WO2023182410A1 - 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法 - Google Patents

半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法 Download PDF

Info

Publication number
WO2023182410A1
WO2023182410A1 PCT/JP2023/011426 JP2023011426W WO2023182410A1 WO 2023182410 A1 WO2023182410 A1 WO 2023182410A1 JP 2023011426 W JP2023011426 W JP 2023011426W WO 2023182410 A1 WO2023182410 A1 WO 2023182410A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
semiconductor chip
mass
film
adhesive
Prior art date
Application number
PCT/JP2023/011426
Other languages
English (en)
French (fr)
Inventor
由衣 國土
奏美 中村
咳謐 崔
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023182410A1 publication Critical patent/WO2023182410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present disclosure relates to an adhesive film for semiconductors, a dicing die bonding film, and a method of manufacturing a semiconductor device using these.
  • Stacked MCPs Multi Chip Packages
  • stacked MCPs include wire-embedded and chip-embedded semiconductor packages.
  • a structure of a semiconductor package in which wires are embedded with an adhesive film is sometimes referred to as FOW (Film Over Wire).
  • the structure of a semiconductor package in which a semiconductor chip is embedded with an adhesive film is sometimes referred to as FOD (Film Over Die).
  • An example of a semiconductor package employing FOD is one that has a controller chip placed at the bottom and an adhesive film embedding the controller chip (see Patent Document 1).
  • the semiconductor chip or wires be fully embedded with an adhesive film.
  • an adhesive film with a lower viscosity may exhibit good embedding properties, it may often cause bleeding in which the adhesive film protrudes from the edge of a semiconductor chip.
  • the volume of the semiconductor chip or wire to be embedded is large relative to the volume of the adhesive film, it is difficult to properly embed the semiconductor chip or wire, making it difficult to simultaneously suppress bleeding and achieve sufficient embedding properties.
  • the ratio of the volume of the embedded controller chip to the volume of the adhesive film is often relatively large.
  • One aspect of the present disclosure relates to an adhesive film that can improve embedding properties in FOD or FOW while suppressing bleeding.
  • One aspect of the present disclosure relates to an adhesive film for semiconductors containing a thermosetting component.
  • This adhesive film may exhibit a shear viscosity at a frequency of 4.4 Hz of a minimum of 2000 Pa ⁇ s or more and a maximum of 200000 Pa ⁇ s in the range of 60 to 150°C.
  • Another aspect of the present disclosure relates to a dicing die bonding film including a dicing film and the semiconductor adhesive film provided on the dicing film.
  • Yet another aspect of the present disclosure relates to a method for manufacturing a semiconductor device, which includes bonding a second semiconductor chip to a substrate on which a first semiconductor chip is mounted using the semiconductor adhesive film.
  • the first semiconductor chip is embedded by the adhesive film.
  • Yet another aspect of the present disclosure relates to a method for manufacturing a semiconductor device, which includes bonding a second semiconductor chip to a first semiconductor chip using the semiconductor adhesive film.
  • a wire is connected to the first semiconductor chip, and part or all of the wire is embedded in the adhesive film.
  • This disclosure includes: [1] Contains a thermosetting component, In the range of 60 to 150 ° C., exhibits a shear viscosity at a frequency of 4.4 Hz with a minimum of 2,000 Pa s or more and a maximum of 200,000 Pa s or less.
  • Adhesive film for semiconductors [2] The adhesive film for semiconductors according to [1], having a thickness of 50 to 150 ⁇ m.
  • a dicing die bonding film comprising: [12] Adhering a second semiconductor chip to the substrate on which the first semiconductor chip is mounted, using the adhesive film according to [1] or [2], the first semiconductor chip is embedded by the adhesive film;
  • a method of manufacturing a semiconductor device [13] bonding a second semiconductor chip to the first semiconductor chip using the semiconductor adhesive film according to [1] or [4], A wire is connected to the first semiconductor chip, Part or all of the wire is embedded by the adhesive film.
  • a method of manufacturing a semiconductor device [14] The method according to [12], wherein the first semiconductor chip is a controller chip.
  • Implantability in FOD or FOW can be improved while suppressing bleeding.
  • FIG. 2 is a schematic cross-sectional view showing an example of an adhesive film.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated sheet having an adhesive film.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated sheet having an adhesive film.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device.
  • FIG. 3 is a process diagram showing an example of a method for manufacturing a semiconductor device.
  • FIG. 3 is a process diagram showing an example of a method for manufacturing a semiconductor device.
  • FIG. 3 is a process diagram showing an example of a method for manufacturing a semiconductor device.
  • FIG. 3 is a process diagram showing an example of a method for manufacturing a semiconductor device.
  • FIG. 3 is a process diagram showing an example of a method for manufacturing a semiconductor device.
  • FIG. 3 is a schematic cross-sectional view showing another example of a semiconductor device.
  • FIG. 3 is a schematic cross-section
  • a numerical range indicated using " ⁇ " indicates a range that includes the numerical values written before and after " ⁇ " as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step. good.
  • the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
  • (meth)acrylate means acrylate or a methacrylate corresponding thereto. This also applies to other similar expressions such as (meth)acryloyl group and (meth)acrylic copolymer.
  • FIG. 1 is a schematic cross-sectional view showing an example of an adhesive film.
  • the adhesive film 10 shown in FIG. 1 can be, for example, a film formed from a thermosetting adhesive containing a thermosetting component, an elastomer, and an inorganic filler.
  • the adhesive film 10 may be in a semi-cured (B stage) state.
  • the shear viscosity of the adhesive film 10 in the range of 60 to 150° C., particularly at a frequency of 4.4 Hz is related to the embeddability of the adhesive film 10 and the degree of bleeding. If the shear viscosity of the adhesive film 10 at a frequency of 4.4 Hz is at least 2,000 Pa ⁇ s and at most 200,000 Pa ⁇ s in the range of 60 to 150°C, FOD or FOW can be achieved while suppressing bleeding. embeddability in can be improved.
  • the minimum value of shear viscosity at a frequency of 4.4 Hz exhibited by the adhesive film 10 at 60 to 150° C. may be 2200 Pa ⁇ s or more, 2300 Pa ⁇ s or more, or 2400 Pa ⁇ s or more.
  • the minimum value of shear viscosity at a frequency of 4.4 Hz exhibited by the adhesive film 10 at 60 to 150° C. may be 10,000 Pa ⁇ s or less, 9,000 Pa ⁇ s or less, 8,000 Pa ⁇ s or less, or 7,000 Pa ⁇ s or less.
  • the maximum value of shear viscosity at a frequency of 4.4 Hz exhibited by the adhesive film 10 at 60 to 150 ° C. is 180,000 Pa.s or less, 175,000 Pa.s or less, 170,000 Pa.s or less, or It may be 165,000 Pa ⁇ s or less.
  • the maximum value of shear viscosity at a frequency of 4.4 Hz exhibited by the adhesive film 10 at 60 to 150° C. is 10000 Pa.s or more, 11000 Pa.s or more, 12000 Pa.s or more, 13000 Pa.s or more, 14000 Pa.s or more, 15000 Pa. s or more, 16000 Pa ⁇ s or more, or 17000 Pa ⁇ s or more.
  • the thickness of the adhesive film 10 may be, for example, 1 ⁇ m or more, 3 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, or 60 ⁇ m or more, and 200 ⁇ m or less, 150 ⁇ m or less, 120 ⁇ m or less, or 80 ⁇ m. or less, or may be less than 60 ⁇ m.
  • the thickness may be, for example, 20 to 120 ⁇ m, 25 to 80 ⁇ m, or 30 to 60 ⁇ m in order to embed the wire so that the wire does not contact the semiconductor chip.
  • the thickness of the adhesive film 10 is, for example, 40 to 200 ⁇ m, 50 to 150 ⁇ m, or 80 to 120 ⁇ m in order to properly embed the entire semiconductor chip (for example, a controller chip). It's okay.
  • thermosetting component includes (a1) thermosetting resin, which is a compound having a functional group that forms a crosslinked structure through a thermosetting reaction.
  • the thermosetting component may further include (a2) a curing agent that reacts with the thermosetting resin.
  • the thermosetting resin may include an epoxy resin, which is a compound having an epoxy group.
  • the curing agent may include a phenolic resin, which is a compound having a phenolic hydroxyl group.
  • the content of the thermosetting component (the total content of the thermosetting resin and curing agent) may be 8% by mass or more, 10% by mass or more, or 15% by mass or more based on the mass of the adhesive film 10. , 80% by mass or less, 70% by mass or less, 60% by mass or less, 50% by mass or less, 45% by mass or less, or 30% by mass or less.
  • the content of the thermosetting component is large, the adhesive strength of the adhesive film after curing tends to improve.
  • the content of the thermosetting component is 80% by mass or less, film-forming properties can be expected to be ensured when a varnish for forming an adhesive film is applied.
  • epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, and bisphenol F novolac epoxy resin.
  • stilbene type epoxy resin triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenolphenolmethane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenylaralkyl type epoxy resin, naphthalene type epoxy resin
  • Examples include diglycidyl ether compounds derived from functional phenol compounds or polycyclic aromatic compounds (anthracene, etc.). These may be used alone or in combination of two or more.
  • the epoxy resin may be a cresol novolak epoxy resin, a bisphenol F epoxy resin, a bisphenol A epoxy resin, or a combination thereof.
  • the thermosetting resin may include a liquid epoxy resin that is liquid at 25°C.
  • the content of the liquid epoxy resin may be 5 to 15% by mass based on the mass of the adhesive film 10.
  • Thermosetting resins may include epoxy resins that exhibit a softening point below 30°C. Adhesive films containing these epoxy resins tend to have good flexibility, and the ability to embed semiconductor chips and wires in the adhesive film is further improved.
  • the thermosetting resin may include an epoxy resin having a softening point of 50°C or higher.
  • phenolic resins used as curing agents include novolak-type phenolic resins, allylated bisphenol A, allylated bisphenol F, allylated naphthalene diols, phenol aralkyl resins, and naphthol aralkyl resins. These may be used alone or in combination of two or more.
  • the phenolic resin may be a phenolic aralkyl resin, a naphthol aralkyl resin, or a combination thereof.
  • Novolac-type phenolic resins contain phenols (e.g., phenol, cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol) and/or naphthols (e.g., ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene). It is obtained by condensation or co-condensation with a compound having an aldehyde group such as formaldehyde under an acidic catalyst.
  • phenols e.g., cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol
  • naphthols e.g., ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene
  • Phenol aralkyl resins and naphthol aralkyl resins are synthesized from phenol novolacs, phenols such as phenol, and/or naphthols, and dimethoxyparaxylene or bis(methoxymethyl)biphenyl.
  • the hydroxyl equivalent of the phenol resin may be 70 g/eq or more, or 70 to 300 g/eq.
  • the storage modulus of the adhesive film tends to increase further.
  • the hydroxyl equivalent of the phenol resin is 300 g/eq or less, foaming and outgas generation can be further suppressed.
  • the ratio of the epoxy equivalent of the epoxy resin to the hydroxyl equivalent of the phenol resin is 0. 30/0.70 to 0.70/0.30, 0.35/0.65 to 0.65/0.35, 0.40/0.60 to 0.60/0.40, or 0.45 /0.55 to 0.55/0.45.
  • the ratio is 0.30/0.70 or more, more sufficient curability tends to be obtained.
  • the ratio is 0.70/0.30 or less, the viscosity can be prevented from becoming too high, and more sufficient fluidity can be obtained.
  • the softening point of the curing agent may be 50 to 200°C or 60 to 150°C.
  • a curing agent having a softening point of 200° C. or lower tends to have good compatibility with the thermosetting resin.
  • the elastomer can be, for example, a polymeric compound exhibiting a glass transition temperature (Tg) of 55° C. or lower.
  • Tg glass transition temperature
  • the component (b) include acrylic resins, polyester resins, polyamide resins, polyimide resins, silicone resins, butadiene resins, acrylonitrile resins, and modified products thereof.
  • the content of the elastomer is 10% by mass or more, 11% by mass or more, 12% by mass or more, 13% by mass or more, 14% by mass or more, 15% by mass or more, 16% by mass or more, 17 It may be at least 60 mass%, at least 58 mass%, at most 55 mass%, or at most 50 mass%. .
  • the adhesive film contains two or more elastomers, the total amount thereof is the elastomer content.
  • the content of the elastomer is 10% by mass or more, the adhesive film becomes highly viscous, and it is expected that the handling properties of the film will be improved and bleeding will be suppressed.
  • the content of the elastomer is 60% by mass or less, the embeddability tends to be further improved.
  • the elastomer may contain an acrylic resin.
  • the acrylic resin means a polymer containing monomer units derived from (meth)acrylic acid ester.
  • the content of the structural unit derived from (meth)acrylic acid ester in the acrylic resin may be, for example, 70% by mass or more, 80% by mass or more, or 90% by mass or more, based on the total amount of the acrylic resin.
  • the acrylic resin may contain a monomer unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, and a carboxyl group.
  • the acrylic resin may be acrylic rubber, which is a copolymer containing (meth)acrylic acid ester and acrylonitrile as monomer units.
  • the glass transition temperature (Tg) of the elastomer may be -50°C or higher, -30°C or higher, 0°C or higher, or 3°C or higher, and may be 50°C or lower, 45°C or lower, or 40°C or lower. , 35°C or lower, 30°C or lower, or 25°C or lower.
  • Tg glass transition temperature
  • the adhesive film tends to have good flexibility. An adhesive film with good flexibility is easily cut together with the semiconductor wafer during dicing, and thereby the generation of burrs can be effectively suppressed.
  • Glass transition temperature (Tg) means a value measured using a DSC (thermal differential scanning calorimeter) (for example, "Thermo Plus 2" manufactured by Rigaku Co., Ltd.).
  • the Tg of the elastomer can be adjusted to a desired range by adjusting the type and content of the structural units (in the case of acrylic resin, the structural units derived from (meth)acrylic acid ester) constituting the elastomer.
  • the weight average molecular weight (Mw) of the elastomer may be 100,000 or more, 200,000 or more, or 300,000 or more, and may be 3 million or less, 2 million or less, or 1 million or less. .
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • acrylic resins examples include SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, HTR-860P-3CSP, HTR-860P-3CSP-30B (all manufactured by Nagase ChemteX). (manufactured by Showa Denko Materials Co., Ltd.) and H-CT-865 (manufactured by Showa Denko Materials Co., Ltd.).
  • Inorganic filler include, for example, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers,
  • the particles may include at least one inorganic material selected from boron nitride and silica. From the viewpoint of adjusting melt viscosity, the inorganic filler may contain silica.
  • the average particle size of the inorganic filler may be 0.01 ⁇ m or more, or 0.03 ⁇ m or more, 1.5 ⁇ m or less, 1.0 ⁇ m or less, 0.8 ⁇ m or less, 0.08 ⁇ m or less, Alternatively, it may be 0.06 ⁇ m or less. Two or more types of inorganic fillers having different average particle sizes may be combined.
  • the average particle size means the particle size at a cumulative frequency of 50% in the particle size distribution determined by laser diffraction/scattering method.
  • the average particle size of the inorganic filler can also be determined by using an adhesive film containing the inorganic filler.
  • the residue obtained by heating the adhesive film to decompose the resin component is dispersed in a solvent to create a dispersion, and from the particle size distribution obtained by applying a laser diffraction/scattering method to the dispersion, it is determined that the inorganic filler The average particle size can be determined.
  • the adhesive film may include (c1) a first inorganic filler and (c2) a second inorganic filler that satisfy all of the following conditions.
  • the adhesive film contains the components (c1) and (c2), it is possible to improve the embeddability, and furthermore, it is possible to improve the breaking strength after curing.
  • the average particle size of component (c1) is 300 to 1000 nm.
  • the average particle size of component (c2) is 0.05 to 0.70 times the average particle size of component (c1).
  • the total content of component (c1) and component (c2) is 30 to 60% by mass based on the total amount of the adhesive film.
  • the average particle size of the component (c1) is 300 to 1000 nm, and may be 350 nm or more, 400 nm or more, or 450 nm or more, and may be 900 nm or less, 800 nm or less, 700 nm or less, or 600 nm or less.
  • the average particle size of component (c2) may be less than 300 nm, 250 nm or less, 220 nm or less, or 200 nm or less.
  • the average particle size of component (c2) may be, for example, 10 nm or more, 50 nm or more, or 100 nm or more.
  • the average particle size of components (c1) and (c2) refers to the particle size at a cumulative frequency of 50% in the particle size distribution determined by laser diffraction/scattering method.
  • the average particle size of the component (c1) and the component (c2) can also be determined by using an adhesive film containing the component (c1) and the component (c2).
  • the residue obtained by heating the adhesive film to decompose the resin component is dispersed in a solvent to prepare a dispersion liquid, and from the particle size distribution obtained by applying laser diffraction/scattering method to this, it is found that
  • the value of the peak in the range of 1000 nm can be taken as the average particle size of the component (c1), and the value of the peak in the range of less than 300 nm can be taken as the average particle size of the component (c2).
  • the average particle size of component (c2) is 0.05 to 0.70 times that of component (c1).
  • the average particle size of the component (c2) may be 0.10 times or more, 0.20 times or more, or 0.30 times or more, and 0.60 times the average particle size of the component (c1). Below, it may be 0.50 times or less, or 0.40 times or less.
  • the content of the component (c1) may be 5 to 40% by mass, 6% by mass or more, 8% by mass or more, or 10% by mass or more, based on the total amount of the adhesive film, and may be 35% by mass or more. % or less, 32% by mass or less, or 30% by mass or less.
  • the content of the component (c2) may be 10 to 50% by mass, 15% by mass or more, 18% by mass or more, or 20% by mass or more, and 45% by mass, based on the total amount of the adhesive film. % or less, 42% by mass or less, or 40% by mass or less.
  • the total content of component (c1) and component (c2) is 30 to 60% by mass, based on the total amount of the adhesive film, and may be 35% by mass or more, 40% by mass or more, or 45% by mass or more. Often, it may be 55% by weight or less, 52% by weight or less, or 50% by weight or less.
  • the content of component (c1) may be 10 to 70% by mass, based on the total content of components (c1) and (c2), 15% by mass or more, 18% by mass or more, or 20% by mass or more. It may be at least 65% by mass, at most 62% by mass, or at most 60% by mass.
  • the content of component (c2) may be 30 to 90% by mass, based on the total content of components (c1) and (c2), 35% by mass or more, 38% by mass or more, or 40% by mass or more. It may be 85% by mass or less, 82% by mass or less, or 80% by mass or less.
  • the content of the inorganic filler is 60 parts by mass or more, 65 parts by mass or more, 70 parts by mass or more, or 78 parts by mass or more, based on the thermosetting component ((total content of thermosetting resin and curing agent)) It may be 300 parts by mass or less, or 267 parts by mass or less. If the content of the inorganic filler is large, the shear viscosity of the adhesive film 10 at a frequency of 4.4 Hz tends to increase. When the content of the inorganic filler is 300 parts by mass or less, it is easy to ensure an appropriate content of the elastomer, so the film formability and handleability of the film tend to be further improved.
  • the adhesive film 10 may further contain a coupling agent.
  • the coupling agent may be a silane coupling agent.
  • silane coupling agents include ⁇ -ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, and 3-(2-aminoethyl)aminopropyltrimethoxysilane. It will be done. These may be used alone or in combination of two or more.
  • the adhesive film 10 may further contain a curing accelerator that accelerates the curing reaction of the thermosetting component.
  • curing accelerators include imidazole and its derivatives, organic phosphorous compounds, secondary amines, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more.
  • the curing accelerator may be imidazole or a derivative thereof.
  • imidazole derivatives include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-cyanoethyl-2-methylimidazole. These may be used alone or in combination of two or more.
  • the adhesive film 10 may further contain other components if necessary.
  • other ingredients include pigments, ion scavengers, and antioxidants.
  • the adhesive film 10 can be used, for example, as a protective sheet for protecting the back surface of a semiconductor element of a flip-chip type semiconductor device, or as a seal for sealing between the surface of a semiconductor element of a flip-chip type semiconductor device and an adherend. It may also be used as a sheet.
  • the adhesive film 10 may be supplied in the form of a laminated sheet as illustrated in FIG. 2 or 3.
  • the laminated sheet 100 shown in FIG. 2 includes a base material 20 and an adhesive film 10 provided on the base material 20.
  • the laminated sheet 110 shown in FIG. 3 further includes a protective film 30 provided on the surface of the adhesive film 10 opposite to the base material 20.
  • the base material 20 may be a resin film, and examples thereof include polytetrafluoroethylene, polyethylene, polypropylene, polymethylpentene, polyethylene terephthalate, or polyimide films.
  • the thickness of the resin film as the base material 20 may be, for example, 60 to 200 ⁇ m or 70 to 170 ⁇ m.
  • the base material 20 may be a dicing film.
  • a laminated sheet whose base material 20 is a dicing film can be used as a dicing die bonding film.
  • the dicing die bonding film may be in the form of a tape.
  • dicing films include resin films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film.
  • the dicing film may be a resin film surface-treated by primer coating, UV treatment, corona discharge treatment, polishing treatment, or etching treatment, as necessary.
  • the dicing film may have adhesive properties.
  • the dicing film having adhesiveness may be, for example, a resin film imparted with adhesiveness, or a laminate having a resin film and an adhesive layer provided on one side thereof.
  • the adhesive layer can be formed from a pressure-sensitive or ultraviolet curing adhesive.
  • a pressure-sensitive adhesive is an adhesive that exhibits a certain level of tackiness when pressure is applied for a short period of time.
  • a radiation-curable adhesive is an adhesive that has a property of decreasing its adhesiveness when irradiated with radiation (for example, ultraviolet rays).
  • the thickness of the adhesive layer can be appropriately set depending on the shape and dimensions of the semiconductor device, and may be, for example, 1 to 100 ⁇ m, 5 to 70 ⁇ m, or 10 to 40 ⁇ m.
  • the thickness of the base material 20, which is a dicing film may be 60 to 150 ⁇ m or 70 to 130 ⁇ m from the viewpoint of economical efficiency and ease of handling the film.
  • the protective film 30 may be a resin film similar to the base material 20.
  • the thickness of the protective film 30 may be, for example, 15 to 200 ⁇ m or 70 to 170 ⁇ m.
  • FIG. 4 is a schematic cross-sectional view showing an example of a semiconductor device manufactured using an adhesive film.
  • the semiconductor device 200 mainly includes a substrate 14, a first semiconductor chip Wa and a second semiconductor chip Waa mounted on the substrate 14, a sealing layer 42 for sealing the second semiconductor chip Waa, and a second semiconductor chip Waa. and an adhesive film 10 that adheres the semiconductor chip Waa to the substrate 14.
  • the substrate 14 includes an organic substrate 90 and circuit patterns 84 and 94 provided on the organic substrate 90.
  • the first semiconductor chip Wa is bonded to the substrate 14 with an adhesive 41.
  • a first wire 88 is connected to the first semiconductor chip Wa, and the first semiconductor chip Wa is electrically connected to the circuit pattern 84 via the first wire 88.
  • the entire first semiconductor chip Wa and the entire first wire 88 are embedded in the adhesive film 10.
  • a second wire 98 is connected to the second semiconductor chip Waa, and the second semiconductor chip Waa is electrically connected to the circuit pattern 84 via the second wire 98.
  • the entire second semiconductor chip Waa and the entire second wire 98 are embedded in the sealing layer 42.
  • FIG. 6, FIG. 7, FIG. 8, and FIG. 9 are process diagrams showing an example of a method for manufacturing the semiconductor device 200 of FIG. 4.
  • the method shown in FIGS. 5 to 9 involves bonding the first semiconductor chip Wa to the substrate 14 via the adhesive 41, and connecting the first semiconductor chip Wa and the substrate 14 (circuit pattern 84). providing the first wire 88; preparing a second semiconductor chip Wbb and an adhesive-attached chip having the adhesive film 10 attached thereto; and press-bonding the adhesive-attached chip to the substrate 14; , bonding the second semiconductor chip Waa to the substrate 14 so that the first semiconductor chip Wa and the first wire 88 are embedded in the adhesive film 10; and bonding the second semiconductor chip Waa and the substrate 14 (circuit pattern 84). ) and providing a second wire 98 connecting the two. Thereafter, by forming the sealing layer 44, the semiconductor device 200 shown in FIG. 4 is obtained.
  • the thickness of the first semiconductor chip Wa may be 10 to 170 ⁇ m.
  • the first semiconductor chip Wa may be a controller chip for driving the semiconductor device 200.
  • the first semiconductor chip Wa may be a flip chip type chip.
  • the size of the first semiconductor chip Wa is usually smaller than the size of the second semiconductor chip Waa.
  • the adhesive 41 interposed between the first semiconductor chip Wa and the substrate 14 can be a normal adhesive for semiconductors.
  • the adhesive-attached chip consisting of the second semiconductor chip Waa and the adhesive film 10 can be prepared using, for example, a dicing die bonding film having the same configuration as the laminated sheet 100 illustrated in FIG. 2.
  • a laminated sheet 100 (dicing die bonding film) is attached to one side of the semiconductor wafer with the adhesive film 10 in contact with the semiconductor wafer.
  • the surface to which the adhesive film 10 is attached may be the circuit surface of the semiconductor wafer, or may be the opposite back surface.
  • Examples of dicing include blade dicing using a rotary blade and a method of cutting the adhesive film 10 together with the semiconductor wafer using a laser. After dicing, the adhesive strength of the dicing film may be reduced by UV irradiation. The second semiconductor chip Waa is picked up together with the divided adhesive film 10.
  • the second semiconductor chip Waa may have a width of 20 mm or less.
  • the width (or length of one side) of the second semiconductor chip Waa may be 3 to 15 mm, or 5 to 10 mm.
  • the semiconductor wafer used to form the second semiconductor chip Waa may be a thin semiconductor wafer having a thickness of 10 to 100 ⁇ m, for example.
  • the semiconductor wafer may be a wafer of polycrystalline silicon, various ceramics, or a compound semiconductor such as gallium arsenide.
  • the second semiconductor chip Waa can also be formed from a similar semiconductor wafer.
  • an adhesive-attached chip consisting of an adhesive film 10 and a second semiconductor chip Waa is placed so that the adhesive film 10 covers the first wire 88 and the first semiconductor chip Wa.
  • the second semiconductor chip Waa is fixed to the substrate 14 by pressing the second semiconductor chip Waa onto the substrate 14.
  • the heating temperature for compression bonding may be 50 to 200°C or 100 to 150°C.
  • the crimping time may be 0.5 to 20 seconds, or 1 to 5 seconds.
  • the pressure for crimping may be 0.01 to 5 MPa, or 0.02 to 2 MPa.
  • the structure including the adhesive film 10 may be further heated, thereby curing the adhesive film 10.
  • the temperature and time for this can be appropriately set depending on the curing temperature of the adhesive film 10 and the like.
  • the temperature may be changed stepwise.
  • the heating temperature may be, for example, 40 to 300°C or 60 to 200°C.
  • the heating time may be, for example, 30 to 300 minutes.
  • Second wire 98 may be, for example, a gold wire, an aluminum wire, or a copper wire.
  • the heating temperature for the connection of the second wire 98 may be in the range of 80-250°C or 80-220°C.
  • the heating time for connecting the second wire 98 may be from several seconds to several minutes.
  • vibration energy by ultrasonic waves and compression energy by applied pressure may be applied.
  • the type and connection method of the first wire 88 can also be similar to that of the second wire 98.
  • the sealing layer 42 that seals the circuit pattern 84, the second wire 98, and the second semiconductor chip Waa is formed using a sealing material.
  • the sealing layer 42 can be formed by a normal method using a mold, for example.
  • the adhesive film 10 and the sealing layer 42 may be further thermally cured by heating.
  • the heating temperature for this purpose may be, for example, 165 to 185° C., and the heating time may be about 0.5 to 8 hours.
  • FIG. 10 is a schematic cross-sectional view showing another example of a semiconductor device manufactured using an adhesive film.
  • the semiconductor device 201 shown in FIG. 10 mainly includes a substrate 14, a first semiconductor chip Wa and a second semiconductor chip Waa mounted on the substrate 14, and a first semiconductor chip Wa and a second semiconductor chip Waa. and an adhesive film 10 that adheres the second semiconductor chip Waa to the first semiconductor chip Wa.
  • the substrate 14 includes an organic substrate 90, a circuit pattern 84 provided on the organic substrate 90, and a connection terminal 95 provided on the surface of the organic substrate 90 opposite to the circuit pattern 84.
  • the first semiconductor chip Wa is bonded to the substrate 14 with an adhesive 41.
  • a first wire 88 is connected to the first semiconductor chip Wa, and the first semiconductor chip Wa is electrically connected to the circuit pattern 84 via the first wire 88. A portion of the first wire 88 is embedded in the adhesive film 10.
  • a second wire 98 is connected to the second semiconductor chip Waa, and the second semiconductor chip Waa is electrically connected to the circuit pattern 84 via the second wire 98.
  • the semiconductor device 201 shown in FIG. 10 can be manufactured by the same method as the manufacturing method of the semiconductor device 200, which includes bonding the second semiconductor chip Waa to the first semiconductor chip Wa using the adhesive film 10. .
  • FIG. 11 is a schematic cross-sectional view showing another example of a semiconductor device manufactured using an adhesive film.
  • the semiconductor device 202 shown in FIG. 11 mainly includes a substrate 14 (organic substrate 90), a first semiconductor chip Wa and a second semiconductor chip Waa mounted on the substrate 14, and a first semiconductor chip Wa and a second semiconductor chip Waa mounted on the substrate 14. It is composed of a sealing layer 42 that seals the second semiconductor chip Waa, and an adhesive film 10 that adheres the second semiconductor chip Waa to the substrate 14 while embedding the entire first semiconductor chip Wa.
  • the first semiconductor chip Wa is a flip-chip type chip, and is electrically connected to the substrate 14 via a plurality of electrodes 96.
  • An underfill 50 is filled between the first semiconductor chip Wa and the substrate 14.
  • Adhesive Film As a support film, a polyethylene terephthalate (PET) film with a thickness of 38 ⁇ m that had been subjected to a release treatment was prepared. Each adhesive varnish was applied onto the support film. The coating film was dried by heating in two steps, first at 90° C. for 5 minutes and then at 140° C. for 5 minutes, to form a B-stage adhesive film (thickness 60 ⁇ m) on the support film. The two obtained adhesive films were bonded together at 70°C to obtain an adhesive film with a thickness of 120 ⁇ m.
  • PET polyethylene terephthalate
  • Shear viscosity of adhesive film A plurality of adhesive films were bonded together at 80°C to form a laminate having a thickness of 1.1 ⁇ 0.1 mm. A measurement sample having a circular surface with a diameter of 9 mm was punched out from the laminate. The measurement sample was mounted on a circular aluminum plate jig with a diameter of 8 mm. The shear viscosity of the measurement sample was measured using ARES (manufactured by TA Instruments Japan Co., Ltd.) under the following conditions. From the measurement results, the minimum and maximum values of shear viscosity within the range of 60 to 150°C were read. For some adhesive films, the shear viscosity was also measured at a frequency of 1.0 Hz. Measurement conditions/measurement temperature: 35-160°C ⁇ Heating rate: 5°C/min ⁇ Strain: 5% ⁇ Frequency: 4.4Hz ⁇ Initial load: 10g
  • the shear viscosity of the adhesive film of Example 1 at a frequency of 4.4 Hz was 7900 Pa ⁇ s at 80°C and 3500 Pa ⁇ s (minimum value) at 129°C.
  • the shear viscosity of the adhesive film of Example 2 at a frequency of 4.4 Hz was 6500 Pa ⁇ s at 80°C and 2500 Pa ⁇ s (minimum value) at 130°C. Measured shear viscosities of other adhesive films are shown in Table 1.
  • An adhesive-attached chip consisting of a first semiconductor chip and an adhesive layer attached thereto is picked up, and the first semiconductor chip is bonded with an adhesive using a pressure bonding machine (die bonder manufactured by Besi, trade name: Esec 2100sD PPPplus).
  • the layer was pressed onto an organic substrate.
  • the pressure bonding conditions were a temperature of 120° C., a pressure of 0.1 MPa, and a pressure bonding time of 1.5 seconds.
  • a dicing die bonding film was produced by bonding each adhesive film (thickness: 120 ⁇ m) of the example or comparative example to an adhesive film for dicing.
  • This dicing die bonding film was attached to a semiconductor wafer (diameter: 8 inches, thickness: 90 ⁇ m) with the adhesive film in contact with the semiconductor wafer. Dicing
  • the semiconductor wafer attached to the die bonding film was cut by dicing in the same manner as described above to form a second semiconductor chip having a size of 6.0 mm x 12.0 mm.
  • the second semiconductor chip and the adhesive film attached thereto are picked up, and the second semiconductor chip is bonded at a temperature of 120° C., a pressure of 0.1 MPa, and a pressure bonding time of 0.1 MPa so that the entire first semiconductor chip is covered with the adhesive film. It was pressed onto an organic substrate for 1.5 seconds. The position of the second semiconductor chip was adjusted so that the center positions of the first semiconductor chip and the second semiconductor chip coincided in plan view.
  • the adhesive film was cured by heating the formed laminate at a temperature increase of 15° C./min and 130° C. for 1 hour, thereby producing a semiconductor for evaluation in which the first semiconductor chip was embedded with the adhesive film. Got the device.
  • Implantability The interface between the cured adhesive film and the first semiconductor chip in the semiconductor device for evaluation was 75 MHz in reflection mode using an ultrasonic digital image diagnostic device (manufactured by Insight Co., Ltd., product name: IS-350). The area ratio of voids at a given interface was determined. Evaluation was performed based on the following criteria based on area ratio. A: The area ratio of voids in a predetermined cross section is less than 5%. B: The area ratio of voids in a predetermined cross section is 5% or more.
  • the amount of bleeding can be reduced by using an adhesive film whose shear viscosity at a frequency of 4.4 Hz at 60 to 150°C is at least 2,000 Pa ⁇ s at the minimum and at most 200,000 Pa ⁇ s. It was confirmed that the underlying semiconductor chip could be sufficiently embedded with the adhesive film while suppressing the amount of damage.
  • SYMBOLS 10 Adhesive film, 14... Substrate, 20... Base material (dicing film), 30... Protective film, 41... Adhesive, 42... Sealing layer, 84, 94... Circuit pattern, 88... First wire, 90... Organic substrate, 98... Second wire, 100, 110... Laminated sheet, 200, 201, 202... Semiconductor device, Wa... First semiconductor chip, Waa... Second semiconductor chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

熱硬化性成分を含む、半導体用接着フィルム。接着フィルムが、60~150℃の範囲において、最小で2000Pa・s以上、且つ、最大で200000Pa・s以下の周波数4.4Hzでのずり粘度を示す。接着フィルムが、他の半導体チップを埋め込みながら基板に接着するために用いられてもよい。接着フィルムが、半導体チップを、他の半導体チップに接続されたワイヤの一部又は全体を埋め込みながら他の半導体チップに接着するために用いられてもよい。

Description

半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法
 本開示は、半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、これらを用いて半導体装置を製造する方法に関する。
 多段に積層された半導体チップによって高容量化されたスタックドMCP(Multi Chip Package)が普及している。スタックドMCPの例として、ワイヤ埋込型及びチップ埋込型の半導体パッケージが挙げられる。ワイヤが接着フィルムによって埋め込まれた半導体パッケージの構造は、FOW(Film Over Wire)と称されることがある。半導体チップが接着フィルムによって埋め込まれた半導体パッケージの構造は、FOD(Film Over Die)と称されることがある。FODが採用された半導体パッケージの一例として、最下段に配置されたコントローラチップと、これを埋め込む接着フィルムとを有するものがある(特許文献1参照)。
特開2014-175459号公報 特許第5736899号公報
 FOD又はFOWの構造を有する半導体パッケージの製造において、半導体チップ、又はワイヤが接着フィルムによって十分に埋め込まれることが求められる。低粘度化された接着フィルムは、良好な埋込性を示し得るものの、半導体チップの端部から接着フィルムがはみ出すブリードを多く発生させることがある。特に、接着フィルムの体積に対する、埋め込まれる半導体チップ又はワイヤの体積の割合が大きいと、半導体チップ又はワイヤが適切に埋め込まれ難いため、ブリードの抑制と十分な埋込性の両立が困難となり易い。例えばコントローラチップを薄い接着フィルムで埋め込む場合、接着フィルムの体積に対する埋め込まれるコントローラチップの体積の割合が比較的大きいことが多い。
 本開示の一側面は、ブリードを抑制しながら、FOD又はFOWにおける埋込性を改善し得る接着フィルムに関する。
 本開示の一側面は、熱硬化性成分を含む半導体用接着フィルムに関する。この接着フィルムは、60~150℃の範囲において、最小で2000Pa・s以上、且つ、最大で200000Pa・s以下の周波数4.4Hzでのずり粘度を示してもよい。
 本開示の別の一側面は、ダイシングフィルムと、前記ダイシングフィルム上に設けられた前記半導体用接着フィルムと、を備えるダイシングダイボンディングフィルムに関する。
 本開示の更に別の一側面は、第一の半導体チップが搭載された基板に、前記半導体用接着フィルムにより第二の半導体チップを接着することを含む、半導体装置を製造する方法に関する。前記第一の半導体チップが、前記接着フィルムによって埋め込まれる。
 本開示の更に別の一側面は、第一の半導体チップに、前記半導体用接着フィルムにより第二の半導体チップを接着することを含む、半導体装置を製造する方法に関する。前記第一の半導体チップにワイヤが接続されており、前記ワイヤの一部又は全体が、前記接着フィルムによって埋め込まれる。
 本開示は以下を含む。
[1]
 熱硬化性成分を含み、
 60~150℃の範囲において、最小で2000Pa・s以上、且つ、最大で200000Pa・s以下の周波数4.4Hzでのずり粘度を示す、
半導体用接着フィルム。
[2]
 50~150μmの厚さを有する、[1]に記載の半導体用接着フィルム。
[3]
 半導体チップを、他の半導体チップを埋め込みながら基板に接着するために用いられる、[1]又は[2]に記載の半導体用接着フィルム。
[3]’
 [1]又は[2]に記載の半導体用接着フィルムの、半導体チップが他の半導体チップを埋め込みながら基板に接着された半導体用接着フィルムを製造するための応用。
[4]
 25~80μmの厚さを有する、[1]に記載の半導体用接着フィルム。
[5]
 半導体チップを、他の半導体チップに接続されたワイヤの一部又は全体を埋め込みながら他の半導体チップに接着するために用いられる、[1]又は[4]に記載の半導体用接着フィルム。
[5]’
 [1]又は[4]に記載の半導体用接着フィルムの、半導体チップが、他の半導体チップに接続されたワイヤの一部又は全体を埋め込みながら他の半導体チップに接着されている半導体装置を製造するための応用。
[6]
 エラストマーを更に含み、前記エラストマーの含有量が、当該接着フィルムの質量を基準として10~60質量%である、[1]~[5]のいずれか一項に記載の半導体用接着フィルム。
[7]
 前記エラストマーの含有量が、当該接着フィルムの質量を基準として20~55質量%である、[6]に記載の半導体用接着フィルム。
[8]
 無機フィラーを更に含み、前記無機フィラーの含有量が、前記熱硬化性成分100質量部に対して60質量部以上である、[1]~[7]のいずれか一項に記載の半導体用接着フィルム。
[9]
 前記無機フィラーの含有量が、前記熱硬化性成分100質量部に対して78~267質量部である、[8]に記載の半導体用接着フィルム。
[10]
 前記熱硬化性成分の含有量が、当該接着フィルムの質量を基準として15~30質量%である、[1]~[9]のいずれか一項に記載の半導体用接着フィルム。
[11]
 ダイシングフィルムと、
 前記ダイシングフィルム上に設けられた[1]~[10]のいずれか一項に記載の半導体用接着フィルムと、
を備えるダイシングダイボンディングフィルム。
[12]
 第一の半導体チップが搭載された基板に、[1]又は[2]に記載の接着フィルムにより第二の半導体チップを接着することを含み、
 前記第一の半導体チップが、前記接着フィルムによって埋め込まれる、
半導体装置を製造する方法。
[13]
 第一の半導体チップに、[1]又は[4]に記載の半導体用接着フィルムにより第二の半導体チップを接着することを含み、
 前記第一の半導体チップにワイヤが接続されており、
 前記ワイヤの一部又は全体が、前記接着フィルムによって埋め込まれる、
半導体装置を製造する方法。
[14]
 前記第一の半導体チップがコントローラチップである、[12]に記載の方法。
[15]
 前記第一の半導体チップがコントローラチップである、[13]に記載の方法。
 ブリードを抑制しながら、FOD又はFOWにおける埋込性を改善することができる。
接着フィルムの一例を示す模式断面図である。 接着フィルムを有する積層シートの一例を示す模式断面図である。 接着フィルムを有する積層シートの一例を示す模式断面図である。 半導体装置の一例を示す模式断面図である。 半導体装置を製造する方法の一例を示す工程図である。 半導体装置を製造する方法の一例を示す工程図である。 半導体装置を製造する方法の一例を示す工程図である。 半導体装置を製造する方法の一例を示す工程図である。 半導体装置を製造する方法の一例を示す工程図である。 半導体装置の別の一例を示す模式断面図である。 半導体装置の別の一例を示す模式断面図である。
 本発明は以下の例に限定されるものではない。以下の例において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。以下に例示される数値及びその範囲も、本開示を制限するものではない。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、(メタ)アクリレートは、アクリレート又はそれに対応するメタクリレートを意味する。これは(メタ)アクリロイル基、(メタ)アクリル共重合体等の他の類似表現についても同様である。
 図1は、接着フィルムの一例を示す模式断面図である。図1に示される接着フィルム10は、例えば、熱硬化性成分、エラストマー、及び無機フィラーを含有する熱硬化性接着剤から形成されたフィルムであることができる。接着フィルム10は、半硬化(Bステージ)状態であってもよい。
 本発明者の知見によれば、60~150℃の範囲における、特に周波数4.4Hzでの接着フィルム10のずり粘度が、接着フィルム10の埋込性及びブリードの程度と関連する。周波数4.4Hzでの接着フィルム10のずり粘度が、60~150℃の範囲において、最小で2000Pa・s以上、且つ、最大で200000Pa・s以下であると、ブリードを抑制しながら、FOD又はFOWにおける埋込性が改善され得る。
 ブリード抑制等の観点から、60~150℃において接着フィルム10が示す周波数4.4Hzでのずり粘度の最小値は、2200Pa・s以上、2300Pa・s以上、又は2400Pa・s以上であってもよい。60~150℃において接着フィルム10が示す周波数4.4Hzでのずり粘度の最小値が10000Pa・s以下、9000Pa・s以下、8000Pa・s以下又は7000Pa・s以下であってもよい。
 埋込性の更なる改善の観点から、60~150℃において接着フィルム10が示す周波数4.4Hzでのずり粘度の最大値は、180000Pa・s以下、175000Pa・s以下、170000Pa・s以下、又は165000Pa・s以下であってもよい。60~150℃において接着フィルム10が示す周波数4.4Hzでのずり粘度の最大値が、10000P・s以上、11000Pa・s以上、12000Pa・s以上、13000Pa・s以上、14000Pa・s以上、15000Pa・s以上、16000Pa・s以上、又は17000Pa・s以上であってもよい。
 接着フィルム10の厚さは、例えば、1μm以上、3μm以上、20μm以上、30μm以上、35μm以上、40μm以上、50μm以上、又は60μm以上であってもよく、200μm以下、150μm以下、120μm以下、80μm以下、又は60μm以下であってもよい。接着フィルム10がFOW用接着フィルムである場合、ワイヤが半導体チップに接触しないようにワイヤを埋め込むために、例えば20~120μm、25~80μm、又は30~60μmであってもよい。接着フィルム10がFOD用接着フィルムである場合、半導体チップ(例えば、コントローラチップ)の全体を適切に埋め込むために、例えば接着フィルム10の厚さが40~200μm、50~150μm又は80~120μmであってもよい。
(a)熱硬化性成分
 熱硬化性成分は、熱硬化反応によって架橋構造を形成する官能基を有する化合物である(a1)熱硬化性樹脂を含む。熱硬化性成分が、熱硬化性樹脂と反応する(a2)硬化剤を更に含んでもよい。熱硬化性樹脂は、接着性の観点から、エポキシ基を有する化合物であるエポキシ樹脂を含んでもよい。その場合、硬化剤が、フェノール性水酸基を有する化合物であるフェノール樹脂を含んでもよい。
 熱硬化性成分の含有量(熱硬化性樹脂と硬化剤の合計の含有量)が、接着フィルム10の質量を基準として8質量%以上、10質量%以上又は15質量%以上であってもよく、80質量%以下、70質量%以下、60質量%以下、50質量%以下、45質量%以下、又は30質量%以下であってもよい。熱硬化性成分の含有量が多いと、接着フィルムの硬化後の接着力が向上する傾向にある。熱硬化性成分の含有量が80質量%以下であると、接着フィルムを形成するためのワニスが塗工されたときの成膜性の担保が期待できる。
 エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、及び、多官能フェノール化合物若しくは多環芳香族化合物(アントラセン等)から誘導されるジグリシジルエーテル化合物が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。接着フィルムのタック性、及び柔軟性などの観点から、エポキシ樹脂がクレゾールノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂又はこれらの組み合わせであってもよい。
 熱硬化性樹脂は、25℃で液体である液状エポキシ樹脂を含んでもよい。液状エポキシ樹脂の含有量が、接着フィルム10の質量を基準として5~15質量%であってもよい。熱硬化性樹脂は、30℃未満の軟化点を示すエポキシ樹脂を含んでもよい。これらのエポキシ樹脂を含む接着フィルムは良好な柔軟性を有し易く、また、接着フィルムによる半導体チップ及びワイヤの埋込性がより向上する。熱硬化性樹脂は、50℃以上の軟化点を示すエポキシ樹脂を含んでもよい。
 硬化剤として用いられるフェノール樹脂の例としては、ノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールアラルキル樹脂、及びナフトールアラルキル樹脂が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。フェノール樹脂が、フェノールアラルキル樹脂、ナフトールアラルキル樹脂又はこれらの組み合わせであってもよい。ノボラック型フェノール樹脂は、フェノール類(例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール)及び/又はナフトール類(例えばα-ナフトール、β-ナフトール、ジヒドロキシナフタレン)とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる。フェノールアラルキル樹脂及びナフトールアラルキル樹脂は、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルとから合成される。
 フェノール樹脂の水酸基当量は、70g/eq以上、又は70~300g/eqであってもよい。フェノール樹脂の水酸基当量が70g/eq以上であると、接着フィルムの貯蔵弾性率がより増大する傾向がある。フェノール樹脂の水酸基当量が300g/eq以下であると、発泡、及びアウトガスの発生がより抑制され得る。
 熱硬化性樹脂がエポキシ樹脂を含み、硬化剤がフェノール樹脂を含む場合、エポキシ樹脂のエポキシ当量とフェノール樹脂の水酸基当量との比(エポキシ当量:水酸基当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってもよい。当該当量比が0.30/0.70以上であると、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下であると、粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。
 硬化剤の軟化点は、50~200℃、又は60~150℃であってもよい。200℃以下の軟化点を有する硬化剤は、熱硬化性樹脂と良好な相溶性を有し易い。
(b)エラストマー
 エラストマーは、例えば55℃以下のガラス転移温度(Tg)を示す高分子化合物であることができる。(b)成分としては、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ブタジエン樹脂、アクリロニトリル樹脂及びこれらの変性体が挙げられる。
 エラストマーの含有量が、接着フィルム10の質量を基準として10質量%以上、11質量%以上、12質量%以上、13質量%以上、14質量%以上、15質量%以上、16質量%以上、17質量%以上、18質量%以上、19質量%以上、又は20質量%以上であってもよく、60質量%以下、58質量%以下、55質量%以下、又は50質量%以下であってもよい。接着フィルムが2種以上のエラストマーを含む場合、それらの合計量がエラストマーの含有量である。エラストマーの含有量が10質量%以上であると、接着フィルムが高粘度化し、フィルムの取り扱い性向上及びブリード抑制が期待できる。エラストマーの含有量が60質量%以下であることで、埋込性がより向上する傾向にある。
 流動性の観点から、エラストマーがアクリル樹脂を含んでいてもよい。ここで、アクリル樹脂とは、(メタ)アクリル酸エステルに由来する単量体単位を含むポリマーを意味する。アクリル樹脂における(メタ)アクリル酸エステルに由来する構成単位の含有量は、アクリル樹脂の全体量を基準として、例えば、70質量%以上、80質量%以上、又は90質量%以上であってもよい。アクリル樹脂は、エポキシ基、アルコール性又はフェノール性の水酸基、及びカルボキシル基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する単量体単位を含んでいてもよい。アクリル樹脂は、(メタ)アクリル酸エステルとアクリロニトリルとを単量体単位として含む共重合体であるアクリルゴムであってもよい。
 エラストマー(例えばアクリル樹脂)のガラス転移温度(Tg)は、-50℃以上、-30℃以上、0℃以上、又は3℃以上であってもよく、50℃以下、45℃以下、40℃以下、35℃以下、30℃以下、又は25℃以下であってもよい。エラストマーのTgが低いと、接着フィルムが良好な柔軟性を有し易い傾向がある。良好な柔軟性を有する接着フィルムは、ダイシングの際に半導体ウエハとともに切断され易く、それによりバリの発生が効果的に抑制され得る。良好な柔軟性を有する接着フィルムは、ボイドを十分に排除しながら半導体ウエハに貼り付けられ易く、また、密着性の低下によるダイシング時のチッピングも抑制され得る。ガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定される値を意味する。エラストマーのTgは、エラストマーを構成する構成単位(アクリル樹脂の場合、(メタ)アクリル酸エステルに由来する構成単位)の種類及び含有量を調整することによって、所望の範囲に調整することができる。
 エラストマー(例えばアクリル樹脂)の重量平均分子量(Mw)は、10万以上、20万以上、又は30万以上であってもよく、300万以下、200万以下、又は100万以下であってもよい。エラストマーのMwがこのような範囲にあると、フィルム形成性、及び、接着フィルムにおける強度、可撓性、タック性等を適切に制御することができると共に、リフロー性に優れ、埋込性を向上することができる。Mwは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される、標準ポリスチレンによる検量線を用いて換算された値を意味する。
 アクリル樹脂の市販品の例としては、SG-70L、SG-708-6、WS-023 EK30、SG-280 EK23、HTR-860P-3CSP、HTR-860P-3CSP-30B(いずれもナガセケムテックス株式会社製)、及び、H-CT-865(昭和電工マテリアルズ株式会社製)が挙げられる。
(c)無機フィラー
 無機フィラーは、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、及びシリカから選ばれる少なくとも1種の無機材料を含む粒子であってもよい。溶融粘度の調整の観点から、無機フィラーがシリカを含んでもよい。
 無機フィラーの平均粒径は、流動性の観点から、0.01μm以上、又は0.03μm以上であってもよく、1.5μm以下、1.0μm以下、0.8μm以下、0.08μm以下、又は0.06μm以下であってもよい。平均粒径の異なる2種以上の無機フィラーを組み合わせてもよい。ここで、平均粒径は、レーザー回折・散乱法によって求められる粒度分布における積算頻度50%の粒径を意味する。無機フィラーの平均粒径は、無機フィラーが含有される接着フィルムを用いることによっても求めることができる。この場合、接着フィルムを加熱して樹脂成分を分解することによって得られる残渣を溶媒に分散して分散液を作製し、これにレーザー回折・散乱法を適用して得られる粒度分布から、無機フィラーの平均粒径を求めることができる。
 接着フィルムは、以下の条件を全て満たす(c1)第一の無機フィラー及び(c2)第二の無機フィラーを含んでもよい。接着フィルムが(c1)成分及び(c2)成分を含有することにより、埋込性を向上させることができ、さらには、硬化後において、破断強度を向上させることができる。
・(c1)成分の平均粒径は、300~1000nmである。
・(c2)成分の平均粒径は、(c1)成分の平均粒径に対して、0.05~0.70倍である。
・(c1)成分及び(c2)成分の合計の含有量は、接着フィルム全量を基準として、30~60質量%である。
 (c1)成分の平均粒径は、300~1000nmであり、350nm以上、400nm以上、又は450nm以上であってもよく、900nm以下、800nm以下、700nm以下、又は600nm以下であってもよい。
 (c2)成分の平均粒径は、300nm未満であってもよく、250nm以下、220nm以下、又は200nm以下であってもよい。(c2)成分の平均粒径は、例えば、10nm以上、50nm以上、又は100nm以上であってもよい。
 本明細書において、(c1)成分及び(c2)成分に関するこれらの平均粒径は、レーザー回折・散乱法によって求めた粒度分布における積算頻度50%の粒径を意味する。(c1)成分及び(c2)成分の平均粒径は、(c1)成分及び(c2)成分が含有される接着フィルムを用いることによっても求めることができる。この場合、接着フィルムを加熱して樹脂成分を分解することによって得られる残渣を溶媒に分散して分散液を作製し、これにレーザー回折・散乱法を適用して得られる粒度分布から、300~1000nmの範囲にあるピークの数値を(c1)成分の平均粒径とすることができ、300nm未満の範囲にあるピークの数値を(c2)成分の平均粒径とすることができる。
 (c2)成分の平均粒径は、(c1)成分の平均粒径に対して、0.05~0.70倍である。(c2)成分の平均粒径は、(c1)成分の平均粒径に対して、0.10倍以上、0.20倍以上、又は0.30倍以上であってもよく、0.60倍以下、0.50倍以下、又は0.40倍以下であってもよい。
 (c1)成分の含有量は、接着フィルム全量を基準として、5~40質量%であってもよく、6質量%以上、8質量%以上、又は10質量%以上であってもよく、35質量%以下、32質量%以下、又は30質量%以下であってもよい。
 (c2)成分の含有量は、接着フィルム全量を基準として、10~50質量%であってもよく、15質量%以上、18質量%以上、又は20質量%以上であってもよく、45質量%以下、42質量%以下、又は40質量%以下であってもよい。
 (c1)成分及び(c2)成分の合計の含有量は、接着フィルム全量を基準として、30~60質量%であり、35質量%以上、40質量%以上、又は45質量%以上であってもよく、55質量%以下、52質量%以下、又は50質量%以下であってもよい。
 (c1)成分の含有量は、(c1)成分及び(c2)成分の合計の含有量を基準として、10~70質量%であってもよく、15質量%以上、18質量%以上、又は20質量%以上であってもよく、65質量%以下、62質量%以下、又は60質量%以下であってもよい。
 (c2)成分の含有量は、(c1)成分及び(c2)成分の合計の含有量を基準として、30~90質量%であってもよく、35質量%以上、38質量%以上、又は40質量%以上であってもよく、85質量%以下、82質量%以下、又は80質量%以下であってもよい。
 無機フィラーの含有量は、熱硬化性成分((熱硬化性樹脂と硬化剤の合計の含有量)を基準として、60質量部以上、65質量部以上、70質量部以上、又は78質量%以上であってもよく、300質量部以下、又は267質量部以下であってもよい。無機フィラーの含有量が大きいと、接着フィルム10の周波数4.4Hzでのずり粘度が増加する傾向がある。無機フィラーの含有量が300質量部以下であると、エラストマーの適切な含有量を確保し易いため、フィルムの成膜性及び取り扱い性をより改善できる傾向にある。
(d)カップリング剤
 接着フィルム10は、カップリング剤を更に含んでもよい。カップリング剤は、シランカップリング剤であってもよい。シランカップリング剤の例としては、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、及び3-(2-アミノエチル)アミノプロピルトリメトキシシランが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
(e)硬化促進剤
 接着フィルム10は、熱硬化性成分の硬化反応を促進する硬化促進剤を更に含んでもよい。硬化促進剤の例としては、イミダゾール及びその誘導体、有機リン系化合物、第二級アミン、第三級アミン、及び第四級アンモニウム塩が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。反応性の観点から硬化促進剤がイミダゾール又はその誘導体であってもよい。イミダゾールの誘導体の例としては、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、及び1-シアノエチル-2-メチルイミダゾールが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 接着フィルム10は、必要により、その他の成分をさらに含有していてもよい。その他の成分の例としては、顔料、イオン補捉剤、及び酸化防止剤が挙げられる。
 接着フィルム10を、例えば、フリップチップ型半導体装置の半導体素子の裏面を保護する保護シート、又は、フリップチップ型半導体装置の半導体素子の表面と被着体との間を封止するための封止シートとして用いてもよい。
 接着フィルム10は、図2又は図3に例示される積層シートの形態で供給されてもよい。図2に示される積層シート100は、基材20と基材20上に設けられた接着フィルム10とを備える。図3に示される積層シート110は、接着フィルム10の基材20とは反対側の面上に設けられた保護フィルム30を更に備える。
 基材20は、樹脂フィルムであってもよく、その例としては、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリエチレンテレフタレート、又はポリイミドのフィルムが挙げられる。基材20としての樹脂フィルムの厚さは、例えば、60~200μm又は70~170μmであってもよい。
 基材20は、ダイシングフィルムであってもよい。基材20がダイシングフィルムである積層シートは、ダイシングダイボンディングフィルムとして使用することができる。ダイシングダイボンディングフィルムはテープ状であってもよい。
 ダイシングフィルムの例としては、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、及びポリイミドフィルム等の樹脂フィルムが挙げられる。ダイシングフィルムは、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、又はエッチング処理によって表面処理された樹脂フィルムであってもよい。ダイシングフィルムは、粘着性を有していてもよい。粘着性を有するダイシングフィルムは、例えば、粘着性が付与された樹脂フィルム、又は、樹脂フィルム及びその片面上に設けられた粘着層を有する積層体であってもよい。粘着層は、感圧型又は紫外線硬化型の粘着剤から形成することができる。感圧型粘着剤は、短時間の加圧で一定の粘着性を示す粘着剤である。放射線硬化型粘着剤は、放射線(例えば、紫外線)の照射によって、粘着性が低下する性質を有する粘着剤である。粘着層の厚さは、半導体装置の形状、寸法に応じて適宜設定できるが、例えば、1~100μm、5~70μm、又は10~40μmであってもよい。ダイシングフィルムである基材20の厚さが、経済性及びフィルムの取扱い性の観点から、60~150μm又は70~130μmであってもよい。
 保護フィルム30は、基材20と同様の樹脂フィルムであってもよい。保護フィルム30の厚さは、例えば、15~200μm又は70~170μmであってもよい。
半導体装置及びその製造方法
 図4は、接着フィルムを用いて製造される半導体装置の一例を示す模式断面図である。半導体装置200は、主として、基板14と、基板14に搭載された第一の半導体チップWa及び第二の半導体チップWaaと、第二の半導体チップWaaを封止する封止層42と、第二の半導体チップWaaを基板14に接着する接着フィルム10とから構成される。基板14は、有機基板90と、有機基板90上に設けられた回路パターン84、94とを有する。第一の半導体チップWaは接着剤41によって基板14に接着されている。第一の半導体チップWaに第一のワイヤ88が接続されており、第一の半導体チップWaは第一のワイヤ88を介して回路パターン84に電気的に接続されている。第一の半導体チップWaの全体、及び第一のワイヤ88の全体が、接着フィルム10に埋め込まれている。第二の半導体チップWaaに第二のワイヤ98が接続されており、第二の半導体チップWaaは第二のワイヤ98を介して回路パターン84に電気的に接続されている。第二の半導体チップWaaの全体、及び第二のワイヤ98の全体が封止層42に埋め込まれている。
 図5、図6、図7、図8及び図9は、図4の半導体装置200を製造する方法の一例を示す工程図である。図5~9に示される方法は、基板14に第一の半導体チップWaを、接着剤41を介して接着することと、第一の半導体チップWaと基板14(回路パターン84)とを接続する第一のワイヤ88を設けることと、第二の半導体チップWbb、及びこれに付着した接着フィルム10を有する接着剤付チップを準備することと、接着剤付チップを基板14に圧着し、それにより、第一の半導体チップWa及び第一のワイヤ88が接着フィルム10によって埋め込まれるように第二の半導体チップWaaを基板14に接着することと、第二の半導体チップWaaと基板14(回路パターン84)とを接続する第二のワイヤ98を設けることとを含む。その後、封止層44を形成することにより、図4に示される半導体装置200が得られる。
 第一の半導体チップWaの厚さは、10~170μmであってもよい。第一の半導体チップWaは、半導体装置200を駆動するためのコントローラチップであってもよい。第一の半導体チップWaがフリップチップ型のチップであってもよい。第一の半導体チップWaのサイズは、通常、第二の半導体チップWaaのサイズ以下である。第一の半導体チップWaと基板14との間に介在する接着剤41は、通常の半導体用接着剤であることができる。
 第二の半導体チップWaa及び接着フィルム10からなる接着剤付チップは、例えば、図2に例示される積層シート100と同様の構成を有するダイシングダイボンディングフィルムを用いて準備することができる。この場合、例えば、半導体ウエハの片面に、積層シート100(ダイシングダイボンディングフィルム)が、その接着フィルム10が半導体ウエハに接する向きで貼り付けられる。接着フィルム10が貼り付けられる面は、半導体ウエハの回路面であってもよく、その反対側の裏面であってもよい。積層シート100(ダイシングダイボンディングフィルム)が貼り付けられた半導体ウエハをダイシングにより分割することにより、個片化された第二の半導体チップWaaが形成される。ダイシングの例としては、回転刃を用いるブレードダイシング、及び、レーザーによって半導体ウエハとともに接着フィルム10を切断する方法が挙げられる。ダイシングの後、紫外線照射により、ダイシングフィルムの粘着力を低下させてもよい。第二の半導体チップWaaは、分割された接着フィルム10とともにピックアップされる。
 第二の半導体チップWaaは、幅20mm以下のサイズを有していてもよい。第二の半導体チップWaaの幅(又は一辺の長さ)が、3~15mm、又は5~10mmであってもよい。
 第二の半導体チップWaaを形成するために用いられる半導体ウエハは、例えば、10~100μmの厚さを有する薄型半導体ウエハであってもよい。半導体ウエハは、単結晶シリコンの他、多結晶シリコン、各種セラミック、ガリウム砒素等の化合物半導体のウエハであってもよい。第二の半導体チップWaaも同様の半導体ウエハから形成されたものであることができる。
 図7に示されるとおり、接着フィルム10及び第二の半導体チップWaaからなる接着剤付チップが、接着フィルム10によって第一のワイヤ88及び第一の半導体チップWaが覆われるように載置される。次いで、図8に示されるように、第二の半導体チップWaaを基板14に圧着させることで基板14に対して第二の半導体チップWaaが固定される。圧着のための加熱温度は、50~200℃、又は100~150℃であってもよい。圧着のための加熱温度が高いと接着フィルム3が柔らかくなるため埋込性がより向上する傾向にある。圧着時間は、0.5~20秒、又は1~5秒であってもよい。圧着のための圧力は、0.01~5MPa、又は0.02~2MPaであってもよい。
 圧着の後、接着フィルム10を含む構造体を更に加熱し、それにより接着フィルム10を硬化させてもよい。そのための温度及び時間は、接着フィルム10の硬化温度等により適宜設定することができる。温度は段階的に変化させてもよい。加熱温度は、例えば40~300℃又は60~200℃であってもよい。加熱時間は、例えば30~300分であってもよい。
 図9に示されるとおり、基板14と第二の半導体チップWaaとが第二のワイヤ98を介して電気的に接続される。第二のワイヤ98は、例えば、金線、アルミニウム線、又は銅線であってもよい。第二のワイヤ98の接続のための加熱温度は、80~250℃又は80~220℃の範囲内であってもよい。第二のワイヤ98の接続のための加熱時間は数秒~数分間であってもよい。第二のワイヤ98の接続のために、超音波による振動エネルギーと印加加圧とによる圧着エネルギーが付与されてもよい。第一のワイヤ88の種類及び接続方法も、第二のワイヤ98と同様であることができる。
 その後、回路パターン84、第二のワイヤ98及び第二の半導体チップWaaを封止する封止層42が封止材により形成される。封止層42は、例えば金型を用いた通常の方法により形成することができる。封止層42が形成された後、加熱により接着フィルム10及び封止層42を更に熱硬化してもよい。そのための加熱温度は例えば165~185℃であってもよく、加熱時間は0.5~8時間程度であってもよい。
 図10は、接着フィルムを用いて製造される半導体装置の別の一例を示す模式断面図である。図10に示される半導体装置201は、主として、基板14と、基板14に搭載された第一の半導体チップWa及び第二の半導体チップWaaと、第一の半導体チップWa及び第二の半導体チップWaaを封止する封止層42と、第二の半導体チップWaaを第一の半導体チップWaに接着する接着フィルム10とから構成される。基板14は、有機基板90と、有機基板90上に設けられた回路パターン84と、有機基板90の回路パターン84とは反対側の面上に設けられた接続端子95とを有する。第一の半導体チップWaは接着剤41によって基板14に接着されている。第一の半導体チップWaに第一のワイヤ88が接続されており、第一の半導体チップWaは第一のワイヤ88を介して回路パターン84に電気的に接続されている。第一のワイヤ88の一部が、接着フィルム10に埋め込まれている。第二の半導体チップWaaに第二のワイヤ98が接続されており、第二の半導体チップWaaは第二のワイヤ98を介して回路パターン84に電気的に接続されている。
 図10に示される半導体装置201は、第一の半導体チップWaに接着フィルム10により第二の半導体チップWaaを接着することを含む、半導体装置200の製造方法と同様の方法によって製造することができる。
 図11は、接着フィルムを用いて製造される半導体装置の別の一例を示す模式断面図である。図11に示される半導体装置202は、主として、基板14(有機基板90)と、基板14に搭載された第一の半導体チップWa及び第二の半導体チップWaaと、第一の半導体チップWa及び第二の半導体チップWaaを封止する封止層42と、第二の半導体チップWaaを、第一の半導体チップWaの全体を埋め込みながら基板14に接着する接着フィルム10とから構成される。第一の半導体チップWaはフリップチップ型のチップであり、複数の電極96を介して基板14と電気的に接続されている。第一の半導体チップWaと基板14との間にアンダーフィル50が充填されている。
1.接着フィルムの作製
(1)原材料
 以下の原材料を準備した。
(a1)熱硬化性樹脂(エポキシ樹脂)
・N-500P-10(商品名、DIC株式会社製、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量:204g/eq、軟化点:75~85℃)
・EXA-830CRP(商品名、DIC株式会社製、液状ビスフェノールF型エポキシ樹脂、エポキシ当量:159g/eq)
(a2)硬化剤(フェノール樹脂)
・MEH-7800M(商品名、明和化学株式会社製、フェニルアラルキル型フェノール樹脂、水酸基当量:174g/eq、軟化点:80℃)
・PSM-4326(商品名、群栄化学株式会社製、フェノールノボラック樹脂、水酸基当量:105g/eq、軟化点:120℃)
・J-DPP-85(商品名、JFEケミカル株式会社製、ジシクロペンタジエン型フェノール樹脂、水酸基当量:164~167g/eq,軟化点:85~89℃)
(b)エラストマー(アクリル樹脂)
・アクリル樹脂A(HTR-860P-3CSP(商品名)、ナガセケムテックス株式会社製、アクリル樹脂、重量平均分子量:80万、Tg:12℃)
・アクリル樹脂B(ブチルアクリレート/エチルアクリレート/エチルメタクリレート/グリシジルメタクリレート/スチレンの共重合体、重量平均分子量:40万、Tg:5℃)
(c)無機フィラー
・シリカフィラーA(SC2050-HLG(商品名)、アドマテックス株式会社製、シリカフィラー分散液、平均粒径:0.50μm)
・シリカフィラーB(シリカフィラー分散液、平均粒径:0.18μm)
(d)硬化促進剤
・2PZ-CN(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
(2)接着剤ワニスの調製
 熱硬化性樹脂、硬化剤、エラストマー、無機フィラー、及び硬化促進剤を表1、表2又は表3に示す配合比(質量部)で含む、実施例又は比較例の接着剤ワニスを調製した。表に示される無機フィラーの配合比は、固形分(シリカフィラー)の量である。熱硬化性樹脂、硬化剤、無機フィラー、及び、シクロヘキサノンを含む混合物を撹拌した。そこにエラストマーを加え、混合物を撹拌した。その後、硬化促進剤を加え、各成分が均一になるまで混合物を撹拌して、実施例1~11及び比較例1~7の接着剤ワニスを得た。各接着剤ワニスを100メッシュのフィルターでろ過した。ろ過された各接着剤ワニスを真空脱泡した。
(3)接着フィルム
 支持フィルムとして、離型処理を施した厚さ38μmのポリエチレンテレフタレート(PET)フィルムを準備した。支持フィルム上に各接着剤ワニスを塗布した。塗膜を90℃で5分間、続いて140℃で5分間の2段階で加熱により乾燥して、Bステージ状態の接着フィルム(厚さ60μm)を支持フィルム上に形成した。得られた2枚の接着フィルムを70℃で貼り合わせ、厚さ120μmの接着フィルムを得た。
2.評価
(1)接着フィルムのずり粘度
 複数枚の接着フィルムを80℃で貼り合わせ、1.1±0.1mmの厚さを有する積層体を形成した。積層体から直径9mmの円形の表面を有する測定サンプルを打ち抜いた。測定サンプルを直径8mmの円形アルミプレート冶具上に取り付けた。測定サンプルのずり粘度を、ARES(ティー・エイ・インスツルメント・ジャパン株式会社製)を用いて以下の条件で測定した。測定結果から、60~150℃の範囲内でのずり粘度の最小値及び最大値を読み取った。一部の接着フィルムについては、周波数1.0Hzの条件でのずり粘度も測定した。
測定条件
・測定温度:35~160℃
・昇温速度:5℃/分
・歪み:5%
・周波数:4.4Hz
・初期荷重:10g
 実施例1の接着フィルムの周波数4.4Hzでのずり粘度は、80℃で7900Pa・s、129℃で3500Pa・s(最小値)であった。実施例2の接着フィルムの周波数4.4Hzでのずり粘度は、80℃で6500Pa・s、130℃で2500Pa・s(最小値)であった。その他の接着フィルムのずり粘度の測定値は表1に示される。
(2)ブリード及び埋込性
評価用半導体装置の作製
 接着剤層及び粘着剤層を備えるダイシングダイボンディングフィルム(HR-5104-10、接着剤層の厚さ:10μm、粘着層の厚さ:110μm、昭和電工マテリアルズ株式会社製)を準備し、これを半導体ウエハ(直径:8インチ、厚さ:40μm)に貼り付けた。ダイシングダイボンディングフィルムに貼り付けられた半導体ウエハを、フルオートダイサーDFD-6361(株式会社ディスコ製)を用いたダイシングにより切断し、1.6mm×4.1mmのサイズを有するチップ(第一の半導体チップ)を形成した。第一の半導体チップ及びこれに付着した接着剤層からなる接着剤付チップをピックアップし、第一の半導体チップを、圧着機(Besi社製のダイボンダ、商品名:Esec 2100sD PPPplus)によって、接着剤層を介して有機基板に圧着した。圧着の条件は、温度120℃、圧力0.1MPa及び圧着時間1.5秒間の条件であった。
 実施例又は比較例の各接着フィルム(厚さ120μm)の接着フィルムをダイシング用粘着フィルムと貼り合せて、ダイシングダイボンディングフィルムを作製した。このダイシングダイボンディングフィルムを半導体ウエハ(直径:8インチ、厚さ:90μm)に、接着フィルムが半導体ウエハに接する向きで貼り付けた。ダイシングダイボンディングフィルムに貼り付けられた半導体ウエハを上記と同様のダイシングにより切断して、6.0mm×12.0mmのサイズを有する第二の半導体チップを形成した。第二の半導体チップ及びこれに付着した接着フィルムをピックアップし、第二の半導体チップを、第一の半導体チップの全体が接着フィルムによって覆われるように、温度120℃、圧力0.1MPa及び圧着時間1.5秒間の条件で有機基板に圧着した。第二の半導体チップの位置は、第一の半導体チップと第二の半導体チップの中心位置が平面視で一致するように調整された。形成された積層体を、昇温15℃/分、130℃で1時間の条件で加熱することにより接着フィルムを硬化し、それにより、第一の半導体チップが接着フィルムによって埋め込まれた評価用半導体装置を得た。
ブリード量の評価
 評価用半導体装置の第二の半導体チップの上面を顕微鏡(株式会社キーエンス製、商品名:VHX-5000)を用いて観察した。第二の半導体チップの端部を起点とし、端部からはみ出した接着フィルムの最大幅(μm)を測定した。得られた値に基づく以下の基準で応じてブリード量を評価した。
A:100μm未満
B:100μm以上
埋込性
 評価用半導体装置における硬化した接着フィルムと第一の半導体チップとの界面を超音波デジタル画像診断装置(インサイト株式会社製、商品名:IS-350)を用いて75MHz、反射モードにて観察し、所定の界面におけるボイドの面積割合を求めた。面積割合に基づく以下の基準で評価を行った。
A:所定の断面におけるボイドの面積割合が5%未満。
B:所定の断面におけるボイドの面積割合が5%以上。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示されるとおり、60~150℃における周波数4.4Hzでのずり粘度が、最小で2000Pa・s以上、且つ最大で200000Pa・s以下である接着フィルムを用いることにより、ブリード量を抑制しながら、下層の半導体チップを接着フィルムによって十分に埋め込むことができることが確認できた。
 10…接着フィルム、14…基板、20…基材(ダイシングフィルム)、30…保護フィルム、41…接着剤、42…封止層、84、94…回路パターン、88…第一のワイヤ、90…有機基板、98…第二のワイヤ、100、110…積層シート、200,201,202…半導体装置、Wa…第一の半導体チップ、Waa…第二の半導体チップ。

 

Claims (15)

  1.  熱硬化性成分を含み、
     60~150℃の範囲において、最小で2000Pa・s以上、且つ、最大で200000Pa・s以下の周波数4.4Hzでのずり粘度を示す、
    半導体用接着フィルム。
  2.  50~150μmの厚さを有する、請求項1に記載の半導体用接着フィルム。
  3.  半導体チップを、他の半導体チップを埋め込みながら基板に接着するために用いられる、請求項1に記載の半導体用接着フィルム。
  4.  25~80μmの厚さを有する、請求項1に記載の半導体用接着フィルム。
  5.  半導体チップを、他の半導体チップに接続されたワイヤの一部又は全体を埋め込みながら前記他の半導体チップに接着するために用いられる、請求項1に記載の半導体用接着フィルム。
  6.  エラストマーを更に含み、前記エラストマーの含有量が、当該接着フィルムの質量を基準として10~60質量%である、請求項1に記載の半導体用接着フィルム。
  7.  前記エラストマーの含有量が、当該接着フィルムの質量を基準として20~55質量%である、請求項6に記載の半導体用接着フィルム。
  8.  無機フィラーを更に含み、前記無機フィラーの含有量が、前記熱硬化性成分100質量部に対して60質量部以上である、請求項1に記載の半導体用接着フィルム。
  9.  前記無機フィラーの含有量が、前記熱硬化性成分100質量部に対して78~267質量部である、請求項8に記載の半導体用接着フィルム。
  10.  前記熱硬化性成分の含有量が、当該接着フィルムの質量を基準として15~30質量%である、請求項1に記載の半導体用接着フィルム。
  11.  ダイシングフィルムと、
     前記ダイシングフィルム上に設けられた請求項1に記載の半導体用接着フィルムと、
    を備えるダイシングダイボンディングフィルム。
  12.  第一の半導体チップが搭載された基板に、請求項1に記載の接着フィルムにより第二の半導体チップを接着することを含み、
     前記第一の半導体チップが、前記接着フィルムによって埋め込まれる、
    半導体装置を製造する方法。
  13.  第一の半導体チップに、請求項1に記載の半導体用接着フィルムにより第二の半導体チップを接着することを含み、
     前記第一の半導体チップにワイヤが接続されており、
     前記ワイヤの一部又は全体が、前記接着フィルムによって埋め込まれる、
    半導体装置を製造する方法。
  14.  前記第一の半導体チップがコントローラチップである、請求項12に記載の方法。
  15.  前記第一の半導体チップがコントローラチップである、請求項13に記載の方法。

     
PCT/JP2023/011426 2022-03-25 2023-03-23 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法 WO2023182410A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2022/014601 2022-03-25
PCT/JP2022/014601 WO2023181397A1 (ja) 2022-03-25 2022-03-25 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法

Publications (1)

Publication Number Publication Date
WO2023182410A1 true WO2023182410A1 (ja) 2023-09-28

Family

ID=88100318

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/014601 WO2023181397A1 (ja) 2022-03-25 2022-03-25 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法
PCT/JP2023/011426 WO2023182410A1 (ja) 2022-03-25 2023-03-23 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014601 WO2023181397A1 (ja) 2022-03-25 2022-03-25 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法

Country Status (2)

Country Link
TW (1) TW202401588A (ja)
WO (2) WO2023181397A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180442A (ja) * 2011-03-01 2012-09-20 Hitachi Chemical Co Ltd 接着フィルム及びこの接着フィルムを有する半導体装置
JP2013140895A (ja) * 2012-01-05 2013-07-18 Hitachi Chemical Co Ltd 接着剤組成物、接着シート及び半導体装置
JP2017165981A (ja) * 2017-06-06 2017-09-21 日立化成株式会社 フィルム状接着剤及びダイシングダイボンディング一体型接着シート
WO2019150448A1 (ja) * 2018-01-30 2019-08-08 日立化成株式会社 半導体装置の製造方法、フィルム状接着剤及び接着シート
WO2020136904A1 (ja) * 2018-12-28 2020-07-02 日立化成株式会社 接着フィルム、ダイシング・ダイボンディング一体型フィルム及び半導体パッケージの製造方法
WO2021085539A1 (ja) * 2019-10-31 2021-05-06 昭和電工マテリアルズ株式会社 基板搬送用サポートテープ及び電子機器装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180442A (ja) * 2011-03-01 2012-09-20 Hitachi Chemical Co Ltd 接着フィルム及びこの接着フィルムを有する半導体装置
JP2013140895A (ja) * 2012-01-05 2013-07-18 Hitachi Chemical Co Ltd 接着剤組成物、接着シート及び半導体装置
JP2017165981A (ja) * 2017-06-06 2017-09-21 日立化成株式会社 フィルム状接着剤及びダイシングダイボンディング一体型接着シート
WO2019150448A1 (ja) * 2018-01-30 2019-08-08 日立化成株式会社 半導体装置の製造方法、フィルム状接着剤及び接着シート
WO2020136904A1 (ja) * 2018-12-28 2020-07-02 日立化成株式会社 接着フィルム、ダイシング・ダイボンディング一体型フィルム及び半導体パッケージの製造方法
WO2021085539A1 (ja) * 2019-10-31 2021-05-06 昭和電工マテリアルズ株式会社 基板搬送用サポートテープ及び電子機器装置の製造方法

Also Published As

Publication number Publication date
TW202401588A (zh) 2024-01-01
WO2023181397A1 (ja) 2023-09-28

Similar Documents

Publication Publication Date Title
JP7327416B2 (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
JP7472954B2 (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
KR20210137041A (ko) 접착제 조성물, 필름상 접착제, 접착 시트, 및 반도체 장치의 제조 방법
KR102602489B1 (ko) 반도체 장치의 제조 방법 및 접착 필름
KR102482629B1 (ko) 반도체 장치, 그리고 그 제조에 사용하는 열경화성 수지 조성물 및 다이싱 다이 본딩 일체형 테이프
WO2023182410A1 (ja) 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法
JP7028264B2 (ja) フィルム状接着剤及びその製造方法、並びに半導体装置及びその製造方法
WO2020136904A1 (ja) 接着フィルム、ダイシング・ダイボンディング一体型フィルム及び半導体パッケージの製造方法
JP2023142888A (ja) 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び、半導体装置を製造する方法
WO2022163465A1 (ja) 半導体装置及びその製造方法、並びに、熱硬化性樹脂組成物、接着フィルム及びダイシング・ダイボンディング一体型フィルム
CN112513217A (zh) 胶黏剂组合物、膜状胶黏剂、胶黏剂片及半导体装置的制造方法
JP2023142901A (ja) 半導体用接着フィルム、ダイシング・ダイボンディング一体型フィルム、及び半導体装置の製造方法
WO2023182226A1 (ja) 半導体用接着フィルム、ダイシング・ダイボンディング一体型フィルム、及び半導体装置の製造方法
KR102561428B1 (ko) 열경화성 수지 조성물, 필름형 접착제, 접착 시트 및 반도체 장치의 제조 방법
TW202242057A (zh) 膜狀接著劑、切割晶粒接合一體型膜、以及半導體裝置及其製造方法
KR20230129234A (ko) 접착제 조성물, 필름상 접착제, 다이싱·다이본딩 일체형필름, 및 반도체 장치 및 그 제조 방법
TW202414550A (zh) 半導體裝置的製造方法、接著層及切晶黏晶一體型膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775004

Country of ref document: EP

Kind code of ref document: A1