structure between base material elastomer molecules, but also between base material elastomer molecules and hollow particles, and between two hollow particles, which has the effect of preventing plasticizer bleed.
  • the reactive activity per molecule of the reactively active site-containing plasticizer is The number of points is preferably 2 to 10,000.
  • the reactive active point-containing plasticizer is preferably liquid at at least one point within the range of room temperature (20°C ⁇ 15°C), and at least one point within the range of 10°C to 30°C. It is more preferable to be liquid at a temperature of 20° C. to 25° C., and more preferably to be liquid at at least one point within a temperature range of 20° C. to 25° C. From the same viewpoint of imparting sufficient plasticity, the reactive active site-containing plasticizer preferably has a glass transition temperature of -10°C or lower, more preferably -120°C to -20°C.
  • the base material elastomer has ethylenic double bonds, such as butadiene rubber or styrene-butadiene rubber
  • the ethylenic double bonds on the base material elastomer can act as reaction active sites, so they act as reaction active sites that bond with the base material elastomer.
  • Ethylenic double bonds can be utilized.
  • the shell of the hollow particle is synthesized from a monomer or a crosslinkable monomer having an ethylenic double bond, and unreacted ethylenic double bonds remain on the shell, the ethylenic Since a double bond can serve as a reactive active site, an ethylenic double bond can be used as a reactive active site that binds to hollow particles. Therefore, when an elastomer selected from the group consisting of butadiene rubber and styrene-butadiene rubber is used as the base elastomer, a polymer having an ethylenic double bond can be used as the reactive active site-containing plasticizer.
  • diene rubber that is liquid at room temperature is preferably used as the reactive active point-containing plasticizer selected from the group consisting of polymers having an ethylenic double bond and a weight average molecular weight of 1,000 or more and 100,000 or less.
  • diene rubbers that are liquid at room temperature include unmodified liquid polybutadiene rubber; modified liquid polybutadiene rubber such as acrylate-modified liquid polybutadiene; liquid styrene-butadiene rubber; unmodified liquid polyisoprene rubber; and modified liquid polyisoprene rubber such as hydroxyl-terminated liquid polyisoprene rubber.
  • examples include polyisoprene rubber. Among these, unmodified liquid polybutadiene rubber and modified liquid polybutadiene rubber are preferred.
  • polyolefins having terminal double bonds are also preferably used.
  • polyolefin having a terminal double bond examples include polypropylene having a terminal double bond.
  • the content of the plasticizer in the elastomer composition is not particularly limited, and is usually 35 to 100 parts by weight, preferably 45 to 90 parts by weight, based on 100 parts by weight of the base elastomer.
  • the effect of imparting plasticity will be superior to the increase in elasticity of the composition due to the formation of a connected structure, as long as the content of the reactive active point-containing plasticizer is within an appropriate range. , performs a sufficient function as a plasticizer and at the same time prevents bleeding.
  • the content of the reactive active point-containing plasticizer is preferably 65 to 90 parts by mass, more preferably 70 parts by mass, based on 100 parts by mass of the base elastomer. ⁇ 85 parts by weight, more preferably 70 to 80 parts by weight.
  • the proportion of the plasticizer containing reactive sites is preferably 5 to 35% by mass, more preferably 5% to 35% by mass relative to the total amount of plasticizer. is 10 to 30% by mass.
  • Vulcanization/crosslinking agent In the hollow particle-containing elastomer composition of the present disclosure, a vulcanizing/crosslinking agent is added as necessary to crosslink the base elastomer.
  • Vulcanization/crosslinking agents include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, and insoluble sulfur; inorganic vulcanizing agents such as sulfur chloride, selenium, and tellurium; morpholine disulfide, alkylphenol disulfides, thiuram disulfides, and dithiocarbamic acid.
  • Sulfur-containing organic compounds such as salts; 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, 2,5- Examples include organic peroxides such as dimethyl-2,5-di(t-butylperoxy)hexane and 1,3-bis-(t-butylperoxy-isopropyl)benzene. These vulcanizing/crosslinking agents can be used alone or in combination of two or more.
  • the blending amount of the vulcanizing/crosslinking agent is appropriately selected depending on the type thereof, but it is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the base elastomer. is within the range of Further, a vulcanization accelerator and a vulcanization accelerating aid may be used in combination, if necessary.
  • the hollow particle-containing elastomer composition of the present disclosure may contain conventionally known reinforcing agents, fillers, vulcanization accelerators, softeners, processing aids, anti-aging agents, ultraviolet absorbers, blowing agents, foaming agents, etc., as necessary.
  • Additives such as auxiliary agents, lubricants, pigments, colorants, dispersants, and flame retardants may be contained within the range that does not impair the purpose of the present disclosure.
  • the reinforcing agent has the effect of increasing the mechanical properties of the elastomer, such as tensile strength, tear strength, and abrasion resistance.
  • reinforcing agents examples include carbon blacks such as SRF, GPF, FEF, HAF, ISAF, SAF, FT, and MT, and carbon blacks that have been surface-treated with silane coupling agents. , finely divided silicic acid, silica, etc. These reinforcing agents can be used alone or in combination of two or more.
  • the blending amount of the reinforcing agent is not particularly limited, and is usually 230 parts by mass or less based on 100 parts by mass of the base elastomer.
  • fillers examples include inorganic fillers such as calcium carbonate, light calcium carbonate, heavy calcium carbonate, magnesium carbonate, talc, clay, glass beads, and glass balloons; high styrene resin, coumaron indene resin, phenolic resin, lignin, and modified Organic fillers such as melamine resin and petroleum resin can be used, and inorganic fillers are particularly preferably used. These fillers can be used alone or in combination of two or more.
  • the amount of filler blended is not particularly limited, and is usually 30 to 200 parts by weight based on 100 parts by weight of the base elastomer.
  • vulcanization accelerator examples include aldehyde ammonias such as hexamethylenetetramine; guanidines such as diphenylguanidine, di(o-tolyl)guanidine, and o-tolyl-piguanide; thiocarbanilide, di(o-tolyl) Thiourea such as thiourea, N,N'-diethylthiourea, dilaurylthiourea; thiazoles such as mercaptobenzothiazole, dibenzothiazole disulfide, N,N'-di(ethylthiocarbamoylthio)benzothiazole; N-t-butyl Sulfenamides such as -2-benzothiazylsulfenamide; Thiurams such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, and tetrabutylthiuram dis
  • the amount of the vulcanization accelerator to be blended is usually in the range of 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, based on 100 parts by weight of the base elastomer.
  • Specific examples of the vulcanization accelerator include metal oxides such as magnesium oxide and zinc white; organic acids (salts) such as stearic acid, oleic acid, and zinc stearate; Stearic acid is preferably used.
  • These vulcanization accelerators can be used alone or in combination of two or more.
  • the blending amount of the vulcanization accelerator is usually in the range of 0.5 to 20 parts by weight based on 100 parts by weight of the base elastomer.
  • Softeners include process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt, petroleum softeners such as petrolatum; coal tar softeners such as coal tar and coal tar pitch; castor oil, linseed oil, rapeseed oil, Fatty oil-based softeners such as coconut oil; tall oil; sub; waxes such as beeswax, carnauba wax, and lanolin; fatty acids and fatty acid salts such as ricinoleic acid, palmitic acid, barium stearate, calcium stearate, and zinc laurate; petroleum Synthetic polymer substances such as resins, atactic polypropylene, and coumaron indene resin; Ester plasticizers such as dioctyl phthalate, dioctyl adipate, and dioctyl sebacate; Carbonate ester plasticizers such as diisododecyl carbonate; Other microcrystalline waxes, Sub(factice), liquid poly
  • Processing aids include higher fatty acids such as ricinoleic acid, stearic acid, palmitic acid, and lauric acid; salts of higher fatty acids such as barium stearate, zinc stearate, and calcium stearate; ricinoleic acid, stearic acid, palmitic acid, and lauric acid.
  • higher fatty acids such as ricinoleic acid, stearic acid, palmitic acid, and lauric acid
  • salts of higher fatty acids such as barium stearate, zinc stearate, and calcium stearate
  • ricinoleic acid, stearic acid, palmitic acid, and lauric acid examples include esters of higher fatty acids such as.
  • anti-aging agents include amine-based, hindered phenol-based, and sulfur-based anti-aging agents.
  • lubricants include compounds or mixtures of hydrocarbons such as liquid paraffin, fatty acids such as stearic acid, fatty acid amides such as stearamide, esters such as butyl stearate, alcohols such as stearyl alcohol, and metal soaps. etc. can be mentioned.
  • Pigments include inorganic pigments such as titanium dioxide, zinc oxide, ultramarine blue, red iron oxide, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, and nitrate; azo pigments, phthalocyanine pigments, quinacridone pigments, quinacridonequinone pigments, and dioxazine pigments.
  • anthrapyrimidine pigments anthanthrone pigments, indanthrone pigments, flavanthrone pigments, perylene pigments, perinone pigments, diketopyrrolopyrrole pigments, quinonaphthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments, isoindoline pigments, carbon Examples include organic pigments such as black.
  • the method for producing the hollow particle-containing elastomer composition of the present disclosure is not particularly limited. Generally, a raw material mixture containing the base elastomer and hollow particles, and if necessary, other components such as a plasticizer and a vulcanizing/crosslinking agent, is mixed by pre-kneading at a temperature at which the base elastomer softens. After the components are made uniform, final kneading such as roll kneading that applies high shear force is performed to further make the blended components uniform and fine, thereby obtaining a hollow particle-containing elastomer composition.
  • final kneading such as roll kneading that applies high shear force is performed to further make the blended components uniform and fine, thereby obtaining a hollow particle-containing elastomer composition.
  • the vulcanizing/crosslinking agent may be added in the final kneading step after the preliminary kneading. Furthermore, hollow particles may be added in the final kneading step.
  • the shell contains hollow particles containing a polymer containing 50 parts by mass or more of crosslinkable monomer units in 100 parts by mass of total monomer units as the resin, and the shell is formed after a homogenization treatment of the blended components.
  • the raw material mixture is pre-kneaded using a closed kneader at a temperature such that the storage elastic modulus G' obtained by dynamic viscoelasticity measurement performed after the homogenization treatment is 2.5 MPa or less, Immediately after pre-kneading the raw material mixture, or after preheating at a temperature at which the storage elastic modulus G' obtained by dynamic viscoelasticity measurement performed after the homogenization treatment is 2.5 MPa or less, the homogenization treatment is performed. It is preferable to knead at a temperature at which the storage modulus G' obtained by dynamic viscoelasticity measurement performed after treatment is 2.5 MPa or less. Further, in order to uniformly mix the components, it is preferable that the kneading step (finish kneading step) is performed by roll kneading.
  • "kneading at a kneading temperature of 60°C or higher” means setting the temperature of the kneading device to 60°C or higher.
  • "kneading at a temperature of A°C”, “kneading temperature at A°C”, “preheating at a temperature of A°C”, or “molding temperature at A°C” means a kneading device, a heating device, a molding device. This means setting the device temperature to the corresponding value (A).
  • the above manufacturing method uses hollow particles whose strength is increased by a shell made of a resin containing a polymer with a high content of cross-linkable monomer units, and whose strength does not decrease even in high-temperature environments thanks to the cross-linked structure.
  • the hollow particles are not easily crushed in the kneading process, the void residual rate is stable, and the properties or functions provided by the hollow particles are not easily lost, so that the hollow particles have excellent properties or functions.
  • An elastomer composition containing hollow particles is obtained. Furthermore, according to the above manufacturing method, even if the raw material mixture is repeatedly kneaded many times, the porosity that the hollow particles that exist inside the raw material mixture initially had can be maintained, and the porosity of the hollow particles can be maintained. Less likely to cause loss of effectiveness. Therefore, before the elastomer composition is crosslinked (vulcanized), the elastomer composition recovered from the molding device can be reused as a raw material mixture.
  • a recipe is specified in advance such that the storage modulus G' at 60° C. obtained by dynamic viscoelasticity measurement of the raw material mixture is 2.5 MPa or less.
  • the dynamic viscoelasticity measurement of the raw material mixture can be performed using the same method as the dynamic viscoelasticity measurement of the hollow particle-containing elastomer composition, but the raw material mixture is a composition before being kneaded and the uniformity of the blended components is sufficient. Therefore, if dynamic viscoelasticity measurement is performed as it is, the measured values will vary greatly or cannot be measured. Therefore, it is necessary to measure the dynamic viscoelasticity of the raw material mixture after uniformizing the distribution of the ingredients contained in the raw material mixture to obtain stable measured values.
  • the equalization treatment may be performed under the following conditions, for example.
  • the difficulty of crushing the hollow particles during the manufacturing stage of the hollow particle-containing elastomer composition should be measured. As long as it can be evaluated properly, within a range where the influence on the change in storage modulus at 60°C is small, a simple raw material mixture that does not contain some of the components contained in the hollow particle-containing elastomer composition is used. You may also take measurements.
  • the vulcanization/crosslinking agent for hollow particle-containing elastomer compositions usually has a small effect on fluctuations in storage modulus at 60°C within the range of typical usage amounts of the vulcanization/crosslinking agent, so dynamic viscosity A pseudo mixture containing no vulcanizing/crosslinking agent can be used as a sample for elasticity measurement.
  • a composition containing a base elastomer, hollow particles, and other components such as a plasticizer, vulcanization/crosslinking agent, etc.
  • high shear force such as roll kneading is required.
  • hollow particles tend to be crushed by high shear force.
  • the above-mentioned specific raw material mixture is pre-kneaded using a closed kneader at a temperature such that the storage elastic modulus G' obtained by dynamic viscoelasticity measurement performed after the homogenization treatment is 2.5 MPa or less.
  • the load on the hollow particles can be reduced even when kneading with high shear force such as roll kneading is performed. Since the elastomer composition does not become excessively large, it is possible to produce a uniformly mixed elastomer composition while avoiding collapse of the hollow particles.
  • the closed-type kneader used in the preliminary kneading and the above-mentioned homogenization processing is equipped with a chamber in the center that accommodates the rubber material to be processed, and two rotors (stirring members) are installed in the chamber. It has a mechanism that grinds and kneads the rubber between two rotors.
  • a rotor is a roll-shaped rotating shaft with blades attached to it in order to uniformly mix all the ingredients without spilling anything. The rubber material is mixed in this chamber while being subjected to the shearing force of the rotor. .
  • a kneader or a Banbury mixer can be used as a closed kneading machine.More specifically, as a kneader, product name: Plasticorder Lab Station (manufactured by Brabender), product name: MS type pressurized type. Examples include a kneader (manufactured by Moriyama Co., Ltd.), and examples of the Banbury mixer include product name: MIXTRON BB MIXER (manufactured by Kobe Steel, Ltd.).
  • a kneader for finishing kneading for example, a two-roll mixing roll can be used, and more specifically, product name: Mixing Roll DY6-15 (manufactured by Daihan Co., Ltd.) can be mentioned.
  • Mixing Roll DY6-15 manufactured by Daihan Co., Ltd.
  • the closed kneader used for preliminary kneading and the closed kneader used for homogenization treatment do not need to have exactly the same configuration.
  • kneading can be performed by the following method. First, using a closed kneader such as a kneader or Banbury mixer, which has a lower shear force than roll kneading, the kneading temperature is set to 100°C, and after the temperature of the closed kneader has stabilized, the base elastomer is added. Then, while rotating the rotor of a closed kneader at a rotation speed of 30 to 100 rpm, components such as hollow particles, a plasticizer, and a vulcanizing/crosslinking agent are added in any order for preliminary kneading.
  • a closed kneader such as a kneader or Banbury mixer, which has a lower shear force than roll kneading
  • the kneading temperature is set to 100°C, and after the temperature of the closed kneader has stabilized, the base
  • the kneading temperature of the roll kneader is set to 60°C or higher, and after the temperature of the roll kneader becomes stable, the pre-kneaded raw material mixture is immediately put into the roll kneader and kneaded by the rolls.
  • a hollow particle-containing elastomer composition of the present disclosure is obtained.
  • immediateately in “immediately put into the roll kneader from the closed kneader” means that the time required to transfer the raw material mixture from the preliminary kneading process to the final kneading process is the time required to transfer the raw material mixture from the preliminary kneading process to the final kneading process. This means that the time is short enough to keep the degree of increase within a practically negligible range.
  • the porosity measured according to the method for measuring the residual porosity of a hollow particle-containing elastomer molded body, which will be described later, and the porosity finally obtained is preferably 10% or less, and preferably 5% or less. It is even more preferable.
  • time required to start finish kneading immediately after preliminary kneading without preheating is expressed in units of time, it is possible to start finish kneading of the raw material mixture within 10 minutes after preliminary kneading. Preferably, starting within 5 minutes is even more preferable.
  • the storage modulus G' of the raw material mixture is 2.5 MPa or less.
  • the raw material mixture is preheated in a heating device such as an oven to a preheating temperature of 60°C or higher for an appropriate period of time, for example, about 1 hour, and then put into a finishing kneading device and kneaded. It is preferable to start.
  • the vulcanizing/crosslinking agent may be added during the roll kneading step after the preliminary kneading. Additionally, hollow particles may be added during the roll kneading process. Further, in both preliminary kneading and roll kneading, it is preferable to perform kneading at a kneading temperature of 100° C. or lower in order to prevent the raw material mixture from being crosslinked by the vulcanizing/crosslinking agent.
  • the hollow particle-containing elastomer composition obtained as described above can be made into a molding material product having any form.
  • a molten hollow particle-containing elastomer composition may be formed into a long sheet, a block, a filler, etc., a long sheet may be wound into a roll, or the long sheet may be cut into a predetermined length. It may be subjected to secondary processing into a shape such as a rectangular shape.
  • the method for producing a molded article using the hollow particle-containing elastomer composition of the present disclosure is not particularly limited, but preferably includes a step of kneading the hollow particle-containing elastomer composition at a molding temperature of 60° C. or higher.
  • the components are made into a uniform molten state by kneading the elastomer composition, and then the elastomer composition is kneaded to form a uniform molten state, and then the elastomer composition is kneaded to form a uniform molten state.
  • the molding method By performing molding using the hollow particle-containing elastomer composition of the present disclosure at a molding temperature of 60° C. or higher, the storage modulus G' of the hollow particle-containing elastomer composition during molding can be 2.5 Mpa or less. Since loads such as external pressure and shear force applied to the hollow particles do not become excessive, it is possible to produce an elastomer molded body while avoiding crushing of the hollow particles.
  • the hollow particle-containing elastomer molded article obtained in the present disclosure can have a residual void ratio of 80% or more, preferably 90% or more, and more preferably 95% or more, as measured according to the test method below. is possible, and more preferably 100% can be achieved.
  • Method for measuring void remaining ratio of hollow particle-containing elastomer molded body A sheet-like hollow particle-containing elastomer molded body is produced by press-molding the hollow particle-containing elastomer composition using a hot press at 120° C. at a pressure of 1 MPa or less.
  • the specific gravity of the obtained elastomer molded body is measured, and the percentage of voids remaining in the hollow particles in the elastomer molded body is calculated according to the following formula (D).
  • the following formula (D) is the same as the formula (D) for calculating the void residual rate in the above-mentioned press test method performed to evaluate the crushability of hollow particles.
  • Vacancy remaining rate (%) ⁇ (ca)/(c-b) ⁇ 100
  • Formula (D) a: specific gravity of the molded body after pressing, b: Specific gravity of the compact assuming that voids are maintained (calculated value)
  • c Specific gravity of the molded body assuming that all hollow particles are crushed (calculated value)
  • An aqueous solution of 12.1 parts of sodium hydroxide (alkali metal hydroxide) dissolved in 121 parts of ion-exchanged water was gradually added under stirring to form a magnesium hydroxide colloid (a sparingly water-soluble metal hydroxide colloid).
  • a dispersion (4 parts of magnesium hydroxide) was prepared and used as an aqueous phase.
  • a liquid mixture was prepared by mixing the obtained aqueous phase and oil phase.
  • Solvent removal step The precursor particles obtained in the above solid-liquid separation step are heated in a vacuum dryer at 200°C under a nitrogen atmosphere for 12 hours to eliminate the hydrophobic particles contained in the particles. The solvent was removed to obtain hollow particles A. The obtained hollow particles were confirmed to have a spherical shape and a hollow portion based on the observation results using a scanning electron microscope and the porosity value.
  • volume Average Particle Size of Hollow Particles The volume average particle size of the hollow particles was measured using a particle size distribution analyzer (manufactured by Beckman Coulter, product name: Multisizer 4e). The measurement conditions were: aperture diameter: 50 ⁇ m, dispersion medium: Isoton II (product name), concentration 10%, and number of particles measured: 100,000. Specifically, 0.2 g of a particle sample was placed in a beaker, and a surfactant aqueous solution (manufactured by Fuji Film Co., Ltd., product name: Drywell) was added therein as a dispersant. Thereto, 2 ml of dispersion medium was further added to wet the particles, and then 10 ml of dispersion medium was added and dispersed for 1 minute using an ultrasonic disperser, followed by measurement using the above particle size distribution analyzer.
  • a particle size distribution analyzer manufactured by Beckman Coulter, product name: Multisizer 4e. The measurement conditions were: aperture diameter: 50 ⁇ m
  • a volumetric flask with a capacity of 100 cm 3 was filled with about 30 cm 3 of hollow particles, and the mass of the filled hollow particles was accurately weighed.
  • the volumetric flask filled with hollow particles was filled with isopropanol exactly up to the marked line while being careful not to introduce air bubbles.
  • the mass of isopropanol added to the volumetric flask was accurately weighed, and the apparent density D 1 (g/cm 3 ) of the hollow particles was calculated based on the above formula (I).
  • Example 1 [Production of elastomer composition, production of elastomer molded article]
  • Example 1 In a kneader (Plasticorder Lab Station, manufactured by Brabender), ethylene-propylene-diene terpolymer (EPDM) (Mooney viscosity at 100°C (JIS K6300), ML (1 + 4) 100°C: 25, product name: Nordel) IP 4725, manufactured by Dow Chemical Company), and kneading was started at a kneading temperature of 100°C and a rotation speed of 50 rpm.
  • EPDM ethylene-propylene-diene terpolymer
  • a two-roll mixing machine (model name: DY6-15, roll diameter: 6 inches, clearance between rolls: 0.5 mm, Daihan Then, while adding 1.5 parts of sulfur as a vulcanizing agent and 2 parts of tetrathyraum monosulfide (reagent grade) as a vulcanization accelerator, kneading with rolls (rotation speed: front roll Kneading was carried out at 24 rpm/21 rpm for the rear roll, kneading time: 15 minutes). The molten mixture after roll kneading was heated and dried at 80° C. for 6 hours to obtain the hollow particle-containing elastomer composition of Example 1.
  • the obtained hollow particle-containing elastomer composition is press-molded at a pressure of 1 MPa or less using a hot press at 120° C. to form a sheet-like molded body (hollow particle-containing elastomer molded body) with a thickness of 0.3 mm.
  • Example 2 A hollow particle-containing elastomer composition of Example 2 was obtained in the same manner as in Example 1, except that the preheating temperature was changed from 60°C to 80°C. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 1 to obtain a hollow particle-containing elastomer molded article of Example 2.
  • Example 3 In Example 1, the procedure was the same as in Example 1, except that 25 parts by mass of hollow particles B obtained in Production Example 2 was used instead of 25 parts by mass of hollow particles A obtained in Production Example 1. , the hollow particle-containing elastomer composition of Example 3 was obtained. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 1 to obtain a hollow particle-containing elastomer molded article of Example 3.
  • the non-oil-extended styrene-butadiene rubber used in Example 4 means styrene-butadiene rubber to which no oil component as a plasticizer is added.
  • a kneader Pulorder Lab Station, manufactured by Brabender
  • non-oil extended styrene-butadiene rubber Mooney viscosity at 100°C (JIS K6300), ML (1 + 4) 100°C: 52.0, styrene unit content: 23.5% by mass
  • product name: Nipol (registered trademark) 1502, manufacturer name: Nippon Zeon Co., Ltd.) was added, and kneading was started at a kneading temperature of 100°C and a rotation speed of 50 rpm.
  • the mixture after preliminary kneading was preheated by placing it in a 60°C oven for 1 hour or more before roll kneading, and the temperature of the mixture was maintained at 60°C.
  • a two-roll mixing machine (model name: DY6-15, roll diameter: 6 inches, clearance between rolls: 0.5 mm, Daihan Then, while adding 1.5 parts of sulfur as a vulcanizing agent and 2 parts of tetratyraum monosulfide (reagent grade) as a vulcanization accelerator, kneading with rolls (rotation speed: front roll Kneading was carried out at 24 rpm/21 rpm for the rear roll, kneading time: 15 minutes).
  • the molten mixture after roll kneading was heated and dried at 80° C. for 6 hours to obtain the hollow particle-containing elastomer composition of Example 4.
  • the obtained hollow particle-containing elastomer composition is press-molded at a pressure of 1 MPa or less using a hot press at 120° C. to form a sheet-like molded product (hollow particle-containing elastomer molded product) with a thickness of 0.3 mm.
  • Example 5 In Example 4, the amount of carbon was changed from 25 parts by mass to 45 parts by mass, the amount of process oil as a plasticizer was changed from 65 parts by mass to 55 parts by mass, and a plasticizer having an ethylenic double bond was used.
  • a hollow particle-containing elastomer composition of Example 5 was obtained in the same manner as in Example 4, except that the amount of a certain liquid polybutadiene was changed from 10 parts by mass to 20 parts by mass.
  • the obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 4 to obtain a hollow particle-containing elastomer molded article of Example 5.
  • Example 6 In Example 4, the amount of carbon was changed from 25 parts by mass to 45 parts by mass, the amount of process oil as a plasticizer was changed from 65 parts by mass to 0 parts by mass, and a plasticizer having an ethylenic double bond was used.
  • a hollow particle-containing elastomer composition of Example 6 was obtained in the same manner as in Example 4, except that the amount of a certain liquid polybutadiene was changed from 10 parts by mass to 60 parts by mass.
  • the obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 4 to obtain a hollow particle-containing elastomer molded article of Example 6.
  • Example 7 In Example 4, the amount of carbon was changed from 25 parts by mass to 45 parts by mass, the amount of process oil as a plasticizer was changed from 65 parts by mass to 0 parts by mass, and a plasticizer having an ethylenic double bond was used.
  • Example 7 was carried out in the same manner as in Example 4, except that the amount of a certain liquid polybutadiene was changed from 10 parts by mass to 75 parts by mass, and regarding the heating conditions, the preheating temperature was changed from 60 °C to 80 °C.
  • An elastomer composition containing hollow particles was obtained. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 4 to obtain a hollow particle-containing elastomer molded article of Example 7.
  • Example 8 In Example 4, the amount of carbon was changed from 25 parts by mass to 45 parts by mass, the amount of process oil as a plasticizer was changed from 65 parts by mass to 0 parts by mass, and a plasticizer having an ethylenic double bond was used.
  • a hollow particle-containing elastomer composition of Example 8 was obtained in the same manner as in Example 4, except that the amount of a certain liquid polybutadiene was changed from 10 parts by mass to 80 parts by mass.
  • the obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 4 to obtain a hollow particle-containing elastomer molded article of Example 8.
  • the oil-extended styrene-butadiene rubber used in Example 9 means a styrene-butadiene rubber to which several mass % of an oily component as a plasticizer is added.
  • a kneader Pulorder Lab Station, manufactured by Brabender
  • oil-extended styrene-butadiene rubber Mooney viscosity at 100°C (JIS K6300), ML (1+4) 100°C: 49.0, styrene unit content: 40 .0% by mass
  • kneading was started at a kneading temperature of 100°C and a rotation speed of 50 rpm.
  • the mixture after preliminary kneading was preheated by placing it in a 60°C oven for 1 hour or more before roll kneading, and the temperature of the mixture was maintained at 60°C.
  • a two-roll mixing machine (model name: DY6-15, roll diameter: 6 inches, clearance between rolls: 0.5 mm, Daihan Then, while adding 1.5 parts of sulfur as a vulcanizing agent and 2 parts of tetratyraum monosulfide (reagent grade) as a vulcanization accelerator, kneading with rolls (rotation speed: front roll Kneading was carried out at 24 rpm/21 rpm for the rear roll, kneading time: 15 minutes).
  • the molten mixture after roll kneading was heated and dried at 80° C. for 6 hours to obtain the hollow particle-containing elastomer composition of Example 9.
  • the obtained hollow particle-containing elastomer composition is press-molded at a pressure of 1 MPa or less using a hot press at 120° C. to form a sheet-like molded product (hollow particle-containing elastomer molded product) with a thickness of 0.3 mm.
  • Example 10 In Example 9, the amount of liquid polybutadiene, which is a plasticizer having an ethylenic double bond, was changed from 60 parts by mass to 75 parts by mass, and regarding the heating conditions, the preheating temperature was changed from 60 ° C. to 80 ° C. A hollow particle-containing elastomer composition of Example 10 was obtained in the same manner as in Example 9 except for. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 9 to obtain a hollow particle-containing elastomer molded article of Example 10.
  • Example 11 In Example 9, the hollow particles of Example 11 were prepared in the same manner as in Example 9, except that the amount of liquid polybutadiene, which is a plasticizer having an ethylenic double bond, was changed from 60 parts by mass to 80 parts by mass. A containing elastomer composition was obtained. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 9 to obtain a hollow particle-containing elastomer molded article of Example 11.
  • the amount of liquid polybutadiene which is a plasticizer having an ethylenic double bond
  • Example 12 Butadiene rubber (Mooney viscosity at 100°C (JIS K6300), ML (1+4) 100°C: 44.0, styrene unit content: 0% by mass, 100 parts by mass of Nipol (registered trademark) BR1220 (product name: Nipol (registered trademark) BR1220, manufactured by Nippon Zeon Co., Ltd.) was added, and kneading was started at a kneading temperature of 100° C. and a rotation speed of 50 rpm to produce hollow particles A obtained in Production Example 1.
  • Nipol registered trademark
  • BR1220 product name: Nipol (registered trademark) BR1220, manufactured by Nippon Zeon Co., Ltd.
  • the mixture after preliminary kneading was preheated by placing it in a 60°C oven for 1 hour or more before roll kneading, and the temperature of the mixture was maintained at 60°C.
  • a two-roll mixing machine (model name: DY6-15, roll diameter: 6 inches, clearance between rolls: 0.5 mm, Daihan Then, while adding 1.5 parts of sulfur as a vulcanizing agent and 2 parts of tetratyraum monosulfide (reagent grade) as a vulcanization accelerator, kneading with rolls (rotation speed: front roll Kneading was carried out at 24 rpm/21 rpm for the rear roll, kneading time: 15 minutes).
  • the molten mixture was heated and dried at 80° C. for 6 hours to obtain a hollow particle-containing elastomer composition of Example 12.
  • the obtained hollow particle-containing elastomer composition is press-molded at a pressure of 1 MPa or less using a hot press at 120° C. to form a sheet-like molded product (hollow particle-containing elastomer molded product) with a thickness of 0.3 mm.
  • Example 13 In Example 12, the amount of liquid polybutadiene, which is a plasticizer having an ethylenic double bond, was changed from 60 parts by mass to 75 parts by mass, and regarding the heating conditions, the preheating temperature was changed from 60 ° C. to 80 ° C.
  • a hollow particle-containing elastomer composition of Example 13 was obtained in the same manner as in Example 12 except for. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 12 to obtain a hollow particle-containing elastomer molded article of Example 13.
  • Example 14 In Example 12, the hollow particles of Example 14 were prepared in the same manner as in Example 12, except that the amount of liquid polybutadiene, which is a plasticizer having an ethylenic double bond, was changed from 60 parts by mass to 80 parts by mass. A containing elastomer composition was obtained. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 12 to obtain a hollow particle-containing elastomer molded article of Example 14.
  • the amount of liquid polybutadiene which is a plasticizer having an ethylenic double bond
  • Comparative example 1 A hollow particle-containing elastomer composition of Comparative Example 1 was obtained in the same manner as in Example 1, except that no preheating was performed. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 1 to obtain a hollow particle-containing elastomer molded article of Comparative Example 1.
  • Comparative example 2 A hollow particle-containing elastomer composition of Comparative Example 2 was obtained in the same manner as in Example 1, except that preheating was not performed and roll kneading was also performed without heating. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 1 to obtain a hollow particle-containing elastomer molded article of Comparative Example 2.
  • Comparative example 3 A hollow particle-containing elastomer composition of Comparative Example 3 was obtained in the same manner as in Example 1, except that the amount of plasticizer was changed to 30 parts by mass. The obtained hollow particle-containing elastomer composition was press-molded under the same molding conditions as in Example 1 to obtain a hollow particle-containing elastomer molded article of Comparative Example 3.
  • the final formulation is the same as that of the raw material mixture and the hollow particle-containing elastomer composition. become. From the measurement results, the storage elastic modulus G' at 60°C of the elastomer composition, the storage elastic modulus G' at 60°C of the raw material mixture, the storage elastic modulus G' at the temperature at the start of roll kneading (preheating temperature) of the raw material mixture, and the raw material The storage modulus G' of the mixture at the roll kneading temperature was determined.
  • Examples 1 and 3 hollow particles were prepared in which the base elastomer and the resin forming the shell contained a polymer containing 50 parts by mass or more of crosslinkable monomer units in 100 parts by mass of total monomer units.
  • An elastomer composition was produced using a raw material mixture containing the following: Steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C. As a result, in Example 1, the storage modulus at 60° C.
  • Example 3 the storage modulus at 60° C. of the elastomer composition and the storage modulus at 60° C. of the raw material mixture after homogenization treatment were 1.7 MPa.
  • the storage modulus at 60° C. of the elastomer composition and the storage modulus at 60° C. of the raw material mixture after the homogenization treatment were 1.6 MPa. Therefore, in both Examples 1 and 3, the storage modulus at 60° C. of the elastomer composition and the storage modulus at 60° C. of the raw material mixture after homogenization treatment were 2.5 MPa or less.
  • the storage modulus at 60°C shows that the composition differs to this extent. There were no significant changes.
  • Example 1 the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.7 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading.
  • Example 3 the storage modulus of the raw material mixture at the temperature at the start of roll kneading (equal to the preheating temperature), that is, 60°C, was 1.6 MPa, which was 2.5 MPa or less.
  • Example 2 the same raw material mixture as in Example 1 was used, and the steps from pre-kneading to roll kneading were carried out at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 80°C, and a roll-kneading temperature of 80°C.
  • An elastomer composition was prepared. Since the raw material mixture used in Example 2 and the obtained elastomer composition were the same as in Example 1, their storage modulus at 60° C. was 2.5 MPa or less.
  • Example 1 when a sheet-like molded body was manufactured by press-molding the elastomer composition obtained in Example 2, the residual rate of voids of hollow particles present in the molded body was 100%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • Example 1 and Example 2 raw material mixtures having the same composition were used, but the temperature at the start of roll kneading of the raw material mixtures (equal to the preheating temperature) was different. That is, the temperature at the start of roll kneading in Example 1 is 60°C, and the temperature at the start of roll kneading in Example 2 is 80°C.
  • Example 2 the temperature at the start of roll kneading of the raw material mixture and the roll kneading temperature of the raw material mixture are both 80°C, and the process temperature of the raw material mixture, That is, the storage modulus at 80° C. was 1.2 MPa, and the load due to roll kneading was suppressed compared to Example 1. Therefore, it is considered that kneading conditions were realized in which the hollow particles were less likely to be crushed than in Example 1.
  • Comparative Examples 1 and 2 the same raw material mixture as in Example 1 was used. Since the compositions of the raw material mixtures and the obtained elastomer compositions used in Comparative Examples 1 and 2 were the same as in Example 1, their storage moduli at 60° C. were 2.5 MPa or less. However, in Comparative Example 1, the temperature at the start of roll kneading was as low as room temperature (25° C.) because no preheating was performed. When a sheet-like molded body was produced by press-molding the elastomer composition obtained in Comparative Example 1, the percentage of voids remaining in the hollow particles present in the molded body was 75%.
  • Comparative Example 1 used a raw material mixture having the same composition as Example 1, but the storage modulus of the raw material mixture at the temperature at the start of roll kneading, that is, 25 ° C., was 4.6 MPa, which was over 2.5 MPa. . Therefore, it is considered that the load due to roll kneading was increased in the initial stage of roll kneading compared to Example 1, and many hollow particles were crushed.
  • Comparative Example 2 the product was left at room temperature without preheating, and the roll kneading step was also performed at room temperature, so the roll kneading was performed at room temperature (25° C.) from the initial stage to the final stage.
  • the void residual rate of hollow particles present in the molded body was 14%.
  • Comparative Example 2 used a raw material mixture having the same composition as Example 1 and Comparative Example 1, but the roll kneading was carried out from the initial stage to the final stage so that the storage modulus of the raw material mixture at the process temperature, that is, 25°C It was 4.6 MPa, which was over 2.5 MPa. Therefore, it is considered that the load due to roll kneading increased from the initial stage to the final stage of roll kneading compared to Example 1 and Comparative Example 1, and many hollow particles were crushed.
  • Comparative Example 3 when the content of plasticizer in the raw material mixture of Example 1 was reduced to 30 parts by mass, the storage modulus of the elastomer composition at 60°C and the storage of the raw material mixture after homogenization treatment at 60°C were The elastic modulus was 3.2 MPa in all cases, exceeding 2.5 MPa.
  • the void remaining ratio of the hollow particles existing in the molded body was 45%, and the voids that the hollow particles had initially were found to be 45%. could not maintain the rate.
  • Comparative Example 3 has a storage modulus of 3.2 MPa at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, and a storage modulus of 3.2 MPa at the roll kneading temperature of the raw material mixture, that is, 80°C. 2.2 MPa, and the storage modulus of the raw material mixture at the process temperature, that is, 60 to 80° C., was over 2.5 MPa from the initial stage to the final stage of roll kneading. Therefore, it is considered that the load due to roll kneading increased from the initial stage to the final stage of roll kneading compared to Example 1, and many hollow particles were crushed.
  • Example 4 in the raw material mixture of Example 1, the base elastomer was changed from EPDM to non-oil-extended styrene butadiene rubber, and a part of the plasticizer not having reactive active sites was replaced with a plasticizer containing reactive active sites.
  • the raw material mixture of Example 4 was obtained by changing the base elastomer from EPDM to non-oil extended styrene butadiene rubber and changing the carbon content from 45 parts by mass to 25 parts by mass in the raw material mixture of Example 1.
  • the content of the plasticizer (process oil) was reduced from 75 parts by mass to 65 parts by mass, and 10 parts by mass of the plasticizer containing reactive active sites (liquid polybutadiene) was added, and the plasticizer and the plasticizer containing reactive active sites were added.
  • the total amount was 75 parts by mass, which is the same as the plasticizer content in Example 1.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60° C. of the elastomer composition obtained in Example 4 and the storage modulus at 60° C. of the raw material mixture after the homogenization treatment were 1.7 MPa, which was 2.5 MPa or less.
  • the raw material mixture of Example 5 is the same as the raw material mixture of Example 1, except that the base elastomer is changed from EPDM to non-oil extended styrene butadiene rubber, and the content of the plasticizer (process oil) is increased from 75 parts by mass to 55 parts by mass. 20 parts by mass of a plasticizer containing reactive active sites (liquid polybutadiene) were added, and the total amount of the plasticizer and plasticizer containing reactive active sites was 75 parts by mass, the same as the plasticizer content in Example 1.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 5 was 1.7 MPa
  • the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.6 MPa. It was 2.5 MPa or less.
  • Example 4 the storage modulus at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.7 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.1 MPa, which was even lower than the storage modulus at the start of roll kneading.
  • Example 5 the storage elastic modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.7 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading. Therefore, it is thought that the load caused by roll kneading was suppressed and the hollow particles were less likely to be crushed.
  • Examples 6 to 8 are examples in which, in the raw material mixture of Example 1, the base elastomer was changed from EPDM to non-oil extended styrene butadiene rubber, and the plasticizer without reactive active sites was changed to a plasticizer containing reactive active sites.
  • the base elastomer in the raw material mixture of Example 1, the base elastomer was changed from EPDM to non-oil-extended styrene-butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), reactive active sites were used. 60 parts by mass of a plasticizer (liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 6 was 2.1 MPa, and the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.7 MPa. It was 2.5 MPa or less.
  • Example 6 since a crosslinked structure was formed between the molecules of the base elastomer via the plasticizer containing reactive active sites, the storage modulus of the obtained elastomer was It is thought that the storage modulus of the composition at 60°C was increased.
  • Example 6 when a sheet-like molded body was produced by press-molding the elastomer composition obtained in Example 6, the residual rate of voids of hollow particles present in the molded body was 85%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage elastic modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.6 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading. Therefore, it is thought that the load caused by roll kneading was suppressed and the hollow particles were less likely to be crushed.
  • the base elastomer was changed from EPDM to non-oil-extended styrene-butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), reactive active sites were used. 75 parts by mass of a plasticizer (liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 7 was 1.9 MPa
  • the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.7 MPa. It was 2.5 MPa or less.
  • Example 7 the storage modulus of the elastomer composition at 60°C was larger than that of the raw material mixture at the pre-kneading stage at 60°C, but compared to Example 6, the storage modulus of the elastomer composition increased. The difference is small. The reason is considered to be that the amount of the reactive active point-containing plasticizer used in Example 7 was greater than the amount of the reactive active point-containing plasticizer used in Example 6. More specifically, the elastomer composition of Example 7 has a reaction activity that increases the storage modulus due to the formation of a crosslinked structure between the molecules of the base elastomer via the reaction active site-containing plasticizer. It is considered that the difference in increase in storage modulus became smaller compared to Example 6 because the effect of increasing plasticity was counteracted by increasing the amount of point-containing plasticizer used.
  • Example 7 when a sheet-like molded body was manufactured by press-molding the elastomer composition obtained in Example 7, the residual rate of voids of hollow particles present in the molded body was 90%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.6 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading.
  • Example 7 The storage modulus of the raw material mixture in Example 7 at the temperature at the start of roll kneading (60°C) and the storage modulus of the raw material mixture at the roll kneading temperature (80°C) are the same as in Example 6, but The void remaining rate of the molded article of Example 7 was 90%, which was higher than the void remaining rate of the molded article of Example 6 (85%). The reason is that the elastomer composition of Example 7 has a reaction activity that increases the storage modulus by forming a crosslinked structure between the molecules of the base elastomer through the reaction active site-containing plasticizer.
  • the base elastomer in the raw material mixture of Example 1, was changed from EPDM to non-oil-extended styrene-butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), reactive active sites were used. 80 parts by mass of a plasticizer (liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 8 was 1.6 MPa
  • the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.7 MPa. It was 2.5 MPa or less.
  • Example 8 although a larger amount of the reactive active site-containing plasticizer was used than in Example 7, the storage modulus at 60°C of the obtained elastomer composition was lower than that of the reactive active site-containing plasticizer used. The value was as low as in Examples 4 and 5, in which the amount was small. The reason for this is that the reaction in which a crosslinked structure is formed between the molecules of the base elastomer through the plasticizer containing reactive active sites has reached a saturated state, and the effect of increasing the storage modulus has reached its upper limit, whereas the base material This is considered to be because the content of the free reactive active site-containing plasticizer that is not bonded to the elastomer increases, and the effect of increasing plasticity becomes dominant.
  • Example 8 when a sheet-like molded body was manufactured by press-molding the elastomer composition obtained in Example 8, the residual rate of voids of hollow particles present in the molded body was 100%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.7 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.1 MPa, which was even lower than the storage modulus at the start of roll kneading.
  • the elastomer composition of Example 8 has an effect of increasing the storage modulus due to the formation of a crosslinked structure between the molecules of the base elastomer via the reactive active site-containing plasticizer. This is considered to be because the effect of increasing plasticity became dominant as the amount of plasticizer used increased. In other words, as the effect of increasing plasticity becomes dominant, the storage modulus of the raw material mixture rapidly decreases as the roll kneading temperature of the raw material mixture increases from 60°C to 80°C. It is considered that the load caused by the hollow particles was suppressed more than in Examples 6 and 7, and the hollow particles were less likely to be crushed.
  • Examples 9 to 11 are examples in which, in the raw material mixture of Example 1, the base elastomer was changed from EPDM to oil-extended styrene-butadiene rubber, and the plasticizer not having reactive active sites was changed to a plasticizer containing reactive active sites. It is.
  • the base elastomer in the raw material mixture of Example 1, the base elastomer was changed from EPDM to oil-extended styrene-butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), it contained reactive active sites. 60 parts by mass of a plasticizer (liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 9 was 2.2 MPa, and the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.6 MPa. It was 2.5 MPa or less.
  • Example 9 since a crosslinked structure was formed between the molecules of the base elastomer via the plasticizer containing reactive active sites, the storage modulus of the obtained elastomer was It is thought that the storage modulus of the composition at 60°C was increased.
  • Example 9 when a sheet-like molded body was produced by press-molding the elastomer composition obtained in Example 9, the residual rate of voids of hollow particles present in the molded body was 87%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.7 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading. Therefore, it is thought that the load caused by roll kneading was suppressed and the hollow particles were less likely to be crushed.
  • the base elastomer was changed from EPDM to oil-extended styrene-butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), it contained reactive active sites. 75 parts by mass of a plasticizer (liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 10 was 1.9 MPa
  • the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.7 MPa. It was 2.5 MPa or less.
  • Example 10 the storage modulus of the elastomer composition at 60°C was greater than that of the raw material mixture at the pre-kneading stage at 60°C, but compared to Example 9, the storage modulus of the elastomer composition increased. The difference is small. The reason for this is thought to be that the amount of the reactive active point-containing plasticizer used in Example 10 was greater than the amount of the reactive active point-containing plasticizer used in Example 9. More specifically, the elastomer composition of Example 10 has a reaction activity that increases the storage modulus due to the formation of a crosslinked structure between the molecules of the base elastomer through the reaction active site-containing plasticizer. It is considered that the difference in increase in storage modulus became smaller compared to Example 9 because the effect of increasing plasticity was counteracted by increasing the amount of point-containing plasticizer used.
  • Example 10 when a sheet-like molded body was manufactured by press-molding the elastomer composition obtained in Example 10, the residual rate of voids of hollow particles present in the molded body was 90%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.6 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading.
  • Example 10 The storage modulus of the raw material mixture in Example 10 at the temperature at the start of roll kneading (60°C) and the storage modulus of the raw material mixture at the roll kneading temperature (80°C) are almost the same as in Example 9, but The void remaining rate of the molded body of Example 10 was 90%, which was higher than the void remaining rate of the molded body of Example 9 (87%). The reason is that the elastomer composition of Example 10 has a reaction activity that increases the storage modulus by forming a crosslinked structure between the molecules of the base elastomer through the reaction active site-containing plasticizer.
  • the base elastomer in the raw material mixture of Example 1, was changed from EPDM to oil-extended styrene-butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), the raw material mixture contained reactive active sites. 80 parts by mass of a plasticizer (liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 11 was 1.6 MPa
  • the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.7 MPa. It was 2.5 MPa or less.
  • Example 11 although a larger amount of the reactive active site-containing plasticizer was used than in Example 10, the storage modulus of the obtained elastomer composition at 60°C was lower than that in Example 10. became.
  • the reason for this is that the reaction in which a crosslinked structure is formed between the molecules of the base elastomer through the plasticizer containing reactive active sites has reached a saturated state, and the effect of increasing the storage modulus has reached its upper limit, whereas the base material This is considered to be because the content of the free reactive active site-containing plasticizer that is not bonded to the elastomer increases, and the effect of increasing plasticity becomes dominant.
  • Example 11 when a sheet-like molded body was manufactured by press-molding the elastomer composition obtained in Example 11, the residual rate of voids of hollow particles present in the molded body was 100%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.7 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading.
  • the elastomer composition of Example 11 has a more effective reaction active site than the effect of increasing the storage modulus due to the formation of a crosslinked structure between the molecules of the base elastomer via the reactive active site containing plasticizer. This is considered to be because the effect of increasing plasticity became dominant as the amount of plasticizer used increased. In other words, as the effect of increasing plasticity becomes dominant, the storage modulus of the raw material mixture rapidly decreases as the roll kneading temperature of the raw material mixture increases from 60°C to 80°C. It is considered that the load caused by the hollow particles was suppressed more than in Examples 9 and 10, and the hollow particles were less likely to be crushed.
  • Examples 12 to 14 are examples in which, in the raw material mixture of Example 1, the base elastomer was changed from EPDM to butadiene rubber, and the plasticizer not having reactive active sites was changed to a plasticizer containing reactive active sites.
  • the base elastomer in the raw material mixture of Example 1, was changed from EPDM to butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), a reactive active site-containing plasticizer ( 60 parts by mass of liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 12 was 2.5 MPa
  • the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.7 MPa. It was 2.5 MPa or less.
  • Example 12 since a crosslinked structure was formed between the molecules of the base elastomer through the plasticizer containing reactive active sites, the storage modulus of the obtained elastomer was It is thought that the storage modulus of the composition at 60°C was increased.
  • Example 12 when a sheet-like molded body was manufactured by press-molding the elastomer composition obtained in Example 12, the residual rate of voids of hollow particles present in the molded body was 85%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.6 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading. Therefore, it is thought that the load caused by roll kneading was suppressed and the hollow particles were less likely to be crushed.
  • the base elastomer was changed from EPDM to butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), a reactive active site-containing plasticizer ( 75 parts by mass of liquid polybutadiene (liquid polybutadiene) was used.
  • plasticizer process oil
  • a reactive active site-containing plasticizer 75 parts by mass of liquid polybutadiene (liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • the storage modulus at 60°C of the elastomer composition obtained in Example 13 was 2.3 MPa
  • the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.7 MPa. It was 2.5 MPa or less.
  • Example 13 the storage modulus of the elastomer composition at 60°C was greater than that of the raw material mixture at the pre-kneading stage at 60°C, but compared to Example 12, the storage modulus of the elastomer composition increased. The difference is small. The reason for this is thought to be that the amount of the reactive active point-containing plasticizer used in Example 13 was greater than the amount of the reactive active point-containing plasticizer used in Example 12. More specifically, the elastomer composition of Example 13 has a reaction activity that increases the storage modulus due to the formation of a crosslinked structure between the molecules of the base elastomer via the reaction active site-containing plasticizer. It is considered that the difference in increase in storage modulus became smaller compared to Example 12 because the effects of increasing plasticity were counterbalanced by increasing the amount of point-containing plasticizer used.
  • Example 13 when a sheet-like molded body was produced by press-molding the elastomer composition obtained in Example 13, the residual rate of voids of hollow particles present in the molded body was 90%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.7 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading.
  • Example 13 The storage modulus of the raw material mixture in Example 13 at the temperature at the start of roll kneading (60°C) and the storage modulus of the raw material mixture at the roll kneading temperature (80°C) are almost the same as in Example 12, but The void remaining rate of the molded body of Example 13 was 90%, which was higher than the void remaining rate of the molded body of Example 12 (85%). The reason is that the elastomer composition of Example 13 has a reaction activity that increases the storage modulus by forming a crosslinked structure between the molecules of the base elastomer through the reaction active site-containing plasticizer.
  • the base elastomer was changed from EPDM to butadiene rubber, and instead of using 75 parts by mass of plasticizer (process oil), a reactive active site-containing plasticizer ( 80 parts by mass of liquid polybutadiene) was used.
  • the kneading conditions were the same as in Example 1, and the steps from pre-kneading to roll kneading were performed at a pre-kneading temperature of 100°C, a pre-kneading rotation speed of 50 rpm, a pre-heating temperature of 60°C, and a roll-kneading temperature of 80°C to obtain an elastomer composition. was manufactured.
  • Example 14 the storage modulus at 60°C of the elastomer composition obtained in Example 14 was 2.2 MPa, and the storage modulus at 60°C of the raw material mixture after homogenization treatment was 1.6 MPa. It was 2.5 MPa or less.
  • Example 14 although a larger amount of the reactive active site-containing plasticizer was used than in Example 13, the storage modulus of the obtained elastomer composition at 60°C was lower than that in Example 13. became.
  • Example 14 when a sheet-like molded body was manufactured by press-molding the elastomer composition obtained in Example 14, the residual rate of voids of hollow particles present in the molded body was 100%. It was also confirmed that a molded article was obtained in which the hollow particles were not easily crushed and had a high percentage of voids remaining.
  • the storage modulus at the temperature at the start of roll kneading of the raw material mixture (equal to the preheating temperature), that is, 60°C, was 1.7 MPa, which was 2.5 MPa or less.
  • the storage modulus at a temperature of 80° C. was 1.2 MPa, which was even lower than the storage modulus at the start of roll kneading.
  • the elastomer composition of Example 14 has an effect of increasing the storage modulus due to the formation of a crosslinked structure between the molecules of the base elastomer via the reactive active site-containing plasticizer. This is considered to be because the effect of increasing plasticity became dominant as the amount of plasticizer used increased. In other words, as the effect of increasing plasticity becomes dominant, the storage modulus of the raw material mixture rapidly decreases as the roll kneading temperature of the raw material mixture increases from 60°C to 80°C. It is considered that the load caused by the hollow particles was suppressed more than in Examples 12 and 13, and the hollow particles were less likely to be crushed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

成形工程中で高い寸法安定性を保持し、中空粒子によって付与される特性又は機能が棄損しにくい中空粒子含有エラストマー組成物、及び、当該エラストマー組成物を製造するための混練工程において中空粒子が潰れにくく、空隙残存率が安定しており、中空粒子によって付与される特性又は機能が棄損しにくい製造方法を提供する。本開示の中空粒子含有エラストマー組成物は、基材エラストマーと特定の樹脂を含むシェルを有する中空粒子とを含み、動的粘弾性測定により得られる60℃における貯蔵弾性率G'が2.5MPa以下である組成物であって、所定の試験法に従って当該組成物を用いてシート状成形体を作成し測定される空隙残存率が80%以上である。また本開示の製造方法は、基材エラストマーと特定の樹脂を含むシェルを有する中空粒子とを含み、動的粘弾性測定により得られる60℃における貯蔵弾性率G'が2.5MPa以下である原料混合物を、密閉型混練機を用いて貯蔵弾性率G'が2.5MPa以下となる温度で予備混練した後、直ちに、または、予備混練後さらに貯蔵弾性率G'が2.5MPa以下となる温度で予備加熱した後、貯蔵弾性率G'が2.5MPa以下となる温度で混練する。

Description

中空粒子含有エラストマー組成物及びその製造方法
 本開示は、中空粒子を含有するエラストマー組成物及びその製造方法に関する。
 エラストマー製品は、ゴムに代表されるエラストマー素材のゴム状弾性又は柔軟性に着目し、広範な分野で衝撃吸収材、流体遮断パッキン、チューブなどの様々な用途に使用されている。一般的には、基材エラストマーに用途に応じて必要な成分を混合したエラストマー組成物を、溶融状態で混練し、押出成形、圧縮成形などの方法により成形しながら基材エラストマーを架橋することにより、部品、塗膜、充填用チップ材などの様々な形態のエラストマー製品が得られる。
 エラストマー製品を軽量化する方法としては、基材エラストマー中に発泡剤を混合し、成形工程中に加熱により発泡させ、発泡エラストマー成形体とする方法が知られている。特許文献1には、寸法安定性に優れ、表面性が良好であり、かつ、効果的に軽量化されたゴム製品の製造が可能な加硫成形用ゴム組成物を提供することを目的とし、当該目的を達成し得る手段として、100℃で特定のムーニー粘度を有する基材ゴムに、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成され、かつ、膨張余力率が20~80%である中空粒子を混合した加硫成形用ゴム組成物を用いることが記載されている。
 しかし、基材エラストマー中に発泡剤を混合して発泡エラストマー成形体を製造する方法は、発泡により形成される気孔のサイズ制御が難しいため、得られるエラストマー製品の寸法安定性が良くない。上記特許文献1の方法は、寸法安定性に優れた発泡エラストマー成形体を得ることを技術的課題の一つとしているが、さらなる寸法安定性の向上が求められている。
 成形体内に多数の微細気孔を導入して軽量化、断熱化、不透明化等の特性又は機能を付与する方法として、基材樹脂に中空粒子を含有させた成形材料を用いることが知られている(特許文献2及び3)。基材樹脂中に中空粒子を含有させた成形材料は、成形材料に含まれる中空粒子の空洞が気孔となるので、発泡により形成される気孔のサイズ制御は全く必要ない。
特許第6116787号 国際公開第2020/261926号 国際公開第2021/112110号
 基材エラストマー中に中空粒子を含有させた成形材料は、成形時に中空粒子が潰れにくく、高い寸法安定性を保持し、中空粒子によって付与される特性又は機能が棄損しにくいことが求められる。
 また、基材エラストマー中に中空粒子を含有させた成形材料を製造するために、基材エラストマー及び中空粒子を含む原料混合物を混練する時に、中空粒子が潰れにくいことが求められる。特に、基材エラストマー中に中空粒子を混合する場合は仕上げ混練としてロール混練のようなせん断力の強い混練を行うため、エラストマー以外の基材樹脂中に中空粒子を混合して混練する場合と比べて高いせん断力が生じ、混練中に中空粒子が潰れやすい。
 本開示は、上記問題を鑑み成し遂げられたものであり、成形工程中で中空粒子が潰れにくく、高い寸法安定性を保持し、中空粒子によって付与される特性又は機能が棄損しにくい中空粒子含有エラストマー組成物を提供することを目的とする。
 また本開示は、基材エラストマー及び中空粒子を含有する原料混合物を混練する工程において中空粒子が潰れにくく、混練後の空隙残存率が安定しており、中空粒子によって付与される特性又は機能が混練によって棄損しない、中空粒子含有エラストマー組成物の製造方法を提供することを目的とする。
 本開示は、少なくとも基材エラストマーと中空粒子とを含み、
 前記中空粒子は、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備え、当該シェルは、前記樹脂として全単量体単位100質量部中に架橋性単量体単位を50質量部以上含む重合体を含有する中空粒子であり、
 動的粘弾性測定により得られる60℃における貯蔵弾性率G’が2.5MPa以下である組成物であって、
 当該組成物を用いて下記中空粒子含有エラストマー成形体の空隙残存率の測定方法に従ってシート状成形体を作成し、測定される空隙残存率が80%以上である中空粒子含有エラストマー組成物を提供する。
[中空粒子含有エラストマー成形体の空隙残存率の測定方法]
 中空粒子含有エラストマー組成物を、120℃の熱プレス機により1MPa以下の圧力でプレス成形することにより、シート状の中空粒子含有エラストマー成形体を作製する。
 得られたエラストマー成形体の比重を測定し、下記式(D)に従って、エラストマー成形体内の中空粒子の空隙残存率を算出する。
  空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
  a:プレス後のシート状成形体の比重、
  b:空隙を維持したと仮定した成形体の比重(計算値)
  c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
 また本開示は、少なくとも基材エラストマーと中空粒子とを含む中空粒子含有エラストマー組成物の製造方法であって、
 少なくとも基材エラストマーと、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備え、当該シェルは、前記樹脂として全単量体単位100質量部中に架橋性単量体単位を50質量部以上含む重合体を含有する中空粒子とを含み、配合成分の均一化処理後に行われる動的粘弾性測定により得られる60℃における貯蔵弾性率G’が2.5MPa以下である原料混合物を準備し、
 前記原料混合物を、密閉型混練機を用い、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備混練し、
 当該原料混合物を、予備混練した後直ちに、または、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備加熱した後、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で混練する、中空粒子含有エラストマー組成物の製造方法を提供する。
 本開示の中空粒子含有エラストマー組成物は、架橋性単量体単位の含有割合が高い重合体を含む樹脂からなるシェルによって強度が高められ且つ高温環境においても架橋構造のおかげで強度が低下しない中空粒子を含有するため、成形工程中で中空粒子が潰れにくく、高い寸法安定性を保持し、中空粒子によって付与される特性又は機能が棄損しにくい。
 したがって本開示の中空粒子含有エラストマー組成物によれば、高い寸法安定性を有し、優れた特性又は機能を有する中空粒子含有成形体が得られる。
 また、本開示の中空粒子含有エラストマー組成物の製造方法は、架橋性単量体単位の含有割合が高い重合体を含む樹脂からなるシェルによって強度が高められ且つ高温環境においても架橋構造のおかげで強度が低下しない中空粒子を用い、さらに、基材エラストマー及び中空粒子を含有する原料混合物の60℃における貯蔵弾性率G’を2.5MPa以下とし且つ原料混合物の貯蔵弾性率G’を2.5MPa以下となる温度で予備混練及び仕上げ混練を行うことによって、混練時に原料混合物の内部で中空粒子にかかる内圧やせん断力等の負荷が低く抑えられる。
 したがって本開示の製造方法によれば、混練工程において中空粒子が潰れにくく、空隙残存率が安定しており、中空粒子によって付与される特性又は機能が棄損しにくいため、優れた特性又は機能を有する中空粒子含有エラストマー組成物が得られる。
本開示で用いられる中空粒子の製造方法の一例を説明する図である。 懸濁工程における懸濁液の一実施形態を示す模式図である。
 中空粒子含有エラストマー組成物を用いて成形する場合には、成形時の加圧・加熱によって中空粒子が潰れる可能性がある。
 また、中空粒子含有エラストマー組成物を製造するために、基材エラストマー及び中空粒子を含む原料混合物を混練する時に、中空粒子が潰れる可能性がある。特に、基材エラストマー中に中空粒子を混合する場合は、エラストマー以外の基材樹脂中に中空粒子を混合する場合と比べて高いせん断力が生じるため、混練中に中空粒子が潰れやすい。
 特に、空隙率が大きい中空粒子を用いる場合には、一般的に中空粒子のシェル厚が薄いか又は粒径が大きいため、さらに潰れやすい。
 本開示の研究者は、架橋性単量体単位を一定量以上含む重合体を含有する樹脂からなるシェルを有する中空粒子を基材エラストマー中に配合してなるエラストマー組成物の60℃における貯蔵弾性率G’が2.5MPa以下である場合には、当該エラストマー組成物を用いて成形したときに中空粒子が潰れにくいため、得られるエラストマー成形体の内部に存在する中空粒子の空隙率を維持することができ、中空粒子によって付与される特性又は機能が棄損しにくいことを見出した。
 また、本開示の研究者は、架橋性単量体単位を一定量以上含む重合体を含有する樹脂からなるシェルを有する中空粒子を基材エラストマー中に配合してなる原料混合物を均一化処理した後に測定される60℃における貯蔵弾性率G’が2.5MPa以下である場合には、当該原料混合物を混練して得られるエラストマー組成物の内部に存在する中空粒子の空隙率を維持することができ、中空粒子によって付与される特性又は機能が棄損しにくいことを見出した。
 本開示は、上記知見に基づいて成し遂げられたものである。
 本開示の中空粒子含有エラストマー組成物は、少なくとも基材エラストマーと中空粒子とを含み、
 前記中空粒子は、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備え、当該シェルは、前記樹脂として全単量体単位100質量部中に架橋性単量体単位を50質量部以上含む重合体を含有する中空粒子であり、
 動的粘弾性測定により得られる60℃における貯蔵弾性率G’が2.5MPa以下である組成物であって、
 当該組成物を用いて下記中空粒子含有エラストマー成形体の空隙残存率の測定方法に従ってシート状成形体を作成し、測定される空隙残存率が80%以上であることを特徴とする。
[中空粒子含有エラストマー成形体の空隙残存率の測定方法]
 中空粒子含有エラストマー組成物を、120℃の熱プレス機により1MPa以下の圧力でプレス成形することにより、シート状の中空粒子含有エラストマー成形体を作製する。
 得られたエラストマー成形体の比重を測定し、下記式(D)に従って、エラストマー成形体内の中空粒子の空隙残存率を算出する。
  空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
  a:プレス後のシート状成形体の比重、
  b:空隙を維持したと仮定した成形体の比重(計算値)
  c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
 本開示の中空粒子含有エラストマー組成物の製造方法は、前記の中空粒子含有エラストマー組成物を製造する方法であって、
 少なくとも基材エラストマーと、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備え、当該シェルは、前記樹脂として全単量体単位100質量部中に架橋性単量体単位を50質量部以上含む重合体を含有する中空粒子とを含み、配合成分の均一化処理後に行われる動的粘弾性測定により得られる60℃における貯蔵弾性率G’が2.5MPa以下である原料混合物を準備し、
 前記原料混合物を、密閉型混練機を用い、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備混練し、
 当該原料混合物を、予備混練した後直ちに、または、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備加熱した後、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で混練することを特徴とする。
 本開示の中空粒子含有エラストマー組成物、その製造方法、及び、エラストマー成形体の製造方法について、以下に説明する。
 本開示において、数値範囲における「~」とは、その前後に記載される数値を下限値及び上限値として含むことを意味する。
 また、本開示において、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表し、(メタ)アクリルとは、アクリル及びメタクリルの各々を表し、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表す。
 また、本開示において、重合性単量体とは、付加重合が可能な官能基(本開示において、単に重合性官能基と称する場合がある)を有する化合物である。本開示において、重合性単量体としては、付加重合が可能な官能基としてエチレン性不飽和結合を有する化合物が一般に用いられる。
 本開示においては、重合性官能基を1つだけ有する重合性単量体を非架橋性単量体と称し、重合性官能基を2つ以上有する重合性単量体を架橋性単量体と称する。架橋性単量体は、重合反応により樹脂中に架橋結合を形成する重合性単量体である。
 [中空粒子含有エラストマー組成物]
 本開示の中空粒子含有エラストマー組成物は、押出成形、圧縮成形等の溶融成形法によってエラストマー製部材、他の材質の部品と一体成形されたエラストマー部材、被膜、充填用チップ材などのエラストマー成形体を製造するための成形材料である。
 本開示の中空粒子含有エラストマー組成物は、中空粒子を含有させることにより、例えば、軽量化、断熱化、低誘電率化、光反射・散乱化、抗菌剤等の機能性成分の保持など多様な特性をエラストマー成形体に付与することができる。したがって、当該エラストマー組成物を用いて製造したエラストマー成形体の用途としては、例えば、自動車、電気、電子、建築、航空、宇宙等の各種分野に用いられる光反射材、断熱材、遮音材及び低誘電体等の部材、断熱性や緩衝性(クッション性)や光反射性や抗菌性等が要求されるオーバーコート材又はアンダーコート材、スポーツシューズやサンダル等の履物の緩衝材(クッション材)、家電部品、自転車部品、文具、工具、3Dプリンターの中空粒子含有フィラメント、シンタクチックフォーム製の浮力材等を挙げることができる。
 本開示の中空粒子含有エラストマー組成物は、エラストマー成形体を多孔質とするための発泡剤を含有しておらず、すでに中空形状に成形された中空粒子を用いているため、発泡剤の発泡に起因するエラストマー成形体の寸法変動が起こらない。
 また、本開示の中空粒子含有エラストマー組成物は、架橋性単量体単位の含有割合が高い重合体を含む樹脂からなるシェルによって強度が高められ且つ高温環境においても架橋構造のおかげで強度が低下しない中空粒子を含有するため、成形工程中で中空粒子が潰れにくく、高い寸法安定性を保持し、中空粒子によって付与される特性又は機能が棄損しにくい。
 したがって本開示の中空粒子含有エラストマー組成物によれば、高い寸法安定性を有し、優れた特性又は機能を有する中空粒子含有成形体が得られる。
 [貯蔵弾性率]
 本開示の中空粒子含有エラストマー組成物は、中空粒子含有エラストマー組成物の混練時における当該エラストマー組成物内での中空粒子の潰れを軽減する観点から、動的粘弾性測定により得られる60℃における貯蔵弾性率が2.5MPa以下であることを特徴とし、1.7MPa以下であることが好ましい。
 また、貯蔵弾性率G’の下限は特に限定されないが、エラストマー組成物から得られる成形体の硬度を維持するためには、0.5MPa以上であることが好ましく、0.8MPa以上であることがさらに好ましい。
 中空粒子含有エラストマー組成物の60℃における貯蔵弾性率は、中空粒子含有エラストマー組成物の動的粘弾性測定により得られた貯蔵弾性率の温度依存曲線から特定することができる。本開示においては、樹脂の動的粘弾性測定に適用される一般的な方法を適宜実施することができ、例えば以下の方法により行うことができる。
 [動的粘弾性測定の方法]
 動的粘弾性測定は、形式名HAAKE MARK III(サーモフィッシャーサイエンティフィック社製)又は回転平板型レオメータ(形式名ARES-G2、TAインスツルメント社製)等の測定装置を使用し、パラレルプレート又はクロスハッチプレートを用いて、下記条件にて行われる。
<測定条件>
 周波数:1Hz
 ジオメトリー:パラレルプレート又はクロスハッチプレート(20mmφ)
 サンプルセット:試験片(2~4mm厚)を、設定温度170℃とした20mmφプレートにて融着させた後、動的粘弾性測定装置に設置し、170℃から5℃/minで室温(例えば25℃)まで降温させていきながら、150℃~室温の貯蔵弾性率G’(単位:MPa)を測定する。
 降温速度:5℃/分
 温度範囲:150℃から室温
 歪み:0.001
 ギャップ:1.5mm
 試験片は、例えば、本開示の中空粒子含有エラストマー組成物を用いて160℃のプレス機で2mm厚のシートを作製し、打ち抜き機で20mmφの形状に打ち抜いて作製することができる。
 [貯蔵弾性率を調節する方法]
 中空粒子含有エラストマー組成物の60℃における動的粘弾性測定により得られる貯蔵弾性率G’は、可塑剤の添加量、中空粒子の添加量、中空粒子の粒子径、中空粒子の表面組成、中空粒子以外の有機又は無機微粒子の種類(例えばカーボンやシリカ等)や添加量などの要因を一つ又は二つ以上変化させることによって調節することができる。上記要因のうち、特に、可塑剤の添加量及び中空粒子の添加量は、貯蔵弾性率G’の大きな変動要因となり得る。
 可塑剤の添加量を多くすることによって中空粒子含有エラストマー組成物の貯蔵弾性率G’を小さくすることができ、可塑剤の添加量を少なくすることによって中空粒子含有エラストマー組成物の貯蔵弾性率G’を大きくすることができる。可塑剤の添加量は、中空粒子含有エラストマー組成物の動的粘弾性測定により得られる貯蔵弾性率G’を2.5MPa以下に調節するために、基材エラストマー100質量部に対して、通常35~100質量部、好ましくは45~90質量部の範囲で適宜増減される。
 また、中空粒子の添加量を多くすることによって中空粒子含有エラストマー組成物の貯蔵弾性率G’を大きくすることができ、中空粒子の添加量を少なくすることによって中空粒子含有エラストマー組成物の貯蔵弾性率G’を小さくすることができる。中空粒子の添加量は、軽量化、断熱化、クッション性など中空粒子の目的に対する貢献とのバランスを考慮しながら、中空粒子含有エラストマー組成物の動的粘弾性測定により得られる貯蔵弾性率G’を2.5MPa以下に調節するために、基材エラストマー100質量部に対して、通常5~80質量部の範囲で適宜増減される。
 [基材エラストマー]
  基材としてはエラストマー、すなわちゴム状弾性を有するポリマーを用いることができる。エラストマーとしては、特に限定されないが、例えば、ゴム、熱可塑性エラストマー等が挙げられる。
 ゴムとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、クロロプレンゴム、アクリロニトリルブタジエンゴム、エチレン-α‐オレフィン共重合体ゴム、エチレン-プロピレン-ジエンターポリマー(EPDM)等のエチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ハロゲン化エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、スルフォン化エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、マレイン化エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブチルゴム、イソブチレンイソプレンゴム、ニトリルゴム、水素添加ニトリルゴム、ウレタンゴム、シリコーンゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、アクリルゴム、エピクロロヒドリンゴム、フッ素ゴム、多硫化ゴム、プロピレンオキシドゴム等を用いることができる。
 また、熱可塑性エラストマーとは、一般に常温(25℃)でゴム状弾性を示し、高温では可塑化されて成形できるという性質を有するものである。熱可塑性エラストマーとしては、従来から成形用樹脂として用いられている熱可塑性弾性ポリマーを用いることができ、例えば、ウレタン系エラストマー、スチレン系エラストマー、オレフィン系エラストマー、アミド系エラストマー、及びエステル系エラストマー等が挙げられる。
 これらの基材エラストマーは、1種または2種以上を併用することができる。基材エラストマーは、エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム、スチレンブタジエンゴム、天然ゴム、イソプレンゴム、ニトリルゴム、水素添加ニトリルゴム、ブチルゴム、フッ素ゴム、シリコーンゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、アクリルゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、ウレタンゴム、イソブチレンイソプレンゴム、多硫化ゴム、プロピレンオキシドゴム及びエピクロロヒドリンゴムから選ばれる少なくとも1種を含むことが好ましく、エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム、スチレンブタジエンゴム、天然ゴム、イソプレンゴム及びアクリルゴムから選ばれる少なくとも1種を含むことがより好ましく、エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム及びスチレンブタジエンゴムから選ばれる少なくとも1種を含むことがより好ましく、エチレン-α‐オレフィン-非共役ジエン共重合体ゴムを含むことがより好ましい。
  エチレン-α‐オレフィン-非共役ジエン共重合体ゴムは、エチレンと、α‐オレフィンと、非共役ジエンとのランダム共重合体である。α‐オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン等が挙げられる。これらの中でも、プロピレン、1-ヘキセン、1-オクテンが好ましく、プロピレンが特に好ましい。これらのα‐オレフィンは、1種又は2種以上を併用することができる。エチレンとα‐オレフィンとのモル比(エチレン/α‐オレフィン)は、特に限定はないが、40/60~95/5であることが好ましく、50/50~85/15であることがより好ましく、60/40~80/20であることがより好ましい。
  非共役ジエンとしては、1,4-ヘキサジエン、3-メチル-1,4-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン、5-エチリデン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、5-イソブテニル-2-ノルボルネン、シクロペンタジエン、ジシクロペンタジエン、ノルボルナジエン等が挙げられる。これらの中でも、5-エチリデン-2-ノルボルネン、ジシクロペンタジエンが好ましい。これらの非共役ジエンは、1種又は2種以上を併用することができる。
 ブタジエンゴム(BR)としては、低シスBR、高シスBR、高トランスBR等が挙げられる。また、ブタジエンゴムとしては、窒素原子含有官能基、ケイ素原子含有官能基、酸素原子含有官能基等を導入した変性BRを用いてもよい。
 スチレンブタジエンゴム(SBR)としては、溶液重合SBR、乳化重合SBR等が挙げられる。また、スチレンブタジエンゴムとしては、酸変性SBRを用いてもよい。酸変性SBRの市販品としては、商品名Nipol LX206(日本ゼオン株式会社製)、商品名Nipol LX209(同社製)、商品名BM-430B(同社製)、商品名BM-451B(同社製)が挙げられる。
 基材エラストマーの少なくとも一部としてエチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム及びスチレンブタジエンゴムから選ばれる少なくとも1種を用いる場合、基材エラストマー全体に占めるエチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム及びスチレンブタジエンゴムから選ばれるゴムの質量割合は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。基材エラストマー全体に占めるエチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム及びスチレンブタジエンゴムから選ばれるゴムの質量割合の好ましい上限は100質量%である。
 基材エラストマー全体に占めるエチレン-α‐オレフィン-非共役ジエン共重合体ゴムの質量割合は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。基材エラストマー全体に占めるエチレン-α‐オレフィン-非共役ジエン共重合体ゴムの質量割合の好ましい上限は100質量%である。
  基材エラストマーのヨウ素価は特に限定はないが、5~50g/100gであると好ましく、より好ましくは10~40g/100g、さらに好ましくは15~30g/100gである。基材エラストマーのヨウ素価が上記範囲内にあると、架橋効率の高いエラストマー組成物が得られ、耐圧縮永久歪み性に優れるとともに、耐環境劣化性に優れた加硫エラストマー製品を提供できるエラストマー組成物が得られる。
 基材エラストマーが、スチレンブタジエンゴムやスチレン系熱可塑性エラストマーのようなスチレン単量体単位を有するエラストマーを含む場合、基材エラストマー中のスチレン単量体単位の含有量を変えることにより、本開示のエラストマー組成物の剛性を調節することができる。しかし、基材エラストマー中のスチレン単量体単位の含有量が多すぎる場合には、エラストマー組成物及びその原料混合物を溶融混練するときの剛性も高くなるため、溶融混練時の貯蔵弾性率G’を十分に低くすることが難しくなる可能性がある。それゆえ、基材エラストマーに含まれるスチレン単量体単位の含有割合は、基材エラストマー全質量の0質量%以上60質量%以下であることが好ましく、0質量%以上50質量%以下であることがより好ましい。
 本開示のエラストマー組成物から製造される成形体の寸法安定性及び表面性状を良好にする観点から、前記基材エラストマーのJIS K6300に準拠して測定されるムーニー粘度(ML(1+4)100℃)は、20以上75以下であることが好ましく、20以上60以下であることがより好ましく、20以上55以下であることがより好ましい。
 ムーニー粘度に関する上記表示「ML(1+4)100℃」において、「M」はムーニー単位、「L」はロータ形状がL型、「1+4」は予熱時間が1分かつロータ回転時間が4分、「100℃」は測定温度が100℃であることを意味する。
 [中空粒子]
 本開示で用いられる中空粒子は、樹脂を含有するシェル(外殻)と、当該シェルに取り囲まれた中空部とを備える粒子である。
 本開示において、中空部は、樹脂材料により形成される中空粒子のシェルから明確に区別される空洞状の空間である。中空粒子のシェルは多孔質構造を有していても良いが、その場合には、中空部は、多孔質構造内に均一に分散された多数の微小な空間とは明確に区別できる大きさを有している。本開示の中空粒子は、耐圧性等の観点から、密実なシェルを備えることが好ましい。
 中空粒子が有する中空部は、例えば、粒子断面のSEM観察等により、又は粒子をそのままTEM観察等することにより確認することができる。
 また、本開示の中空粒子が有する中空部は、空気等の気体で満たされていてもよいし、真空又は減圧状態であってもよいし、溶剤を含有していてもよい。
 本開示で用いられる中空粒子は、架橋性単量体単位の含有割合が高い重合体を含む樹脂からなるシェルによって強度が高められ且つ高温環境においても架橋構造のおかげで強度が低下しないため、耐圧性に優れ、他の材料との混練時及び混練後の成形時に潰れ難く、成形体に添加された場合に、軽量化、断熱、防音、制振、光散乱等の多様な効果を付与し、また別の用途としては、中空内部に香料、薬品、農薬、インキ成分等の有用成分を浸漬処理、減圧または加圧浸漬処理等の手段により封入できる封入材としての効果に優れるため、成形体用添加剤として好適に用いられる。また、本開示で用いられる中空粒子は、混練や射出成形等の外圧やせん断力等の負荷がかかるプロセスを経ても潰れ難く、空隙率が低下しにくいため、負荷がかかるプロセスを経て得られる成形体用の添加剤として特に好適に用いられる。
 本開示で用いられる中空粒子は、空隙率が好ましくは50%以上であり、より好ましくは60%以上、更に好ましくは65%以上である。空隙率が上記下限値以上であることにより、軽量性、耐熱性、断熱性及び誘電特性等の特性にも優れる。中空粒子の空隙率の上限は、特に限定はされないが、中空粒子の耐圧性の低下を抑制する点から、好ましくは90%以下、より好ましくは85%以下、更に好ましくは80%以下である。
 中空粒子の空隙率は、中空粒子の見かけ密度D及び真密度Dから算出される。
 中空粒子の見かけ密度Dの測定法は以下の通りである。まず、容量100cmのメスフラスコに約30cmの中空粒子を充填し、充填した中空粒子の質量を精確に秤量する。次に、中空粒子が充填されたメスフラスコに、気泡が入らないように注意しながら、容量100cmを示す標線までイソプロパノールを精確に満たす。メスフラスコに加えたイソプロパノールの質量を精確に秤量し、下記式(I)に基づき、中空粒子の見かけ密度D(g/cm)を計算する。
 式(I):
  見かけ密度D=[中空粒子の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 見かけ密度Dは、中空部が中空粒子の一部であるとみなした場合の、中空粒子全体の比重に相当する。
 中空粒子の真密度Dの測定法は以下の通りである。中空粒子を予め粉砕した後、容量100cmのメスフラスコに中空粒子の粉砕片を約10g充填し、充填した粉砕片の質量を精確に秤量する。あとは、上記見かけ密度の測定と同様にイソプロパノールをメスフラスコに加え、イソプロパノールの質量を精確に秤量し、下記式(II)に基づき、中空粒子の真密度D(g/cm)を計算する。
 式(II):
  真密度D=[中空粒子の粉砕片の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 真密度Dは、中空粒子のうちシェル部分のみの比重に相当する。上記測定方法から明らかなように、真密度Dの算出に当たっては、中空部は中空粒子の一部とはみなされない。
 中空粒子の空隙率(%)は、中空粒子の見かけ密度Dと真密度Dにより、下記式(III)により算出される。
 式(III):
  空隙率(%)=100-(見かけ密度D/真密度D)×100
 中空粒子の潰れにくさは、下記プレス試験法に従って測定される空隙残存率によって表すことができる。
[プレス試験法]
 ポリプロピレン樹脂:中空粒子の質量比が90:10であるポリプロピレン樹脂及び中空粒子の混合物を、200℃で溶融、混合し、熱プレス機用金型に入れて更に200℃で15分間加熱した後、撹拌し、次いで80℃に設定した熱プレス機に載せ、80℃に加熱したシリンダーを金型に入れ、前記金型の表面温度が140℃になった時点で、15MPaで加圧し、その後、前記混合物を前記金型から取り出し、200℃に設定した熱プレス機により1MPa以下の圧力で加圧してシート状に成形する。得られたシート状成形体の比重を測定し、下記式(D)に従って、中空粒子の空隙残存率を算出する。
  空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
 式(D)中の記号の意味は次のとおりである。
  a:プレス成形後のシート状成形体の比重、
  b:空隙を維持したと仮定した成形体の比重(計算値)
  c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
 なお、プレス成形後の成形体の比重は、JIS K 7112に準拠して水中置換法にて測定した。
 「空隙を維持したと仮定した成形体」とは、ポリプロピレン樹脂に混合した中空粒子が熱プレス工程後の成形体中でも潰れておらず、混合前の空隙率を保持していると仮定した成形体を意味する。空隙を維持したと仮定した成形体の比重bは、下記式(E)により算出した。
  b=1/{(P/P)+(R/R)}   式(E)
 上記bを求める計算式において、Pは中空粒子の添加量、Pは中空粒子の比重、Rは基材エラストマーの添加量、Rは基材エラストマーの比重をそれぞれ表す。
 全ての中空粒子が潰れたと仮定した成形体の比重cは、下記式(F)により算出した。
  c=[R×R+{D×P×(1-P/100)}]/{R+P×(1-P/100)}   式(F)
 上記cを求める計算式において、Rは基材エラストマーの添加量、Rは基材エラストマーの比重、Dは中空粒子の真密度、Pは中空粒子の添加量、Pは中空粒子の空隙率(%)をそれぞれ表す。
 上記プレス試験に用いられるポリプロピレン樹脂としては、230℃でのMFR(メルトフローレート)が10~30g/min、好ましくは15~25g/minのポリプロピレン樹脂を使用することができる。そのようなポリプロピレン樹脂の市販品としては、例えば、日本ポリプロ社製の製品名:ノバテックPP、グレード:MA1B(230℃でのMFRが21g/min)等を挙げることができる。
 上記の空隙残存率が大きいほど、中空粒子含有エラストマー組成物の製造過程、及び、中空粒子含有エラストマー組成物を用いてエラストマー成形体を製造する過程で中空粒子が潰れにくく、中空粒子によって付与された効果が低減しないで維持され、成形時の寸法安定性も高い。中空粒子の潰れが全く発生していない場合には、空隙残存率が100%になる。
 本開示で用いられる中空粒子は、上記試験方法による空隙残存率が80%以上を達成することが可能であり、100%を達成することも可能である。
 本開示で用いられる中空粒子の体積平均粒径は、下限としては、好ましくは5.0μm以上、より好ましくは6.0μm以上、更に好ましくは7.0μm以上であり、上限としては、好ましくは40.0μm以下、より好ましくは30.0μm以下、更に好ましくは20.0μm以下である。中空粒子の体積平均粒径が上記下限値以上であると、高空隙率と優れた耐圧性を両立しやすく、また、中空粒子同士の凝集性が小さくなるため、優れた分散性を発揮することができる。中空粒子の体積平均粒径が上記上限値以下であると、シェルの均一性が向上しやすいため、耐圧性に優れた中空粒子が得られやすい。
 なお、本開示の中空粒子の粒径は、例えば、重合性単量体と疎水性溶剤の合計質量に対する分散安定剤の含有量等により調節することができる。
 本開示で用いられる中空粒子のシェルの厚さは、特に限定はされないが、耐圧性を向上する点から、好ましくは0.30μm以上、より好ましくは0.40μm以上、更に好ましくは0.50μm以上、より更に好ましくは0.60μm以上であり、空隙率を高める点から、好ましくは3.00μm以下、より好ましくは2.00μm以下、更に好ましくは1.50μm以下である。
 なお、本開示において、中空粒子のシェルの厚さは、中空粒子の体積平均粒径R及び空隙率を用いて下記式(1)により中空粒子の内径rを算出し、当該内径r及び体積平均粒径Rを用いて下記式(2)により算出される値とする。
式(1):
  4/3π×(R/2)×(空隙率/100)=4/3π×(r/2)
式(2):
  シェル厚=(R-r)/2
 なお、上記式(1)における空隙率は、百分率で表される数値である。
 本開示で用いられる中空粒子の粒度分布(体積平均粒径(Dv)/個数平均粒径(Dn))は、例えば、1.1以上2.5以下であってもよい。当該粒度分布が2.5以下であることにより、圧縮強度特性及び耐熱性が粒子間でバラつきの少ない粒子が得られる。また、当該粒度分布が2.5以下であることにより、例えば、本開示の中空粒子を添加したシート状の成形体を製造する際に、厚さが均一な製品を製造することができる。
 中空粒子の体積平均粒径(Dv)及び個数平均粒径(Dn)は、例えば、粒度分布測定装置により中空粒子の粒径を測定し、その個数平均及び体積平均をそれぞれ算出し、得られた値をその粒子の個数平均粒径(Dn)及び体積平均粒径(Dv)とすることができる。粒度分布は、体積平均粒径を個数平均粒径で除した値とする。
 本開示で用いられる中空粒子の形状は、内部に中空部が形成されていれば特に限定されず、例えば、球形、楕円球形、不定形等が挙げられる。これらの中でも、製造の容易さ及び耐圧性等の観点から球形が好ましい。
 本開示に用いられる中空粒子は、1又は2以上の中空部を有していてもよいが、高い空隙率と、機械強度との良好なバランスを維持する点から、中空部を1つ又は2つのみ有するものが好ましく、中空部を1つのみ有するものが好ましい。本開示に用いられる中空粒子は、中空部を1つのみ有する粒子の個数割合が、90%以上であることが好ましく、95%以上であることがより好ましく、95%超過であることが更に好ましい。
 また、中空粒子が備えるシェル、及び、中空部を2つ以上有する場合に隣接し合う中空部を仕切る隔壁は、多孔質状となっていてもよいが、耐圧性を向上する点から、密実であることが好ましい。
 本開示で用いられる中空粒子は、平均円形度が、0.950~0.995であってもよい。
 本開示の中空粒子の形状のイメージの一例は、薄い皮膜からなりかつ気体で膨らんだ袋であり、その断面図は図1の(5)中の中空粒子10の通りである。この例においては、外側に薄い1枚の皮膜が設けられ、その内部が気体で満たされる。
 なお、粒子形状は、例えば、SEMやTEMにより確認することができる。
 また、本開示の中空粒子は、熱分解開始温度が、好ましくは150~400℃、より好ましくは200~350℃である。熱分解開始温度が上記範囲にある中空粒子は、耐熱性に優れる。
 中空粒子の熱分解開始温度とは、5%質量減少したときの温度を意味し、TG-DTA装置により、空気雰囲気下で、空気流量230mL/分、昇温速度10℃/分の条件下で測定できる。
 エラストマー組成物中の中空粒子の含有量は特に限定されないが、通常、基材エラストマー100質量部に対して、5~80質量部である。
 以下、本開示で用いられる中空粒子の製造方法の一例について、詳細に説明する。
 中空粒子は、例えば、重合性単量体、疎水性溶剤、重合開始剤、分散安定剤及び水系媒体を含む混合液を調製する工程と、
 前記混合液を懸濁させることにより、前記重合性単量体、前記疎水性溶剤及び前記重合開始剤を含有する単量体組成物の液滴が前記水系媒体中に分散した懸濁液を調製する工程と、
 前記懸濁液を重合反応に供することにより、樹脂を含むシェルに取り囲まれた中空部を有し、かつ前記中空部に前記疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程とを含む製造方法により得ることができる。
 上記の製造方法は、重合性単量体、疎水性溶剤、重合開始剤、分散安定剤、及び水系媒体を含む混合液を懸濁させることにより、重合性単量体と疎水性溶剤が相分離し、重合性単量体が表面側に偏在し、疎水性溶剤が中心部に偏在した分布構造を有する液滴が水系媒体中に分散してなる懸濁液を調製し、この懸濁液を重合反応に供することによって液滴の表面を硬化させて疎水性溶剤で満たされた中空部を有する中空粒子を形成するという基本技術に従うものである。
 上記基本技術において、重合性単量体の組成及び疎水性溶剤の種類等を調節することにより、懸濁液中に分散する単量体組成物の液滴中で重合性単量体と疎水性溶剤が十分に相分離し、懸濁液を重合反応に供した際には、重合性単量体の重合反応が均一に進むことで、組成及び厚さ等の均一性に優れたシェルが形成されると推定される。
 中空粒子の製造方法は、混合液を調製する工程と、懸濁液を調製する工程と、懸濁液を重合反応に供する工程とを含み、更にこれら以外の工程を含んでもよい。また、技術的に可能である限り、上記各工程、及び、その他の付加的な工程の2つまたはそれ以上を、一つの工程として同時に行っても良いし、順序を入れ替えて行っても良い。例えば、混合液を調製する材料を投入しながら同時に懸濁を行うというように、混合液の調製と懸濁を一つの行程中で同時に行ってもよい。
 中空粒子の製造方法の好ましい一例として、以下の工程を含む製造方法を挙げることができる。
 (1)混合液調製工程
 重合性単量体、疎水性溶剤、重合開始剤、分散安定剤及び水系媒体を含む混合液を調製する工程
 (2)懸濁工程
 前記混合液を懸濁させることにより、重合性単量体、疎水性溶剤及び重合開始剤を含有する単量体組成物の液滴が水系媒体中に分散した懸濁液を調製する工程
 (3)重合工程
 前記懸濁液を重合反応に供することにより、樹脂を含むシェルに取り囲まれた中空部を有し、かつ前記中空部に疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程
 (4)固液分離工程
 前記前駆体組成物を固液分離することにより、中空部に疎水性溶剤を内包する前駆体粒子を得る工程
 (5)溶剤除去工程
 前記固液分離工程により得られた前駆体粒子に内包される疎水性溶剤を除去し、中空粒子を得る工程
 なお、本開示においては、中空部が疎水性溶剤で満たされた中空粒子を、中空部が気体で満たされた中空粒子の中間体と考えて、「前駆体粒子」と称する場合がある。本開示において「前駆体組成物」とは、前駆体粒子を含む組成物を意味する。
 図1は、本開示の製造方法の一例を示す模式図である。図1中の(1)~(5)は、上記各工程(1)~(5)に対応する。各図の間の白矢印は、各工程の順序を指示するものである。なお、図1は説明のための模式図に過ぎず、本開示の製造方法は図に示すものに限定されない。また、本開示の製造方法に使用される材料の構造、寸法及び形状は、これらの図における各種材料の構造、寸法及び形状に限定されない。
 図1の(1)は、混合液調製工程における混合液の一実施形態を示す断面模式図である。この図に示すように、混合液は、水系媒体1、及び当該水系媒体1中に分散する低極性材料2を含む。ここで、低極性材料2とは、極性が低く水系媒体1と混ざり合いにくい材料を意味する。本開示において低極性材料2は、重合性単量体、疎水性溶剤及び重合開始剤を含む。
 図1の(2)は、懸濁工程における懸濁液の一実施形態を示す断面模式図である。懸濁液は、水系媒体1、及び当該水系媒体1中に分散する単量体組成物の液滴8を含む。単量体組成物の液滴8は、重合性単量体、疎水性溶剤及び重合開始剤を含んでいるが、液滴内の分布は不均一である。単量体組成物の液滴8は、疎水性溶剤4aと、重合性単量体を含む疎水性溶剤以外の材料4bが相分離し、疎水性溶剤4aが中心部に偏在し、疎水性溶剤以外の材料4bが表面側に偏在し、分散安定剤(図示せず)が表面に付着した構造を有している。
 図1の(3)は、重合工程により得られる、中空部に疎水性溶剤を内包する前駆体粒子を含む前駆体組成物の一実施形態を示す断面模式図である。当該前駆体組成物は、水系媒体1、及び当該水系媒体1中に分散する、中空部に疎水性溶剤4aを内包する前駆体粒子9を含む。当該前駆体粒子9の外表面を形成するシェル6は、上記単量体組成物の液滴8中の重合性単量体の重合により形成されたものであり、当該重合性単量体の重合体を樹脂として含む。
 図1の(4)は、固液分離工程後の前駆体粒子の一実施形態を示す断面模式図である。この図1の(4)は、上記図1の(3)の状態から水系媒体1を除去した状態を示す。
 図1の(5)は、溶剤除去工程後の中空粒子の一実施形態を示す断面模式図である。この図1の(5)は、上記図1の(4)の状態から疎水性溶剤4aを除去した状態を示す。前駆体粒子から疎水性溶剤を除去することにより、気体で満たされた中空部7をシェル6の内部に有する中空粒子10が得られる。
 以下、上記5つの工程及びその他の工程について、順に説明する。
 (1)混合液調製工程
 本工程は、重合性単量体、疎水性溶剤、重合開始剤、分散安定剤、及び水系媒体を含む混合液を調製する工程である。混合液は、本開示の効果を損なわない範囲において、その他の材料を更に含有していてもよい。
 混合液の材料について、(A)重合性単量体、(B)疎水性溶剤、(C)重合開始剤、(D)分散安定剤、(E)水系媒体の順に説明する。
 (A)重合性単量体
 重合性単量体としては、中空粒子の作製に従来用いられている公知の重合性単量体を用いることができ、特に限定はされないが、重合性単量体の少なくとも一部は架橋性単量体を含む。重合性単量体が架橋性単量体を含むと、シェルの架橋密度を高めることができるため、強度に優れたシェルが形成されやすく、中空粒子が球状になりやすく、粒子内にはシェルから明確に区別される中空部が形成されやすい。
 また、重合反応が安定し易い点からは、重合性単量体としては、重合性官能基が(メタ)アクリロイル基又はビニル基である重合性単量体が好ましく、重合性官能基として(メタ)アクリロイル基を含むアクリル系単量体がより好ましい。なお、本開示において重合反応が安定しているとは、重合反応の反応性が良好で、重合反応が均一に進行することを意味する。
 また、重合性単量体が、アクリル系単量体及び炭化水素単量体を含むと、重合反応が安定し易い上に、中空粒子の耐圧性を向上できる点から特に好ましい。アクリル系単量体と炭化水素単量体とを共重合することで、炭化水素単量体の反応率が上がるため、重合性単量体全体の反応性が向上する結果、重合反応が安定し易いと推定される。また、重合性単量体が、アクリル系単量体及び炭化水素単量体を含むと、疎水性溶剤との相溶性が適切になることにより、懸濁液を重合反応に供した際に、重合性単量体の重合反応が均一に進みやすく、形成されるシェルが組成及び厚さ等の均一性に優れたシェルになりやすいため、中空粒子の耐圧性が向上すると推定される。
 炭化水素単量体としては、重合反応が安定し易い点から、重合性官能基がビニル基であるものが好ましい。
 なお、本開示においては、重合性官能基として(メタ)アクリロイル基を有する重合性単量体をアクリル系単量体と称し、重合性官能基として(メタ)アクリロイル基を有する架橋性単量体を架橋性アクリル系単量体と称し、重合性官能基として(メタ)アクリロイル基を有する非架橋性単量体を非架橋性アクリル系単量体と称する。架橋性アクリル系単量体においては、少なくとも1つの重合性官能基が(メタ)アクリロイル基であればよいが、全ての重合性官能基が(メタ)アクリロイル基であることが好ましい。
 また、本開示においては、炭素と水素からなる重合性単量体を炭化水素単量体と称し、炭素と水素からなる架橋性単量体を架橋性炭化水素単量体と称し、炭素と水素からなる非架橋性単量体を非架橋性炭化水素単量体と称する。
 本開示の製造方法に用いる架橋性単量体としては、架橋性アクリル系単量体及び架橋性炭化水素単量体が好ましい。
 架橋性アクリル系単量体としては、例えば、アリル(メタ)アクリレート、ビニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリルプロピル(メタ)アクリレート等の2官能の架橋性アクリル系単量体;及び、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート及びこれらのエトキシ化体等の3官能以上の架橋性アクリル系単量体が挙げられる。
 架橋性炭化水素単量体としては、例えば、ジビニルベンゼン、ジビニルジフェニル、及びジビニルナフタレン等の2官能の架橋性炭化水素単量体が挙げられる。
 更に、架橋性単量体としては、ジアリルフタレート等の架橋性アリル系単量体等を挙げることもできる。
 これらの架橋性単量体は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 シェルの強度を向上し、耐圧性に優れた中空粒子を得る点からは、架橋性単量体が、重合性官能基を3つ以上有する3官能以上の架橋性単量体を含むことが好ましい。
 3官能以上の架橋性単量体としては、上記3官能以上の架橋性アクリル系単量体が好ましく、中でも、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレートが好ましく、ペンタエリスリトールテトラ(メタ)アクリレート、及びトリメチロールプロパントリ(メタ)アクリレートがより好ましい。
 シェルの強度を向上し、耐圧性に優れた中空粒子を得る点からは、架橋性単量体が、重合性官能基を2つのみ有する2官能の架橋性単量体と、重合性官能基を3つ以上有する3官能以上の架橋性単量体とを含むことがより好ましい。
 2官能の架橋性単量体としては、上記2官能の架橋性アクリル系単量体、及び上記2官能の架橋性炭化水素単量体からなる群から選ばれる少なくとも1種が好ましい。
 2官能の架橋性アクリル系単量体としては、中でも、エチレングリコールジ(メタ)アクリレート及びペンタエリスリトールジ(メタ)アクリレートが好ましく、エチレングリコールジ(メタ)アクリレートがより好ましい。
 2官能の架橋性炭化水素単量体としては、中でも、ジビニルベンゼンが好ましい。
 架橋性単量体の含有量は、中空粒子の耐圧性を向上する点から、重合性単量体100質量部中、50質量部以上であり、より好ましくは60質量部以上、更に好ましくは70質量部以上、より更に好ましくは80質量部以上である。架橋性単量体の含有量が上記下限値以上であると、粒子内に中空部が形成されやすく、粒子が球状になりやすく、更に、シェルの架橋密度を高めることができるため、中空粒子の耐溶剤性、強度、耐熱性等を向上させることができるというメリットもある。一方で、本開示の効果を損なわない範囲で、重合性単量体は非架橋性単量体を含有していてもよく、その場合、架橋性単量体の含有量は、重合性単量体100質量部中、例えば、95質量部以下であってもよいし、90質量部以下であってもよい。
 なお、架橋性単量体の含有量とは、2官能の架橋性単量体及び3官能以上の架橋性単量体の合計含有量である。
 架橋性単量体が、3官能以上の架橋性単量体を含有する場合は、中空粒子の耐圧性を向上する点から、3官能以上の架橋性単量体の含有量は、重合性単量体100質量部中、下限としては、好ましくは10質量部以上、より好ましくは20質量部以上であり、上限としては、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下である。
 架橋性単量体が、2官能の架橋性単量体及び3官能以上の架橋性単量体を含む場合は、中空粒子の耐圧性を向上する点から、2官能の架橋性単量体と3官能以上の架橋性単量体の合計質量100質量部に対し、3官能の架橋性単量体の含有量が、下限としては、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上であり、上限としては、好ましくは50質量部以下、より好ましくは40質量部以下である。
 重合性単量体は、本開示の効果を損なわない範囲で非架橋性単量体を含んでいてもよい。非架橋性単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等の非架橋性アクリル系単量体;スチレン、ビニルトルエン、α-メチルスチレン、p-メチルスチレン、エチルビニルベンゼン、エチルビニルビフェニル、エチルビニルナフタレン等の芳香族ビニル単量体、エチレン、プロピレン、ブチレン等のモノオレフィン単量体、ブタジエン、イソプレン等のジエン系単量体等の非架橋性炭化水素単量体;酢酸ビニル等のカルボン酸ビニルエステル単量体;ハロゲン化スチレン等のハロゲン化芳香族ビニル単量体;塩化ビニル等のハロゲン化ビニル単量体;塩化ビニリデン等のハロゲン化ビニリデン単量体;ビニルピリジン単量体;等を挙げることができる。これらの非架橋性単量体はそれぞれ単独で、または2種以上を組み合わせて使用することができる。
 非架橋性単量体としては、中でも、重合反応が安定し易く、中空粒子の耐圧性の低下を抑制する点から、(メタ)アクリル酸アルキルエステル及び芳香族ビニル単量体が好ましく、芳香族ビニル単量体がより好ましい。(メタ)アクリル酸アルキルエステルとしては、中でも、ブチルアクリレート及びメチルメタクリレートが好ましい。芳香族ビニル単量体としては、中でも、エチルビニルベンゼンが好ましい。
 重合反応の安定性を向上する点から、アクリル系単量体の含有量は、重合性単量体100質量部中、好ましくは10質量部以上、より好ましくは20質量部以上である。
 また、重合反応の安定性を向上する点、及び中空粒子の耐圧性を向上する点から、重合性単量体100質量部中、アクリル系単量体及び炭化水素単量体の含有量は、好ましくは80質量部以上、より好ましくは90質量部以上、更に好ましくは98質量部以上、より更に好ましくは99質量部以上である。
 重合性単量体がアクリル系単量体と炭化水素単量体を含有する場合は、中空粒子の耐圧性を向上する点から、アクリル系単量体及び炭化水素単量体の合計100質量部に対し、炭化水素単量体の含有量が、下限としては、好ましくは10質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上であり、上限としては、好ましくは90質量部以下、より好ましくは80質量部以下である。
 混合液中の重合性単量体の含有量は、特に限定はされないが、中空粒子の空隙率、粒径及び機械的強度のバランスの観点から、水系媒体を除く混合液中成分の総質量100質量%に対し、下限としては、好ましくは30質量%以上、より好ましくは40質量%以上であり、上限としては、好ましくは60質量%以下、より好ましくは50質量%以下である。
 また、中空粒子の機械的強度の観点から、混合液中で油相となる材料のうち疎水性溶剤を除いた固形分の総質量100質量%に対する重合性単量体の含有量は、好ましくは95質量%以上、より好ましくは97質量%以上である。
 なお、本開示において固形分とは、溶剤を除く全ての成分であり、液状の重合性単量体等は固形分に含まれるものとする。
 (B)疎水性溶剤
 本開示の製造方法で用いられる疎水性溶剤は、非重合性で且つ難水溶性の有機溶剤である。
 疎水性溶剤は、粒子内部に中空部を形成するスペーサー材料として働く。後述する懸濁工程において、疎水性溶剤を含む単量体組成物の液滴が水系媒体中に分散した懸濁液が得られる。懸濁工程においては、単量体組成物の液滴内で相分離が発生する結果、極性の低い疎水性溶剤が単量体組成物の液滴の内部に集まりやすくなる。最終的に、単量体組成物の液滴においては、その内部に疎水性溶剤が、その周縁に疎水性溶剤以外の他の材料が各自の極性に従って分布する。
 そして、後述する重合工程において、疎水性溶剤を内包した前駆体粒子を含む水分散液が得られる。すなわち、疎水性溶剤が粒子内部に集まることにより、得られる前駆体粒子の内部には、疎水性溶剤で満たされた中空部が形成されることとなる。
 疎水性溶剤は、公知の疎水性溶剤の中から適宜選択することができ、特に限定はされず、例えば、酢酸エチル、酢酸ブチルなどのエステル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエーテルエステル類;及び炭化水素系溶剤を挙げることができ、中でも炭化水素系溶剤を好ましく用いることができる。
 炭化水素系溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、2-メチルブタン及び2-メチルペンタンなどの鎖状炭化水素系溶剤、及びシクロヘキサン、メチルシクロヘキサン及びシクロヘプタンなどの環状炭化水素系溶剤を含む脂肪族炭化水素類;並びに、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類等を挙げることができる。
 これらの疎水性溶剤は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 懸濁工程において、単量体組成物の液滴内で、重合性単量体と疎水性溶剤との相分離が生じやすい点から、疎水性溶剤としては、重合性単量体に含まれる架橋性単量体よりも水に対する溶解度が小さい有機溶剤を選択することが好ましい。
 また、重合性単量体がアクリル系単量体及び炭化水素系単量体を含む場合は、疎水性溶剤としては、鎖状炭化水素系溶剤を用いることが好ましい。鎖状炭化水素系溶剤としては、中でも、炭素数5~8の鎖状炭化水素系溶剤が好ましく、ペンタン、ヘキサン、ヘプタン及びオクタンからなる群から選ばれる少なくとも1種がより好ましい。
 一方、重合性単量体が、アクリル系単量体を含み、炭化水素系単量体を含まない場合は、疎水性溶剤としては、炭素数4~7の炭化水素系溶剤を用いることが好ましく、炭素数5~7の炭化水素系溶剤を用いることがより好ましい。ここで、炭化水素系溶剤としては、芳香族炭化水素類であっても、脂肪族炭化水素類であってもよいが、中でも脂肪族炭化水素類が好ましく、環状炭化水素系溶剤がより好ましく、シクロヘキサン、シクロヘプタン及びメチルシクロヘキサンからなる群から選ばれる少なくとも1種が更に好ましい。
 上記のような重合性単量体と疎水性溶剤との組み合わせを用いると、中空粒子の耐圧性が向上しやすい点から好ましい。特に、アクリル系単量体及び炭化水素系単量体を含む重合性単量体と、上記の好ましい疎水性溶剤との組み合わせを用いると、シェルの均一性が向上することで、中空粒子の耐圧性が向上するため好ましい。
 また、特に限定されないが、疎水性溶剤の沸点は、後述する溶剤除去工程で除去されやすい点から、好ましくは130℃以下、より好ましくは100℃以下であり、一方で、前駆体粒子に内包されやすい点から、好ましくは50℃以上、より好ましくは60℃以上である。
 なお、疎水性溶剤が、複数種類の疎水性溶剤を含有する混合溶剤であり、沸点を複数有する場合は、当該混合溶剤に含まれる溶剤のうち最も沸点が高い溶剤の沸点が上記上限値以下であることが好ましく、当該混合溶剤に含まれる溶剤のうち最も沸点が低い溶剤の沸点が上記下限値以上であることが好ましい。
 また、本開示の製造方法で用いられる疎水性溶剤は、20℃における比誘電率が2.0以下であることが好ましい。比誘電率は、化合物の極性の高さを示す指標の1つである。疎水性溶剤の比誘電率が2.0以下と十分に小さい場合には、単量体組成物の液滴中で相分離が速やかに進行し、中空が形成されやすいと考えられる。
 20℃における比誘電率が2.0以下の疎水性溶剤の例は、以下の通りである。カッコ内は比誘電率の値である。
 ペンタン(1.8)、ヘキサン(1.9)、ヘプタン(1.9)、オクタン(1.9)、シクロヘキサン(2.0)。
 20℃における比誘電率に関しては、公知の文献(例えば、日本化学会編「化学便覧基礎編」、改訂4版、丸善株式会社、平成5年9月30日発行、II-498~II-503ページ)に記載の値、及びその他の技術情報を参照できる。20℃における比誘電率の測定方法としては、例えば、JIS C 2101:1999の23に準拠し、かつ測定温度を20℃として実施される比誘電率試験等が挙げられる。
 混合液中の疎水性溶剤の量を変えることにより、中空粒子の空隙率を調節することができる。後述する重合工程において、重合性単量体等を含む油滴が疎水性溶剤を内包した状態で重合反応が進行するため、疎水性溶剤の含有量が多いほど、得られる中空粒子の空隙率が高くなる傾向がある。
 本開示において、混合液中の疎水性溶剤の含有量は、重合性単量体100質量部に対し、50質量部以上500質量部以下であることが、中空粒子の粒子径を制御しやすく、中空粒子の強度を維持しながら空隙率を高めやすく、粒子内の残留疎水性溶剤量を低減しやすい点から好ましい。混合液中の疎水性溶剤の含有量は、重合性単量体100質量部に対し、より好適には70質量部以上300質量部以下であり、更に好適には90質量部以上200質量部以下である。
 (C)重合開始剤
 本開示の製造方法においては、混合液が、重合開始剤として油溶性重合開始剤を含有することが好ましい。混合液を懸濁後に単量体組成物の液滴を重合する方法として、水溶性重合開始剤を用いる乳化重合法と、油溶性重合開始剤を用いる懸濁重合法があり、油溶性重合開始剤を用いることにより懸濁重合を行うことができる。
 油溶性重合開始剤は、水に対する溶解度が0.2質量%以下の親油性のものであれば特に制限されず、例えば、ベンゾイルパーオキシド、ラウロイルパーオキシド、t一ブチルパーオキシド-2-エチルヘキサノエート、t-ブチルパーオキシジエチルアセテート、t-ブチルパーオキシピバレート等の有機過酸化物;2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物等を挙げることができる。
 混合液中の重合性単量体100質量部に対し、重合開始剤の含有量は、好適には0.1~10質量部、より好適には0.5~7質量部、さらに好適には1~5質量部である。重合開始剤の含有量が上記下限値以上であると、重合反応を十分進行させることができ、上記上限値以下であると、重合反応終了後に油溶性重合開始剤が残存するおそれが小さく、予期せぬ副反応が進行するおそれも小さい。
 (D)分散安定剤
 分散安定剤は、懸濁工程において、単量体組成物の液滴を水系媒体中に分散させる剤である。本開示においては、懸濁液中で液滴の粒子径をコントロールし易く、得られる中空粒子の粒径分布を狭くできる点、及びシェルが薄くなりすぎることを抑制して、中空粒子の強度の低下を抑制する点から、分散安定剤として、無機分散安定剤を用いることが好ましい。
 無機分散安定剤としては、例えば、硫酸バリウム、及び硫酸カルシウム等の硫酸塩;炭酸バリウム、炭酸カルシウム、及び炭酸マグネシウム等の炭酸塩;リン酸カルシウム等のリン酸塩;酸化アルミニウム、及び酸化チタン等の金属酸化物;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム及び水酸化第二鉄等の金属水酸化物;等の無機化合物が挙げられる。これらの無機分散安定剤は1種又は2種以上を組み合わせて用いることができる。
 上記無機分散安定剤の中でも、上述した硫酸塩、炭酸塩、リン酸塩、金属水酸化物等の難水溶性金属塩が好ましく、金属水酸化物がより好ましく、水酸化マグネシウムが特に好ましい。
 なお、本開示において難水溶性とは、100gの水に対する溶解度が0.5g以下であることが好ましい。
 本開示においては、特に、難水溶性の無機分散安定剤を、コロイド粒子の形態にて水系媒体に分散させた状態、すなわち、難水溶性の無機分散安定剤コロイド粒子を含有するコロイド分散液の状態で用いることが好ましい。これにより、単量体組成物の液滴の粒径分布を狭くすることができることに加え、洗浄により、得られる中空粒子中における無機分散安定剤の残留量を容易に低く抑えることができる。
 難水溶性の無機分散安定剤コロイド粒子を含有するコロイド分散液は、たとえば、水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種と、水溶性多価金属塩(水酸化アルカリ土類金属塩を除く。)とを水系媒体中で反応させることで調製することができる。
 水酸化アルカリ金属塩としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。水酸化アルカリ土類金属塩としては、水酸化バリウム、水酸化カルシウムなどが挙げられる。
 水溶性多価金属塩としては、上記水酸化アルカリ土類金属塩に該当する化合物以外の水溶性を示す多価金属塩であればよいが、例えば、塩化マグネシウム、リン酸マグネシウム、硫酸マグネシウムなどのマグネシウム金属塩;塩化カルシウム、硝酸カルシウム、酢酸カルシウム、硫酸カルシウムなどのカルシウム金属塩;塩化アルミニウム、硫酸アルミニウムなどのアルミニウム金属塩;塩化バリウム、硝酸バリウム、酢酸バリウムなどのバリウム塩;塩化亜鉛、硝酸亜鉛、酢酸亜鉛などの亜鉛塩;などが挙げられる。これらの中でも、マグネシウム金属塩、カルシウム金属塩、およびアルミニウム金属塩が好ましく、マグネシウム金属塩がより好ましく、塩化マグネシウムが特に好ましい。なお、水溶性多価金属塩は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 上記した水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種と、上記した水溶性多価金属塩とを水系媒体中で反応させる方法としては、特に限定されないが、水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種の水溶液と、水溶性多価金属塩の水溶液とを混合する方法が挙げられる。
 分散安定剤の含有量は、特に限定はされないが、重合性単量体と疎水性溶剤の合計質量100質量部に対し、好ましくは0.5~15質量部、より好ましくは1~10質量部である。分散安定剤の含有量が上記下限値以上であることにより、単量体組成物の液滴が懸濁液中で合一しないように十分に分散させることができる。一方、分散安定剤の含有量が上記上限値以下であることにより、造粒時に懸濁液の粘度が上昇するのを防止し、懸濁液が造粒機で閉塞する不具合を回避することができる。
 また、分散安定剤の含有量は、水系媒体100質量部に対し、好ましくは0.5~15質量部、より好ましくは0.5~10質量部である。
 (E)水系媒体
 本開示において水系媒体とは、水、親水性溶剤、及び、水と親水性溶剤との混合物からなる群より選ばれる媒体を意味する。
 水と親水性溶剤の混合物を用いる場合には、単量体組成物の液滴を形成する観点から、当該混合物全体の極性が低くなりすぎないことが重要である。この場合、例えば、水と親水性溶剤との質量比(水:親水性溶剤)を99:1~50:50としてもよい。
 本開示における親水性溶剤は、水と十分に混ざり合い相分離を起こさないものであれば特に制限されない。親水性溶剤としては、例えば、メタノール、エタノール等のアルコール類;テトラヒドロフラン(THF);ジメチルスルフォキシド(DMSO)等が挙げられる。
 水系媒体の含有量は、特に限定はされないが、中空粒子の粒径及び空隙率を後述する好ましい範囲内とする観点から、混合液に含まれる重合性単量体100質量部に対し、下限としては、好ましくは200質量部以上、より好ましくは400質量部以上、更に好ましくは600質量部以上であり、上限としては、好ましくは1000質量部以下、より好ましくは800質量部以下である。
 混合液は、本開示の効果を損なわない範囲において、上述した(A)~(E)の材料とは異なるその他の材料を更に含有していてもよい。
 前記の各材料及び必要に応じ他の材料を混合し、適宜攪拌等することによって混合液が得られる。当該混合液においては、上記(A)重合性単量体、(B)疎水性溶剤及び(C)重合開始剤などの親油性材料を含む油相が、(D)分散安定剤及び(E)水系媒体などを含む水相中において、粒径数mm程度の大きさで分散している。混合液におけるこれら材料の分散状態は、材料の種類によっては肉眼でも観察することが可能である。
 混合液調製工程では、前記の各材料及び必要に応じ他の材料を単に混合し、適宜攪拌等することによって混合液を得てもよいが、シェルが均一になりやすい点から、重合性単量体、疎水性溶剤及び重合開始剤を含む油相と、分散安定剤及び水系媒体を含む水相とを予め別に調製し、これらを混合することにより、混合液を調製することが好ましい。本開示においては、難水溶性の無機分散安定剤をコロイド粒子の形態にて水系媒体に分散させたコロイド分散液を、水相として好ましく用いることができる。
 このように油相と水相を予め別に調製した上で、これらを混合することにより、シェル部分の組成が均一な中空粒子を製造することができ、中空粒子の粒径の制御も容易となる。
 (2)懸濁工程
 懸濁工程は、上述した混合液を懸濁させることにより、疎水性溶剤を含む単量体組成物の液滴が水系媒体中に分散した懸濁液を調製する工程である。
 単量体組成物の液滴を形成するための懸濁方法は特に限定されず、公知の懸濁方法を採用することができる。懸濁液を調製する際に使用する分散機としては、例えば、大平洋機工(株)製のマイルダー(製品名)、(株)ユーロテック製のキャビトロン(製品名)、IKA製のインライン分散機(例えばDISPAX-REACTOR(登録商標) DRS(製品名))等の横型又は縦型のインライン分散機;プライミクス株式会社製のホモミクサーMARK IIシリーズ等の乳化分散機等が挙げられる。
 懸濁工程で調製される懸濁液においては、上記親油性材料を含みかつ5~40μm程度の粒径を持つ単量体組成物の液滴が、水系媒体中に均一に分散している。このような単量体組成物の液滴は肉眼では観察が難しく、例えば光学顕微鏡等の公知の観察機器により観察できる。
 懸濁工程においては、単量体組成物の液滴中に相分離が生じるため、極性の低い疎水性溶剤が液滴の内部に集まりやすくなる。その結果、得られる液滴は、その内部に疎水性溶剤が、その周縁に疎水性溶剤以外の材料が分布することとなる。
 図2は、懸濁工程における懸濁液の一実施形態を示す模式図である。図2中の単量体組成物の液滴8は、その断面を模式的に示すものとする。なお、図2はあくまで模式図であり、本開示における懸濁液は、必ずしも図2に示すものに限定されない。図2の一部は、上述した図1の(2)に対応する。
 図2には、水系媒体1中に、単量体組成物の液滴8及び水系媒体1中に分散した重合性単量体4cが分散している様子が示されている。液滴8は、油溶性の単量体組成物4の周囲を、分散安定剤3が取り囲むことにより構成される。
 単量体組成物中には油溶性重合開始剤5、並びに、重合性単量体及び疎水性溶剤(いずれも図示せず)が含まれる。
 液滴8は、単量体組成物4を含む微小油滴であり、油溶性重合開始剤5は当該微小油滴の内部で重合開始ラジカルを発生させる。したがって、微小油滴を成長させ過ぎることなく、目的とする粒径の前駆体粒子を製造することができる。
 このような油溶性重合開始剤を用いた懸濁重合法においては、重合開始剤が、水系媒体1中に分散した重合性単量体4cと接触する機会は存在しない。したがって、油溶性重合開始剤を使用することにより、目的とする中空部を有する樹脂粒子の他に、比較的粒径の小さい密実粒子等の余分な樹脂粒子が副成することを抑制できる。
 (3)重合工程
 本工程は、上述した懸濁工程により得られた懸濁液を重合反応に供することにより、樹脂を含むシェルに取り囲まれた中空部を有し、かつ中空部に疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程である。前駆体粒子は、単量体組成物の液滴に含まれる重合性単量体の重合により形成され、前駆体粒子が備えるシェルは、上記重合性単量体の重合体を樹脂として含む。
 重合方式に特に限定はなく、例えば、回分式(バッチ式)、半連続式、及び連続式等が採用できる。
 重合温度は、好ましくは40~90℃であり、より好ましくは50~80℃である。
 また、重合の反応時間は、好ましくは1~48時間であり、より好ましくは4~36時間である。
 また、本開示の製造方法では、重合工程において、懸濁液中の重合性単量体の重合反応の途中で、更に重合性単量体を添加して重合反応を行ってもよい。重合工程においてこのように2段階で重合反応を行うことにより、中空粒子の耐圧性を向上させることができる場合がある。
 重合工程においては、疎水性溶剤を内部に含む単量体組成物の液滴のシェル部分が重合するため、上述したように、得られる前駆体粒子の内部には、疎水性溶剤で満たされた中空部が形成される。
 (4)固液分離工程
 本工程は、上述した重合工程により得られる、前駆体粒子を含む前駆体組成物を固液分離することにより、前駆体粒子を含む固体分を得る工程である。
 前駆体組成物を固液分離する方法は特に限定されず、公知の方法を用いることができる。固液分離の方法としては、例えば、遠心分離法、ろ過法、静置分離等が挙げられ、この中でも遠心分離法又はろ過法を採用することができ、操作の簡便性の観点から遠心分離法を採用してもよい。
 固液分離工程後、後述する溶剤除去工程を実施する前に、予備乾燥工程等の任意の工程を実施してもよい。予備乾燥工程としては、例えば、固液分離工程後に得られた固体分を、乾燥機等の乾燥装置や、ハンドドライヤー等の乾燥器具により予備乾燥する工程が挙げられる。
 (5)溶剤除去工程
 本工程は、前記固液分離工程により得られた前駆体粒子に内包される疎水性溶剤を除去する工程である。
 前駆体粒子に内包される疎水性溶剤を気中にて除去することにより、前駆体粒子内部の疎水性溶剤が空気と入れ替わり、気体で満たされた中空粒子が得られる。
 本工程における「気中」とは、厳密には、前駆体粒子の外部に液体分が全く存在しない環境下、及び、前駆体粒子の外部に、疎水性溶剤の除去に影響しない程度のごく微量の液体分しか存在しない環境下を意味する。「気中」とは、前駆体粒子がスラリー中に存在しない状態と言い替えることもできるし、前駆体粒子が乾燥粉末中に存在する状態と言い替えることもできる。すなわち、本工程においては、前駆体粒子が外部の気体と直に接する環境下で疎水性溶剤を除去することが重要である。
 前駆体粒子中の疎水性溶剤を気中にて除去する方法は、特に限定されず、公知の方法を採用できる。当該方法としては、例えば、減圧乾燥法、加熱乾燥法、気流乾燥法又はこれらの方法の併用が挙げられる。
 特に、加熱乾燥法を用いる場合には、加熱温度は疎水性溶剤の沸点以上、かつ前駆体粒子のシェル構造が崩れない最高温度以下とする必要がある。前駆体粒子中のシェルの組成と疎水性溶剤の種類によるが、例えば、加熱温度を50~200℃としてもよく、70~200℃としてもよく、100~200℃としてもよい。
 気中における乾燥操作によって、前駆体粒子内部の疎水性溶剤が、外部の気体により置換される結果、中空部を気体が占める中空粒子が得られる。
 乾燥雰囲気は特に限定されず、中空粒子の用途によって適宜選択することができる。乾燥雰囲気としては、例えば、空気、酸素、窒素、アルゴン等が考えられる。また、いったん気体により中空粒子内部を満たした後、減圧乾燥することにより、一時的に内部が真空である中空粒子も得られる。
 別の方法として、重合工程で得られたスラリー状の前駆体組成物を固液分離せずに、前駆体粒子及び水系媒体を含むスラリー中で、当該前駆体粒子に内包される疎水性溶剤を除去してもよい。
 この方法においては、疎水性溶剤の沸点から35℃差し引いた温度以上の温度で、前駆体組成物に不活性ガスをバブリングすることにより、前駆体粒子に内包される疎水性溶剤を除去することができる。
 ここで、前記疎水性溶剤が、複数種類の疎水性溶剤を含有する混合溶剤であり、沸点を複数有する場合、溶剤除去工程での疎水性溶剤の沸点とは、当該混合溶剤に含まれる溶剤のうち最も沸点が高い溶剤の沸点、すなわち複数の沸点のうち最も高い沸点とする。
 前駆体組成物に不活性ガスをバブリングする際の温度は、中空粒子中の疎水性溶剤の残留量を低減する点から、疎水性溶剤の沸点から30℃差し引いた温度以上の温度であることが好ましく、20℃差し引いた温度以上の温度であることがより好ましい。なお、バブリングの際の温度は、通常、前記重合工程での重合温度以上の温度とする。特に限定はされないが、バブリングの際の温度を、50℃以上100℃以下としてもよい。
 バブリングする不活性ガスとしては、特に限定はされないが、例えば、窒素、アルゴン等を挙げることができる。
 バブリングの条件は、疎水性溶剤の種類及び量に応じて、前駆体粒子に内包される疎水性溶剤を除去できるように適宜調整され、特に限定はされないが、例えば、不活性ガスを1~3L/minの量で、1~10時間バブリングしてもよい。
 この方法においては、水系媒体を含有する中空粒子のスラリーが得られる。このスラリーを固液分離して得られた中空粒子を乾燥し、中空粒子が含有する水系媒体を除去することにより、中空部を気体が占める中空粒子が得られる。
 スラリー状の前駆体組成物を固液分離した後、前駆体粒子中の疎水性溶剤を気中にて除去することにより中空部が気体で満たされた中空粒子を得る方法と、前駆体粒子及び水系媒体を含むスラリー中で、当該前駆体粒子に内包される疎水性溶剤を除去した後、固液分離し、中空粒子中の水系媒体を気中にて除去することにより中空部が気体で満たされた中空粒子を得る方法を比べると、前者の方法は、疎水性溶剤を除去する工程で中空粒子が潰れにくいという利点があり、後者の方法は、不活性ガスを用いたバブリングを行うことにより疎水性溶剤の残留量が少なくなるという利点がある。
 その他、重合工程の後、固液分離工程の前に、重合工程で得られたスラリー状の前駆体組成物を固液分離せずに、前駆体粒子に内包される疎水性有機溶剤を除去する方法として、例えば、所定の圧力下(高圧下、常圧下又は減圧下)で、前駆体組成物から前駆体粒子に内包される疎水性有機溶剤を蒸発留去させる方法;所定の圧力下(高圧下、常圧下又は減圧下)で、前駆体組成物に窒素、アルゴン、ヘリウム等の不活性ガスあるいは水蒸気を導入して蒸発留去させる方法;を用いてもよい。
 (6)その他
 上記(1)~(5)以外の工程としては、例えば、下記(6-a)洗浄工程や下記(6-b)中空部の再置換工程を付加しても良い。
 (6-a)洗浄工程
 洗浄工程とは、前記溶剤除去工程前に、前駆体粒子を含む前駆体組成物中に残存する分散安定剤を除去するために、酸またはアルカリを添加して洗浄を行う工程である。使用した分散安定剤が、酸に可溶な無機分散安定剤である場合、前駆体粒子を含む前駆体組成物へ酸を添加して、洗浄を行うことが好ましく、一方、使用した分散安定剤が、アルカリに可溶な無機化合物である場合、前駆体粒子を含む前駆体組成物へアルカリを添加して、洗浄を行うことが好ましい。
 また、分散安定剤として、酸に可溶な無機分散安定剤を使用した場合、前駆体粒子を含む前駆体組成物へ酸を添加し、pHを、好ましくは6.5以下、より好ましくは6以下に調整することが好ましい。添加する酸としては、硫酸、塩酸、硝酸等の無機酸、および蟻酸、酢酸等の有機酸を用いることができるが、分散安定剤の除去効率が大きいことや製造設備への負担が小さいことから、特に硫酸が好適である。
 (6-b)中空部の再置換工程
 中空部の再置換工程とは、中空粒子内部の気体や液体を、他の気体や液体に置換する工程である。このような置換により、中空粒子内部の環境を変えたり、中空粒子内部に選択的に分子を閉じ込めたり、用途に合わせて中空粒子内部の化学構造を修飾したりすることができる。
 本開示で用いられる中空粒子は、上述した重合性単量体の重合体をシェルの主成分として含み、当該重合体が、中空粒子のシェルの骨格を形成する。
 本開示の中空粒子は、耐圧性を向上する点から、シェルに含まれる上記重合体が、架橋性単量体単位を含む。上記重合体の全単量体単位100質量部中、架橋性単量体単位の含有量は、50質量部以上であり、好ましくは60質量部以上、更に好ましくは70質量部以上、より更に好ましくは80質量部以上である。一方で、本開示の効果を損なわない範囲で、上記重合体は非架橋性単量体単位を含有していてもよく、その場合、架橋性単量体単位の含有量は、上記重合体の全単量体単位100質量部中、例えば、95質量部以下であってもよいし、90質量部以下であってもよい。
 本開示で用いられる中空粒子は、耐圧性を向上する点から、シェルに含まれる上記重合体が、3官能以上の架橋性単量体単位を含むことが好ましい。上記重合体の全単量体単位100質量部中、3官能以上の架橋性単量体単位の含有量は、下限としては、好ましくは10質量部以上、より好ましくは20質量部以上であり、上限としては、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下である。
 本開示で用いられる中空粒子は、耐圧性を向上する点から、シェルに含まれる上記重合体が、2官能の架橋性単量体単位、及び3官能以上の架橋性単量体単位を含むことが好ましい。上記重合体が2官能の架橋性単量体単位と3官能以上の架橋性単量体単位とを含む場合は、2官能の架橋性単量体単位及び3官能以上の架橋性単量体単位の合計100質量部中、3官能以上の架橋性単量体単位の含有量が、好ましくは5質量部以上、より好ましくは10質量部以上であり、更に好ましくは20質量部以上であり、一方、好ましくは50質量部以下、より好ましくは40質量部以下である。
 なお、本開示においては、2官能の架橋性単量体に由来する架橋性単量体単位を「2官能の架橋性単量体単位」と称する場合があり、3官能以上の架橋性単量体に由来する架橋性単量体単位を「3官能以上の架橋性単量体単位」と称する場合がある。
 また、本開示で用いられる中空粒子は、シェルの均一性が向上しやすい点から、シェルに含まれる上記重合体が、アクリル系単量体単位を含むことが好ましい。アクリル系単量体単位の含有量は、特に限定はされないが、全単量体単位100質量%中、好ましくは、10質量部以上、より好ましくは20質量部以上である。
 また、本開示で用いられる中空粒子は、シェルの均一性が向上しやすく、耐圧性が向上する点から、シェルに含まれる上記重合体が、アクリル系単量体単位及び炭化水素単量体単位を含むことが好ましい。
 上記重合体の全単量体単位100質量部中、アクリル系単量体単位及び炭化水素単量体単位の合計含有量は、好ましくは80質量部以上、より好ましくは90質量部以上、更に好ましくは98質量部以上、より更に好ましくは99質量部以上である。
 シェルに含まれる上記重合体が、アクリル系単量体単位及び炭化水素単量体単位を含む場合は、中空粒子の耐圧性を向上する点から、アクリル系単量体単位及び炭化水素単量体単位の合計100質量部中、炭化水素単量体単位の含有量が、下限としては、好ましくは10質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上であり、上限としては、好ましくは90質量部以下、より好ましくは80質量部以下である。
 本開示で用いられる中空粒子において、上記重合性単量体から合成された重合体の含有量は、シェルの全固形分100質量%中、好ましくは96質量%以上、より好ましくは97質量%以上である。上記重合体の含有量を上記下限値以上とすることにより、中空粒子の耐圧性の低下を抑制することができる。すなわち、中空粒子の耐圧性の低下を抑制する点から、シェルの全固形分100質量%中、上記重合体以外の成分の含有量は、好ましくは4質量%以下、より好ましくは3質量%以下である。
 なお、本開示で用いられる中空粒子に含まれる上記重合体以外の成分としては、例えば、未反応のまま残留した重合性単量体、上記重合性単量体の重合体とは異なる重合体、重合開始剤の分解物、重合性単量体の原料に不純物として含まれる低分子化合物等が挙げられる。これらは、低沸点のもの(例えば沸点200℃以下)は中空粒子の製造過程で通常除去されるが、高沸点のもの(例えば沸点250℃以上)は、除去されずに残留する場合がある。
 [可塑剤]
 本開示の中空粒子含有エラストマー組成物は、所定条件下で測定される中空粒子含有エラストマー組成物の貯蔵弾性率G’を一定値以下とするために、必要に応じて可塑剤を添加する。可塑剤としては、車載用材料、一般的なプラスチック、ゴム製品等の用途において可塑剤として一般的に用いられるもの、又は、柔軟性を付与するものを用いることができる。
 例えば、プロセスオイル、潤滑油、パラフィン、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール、コールタールピッチ等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、ヤシ油等の脂肪油系軟化剤;トール油;蜜ロウ、カルナウバロウ、ラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸および脂肪酸塩;石油樹脂、アタクチックポリプロピレン、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系可塑剤;ジイソドデシルカーボネート等の炭酸エステル系可塑剤;その他マイクロクリスタリンワックス、サブ(ファクチス)、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコール、炭化水素系合成潤滑油等を、可塑剤として用いることができる。これらの可塑剤は、1種または2種以上を併用することができる。
 本開示の中空粒子含有エラストマー組成物を用いて製造された成形体からの可塑剤のブリード(滲出)を防止する観点から、可塑剤として、基材エラストマーと結合する反応活性点を有し、重量平均分子量が1000以上、100000以下である高分子からなる群から選ばれる可塑剤(以下において「反応活性点含有可塑剤」と称する場合がある。)を含むことが好ましい。
 上記の反応活性点含有可塑剤は、エラストマー組成物及びその原料混合物の溶融混練中に可塑剤として機能するだけでなく、エラストマー組成物及びその原料混合物の溶融混練時またはエラストマー組成物を用いる成形体の製造時に、基材エラストマー分子と結合し、反応活性点含有可塑剤それ自体がエラストマー組成物及びその原料混合物中のマトリックスと一体化するため、可塑剤のブリードを防止することができる。
 特に、多量の可塑剤を用いる場合には、可塑剤がブリードしやすい。それゆえ、エラストマー組成物及びその原料混合物の溶融混練時における貯蔵弾性率G’を十分に低くするために多量の可塑剤を添加したい場合には、上記の反応活性点含有可塑剤を用いることが好ましい。
 反応活性点含有可塑剤の分子構造において本体部となる高分子骨格は、エラストマー組成物及びその原料混合物の溶融混練時に適度な相溶性、及び、軟化性又は流動性を有し、可塑剤として機能し得るものである限り、いかなる化学構造を有するものであってもよいが、例えば、主鎖又は側鎖中に酸素、窒素、ケイ素等の異種原子を含んでいてもよい炭化水素系高分子構造を有する骨格が例示される。
 基材エラストマーと結合する反応活性点とは、基材エラストマー上に存在する反応活性点と化学的、物理的又は物理化学的な結合を形成する機能を有する化学構造を意味する。反応活性点含有可塑剤が基材エラストマーと結合する反応活性点を一分子中に2つ以上有する場合、反応活性点含有可塑剤が、2つの基材エラストマー分子の間に可塑剤を介した架橋構造を形成し、可塑剤とマトリックスが高度に一体化するので、可塑剤のブリードを防止する効果が高い。
 反応活性点含有可塑剤が反応活性点を一分子中に2つ以上有し、かつ、当該反応活性点が中空粒子にも結合できるものである場合、反応活性点含有可塑剤は、2つの基材エラストマー分子の間に架橋構造を形成するだけでなく、基材エラストマー分子と中空粒子の間、及び、2つの中空粒子の間にも架橋構造を形成し、可塑剤のブリードを防止する効果がより高くなる。
 反応活性点含有可塑剤の一分子当たり反応活性点の数が多すぎる場合には、エラストマー組成物及びその原料混合物中のマトリックスが過度にネットワーク化し、溶融流動性が悪くなる。それゆえ、本開示の中空粒子含有エラストマー組成物及びその原料混合物の所定条件下で測定される貯蔵弾性率G’を一定値以下とする観点から、反応活性点含有可塑剤の一分子当たり反応活性点の数は、2~10000であることが好ましい。
 十分な可塑性を付与する観点から、反応活性点含有可塑剤は、常温(20℃±15℃)の範囲内の少なくとも一点において液状であることが好ましく、10℃~30℃の範囲内の少なくとも一点において液状であることがより好ましく、20℃~25℃の範囲内の少なくとも一点において液状であることがより好ましい。
 十分な可塑性を付与するという同じ観点から、反応活性点含有可塑剤は、ガラス転移温度が-10℃以下であることが好ましく、-120℃~-20℃であることがより好ましい。
 基材エラストマーがブタジエンゴムやスチレンブタジエンゴムのようにエチレン性二重結合を有する場合、基材エラストマー上のエチレン性二重結合は反応活性点となり得るから、基材エラストマーと結合する反応活性点としてエチレン性二重結合を利用することができる。
 また、中空粒子のシェルがエチレン性二重結合を有する単量体又は架橋性単量体から合成され、未反応のエチレン性二重結合がシェル上に残留している場合、シェル上のエチレン性二重結合は反応活性点となり得るから、中空粒子と結合する反応活性点としてエチレン性二重結合を利用することができる。
 それゆえ、基材エラストマーとしてブタジエンゴム及びスチレンブタジエンゴムからなる群から選ばれるエラストマーを用いる場合、反応活性点含有可塑剤としてエチレン性二重結合を有する高分子を用いることができる。
 エチレン性二重結合を有し、重量平均分子量が1000以上、100000以下である高分子からなる群から選ばれる反応活性点含有可塑剤としては、常温で液状のジエンゴムが好ましく用いられる。
 常温で液状のジエンゴムとしては、例えば、未変性液状ポリブタジエンゴム;アクリレート変性液状ポリブタジエン等の変性液状ポリブタジエンゴム;液状スチレン-ブタジエンゴム;未変性液状ポリイソプレンゴム;水酸基末端液状ポリイソプレンゴム等の変性液状ポリイソプレンゴム等が挙げられる。これらのなかでも、未変性液状ポリブタジエンゴム及び変性液状ポリブタジエンゴムが好ましい。
 また、エチレン性二重結合を有し、重量平均分子量が1000以上、100000以下である高分子からなる群から選ばれる反応活性点含有可塑剤としては、末端二重結合を有するポリオレフィンも好ましく用いられる。末端二重結合を有するポリオレフィンとしては、例えば、末端二重結合を有するポリプロピレンが挙げられる。
 エラストマー組成物中の可塑剤の含有量は特に限定されず、通常、基材エラストマー100質量部に対して、35~100質量部、好ましくは45~90質量部である。
 上記の反応活性点含有可塑剤を用いる場合、反応活性点含有可塑剤の含有量が適切な範囲では、連結構造の形成による組成物の弾性上昇よりも、可塑性を付与する効果が優位になるため、可塑剤として十分な機能を果たすと同時にブリードも防止される。しかし、反応活性点含有可塑剤の含有量が少なすぎると連結構造の形成による組成物の弾性上昇が優位になるため、可塑性を付与する効果が阻害される。また、反応活性点含有可塑剤の含有量が過剰になると可塑性を付与する効果は大きくなるが、連結構造の形成が飽和に達し、遊離したままの可塑剤がブリードしやすくなる。
 以上の理由から、反応活性点含有可塑剤を単独で用いる場合、反応活性点含有可塑剤の含有量は、基材エラストマー100質量部に対して、好ましくは65~90質量部、より好ましくは70~85質量部、より好ましくは70~80質量部である。
 また、反応活性点を有しない可塑剤と反応活性点含有可塑剤を組み合わせて用いる場合、可塑剤の全量に対して反応活性点含有可塑剤の割合は、好ましくは5~35質量%、より好ましくは10~30質量%である。
 [加硫・架橋剤]
 本開示の中空粒子含有エラストマー組成物は、基材エラストマーを架橋するために、必要に応じて加硫・架橋剤を添加する。加硫・架橋剤としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄等の硫黄;塩化イオウ、セレン、テルル等の無機系加硫剤;モルホリンジスルフィド、アルキルフェノールジスルフィド類、チウラムジスルフィド類、ジチオカルバミン酸塩等の含硫黄有機化合物;1,1-ジ-t-ブチルペルオキシ-3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルペルオキシド、ジクミルペルオキシド、t-ブチルクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,3-ビス-(t-ブチルペルオキシ-イソプロピル)ベンゼン等の有機過酸化物類等を挙げることができる。これらの加硫・架橋剤は、1種又は2種以上を混合して使用することができる。加硫・架橋剤の配合量は、その種類に応じて適宜選定されるが、基材エラストマー100質量部に対して、通常、0.1~10質量部、好ましくは0.5~5質量部の範囲である。また、必要に応じて加硫促進剤、加硫促進助剤を併用することもできる。
 [その他の成分]
 本開示の中空粒子含有エラストマー組成物は、必要に応じて、従来公知の補強剤、充填剤、加硫促進助剤、軟化剤、加工助剤、老化防止剤、紫外線吸収剤、発泡剤、発泡助剤、滑剤、顔料、着色剤、分散剤、難燃剤等の添加剤を、本開示の目的を損なわない範囲で含有していてもよい。
 補強剤は、エラストマーの引張強度、引き裂き強度、耐摩耗性等の機械的性質を高める効果がある。このような補強剤としては、具体的には、SRF、GPF、FEF、HAF、ISAF、SAF、FT、MT等のカーボンブラック、シランカップリング剤などにより表面処理が施されているこれらのカーボンブラック、微粉ケイ酸、シリカなどが挙げられる。これらの補強剤は1種又は2種以上を併用することができる。補強剤の配合量は特に限定されず、通常、基材エラストマー100質量部に対して、230質量部以下である。
  充填剤としては、炭酸カルシウム、軽質炭酸カルシウム、重質炭酸カルシウム、炭酸マグネシウム、タルク、クレー、ガラスビーズ、ガラスバルーン等の無機充填剤;ハイスチレン樹脂、クマロンインデン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、石油樹脂等の有機充填剤を挙げることができ、特に無機充填剤が好ましく用いられる。これらの充填剤は、1種又は2種以上を併用して使用することができる。充填剤の配合量は特に限定されず、通常、基材エラストマー100質量部に対して、30~200質量部である。
  加硫促進剤としては、具体的には、ヘキサメチレンテトラミン等のアルデヒドアンモニア類;ジフェニルグアニジン、ジ(o-トリル)グアニジン、o-トリル-ピグアニド等のグアニジン類;チオカルバニリド、ジ(o-トリル)チオウレア、N,N’-ジエチルチオウレア、ジラウリルチオウレア等のチオウレア類;メルカプトベンゾチアゾール、ジベンゾチアゾールジスルフィド、N,N’-ジ(エチルチオカルバモイルチオ)ベンゾチアゾール等のチアゾール類;N-t-ブチル-2-ベンゾチアジルスルフェンアミド等のスルフェンアミド類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド等のチウラム類;ジメチルチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸銅、ジメチルチオカルバミン酸テルル、ジメチルチオカルバミン酸鉄等のカルバミン酸塩類;ブチルチオキサントゲン酸亜鉛等のキサントゲン酸塩類等を挙げることができる。
  これらの加硫促進剤は、1種又は2種以上を併用することができる。加硫促進剤の配合量は、基材エラストマー100質量部に対して、通常、0.1~20質量部、好ましくは0.2~10質量部の範囲である。加硫促進助剤としては、具体的には、酸化マグネシウム、亜鉛華等の金属酸化物;ステアリン酸、オレイン酸、ステアリン酸亜鉛等の有機酸(塩)類等を挙げることができ、特に亜鉛華、ステアリン酸が好ましく用いられる。これらの加硫促進助剤は、1種又は2種以上を併用することができる。加硫促進助剤の配合量は、基材エラストマー100質量部に対して、通常、0.5~20質量部の範囲である。
  軟化剤としては、プロセスオイル、潤滑油、パラフィン、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール、コールタールピッチ等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、ヤシ油等の脂肪油系軟化剤;トール油;サブ;蜜ロウ、カルナウバロウ、ラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸および脂肪酸塩;石油樹脂、アタクチックポリプロピレン、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系可塑剤;ジイソドデシルカーボネート等の炭酸エステル系可塑剤;その他マイクロクリスタリンワックス、サブ(ファクチス)、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコール、炭化水素系合成潤滑油などが挙げられる。中でも石油系軟化剤が好ましく、特にプロセスオイルが好ましい。軟化剤の配合量は特に限定されず、通常、基材エラストマー100質量部に対して、10~200質量部である。
  加工助剤としては、リシノール酸、ステアリン酸、パルチミン酸、ラウリン酸等の高級脂肪酸;ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸の塩;リシノール酸、ステアリン酸、パルチミン酸、ラウリン酸等の高級脂肪酸のエステル類などが挙げられる。老化防止剤としては、例えば、アミン系、ヒンダードフェノール系、イオウ系老化防止剤等が挙げられる。
  滑剤としては、流動パラフィン等の炭化水素系、ステアリン酸等の脂肪酸系、ステアリン酸アミド等の脂肪酸アミド系、ステアリン酸ブチル等のエステル系、ステアリルアルコール等のアルコール系等の化合物又は混合物、金属石鹸等を挙げることができる。
  顔料としては、二酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硝酸塩等の無機顔料; アゾ顔料、フタロシアニン顔料、キナクリドン顔料、キナクリドンキノン顔料、ジオキサジン顔料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ペリレン顔料、ぺリノン顔料、ジケトピロロピロール顔料、キノナフタロン顔料、アントラキノン顔料、チオインジゴ顔料、ベンズイミダゾロン顔料、イソインドリン顔料、カーボンブラック等の有機顔料が挙げられる。
 [中空粒子含有エラストマー組成物の製造方法]
 本開示の中空粒子含有エラストマー組成物の製造方法は特に制限されない。一般的に、基材エラストマー及び中空粒子、さらに必要に応じて、可塑剤、加硫・架橋剤等の他の成分を含む原料混合物を、基材エラストマーが軟化する温度で予備混練することにより配合成分を均一にした後、ロール混練のような高いせん断力を加える仕上げ混練を行うことにより、配合成分を更に均一化かつ微細化し、中空粒子含有エラストマー組成物を得る。予備混練の途中で加硫・架橋剤によって原料混合物が架橋することを防止するために、予備混練後の仕上げ混練の工程で加硫・架橋剤を添加してもよい。さらに、中空粒子を仕上げ混練の工程で添加してもよい。
 本開示においては、中空粒子含有エラストマー組成物の原料混合物を混練する段階での中空粒子の潰れを少なくするために、少なくとも基材エラストマーと、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備え、当該シェルは、前記樹脂として全単量体単位100質量部中に架橋性単量体単位を50質量部以上含む重合体を含有する中空粒子とを含み、配合成分の均一化処理後に行われる動的粘弾性測定により得られる60℃における貯蔵弾性率G’が2.5MPa以下である原料混合物を準備し、
 前記原料混合物を、密閉型混練機を用い、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備混練し、
 当該原料混合物を、予備混練した後直ちに、または、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備加熱した後、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で混練することが好ましい。また、成分を均一に混合するために、前記混練する工程(仕上げ混練の工程)がロール混練により行われることが好ましい。
 また、上記の製造方法において、「混練温度60℃以上で混練する」とは、混練装置の設定温度を60℃以上とすることを意味する。同様に、「温度A℃で混練する」、「混練温度A℃とする」、「温度A℃で予備加熱する」又は「成形温度A℃とする」とは、混練装置、加熱装置、成形装置等の装置温度を当該数値(A)に設定することを意味する。
 上記の製造方法は、架橋性単量体単位の含有割合が高い重合体を含む樹脂からなるシェルによって強度が高められ且つ高温環境においても架橋構造のおかげで強度が低下しない中空粒子を用い、さらに、基材エラストマー及び中空粒子を含有する原料混合物の60℃における貯蔵弾性率G’を2.5MPa以下とし且つ原料混合物の貯蔵弾性率G’を2.5MPa以下となる温度で予備混練及び仕上げ混練を行うことによって、仕上げ混練時に原料混合物の内部で中空粒子にかかる内圧やせん断力等の負荷が低く抑えられる。
 したがって本開示の製造方法によれば、混練工程において中空粒子が潰れにくく、空隙残存率が安定しており、中空粒子によって付与される特性又は機能が棄損しにくいため、優れた特性又は機能を有する中空粒子含有エラストマー組成物が得られる。
 また、上記の製造方法によれば、原料混合物を何回も繰り返し混練しても当該原料混合物の内部に存在する中空粒子が最初に有していた空隙率を維持することができ、中空粒子の効果棄損を引き起こしにくい。したがって、エラストマー組成物が架橋(加硫化)される前であれば、成形装置から回収されたエラストマー組成物を原料混合物として再利用することができる。
 上記方法を実施するために、原料混合物の動的粘弾性測定によって得られる60℃における貯蔵弾性率G’が2.5MPa以下となる処方を、予め特定しておく。
 原料混合物の動的粘弾性測定は、中空粒子含有エラストマー組成物の動的粘弾性測定と同じ方法で行えば良いが、原料混合物は混練される前の組成物であり配合成分の均一性が充分でないため、そのまま動的粘弾性測定を行うと測定値が大きくばらつくか或いは測定できない。そのため、原料混合物の動的粘弾性測定は、当該原料混合物中に含まれる配合成分の分布を均一化処理することにより、安定した測定値が得られる状態になった後に行う必要がある。この均一化処理の条件は特に制約されないが、例えば、下記条件で均一化処理を行ってもよい。
[均一化処理]
 少なくとも基材エラストマーと前記中空粒子とを含む混合物を、密閉型混練機を用い、混練温度100℃、混練部材の回転数50rpmで混練することにより均一化する。
 なお、60℃における貯蔵弾性率が2.5MPa以下である原料混合物を特定するために動的粘弾性測定を行う場合には、中空粒子含有エラストマー組成物の製造段階における中空粒子の潰れにくさを適正に評価できる限り、60℃における貯蔵弾性率の変動に対する影響が小さい範囲内において、中空粒子含有エラストマー組成物に含有される成分の一部を含有しない疑似的な原料混合物を用い、簡易的な測定を行っても良い。
 例えば、中空粒子含有エラストマー組成物の加硫・架橋剤は、通常、加硫・架橋剤の一般的な使用量の範囲内では60℃における貯蔵弾性率の変動に対する影響が小さいため、動的粘弾性測定のための試料として、加硫・架橋剤を含有しない疑似的な混合物を用いることができる。
 一般に、基材エラストマー及び中空粒子、さらに必要に応じて、可塑剤、加硫・架橋剤等の他の成分を含む組成物を均一に混練するためには、ロール混練のような高いせん断力を加えることが望ましいが、高いせん断力によって中空粒子が潰れやすい。
 本開示においては、上記特定の原料混合物を、密閉型混練機を用い、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備混練した後、直ちに、または、予備混練後さらに前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備加熱した後、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で仕上げ混練することによって、ロール混練のような高いせん断力を加える混練を行っても中空粒子にかかる負荷が過大にならないため、中空粒子の潰れを回避しながら、均一に混合されたエラストマー組成物を製造することができる。
 本開示において予備混練及び上記の均一化処理で用いる密閉型混練機とは、中心部に処理対象であるゴム材料を収容するチャンバーを備え、当該チャンバー内にローター(撹拌部材)が2つ設置されており、2つのローター間に入ったゴムをすり潰すように練っていく仕組みを有するものをいう。ローターとは、材料全体を取りこぼしなく均一に混ぜるためにロール状の回転軸に羽根(ブレード)を取り付けたもので、材料となるゴムはこのチャンバー内でローターのせん断力を受けながら混ぜられていく。
 密閉型混練機としては、例えば、ニーダーやバンバリーミキサーを用いることができ、より具体的には、ニーダーとしては、製品名:プラスチコーダ ラボステーション(ブラベンダー社製)、製品名:MS式加圧型ニーダー(株式会社モリヤマ製)が挙げられ、バンバリーミキサーとしては、製品名:MIXTRON BB MIXER((株)神戸製鋼所)が挙げられる。
 また、仕上げ混練のための混練機としては、例えば、二本ミキシングロールを用いることができ、より具体的には、製品名:ミキシングロールDY6-15(ダイハン社製)が挙げられる。
 予備混練のために用いる密閉型混練機と、均一化処理のために用いる密閉型混練機は、全く同じ構成の装置である必要はない。ただし、原料混合物を予備混合する段階における原料混合物の粘弾特性挙動を、原料混合物の処方を特定する段階で測定される原料混合物の粘弾特性に基づいて、できるだけ正確に予測する観点から、予備混練の段階と均一化処理の段階で同じ装置構成を有する密閉型混練機を用いることが好ましい。
 一例として、以下のような方法で混練を行うことができる。先ず、ロール混練よりもせん断力が弱いニーダーやバンバリーミキサーのような密閉型混練機を用い、混練温度を100℃に設定し、当該密閉型混練機の温度が安定してから基材エラストマーを投入し、次いで密閉型混練機のローターを回転数30~100rpmで回転させながら中空粒子、可塑剤、加硫・架橋剤等の成分を任意の順序で添加することにより予備混練する。
 次に、ロール混練機の混練温度を60℃以上に設定し、ロール混練機の温度が安定してから予備混練された原料混合物を直ちに、ロール混練機内に投入し、ロール混練を行うことによって、本開示の中空粒子含有エラストマー組成物が得られる。予備混練された原料混合物を密閉型混練機から直ちにロール混練機内に投入することにより、原料混合物の温度が予備混練工程から仕上げ混練工程への移送中に低下し、その溶融流動性が低下し、仕上げ混練における中空粒子の潰れが増大することを防止できる。
 ここで、「密閉型混練機から直ちにロール混練機内に投入する」の「直ちに」とは、原料混合物を予備混練工程から仕上げ混練工程へ移送するための所要時間が、仕上げ混練における中空粒子の潰れ増大の程度を実用上無視できる範囲内に抑えられるほどに短時間であることを意味する。
 より具体的には、予備混練された原料混合物を用いて作成したエラストマー成形体について、後述する中空粒子含有エラストマー成形体の空隙残存率の測定方法に従って測定される空隙率と、最終的に得られた中空粒子含有エラストマー組成物を用いて作成したエラストマー成形体について、同様の方法で測定される空隙率との差(単位:%)が、10%以下であることが好ましく、5%以下であることがさらに好ましい。
 また、予備混練後に予備加熱を行わず直ちに仕上げ混練を開始するまでの所要時間を、時間の単位で具体的に示すと、原料混合物の仕上げ混練を、予備混練後10分以内に開始することが好ましく、5分以内に開始することがさらに好ましい。
 プロセスの問題上、原料混合物を予備混練装置から取り出して仕上げ混練装置に移送するときに原料混合物の温度が60℃よりも低くなる場合には、原料混合物の貯蔵弾性率G’が2.5MPa以下となる温度に維持するために、当該原料混合物をオーブンなどの加熱装置で、予備加熱温度を60℃以上とし適切な時間、例えば1時間程度、予備加熱してから仕上げ混練装置に投入し、混練を開始することが好ましい。
 予備混練の途中で加硫・架橋剤によって原料混合物が架橋することを防止するために、予備混練後のロール混練工程中に加硫・架橋剤を添加してもよい。さらに、中空粒子をロール混練工程中に添加してもよい。
 また、予備混練及びロール混練のいずれにおいても、加硫・架橋剤によって原料混合物が架橋することを防止するために、混練温度100℃以下で混練を行うことが好ましい。
 以上のようにして得られた中空粒子含有エラストマー組成物は、任意の形態を持つ成形用材料の製品とすることができる。例えば、溶融状態の中空粒子含有エラストマー組成物をロングシート状、ブロック状、フィラー状などの形態に成形してもよいし、ロングシートを巻き取ったロール状、ロングシートを所定の長さに裁断した短冊状などの形態に、二次加工してもよい。
 [中空粒子含有エラストマー成形体の製造方法]
 本開示の中空粒子含有エラストマー組成物を用いて成形体を製造する方法は特に制限されないが、中空粒子含有エラストマー組成物を成形温度60℃以上で混練する工程を含むことが好ましい。
 一般的に、成形用エラストマー組成物を用いてエラストマー成形体を製造する場合には、当該エラストマー組成物を混練することによって成分が均一な溶融状態とし、押出成形、圧縮成形、押出ラミネート等の任意の成形方法を実施する。本開示の中空粒子含有エラストマー組成物を用いて、成形温度60℃以上として成形を行うことによって、成形時の中空粒子含有エラストマー組成物の貯蔵弾性率G’を2.5Mpa以下とすることができ、中空粒子にかかる外圧やせん断力等の負荷が過大にならないため、中空粒子の潰れを回避しながら、エラストマー成形体を製造することができる。
 本開示において得られる中空粒子含有エラストマー成形体は、下記試験方法に従って測定される空隙残存率を80%以上、好ましくは90%以上とすることが可能であり、さらに好ましくは95%以上とすることが可能であり、さらに好ましくは100%を達成することも可能である。
[中空粒子含有エラストマー成形体の空隙残存率の測定方法]
 中空粒子含有エラストマー組成物を、120℃の熱プレス機により1MPa以下の圧力でプレス成形することにより、シート状の中空粒子含有エラストマー成形体を作製する。
 得られたエラストマー成形体の比重を測定し、下記式(D)に従って、エラストマー成形体内の中空粒子の空隙残存率を算出する。
 なお、下記式(D)は、中空粒子の潰れやすさを評価するために行われる上述のプレス試験法において空隙残存率を算出する式(D)と同じである。
  空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
  a:プレス後の成形体の比重、
  b:空隙を維持したと仮定した成形体の比重(計算値)
  c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
 以下に、実施例及び比較例を挙げて本開示を更に具体的に説明するが、本開示は、これらの実施例のみに限定されるものではない。なお、部及び%は、特に断りのない限り質量基準である。
 [中空粒子の調製]
[製造例1(中空粒子A)]
(1)混合液調製工程
 まず、下記材料を混合し油相とした。
  架橋性単量体:エチレングリコールジメタクリレート 25部
  架橋性単量体:トリメチロールプロパントリメタクリレート 30部
  架橋性単量体:ジビニルベンゼン 45部
  油溶性重合開始剤:2,2’-アゾビス(2,4-ジメチルバレロニトリル) 3部
  疎水性溶剤:ヘキサン 160部
 一方で、攪拌槽において、室温下で、イオン交換水494部に塩化マグネシウム(水溶性多価金属塩)17.1部を溶解した水溶液に、イオン交換水121部に水酸化ナトリウム(水酸化アルカリ金属)12.1部を溶解した水溶液を攪拌下で徐々に添加して、水酸化マグネシウムコロイド(難水溶性の金属水酸化物コロイド)分散液(水酸化マグネシウム4部)を調製し、水相とした。
 得られた水相と油相を混合することにより、混合液を調製した。
(2)懸濁工程
 上記混合液調製工程で得た混合液を、分散機(プライミクス社製、製品名:ホモミクサー)により、回転数4,000rpmの条件下で1分間攪拌して懸濁させ、疎水性溶剤を内包した単量体組成物の液滴が水中に分散した懸濁液を調製した。
(3)重合工程
 上記懸濁工程で得た懸濁液を、窒素雰囲気下、65℃の温度条件下で1時間30分攪拌して重合反応を行い、疎水性溶剤を内包した前駆体粒子を含む前駆体組成物を得た。
(4)洗浄工程及び固液分離工程
 上記前駆体組成物を希硫酸により洗浄(25℃、10分間)して、pHを5.5以下にした。次いで、濾過により水を分離した後、新たにイオン交換水200部を加えて再スラリー化し、水洗浄処理(洗浄、濾過、脱水)を室温(25℃)で数回繰り返し行って、濾過分離して固体分を得た。得られた固体分を乾燥機にて40℃の温度で乾燥させ、疎水性溶剤を内包した前駆体粒子を得た。
(5)溶剤除去工程
 上記固液分離工程で得られた前駆体粒子を、真空乾燥機にて、200℃、窒素雰囲気の条件下で12時間加熱処理することで、粒子に内包されていた疎水性溶剤を除去し、中空粒子Aを得た。得られた中空粒子は、走査型電子顕微鏡の観察結果及び空隙率の値から、これらの粒子が球状であり、かつ中空部を有することを確認した。
[製造例2(中空粒子B)]
 製造例1において、上記「(1)混合液調製工程」で、油相の処方を下記の通りに変更した以外は、製造例1と同様の手順で、製造例2の中空粒子(中空粒子B)を得た。
  架橋性単量体:エチレングリコールジメタクリレート 70部
  架橋性単量体:トリメチロールプロパントリメタクリレート 30部
  油溶性重合開始剤:2,2’-アゾビス(2,4-ジメチルバレロニトリル) 3部
  疎水性溶剤:シクロヘキサン 48部
  疎水性溶剤:トルエン 112部
 得られた中空粒子は、走査型電子顕微鏡の観察結果及び空隙率の値から、これらの粒子が球状であり、かつ中空部を有することを確認した。
[中空粒子の物性評価]
 各製造例で得た中空粒子について、以下の物性評価を行った。
1.中空粒子の体積平均粒径
 粒度分布測定機(ベックマン・コールター社製、製品名:マルチサイザー4e)を用いて中空粒子の体積平均粒径を測定した。測定条件は、アパーチャー径:50μm、分散媒体:アイソトンII(製品名)、濃度10%、測定粒子個数:100,000個とした。
 具体的には、粒子サンプル0.2gをビーカーに取り、その中に分散剤として界面活性剤水溶液(富士フィルム社製、製品名:ドライウェル)を加えた。そこへ、更に分散媒体を2ml加え、粒子を湿潤させた後、分散媒体を10ml加え、超音波分散器で1分間分散させてから上記粒度分布測定機による測定を行った。
2.中空粒子の密度及び空隙率
 2-1.中空粒子の見かけ密度の測定
 まず、容量100cmのメスフラスコに約30cmの中空粒子を充填し、充填した中空粒子の質量を精確に秤量した。次に、中空粒子の充填されたメスフラスコに、気泡が入らないように注意しながら、イソプロパノールを標線まで精確に満たした。メスフラスコに加えたイソプロパノールの質量を精確に秤量し、上記式(I)に基づき、中空粒子の見かけ密度D(g/cm)を計算した。
 2-2.中空粒子の真密度の測定
 予め中空粒子を粉砕した後、容量100cmのメスフラスコに中空粒子の粉砕片を約10g充填し、充填した粉砕片の質量を精確に秤量した。
 あとは、上記見かけ密度の測定と同様にイソプロパノールをメスフラスコに加え、イソプロパノールの質量を精確に秤量し、上記式(II)に基づき、中空粒子の真密度D(g/cm)を計算した。
 2-3.空隙率の算出
 中空粒子の見かけ密度Dと真密度Dから、上記式(III)に基づき、中空粒子の空隙率を計算した。
3.中空粒子の空隙残存率
 中空粒子の空隙残存率を、以下のプレス試験法に従って測定した。
[プレス試験法]
 ポリプロピレン樹脂:中空粒子の質量比が90:10であるポリプロピレン樹脂(日本ポリプロ(株)製、商品名:ノバテックPP、グレード:MA1B)及び中空粒子の混合物を、200℃で溶融、混合し、熱プレス機用金型に入れて更に200℃で15分間加熱した後、前記混合物をスパチュラで撹拌し、次いで80℃に設定した熱プレス機に載せ、80℃に加熱したシリンダーを金型に入れ、前記金型の表面温度が140℃になった時点で、15MPaで加圧し、その後、前記混合物を前記金型から取り出し、200℃に設定した熱プレス機により1MPa以下の圧力で加圧して、厚さ0.3mmのシート状成形体とする。得られたシート状成形体の比重を測定し、下記式(D)に従って、中空粒子の空隙残存率を算出した。
  空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
 式(D)中の記号の意味は次のとおりである。
  a:プレス成形後のシート状成形体の比重、
  b:空隙を維持したと仮定した成形体の比重(計算値)
  c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
 表1に、各製造例で得られた中空粒子について、材料の添加量(質量部)及び物性評価の結果を示す。
 なお、表1に示すプレス試験法の空隙残存率は、サンプル数10(n=10)の平均値である。
Figure JPOXMLDOC01-appb-T000001
 [エラストマー組成物の製造、エラストマー成形体の製造]
[実施例1]
 ニーダー(プラスチコーダ ラボステーション、ブラベンダー社製)内に、エチレン-プロピレン-ジエンターポリマー(EPDM)(100℃でのムーニー粘度(JIS K6300)、ML(1+4)100℃:25、製品名:Nordel IP 4725、メーカー名:ダウ・ケミカル社製)100質量部を投入し、混練温度100℃、回転数50rpmで混練を開始し、製造例1で得られた中空粒子A 25質量部、カーボン(製品名:シーストS、メーカー名:東海カーボン社製)45質量部、シリカ(製品名:ニプシルVN―3、メーカー名:東ソー・シリカ社製)29質量部、可塑剤としてプロセスオイル(水素化高粘度油:ダイアナプロセスオイルPW-300、出光興産社製)75部を投入しながら、予備混練を行った。
 予備混練後の混合物は、ロール混練前に60℃のオーブンに1時間以上入れて予備加熱し、混合物の温度を60℃に保持した。
 60℃に予備加熱しておいた混合物を、ロール混練温度を80℃に設定した二本ミキシングロール混練機(形式名:DY6-15、ロール径:6インチ、ロール間クリアランス:0.5mm、ダイハン社製)内に投入し、次いで、加硫剤として硫黄 1.5部、加硫促進剤としてテトラチラウムモノスルフィド(試薬グレード)2部を投入しながら、ロール混練(回転数:前方ロールが24rpm/後方ロールが21rpm、混練時間:15分)を行った。
 ロール混練を終了した溶融状態の混合物を80℃で6時間加熱し乾燥させて、実施例1の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、120℃の熱プレス機により1MPa以下の圧力でプレス成形することにより、厚さ0.3mmのシート状成形体(中空粒子含有エラストマー成形体)とする。
[実施例2]
 実施例1において、予備加熱温度を60℃から80℃に変更したことを除き、実施例1と同様の手順で、実施例2の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例1と同じ成形条件にてプレス成形し、実施例2の中空粒子含有エラストマー成形体を得た。
[実施例3]
 実施例1において、製造例1で得られた中空粒子A 25質量部に代えて、製造例2で得られた中空粒子B 25質量部を用いたことを除き、実施例1と同様の手順で、実施例3の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例1と同じ成形条件にてプレス成形し、実施例3の中空粒子含有エラストマー成形体を得た。
[実施例4]
 実施例4で用いた非油展スチレンブタジエンゴムとは、可塑剤としての油性成分が添加されていないスチレンブタジエンゴムであることを意味する。
 ニーダー(プラスチコーダ ラボステーション、ブラベンダー社製)内に、非油展スチレンブタジエンゴム(100℃でのムーニー粘度(JIS K6300)、ML(1+4)100℃:52.0、スチレン単位の含有量:23.5質量%、製品名:Nipol(登録商標)1502、メーカー名:日本ゼオン株式会社製)100質量部を投入し、混練温度100℃、回転数50rpmで混練を開始し、製造例1で得られた中空粒子A 25質量部、カーボン(製品名:シーストS、メーカー名:東海カーボン社製)25質量部、シリカ(製品名:ニプシルVN―3、メーカー名:東ソー・シリカ社製)29質量部、可塑剤としてプロセスオイル(水素化高粘度油:ダイアナプロセスオイルPW-300、出光興産社製)65部、エチレン性二重結合を有する可塑剤として液状ポリブタジエン(重量平均分子量:2100、製品名:液状ポリブタジエンB2000、メーカー名:日本曹達株式会社製)10質量部を投入しながら、予備混練を行った。
 予備混練後の混合物は、ロール混練前に60℃のオーブンに1時間以上入れて予備加熱し、混合物の温度を60℃に保持した。
 60℃に予備加熱しておいた混合物を、ロール混練温度を80℃に設定した二本ミキシングロール混練機(形式名:DY6-15、ロール径:6インチ、ロール間クリアランス:0.5mm、ダイハン社製)内に投入し、次いで、加硫剤として硫黄 1.5部、加硫促進剤としてテトラチラウムモノスルフィド(試薬グレード)2部を投入しながら、ロール混練(回転数:前方ロールが24rpm/後方ロールが21rpm、混練時間:15分)を行った。
 ロール混練を終了した溶融状態の混合物を80℃で6時間加熱し乾燥させて、実施例4の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、120℃の熱プレス機により1MPa以下の圧力でプレス成形することにより、厚さ0.3mmのシート状成形体(中空粒子含有エラストマー成形体)とする。
[実施例5]
 実施例4において、カーボンの量を25質量部から45質量部に変更し、可塑剤であるプロセスオイルの量を65質量部から55質量部に変更し、エチレン性二重結合を有する可塑剤である液状ポリブタジエンの量を10質量部から20質量部に変更したことを除き、実施例4と同様の手順で、実施例5の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例4と同じ成形条件にてプレス成形し、実施例5の中空粒子含有エラストマー成形体を得た。
[実施例6]
 実施例4において、カーボンの量を25質量部から45質量部に変更し、可塑剤であるプロセスオイルの量を65質量部から0質量部に変更し、エチレン性二重結合を有する可塑剤である液状ポリブタジエンの量を10質量部から60質量部に変更したことを除き、実施例4と同様の手順で、実施例6の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例4と同じ成形条件にてプレス成形し、実施例6の中空粒子含有エラストマー成形体を得た。
[実施例7]
 実施例4において、カーボンの量を25質量部から45質量部に変更し、可塑剤であるプロセスオイルの量を65質量部から0質量部に変更し、エチレン性二重結合を有する可塑剤である液状ポリブタジエンの量を10質量部から75質量部に変更し、さらに加熱条件に関し、予備加熱温度を60℃から80℃に変更したことを除き、実施例4と同様の手順で、実施例7の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例4と同じ成形条件にてプレス成形し、実施例7の中空粒子含有エラストマー成形体を得た。
[実施例8]
 実施例4において、カーボンの量を25質量部から45質量部に変更し、可塑剤であるプロセスオイルの量を65質量部から0質量部に変更し、エチレン性二重結合を有する可塑剤である液状ポリブタジエンの量を10質量部から80質量部に変更したことを除き、実施例4と同様の手順で、実施例8の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例4と同じ成形条件にてプレス成形し、実施例8の中空粒子含有エラストマー成形体を得た。
[実施例9]
 実施例9で用いた油展スチレンブタジエンゴムとは、可塑剤としての油性成分が数質量%添加されているスチレンブタジエンゴムであることを意味する。
 ニーダー(プラスチコーダ ラボステーション、ブラベンダー社製)内に、油展スチレンブタジエンゴム(100℃でのムーニー粘度(JIS K6300)、ML(1+4)100℃:49.0、スチレン単位の含有量:40.0質量%、製品名:Nipol(登録商標)1739、メーカー名:日本ゼオン株式会社製)100質量部を投入し、混練温度100℃、回転数50rpmで混練を開始し、製造例1で得られた中空粒子A 25質量部、カーボン(製品名:シーストS、メーカー名:東海カーボン社製)45質量部、シリカ(製品名:ニプシルVN―3、メーカー名:東ソー・シリカ社製)29質量部、エチレン性二重結合を有する可塑剤として液状ポリブタジエン(重量平均分子量:2100、製品名:液状ポリブタジエンB2000、メーカー名:日本曹達株式会社製)60質量部を投入しながら、予備混練を行った。
 予備混練後の混合物は、ロール混練前に60℃のオーブンに1時間以上入れて予備加熱し、混合物の温度を60℃に保持した。
 60℃に予備加熱しておいた混合物を、ロール混練温度を80℃に設定した二本ミキシングロール混練機(形式名:DY6-15、ロール径:6インチ、ロール間クリアランス:0.5mm、ダイハン社製)内に投入し、次いで、加硫剤として硫黄 1.5部、加硫促進剤としてテトラチラウムモノスルフィド(試薬グレード)2部を投入しながら、ロール混練(回転数:前方ロールが24rpm/後方ロールが21rpm、混練時間:15分)を行った。
 ロール混練を終了した溶融状態の混合物を80℃で6時間加熱し乾燥させて、実施例9の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、120℃の熱プレス機により1MPa以下の圧力でプレス成形することにより、厚さ0.3mmのシート状成形体(中空粒子含有エラストマー成形体)とする。
[実施例10]
 実施例9において、エチレン性二重結合を有する可塑剤である液状ポリブタジエンの量を60質量部から75質量部に変更し、さらに加熱条件に関し、予備加熱温度を60℃から80℃に変更したことを除き、実施例9と同様の手順で、実施例10の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例9と同じ成形条件にてプレス成形し、実施例10の中空粒子含有エラストマー成形体を得た。
[実施例11]
 実施例9において、エチレン性二重結合を有する可塑剤である液状ポリブタジエンの量を60質量部から80質量部に変更したことを除き、実施例9と同様の手順で、実施例11の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例9と同じ成形条件にてプレス成形し、実施例11の中空粒子含有エラストマー成形体を得た。
[実施例12]
 ニーダー(プラスチコーダ ラボステーション、ブラベンダー社製)内に、ブタジエンゴム(100℃でのムーニー粘度(JIS K6300)、ML(1+4)100℃:44.0、スチレン単位の含有量:0質量%、製品名:Nipol(登録商標)BR1220、メーカー名:日本ゼオン株式会社製)100質量部を投入し、混練温度100℃、回転数50rpmで混練を開始し、製造例1で得られた中空粒子A 25質量部、カーボン(製品名:シーストS、メーカー名:東海カーボン社製)45質量部、シリカ(製品名:ニプシルVN―3、メーカー名:東ソー・シリカ社製)29質量部、エチレン性二重結合を有する可塑剤として液状ポリブタジエン(重量平均分子量:2100、製品名:液状ポリブタジエンB2000、メーカー名:日本曹達株式会社製)60質量部を投入しながら、予備混練を行った。
 予備混練後の混合物は、ロール混練前に60℃のオーブンに1時間以上入れて予備加熱し、混合物の温度を60℃に保持した。
 60℃に予備加熱しておいた混合物を、ロール混練温度を80℃に設定した二本ミキシングロール混練機(形式名:DY6-15、ロール径:6インチ、ロール間クリアランス:0.5mm、ダイハン社製)内に投入し、次いで、加硫剤として硫黄 1.5部、加硫促進剤としてテトラチラウムモノスルフィド(試薬グレード)2部を投入しながら、ロール混練(回転数:前方ロールが24rpm/後方ロールが21rpm、混練時間:15分)を行った。
 ロール混練を終了した溶融状態の混合物を80℃で6時間加熱し乾燥させて、実施例12の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、120℃の熱プレス機により1MPa以下の圧力でプレス成形することにより、厚さ0.3mmのシート状成形体(中空粒子含有エラストマー成形体)とする。
[実施例13]
 実施例12において、エチレン性二重結合を有する可塑剤である液状ポリブタジエンの量を60質量部から75質量部に変更し、さらに加熱条件に関し、予備加熱温度を60℃から80℃に変更したことを除き、実施例12と同様の手順で、実施例13の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例12と同じ成形条件にてプレス成形し、実施例13の中空粒子含有エラストマー成形体を得た。
[実施例14]
 実施例12において、エチレン性二重結合を有する可塑剤である液状ポリブタジエンの量を60質量部から80質量部に変更したことを除き、実施例12と同様の手順で、実施例14の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例12と同じ成形条件にてプレス成形し、実施例14の中空粒子含有エラストマー成形体を得た。
[比較例1]
 実施例1において、予備加熱を行わなかったことを除き、実施例1と同様の手順で、比較例1の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例1と同じ成形条件にてプレス成形し、比較例1の中空粒子含有エラストマー成形体を得た。
[比較例2]
 実施例1において、予備加熱を行わなかったこと、及び、ロール混練も加熱しないで行ったことを除き、実施例1と同様の手順で、比較例2の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例1と同じ成形条件にてプレス成形し、比較例2の中空粒子含有エラストマー成形体を得た。
[比較例3]
 実施例1において、可塑剤の量を30質量部に変更したことを除き、実施例1と同様の手順で、比較例3の中空粒子含有エラストマー組成物を得た。
 得られた中空粒子含有エラストマー組成物を、実施例1と同じ成形条件にてプレス成形し、比較例3の中空粒子含有エラストマー成形体を得た。
[中空粒子含有エラストマー組成物及びエラストマー成形体の物性評価]
1.貯蔵弾性率G’の測定
 各実施例及び各比較例で得られた中空粒子含有エラストマー組成物、及び、各実施例及び各比較例で得られた予備混練工程段階の原料混合物の動的粘弾性測定を、以下の方法で行った。なお、予備混練工程段階の原料混合物は、加硫剤と加硫促進剤を含有しない処方を持つ疑似的な原料混合物である。予備混練工程段階の原料混合物に加硫剤として硫黄1.5部及び加硫促進剤としてテトラチラウムモノスルフィド2部を加えると、最終処方の原料混合物及び中空粒子含有エラストマー組成物の処方と同一になる。
 測定結果から、エラストマー組成物の60℃における貯蔵弾性率G’、原料混合物の60℃における貯蔵弾性率G’、原料混合物のロール混練開始時温度(予備加熱温度)における貯蔵弾性率G’及び原料混合物のロール混練温度における貯蔵弾性率G’を特定した。
[動的粘弾性測定の方法]
 動的粘弾性測定は、 形式名HAAKE MARK III(サーモフィッシャーサイエンティフィック社製)を用いて測定した。試験片は、中空粒子含有エラストマー組成物及び原料混合物を用いて、160℃のプレス機で2mm厚のシートを作製し、打ち抜き機で20mmφの形状に打ち抜いて作製した。試験片(2mm厚)を、設定温度170℃とした20mmφパラレルプレートにて融着させた後、動的粘弾性測定装置に設置し、170℃から5℃/minで室温まで降温させていきながら、150℃~室温の貯蔵弾性率G’ (単位:MPa)を測定した。
<測定条件>
周波数:1Hz
ジオメトリー:パラレルプレート(20mmφ)
歪み:0.001
ギャップ:1.5mm
2.中空粒子含有エラストマー成形体の空隙残存率の測定
 各実施例及び各比較例で得られたシート状のエラストマー成形体の比重を測定し、下記式(D)に従って、エラストマー成形体内の中空粒子の空隙残存率を算出した。
  空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
  a:プレス成形により得られたシート状成形体の比重、
  b:空隙を維持したと仮定した成形体の比重(計算値)
  c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
 表2に、各実施例及び各比較例で得られたエラストマー組成物及びエラストマー成形体について、材料の添加量(質量部)、混練条件及び物性評価の結果を示す。
 なお、表2に示すプレス成形後のエラストマー成形体の空隙残存率は、サンプル数10(n=10)の平均値である。
 また、各実施例及び各比較例における混練条件は、総体的に以下のとおりである。
<予備混練>
装置:プラスチコーダ ラボステーション(ブラベンダー社製)
ミキサー:W 250E
ブレード:ローラータイプ
回転数:50rpm
混練温度:100℃
<ロール混練条件>
装置:二本ミキシングロール DY6-15(ダイハン社製)
ロール径:6インチ
回転数:前方ロールが24rpm/後方ロールが21rpm
ロール間クリアランス:0.5mm
設定温度:25~80℃
混練時間:15分
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 [考察]
 実施例1及び3においては、基材エラストマーと、シェルを形成している樹脂が全単量体単位100質量部中に架橋性単量体単位を50質量部以上含む重合体を含有する中空粒子を含む原料混合物を用い、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例1は、エラストマー組成物の60℃における貯蔵弾性率及び均一化処理後の原料混合物の60℃における貯蔵弾性率が1.7MPaであった。実施例3は、エラストマー組成物の60℃における貯蔵弾性率及び均一化処理後の原料混合物の60℃における貯蔵弾性率が1.6MPaであった。よって、実施例1及び3は、いずれも、エラストマー組成物の60℃における貯蔵弾性率及び均一化処理後の原料混合物の60℃における貯蔵弾性率が2.5MPa以下であった。
 予備混練段階の原料混合物の処方は、加硫剤及び加硫促進剤を含有しない点で最終的に得られたエラストマー組成物と異なるが、60℃における貯蔵弾性率は、この程度の組成の相違によっては大きく変動しなかった。
 また、実施例1及び3で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、100%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例1においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.7MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 また、実施例3においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.6MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.1MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例2においては、実施例1と同じ原料混合物を用い、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度80℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。実施例2で用いた原料混合物及び得られたエラストマー組成物は実施例1と同じであるから、それらの60℃における貯蔵弾性率は2.5MPa以下であった。
 また、実施例2で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、100%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例1と実施例2は、同じ組成をもつ原料混合物を用いたが、原料混合物のロール混練開始時温度(予備加熱温度に等しい)が異なっていた。すなわち、実施例1のロール混練開始時温度は60℃であり、実施例2のロール混練開始時温度は80℃である。このようなプロセス温度の相違があるものの、実施例1と実施例2は、いずれもエラストマー成形体内の中空粒子の空隙残存率が100%であり、空隙残存率の結果を見る限り中空粒子の潰れにくさの差を見出すことができない。しかしながら実施例2においては、原料混合物のロール混練開始時温度、及び、原料混合物のロール混練温度のいずれも80℃であり、ロール混練の初期段階から終了段階まで通して、原料混合物のプロセス温度、すなわち80℃における貯蔵弾性率が1.2MPaであり、実施例1と比べてロール混練による負荷が抑制された。そのため、実施例1よりも、さらに中空粒子が潰れにくい混練条件を実現していたと考えられる。
 比較例1及び2においては、実施例1と同じ原料混合物を用いた。比較例1及び2で用いた原料混合物及び得られたエラストマー組成物の組成は実施例1と同じであるから、それらの60℃における貯蔵弾性率は2.5MPa以下であった。
 しかし比較例1においては、予備加熱をしなかったためロール混練開始時温度が室温(25℃)と低かった。比較例1で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、75%であった。比較例1は、実施例1と同じ組成をもつ原料混合物を用いたが、原料混合物のロール混練開始時温度、すなわち25℃における貯蔵弾性率が4.6MPaであり、2.5MPa超であった。そのため、ロール混練による負荷がロール混練の初期段階において実施例1と比べて増大し、多くの中空粒子が潰れたと考えられる。
 比較例2においては、予備加熱せず室温で放置され、ロール混練工程も室温で行ったため、ロール混練は初期段階から終了段階まで通して室温(25℃)で行われた。比較例2で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、14%であった。
 比較例2は、実施例1及び比較例1と同じ組成をもつ原料混合物を用いたが、ロール混練は初期段階から終了段階まで通して、原料混合物のプロセス温度、すなわち25℃における貯蔵弾性率が4.6MPaであり、2.5MPa超であった。そのため、ロール混練による負荷がロール混練の初期段階から終了段階まで通して、実施例1及び比較例1と比べて増大し、多くの中空粒子が潰れたと考えられる。
 比較例3においては、実施例1の原料混合物において可塑剤の含有量を30質量部に減らしたところ、エラストマー組成物の60℃における貯蔵弾性率及び均一化処理後の原料混合物の60℃における貯蔵弾性率は、いずれも3.2MPaとなり、2.5MPaを超えていた。また、得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、45%となり、中空粒子が初期に有していた空隙率を維持することができなかった。
 比較例3は、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率が3.2MPaであり、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率が2.2MPaであり、ロール混練の初期段階から終了段階まで通して、原料混合物のプロセス温度、すなわち60~80℃における貯蔵弾性率が2.5MPa超であった。そのため、ロール混練による負荷がロール混練の初期段階から終了段階まで通して実施例1と比べて増大し、多くの中空粒子が潰れたと考えられる。
 実施例4及び5は、実施例1の原料混合物において、基材エラストマーをEPDMから非油展スチレンブタジエンゴムに変更し、反応活性点を有しない可塑剤の一部を、反応活性点含有可塑剤に置き換えた実施例である。
 実施例4の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMから非油展スチレンブタジエンゴムに変更し、カーボンの含有量を45質量部から25質量部に変更し、実施例1の原料混合物において可塑剤(プロセスオイル)の含有量を75質量部から65質量部に減らし、反応活性点含有可塑剤(液状ポリブタジエン)を10質量部加え、可塑剤と反応活性点含有可塑剤の合計量は実施例1の可塑剤含有量と同じ75質量部としたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例4で得られたエラストマー組成物の60℃における貯蔵弾性率及び均一化処理後の原料混合物の60℃における貯蔵弾性率が1.7MPaであり、2.5MPa以下であった。
 実施例5の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMから非油展スチレンブタジエンゴムに変更し、可塑剤(プロセスオイル)の含有量を75質量部から55質量部に減らし、反応活性点含有可塑剤(液状ポリブタジエン)を20質量部加え、可塑剤と反応活性点含有可塑剤の合計量は実施例1の可塑剤含有量と同じ75質量部としたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例5で得られたエラストマー組成物の60℃における貯蔵弾性率は1.7MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.6MPaであり、いずれも2.5MPa以下であった。
 実施例4及び5においては、反応活性点を有しない可塑剤の一部を、反応活性点含有可塑剤に置き換えたため、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成された可能性がある。しかし、反応活性点含有可塑剤の使用量が少なかったため、予備混練段階の原料混合物の60℃における貯蔵弾性率と、得られたエラストマー組成物の60℃における貯蔵弾性率との間に、大きな変動は観察されなかった。
 また、実施例4及び5で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、100%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例4においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.7MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.1MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例5においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.7MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例6乃至8は、実施例1の原料混合物において、基材エラストマーをEPDMから非油展スチレンブタジエンゴムに変更し、反応活性点を有しない可塑剤を反応活性点含有可塑剤に変更した実施例である。
 実施例6の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMから非油展スチレンブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を60質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例6で得られたエラストマー組成物の60℃における貯蔵弾性率は2.1MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.7MPaであり、いずれも2.5MPa以下であった。
 実施例6においては、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されたため、予備混練段階の原料混合物の60℃における貯蔵弾性率と比べて、得られたエラストマー組成物の60℃における貯蔵弾性率が大きくなったと考えられる。
 また、実施例6で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、85%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例6においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.6MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例7の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMから非油展スチレンブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を75質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例7で得られたエラストマー組成物の60℃における貯蔵弾性率は1.9MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.7MPaであり、いずれも2.5MPa以下であった。
 実施例7においては、予備混練段階の原料混合物の60℃における貯蔵弾性率と比べて、エラストマー組成物の60℃における貯蔵弾性率が大きくなったが、実施例6と比べると貯蔵弾性率増大の差分は小さい。その理由は、実施例7における反応活性点含有可塑剤の使用量は、実施例6における反応活性点含有可塑剤の使用量よりも多いためであると考えられる。より詳しくは、実施例7のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果に対して、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が拮抗したことによって、実施例6と比べて貯蔵弾性率増大の差分が小さくなったと考えられる。
 また、実施例7で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、90%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例7においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.6MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例7の原料混合物のロール混練開始時温度(60℃)における貯蔵弾性率、及び、原料混合物のロール混練温度(80℃)における貯蔵弾性率は、実施例6と同じであるが、実施例7の成形体の空隙残存率は90%であり、実施例6の成形体の空隙残存率(85%)よりも高かった。その理由は、実施例7のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果に対して、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が拮抗したためであると考えられる。すなわち、可塑性を増大させる効果が拮抗したことによって、原料混合物のロール混練温度が60℃から80℃へ上昇していく過程において、原料混合物の貯蔵弾性率が急速に低くなるため、ロール混練による負荷が実施例6よりも抑制され、中空粒子が潰れにくかったと考えられる。
 実施例8の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMから非油展スチレンブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を80質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例8で得られたエラストマー組成物の60℃における貯蔵弾性率は1.6MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.7MPaであり、いずれも2.5MPa以下であった。
 実施例8においては、実施例7よりも多量の反応活性点含有可塑剤を用いたにもかかわらず、得られたエラストマー組成物の60℃における貯蔵弾性率は、反応活性点含有可塑剤の使用量が少量である実施例4及び5と同程度の低い値であった。その理由は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成される反応が飽和状態となり、貯蔵弾性率を増大させる効果が上限に達したのに対し、基材エラストマーと結合していない遊離状態の反応活性点含有可塑剤の含有量が増えて、可塑性を増大させる効果が優位となったためであると考えられる。
 また、実施例8で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、100%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例8においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.7MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.1MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例8の原料混合物のロール混練開始時温度(60℃)における貯蔵弾性率、及び、原料混合物のロール混練温度(80℃)における貯蔵弾性率は、実施例6、7とほぼ同じであるが、実施例8の成形体の空隙残存率は100%であり、実施例6、7の成形体の空隙残存率よりも高かった。その理由は、実施例8のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果よりも、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が優位になったためであると考えられる。すなわち、可塑性を増大させる効果が優位になったことによって、原料混合物のロール混練温度が60℃から80℃へ上昇していく過程において、原料混合物の貯蔵弾性率が急速に低くなるため、ロール混練による負荷が実施例6、7よりも抑制され、中空粒子が潰れにくかったと考えられる。
 実施例9乃至11は、実施例1の原料混合物において、基材エラストマーをEPDMから油展スチレンブタジエンゴムに変更し、反応活性点を有しない可塑剤を反応活性点含有可塑剤に変更した実施例である。
 実施例9の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMから油展スチレンブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を60質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例9で得られたエラストマー組成物の60℃における貯蔵弾性率は2.2MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.6MPaであり、いずれも2.5MPa以下であった。
 実施例9においては、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されたため、予備混練段階の原料混合物の60℃における貯蔵弾性率と比べて、得られたエラストマー組成物の60℃における貯蔵弾性率が大きくなったと考えられる。
 また、実施例9で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、87%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例9においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.7MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例10の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMから油展スチレンブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を75質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例10で得られたエラストマー組成物の60℃における貯蔵弾性率は1.9MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.7MPaであり、いずれも2.5MPa以下であった。
 実施例10においては、予備混練段階の原料混合物の60℃における貯蔵弾性率と比べて、エラストマー組成物の60℃における貯蔵弾性率が大きくなったが、実施例9と比べると貯蔵弾性率増大の差分は小さい。その理由は、実施例10における反応活性点含有可塑剤の使用量は、実施例9における反応活性点含有可塑剤の使用量よりも多いためであると考えられる。より詳しくは、実施例10のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果に対して、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が拮抗したことによって、実施例9と比べて貯蔵弾性率増大の差分が小さくなったと考えられる。
 また、実施例10で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、90%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例10においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.6MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例10の原料混合物のロール混練開始時温度(60℃)における貯蔵弾性率、及び、原料混合物のロール混練温度(80℃)における貯蔵弾性率は、実施例9とほぼ同じであるが、実施例10の成形体の空隙残存率は90%であり、実施例9の成形体の空隙残存率(87%)よりも高かった。その理由は、実施例10のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果に対して、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が拮抗したためであると考えられる。すなわち、可塑性を増大させる効果が拮抗したことによって、原料混合物のロール混練温度が60℃から80℃へ上昇していく過程において、原料混合物の貯蔵弾性率が急速に低くなるため、ロール混練による負荷が実施例9よりも抑制され、中空粒子が潰れにくかったと考えられる。
 実施例11の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMから油展スチレンブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を80質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例11で得られたエラストマー組成物の60℃における貯蔵弾性率は1.6MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.7MPaであり、いずれも2.5MPa以下であった。
 実施例11においては、実施例10よりも多量の反応活性点含有可塑剤を用いたにもかかわらず、得られたエラストマー組成物の60℃における貯蔵弾性率は実施例10と比べて低い値となった。その理由は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成される反応が飽和状態となり、貯蔵弾性率を増大させる効果が上限に達したのに対し、基材エラストマーと結合していない遊離状態の反応活性点含有可塑剤の含有量が増えて、可塑性を増大させる効果が優位となったためであると考えられる。
 また、実施例11で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、100%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例11においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.7MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例11の原料混合物のロール混練開始時温度(60℃)における貯蔵弾性率、及び、原料混合物のロール混練温度(80℃)における貯蔵弾性率は、実施例9、10とほぼ同じであるが、実施例11の成形体の空隙残存率は100%であり、実施例9、10の成形体の空隙残存率よりも高かった。その理由は、実施例11のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果よりも、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が優位になったためであると考えられる。すなわち、可塑性を増大させる効果が優位になったことによって、原料混合物のロール混練温度が60℃から80℃へ上昇していく過程において、原料混合物の貯蔵弾性率が急速に低くなるため、ロール混練による負荷が実施例9、10よりも抑制され、中空粒子が潰れにくかったと考えられる。
 実施例12乃至14は、実施例1の原料混合物において、基材エラストマーをEPDMからブタジエンゴムに変更し、反応活性点を有しない可塑剤を反応活性点含有可塑剤に変更した実施例である。
 実施例12の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMからブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を60質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例12で得られたエラストマー組成物の60℃における貯蔵弾性率は2.5MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.7MPaであり、いずれも2.5MPa以下であった。
 実施例12においては、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されたため、予備混練段階の原料混合物の60℃における貯蔵弾性率と比べて、得られたエラストマー組成物の60℃における貯蔵弾性率が大きくなったと考えられる。
 また、実施例12で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、85%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例12においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.6MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例13の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMからブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を75質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例13で得られたエラストマー組成物の60℃における貯蔵弾性率は2.3MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.7MPaであり、いずれも2.5MPa以下であった。
 実施例13においては、予備混練段階の原料混合物の60℃における貯蔵弾性率と比べて、エラストマー組成物の60℃における貯蔵弾性率が大きくなったが、実施例12と比べると貯蔵弾性率増大の差分は小さい。その理由は、実施例13における反応活性点含有可塑剤の使用量は、実施例12における反応活性点含有可塑剤の使用量よりも多いためであると考えられる。より詳しくは、実施例13のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果に対して、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が拮抗したことによって、実施例12と比べて貯蔵弾性率増大の差分が小さくなったと考えられる。
 また、実施例13で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、90%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例13においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.7MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例13の原料混合物のロール混練開始時温度(60℃)における貯蔵弾性率、及び、原料混合物のロール混練温度(80℃)における貯蔵弾性率は、実施例12とほぼ同じであるが、実施例13の成形体の空隙残存率は90%であり、実施例12の成形体の空隙残存率(85%)よりも高かった。その理由は、実施例13のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果に対して、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が拮抗したためであると考えられる。すなわち、可塑性を増大させる効果が拮抗したことによって、原料混合物のロール混練温度が60℃から80℃へ上昇していく過程において、原料混合物の貯蔵弾性率が急速に低くなるため、ロール混練による負荷が実施例12よりも抑制され、中空粒子が潰れにくかったと考えられる。
 実施例14の原料混合物は、実施例1の原料混合物において、基材エラストマーをEPDMからブタジエンゴムに変更し、可塑剤(プロセスオイル)を75質量部用いた代わりに、反応活性点含有可塑剤(液状ポリブタジエン)を80質量部用いたものである。混練条件は実施例1と同様であり、予備混練からロール混練に至る工程を、予備混練温度100℃、予備混練回転数50rpm、予備加熱温度60℃、ロール混練温度80℃で行ってエラストマー組成物を製造した。
 その結果、実施例14で得られたエラストマー組成物の60℃における貯蔵弾性率は2.2MPaであり、均一化処理後の原料混合物の60℃における貯蔵弾性率は1.6MPaであり、いずれも2.5MPa以下であった。
 実施例14においては、実施例13よりも多量の反応活性点含有可塑剤を用いたにもかかわらず、得られたエラストマー組成物の60℃における貯蔵弾性率は実施例13と比べて低い値となった。その理由は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成される反応が飽和状態となり、貯蔵弾性率を増大させる効果が上限に達したのに対し、基材エラストマーと結合していない遊離状態の反応活性点含有可塑剤の含有量が増えて、可塑性を増大させる効果が優位となったためであると考えられる。
 また、実施例14で得られたエラストマー組成物をプレス成形することによりシート状成形体を製造したところ、成形体内に存在する中空粒子の空隙残存率は、100%であったことから、成形工程中に中空粒子が潰れにくく、空隙残存率が高い成形体が得られたことも確認された。
 実施例14においては、原料混合物のロール混練開始時温度(予備加熱温度に等しい)、すなわち60℃における貯蔵弾性率は1.7MPaであり、2.5MPa以下であったが、原料混合物のロール混練温度、すなわち80℃における貯蔵弾性率は1.2MPaとなり、ロール混練開始時の貯蔵弾性率よりもさらに低くなった。そのため、ロール混練による負荷が抑制され、中空粒子が潰れにくかったと考えられる。
 実施例14の原料混合物のロール混練開始時温度(60℃)における貯蔵弾性率、及び、原料混合物のロール混練温度(80℃)における貯蔵弾性率は、実施例12、13とほぼ同じであるが、実施例14の成形体の空隙残存率は100%であり、実施例12、13の成形体の空隙残存率よりも高かった。その理由は、実施例14のエラストマー組成物は、基材エラストマーの分子間に反応活性点含有可塑剤を介して架橋構造が形成されることによって貯蔵弾性率を増大させる効果よりも、反応活性点含有可塑剤の使用量が大きくなることによって可塑性を増大させる効果が優位になったためであると考えられる。すなわち、可塑性を増大させる効果が優位になったことによって、原料混合物のロール混練温度が60℃から80℃へ上昇していく過程において、原料混合物の貯蔵弾性率が急速に低くなるため、ロール混練による負荷が実施例12、13よりも抑制され、中空粒子が潰れにくかったと考えられる。
1 水系媒体
2 低極性材料
3 分散安定剤
4 単量体組成物
4a 疎水性溶剤
4b 疎水性溶剤以外の材料
4c 水系媒体中に分散した重合性単量体
5 油溶性重合開始剤
6 シェル
7 中空部
8 液滴
9 前駆体粒子
10 中空部が気体で満たされた中空粒子

Claims (31)

  1.  少なくとも基材エラストマーと中空粒子とを含み、
     前記中空粒子は、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備え、当該シェルは、前記樹脂として全単量体単位100質量部中に架橋性単量体単位を50質量部以上含む重合体を含有する中空粒子であり、
     動的粘弾性測定により得られる60℃における貯蔵弾性率G’が2.5MPa以下である組成物であって、
     当該組成物を用いて下記中空粒子含有エラストマー成形体の空隙残存率の測定方法に従ってシート状成形体を作成し、測定される空隙残存率が80%以上である中空粒子含有エラストマー組成物。
    [中空粒子含有エラストマー成形体の空隙残存率の測定方法]
     中空粒子含有エラストマー組成物を、120℃の熱プレス機により1MPa以下の圧力でプレス成形することにより、シート状の中空粒子含有エラストマー成形体を作製する。
     得られたエラストマー成形体の比重を測定し、下記式(D)に従って、エラストマー成形体内の中空粒子の空隙残存率を算出する。
      空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
      a:プレス後のシート状成形体の比重、
      b:空隙を維持したと仮定した成形体の比重(計算値)
      c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
  2.  前記中空粒子の下記プレス試験法に従って測定される空隙残存率が80%以上である、請求項1に記載の中空粒子含有エラストマー組成物。
    [プレス試験法]
     ポリプロピレン樹脂:中空粒子の質量比が90:10であるポリプロピレン樹脂及び中空粒子の混合物を、200℃で溶融、混合し、熱プレス機用金型に入れて更に200℃で15分間加熱した後、撹拌し、次いで80℃に設定した熱プレス機に載せ、80℃に加熱したシリンダーを金型に入れ、前記金型の表面温度が140℃になった時点で、15MPaで加圧し、その後、前記混合物を前記金型から取り出し、200℃に設定した熱プレス機により1MPa以下の圧力で加圧してシート状に成形する。得られたシート状成形体の比重を測定し、下記式(D)に従って、中空粒子の空隙残存率を算出する。
      空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
     式(D)中の記号の意味は次のとおりである。
      a:プレス成形後のシート状成形体の比重、
      b:空隙を維持したと仮定した成形体の比重(計算値)
      c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
  3.  前記中空粒子の空隙率が50%以上である、請求項1又は2に記載の中空粒子含有エラストマー組成物。
  4.  前記中空粒子の体積平均粒径が5.0μm以上40.0μm以下である、請求項1乃至3のいずれか一項に記載の中空粒子含有エラストマー組成物。
  5.  前記重合体が、前記架橋性単量体単位として、3官能以上の架橋性単量体に由来する3官能以上の架橋性単量体単位を含有し、前記重合体の全単量体単位100質量部中、前記3官能以上の架橋性単量体単位の含有量が10質量部以上50質量部以下である、請求項1乃至4のいずれか一項に記載の中空粒子含有エラストマー組成物。
  6.  前記重合体が、前記架橋性単量体単位として、2官能の架橋性単量体に由来する2官能の架橋性単量体単位と、3官能以上の架橋性単量体に由来する3官能以上の架橋性単量体単位とを含有する、請求項1乃至5のいずれか一項に記載の中空粒子含有エラストマー組成物。
  7.  前記2官能の架橋性単量体単位及び前記3官能以上の架橋性単量体単位の合計100質量部中、前記3官能以上の架橋性単量体単位の含有量が5質量部以上40質量部以下である、請求項6に記載の中空粒子含有エラストマー組成物。
  8.  前記基材エラストマーが、エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム、スチレンブタジエンゴム、天然ゴム、イソプレンゴム、ニトリルゴム、水素添加ニトリルゴム、ブチルゴム、フッ素ゴム、シリコーンゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、アクリルゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、ウレタンゴム、イソブチレンイソプレンゴム、多硫化ゴム、プロピレンオキシドゴムおよびエピクロロヒドリンゴムからなる群から選ばれる少なくとも1種である、請求項1乃至7のいずれか一項に記載の中空粒子含有エラストマー組成物。
  9.  前記基材エラストマーの少なくとも一部が、エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム、スチレンブタジエンゴムからなる群から選ばれる少なくとも1種である、請求項8に記載の中空粒子含有エラストマー組成物。
  10.  基材エラストマー100質量部に対し、可塑剤を35~100質量部含有する、請求項1乃至9のいずれか一項に記載の中空粒子含有エラストマー組成物。
  11.  前記基材エラストマーの少なくとも一部が、ブタジエンゴム及びスチレンブタジエンゴムからなる群から選ばれる少なくとも1種であり、前記可塑剤の少なくとも一部が、基材エラストマーと結合する反応活性点を有し、重量平均分子量が1000以上、100000以下である高分子である、請求項10に記載の中空粒子含有エラストマー組成物。
  12.  前記基材エラストマーのJIS K6300に準拠して測定されるムーニー粘度(ML(1+4)100℃)が、20以上75以下である、請求項1乃至11のいずれか一項に記載の中空粒子含有エラストマー組成物。
  13.  前記基材エラストマーに含まれるスチレン単量体単位の含有割合が0質量%以上60質量%以下である、請求項1乃至12のいずれか一項に記載の中空粒子含有エラストマー組成物。
  14.  少なくとも基材エラストマーと中空粒子とを含む中空粒子含有エラストマー組成物の製造方法であって、
     少なくとも基材エラストマーと、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備え、当該シェルは、前記樹脂として全単量体単位100質量部中に架橋性単量体単位を50質量部以上含む重合体を含有する中空粒子とを含み、配合成分の均一化処理後に行われる動的粘弾性測定により得られる60℃における貯蔵弾性率G’が2.5MPa以下である原料混合物を準備し、
     前記原料混合物を、密閉型混練機を用い、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備混練し、
     当該原料混合物を、予備混練した後直ちに、または、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で予備加熱した後、前記均一化処理後に行われる動的粘弾性測定により得られる貯蔵弾性率G’が2.5MPa以下となる温度で混練する、中空粒子含有エラストマー組成物の製造方法。
  15.  前記予備混練において、前記原料混合物を、密閉型混練機を用い、混練温度100℃以上で予備混練する、請求項14に記載の中空粒子含有エラストマー組成物の製造方法。
  16.  予備加熱を行わない場合において、前記原料混合物の混練を、予備混練後10分以内に開始する、請求項14又は15に記載の中空粒子含有エラストマー組成物の製造方法。
  17.  前記予備加熱において、予備加熱温度が60℃以上である、請求項14乃至16のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  18.  前記混練において、混練温度が60℃以上である、請求項14乃至17のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  19.  前記混練する工程がロール混練により行われる、請求項14乃至18のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  20.  前記中空粒子の下記プレス試験法に従って測定される空隙残存率が80%以上である、請求項14乃至19のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
    [プレス試験法]
     ポリプロピレン樹脂:中空粒子の質量比が90:10であるポリプロピレン樹脂及び中空粒子の混合物を、200℃で溶融、混合し、熱プレス機用金型に入れて更に200℃で15分間加熱した後、撹拌し、次いで80℃に設定した熱プレス機に載せ、80℃に加熱したシリンダーを金型に入れ、前記金型の表面温度が140℃になった時点で、15MPaで加圧し、その後、前記混合物を前記金型から取り出し、200℃に設定した熱プレス機により1MPa以下の圧力で加圧してシート状に成形する。得られたシート状成形体の比重を測定し、下記式(D)に従って、中空粒子の空隙残存率を算出する。
      空隙残存率(%)={(c-a)/(c-b)}×100   式(D)
     式(D)中の記号の意味は次のとおりである。
      a:プレス成形後のシート状成形体の比重、
      b:空隙を維持したと仮定した成形体の比重(計算値)
      c:全ての中空粒子が潰れたと仮定した成形体の比重(計算値)
  21.  前記中空粒子の空隙率が50%以上である、請求項14乃至20のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  22.  前記中空粒子の体積平均粒径が5.0μm以上40.0μm以下である、請求項14乃至21のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  23.  前記重合体が、前記架橋性単量体単位として、3官能以上の架橋性単量体に由来する3官能以上の架橋性単量体単位を含有し、前記重合体の全単量体単位100質量部中、前記3官能以上の架橋性単量体単位の含有量が10質量部以上50質量部以下である、請求項14乃至22のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  24.  前記重合体が、前記架橋性単量体単位として、2官能の架橋性単量体に由来する2官能の架橋性単量体単位と、3官能以上の架橋性単量体に由来する3官能以上の架橋性単量体単位とを含有する、請求項14乃至23のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  25.  前記2官能の架橋性単量体単位及び前記3官能以上の架橋性単量体単位の合計100質量部中、前記3官能以上の架橋性単量体単位の含有量が5質量部以上40質量部以下である、請求項24に記載の中空粒子含有エラストマー組成物の製造方法。
  26.  前記基材エラストマーが、エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム、スチレンブタジエンゴム、天然ゴム、イソプレンゴム、ニトリルゴム、水素添加ニトリルゴム、ブチルゴム、フッ素ゴム、シリコーンゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、アクリルゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、ウレタンゴム、イソブチレンイソプレンゴム、多硫化ゴム、プロピレンオキシドゴムおよびエピクロロヒドリンゴムからなる群から選ばれる少なくとも1種である、請求項14乃至25のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  27.  前記基材エラストマーの少なくとも一部が、エチレン-α‐オレフィン-非共役ジエン共重合体ゴム、ブタジエンゴム、スチレンブタジエンゴムからなる群から選ばれる少なくとも1種である、請求項26に記載の中空粒子含有エラストマー組成物の製造方法。
  28.  前記原料混合物は、基材エラストマー100質量部に対し、可塑剤を35~100質量部含有する、請求項14乃至27のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  29.  前記基材エラストマーの少なくとも一部が、ブタジエンゴム及びスチレンブタジエンゴムからなる群から選ばれる少なくとも1種であり、前記可塑剤の少なくとも一部が、基材エラストマーと結合する反応活性点を有し、重量平均分子量が1000以上、100000以下である高分子である、請求項28に記載の中空粒子含有エラストマー組成物の製造方法。
  30.  前記基材エラストマーのJIS K6300に準拠して測定されるムーニー粘度(ML(1+4)100℃)が、20以上75以下である、請求項14乃至29のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
  31.  前記基材エラストマーに含まれるスチレン単量体単位の含有割合が0質量%以上60質量%以下である、請求項14乃至30のいずれか一項に記載の中空粒子含有エラストマー組成物の製造方法。
PCT/JP2023/019464 2022-05-30 2023-05-25 中空粒子含有エラストマー組成物及びその製造方法 WO2023234162A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087499 2022-05-30
JP2022087499 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023234162A1 true WO2023234162A1 (ja) 2023-12-07

Family

ID=89024867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019464 WO2023234162A1 (ja) 2022-05-30 2023-05-25 中空粒子含有エラストマー組成物及びその製造方法

Country Status (2)

Country Link
TW (1) TW202402924A (ja)
WO (1) WO2023234162A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060151A (ja) * 1996-08-19 1998-03-03 Kin Yosha Kk スポンジゴムの製造方法
JPH11130916A (ja) * 1997-10-31 1999-05-18 Mitsuboshi Belting Ltd 軽量ゴム組成物
WO2017014064A1 (ja) * 2015-07-23 2017-01-26 松本油脂製薬株式会社 加硫成形用ゴム組成物、その製造方法及び用途
WO2021112110A1 (ja) * 2019-12-06 2021-06-10 日本ゼオン株式会社 中空粒子、樹脂組成物及び成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060151A (ja) * 1996-08-19 1998-03-03 Kin Yosha Kk スポンジゴムの製造方法
JPH11130916A (ja) * 1997-10-31 1999-05-18 Mitsuboshi Belting Ltd 軽量ゴム組成物
WO2017014064A1 (ja) * 2015-07-23 2017-01-26 松本油脂製薬株式会社 加硫成形用ゴム組成物、その製造方法及び用途
WO2021112110A1 (ja) * 2019-12-06 2021-06-10 日本ゼオン株式会社 中空粒子、樹脂組成物及び成形体

Also Published As

Publication number Publication date
TW202402924A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN107849286B (zh) 硫化成形用橡胶组合物、其制造方法及用途
KR100404151B1 (ko) 고무조성물및그제조방법
CN1038843C (zh) 橡胶改性苯乙烯聚合物的膨胀发泡珠粒,其生产方法及用途
JP6619541B2 (ja) 樹脂組成物、成形体、及び熱膨張性微小球
JP5565313B2 (ja) 靴底用発泡体ゴム組成物及びアウトソール
JP5680678B2 (ja) 発泡剤およびその製造方法・形成剤、ゴム組成物、架橋発泡体およびその製造方法、ならびにゴム成形品
CN112739780B (zh) 树脂组合物及其成型体
US20170009039A1 (en) Masterbatch and applications thereof
JP2006037115A (ja) ゴム組成物の製造方法
EP3858921B1 (en) Resin composition and molded body of same
WO2017068893A1 (ja) ゴム組成物並びに架橋ゴム製品及びその製造方法
WO2023234162A1 (ja) 中空粒子含有エラストマー組成物及びその製造方法
JP6398522B2 (ja) 発泡体用ゴム組成物とそれを用いた靴底
Nontasorn et al. Admicellar polymerization modified silica via a continuous stirred-tank reactor system: Comparative properties of rubber compounding
WO2004072158A1 (ja) 高分子複合材料及びその製造方法
JPH11279290A (ja) リサイクルゴム成形体および製造方法
JP6955853B2 (ja) 発泡成形用組成物、発泡成形体及び発泡成形用熱膨張性微小球
JP6767739B2 (ja) 発泡成形体の製造方法
WO2023127624A1 (ja) 中空粒子
CN115916876A (zh) 发泡成形用母料及其用途
JP2023119108A (ja) スタッドレスタイヤ用ゴム組成物
Maciejewska et al. Ionic liquids in the vulcanization of elastomers
WO2018139570A1 (ja) ゴム組成物、ゴム製品及びその製造方法
JP2023147938A (ja) 発泡成形体及び発泡成形体の製造方法
CN116438248A (zh) 轮胎用橡胶组合物、胎面橡胶以及冬季用轮胎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815920

Country of ref document: EP

Kind code of ref document: A1