WO2022012345A1 - 一种光源***与投影*** - Google Patents

一种光源***与投影*** Download PDF

Info

Publication number
WO2022012345A1
WO2022012345A1 PCT/CN2021/104002 CN2021104002W WO2022012345A1 WO 2022012345 A1 WO2022012345 A1 WO 2022012345A1 CN 2021104002 W CN2021104002 W CN 2021104002W WO 2022012345 A1 WO2022012345 A1 WO 2022012345A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
excitation
source system
excitation light
Prior art date
Application number
PCT/CN2021/104002
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
瞿玉丽
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2022012345A1 publication Critical patent/WO2022012345A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present application relates to the technical field of projection, and in particular, to a light source system and a projection system.
  • Projection light source is an indispensable part of projection.
  • people's design requirements for projection light source are also increasing; Fluorescence is generated, and another blue laser is mixed with fluorescence to generate white light, but this scheme loses the unexcited blue laser, and white light can only be obtained by adding blue laser alone, with large energy loss and low light efficiency.
  • the blue laser added separately increases the volume and cost of the entire system; in addition, in the projection light source, the dichroic plate is usually placed in the center of the incident light path and the outgoing light path, and the dichroic plate covers the entire fluorescent spot and is larger in size.
  • volume compatibility is one of the important factors affecting the compatible platform, so how to reduce the volume of the projection light source and improve the efficiency of the projection light source is an urgent problem to be solved.
  • the present application provides a light source system and a projection system, which can reduce the overall volume of the light source system and improve the light extraction efficiency of the light source.
  • the technical solution adopted in the present application is to provide a light source system
  • the light source system includes: a light-emitting component, a light-guiding element, a collecting lens component and a wavelength conversion device, and the light-emitting component is used to generate excitation light;
  • the light-guiding element It is arranged on the transmission light path of the excitation light emitted by the light-emitting component, and forms a certain angle with the transmission direction of the excitation light, and is used to guide and control the transmission direction of the excitation light;
  • the excitation light emitted after being guided by the light guiding element is collected, wherein the center line of the collection lens assembly and the transmission direction of the excitation light emitted after being guided by the light guiding element have a preset inclination angle, so that after being guided by the light guiding element, there is a preset inclination angle.
  • the outgoing excitation light is incident from the edge of the collecting lens assembly;
  • the wavelength conversion device is arranged on the outgoing light path of the collecting lens assembly, and is used to receive the excitation light to generate the corresponding received laser light, and combine the received laser light and the unexcited excitation light together Reflected to the collection lens assembly;
  • the light guide element includes a reflection area and a transmission area respectively located on opposite sides of the reflection area, and the area of the reflection area is larger than the size of the spot formed on the light guide element by the excitation light emitted by the light-emitting assembly, using It is used to reflect the excitation light and transmit the received laser light, and the transmission area is used to transmit the excitation light and the received laser light, and the received laser light and the unexcited excitation light synthesize white light.
  • the light source system includes a light-emitting assembly, a light-guiding element, a collecting lens assembly, and a wavelength conversion device
  • the excitation light emitted by the light-emitting assembly is reflected by the light-guiding element to reach the wavelength conversion device, and the excitation light can be
  • the wavelength conversion material on the wavelength conversion device is excited to generate laser light, and the laser light and the unexcited excitation light can be collected by the collection lens assembly and emitted through the light guide element; It does not coincide with the center line of the collection lens assembly, so that the excitation light can enter the edge of the collection lens assembly, and then converge on the wavelength conversion device through the collection lens assembly.
  • the reduced area helps reduce the loss caused by the excitation light passing through the reflection area, improves the efficiency of the excitation light output, thereby improving the luminous efficiency of the light source, and because the laser and the unexcited excitation light are used to synthesize white light, there is no need to add blue light.
  • the light source can reduce the overall volume and cost of the system.
  • the included angle between the light guide element and the horizontal direction is 40° ⁇ 50°.
  • the thickness of the transmission area is less than or equal to the thickness of the reflection area, the reflection area is used to reflect the first light beam and transmit the second light beam, and the transmission area is provided with an anti-reflection film;
  • the first light beam includes blue light
  • the second light beam includes yellow light, green light or red light.
  • the transmittance of the light incident on the transmissive region can be improved, which helps to reduce the loss of light and improve the luminous efficiency.
  • the light directing element has a chamfered plane that is parallel to the centerline of the collection lens assembly.
  • the transmittance of the light incident on the side of the light guide element can be improved, which contributes to reducing the loss of light and improving the luminous efficiency.
  • the excitation light is polarized light
  • a polarizing film is provided in the reflection area, and the polarizing film is used to transmit S-polarized light and reflect P-polarized light.
  • the light source system further includes a first homogenizing device and a second homogenizing device, and the first homogenizing device is arranged on the outgoing light path of the collecting lens assembly, and is used to compare the laser light and the unexcited excitation light. Perform homogenizing treatment; the second homogenizing device is arranged on the outgoing light path of the light-emitting component, and is used for homogenizing the excitation light, and injecting the homogenized excitation light into the light guiding element.
  • the incident light can be homogenized, so that the generated light source beam is relatively uniform.
  • the light source system further includes a first relay lens, the first relay lens is disposed on the outgoing light path of the collection lens assembly, and is used for receiving the laser light and the unexcited excitation light emitted by the collection lens assembly, After being collected, it is input to the first uniform light device.
  • the first relay lens is disposed on the outgoing light path of the collection lens assembly, and is used for receiving the laser light and the unexcited excitation light emitted by the collection lens assembly, After being collected, it is input to the first uniform light device.
  • the laser light and the unexcited excitation light can be converged, so that more light is incident on the first light homogenizing device and light loss is reduced.
  • the light source system further includes:
  • a first focusing lens arranged on the outgoing light path of the light-emitting component, used for focusing the excitation light and inputting it to the second homogenizing device;
  • a reflecting device which is arranged on the outgoing light path of the second homogenizing device, and is used for reflecting the homogenized excitation light emitted by the second homogenizing device;
  • the second relay lens is arranged on the outgoing light path of the reflection device, and is used for condensing the excitation light reflected by the reflection device and inputting it to the light guiding element.
  • the excitation light can be concentrated, so that more light can be incident on the second uniform light device to reduce light loss; by setting the reflective device, the direction of the incident light can be adjusted, which can reduce the volume of the system;
  • the two relay lenses can condense the light emitted from the reflective device, so that more light is incident on the light guiding element and the light loss is reduced.
  • the light source system further includes a second focusing lens, the second focusing lens is disposed on the outgoing light path of the second relay lens, and is used for focusing the light emitted by the second relay lens and inputting the light to the light source. guide element.
  • the second focusing lens By arranging the second focusing lens, the light emitted from the second relay lens can be converged, so that more light is incident on the light guide element and light loss is reduced.
  • the collecting lens assembly includes a first collecting lens and a second collecting lens, the first collecting lens is disposed on the outgoing light path of the light guide element, and the second collecting lens is disposed on the outgoing light path of the first collecting lens.
  • the light emitted from the light guiding element can be converged, so that more excitation light is incident to the wavelength conversion device, reducing light loss, and the light emitted from the wavelength conversion device can be converged to reduce fluorescence and Loss of unexcited excitation light.
  • the size of the first collecting lens is larger than that of the second collecting lens, the first collecting lens and the second collecting lens are plano-convex lenses or meniscus lenses, and the center line of the first collecting lens and the second collecting lens are Centerlines coincide.
  • the technical solution adopted in this application is to provide a projection system, the projection system includes a light source system and an optomechanical system, the optomechanical system is used to generate light beams of the light source, and the optomechanical system is arranged on the optical path of the light source, with The light source beam is processed to form projection light, wherein the projection system is the above-mentioned light source system.
  • FIG. 1 is a schematic structural diagram of a light source system
  • FIG. 2 is a schematic structural diagram of a first embodiment of a light source system provided by the present application.
  • FIG. 3 is a schematic structural diagram of a light guide element in the embodiment shown in FIG. 2;
  • FIG. 4(a)-FIG. 4(d) are schematic diagrams of various structures of the wavelength conversion device in the embodiment shown in FIG. 2;
  • FIG. 5 is a schematic structural diagram of a second embodiment of a light source system provided by the present application.
  • FIG. 6 is a schematic structural diagram of a third embodiment of a light source system provided by the present application.
  • FIG. 7 is a schematic structural diagram of a fourth embodiment of a light source system provided by the present application.
  • FIG. 8 is a schematic structural diagram of a fifth embodiment of a light source system provided by the present application.
  • FIG. 9(a)-FIG. 9(c) are various schematic diagrams of the dichroic plate and the incident light beam in the embodiment shown in FIG. 7;
  • FIG. 10 is a schematic structural diagram of a sixth embodiment of a light source system provided by the present application.
  • FIG. 11 is a schematic structural diagram of a seventh embodiment of a light source system provided by the present application.
  • FIG. 12 is a schematic structural diagram of an embodiment of a projection system provided by the present application.
  • the existing projection light source As shown in FIG. 1 , after the blue laser light emitted by the blue laser 101 is homogenized by the homogenizing component 102, it is reflected in the central area of the dichroic plate 103, and then collected by the collection lens groups 104-105. On the fluorescence wheel 106 , the fluorescence excited by the fluorescence wheel 106 is collected by the collection lens group 104 - 105 , transmitted by the dichroic plate 103 , converged by the light-emitting lens 107 , and reflected by the reflecting mirror 110 , and finally transmitted by the light-emitting relay lens 111 .
  • the blue laser generated by another blue laser 108 is converged to the central area of the dichroic plate 103 through the focusing mirror 109, and reflected in the central area of the dichroic plate 103, reaching the light-emitting lens 107 , and then reflected by the reflector 110 , and finally converged by the light output relay lenses 111 - 112 into the projector system 113 .
  • the dichroic plate 103 is placed in the center of the incident light path and the outgoing light path, and the size of the dichroic plate 103 can cover the entire beam aperture, and the structure is simple, but the size of the dichroic plate 103 is large and takes up space
  • the distance between the homogenizing component 102 and the dichroic plate 103, the collecting lens group 104 and the light-emitting lens 107 is long, and the optical path is long, which not only increases the volume of the entire optical path, but also causes the dilution of the etendue
  • white light is generated by fluorescence and the separately added blue laser 108 in the entire optical path, the unexcited blue laser on the fluorescence wheel 106 is not used, and the light efficiency is low, and the newly added blue laser 108 does not increase the system. It also increases the volume of the optical path, so it is necessary to design a light source system that does not increase the cost and volume of the system and has high efficiency.
  • FIG. 2 is a schematic structural diagram of a first embodiment of a light source system provided by the present application.
  • the light source system includes: a light emitting assembly 11 , a light guiding element 12 , a collecting lens assembly 13 and a wavelength conversion device 14 .
  • the light-emitting component 11 is used to generate excitation light, which may include at least one laser, such as a blue laser, which can generate blue laser light.
  • excitation light which may include at least one laser, such as a blue laser, which can generate blue laser light.
  • the blue laser light generated by the blue laser has a wavelength of 455 nm.
  • the light guide element 12 is arranged on the transmission light path of the excitation light emitted by the light-emitting component 11, and the light guide element 12 is placed at a certain angle with the transmission direction of the excitation light, which is used to guide and control the transmission direction of the excitation light; that is, the light
  • the guide element 12 can receive the excitation light emitted by the light-emitting component 11 and reflect the excitation light to the subsequent optical elements in the optical path.
  • the light guide element 12 adopts a dichroic film or a regional film.
  • the light guide element 12 includes a reflection area 121 and a transmission area 122 respectively located on opposite sides of the reflection area 121 .
  • the area of the reflection area 121 is slightly larger than the excitation light emitted by the light-emitting component 11 .
  • the size of the light spot formed on the light guide element 12 is used to reflect the excitation light and transmit the received laser light.
  • the reflection area is coated with a film to achieve the reflection function, and a reflection sheet can also be provided to achieve its reflection function; transmission;
  • the thickness of the region 122 can be less than or equal to the thickness of the reflective region 121, which is used to maximize the transmission of the excitation light and the received laser light.
  • an anti-reflection coating can be further arranged on the transmission region 122, so that the excitation light and the received laser light can pass through as much as possible.
  • the transmission area 122 is also used to provide a clamping part so that the light guide element 12 can work normally. Therefore, it can be as small as possible. Ideally, the transmission area 122 may not be provided, so that the The excitation light and the received laser light can enter the subsequent optical system completely without loss.
  • the collection lens assembly 13 is arranged on the outgoing light path of the light guide element 12, and is used to collect the excitation light that is guided by the light guide element 12 and exits; specifically, the collection lens assembly 13 includes at least one collection lens, and the number of the collection lenses can be determined according to The specific application scenario settings, for example, can be 1, 2 or 3; the collecting lens can be a plano-convex lens or a concave-convex lens, that is, the thickness of the two ends of the lens is less than the thickness of the center; the collecting lens can be made of high refractive index materials, such as , flint glass or lanthanum crown glass can be used.
  • the preset inclination angle can be an angle set according to experience, which can ensure that the excitation light emitted from the light guide element 12 can obliquely enter the collection lens assembly 13 is enough.
  • the wavelength conversion device 14 is arranged on the outgoing light path of the collecting lens assembly 13, and is used to receive the excitation light and generate the corresponding received laser light; specifically, the wavelength conversion device 14 can be a fluorescent wheel, which includes at least one wavelength conversion The region is provided with a wavelength converting substance, which can be fluorescent.
  • the wavelength conversion device 14 includes a wavelength conversion area, and the wavelength conversion area is a yellow light conversion area 141 .
  • the yellow light conversion area 141 is provided with a yellow fluorescent substance, and the yellow fluorescent substance can Under the excitation of light, yellow fluorescence is generated. Since only one yellow light conversion region 141 is provided, the fabrication process of the wavelength conversion device 14 is simple. In addition, the fluorescence conversion efficiency is high, and the yellow fluorescence and the unexcited excitation light can be used at the same time. By generating white light, the rainbow effect caused by the time-series method can be avoided.
  • an anti-reflection layer 142 can be provided in the wavelength conversion device 14 , and the anti-reflection layer 142 can improve the intensity of the unexcited blue light.
  • the ratio of the white light to be synthesized can make the uniformity of the synthesized white light higher.
  • the positional relationship between the anti-reflection layer 142 and the yellow light conversion area 141 can be set according to the specific application scene, and is not limited to the setting in the yellow light conversion area 141 as shown in FIG. 4(b).
  • the inner side of the yellow light conversion area 141 can be arranged on the outer side of the yellow light conversion area 141 or separated from the yellow light conversion area 141 by a certain distance.
  • the reflection enhancing layer 142 can be correspondingly set to a corresponding polarizing layer to increase the polarization of the unexcited polarized light. proportion.
  • the wavelength conversion device 14 includes two wavelength conversion regions, namely a green light conversion region 143 and a red light conversion region 144 , and the green light conversion region 143 is provided with green fluorescent light substance, which can generate green fluorescence under the excitation of excitation light; the red light conversion area 144 is provided with a red fluorescent substance, which can generate red fluorescence under the excitation of excitation light. It can adjust the ratio of the generated red fluorescence and green fluorescence, and can use red fluorescence, green fluorescence and unexcited excitation light to generate white light at the same time, which can avoid the rainbow effect caused by the use of sequential method to generate white light.
  • the green light conversion area 143 and the red light conversion area 144 are arranged in concentric rings, so that the excitation light can simultaneously illuminate the green fluorescent substance and the red fluorescent substance to generate green
  • the ratio of green fluorescence to red fluorescence can be controlled by setting the positions and sizes of the green light conversion region 143 and the red light conversion region 144.
  • the red light conversion region 144 can be set larger to increase the The proportion of red fluorescence, which in turn produces white light with better brightness and chromaticity.
  • red fluorescence and green fluorescence can be generated in time sequence, and the wavelength conversion device 14 can be rotated in a counterclockwise or clockwise direction, so that the green light conversion region 143 and the red light conversion region 144 are sequentially irradiated with excitation light , so as to generate the corresponding green fluorescence and red fluorescence. For example, it takes 2 seconds for the wavelength conversion device 14 to rotate once, then in the first second, the received laser light from the wavelength conversion device 14 is green fluorescence, and in the second second Within the time period, the received laser light emitted from the wavelength conversion device 14 is red fluorescent light.
  • the anti-reflection layer 142 or the polarizing layer as shown in FIG. 4( b ) can also be provided to improve the excitation that is not excited. proportion of light.
  • the excitation light emitted from the light-emitting component 11 can be reflected by the reflection area 121 to the collection lens component 13, and the collection lens component 13 collects the incident excitation light and transmits it to the wavelength conversion device 14.
  • the wavelength conversion on the wavelength conversion device 14 The substance is excited by the excitation light to generate the received laser light, which can be combined with the unexcited excitation light to form the outgoing light of the light source, and then exits through the collecting lens assembly 13 and the light guiding element 12 in sequence;
  • the excitation light in the wavelength conversion region may not be excited, but is reflected by the wavelength conversion device 14, and it can also pass through the transmission region 122 of the light guide element 12 after passing through the collecting lens assembly 13, so as to realize the use of the excitation light that is not excited and the excitation light. Synthesized white light by laser.
  • This embodiment provides a light source system, which is a projection light source device for laser-excited fluorescence.
  • the light source system includes a light-emitting component 11 , a light guide component 12 , a collection lens component 13 , and a wavelength conversion device 14 .
  • the excitation light emitted by the light-emitting component 11 After being reflected by the light guiding element 12, it reaches the wavelength conversion device 14 to excite the wavelength conversion material to generate laser light.
  • the laser light and the unexcited excitation light can be collected by the collecting lens assembly 13 and exit through the light guiding element 12;
  • the center position of the light guiding element 12 and the center of the collecting lens assembly 13 are not on the same line, but deviated from the center of the collecting lens assembly 13, so that the excitation light enters the edge of the collecting lens assembly 13, and passes through the collecting lens assembly 13.
  • this placement method reduces the design area of the light guide element 12, so that the area of the reflection area 121 is reduced, which helps to reduce the loss caused by the excitation light passing through the reflection area 121, and improves the excitation light.
  • the output efficiency is improved, thereby improving the luminous efficiency of the light source, and because the laser and the unexcited excitation light are used to synthesize white light, there is no need to add a blue light source, and the overall volume of the system can be reduced and the cost is low; the light guiding element in this embodiment
  • the size of 12 is small, only one-fifth of the existing solution, which reduces the cost of the light guide element 12; in addition, the projection system of this solution has a compact structure, can be adapted to a variety of projectors, and has stronger compatibility , can reduce the cost of the whole system.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a light source system provided by the present application.
  • the light source system includes: a light-emitting component 201, a dichroic plate 202, a collection lens component 203, a wavelength conversion device 204, a second uniform light device 205 , a first relay lens 206 and a first uniform light device 207 .
  • the light-emitting component 201 can generate a blue laser, which can be a blue laser with a wavelength of 455 nm; the second light homogenizing device 205 is arranged on the outgoing light path of the light-emitting component 201, which can perform uniform light processing on the blue laser, and uniformize the uniform light.
  • the blue laser is injected into the dichroic plate 202, which can be a compound eye homogenizing system.
  • the compound eye homogenizing system can be set as close to the dichroic sheet 202 as possible.
  • the dichroic plate 202 is disposed on the outgoing light path of the second light homogenizing device 205, which can reflect the blue laser light to the collecting lens assembly 203.
  • the included angle between the dichroic sheet 202 and the horizontal direction is 40° ⁇ 50°. Taking FIG. 5 as an example, in this embodiment, the included angle between the dichroic sheet 202 and the horizontal left direction is 40° ° ⁇ 50, preferably, the angle is 45°.
  • the blue laser light generated by the light-emitting component 201 can be incident on the reflection area of the dichroic sheet 202 after being homogenized by the second homogenizing device 205, and the reflection area is used to reflect the first light beam and transmit the second light beam, and the first light beam includes blue light.
  • the second light beam includes yellow light, green light or red light; specifically, the reflection area is provided with an anti-blue-yellow-transmitting film layer, which can be used to reflect blue light and transmit yellow light, and the size of the reflection area can be incident to the surface of the dichroic plate 202
  • the size of the light spot depends on the size of the light spot; the transmission area is provided with an anti-reflection film, which can be a yellow transparent film layer, which can increase the transmission performance of yellow light; or the film layer set in the reflection area can reflect blue light and transmit red light and green light,
  • the transmission area is provided with an anti-reflection film, which can increase the transmission performance of red light and green light.
  • the collecting lens assembly 203 is disposed on the outgoing light path of the dichroic plate 202, which can collect the blue laser light reflected by the dichroic plate 202, and the direction of the blue laser light emitted from the dichroic plate 202 is the center line of the collecting lens assembly 203 There is a preset tilt angle between l, so that the blue laser light enters the edge of the collecting lens assembly 203; specifically, as shown in FIG. After the reflection area of the sheet 202 is reflected, it is incident from the edge of the collecting lens assembly 203 , and then converges on the wavelength conversion device 204 through the collecting lens assembly 203 .
  • the collecting lens assembly 203 includes a first collecting lens 2031 and a second collecting lens 2032.
  • the first collecting lens 2031 is disposed on the outgoing light path of the dichroic plate 202, and the second The collecting lens 2032 is disposed on the outgoing light path of the first collecting lens 2031 .
  • the first collecting lens 2031 and the second collecting lens 2032 can be made of a material with a higher refractive index.
  • the radius of curvature of the surface of 203 is smaller, the surface is more convex, and its edge thickness is larger than the center thickness, that is, the middle of the first collecting lens 2031 and the second collecting lens 2032 is thicker and the edge is thinner; the size of the first collecting lens 2031 Larger than the size of the second collecting lens 2032, the first collecting lens 2031 and the second collecting lens 2032 are plano-convex or meniscus lenses, and the center line l of the first collecting lens 2031 coincides with the center line l of the second collecting lens 2032.
  • the edge thickness of the collecting lens assembly 203 is thinner relative to the central thickness, and the transmission path of the light passing through the collecting lens assembly 203 is shorter, so the absorption of the blue laser light is less, Furthermore, without changing the shape of the collecting lens assembly 203, the reliability of the collecting lens assembly 203 is ensured, the energy loss of the incident blue laser light is reduced, and the utilization rate of the blue laser light is improved.
  • the wavelength conversion device 204 is disposed on the outgoing light path of the collection lens assembly 203, and can receive blue laser light and generate corresponding fluorescence.
  • the fluorescence emitted from the wavelength conversion device 204 and the unexcited blue laser light can simultaneously enter the second collection lens 2032 and the second collection lens 2032.
  • the first relay lens 206 is arranged on the outgoing optical path of the collecting lens assembly 203, and is used for receiving the fluorescence and the unexcited blue laser light emitted by the collecting lens assembly 203, and after converging the fluorescence and the unexcited blue laser, It is transmitted to the first dodging device 207 .
  • the first homogenizing device 207 is disposed on the outgoing light path of the collecting lens assembly 203, and is used for homogenizing the fluorescence and the unexcited blue laser light.
  • the first homogenizing device 207 may be a square rod.
  • the fluorescence is collected by the second collecting lens 2032 and the first collecting lens 2031 in sequence, and finally collected by the first relay lens 206 to the first light homogenizing device 207, and the unexcited blue laser light on the wavelength conversion device 204 is absorbed by the wavelength.
  • the conversion device 204 is scattered, and is also collected by the first collecting lens 2031 and the second collecting lens 2032 , and finally collected by the first relay lens 206 into the first uniform light device 207 .
  • the light beam emitted by the light source system can enter the optomechanical system 30 , and the optomechanical system 30 is disposed on the outgoing light path of the collecting lens assembly 203 , and is used for processing the light emitted by the collecting lens assembly 203 to form projection light , the projection light can be irradiated on the projection screen or the wall, so as to realize the projection display.
  • the fluorescence and the unexcited blue laser are simultaneously mixed to generate white light, that is, the unexcited blue laser and the fluorescence are simultaneously generated.
  • the edges of the first collecting lens 2031 and the second collecting lens 2032 enter, and the light spot collected by the collecting lens assembly 203 is located on the center line l of the collecting lens assembly 203.
  • the unexcited blue laser can be mixed with fluorescence to obtain white light, which improves the utilization rate of blue laser, does not need to add new blue light sources, and reduces the number of blue light sources;
  • blue laser Incident to the edge of the collecting lens assembly 203 the edge thickness of the collecting lens assembly 203 is thinner than the central thickness, so the transmittance of the blue laser is higher, and the power absorbed by the collecting lens assembly 203 is less, and the reliability is higher; furthermore, The light beam emitted by the second homogenizing device 205 has a certain divergence angle.
  • the blue laser light spot incident on the center of the dichroic plate 202 is smaller. , that is, the reflection area is smaller.
  • the unexcited blue laser light exits through the collection lens assembly 203 the probability of the unexcited blue laser light passing through the reflection area is reduced, and the loss is smaller, so that the unexcited blue laser light is relatively less than the two
  • the extraction efficiency to the color plate 202 is higher.
  • the unexcited blue laser and fluorescence can be mixed to obtain white light, and the blue light source and another light-emitting relay lens in the prior art are cancelled, which shortens the optical path and reduces the volume of the optical path.
  • the distance between the light-emitting lens and the collecting lens is relatively large, which leads to a longer optical path and increases the overall optical path.
  • the dichroic plate 202 is placed at the edge, and its size is small, which can reduce the volume of the entire optical path.
  • the blue light source and the corresponding optical devices are reduced, and the cost of the whole system is reduced; It is one-fifth of the size, which reduces the cost; in addition, the light source system of this embodiment has a compact structure, can be adapted to a variety of projectors, has stronger compatibility, and reduces the cost of the entire system.
  • FIG. 6 is a schematic structural diagram of a third embodiment of a light source system provided by the present application. The difference from the embodiment shown in FIG. 5 is that the first relay lens is not provided in this embodiment, and the first uniform
  • the optical device is a compound eye system 307, and the compound eye system 307 can be a single compound eye or a double compound eye.
  • the blue laser light emitted by the light-emitting component 201 is homogenized by the second homogenizing device 205, it is reflected by the reflection area of the dichroic plate 202 and enters the collecting lens assembly 203.
  • the fluorescence excited by the wavelength conversion device 204 is collected by the collecting lens assembly 203. , enters the compound eye system 307 for homogenization, and enters the optomechanical system 30 after homogenization.
  • the uniform light method of the fluorescence in this embodiment has changed. After the fluorescence and the blue laser light not excited by the wavelength conversion device 204 pass through the collection lens assembly 203 , they have a certain divergence angle. The greater the distance between the first collection lens 2031 and the compound eye system 307 is , the light beam reaching the surface of the compound eye system 307 is larger, but the angle remains unchanged.
  • the etendue of the light beam after passing through the compound eye system 307 mainly depends on the aperture of the light beam entering the compound eye system 307 .
  • the etendue is introduced.
  • the etendue is used to describe the geometric characteristics of a beam with a certain aperture angle and cross-sectional area. Its calculation formula is as follows:
  • E is the etendue
  • n is the refractive index
  • A is the area of the beam aperture
  • is the beam divergence angle
  • the etendue maintenance rate represents the maintenance efficiency of an optical element to the etendue under ideal conditions, that is, it is used to measure the degree of its deviation from the initial etendue.
  • the formula for calculating the expansion maintenance rate is as follows:
  • E 0 is the initial etendue
  • E 1 is the current etendue
  • FIG. 7 is a schematic structural diagram of a fourth embodiment of the light source system provided by the present application. The difference from the embodiment shown in FIG. 5 is: It also includes: a first focusing lens 409, a reflection device 410 and a second relay lens 411, and the placement of some elements is different, so that the structure of the overall optical path is different.
  • the first focusing lens 409 is disposed on the outgoing light path of the light-emitting component 201 , and is used to focus the blue laser light and input it to the square rod 405 .
  • the reflective device 410 is disposed on the outgoing light path of the square rod 405 , and is used for refraction and reflection of the uniform blue laser light emitted by the square rod 405 , and can be a mirror.
  • the second relay lens 411 is disposed on the outgoing light path of the reflection device 410 , and is used for condensing the blue laser light reflected by the reflection device 410 and inputting it to the dichroic plate 202 .
  • the blue laser light emitted by the light-emitting component 201 is converged by the first focusing lens 409 and enters the square rod 405 for uniform light. After the uniform light is reflected by the reflective device 410, the blue laser light is collimated by the second relay lens 411 and then enters the dichroic plate 202.
  • the subsequent optical path It is the same as the embodiment shown in FIG. 5 and will not be repeated here.
  • This embodiment is not only applicable to the compound eye homogenization system, but also to the square rod homogenization system.
  • the placement of the dichroic plate 202 shortens the distance between the second relay lens 411 and the dichroic plate 202 and reduces the The size of the reflection area of the dichroic plate 202 is increased, and the output efficiency of the blue laser is improved; in addition, since the light-emitting component 201, the first focusing lens 409, the square rod 405 and the reflecting device 410 are arranged in the vertical direction, the horizontal direction can be shortened. The length of the direction can reduce the overall volume of the system.
  • FIG. 8 is a schematic structural diagram of a fifth embodiment of a light source system provided by the present application.
  • the dichroic plate 502 in this embodiment has an oblique cut surface, and the oblique surface is The cut plane is parallel to the centerline of the collection lens assembly 203 .
  • the side S of the dichroic plate 502 when the side S of the dichroic plate 502 is rectangular, after the fluorescent and blue laser light is emitted from the collecting lens assembly 203, part of the light beams can reach the side of the dichroic plate 502 and cannot be transmitted normally , causing part of the energy loss; and in this embodiment, the side of the dichroic sheet 502 is cut.
  • the side S is a parallelogram, as shown in Figure 9(b), at this time, the beam does not pass through when it exits. On the side, it can be directly transmitted on the surface of the dichroic plate 502, which reduces the light loss of fluorescence and unexcited blue laser light, and can improve the efficiency of the light source.
  • the oblique plane and the center line of the collecting lens assembly 203 may be parallel or non-parallel.
  • the transmission area may be as shown in FIG. 9(c).
  • the dichroic plate 502 with this structure Not only does it not block the light, but it can also reduce the length of the transmitted light, further reducing light loss.
  • FIG. 10 is a schematic structural diagram of a sixth embodiment of the light source system provided by the present application. The difference from the embodiment shown in FIG. 7 is that the light source system in this embodiment further includes a second focusing lens 612 .
  • the second focusing lens 612 is disposed on the outgoing light path of the second relay lens 411 , and is used for focusing the light emitted by the second relay lens 411 and inputting the light to the dichroic plate 202 , and the dichroic plate 202 is located at the outgoing light path pupil position.
  • the light beam after the light beam emerges from the square rod 405 , the light beam is divergent after passing through the second relay lens 411 .
  • the size of the outgoing light spot is large, which leads to a large reflection area of the dichroic sheet 202, which causes a large loss of blue laser light outgoing.
  • the area of the reflection area in the dichroic plate 202 can be reduced.
  • a second focusing lens 612 can be added, so that the light beams are converged after passing through the second relay lens 411 and the second focusing lens 612.
  • the beam aperture is gradually reduced, and the dichroic plate 202 is placed at the smallest position of the beam convergence aperture (ie, the exit pupil position).
  • the laser light loss is the lowest.
  • FIG. 11 is a schematic structural diagram of a seventh embodiment of a light source system provided by the present application.
  • the blue laser is polarized light
  • the polarized light includes S polarization.
  • the reflection area of the dichroic plate 702 is provided with a polarizing film, which is used to transmit S-polarized light and reflect P-polarized light.
  • the light beam incident on the reflection area of the dichroic plate 702 is S-polarized light, and the P-polarized light is reflected by the reflection area, and then converges on the wavelength conversion device 204 through the first collection lens 2031 and the second collection lens 2032, and the wavelength conversion device
  • the fluorescence excited by 204 and the unexcited blue laser have no polarization characteristics. After the fluorescence and the unexcited blue laser are collected by the collecting lens assembly 203, they reach the dichroic plate 702, and the fluorescence can pass through the dichroic plate 702 directly. However, half of the blue laser light (ie, the S polarized light) in the unexcited blue laser light can be transmitted from the reflection area, and finally enter the optical-mechanical system 30 .
  • the loss of blue laser light is about 14%, While the loss of blue laser light caused by the use of polarizing film is about 8.5%, the loss of blue laser light caused by non-polarizing film is 1.6 times that of blue laser light caused by polarizing film; The light loss of the laser improves the efficiency of the system.
  • FIG. 12 is a schematic structural diagram of an embodiment of a projection system provided by the present application.
  • the projection system 80 includes a light source system 81 and an optomechanical system 82.
  • the optomechanical system 81 is used to generate a light source beam, and the optomechanical system 82 is arranged at The light path of the light source is used to process the light beam of the light source to form projection light, wherein the projection system 81 is the above-mentioned light source system.
  • the present application provides a design solution for placing the dichroic plate on the edge.
  • the dichroic plate By placing the dichroic plate on the edge of the collecting lens assembly, the blue laser light enters from the edge of the collecting lens assembly.
  • This placement method The distance between the collection lens assembly and the first relay lens is reduced, the volume of the entire light source is reduced, the volume compatibility is stronger, and the cost of the entire light source is greatly reduced; Coating in the reflective area can achieve high-efficiency emission of fluorescence and blue laser light, and the area of the reflective area is small, which can reduce the loss of unexcited blue laser light passing through the reflective area; S-polarized light can pass through the reflection area, which can further improve the light extraction efficiency of the blue laser; in addition, the side of the dichroic plate can be processed to make it have an oblique surface to avoid the light beam passing through the side of the dichroic plate. loss, and further improve the efficiency of the light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源***与投影***,光源***中的发光组件(11)用于产生激发光;光引导元件(12)用于引导并控制激发光的传输方向;收集透镜组件(13)用于收集激发光,收集透镜组件(13)的中心线与激发光的传输方向之间具有预设倾斜角,以使得激发光从收集透镜组件(13)的边缘入射;波长转换装置(14)用于接收激发光产生相应的受激光,并将受激光和未被激发的激发光共同反射至收集透镜组件(13);光引导元件(12)包括反射区域(121)与透射区域(122),反射区域(121)的面积大于激发光在光引导元件(12)上形成的光斑大小,用于反射激发光并透射受激光,透射区域(122)用于透射激发光和受激光,受激光与未被激发的激发光合成白光。能够缩小光源***的整体体积,提高光源的出光效率。

Description

一种光源***与投影*** 技术领域
本申请涉及投影技术领域,具体涉及一种光源***与投影***。
背景技术
投影光源是投影必不可少的一部分,随着投影技术的进步和发展,人们对投影光源的设计要求也在不断提高;在投影光源中,通常采用两路激光光源,一路蓝激光激发荧光粉来产生荧光,另一路蓝激光与荧光混合来产生白光,但是这种方案损失了未被激发的蓝激光,只能通过单独加入蓝激光的方式来获取白光,能量损失较大,光效较低,且单独加入的蓝激光增加了整个***的体积和成本;另外,在投影光源中,二向色片通常放置于入射光路和出射光路的中心,二向色片覆盖整个荧光光斑,尺寸较大,占用空间较大,增加了整个光源的体积,且光程较长,造成光学扩展量稀释。由于兼容多个平台的投影光源能够大大降低投影***的成本,体积兼容是影响兼容平台的重要因素之一,因而如何减小投影光源的体积以及提高投影光源的效率是亟待解决的问题。
发明内容
本申请提供一种光源***与投影***,能够缩小光源***的整体体积,提高光源的出光效率。
为解决上述技术问题,本申请采用的技术方案是提供一种光源***,该光源***包括:发光组件、光引导元件、收集透镜组件以及波长转换装置,发光组件用于产生激发光;光引导元件设置于发光组件发出的激发光的传输光路上,并与激发光的传输方向成一定角度,用于引导并控制激发光的传输方向;收集透镜组件设置于光引导元件的出射光路上,用于收集经光引导元件引导后出射的激发光,其中,收集透镜组件 的中心线与经光引导元件引导后出射的激发光的传输方向之间具有预设倾斜角,以使得经光引导元件引导后出射的激发光从收集透镜组件的边缘入射;波长转换装置设置于收集透镜组件的出射光路上,用于接收激发光产生相应的受激光,并将所述受激光和未被激发的激发光共同反射至所述收集透镜组件;其中,光引导元件包括反射区域以及分别位于反射区域相对两侧的透射区域,反射区域的面积大于发光组件发出的激发光在光引导元件上形成的光斑大小,用于反射激发光并透射受激光,透射区域用于透射激发光和受激光,受激光与未被激发的激发光合成白光。
通过上述方案,本申请的有益效果是:该光源***包括发光组件、光引导元件、收集透镜组件以及波长转换装置,发光组件出射的激发光经光引导元件反射到达波长转换装置,该激发光可激发波长转换装置上的波长转换物质从而产生受激光,受激光和未被激发的激发光可由收集透镜组件收集,并经光引导元件出射;由于在放置光引导元件时,光引导元件的中心线与收集透镜组件的中心线不重合,使得激发光能够进入收集透镜组件的边缘,然后经收集透镜组件汇聚到波长转换装置上,这种放置方式可减小光引导元件的面积,使得反射区域的面积缩小,有助于减少激发光通过反射区域所造成的损失,提高了激发光出射的效率,从而提升光源的发光效率,且由于使用受激光和未被激发的激发光合成白光,无需再添加蓝光光源,可使得***的整体体积缩小,成本降低。
在一实施例方式中,光引导元件与水平方向之间的夹角为40°~50°。
在一实施例方式中,透射区域的厚度小于或等于反射区域的厚度,反射区域用于反射第一光束透射第二光束,透射区域设置有增透膜;
其中,第一光束包括蓝光,第二光束包括黄光、绿光或红光。
通过设置具有增透膜的透射区域,能够提高入射至透射区域的光的透过率,有助于降低光的损失,提高发光效率。
在一实施例方式中,光引导元件具有斜切面,斜切面与收集透镜组件的中心线平行。
通过设置具有斜切面的光引导元件,能够提高入射至光引导元件的 侧边的光的透过率,有助于降低光的损失,提高发光效率。
在一实施例方式中,激发光为偏振光,反射区域设置有偏振膜,偏振膜用于透射S偏振光并反射P偏振光。
在一实施例方式中,光源***还包括第一匀光器件与第二匀光器件,第一匀光器件设置于收集透镜组件的出射光路上,用于对受激光与未被激发的激发光进行匀光处理;第二匀光器件设置于发光组件的出射光路上,用于对激发光进行匀光处理,并将匀光后的激发光射入光引导元件。
通过设置第一匀光器件与第二匀光器件,可对入射的光进行匀光,使得产生的光源光束较为均匀。
在一实施例方式中,光源***还包括第一中继透镜,第一中继透镜设置于收集透镜组件的出射光路上,用于接收收集透镜组件出射的受激光与未被激发的激发光,并进行汇聚后输入至第一匀光器件。
通过设置第一中继透镜,可对受激光与未被激发的激发光进行汇聚,使得更多的光入射至第一匀光器件,减少光损失。
在一实施例方式中,光源***还包括:
第一聚焦透镜,设置于发光组件的出射光路上,用于对激发光进行聚焦,并输入至第二匀光器件;
反射器件,设置于第二匀光器件的出射光路上,用于对第二匀光器件出射的匀光后的激发光进行反射;
第二中继透镜,设置于反射器件的出射光路上,用于对反射器件反射的激发光进行汇聚,并输入至光引导元件。
通过设置第一聚焦透镜可对激发光进行汇聚,使得更多的光入射至第二匀光器件,减少光损失;通过设置反射器件可调整入射光的方向,能够减少***的体积;通过设置第二中继透镜,可对从反射器件出射的光进行汇聚,使得更多的光入射至光引导元件,减少光损失。
在一实施例方式中,光源***还包括第二聚焦透镜,第二聚焦透镜设置于第二中继透镜的出射光路上,用于将第二中继透镜出射的光进行聚焦,并输入至光引导元件。
通过设置第二聚焦透镜可对从第二中继透镜出射的光进行汇聚,使得更多的光入射至光引导元件,减少光损失。
在一实施例方式中,收集透镜组件包括第一收集透镜与第二收集透镜,第一收集透镜设置于光引导元件的出射光路上,第二收集透镜设置于第一收集透镜的出射光路上。
通过设置两个收集透镜可对从光引导元件出射的光进行汇聚,使得更多的激发光入射至波长转换装置,减少光损失,且可对从波长转换装置出射的光进行汇聚,减少荧光与未被激发的激发光的损失。
在一实施例方式中,第一收集透镜的尺寸大于第二收集透镜的尺寸,第一收集透镜与第二收集透镜为平凸透镜或凹凸透镜,第一收集透镜的中心线与第二收集透镜的中心线重合。
为解决上述技术问题,本申请采用的技术方案是提供一种投影***,该投影***包括光源***与光机***,光机***用于产生光源光束,光机***设置于光源的光路上,用于对光源光束进行处理,以形成投影光,其中,投影***为上述的光源***。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是光源***的结构示意图;
图2是本申请提供的光源***第一实施例的结构示意图;
图3是图2所示的实施例中光引导元件的结构示意图;
图4(a)-图4(d)是图2所示的实施例中波长转换装置的多种结构示意图;
图5是本申请提供的光源***第二实施例的结构示意图;
图6是本申请提供的光源***第三实施例的结构示意图;
图7是本申请提供的光源***第四实施例的结构示意图;
图8是本申请提供的光源***第五实施例的结构示意图;
图9(a)-图9(c)是图7所示的实施例中二向色片与入射的光束的多种不同示意图;
图10是本申请提供的光源***第六实施例的结构示意图;
图11是本申请提供的光源***第七实施例的结构示意图;
图12是本申请提供的投影***一实施例的结构示意图。
具体实施方式
在现有的投影光源中,如图1所示,蓝激光器101发出的蓝激光经过匀光组件102匀光后,在二向色片103的中心区域反射,然后经过收集透镜组104-105汇聚到荧光轮106上,荧光轮106激发出的荧光经收集透镜组104-105的收集、二向色片103的透射、出光透镜107的汇聚以及反射镜110的反射,最终由出光中继透镜111-112汇聚进入投影光机***113;另一个蓝激光器108产生的蓝激光经聚焦镜109汇聚到二向色片103的中心区域,并在二向色片103的中心区域反射,到达出光透镜107,然后经反射镜110反射,最终由出光中继透镜111-112汇聚进入投影光机***113。
该方案中将二向色片103放置于入射光路和出射光路的中心,且二向色片103的尺寸能够覆盖整个光束孔径,结构简单,但是二向色片103的尺寸较大,占用空间大,导致匀光组件102与二向色片103、收集透镜组104与出光透镜107之间的距离较长,光程较长,不仅增大了整个光路体积,而且造成对光学扩展量的稀释;另外,整个光路中通过荧光与单独增加的蓝激光器108来生成白光,荧光轮106上未被激发的蓝激光没有被利用,光效较低,且新增的蓝激光器108不增增加了***的成本,还增大了光路的体积,因而需要设计一种不增加***成本与体积且效率较高的光源***。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人 员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
第一实施例
请参阅图2,图2是本申请提供的光源***第一实施例的结构示意图,光源***包括:发光组件11、光引导元件12、收集透镜组件13以及波长转换装置14。
发光组件11用于产生激发光,其可以包括至少一个激光器,比如,蓝光激光器,该蓝光激光器可产生蓝激光,优选的,该蓝光激光器产生的蓝激光的波长为455nm。
光引导元件12设置于发光组件11发出的激发光的传输光路上,且光引导元件12与激发光的传输方向成一定角度放置,其用于引导并控制激发光的传输方向;也就是说光引导元件12可接收发光组件11出射的激发光,并将该激发光反射至光路的后续光学元件中,具体地,光引导元件12采用二向色片或区域膜片等。
在一具体的实施例中,如图3所示,光引导元件12包括反射区域121以及分别位于反射区域121相对两侧的透射区域122,反射区域121的面积稍大于发光组件11发出的激发光在光引导元件12上形成的光斑大小,用于反射激发光并透射受激光,需要说明的是,反射区域采用镀膜的方式实现反射功能,也可设置反射片等其他方式实现其反射功能;透射区域122的厚度可以小于或等于反射区域121的厚度,用于最大化透射激发光和受激光,可以理解的是,透射区域122上可以进一步设置增透膜,使得激发光和受激光尽可能通过该透射区域122,同时,透射区域122还用于提供夹持部位以使得光引导元件12能够正常工作,因此,其可以尽可能小,理想情况下,也可以不设置该透射区域122,以使得激发光和受激光能够完全没有损失的进入后续光学***。
收集透镜组件13设置于光引导元件12的出射光路上,其用于收集经光引导元件12引导后出射的激发光;具体地,收集透镜组件13包括至少一个收集透镜,收集透镜的数量可根据具体应用场景设置,比如,可以为1个、2个或3个;收集透镜可以为平凸透镜或凹凸透镜,即透 镜两端的厚度小于中心的厚度;收集透镜可采用高折射率的材料制作,比如,可采用火石玻璃或镧冕玻璃等。
收集透镜组件13的中心线与从光引导元件12出射的激发光的传输方向之间具有预设倾斜角,以使得经光引导元件12引导后出射的激发光从收集透镜组件13的边缘入射,即采用边缘放置的方式来放置光引导元件12,可以理解的是,该预设倾斜角可以为根据经验设置的一个角度,能保证从光引导元件12出射的激发光能够倾斜射入收集透镜组件13即可。
波长转换装置14设置于收集透镜组件13的出射光路上,其用于接收激发光并产生相应的受激光;具体地,波长转换装置14可以为荧光轮,其包括至少一个波长转换区,波长转换区设置有波长转换物质,该受激光可以为荧光。
进一步地,如图4(a)所示,波长转换装置14包括一个波长转换区,该波长转换区为黄光转换区141,黄光转换区141设置有黄色荧光物质,黄色荧光物质能够在激发光的激发下产生黄色荧光,由于仅设置一个黄光转换区141,波长转换装置14的制作工艺简单,另外,荧光转化效率较高,能够在同一时刻利用黄色荧光和未被激发的激发光来产生白光,可以避免利用时序方式产生白光造成的彩虹效应。
进一步地,如图4(b)所示,在未被激发的蓝光占比较小的情况下,可以在波长转换装置14中设置增反层142,增反层142可提高未被激发的蓝光的比例,使得合成的白光的均匀性更高,增反层142与黄光转换区141的位置关系可根据具体应用场景设置,并不仅限于图4(b)所示的设置在黄光转换区141的内侧,可设置在黄光转换区141的外侧或者与黄光转换区141间隔一定距离。
可以理解地,在发光组件11出射的光为偏振光时,可在反射区域121镀偏振膜,此时可以将增反层142对应设置成相应的偏振层,以增加未被激发的偏振光的占比。
在另一实施例中,如图4(c)所示,波长转换装置14包括两个波长转换区,分别为绿光转换区143和红光转换区144,绿光转换区143 设置有绿色荧光物质,可在激发光的激发下产生绿色荧光;红光转换区144设置有红色荧光物质,可在激发光的激发下产生红色荧光,可以通过调整绿光转换区143和红光转换区144的大小,来调整产生的红色荧光和绿色荧光的比例,且能够在同一时刻利用红色荧光、绿色荧光和未被激发的激发光来产生白光,可以避免利用时序方式产生白光造成的彩虹效应。
在另一实施方式中,如图4(d)所示,以同心环的方式设置绿光转换区143和红光转换区144,使得激发光能够同时照射绿色荧光物质与红色荧光物质,产生绿色荧光与红色荧光,可通过设置绿光转换区143和红光转换区144的位置与大小,来控制绿色荧光与红色荧光的比例,例如,可将红光转换区144设置得较大,以提高红色荧光的占比,进而产生亮度和色度更佳的白光。
在其他实施方式中,可以分时序产生红色荧光与绿色荧光,波长转换装置14可沿着逆时针或顺时针的方向转动,从而使得绿光转换区143和红光转换区144依次被激发光照射,从而产生相应的绿色荧光与红色荧光,比如,波长转换装置14转动一圈花费2秒,则在第一秒的时间内,从波长转换装置14出射的受激光为绿色荧光,在第二秒的时间内,从波长转换装置14出射的受激光为红色荧光。
可以理解地,对于图4(c)-图4(d)的实施例方式来说,还可设置如图4(b)所示的增反层142或偏振层,以提高未被激发的激发光的比例。
从发光组件11出射的激发光可被反射区域121反射至收集透镜组件13,收集透镜组件13在对入射的激发光进行收集后将其传递至波长转换装置14,波长转换装置14上的波长转换物质受到激发光的激发,产生受激光,该受激光可与未被激发的激发光组合形成光源的出射光后,依次经过收集透镜组件13与光引导元件12出射;具体地,由于部分射入波长转换区的激发光可能未被激发,而被波长转换装置14反射,其也可经过收集透镜组件13后,穿过光引导元件12的透射区域122,从而实现利用未被激发的激发光与受激光合成白光。
本实施例提供了一种光源***,其为激光激发荧光的投影光源装置,该光源***包括发光组件11、光引导元件12、收集透镜组件13以及波长转换装置14,发光组件11出射的激发光经光引导元件12反射到达波长转换装置14,以激发波长转换物质从而产生受激光,受激光和未被激发的激发光可由收集透镜组件13收集,并经过光引导元件12出射;由于在放置光引导元件12时,光引导元件12的中心位置与收集透镜组件13的中心不在同一直线上,而是偏离收集透镜组件13的中心,使得激发光进入收集透镜组件13的边缘,经收集透镜组件13汇聚到波长转换装置14上,这种放置方式减小了光引导元件12的设计面积,使得反射区域121的面积缩小,有助于减少激发光通过反射区域121所造成的损失,提高了激发光出射的效率,从而提升光源的发光效率,且由于使用受激光和未被激发的激发光合成白光,无需再添加蓝光光源,可以使得***的整体体积缩小,成本较低;本实施例中光引导元件12的尺寸较小,仅为现有方案中的五分之一,降低了光引导元件12的成本;另外,本方案的投影***结构紧凑,能够适配多款投影光机,兼容性更强,可以降低整个***的成本。
第二实施例
请参阅图5,图5是本申请提供的光源***第二实施例的结构示意图,光源***包括:发光组件201、二向色片202、收集透镜组件203、波长转换装置204、第二匀光器件205、第一中继透镜206以及第一匀光器件207。
发光组件201可产生蓝激光,其可以为波长为455nm的蓝激光器;第二匀光器件205设置于发光组件201的出射光路上,其可对蓝激光进行匀光处理,并将匀光后的蓝激光射入二向色片202,其可以为复眼匀光***,为了使得二向色片202中的反射区域尽可能小,考虑到复眼匀光***的发散角,可将复眼匀光***设置得尽可能靠近二向色片202。
二向色片202设置于第二匀光器件205的出射光路上,其可将蓝激光反射至收集透镜组件203,为保证第二匀光器件205出射的蓝激光能够完全通过收集透镜组件203,二向色片202与水平方向之间的夹角为 40°~50°,以图5为例,在本实施例中,二向色片202与水平向左的方向之间的夹角为40°~50,优选的,该角度为45°。
进一步地,发光组件201产生的蓝激光可经过第二匀光器件205匀光后入射到二向色片202的反射区域,反射区域用于反射第一光束透射第二光束,第一光束包括蓝光,第二光束包括黄光、绿光或红光;具体地,反射区域设置有反蓝透黄膜层,可用于反射蓝光并透射黄光,反射区域的大小可由入射至二向色片202表面的光斑大小决定;透射区域设置有增透膜,该增透膜可以为透黄膜层,能够增加黄光的透射性能;或者反射区域设置的膜层可反射蓝光并透射红光与绿光,透射区域设置有增透膜,该增透膜可以为增加红光与绿光的透射性能。
收集透镜组件203设置于二向色片202的出射光路上,其可收集经二向色片202反射的蓝激光,从二向色片202出射的蓝激光的方向与收集透镜组件203的中心线l之间具有预设倾斜角,以使得蓝激光射入收集透镜组件203的边缘;具体地,如图5所示,预设倾斜角为α,从发光组件201出射的蓝激光经二向色片202的反射区域反射后,从收集透镜组件203的边缘入射,然后经收集透镜组件203汇聚到波长转换装置204上。
在一具体的实施例中,如图5所示,收集透镜组件203包括第一收集透镜2031与第二收集透镜2032,第一收集透镜2031设置于二向色片202的出射光路上,第二收集透镜2032设置于第一收集透镜2031的出射光路上。
进一步地,为提高收集透镜组件203收集荧光的效率,可使用具有较高折射率的材料制作第一收集透镜2031与第二收集透镜2032,这种材料对蓝光的吸收率较大,收集透镜组件203表面的曲率半径较小,表面较凸,其边缘厚度相对于中心厚度较大,即第一收集透镜2031与第二收集透镜2032的中间较厚而边缘较薄;第一收集透镜2031的尺寸大于第二收集透镜2032的尺寸,第一收集透镜2031与第二收集透镜2032为平凸透镜或凹凸透镜,第一收集透镜2031的中心线l与第二收集透镜2032的中心线l重合。
由于蓝激光由边缘进入收集透镜组件203,收集透镜组件203的边缘厚度相对于中心厚度来说更薄,光线经过该收集透镜组件203时传输的路径更短,因而对蓝激光的吸收更少,进而在不改变收集透镜组件203形状的情况下,确保了收集透镜组件203的可靠性,减少了入射的蓝激光的能量损失,进而提高了蓝激光的利用率。
波长转换装置204设置于收集透镜组件203的出射光路上,可接收蓝激光并产生相应的荧光,从波长转换装置204出射的荧光以及未被激发的蓝激光可同时进入第二收集透镜2032以及第一收集透镜2031。
第一中继透镜206设置于收集透镜组件203的出射光路上,其用于接收收集透镜组件203出射的荧光与未被激发的蓝激光,并对荧光和未被激发的蓝激光进行汇聚后将其传输至第一匀光器件207。
第一匀光器件207设置于收集透镜组件203的出射光路上,其用于对荧光与未被激发的蓝激光进行匀光处理,第一匀光器件207可以为方棒。
进一步地,荧光依次经过第二收集透镜2032与第一收集透镜2031的收集,最终由第一中继透镜206汇聚至第一匀光器件207,波长转换装置204上未被激发的蓝激光被波长转换装置204打散,同样由第一收集透镜2031以及第二收集透镜2032收集,最终经第一中继透镜206汇聚进入第一匀光器件207。
继续参阅图5,光源***出射的光束可进入光机***30,光机***30设置于收集透镜组件203的出射光路上,其用于对收集透镜组件203出射的光进行处理,以形成投影光,该投影光可照射在投影屏幕或墙面上,从而实现投影显示。
本实施例利用荧光与未被激发的蓝激光同时进行混合来产生白光,即同时产生未被激发的蓝激光与荧光,将二向色片202放置于收集透镜组件203的侧边,蓝激光从第一收集透镜2031与第二收集透镜2032的边缘进入,由收集透镜组件203汇聚的光斑位于收集透镜组件203的中心线l上,本实施例具有以下优点:
在效率上,一方面,可以充分利用未被激发的蓝激光与荧光混合来 获得白光,提高了蓝激光的利用率,无需新增蓝光光源,减少了蓝光光源的数量;另一方面,蓝激光入射至收集透镜组件203的边缘,收集透镜组件203的边缘厚度相对中心厚度更薄,因而蓝激光的透射率更高,同时收集透镜组件203吸收的功率更少,可靠性更高;再者,第二匀光器件205出射的光束具有一定的发散角,当第二匀光器件205与二向色片202之间的距离拉近时,入射到二向色片202中心的蓝激光光斑更小,即反射区域更小,当未被激发的蓝激光经过收集透镜组件203出射时,未被激发的蓝激光通过反射区域的几率降低,损失更小,从而使得未被激发的蓝激光相对于二向色片202的出射效率更高。
在体积上,一方面,可以充分利用未被激发的蓝激光与荧光混合获得白光,取消了现有技术中的蓝光光源与另一出光中继透镜,使得光程缩短,减小了光路的体积;另一方面,现有方案中为避免二向色片与收集透镜以及出光透镜相互干涉,所设置的出光透镜与收集透镜之间的间距较大,进而导致光路较长,增大了整体光路体积,而本实施例中二向色片202采用边缘放置的方式,其尺寸较小,可以减小整个光路的体积。
在成本上,一方面,减少了蓝光光源及相应的光学器件,降低了整个***的成本;另一方面,本实施例中的二向色片202的尺寸是现有方案中二向色片的尺寸的五分之一,降低了成本;再者,本实施例的光源***结构紧凑,能够适配多款投影光机,兼容性更强,降低了整个***的成本。
第三实施例
请参阅图6,图6是本申请提供的光源***第三实施例的结构示意图,与图5所示的实施例不同的是:本实施例中未设置第一中继透镜,且第一匀光器件为复眼***307,复眼***307可以为单复眼或双复眼。
发光组件201出射的蓝激光经过第二匀光器件205匀光后,由二向色片202的反射区域反射,进入收集透镜组件203,波长转换装置204激发出的荧光经收集透镜组件203收集后,进入复眼***307匀光,匀光后进入光机***30中。
本实施例荧光的匀光方式发生了变化,荧光和未被波长转换装置 204激发的蓝激光经过收集透镜组件203后,具有一定的发散角度,第一收集透镜2031与复眼***307的距离越大,光束到达复眼***307表面的光斑越大,但角度不变,经过复眼***307后光束的光学扩展量主要取决于光束进入复眼***307时的孔径。在此,对光学扩展量进行介绍,光学扩展量用于描述具有一定孔径角和截面积的光束的几何特性,其计算公式如下所示:
E=(πn) 2A sin 2θ     (1)
其中,E为光学扩展量,n为折射率,A为光束孔径的面积,θ为光束发散角。
光学扩展量维持率越高,***效率也越高,光学扩展量维持率表示在理想情况下某一光学元件对光学扩展量的维持效率,即用来衡量其偏离初始光学扩展量的程度,光学扩展量维持率的计算公式如下所示:
η=E 0/E 1     (2)
其中,E 0为初始光学扩展量,E 1为当前光学扩展量。
在一具体的实施例中,当光束从第一收集透镜2031出射时的有效孔径为28mm,光束出射发散角θ为8°时,此时的光学扩展量E 0=(3.14×14) 2×sin 28°×n 2=37.43n 2;当使用本实施例的方案时,第一收集透镜2031与复眼***307之间的间距约为15mm,复眼***307前光束孔径约为30mm,进入复眼***307前的光学扩展量E 1a=(3.14×15) 2×sin 28°×n 2=42.97n 2,光学扩展量维持率η 1=37.43n 2/(42.97n 2)=87.1%;当使用现有技术的方案时,收集透镜与复眼之间的间距约为30mm,复眼前光束孔径约为36.4mm,进入复眼前的光学扩展量E 1b=(3.14×18.2) 2×sin 28°×n 2=63.26n 2,光学扩展量维持率η 2=37.43n 2/(63.26n 2)=59.2%;因此,本实施例使用的二向色片202的边缘放置方案,减小了第一收集透镜2031与复眼***307之间的距离,使得入射到复眼***307表面的光斑更小,确保光学扩展量维持率更高,有助于提高***效率。
第四实施例
请参阅图7,图7是本申请提供的光源***第四实施例的结构示意图,与图5所示的实施例不同的是:本实施例中第二匀光器件为方棒405, 光源***还包括:第一聚焦透镜409、反射器件410以及第二中继透镜411,且部分元件的放置方式不同,使得整体光路的结构不同。
第一聚焦透镜409设置于发光组件201的出射光路上,其用于对蓝激光进行聚焦,并输入至方棒405。
反射器件410设置于方棒405的出射光路上,其用于对方棒405出射的匀光后的蓝激光进行折反射,其可以为反射镜。
第二中继透镜411设置于反射器件410的出射光路上,其用于对反射器件410反射的蓝激光进行汇聚,并输入至二向色片202。
发光组件201出射的蓝激光经第一聚焦透镜409汇聚进入方棒405进行匀光,匀光后由反射器件410反射,经第二中继透镜411准直后进入二向色片202,后续光路与图5所示的实施例相同,在此不再赘述。
本实施例不仅适用于复眼匀光***,还适用于方棒匀光***,二向色片202的放置方式,缩短了第二中继透镜411与二向色片202之间的距离,减小了二向色片202的反射区域的尺寸,提高了蓝激光的出射效率;另外,由于发光组件201、第一聚焦透镜409、方棒405以及反射器件410设置在竖直方向上,能够缩短水平方向的长度,可缩小***的整体体积。
第五实施例
请参阅图8,图8是本申请提供的光源***第五实施例的结构示意图,与图7所示的实施例不同的是:本实施例中二向色片502具有斜切面,且该斜切面与收集透镜组件203的中心线平行。
如图9(a)所示,当二向色片502的侧面S为矩形时,荧光和蓝激光从收集透镜组件203出射后,部分光束可到达二向色片502的侧边,不能正常透射,引起部分能量损失;而本实施例对二向色片502的侧边进行切割,在切割后,其侧面S为平行四边形,如图9(b)所示,此时光束出射时不再经过侧面,能够直接在二向色片502表面透射,减少了荧光和未被激发的蓝激光的出光损失,可提高光源效率。
进一步地,斜切面与收集透镜组件203的中心线可以平行或不平行,在需要保持夹持功能的前提下,透射区域可如图9(c)所示,此种结构 的二向色片502不仅不对光造成遮挡,还能减少透过光经历的长度,进一步减少光损失。
第六实施例
请参阅图10,图10是本申请提供的光源***第六实施例的结构示意图,与图7所示的实施例不同的是:本实施例中光源***还包括第二聚焦透镜612。
第二聚焦透镜612设置于第二中继透镜411的出射光路上,其用于将第二中继透镜411出射的光进行聚焦,并输入至二向色片202,二向色片202位于出瞳位置。
在图7所示的实施例中,光束从方棒405出射后,经过第二中继透镜411后光束是发散的,当光束到达二向色片202上时光斑尺寸比第二中继透镜411出射的光斑尺寸大,导致二向色片202的反射区域较大,引起的蓝激光出光损失较大。
为减少出光损失,可减小二向色片202中反射区域的面积,本实施例可增加第二聚焦透镜612,使得光束经过第二中继透镜411与第二聚焦透镜612后是汇聚的,光束孔径逐渐减小,将二向色片202放置于光束汇聚孔径的最小处(即出瞳位置),此时二向色片202上的光斑最小,对应的反射区域的尺寸最小,引起的蓝激光出光损失最低。
第七实施例
请参阅图11,图11是本申请提供的光源***第七实施例的结构示意图,与图8所示的实施例不同的是:本实施例中蓝激光为偏振光,该偏振光包括S偏振光与P偏振光,二向色片702的反射区域设置有偏振膜,该偏振膜用于透射S偏振光并反射P偏振光。
入射到二向色片702的反射区域的光束为S偏振光,P偏振光经反射区域反射后,再经第一收集透镜2031和第二收集透镜2032汇聚到波长转换装置204上,波长转换装置204激发的荧光和未被激发的蓝激光不具有偏振特性,荧光和未被激发的蓝激光经收集透镜组件203收集后,到达二向色片702,荧光可全部透过二向色片702直接出射,而未被激发的蓝激光中有二分之一的蓝激光(即S偏振光)可从反射区域透射, 最终进入光机***30中。
在一具体的实施例中,当第一收集透镜2031的孔径为30mm,反射区域的尺寸为10mm×12mm时,如果二向色片702使用非偏振膜,引起的蓝激光损失约为14%,而使用偏振膜引起的蓝激光损失约为8.5%,非偏振膜造成的蓝激光损失是偏振膜造成的蓝激光损失的1.6倍;因此,本实施例可通过在反射区域镀偏振膜减少了蓝激光的出光损失,提高了***的效率。
请参阅图12,图12是本申请提供的投影***一实施例的结构示意图,投影***80包括光源***81与光机***82,光机***81用于产生光源光束,光机***82设置于光源的光路上,用于对光源光束进行处理,以形成投影光,其中,投影***81为上述的光源***。
综上所述,本申请提供了一种边缘放置二向色片的设计方案,通过将二向色片放置在收集透镜组件的边缘,使得蓝激光从收集透镜组件的边缘进入,这种放置方式减小了收集透镜组件与第一中继透镜之间的距离,缩小了整个光源的体积,使其体积兼容性更强,极大降低了整个光源的成本;另外,通过在二向色片的反射区域镀膜,可实现荧光和蓝激光的高效率出射,且反射区域的面积较小,可减少未被激发的蓝激光经过反射区域时产生的损失;且可通过在反射区域镀偏振膜,使得S偏振光可通过反射区域,能够进一步提升蓝激光的出光效率;另外,可通过对二向色片的侧面进行处理,使其具有斜切面,以避免光束通过二向色片的侧面时产生的损失,进一步提升光源效率。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (12)

  1. 一种光源***,其特征在于,包括:
    发光组件,用于产生激发光;
    光引导元件,设置于所述发光组件发出的激发光的传输光路上,并与所述激发光的传输方向成一定角度,用于引导并控制所述激发光的传输方向;
    收集透镜组件,设置于所述光引导元件的出射光路上,用于收集经所述光引导元件引导后出射的所述激发光,其中,所述收集透镜组件的中心线与经所述光引导元件引导后出射的所述激发光的传输方向之间具有预设倾斜角,以使得经所述光引导元件引导后出射的激发光从所述收集透镜组件的边缘入射;
    波长转换装置,设置于所述收集透镜组件的出射光路上,用于接收所述激发光产生相应的受激光,并将所述受激光和未被激发的激发光共同反射至所述收集透镜组件;
    其中,所述光引导元件包括反射区域以及分别位于所述反射区域相对两侧的透射区域,所述反射区域的面积大于所述发光组件发出的激发光在所述光引导元件上形成的光斑大小,用于反射所述激发光并透射所述受激光,所述透射区域用于透射所述激发光和所述受激光,所述受激光与未被激发的激发光合成白光。
  2. 根据权利要求1所述的光源***,其特征在于,
    所述光引导元件与水平方向之间的夹角为40°~50°。
  3. 根据权利要求1所述的光源***,其特征在于,
    所述透射区域的厚度小于或等于所述反射区域的厚度,所述反射区域用于反射第一光束并透射第二光束,所述透射区域设置有增透膜。
  4. 根据权利要求1所述的光源***,其特征在于,
    所述光引导元件具有斜切面,所述斜切面与所述收集透镜组件的中心线平行。
  5. 根据权利要求1所述的光源***,其特征在于,
    所述激发光为偏振光,所述反射区域设置有偏振膜,所述偏振膜用于透射S偏振光并反射P偏振光。
  6. 根据权利要求1所述的光源***,其特征在于,
    所述光源***还包括第一匀光器件与第二匀光器件,所述第一匀光器件设置于所述收集透镜组件的出射光路上,用于对所述受激光与所述未被激发的激发光进行匀光处理;所述第二匀光器件设置于所述发光组件的出射光路上,用于对所述激发光进行匀光处理,并将匀光后的激发光射入所述光引导元件。
  7. 根据权利要求6所述的光源***,其特征在于,
    所述光源***还包括第一中继透镜,所述第一中继透镜设置于所述收集透镜组件的出射光路上,用于接收所述收集透镜组件出射的所述受激光与所述未被激发的激发光,并进行汇聚后输入至所述第一匀光器件。
  8. 根据权利要求6所述的光源***,其特征在于,所述光源***还包括:
    第一聚焦透镜,设置于所述发光组件的出射光路上,用于对所述激发光进行聚焦,并输入至所述第二匀光器件;
    反射器件,设置于所述第二匀光器件的出射光路上,用于对所述第二匀光器件出射的匀光后的激发光进行反射;
    第二中继透镜,设置于所述反射器件的出射光路上,用于对所述反射器件反射的激发光进行汇聚,并输入至所述光引导元件。
  9. 根据权利要求8所述的光源***,其特征在于,
    所述光源***还包括第二聚焦透镜,所述第二聚焦透镜设置于所述第二中继透镜的出射光路上,用于将所述第二中继透镜出射的光进行聚焦,并输入至所述光引导元件。
  10. 根据权利要求1所述的光源***,其特征在于,
    所述收集透镜组件包括第一收集透镜与第二收集透镜,所述第一收集透镜设置于所述光引导元件的出射光路上,所述第二收集透镜设置于所述第一收集透镜的出射光路上。
  11. 根据权利要求10所述的光源***,其特征在于,
    所述第一收集透镜的尺寸大于所述第二收集透镜的尺寸,所述第一收集透镜与所述第二收集透镜为平凸透镜或凹凸透镜,所述第一收集透镜的中心线与所述第二收集透镜的中心线重合。
  12. 一种投影***,其特征在于,包括光源***与光机***,所述光机***用于产生光源光束,所述光机***设置于所述光源的出射光路上,用于对所述光源光束进行处理,以形成投影光,其中,所述投影***包括权利要求1-11中任一项所述的光源***。
PCT/CN2021/104002 2020-07-15 2021-07-01 一种光源***与投影*** WO2022012345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010682983.7 2020-07-15
CN202010682983.7A CN113946090A (zh) 2020-07-15 2020-07-15 一种光源***与投影***

Publications (1)

Publication Number Publication Date
WO2022012345A1 true WO2022012345A1 (zh) 2022-01-20

Family

ID=79326186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104002 WO2022012345A1 (zh) 2020-07-15 2021-07-01 一种光源***与投影***

Country Status (2)

Country Link
CN (1) CN113946090A (zh)
WO (1) WO2022012345A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源***及投影设备
WO2023206782A1 (zh) * 2022-04-28 2023-11-02 歌尔光学科技有限公司 一种投影***以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160178A (ja) * 2013-02-20 2014-09-04 Zero Rabo Kk 照明光学系およびこれを用いた電子装置
US20170168380A1 (en) * 2015-12-10 2017-06-15 Canon Kabushiki Kaisha Light source optical system and projection display apparatus employing the same
US20170307969A1 (en) * 2016-04-26 2017-10-26 Canon Kabushiki Kaisha Illumination apparatus and projection type display apparatus
JP2017194523A (ja) * 2016-04-19 2017-10-26 キヤノン株式会社 光源装置および画像投射装置
CN109541879A (zh) * 2015-11-28 2019-03-29 佳能株式会社 光源光学***和使用光源光学***的投影显示装置
CN110568706A (zh) * 2019-08-22 2019-12-13 苏州佳世达光电有限公司 投影机
CN111399324A (zh) * 2019-01-03 2020-07-10 深圳光峰科技股份有限公司 光源***及投影设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160178A (ja) * 2013-02-20 2014-09-04 Zero Rabo Kk 照明光学系およびこれを用いた電子装置
CN109541879A (zh) * 2015-11-28 2019-03-29 佳能株式会社 光源光学***和使用光源光学***的投影显示装置
US20170168380A1 (en) * 2015-12-10 2017-06-15 Canon Kabushiki Kaisha Light source optical system and projection display apparatus employing the same
JP2017194523A (ja) * 2016-04-19 2017-10-26 キヤノン株式会社 光源装置および画像投射装置
US20170307969A1 (en) * 2016-04-26 2017-10-26 Canon Kabushiki Kaisha Illumination apparatus and projection type display apparatus
CN111399324A (zh) * 2019-01-03 2020-07-10 深圳光峰科技股份有限公司 光源***及投影设备
CN110568706A (zh) * 2019-08-22 2019-12-13 苏州佳世达光电有限公司 投影机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206782A1 (zh) * 2022-04-28 2023-11-02 歌尔光学科技有限公司 一种投影***以及电子设备
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源***及投影设备

Also Published As

Publication number Publication date
CN113946090A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
JP6474918B2 (ja) 光案内手段及び光源装置
WO2022012345A1 (zh) 一种光源***与投影***
WO2019071951A1 (zh) 复眼透镜组及投影装置
WO2014169785A1 (zh) 发光装置及相关光源***
WO2019214273A1 (zh) 光源***、投影设备及照明设备
CN106873295B (zh) 一种投影机
WO2020216263A1 (zh) 光源***和显示设备
US11347141B2 (en) Light source device and projector
WO2020048123A1 (zh) 光源***、提高其光效的方法及显示设备
WO2003001291A1 (fr) Unite optique d'eclairage, projecteur a cristaux liquides et procede de production dudit projecteur
CN116430662A (zh) 一种光源***及投影设备
US20190212640A1 (en) Light source device and projection type display apparatus
CN205384439U (zh) 一种激光投影***
CN114077139A (zh) 一种三色光源设备和投影显示设备
US11614678B2 (en) Light source device and projection system
TW201305712A (zh) 投影裝置及其光源裝置
WO2021213195A1 (zh) 一种光引导元件以及光源装置
CN214799677U (zh) 用于激光电视的投影光机及激光电视
WO2005036256A1 (ja) 照明装置及びプロジェクタ
TW580545B (en) Multiple lamps illumination system
CN112804468A (zh) 用于激光电视的投影光机及激光电视
US20090296045A1 (en) Illumination system
CN219392458U (zh) 一种光源装置及投影***
JP2002244199A (ja) 光源装置、照明光学系及びプロジェクタ
US20240069425A1 (en) Illumination system and projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841531

Country of ref document: EP

Kind code of ref document: A1