WO2023182188A1 - 被覆板ガラス、及び被覆板ガラスを作製する方法 - Google Patents

被覆板ガラス、及び被覆板ガラスを作製する方法 Download PDF

Info

Publication number
WO2023182188A1
WO2023182188A1 PCT/JP2023/010478 JP2023010478W WO2023182188A1 WO 2023182188 A1 WO2023182188 A1 WO 2023182188A1 JP 2023010478 W JP2023010478 W JP 2023010478W WO 2023182188 A1 WO2023182188 A1 WO 2023182188A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
protective film
film
coated
Prior art date
Application number
PCT/JP2023/010478
Other languages
English (en)
French (fr)
Inventor
聖人 米田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023182188A1 publication Critical patent/WO2023182188A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal

Definitions

  • the present invention relates to a coated plate glass comprising a low emissivity film containing a metal layer and a protective film that protects the film.
  • Patent Document 1 discloses a glass plate comprising a functional coating composed of alternatingly deposited zinc stannate (ZTO) and silver (paragraph [0070] of Patent Document 1). A protective coating containing aluminum oxide or silicon oxide is deposited on the functional coating (paragraph [0014] of US Pat.
  • ZTO zinc stannate
  • Patent Document 1 discloses a glass plate comprising a functional coating composed of alternatingly deposited zinc stannate (ZTO) and silver (paragraph [0070] of Patent Document 1).
  • a protective coating containing aluminum oxide or silicon oxide is deposited on the functional coating (paragraph [0014] of US Pat.
  • WO 2006/000002 discloses a glass plate with a functional coating in which a layer of silver is arranged between layers of oxides of zinc or tin. Furthermore, a topcoat consisting of silica and zinc oxide covers the functional coating (Example 1 and Example 2 of WO 03/03002).
  • Patent Document 3 discloses a glass plate including a base layer made of tin oxide and a thin film containing silica (SiO 2 ). There are two points on the surface of the thin film where ⁇ E * is 2 or less. ⁇ E * is determined based on the difference in L * values ⁇ L * , the difference in a * values ⁇ a * , and the difference in b * values ⁇ b * in the L *a* b * color system (Claim 10 of Patent Document 3) . By appropriately adjusting ⁇ E * , the aesthetic appearance of a base material with a thin film containing a thin film mainly composed of silica is improved (paragraph [0007] of Patent Document 3).
  • the glass plate may have a film in which a dielectric layer, a silver layer, and another dielectric layer are laminated in this order on the surface opposite to the surface on the thin film side (Patent Document 3, paragraph [0039]).
  • Patent Document 4 discloses forming a silica-based layer by coating a layer of perhydropolysilazane on glass and heating this layer.
  • a coating film of a composition containing tetraethoxysilane is formed on the surface of a heat ray reflective film.
  • a glass substrate with a silica film is produced by heating and curing this coating film.
  • low emissivity film containing a metal layer By applying a low emissivity film containing a metal layer to the plate glass, low emissivity (Low-E) for infrared rays can be obtained. Since the low-emissivity film easily peels off from the glass plate, a silica-based protective film is used to protect the low-emissivity film. The inventor has discovered that when a protective film is laminated on the low-emissivity film, a pattern, for example, a striped pattern, tends to appear on the surface of the glass plate.
  • An object of the present invention is to provide a means for making it difficult for patterns to appear on the surface of a plate glass that includes a low emissivity film and a protective film that protects the film.
  • a coated plate glass comprising: The thickness at each point of the protective film varies, and the deviation of the thickness at each point from the minimum allowable dimension of the thickness at each point is within the range of the thickness tolerance at each point, and the tolerance is It is set at a value of 10% or less of the minimum allowable dimension, When the coated plate glass is observed on the protective film, the color difference ⁇ E between two points, a point where the thickness of the protective film has a maximum allowable dimension and a point where the thickness has a minimum allowable dimension, is 3.5 or less, The color difference ⁇ E is obtained from the following formula, ⁇ L * is the difference between the L * values of each point in the L * a * b * color system, ⁇ a * is the difference between the a * values of each point in the L * a
  • the low emissivity film has a plurality of dielectric layers,
  • the plurality of dielectric layers include a first dielectric layer located between the coated surface of the plate glass and the metal layer, and a second dielectric layer located between the metal layer and the protective film. Consisting of The coated plate glass according to ⁇ 1>.
  • the low emissivity film further includes a plurality of buffer layers,
  • the plurality of buffer layers include a first buffer layer located between the first dielectric layer and the metal layer, and a second buffer layer located between the metal layer and the second dielectric layer.
  • the first buffer layer is made of a composition having a refractive index higher than the refractive index of the first dielectric layer and the refractive index of the metal layer, and is thinner than the first dielectric layer
  • the refractive index of the second buffer layer is made of a composition having a higher refractive index than the refractive index of the metal layer and the refractive index of the second dielectric layer, and is thinner than the second dielectric layer.
  • the low emissivity film includes, in addition to the metal layer (hereinafter referred to as a first metal layer), a second metal layer located between a second dielectric layer and the protective film, The plurality of dielectric layers further include a third dielectric layer located between the second metal layer and the protective film, Adjacent dielectric layers and metal layers are connected by a buffer layer, Each buffer layer is made of a composition having a refractive index higher than the refractive index of each of the dielectric layer and metal layer connected thereto, and is thinner than each dielectric layer.
  • the minimum thickness of the protective film actually measured on the coated surface is 25 nm or more and 200 nm or less, The coated plate glass according to ⁇ 1>.
  • the minimum thickness of the protective film actually measured on the coated surface is 75 nm or less, The coated plate glass according to ⁇ 5>.
  • the minimum thickness of the protective film on the coated surface is 50 nm or more, The coated plate glass according to ⁇ 5>.
  • the low radioactivity film has the following nine layers from the protective film toward the plate glass, ⁇ Third dielectric layer 10-70nm ⁇ Buffer layer 1-20nm ⁇ Second metal layer 1-30nm ⁇ Buffer layer 1-20nm ⁇ Second dielectric layer 10-120nm ⁇ Buffer layer 1-20nm ⁇ First metal layer 1 to 30 nm ⁇ Buffer layer 1-20nm ⁇ First dielectric layer 10 to 70 nm
  • the low radioactivity film has the following nine layers from the protective film toward the plate glass, ⁇ Third dielectric layer 10-45 nm ⁇ Buffer layer 1-9nm ⁇ Second metal layer 5-20nm ⁇ Buffer layer 1-9nm ⁇ Second dielectric layer 51-99nm ⁇ Buffer layer 1-9nm ⁇ First metal layer 8-20 nm ⁇ Buffer layer 1-9nm ⁇ First dielectric layer 16-48 nm
  • the low emissivity film has the following nine layers from the protective film toward the plate glass, ⁇ Third dielectric layer 10-45 nm ⁇ Buffer layer 1-9nm ⁇ Second metal layer 12-20nm ⁇ Buffer layer 1-9nm ⁇ Second dielectric layer 51-99nm ⁇ Buffer layer 5-9nm ⁇ First metal layer 8-12 nm ⁇ Buffer layer 1-9nm ⁇ First dielectric layer 16-48 nm
  • the low emissivity film has the following nine layers from the protective film toward the plate glass, ⁇ Third dielectric layer 10-45 nm ⁇ Buffer layer 1-9nm ⁇ Second metal layer 5-18 nm ⁇ Buffer layer 1-9nm ⁇ Second dielectric layer 51-99nm ⁇ Buffer layer 1-9nm ⁇ First metal layer 12-20 nm ⁇ Buffer layer 1-9nm ⁇ First dielectric layer 16-48 nm
  • the a * value on the coated surface is -15 or more and 0 or less
  • the b * value is -20 or more and 0 or less.
  • the a * value on the coated surface is -10 or more and 0 or less
  • the b * value is -20 or more and 0 or less.
  • a coated plate glass comprising: When measuring the thickness of the protective film at each point, the difference between the maximum thickness of the protective film and the minimum thickness of the protective film is 10% or less of the minimum thickness, When the coated plate glass is observed on the protective film, the color difference ⁇ E between the point where the thickness is the maximum and the point where the thickness is the minimum is 3.5 or less, The color difference ⁇ E is obtained from the following formula, ⁇ L * is the difference between the L * values of each point in the L * a * b * color system, ⁇ a * is the difference between the a * values of each point in the L * a * b * color system, ⁇ b * is the difference between the b * values of each point in the L * a * b * color system, Coated plate glass.
  • ⁇ 18> A method for producing the coated plate glass according to any one of ⁇ 1> to ⁇ 17>, wherein the protective film is a silica film, and the low emissivity film is roll-coated or die-coated with an alkoxysilane sol. and laminating by spray coating, and gelling the sol on the low emissivity film. or the protective film is a silica film, and silazane is laminated on the low emissivity film by roll coating, die coating, or spray coating, and the silazane is converted to silica on the low emissivity film. Method.
  • Combinations of the thickness of the protective film, the thickness of each layer of the low-emissivity film, and the thickness of the glass plate of the coated plate glass according to any one of ⁇ 1> to ⁇ 17> are determined based on a plurality of combinations obtained by simulation.
  • the spectral solid angle reflectance R( ⁇ ) on the coated surface is determined for each pattern of combinations of the minimum allowable dimension of the thickness of the protective film, the thickness of each layer of the low emissivity film, and the thickness of the plate glass, and further, each determining the spectral solid angle reflectance R( ⁇ ) by replacing the thickness of the protective film with the maximum allowable dimension in the pattern; Based on the spectral solid angle reflectance R( ⁇ ) related to the minimum and maximum allowable thickness of the protective film, the L * value, a * value, and b * value in the L * a * b * color system are determined in each pattern.
  • ⁇ E is the difference between the L * value corresponding to the minimum allowable dimension of the thickness of the protective film and the L * value corresponding to the maximum allowable dimension
  • ⁇ a * is the difference between the a * value corresponding to the minimum allowable dimension of the thickness of the protective film and the a * value corresponding to the maximum allowable dimension
  • ⁇ b * is the difference between the b * value corresponding to the minimum allowable dimension of the thickness of the protective film and the b * value corresponding to the maximum allowable dimension
  • a means for making it difficult for patterns to appear on the surface of a plate glass that includes a low emissivity film containing a metal layer and a protective film that protects the film.
  • FIG. 1 shows a cross section of a coated glass plate Cg.
  • the coated glass plate Cg comprises a glass plate Gs.
  • the plate glass Gs has a coated surface Cs.
  • the glass plate Gs is a single glass or a laminated glass.
  • the coated glass plate Cg is provided with a low emissivity film Le.
  • a laminate Lg is formed by laminating a low-emissivity film Le on a glass plate Gs.
  • the coated glass plate Cg includes a protective film Pr in addition to the laminate Lg.
  • the plate glass Gs may be appropriately selected depending on the use of the coated plate glass Cg.
  • the material of the plate glass Gs include heat-absorbing glass, clear glass, soda lime glass, quartz glass, borosilicate glass, alkali-free glass, green glass, UV green glass, lithium aluminum silicate glass, and the like.
  • the thickness of the plate glass Gs is, for example, 0.2 to 6.0 mm, and may be flat or curved.
  • the complex refractive index of light with a wavelength of 590 nm of plate glass Gs is such that the refractive index (real part) is 1.40 to 2.00 and the extinction coefficient (imaginary part) is 2.5 ⁇ 10 -7 to 10. .0 ⁇ 10 ⁇ 7 .
  • the reflectance of the coated plate glass Cg at a wavelength of 380 nm to 780 nm is measured from the side of the protective film Pr, the reflectance is 0% to 15%, preferably 0% to 10%, more preferably 0% to 5%. It is. In one embodiment, the reflectance is 5, 2, or 1%.
  • the coated plate glass Cg having such reflectance can be suitably used as window glass for buildings, automobile roofs, windshields, or windows.
  • the roof is also called a sunroof or moonroof.
  • the windshield may be continuously connected to the sunroof.
  • the protective film Pr shown in FIG. 1 is provided on the low emissivity film Le.
  • the low emissivity film Le is likely to peel off from the laminate Lg.
  • the protective film Pr prevents this by protecting the low radioactivity film Le.
  • the protective film Pr is a coating based on silica, in particular a silica film.
  • an alkoxysilane sol is laminated on the low emissivity film Le by roll coating, die coating, or spray coating.
  • a gel film, or silica film is obtained by heating the sol layer. This silica film is referred to as a protective film Pr.
  • silazane for example perhydropolysilazane
  • the low emissivity film Le by roll coating, die coating, or spray coating.
  • This silica film is referred to as a protective film Pr.
  • the protective film Pr shown in FIG. 1 may contain components other than silicon oxide. Such components include ceramic particles, curing agents, and residual solvents. The ceramic particles and the hardening agent serve to harden the protective film Pr. An example of a ceramic particle is a zirconia particle. In other embodiments, silica particles may be dispersed into a silica membrane to obtain a silica-based membrane. In one aspect of the composition of the protective film Pr, the component with the largest weight content is silicon oxide, particularly silicon dioxide oxide.
  • the thickness of the protective film Pr is, for example, 25 to 200 nm. As an example, the complex refractive index of the protective film Pr for light with a wavelength of 590 nm is 1.40 to 1.80, and the extinction coefficient is 0.0 to 4.4 ⁇ 10 ⁇ 2 .
  • FIG. 2 shows a cross section of the laminate Lg.
  • the laminate Lg is formed by stacking a total of N layers from layer L(1) to layer L(N) in order starting from the glass plate Gs side and ending at the protective film Pr side.
  • Layer L(1) is plate glass Gs.
  • the low emissivity film Le consists of a layer L(2)...layer L(N-1) and a layer L(N).
  • layer L(1), layer L(2)...layer L(N-1) and layer L(N) are referred to as the first layer, second layer...N-1st layer and Nth layer There is.
  • any of the layers located between layer L(2) and layer L(N) is a metal layer.
  • the metal layer is a layer of non-oxidized metal.
  • the metal layer is a layer of conductive metal.
  • the material of the conductor metal is, for example, a single metal selected from Ag, Cu, Au, and Al, or an alloy thereof, or a single metal or the alloy doped with a transition metal such as Mn, Fe, Co, or Ni.
  • the material is a metal selected from Ag and Cu, an alloy thereof, a single metal, or an alloy doped with a transition metal such as Mn, Fe, Co, or Ni.
  • the thickness of the metal layer is, for example, 1 to 30 nm, preferably 5 to 20 nm.
  • the complex refractive index of the metal layer for light with a wavelength of 590 nm is 0.10 to 1.20, and the extinction coefficient is 2.00 to 8.00.
  • the low emissivity film Le includes a dielectric layer in addition to the metal layer.
  • layer L(2) and layer L(N) are dielectric layers.
  • Examples of the dielectric material include oxides, nitrides, and oxynitrides of one or more metals selected from Si, Sn, Zn, Al, Ti, Zr, Nb, Ta, Ni, and Cr; Examples include metals doped with other metals, preferably oxides, nitrides, and oxynitrides of one or more metals selected from Si, Sn, Zn, Ti, Zr, and Ni. .
  • the electric layer is made of silicon nitride (SiN), for example.
  • the thickness of the dielectric layer is, for example, 10 to 120 nm, preferably 15 to 100 nm.
  • the complex refractive index of the dielectric layer for light having a wavelength of 590 nm is 1.8 to 2.2, and the extinction coefficient is 0.00 to 0.01.
  • the dielectric layer has a higher refractive index than the metal layer.
  • Layer L(1), layer L(2)...layer L(N-1) and layer L(N) shown in FIG. 2 have thickness D 1 , thickness D 2 ...thickness D N-1 and It has a thickness DN .
  • the plate glass Gs has a thickness D1 .
  • the low radioactivity film Le has a thickness D 2 . . . the sum of the thickness D N-1 and the thickness D N.
  • the thickness D1 of the glass plate Gs is greater than the thickness of the low emissivity film Le.
  • the protective film Pr has a thickness D.
  • the thickness D1 of the plate glass Gs is greater than the thickness D of the protective film Pr. How to use these thickness values will be described later.
  • the white light Wt shown in FIG. 2 enters the laminate Lg from the protective film Pr side.
  • the white light Wt passes through each layer in the laminate Lg, is reflected by each layer, passes through each layer again, and is emitted from the protective film Pr side.
  • FIG. 3 shows a cross section of the protective film Pr.
  • the surface of the protective film Pr has unevenness.
  • the thickness of each point on the protective film Pr varies.
  • the variation represented in the figure is emphasized.
  • an observer Ob observes the coated glass plate Cg from above the protective film Pr there exists a point Mx in design where the thickness of the protective film Pr becomes the maximum, that is, the maximum allowable dimension.
  • the design maximum value of the thickness variation on the covering surface Cs is defined as the maximum allowable dimension.
  • the thickness of the protective film Pr is the minimum, that is, the minimum allowable dimension.
  • the design minimum value of the thickness variation on the covering surface Cs is defined as the minimum allowable dimension Ls.
  • the minimum allowable thickness Ls of the protective film Pr is taken as a reference value.
  • the thickness of each point on the protective film Pr has a deviation from the reference value.
  • the deviation falls within the range of the tolerance Tr of the thickness of the protective film Pr.
  • the tolerance Tr is the difference between the maximum allowable thickness and the minimum allowable thickness Ls of the protective film Pr.
  • the deviation in the thickness of each point of the protective film Pr is a positive value.
  • the thickness D of each point of the protective film Pr shown in FIG. 2 and other figures falls within a range that is larger than the minimum allowable dimension Ls shown in FIG. 3 and smaller than the maximum allowable dimension.
  • the thickness D at each point of the protective film Pr can be identified, for example, by exploring the cross section of the protective film Pr using a combination of SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). It can also be measured with an ellipsometer.
  • the tolerance Tr has a value of 0% to 10% of the minimum allowable thickness Ls of the protective film Pr. In one aspect, the tolerance Tr is 5%, 2%, and 1% of the minimum allowable dimension Ls. However, the tolerance Tr is larger than 0. The tolerance Tr may be any one of 5%, 2%, and 1% of the minimum allowable thickness Ls at each point on the protective film Pr. In one embodiment, the minimum allowable thickness Ls of the protective film Pr is smaller than the entire thickness of the low-emissivity film Le. In one embodiment, the minimum allowable thickness Ls of the protective film Pr is smaller than the thickness of the plate glass.
  • the observer Ob receives the white light Wt reflected by the covering plate glass Cg.
  • Light interference occurs due to a change in the thickness of the protective film Pr within the range of the tolerance Tr.
  • the coated plate glass Cg is slightly colored due to light interference.
  • the magnitude of the change in color can be measured by the color difference ⁇ E.
  • the color difference ⁇ E observed by the observer Ob is obtained from the following formula (I).
  • ⁇ L * is the difference in L * value between points Mx and Mn on the protective film Pr in the L * a * b * color system.
  • ⁇ a * is the difference in a * value between points Mx and Mn on the protective film Pr in the L * a * b * color system.
  • ⁇ b * is the difference in b * values between points Mx and Mn on the protective film Pr in the L * a * b * color system.
  • the color difference ⁇ E between the color tone at point Mx and the color tone at point Mn is 3.5 or less. However, the color difference ⁇ E is greater than 0.
  • the color difference ⁇ E indicates the color difference between the color tone at point Mx and the color tone at point Mn.
  • the color difference ⁇ E is any one of 3 or less, 2.5 or less, 2 or less, 1.5 or less, 1 or less, and 0.5 or less.
  • the following calculation is performed.
  • the point Mx and the point Mn do not necessarily produce the largest color difference ⁇ E.
  • the thickness of the protective film Pr takes an intermediate value, there is a possibility that the color tone will be significantly different from that at other points. This condition will be described later, and first, a method for determining the color difference ⁇ E between the color tone at point Mx and the color tone at point Mn will be explained.
  • the complex amplitude reflectance r( ⁇ ) is a function of the wavelength ⁇ of the light in the white light Wt reflected within the coated glass Cg.
  • n air refractive index of air
  • m p ( ⁇ ) complex refractive index of the protective film Pr shown in FIG. 3
  • m p ( ⁇ ) n p ( ⁇ ) + ik p ( ⁇ )
  • n p ( ⁇ ) a function of the refractive index of the protective film Pr for light with wavelength ⁇ .
  • the refractive index is a physical property value, and may be assumed to be constant regardless of the wavelength ⁇ .
  • k p ( ⁇ ) Function of extinction coefficient of protective film Pr for light with wavelength ⁇ .
  • the extinction coefficient is a physical property value, and may be assumed to be constant regardless of the wavelength ⁇ .
  • ⁇ 1 Incident angle of light at the interface between the low emissivity film Le and the protective film
  • Pr ⁇ 2 ( ⁇ ): Function of the refraction angle of light with wavelength ⁇ at the interface between the low emissivity film Le and the protective film Pr r
  • LowE ( ⁇ ): Function of complex amplitude reflectance of the surface of the laminate
  • Lg Wavelength of light in white light
  • Wt Thickness of protective film Pr
  • the incident angle ⁇ 1 and the refraction angle ⁇ 2 ( ⁇ ) of light are set to 0.
  • the complex amplitude reflectance r( ⁇ ) is determined from r LowE ( ⁇ ) and the thickness D of the protective film Pr using the following equation.
  • the protective film Pr shown in FIG. 3 is based on silica (SiO 2 ), it may be assumed that the refractive index n p ( ⁇ ) of the protective film Pr is constant at 1.457 regardless of the wavelength. Further, it may be assumed that the extinction coefficient k p ( ⁇ ) of the protective film Pr has a constant value of 0.00 regardless of the wavelength.
  • the spectral solid angle reflectance R( ⁇ ) is determined by the following formula.
  • the spectral solid angle reflectance R( ⁇ ) is a function of the wavelength ⁇ of the light in the white light Wt reflected within the cover glass Cg.
  • FIG. 4 is an example of a curve showing the value of the spectral solid angle reflectance R( ⁇ ) when the wavelength ⁇ changes from 380 nm to 780 nm.
  • the set of tristimulus values X, Y, and Z of the object color due to reflection can be calculated from the following formula. Seek.
  • visible light wavelengths of 380 nm to 780 nm are used.
  • the upper limit of the wavelength is not 780 nm, but may be any value in the range of 730 nm to 780 nm.
  • FIG. 5 is an example of a curve showing the value of the spectral distribution S( ⁇ ) of standard light when the wavelength ⁇ changes from 380 nm to 730 nm.
  • the standard light spectral distribution S( ⁇ ) may be the spectral distribution of a CIE (Commission Internationale de l'Eclairage) standard illuminant D65. To quote ISO 10526:1999/CIE S005/E-1998: "[D65] is intended to represent average daylight, and its correlated color temperature is approximately 6500 K.
  • CIE Commission Internationale de l'Eclairage
  • the CIE standard illuminant D65 is: It can be used for all daylight colorimetry calculations, unless otherwise specified for the light source.
  • the relative spectral distribution of daylight can vary depending on season, time, and geographic location, especially in the ultraviolet range. known.'' is explained.
  • Such spectral distribution S( ⁇ ) is also explained in JIS Z8720.
  • FIG. 6 is an example of a curve showing the values of the color matching functions x( ⁇ ), y( ⁇ ), and z( ⁇ ) when the wavelength ⁇ changes from 380 nm to 730 nm.
  • the tristimulus values X, Y, and Z may be obtained using the following approximate formula.
  • the following standard spectral distribution S( ⁇ ) and color matching functions x ⁇ ( ⁇ ), y ⁇ ( ⁇ ) and z ⁇ ( ⁇ ) may be used. .
  • the L* value and a* value in the L * a * b * color system corresponding to the minimum and maximum values of the thickness D of the protective film are determined by the following formula. and b * Find the value set.
  • the following formula is a formula for determining the L * value, a * value, and b * value along the spectral distribution of the CIE (Commission Internationale de l'Eclairage) standard illuminant D65.
  • the L * value, a * value, and b * value when the thickness D of the protective film Pr takes the minimum value shown in FIG. 2, that is, the L * value, a * value, and b * value is determined. Further, the L * value, a * value, and b * value when the thickness D of the protective film Pr takes the maximum value, that is, the L * value, a * value, and b * value at the point Mx shown in FIG. 3 are determined.
  • the color difference ⁇ E is determined from the difference in the L * value, a * value, and b * value between the point Mx and the point Mn shown in FIG. 3 using the above formula (I).
  • FIG. 7 shows the incident surface of white light Wt that enters the covering plate glass Cg.
  • the complex amplitude reflectance r of the surface of the laminate Lg is calculated from the combination of the thickness D 1 to D N of the plate glass and each layer in the laminate Lg and the complex refractive index m 1 ( ⁇ ) to m N ( ⁇ ). Find LowE ( ⁇ ). To simplify calculations, the incident angle and refraction angle of light are set to 0.
  • D N Thickness (nm) of the Nth layer L (N) shown in FIG. 2
  • D 1 Thickness (nm) of the plate glass Gs shown in FIG. 2
  • r N ( ⁇ ) Complex amplitude reflectance on the top surface of the N-th layer L (N) shown in FIG. 2
  • r N-1 ( ⁇ ) Complex amplitude reflectance on the top surface of the N-1 layer L (N-1) ⁇ ⁇ ⁇ r 2 ( ⁇ ): Complex amplitude reflectance at the top surface of the second layer L(2)
  • r 1 ( ⁇ ) Complex amplitude reflectance at the top surface of the plate glass.
  • r 1 ( ⁇ ) is a real number.
  • n N ( ⁇ ) n N ( ⁇ )+ik N ( ⁇ ) n N ( ⁇ ): Function of the refractive index of the N-th layer for light with wavelength ⁇ n N-1 ( ⁇ ): Function of refractive index of the N-1 layer for light with wavelength ⁇ ⁇ ⁇ ⁇ n 2 ( ⁇ ): Function of the refractive index of the second layer for light with wavelength ⁇ k N ( ⁇ ): Extinction coefficient of the Nth layer for light with wavelength ⁇ k N-1 ( ⁇ ): Function of the refractive index of the second layer for light with wavelength ⁇ Function of extinction coefficient of N-1th layer ⁇ ⁇ ⁇ k 2 ( ⁇ ): Function of extinction coefficient of the second layer for light with wavelength ⁇
  • the refractive index and extinction coefficient of each layer are physical property values determined by the conductive metal or dielectric material constituting each layer.
  • the refractive index and extinction coefficient of plate glass Gs are physical property values, and may be assumed to be constant regardless of wavelength ⁇ .
  • the value of the complex amplitude reflectance of the plate glass Gs is 0.209+2.05 ⁇ 10 ⁇ 7 i, where i is an imaginary unit.
  • the refractive index of that layer is 0.135 regardless of the wavelength.
  • the extinction coefficient of the layer may be assumed to have a value of 3.985 regardless of the wavelength.
  • the refractive index of that layer is 2.023 regardless of the wavelength. Further, it may be assumed that the extinction coefficient of the layer is 0.00 regardless of the wavelength.
  • the color difference ⁇ E on the coated surface Cs shown in FIG. 3 is determined.
  • the value is the combination of the complex amplitude reflectance r LowE ( ⁇ ) and the minimum allowable dimension Ls of the protective film thickness D, the minimum allowable dimension Ls, and the tolerance Tr. Based on the sum, i.e. the maximum allowable dimension.
  • a simulation is performed using the calculations shown in ⁇ Derivation of complex amplitude reflectance r LowE ( ⁇ ) from the configuration of low emissivity film> and ⁇ Tolerance of thickness of protective film and color difference ⁇ E>.
  • the function may exhibit a constant value independent of wavelength.
  • ⁇ Thickness D 1 (nm) of plate glass Gs ⁇ Complex amplitude reflectance r 1 ( ⁇ ) on the top surface of plate glass Gs ⁇ Number of layers of the laminate consisting of the low radioactivity film Le and plate glass N ⁇ From the refractive index n 2 ( ⁇ ) of the second layer L(2) to the refractive index n N ( ⁇ ) of the Nth layer L(N) ⁇ Extinction coefficient k 2 ( ⁇ ) of the second layer L(2) to the extinction coefficient k N ( ⁇ ) of the Nth layer L(N) -
  • the refractive index and extinction coefficient are determined by the composition of each layer.
  • ⁇ Refractive index n p ( ⁇ ) of the protective film Pr ⁇ Extinction coefficient k p ( ⁇ ) of protective film Pr -
  • the refractive index and extinction coefficient are determined by the composition of the protective film Pr.
  • n air 0 ⁇ Spectral distribution of standard light S( ⁇ ), e.g. CIE (Commission Internationale de l'Eclairage) spectral distribution of standard illuminant D65 ⁇ Color matching functions x ⁇ ( ⁇ ), y ⁇ ( ⁇ ) and z ⁇ ( ⁇ ), e.g.
  • CIE International Commission on Illumination
  • Color matching functions Determining tristimulus values X, Y, and Z using approximate formulas or determining them without relying on approximation formulas - Lower and upper limits of wavelength, for example, lower limit 380 nm, upper limit 730 nm ⁇ Wavelength spacing d ⁇ , for example 10 nm
  • the numerical value may be changed by random numbers obtained on a computer.
  • the random numbers may be based on a pseudo random number sequence or may be based on a true random number sequence. It also determines changes in the combination of these numbers.
  • D1 may be constant.
  • the minimum allowable dimension Ls and the minimum allowable dimension Ls of the thickness of the protective film Pr shown in FIG. 3 may be constant.
  • the sum of the minimum allowable dimension Ls of the protective film Pr and the tolerance Tr, that is, the maximum allowable thickness of the protective film Pr, and the maximum allowable dimension may be constant.
  • the combination of the thickness D 1 of the plate glass Gs and the thicknesses D 2 to D N of each layer of the low-emissivity film Le shown in FIG. 2 and the minimum allowable dimension Ls and tolerance Tr of the protective film Pr shown in FIG. 3 was selected. do. That is, a combination of variables [D 1 , D 2 . . . , D N , Ls, and (Ls+Tr)] whose ⁇ E satisfies a predetermined range, for example, 0 ⁇ E ⁇ 3.5, is selected. A coated plate glass Cg is produced based on the selected combination of numerical values. In the simulation, at least one of the variables of the thickness of the glass plate Gs shown in FIG. 2 and the minimum allowable dimension Ls and tolerance Tr of the protective film Pr shown in FIG. 3 may each be set to one value in advance.
  • FIG. 8 shows a cross section of the disassembled low radioactivity film Le.
  • the low emissivity film Le shown in this figure is an example. As shown in the above simulation, the number of layers of the low emissivity film Le and the composition of those layers can be determined as necessary.
  • the dielectric layer De includes layers L(2), L(6), and L(10) made of dielectric.
  • the low emissivity film Le illustrated in the figure has one or more metal layers Mt.
  • the metal layer Mt includes a layer L(4) made of a conductive metal, for example silver (Ag).
  • the metal layer Mt includes a layer L(8) made of a conductive metal, for example silver (Ag).
  • the materials and complex refractive index of the dielectric and conductive metal are as described above.
  • the thickness of the metal layer is, for example, 1 to 30 nm, preferably 5 to 20 nm.
  • the thickness of the dielectric layer is, for example, 10 to 70 nm, preferably 10 to 50 nm in layers L(2) and L(10), and 10 to 120 nm, preferably 15 to 100 nm in layer L(6).
  • the layer L(2) shown in FIG. 8 is located between the surface of the glass plate Gs, that is, the layer L(1), and the layer L(4), which is one of the metal layers Mt.
  • layer L(2) is also referred to as a first dielectric layer.
  • Layer L(6) is located between layer L(4) and the surface of protective film Pr.
  • layer L(6) is also referred to as a second dielectric layer.
  • the dielectric layer De has a first dielectric layer and a second dielectric layer.
  • the low emissivity film Le shown in FIG. 8 includes a plurality of buffer layers.
  • the buffer layer includes layers L(3), L(5), L(7) and L(9).
  • Layer L(3) is located between layer L(2), which is the first dielectric layer, and layer L(4), which is one of the metal layers Mt.
  • Layer L(3) is also referred to as a first buffer layer.
  • Layer L(5) is located between layer L(4) and layer L(6), which is the second dielectric layer.
  • Layer L(5) is also referred to as a second buffer layer.
  • the material of the composition constituting the buffer layer may be, for example, an elemental metal selected from Ni, Cr, Cu, Al, Pd, W, Mo, Ti, Nb, and Ta, an alloy thereof, or an elemental metal or an alloy thereof.
  • Examples include nitrides, or the above metals or alloys doped with other metals, preferably metals selected from Ni, Cr, W, Ti, and Nb, or alloys thereof, the above metals or It is a nitride of an alloy, or a single metal or an alloy doped with another metal.
  • the thickness of the buffer layer is, for example, 1 to 20 nm, preferably 1 to 10 nm.
  • the complex refractive index of the buffer layer for light with a wavelength of 590 nm is 0.20 to 3.80, and the extinction coefficient is 1.80 to 7.20.
  • the layer L(3) shown in FIG. 8 is made of the above composition having a predetermined refractive index, for example, a nickel chromium alloy (NiCr).
  • the refractive index of layer L(3) is higher than the refractive index of layer L(2) and the refractive index of layer L(4).
  • Layer L(3) is thinner than layer L(2).
  • Layer L(9) is made of a composition having a predetermined refractive index, for example a nickel chromium alloy (NiCr).
  • the refractive index of layer L(5) is higher than the refractive index of layer L(4) and the refractive index of layer L(6).
  • Layer L(5) is thinner than layer L(6).
  • Layer L(8) which is one of the metal layers Mt shown in FIG. 8, is located between layer L(6) and protective film Pr.
  • Layer L(4) is also referred to as a first metal layer.
  • Layer L(8) is also referred to as a second metal layer.
  • Layer L(10) is located between layer L(8) and protective film Pr.
  • Layer L(10) is also referred to as a third dielectric layer.
  • each layer of the dielectric layer De and each layer of the metal layer Mt are adjacent to each other, and layers L(3), L(5), L(7), and L(9) which act as buffer layers are connected.
  • Each buffer layer is made of a composition having a higher refractive index than the dielectric layer De and metal layer Mt to which it is connected, for example a nickel chromium alloy (NiCr).
  • NiCr nickel chromium alloy
  • each buffer layer is thinner than each dielectric layer.
  • each buffer layer is thinner than each metal layer.
  • the low emissivity film Le has the following nine layers from the protective film Pr toward the glass plate Gs.
  • the low emissivity film Le has the following nine layers from the protective film Pr toward the glass plate Gs.
  • the low emissivity film Le has the following nine layers from the protective film Pr toward the glass plate Gs.
  • the low emissivity film Le has the following nine layers from the protective film Pr to the glass plate Gs.
  • the low emissivity film Le has the following three layers from the protective film Pr toward the glass plate Gs.
  • the low emissivity film Le has the following five layers from the protective film Pr toward the glass plate Gs.
  • the low-emissivity film Le has the following seven layers from the protective film Pr toward the glass plate Gs.
  • the method for manufacturing the coated plate glass Cg will be described using as an example a case in which a low-emissivity film Le consisting of five layers is provided.
  • a step of installing a first dielectric layer De on the plate glass Gs disposing a first buffer layer on the first dielectric layer; installing a metal layer Mt on the first buffer layer; placing a second buffer layer on the metal layer; installing a second dielectric layer De on the second buffer layer; placing a silica-based protective film Pr on the second dielectric layer; has.
  • the method of installing the first dielectric layer, first buffer layer, metal layer, second buffer layer, and second dielectric layer is not particularly limited, and any conventional film forming method can be used to form the films.
  • the dielectric layer is formed by reactive AC sputtering in an atmosphere containing an inert gas such as argon and an active gas such as nitrogen, and the buffer layer and metal layer are formed in an argon atmosphere.
  • a film is formed by performing DC sputtering.
  • the method for installing the silica-based protective film Pr is not particularly limited, and the film may be formed by any conventional film forming method, such as roll coating or die coating.
  • a sol-gel silica solution with a solid content concentration of about 2 to 5% is used, and after the step of installing the protective film Pr, a step of heat-treating the coated plate glass Cg may be performed, if necessary.
  • the heat treatment is carried out, for example, by holding the coated plate glass Cg in the air at 100-700° C. for 2 minutes to 1 hour.
  • FIG. 9 shows the simulation results in a two-dimensional coordinate system of a * values and b * values.
  • the low emissivity film has the following nine layers from the protective film to the glass plate.
  • the graph includes four representative simulation results, Result-1 to Result-4.
  • Result-1 diamond-shaped plots form a row along the double-headed arrow. This column shows the variation in the thickness of the protective film within the tolerance range, that is, the variation in color due to the variation in deviation.
  • Each diamond plot corresponds to each value of the thickness of the protective film.
  • ⁇ E is within a predetermined range, for example, 0 ⁇ E ⁇ 3.5. In Result-1 and Result-3, ⁇ E is outside the range.
  • a result with a preferable color tone is further selected from the set consisting of Result-2 and Result-4.
  • the rectangle indicated by the broken line near the origin of the third quadrant is the range in which the a * value is -15 or more, preferably -10 or more and 0 or less, and the range where the b * value is -20 or more and 0 or less, or less. , hue designation.
  • Result-2 satisfies the color specification. However, some of the color variations in Result-2 exceed the color specification. For this reason, the simulation may be performed again to obtain a result in which the entire variation in color satisfies the color specification.
  • a coated plate glass is produced based on the combination of variables that resulted in Result-2 shown in FIG.
  • the color specified is observed.
  • the color specifications shown in the figure aim for glass that relatively reflects a strong blue tint, but has high visible light transmittance. By setting the ranges of a * value and b * value to other ranges, other color specifications can be obtained. Such color specification may also be used.
  • the method for determining the thickness of each layer based on the results obtained in the simulation described above is applicable to the design and manufacture of various coated plate glasses. This method is particularly useful for coated glass sheets in which a protective film is formed by roll coating, die coating, or spray coating.
  • FIG. 10 shows the change in thickness on the coated surface when a silica-based protective film is formed on a plate glass by roll coating, using color shading. It is often seen that the protective film of plate glass has waviness Wv, especially near the rise of the roll coating. The waviness Wv appears as unevenness in the cross section of the protective film Pr shown in FIG.
  • the design includes specifying the minimum allowable dimension Ls of the protective film Pr, the thicknesses D N , D N-1 ...D 2 of each layer of the low radioactivity film Le shown in FIG. 2, and the thickness D 1 of the plate glass. It will be done.
  • the color difference ⁇ E between the point Mx where the thickness of the protective film Pr is maximum and the point Mn where it is the minimum is the maximum color difference ⁇ E on the coated surface.
  • the color difference ⁇ E between the color at point Mn and the color at a point where the thickness of the protective film Pr takes an intermediate value is the maximum color difference ⁇ E on the coated surface.
  • the upper part of FIG. 11 represents the side surface of the modeled covered glass plate Cg.
  • the graph shown in the lower row represents an example of a change in the color difference ⁇ E with respect to the deviation Dv of the thickness of the protective film.
  • the maximum value of the deviation Dv of the thickness of the protective film Pr is 10% of the minimum allowable dimension of the thickness of the protective film Pr. That is, the thickness tolerance is 10% of the minimum allowable dimension.
  • each time the deviation Dv increases by 1 point (%), the color difference ⁇ E between the color tone at a point Mn where the deviation Dv is 0 and the color tone at a point where the deviation Dv is larger than 0 is simulated.
  • the graph is an example of one of the results during the simulation.
  • the color difference ⁇ E is maximum at a point where the deviation Dv is 4% of the minimum allowable dimension Ls.
  • the color difference ⁇ E is larger than the color difference ⁇ E between the color at the point Mn where the deviation Dv is 0 and the color at the point Mx where the deviation Dv is 10%.
  • the minimum allowable thickness Ls of the protective film Pr is set to 0 to 500 nm.
  • the upper limit of the minimum allowable dimension Ls may be any one of 50, 75, 100, 150, 200, 300 and 400 nm.
  • the lower limit of the minimum allowable dimension Ls may be 25, 50, 75, 100, 150, 200, or 300 nm.
  • the manufactured coated plate glass has the configuration as designed, for example, by the following inspection method: A. The constituent elements of the protective film are analyzed in the depth direction from the surface of the protective film using X-ray photoelectron spectroscopy (XPS). B. The thickness of the protective film is identified by probing the cross section of the protective film using a combination of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). C. The protective film is removed by etching, and each layer in the low-emissivity film is removed one by one to measure the characteristics of each layer. Characteristics include reflectance, transmittance, film thickness, and refractive index. Film thickness and refractive index can be measured with an ellipsometer. D. The refractive index and complex refractive index of each layer are identified by optical simulation based on the measured values obtained in A to C.
  • XPS X-ray photoelectron spectroscopy
  • SEM scanning electron microscopy
  • EDX energy dispersive
  • FIG. 12 shows the a * values and b * values of 6,000 patterns plotted on a two-dimensional coordinate system. Each dot corresponds to each pattern.
  • the dashed rectangle near the origin of the third quadrant indicates the hue designation, that is, the range in which the a * value is -10 or more and 0 or less, and the b * value is -20 or more and 0 or less. .
  • the difference from FIG. 9 is that the calculation results obtained by varying the thickness deviation of the protective film are not expressed in this coordinate system.
  • the 6,000 patterns there is a pattern that has a desired color specification.
  • the ranges of the thickness of the protective film, the thickness of each layer of the low-emissivity film, and the thickness of the plate glass are as follows.
  • the thickness of the protective film was changed to the minimum allowable dimension plus a 10% tolerance, that is, the maximum allowable dimension, and 6,000 patterns of sets of L * values, a * values, and b * values were determined again. 6,000 patterns of color difference ⁇ E were obtained when the thickness of the protective film was changed by the tolerance.
  • Table 2 shows the thickness combinations of 13 patterns. Note that “+tolerance” in Table 2 represents “minimum allowable dimension + tolerance.”
  • 1,949 patterns with color difference ⁇ E ⁇ 3.5 were extracted from 6,000 patterns. These patterns were plotted in a two-dimensional coordinate system.
  • hue designation, 24 satisfying the range where the a * value is -10 or more and 0 or less, and the b * value is -20 or more and 0 or less Represents a plot with extracted patterns.
  • Table 3 shows 24 pattern thickness combinations. Note that “+tolerance” in Table 3 represents “minimum allowable dimension + tolerance.”
  • coated plate glass having the above nine layers of low emissivity films had the desired color difference ⁇ E and the desired color specification.
  • 1,713 patterns in which the thickness of the protective film was 50 nm or more were extracted. Furthermore, from the 1,713 patterns, we extracted 206 patterns that satisfy the range of hue designation, a * value of -10 or more and 0 or less, and b * value of -20 or more and 0 or less. These 206 patterns were plotted on a two-dimensional coordinate system as shown in FIG.
  • 1,713 patterns were classified by color designation and color difference ⁇ E.
  • the bluish color designation (hue designation) is shown in the explanation of FIG.
  • the hue designation of redness was such that the a * value was 0 or more and +10 or less, and the b * value was 0 or more and +20 or less. From 1,713 patterns, 157 patterns were extracted that satisfied the reddish color specification.
  • 390 patterns with color difference ⁇ E ⁇ 1 were extracted from 2,000 patterns. These patterns were plotted in a two-dimensional coordinate system.
  • 1,136 patterns with color difference ⁇ E ⁇ 2 were extracted from 2,000 patterns. These patterns were plotted in a two-dimensional coordinate system.
  • 1,753 patterns with color difference ⁇ E ⁇ 3 were extracted from 2,000 patterns. These patterns were plotted in a two-dimensional coordinate system.
  • 1,088 patterns with color difference ⁇ E ⁇ 3 were extracted from 3,000 patterns. These patterns were plotted in a two-dimensional coordinate system.
  • 1,588 patterns with color difference ⁇ E ⁇ 3.5 were extracted from 10,000 patterns. These patterns were plotted in a two-dimensional coordinate system.
  • Low-emissivity film layer L having the configuration shown in Table 4 below is placed on layer L(1) made of plate glass (float glass).
  • (2) ⁇ Layer L (10) and a protective film were formed by the following method to obtain a coated plate glass.
  • a low emissivity film is formed on a plate glass using an in-line sputtering device in the following order: SiN layer, NiCr layer, Ag layer, NiCr layer, SiN layer, NiCr layer, Ag layer, NiCr layer, and SiN layer.
  • a plate glass with a low emissivity film was obtained.
  • each layer L(2) to L(10) in Table 4 below was calculated by proportional conversion with the input power based on the thickness when the film was formed with the input power set in advance.
  • the SiN layer was formed by placing a target mainly composed of silicon as a sputtering target and performing AC sputtering in an atmosphere containing argon and nitrogen.
  • the Ag layer was formed by placing a target containing silver as a main component as a sputtering target and performing DC sputtering in an argon atmosphere.
  • the plate glass with the low radioactivity film (size: 200 mm x 300 mm) was washed with pure water and then air-dried. After air-drying, a sol-gel silica solution (solid content concentration 2.4 wt%) for forming a protective film containing zirconia particles was applied to the surface of the low-emissivity film of the glass with the low-emissivity film using a roll coating method to form a coating film.
  • a plate glass with a coating film was prepared.
  • the coated plate glass of Example 7 was obtained by putting the coated plate glass into a hot air oven whose temperature inside the furnace was adjusted to 130 ° C., heating it for 10 minutes to harden the coating film, and then cooling it at room temperature. . Note that the thickness of each layer is as shown in Table 4.
  • Example 8 Coated plate glass with a low-emissivity film and a protective film consisting of 9 layers actually produced.
  • an in-line reactive DC magnetron sputtering device was used to deposit a SiN layer, a NiCr layer, an Ag layer, a NiCr layer, and a SiN layer on a plate glass.
  • a low emissivity film was formed in the following order: NiCr layer, Ag layer, NiCr layer, and SiN layer to obtain a plate glass with a low emissivity film.
  • the thickness of each layer L(2) to L(10) in Table 4 below was calculated by proportional conversion with the input power based on the thickness when the film was formed with the input power set in advance.
  • a target target size: 70 mm x 200 mm
  • a film was formed by sputtering. Sputtering power was 100W.
  • the Ag layer was formed by arranging a target containing silver as a main component (target size: 70 mm x 200 mm) as a sputtering target and performing sputtering in an argon atmosphere (50 sccm). Sputtering power was 100W.
  • the plate glass with the low radioactivity film (size: 200 mm x 300 mm) was washed with pure water and then air-dried.
  • a sol-gel silica solution (solid content concentration 2.4 wt%) for forming a protective film containing zirconia particles was applied to the surface of the low-emissivity film of the glass with the low-emissivity film using a roll coating method to form a coating film.
  • a plate glass with a coating film was prepared.
  • the coated plate glass of Example 8 was obtained by putting the coated plate glass into a hot air oven whose temperature inside the furnace was adjusted to 130 ° C., heating it for 10 minutes to harden the coating film, and then cooling it at room temperature. . Note that the thickness of each layer is as shown in Table 4.
  • ⁇ Reflectance measurement> The reflection spectra of each of the coated glass plates of Examples 7 and 8 were measured using a spectrophotometer CM-600d manufactured by Konica Minolta. In the reflectance measurement, the reflectance from the side of the low emissivity film at wavelengths of 380 nm to 780 nm was measured to determine the average reflectance. The results are shown in Table 5.
  • the coatings of Examples 7 and 8 include a low reflection film and a protective film, the thickness of the protective film varies within a specific range, and the in-plane color difference ⁇ E is 3.5 or less.
  • the sheet glass was shown to have reduced streaky patterns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

低放射性膜とこれを保護する保護膜とを備える板ガラスの表面に模様が現れにくくする。 被覆板ガラス(Cg)は、被覆面(Cs)を有する板ガラス(Gs)と、被覆面(Cs)上に設けられた低放射性膜(Le)であって金属層及び誘電体層を有するものと、低放射性膜(Le)上に設けられた保護膜(Pr)であってケイ素酸化物を含有するものとを備える。保護膜(Pr)の各地点における厚みはバラツキを有する。各地点における厚みの有する、各地点における厚みの最小許容寸法(Ls)に対する偏差は各地点における厚みの公差(Tr)の範囲内にあり、公差Trは最小許容寸法(Ls)の10%以下の値で設定されている。保護膜(Pr)上で被覆板ガラス(Cg)を観察した時、保護膜Prの厚みが最大許容寸法となる地点と最小許容寸法Lsとなる地点との2点間の色差ΔEが3.5以下である。

Description

被覆板ガラス、及び被覆板ガラスを作製する方法
 本発明は金属層を含む低放射性膜とこれを保護する保護膜とを備える被覆板ガラスに関する。
 特許文献1は、交互に堆積したスズ酸亜鉛(ZTO)と銀とで構成された機能性コーティングを備える板ガラスを開示している(特許文献1の段落[0070])。酸化アルミニウムや酸化ケイ素を含有する保護性コーティングが機能性コーティング上に堆積されている(特許文献1の段落[0014])。
 特許文献2は、亜鉛やスズの酸化物の層の間に銀の層が配置されている機能性被覆を備える板ガラスを開示している。さらにシリカ及び酸化亜鉛からなるトップコートが機能性被覆を覆っている(特許文献2の例1及び例2)。
 特許文献3は、酸化スズからなる下地層とシリカ(SiO)を含む薄膜とを備えるガラス板を開示している。薄膜の表面に、ΔEが2以下である2点が存在する。ΔEはL表色系におけるL値の差ΔL、a値の差Δa及びb値の差Δbに基づいて求められる(特許文献3の請求項10)。ΔEを適切に調節することによって、シリカを主成分とする薄膜を含む薄膜付き基材の美感が向上する(特許文献3の段落[0007])。ガラス板は、薄膜側の表面とは反対側の表面上に、誘電体層と、銀の層と、別の誘電体層とがこの順に積層された膜を有していてもよい(特許文献3の段落[0039])。
 特許文献4の実施例(段落[0072])ではガラス上にペルヒドロポリシラザンの層をコーティングするとともにこの層を加熱することでシリカに基づく層を形成することを開示している。特許文献5の実施例ではテトラエトキシシランを含有する組成物の塗膜を熱線反射膜の表面に形成する。この塗膜を加熱して硬化させることでシリカ膜付きガラス基板を作製する。
特表2004-522673号公報 特表2007-534603号公報 国際公開第2019/189109号 特表2018-512369号公報 国際公開第2022/014650号
 板ガラスに金属層を含む低放射性膜を付与することで、赤外線に対する低放射性(Low-E)を得られる。低放射性膜は板ガラスから剥がれやすいため、シリカに基づく保護膜で低放射性膜を保護する。ここで低放射性膜上に保護膜を積層すると板ガラスの表面に模様、例えばスジ状の模様が現れやすいことを発明者は発見した。本発明は低放射性膜とこれを保護する保護膜とを備える板ガラスの表面に模様が現れにくくする手段を提供することを目的とする。
<1> 被覆面を有する板ガラスと、前記被覆面上に設けられた低放射性膜であって金属層及び誘電体層を有するものと、前記低放射性膜上に設けられた保護膜であってシリカに基づくものとを備える、被覆板ガラスであって、
 前記保護膜の各地点における厚みはバラツキを有し、前記各地点における厚みの有する、前記各地点における厚みの最小許容寸法に対する偏差は前記各地点における厚みの公差の範囲内にあり、前記公差は前記最小許容寸法の10%以下の値で設定されており、
 前記保護膜上で前記被覆板ガラスを観察した時、前記保護膜の厚みが最大許容寸法となる地点と最小許容寸法となる地点との2点間の色差ΔEが3.5以下であり、
 前記色差ΔEは、下記式より求められる、
Figure JPOXMLDOC01-appb-M000004
 ΔLはL表色系における各地点のL値の差である、
 ΔaはL表色系における各地点のa値の差である、
 ΔbはL表色系における各地点のb値の差である、
 被覆板ガラス。
<2> 前記低放射性膜は複数の誘電体層を有し、
 前記複数の誘電体層は、前記板ガラスの前記被覆面と前記金属層との間に位置する第1誘電体層と、前記金属層と前記保護膜との間に位置する第2誘電体層とからなる、
 <1>に記載の被覆板ガラス。
<3> 前記低放射性膜はさらに複数のバッファー層を備え、
 前記複数のバッファー層は、第1誘電体層と前記金属層との間に位置する第1バッファー層と、前記金属層と前記第2誘電体層との間に位置する第2バッファー層とを含み、
 前記第1バッファー層は、前記第1誘電体層の屈折率及び前記金属層の屈折率よりも高い屈折率を有する組成物からなるとともに、前記第1誘電体層よりも薄く、
 前記第2バッファー層の屈折率は、前記金属層の屈折率及び前記第2誘電体層の屈折率よりも高い屈折率を有する組成物からなるとともに、前記第2誘電体層よりも薄い、
 <2>に記載の被覆板ガラス。
<4> 前記低放射性膜は前記金属層、以下第1金属層という、に加えて第2誘電体層と前記保護膜との間に位置する第2金属層を備え、
 前記複数の誘電体層は、さらに前記第2金属層と前記保護膜との間に位置する第3誘電体層とを含み、
 隣り合う誘電体層と金属層とは、バッファー層で連結されており、
 各バッファー層は、これで連結される誘電体層及び金属層のそれぞれの屈折率よりも高い屈折率を有する組成物からなるとともに、各誘電体層よりも薄い、
 <2>に記載の被覆板ガラス。
<5> 前記被覆面上において実際に測定される前記保護膜の厚みの最小値は25nm以上、200nm以下である、
 <1>に記載の被覆板ガラス。
<6> 前記被覆面上において実際に測定される前記保護膜の厚みの最小値は75nm以下である、
 <5>に記載の被覆板ガラス。
<7> 前記被覆面上において前記保護膜の厚みの最小値は50nm以上である、
 <5>に記載の被覆板ガラス。
<8> 前記低放射性膜は、前記保護膜から前記板ガラスに向かって、以下の9層を有する、
・第3誘電体層 10~70nm
・バッファー層 1~20nm
・第2金属層  1~30nm
・バッファー層 1~20nm
・第2誘電体層 10~120nm
・バッファー層 1~20nm
・第1金属層  1~30nm
・バッファー層 1~20nm
・第1誘電体層 10~70nm
 <5>に記載の被覆板ガラス。
<9> 前記低放射性膜は、前記保護膜から前記板ガラスに向かって、以下の9層を有する、
・第3誘電体層 10~45nm
・バッファー層 1~9nm
・第2金属層  5~20nm
・バッファー層 1~9nm
・第2誘電体層 51~99nm
・バッファー層 1~9nm
・第1金属層  8~20nm
・バッファー層 1~9nm
・第1誘電体層 16~48nm
 <5>に記載の被覆板ガラス。
<10> 前記低放射性膜は、前記保護膜から前記板ガラスに向かって、以下の9層を有する、
・第3誘電体層 10~45nm
・バッファー層 1~9nm
・第2金属層  12~20nm
・バッファー層 1~9nm
・第2誘電体層 51~99nm
・バッファー層 5~9nm
・第1金属層  8~12nm
・バッファー層 1~9nm
・第1誘電体層 16~48nm
 <5>に記載の被覆板ガラス。
<11> 前記低放射性膜は、前記保護膜から前記板ガラスに向かって、以下の9層を有する、
・第3誘電体層 10~45nm
・バッファー層 1~9nm
・第2金属層  5~18nm
・バッファー層 1~9nm
・第2誘電体層 51~99nm
・バッファー層 1~9nm
・第1金属層  12~20nm
・バッファー層 1~9nm
・第1誘電体層 16~48nm
 <5>に記載の被覆板ガラス。
<12> 前記保護膜の側から前記板ガラスを観察した時、前記被覆面上のa値は-15以上、0以下であるとともに、b値は-20以上、0以下である、
 <5>に記載の被覆板ガラス。
<13> 前記保護膜の側から前記板ガラスを観察した時、前記被覆面上のa値は-10以上、0以下であるとともに、b値は-20以上、0以下である、
 <5>に記載の被覆板ガラス。
<14> 単板ガラスである、
 <1>に記載の被覆板ガラス。
<15> 前記低放射性膜の側から前記板ガラスの波長380nm~780nmの反射率を測定した時、前記反射率が15%以下である、
 <14>に記載の被覆板ガラス。
<16> 前記低放射性膜の側から前記板ガラスの波長380nm~780nmの反射率を測定した時、前記反射率が5%以下である、
 <14>に記載の被覆板ガラス。
<17> 被覆面を有する板ガラスと、前記被覆面上に設けられた低放射性膜であって金属層及び誘電体層を有するものと、前記低放射性膜上に設けられた保護膜であってシリカに基づくものとを備える、被覆板ガラスであって、
 前記保護膜の各地点における厚みを測定した時、前記保護膜の最大の厚みと前記保護膜の最小の厚みとの差は前記最小の厚みの10%以下の値であり、
 前記保護膜上で前記被覆板ガラスを観察した時、前記最大の厚みとなる地点と前記最小の厚みとなる地点との2点間の色差ΔEが3.5以下であり、
 前記色差ΔEは、下記式より求められる、
Figure JPOXMLDOC01-appb-M000005
 ΔLはL表色系における各地点のL値の差である、
 ΔaはL表色系における各地点のa値の差である、
 ΔbはL表色系における各地点のb値の差である、
 被覆板ガラス。
<18> <1>~<17>のいずれかに記載の被覆板ガラスを作製する方法であって、 前記保護膜はシリカ膜であり、前記低放射性膜上にアルコキシシランのゾルをロールコート、ダイコート及びスプレーコートのいずれかにて積層するとともに、前記低放射性膜上で前記ゾルをゲル化する、
 又は
 前記保護膜はシリカ膜であり、前記低放射性膜上にシラザンをロールコート、ダイコート及びスプレーコートのいずれかにて積層するとともに、前記低放射性膜上で前記シラザンをシリカに変換する、
 方法。
<19> <1>~<17>のいずれかに記載の被覆板ガラスの前記保護膜の厚み、前記低放射性膜の有する各層の厚み及び前記板ガラスの厚みの組み合わせを、シミュレーションで得られた複数のパターンから選ぶことで設計する方法であって、
 前記保護膜の厚みの前記最小許容寸法、前記低放射性膜の有する各層の厚み及び前記板ガラスの厚みの組み合わせの各パターンにおいて前記被覆面上の分光立体角反射率R(λ)を求め、さらに各パターンにおいて前記保護膜の厚みを前記最大許容寸法に入れ替えて前記分光立体角反射率R(λ)を求め、
 前記保護膜の厚みの最小許容寸法及び最大許容寸法に係る分光立体角反射率R(λ)に基づき、各パターンにおいてL表色系におけるL値、a値及びb値の組を取得し、
 下記式に従い、各パターンにおいて下記式で表される色差ΔEを求める、
Figure JPOXMLDOC01-appb-M000006
 ΔLは、前記保護膜の厚みの前記最小許容寸法に対応するL値と前記最大許容寸法に対応するL値との差である、
 Δaは、前記保護膜の厚みの前記最小許容寸法に対応するa値と前記最大許容寸法に対応するa値との差である、
 Δbは、前記保護膜の厚みの前記最小許容寸法に対応するb値と前記最大許容寸法に対応するb値との差である、
 方法。
 本発明により、金属層を含む低放射性膜とこれを保護する保護膜とを備える板ガラスの表面に模様が現れにくくする手段を提供できる。
被覆板ガラスの断面図 積層体の断面図 保護膜の断面図 分光立体角反射率R(λ)のグラフ 標準の光の分光分布S(λ)のグラフ 等色関数x ̄(λ)、y ̄(λ)及びz ̄(λ)のグラフ 白色光の入射面の図 低放射性膜の分解図 値及びb値の座標系へのプロット ロールコートされた保護膜の写真 保護膜の厚みの偏差に対する色差ΔEの変化を示すグラフ 9層で構成された低放射性膜を含むパターンのプロット 色差ΔE<1である13パターンのプロット 色差ΔE<2である482パターンのプロット 色差ΔE<3.5である1,949パターンのプロット 色味指定を満たす24パターンのプロット 色味指定を満たす206パターンのプロット 色味指定と色差ΔEによる1,713パターンの分類 3層で構成された低放射性膜を含むパターンのプロット 色差ΔE<1である390パターンのプロット 色差ΔE<2である1,136パターンのプロット 色差ΔE<3である1,753パターンのプロット 5層で構成された低放射性膜を含むパターンのプロット 色差ΔE<1である13パターンのプロット 色差ΔE<2である519パターンのプロット 色差ΔE<3である1,556パターンのプロット 7層で構成された低放射性膜を含むパターンのプロット 色差ΔE<1である95パターンのプロット 色差ΔE<2である408パターンのプロット 色差ΔE<3である1,088パターンのプロット 7層で構成された低放射性膜を含むパターンのプロット 色差ΔE<3.5である1,588パターンのプロット 色味指定を満たす171パターンのプロット
<被覆板ガラスの表面の色>
 図1は被覆板ガラスCgの断面を示す。被覆板ガラスCgは板ガラスGsを備える。板ガラスGsは被覆面Csを有する。一態様において板ガラスGsは単板ガラス又は合わせガラスである。被覆板ガラスCgは低放射性膜Leを備える。板ガラスGs上に低放射性膜Leが積層されてなるものを積層体Lgとする。被覆板ガラスCgは積層体Lgに加えて保護膜Prを備える。
 板ガラスGsは、被覆板ガラスCgの用途等に応じて適宜選択すればよい。板ガラスGsの材質としては、熱線吸収ガラス、クリアガラス、ソーダ石灰(ソーダライム)ガラス、石英ガラス、ホウケイ酸ガラス、無アルカリグラス、グリーンガラス、UVグリーンガラス、リチウムアルミニウムシリケートガラスなどが挙げられる。板ガラスGsの厚みは、一例として0.2~6.0mmであり、平板であってもよく、湾曲していてもよい。板ガラスGsの波長590nmの光の複素屈折率は、一例として、屈折率(実部)が1.40~2.00であり、消衰係数(虚部)が2.5×10-7~10.0×10-7である。
 一態様において保護膜Prの側から被覆板ガラスCgにおける波長380nm~780nmの反射率を測定した時、反射率は0%~15%、好ましくは0%~10%、より好ましくは0%~5%である。その一態様において反射率は5、2、又は1%である。かかる反射率を有する被覆板ガラスCgは建物の窓ガラス、自動車のルーフ、ウィンドシールド又はウィンドウとして好適に使用できる。ルーフはサンルーフ又はムーンルーフとも呼ばれる。ウィンドシールドはサンルーフと連続的につながったものでもよい。
 図1に示す保護膜Prは低放射性膜Le上に設けられている。被覆板ガラスCgが保護膜Prを有しない場合、積層体Lgから低放射性膜Leが剥がれ落ちやすい。保護膜Prは低放射性膜Leを保護することで、これを防ぐ。保護膜Prはシリカに基づく塗膜、特にシリカ膜である。
 図1に示す一態様において低放射性膜Le上にアルコキシシランのゾルをロールコート、ダイコート及びスプレーコートのいずれかにて積層する。ゾルの層を加熱することでゲルの膜すなわちシリカ膜を得る。このシリカ膜を保護膜Prとする。
 図1に示す他の態様において低放射性膜Le上にシラザンを例えばペルヒドロポリシラザンをロールコート、ダイコート及びスプレーコートのいずれかにて積層する。シラザンの層を加熱することでシリカ膜に変換する。このシリカ膜を保護膜Prとする。
 図1に示す保護膜Prはケイ素酸化物以外の成分を含んでいてもよい。このような成分としてセラミック粒子、硬化剤及び残留溶媒が挙げられる。セラミック粒子及び硬化剤は保護膜Prを硬くするのに役立つ。セラミック粒子の例はジルコニア粒子である。他の態様においてシリカ粒子をシリカ膜中に分散させることでシリカに基づく膜を得てもよい。保護膜Prの組成の一態様において、最も含有重量の大きい成分はケイ素酸化物、特に二酸化ケイ素の酸化物である。
 保護膜Prの厚みは、一例として25~200nmである。保護膜Prの波長590nmの光の複素屈折率は、一例として、屈折率が1.40~1.80であり、消衰係数が0.0~4.4×10-2である。
 図2は積層体Lgの断面を示す。積層体Lgは、板ガラスGs側から始まり保護膜Pr側で終わる順に、層L(1)から層L(N)までの合計N個の層が積み重なったものである。層L(1)は板ガラスGsである。低放射性膜Leは層L(2)・・・層L(N-1)及び層L(N)からなる。層L(1)、層L(2)・・・層L(N-1)及び層L(N)のことを第1層、第2層・・・第N-1及び第N層という場合がある。
 図2に示す一態様において層L(2)及び層L(N)の間に位置する層のいずれかは金属層である。一態様において金属層は非酸化金属からなる層である。一態様において金属層は導体金属の層である。
 導体金属の材質は、一例として、Ag、Cu、Au、及びAlより選択される金属単体又はこれらの合金、前記金属単体又は前記合金に、Mn、Fe、Co、Niなどの遷移金属をドープしたものなどが挙げられ、好ましくは、Ag及びCuより選択される金属またはこれらの合金、前記金属単体又は前記合金に、Mn、Fe、Co、Niなどの遷移金属をドープしたものである。
 金属層の厚みは、一例として、1~30nmであり、好ましくは5~20nmである。金属層の波長590nmの光の複素屈折率は、一例として、屈折率が0.10~1.20であり、消衰係数が2.00~8.00である。
 低放射性膜Leは金属層以外に誘電体層を含む。一態様において層L(2)及び層L(N)は誘電体層である。
 誘電体の材質は、一例として、Si、Sn、Zn、Al、Ti、Zr、Nb、Ta、Ni及びCrより選択される1種以上の金属の酸化物、窒化物、酸窒化物、並びにこれらの金属単体に他の金属がドープしたものが挙げられ、好ましくは、Si、Sn、Zn、Ti、Zr及びNiより選択される1種以上の金属の酸化物、窒化物、酸窒化物である。電体層は例えば窒化ケイ素(SiN)からなる。
 誘電体層の厚みは、一例として、10~120nmであり、好ましくは15~100nmである。誘電体層の波長590nmの光の複素屈折率は、一例として、屈折率が1.8~2.2であり、消衰係数が0.00~0.01である。誘電体層は金属層よりも屈折率が大きいことが好ましい。
 図2に示す層L(1)、層L(2)・・・層L(N-1)及び層L(N)はそれぞれ、厚みD、厚みD・・・厚みDN-1及び厚みDを有する。板ガラスGsは厚みDを有する。低放射性膜Leは厚みD・・・厚みDN-1及び厚みDを合計した厚みを有する。一態様において板ガラスGsの厚みDは低放射性膜Leの厚みよりも大きい。保護膜Prは厚みDを有する。一態様において板ガラスGsの厚みDは保護膜Prの厚みDよりも大きい。これらの厚みの値の用い方は後述する。
 図2に示す白色光Wtは保護膜Pr側から積層体Lgに射し込む。白色光Wtは積層体Lg内の各層を透過しつつ、各層で反射し、再び各層を透過して、保護膜Pr側から出射する。
 図3は保護膜Prの断面を示す。保護膜Prの表面は凹凸を有する。保護膜Pr上の各地点の厚みはバラツキを有する。図の表すバラツキは強調されている。保護膜Pr上から観察者Obが被覆板ガラスCgを観察した時、保護膜Prの厚みが最大すなわち最大許容寸法となる地点Mxが設計上存在する。被覆面Cs上のバラツキのある厚みの設計上の最大値を最大許容寸法とする。また保護膜Prの厚みが最小すなわち最小許容寸法となる地点Mnが設計上存在する。被覆面Cs上のバラツキのある厚みの設計上の最小値を最小許容寸法Lsとする。
 図3に示すように保護膜Prの厚みの最小許容寸法Lsを基準値とする。保護膜Pr上の各地点の厚みは当該基準値に対して偏差を有する。その偏差は保護膜Prの厚みの公差Trの範囲に収まる。公差Trは保護膜Prの厚みの最大許容寸法と最小許容寸法Lsとの差である。保護膜Prの各地点の厚みの有する偏差は正の値である。
 図2や他の図に示す保護膜Prの各地点の厚みDは、図3に示す最小許容寸法Lsより大きく、最大許容寸法よりも小さい範囲に収まる。保護膜Prの各地点の厚みDは例えば、SEM(走査電子顕微鏡)及びEDX(エネルギー分散型X線分光法)の組み合わせにより保護膜Prの断面を探査することで同定できる。またエリプソメーターで計測できる。
 図3に示す一態様において公差Trは、保護膜Prの厚みの最小許容寸法Lsの0%~10%の値を有する。一態様において公差Trは、最小許容寸法Lsの5%、2%、1%である。ただし公差Trは0より大きい。公差Trは保護膜Pr上の各地点の厚みの最小許容寸法Lsの5%、2%及び1%のいずれかの値でもよい。一態様において保護膜Prの厚みの最小許容寸法Lsは低放射性膜Le全体の厚みよりも小さい。一態様において保護膜Prの厚みの最小許容寸法Lsは板ガラスの厚みよりも小さい。
 図3に示すように観察者Obは被覆板ガラスCgでの反射された白色光Wtを受ける。公差Trの範囲内での保護膜Prの厚みの変化によって光の干渉が起きる。光の干渉により被覆板ガラスCgが僅かに色づく。色味の変化の大きさは色差ΔEで測ることができる。観察者Obによって観察される色差ΔEは、下記式(I)より求められる。
Figure JPOXMLDOC01-appb-M000007
・・・(I)
 ΔLはL表色系における保護膜Pr上の地点Mxと地点MnとのL値の差である。
 ΔaはL表色系における保護膜Pr上の地点Mxと地点Mnとのa値の差である。
 ΔbはL表色系における保護膜Pr上の地点Mxと地点Mnとのb値の差である。
 図3に示す保護膜Pr上で観察される僅かな色味の変化を、所定の範囲内のものとする。本実施形態において地点Mxの色味と地点Mnの色味との間における色差ΔEは3.5以下である。ただし色差ΔEは0より大きい。以下、特に言及しない限り色差ΔEは地点Mxの色味と地点Mnの色味との間における色差を示す。好ましくは、色差ΔEは3以下、2.5以下、2以下、1.5以下、1以下及び0.5以下のいずれかである。
<保護膜の厚みの公差に基づく色差ΔEの導出>
 図3に示す地点Mxと地点Mnとにおける保護膜Prの厚みの違いから色差ΔEを求めるため、以下の通りの計算を行う。なお地点Mxと地点Mnとが最も大きな色差ΔEを生み出すとは限らない。例えば保護膜Prの厚みが中間的な値をとる場合に、他の地点に比べて大きく異なる色味をもたらす可能性がある。この条件については後述することとし、先に地点Mxの色味と地点Mnの色味との間の色差ΔEの求め方を説明する。
 まず図3に示す保護膜Prの厚み、保護膜の複素屈折率m(λ)、積層体Lgの表面の複素振幅反射率rLowE(λ)より被覆板ガラスCgの複素振幅反射率r(λ)が求まる。複素振幅反射率r(λ)は被覆板ガラスCg内で反射する白色光Wt中の光の波長λの関数である。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
air:空気の屈折率
(λ):図3に示す保護膜Prの複素屈折率
 m(λ)=n(λ)+ik(λ)
 n(λ):波長λの光に対する保護膜Prの屈折率の関数。ただし屈折率は物性値であり、また波長λに依らず一定と仮定してもよい。
 k(λ):波長λの光に対する保護膜Prの消衰係数の関数。ただし消衰係数は物性値であり、また波長λに依らず一定と仮定してもよい。
 i:虚数単位
θ:低放射性膜Leと保護膜Prとの界面における光の入射角
θ(λ):低放射性膜Leと保護膜Prとの界面における波長λの光の屈折角の関数
LowE(λ):積層体Lgの表面の複素振幅反射率の関数
λ:白色光Wt中の光の波長
D:保護膜Prの厚み
 ここで計算の簡略化のため、空気の屈折率を光の波長λに依らずnair=1と近似する。さらに計算の簡略化のため、光の入射角θ及び屈折角θ(λ)を0とする。この時、複素振幅反射率r(λ)は以下の式によってrLowE(λ)と保護膜Prの厚みDとから求まる。
Figure JPOXMLDOC01-appb-M000010
 図3に示す保護膜Prがシリカ(SiO)に基づく場合、保護膜Prの屈折率n(λ)は波長に依らずその値が1.457で一定であると仮定してもよい。また保護膜Prの消衰係数k(λ)は波長に依らずその値が0.00で一定であると仮定してもよい。
 図3に示す複素振幅反射率r(λ)より、下記式によって、分光立体角反射率R(λ)が求まる。分光立体角反射率R(λ)は被覆板ガラスCg内で反射する白色光Wt中の光の波長λの関数である。
Figure JPOXMLDOC01-appb-M000011
 図4は波長λが380nmから780nmまで変化する時の分光立体角反射率R(λ)の値を示す曲線の例である。
 次に分光立体角反射率R(λ)と、色の表示に用いる標準の光の分光分布S(λ)とから、下記式より反射による物体色の三刺激値X、Y及びZの組が求まる。下記式では可視光の波長380nm~780nmを用いている。波長の上限は780nmではなく、730nm~780nmの範囲のいずれかの値でもよい。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
S(λ):色の表示に用いる標準の光の分光分布
x ̄(λ):等色関数
y ̄(λ):等色関数
z ̄(λ):等色関数
 図5は波長λが380nmから730nmまで変化する時の標準の光の分光分布S(λ)の値を示す曲線の例である。標準の光の分光分布S(λ)は、CIE(国際照明委員会)標準光源D65の分光分布でもよい。ISO 10526:1999/CIE S005/E-1998を引用すると、「[D65]は平均的な昼光を表現することを目的としており、その相関色温度はおよそ6500Kである。CIE標準光源D65は、光源について特段の指定がない限り、すべての昼光下におけるカラリメトリー計算に用いることができる。特に紫外線領域において、季節や時間、地理学的位置によって、昼光の相対分光分布が変動することが知られている。」と説明されている。かかる分光分布S(λ)はJIS Z8720にも説明されている。
 図6は波長λが380nmから730nmまで変化する時の等色関数x ̄(λ)、y ̄(λ)及びz ̄(λ)の値を示す曲線の例である。
 三刺激値X、Y及びZは下記の近似式によって求めてもよい。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 例えば波長の間隔dλ=10nmであれば以下のような標準の光の分光分布S(λ)及び等色関数x ̄(λ)、y ̄(λ)及びz ̄(λ)を用いてもよい。
Figure JPOXMLDOC01-appb-T000018
 三刺激値X、Y及びZの組は、図3に示す保護膜Prの厚みDの最小値(=Ls)及び最大値(=Ls+Tr)のそれぞれにて求める。物体色の三刺激値X,Y及びZの組から、下記式によって、保護膜の厚みDの最小値及び最大値に対応するL表色系におけるL値、a値及びb値の組を求める。下記式はCIE(国際照明委員会)標準光源D65の分光分布に沿ってL値、a値及びb値を求める式である。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 上記計算を経て、図2に示す保護膜Prの厚みDが最小値をとる時のL値、a値及びb値、すなわち図3に示す地点MnにおけるL値、a値及びb値が定まる。また保護膜Prの厚みDが最大値をとる時のL値、a値及びb値、すなわち図3に示す地点MxにおけるL値、a値及びb値が定まる。
 図3に示す地点Mxと地点MnとにおけるL値、a値及びb値のそれぞれの差より、上記式(I)によって、色差ΔEが求まる。
<低放射性膜の構成に基づく複素振幅反射率rLowE(λ)の導出>
 図7は被覆板ガラスCgに射し込む白色光Wtの入射面を示す。本実施形態では積層体Lg中の板ガラス及び各層の厚みD~Dと、複素屈折率m(λ)~m(λ)との組み合わせより積層体Lgの表面の複素振幅反射率rLowE(λ)を求める。計算の簡略化のため、光の入射角及び屈折角を0とする。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023


Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
:図2に示す第N層L(N)の厚み(nm)
N-1:第N-1層L(N)の厚み(nm)



:第2層L(2)の厚み(nm)
:図2に示す板ガラスGsの厚み(nm)
(λ):図2に示す第N層L(N)の上面における複素振幅反射率
N-1(λ):第N-1層L(N-1)の上面における複素振幅反射率



(λ):第2層L(2)の上面における複素振幅反射率
(λ):板ガラスの上面における複素振幅反射率、ただし板ガラスがほぼ透明な物質と考えられる場合、r(λ)は実数となる。
(λ):図2に示す第N層L(N)の複素屈折率
N-1(λ):第N-1層L(N-1)の複素屈折率



(λ):第2層L(2)の複素屈折率
 m(λ)=n(λ)+ik(λ)
  n(λ):波長λの光に対する第N層の屈折率の関数
  nN-1(λ):波長λの光に対する第N-1層の屈折率の関数
  ・
  ・
  ・
  n(λ):波長λの光に対する第2層の屈折率の関数
  k(λ):波長λの光に対する第N層の消衰係数
  kN-1(λ):波長λの光に対する第N-1層の消衰係数の関数
  ・
  ・
  ・
  k(λ):波長λの光に対する第2層の消衰係数の関数
 各層の屈折率及び消衰係数は各層を構成する導体金属又は誘電体によって定まる物性値である。
(λ):図2に示す板ガラスGsの複素屈折率
 m(λ)=n(λ)+ik(λ)
  n(λ):波長λの光に対する板ガラスGsの屈折率、
  k(λ):波長λの光に対する板ガラスGsの消衰係数
 板ガラスGsの屈折率及び消衰係数は物性値であり、また波長λに依らず一定と仮定してもよい。
 図2に示す板ガラスGsがソーダガラスからなる場合、板ガラスGsの複素振幅反射率の値は0.209+2.05×10-7i、iは虚数単位、と仮定してもよい。
 図2に示す低放射性膜Leを構成するある層が金属例えば銀(Ag)からなる場合、その層の屈折率は波長に依らずその値が0.135と仮定してもよい。またその層の消衰係数は波長に依らずその値が3.985と仮定してもよい。
 図2に示す低放射性膜Leを構成するある層が誘電体例えば窒化ケイ素からなる場合、その層の屈折率は波長に依らずその値が2.023であると仮定してもよい。またその層の消衰係数は波長に依らずその値が0.00であると仮定してもよい。
 さらに図3に示す被覆面Cs上における色差ΔEを求める。その値は上記<保護膜の厚みの公差と色差ΔE>で述べた通り、複素振幅反射率rLowE(λ)と保護膜の厚みDの最小許容寸法Lsと最小許容寸法Ls及び公差Trとの和、すなわち最大許容寸法に基づく。
<シミュレーション>
 上記<低放射性膜の構成からの複素振幅反射率rLowE(λ)の導出>及び<保護膜の厚みの公差と色差ΔE>で示した計算を用いてシミュレーションを行う。
 まず以下の関数を事前に決定する。関数は波長に依らない一定の値を示すものでもよい。
・図2に示す板ガラスGsの屈折率n(λ)
・板ガラスGsの消衰係数k(λ)
 ・屈折率及び消衰係数は板ガラスGsの組成により定まる。
・板ガラスGsの厚みD(nm)
・板ガラスGsの上面における複素振幅反射率r(λ)
・低放射性膜Leと板ガラスからなる積層体の層数N
・第2層L(2)の屈折率n(λ)から第N層L(N)の屈折率n(λ)まで
・第2層L(2)の消衰係数k(λ)から第N層L(N)の消衰係数k(λ)まで
 ・屈折率及び消衰係数は各層の組成により定まる。
・保護膜Prの屈折率n(λ)
・保護膜Prの消衰係数k(λ)
 ・屈折率及び消衰係数は保護膜Prの組成により定まる。
 次に以下の条件を定める。
・図2に示す低放射性膜Leの各層及び保護膜Prの界面における光の入射角、例えば入射角=0
・空気の屈折率nair、例えばnair=0
・標準の光の分光分布S(λ)、例えばCIE(国際照明委員会)標準光源D65の分光分布
・等色関数x ̄(λ)、y ̄(λ)及びz ̄(λ)、例えばCIE(国際照明委員会)等色関数
・三刺激値X、Y及びZを近似式によって求めること又は近似式に依らず求めること
・波長の下限と上限、例えば下限380nm、上限730nm
・波長の間隔dλ、例えば10nm
 次に以下の変数に代入される数値の変化を、変数ごとに設定される数値範囲内において決定する。数値の変化はコンピューター上で取得する乱数によるものでもよい。乱数は疑似乱数列によるものでもよく、真の乱数列によるものでもよい。またこれらの数値の組み合わせの変化を決定する。
・図2に示す板ガラスGsの厚みD(nm)。ただしDは一定としてもよい。
・低放射性膜Leの第2層L(2)の厚みD(nm)から第N層L(N)の厚みD(nm)まで。
・図3に示す保護膜Prの厚みの最小許容寸法Ls、最小許容寸法Lsは一定としてもよい。
・保護膜Prの最小許容寸法Lsと公差Trとの和、すなわち保護膜Prの厚みの最大許容寸法、最大許容寸法は一定としてもよい。
 上記数値の組み合わせ[D,D・・・D,Ls及び(Ls+Tr)]の変化を、上記<低放射性膜の構成からの複素振幅反射率rLowE(λ)の導出>及び<保護膜の厚みの公差と色差ΔE>で示した計算式の各変数に代入することでシミュレーションを行う。
 シミュレーションの結果から図2に示す板ガラスGsの厚みD並びに低放射性膜Leの各層の厚みD~Dと、図3に示す保護膜Prの最小許容寸法Ls及び公差Trとの組み合わせを選択する。すなわちΔEが所定の範囲、例えば0<ΔE<3.5、を満たす変数の組み合わせ[D,D・・・D,Ls及び(Ls+Tr)]を選択する。選択された数値の組み合わせに基づき被覆板ガラスCgを作製する。シミュレーションに際しては、図2に示す板ガラスGsの厚み並びに図3に示す保護膜Prの最小許容寸法Ls及び公差Trの少なくともいずれかの変数はそれぞれ事前に一つの値に定めていてもよい。
<低放射性膜の構成>
 図8は分解した低放射性膜Leの断面を示す。本図に示す低放射性膜Leは例示である。上述したシミュレーションに示すように低放射性膜Leの有する層の数、それらの層の組成は必要に応じて決めることができる。
 図8に示す複数の誘電体層Deを有する。誘電体層Deは誘電体からなる層L(2)、L(6)及びL(10)を含む。図に例示される低放射性膜Leは一つ又は複数の金属層Mtを有する。金属層Mtは導体金属、例えば銀(Ag)からなる層L(4)を含む。金属層Mtは層L(4)に加えて導体金属、例えば銀(Ag)からなる層L(8)を含む。
 誘電体及び導体金属の材質、複素屈折率は、前述のとおりである。金属層の厚みは、一例として、1~30nmであり、好ましくは5~20nmである。誘電体層の厚みは、例えば、層L(2)及びL(10)において10~70nm、好ましくは10~50nmであり、層L(6)において10~120nm、好ましくは15~100nmである。
 図8に示す層L(2)は板ガラスGsすなわち層L(1)の表面と金属層Mtの一つである層L(4)との間に位置する。本実施形態において層L(2)を第1誘電体層ともいう。層L(6)は層L(4)と保護膜Prの表面との間に位置する。本実施形態において層L(6)を第2誘電体層ともいう。誘電体層Deは第1誘電体層と第2誘電体層とを有する。
 図8に示す低放射性膜Leは複数のバッファー層を備える。バッファー層は層L(3)、L(5)、L(7)及びL(9)を含む。層L(3)は第1誘電体層である層L(2)と金属層Mtの一つである層L(4)との間に位置する。層L(3)を第1バッファー層ともいう。層L(5)は層L(4)と第2誘電体層である層L(6)との間に位置する。層L(5)を第2バッファー層ともいう。
 バッファー層を構成する組成物の材質は、一例として、Ni、Cr、Cu、Al、Pd、W、Mo、Ti、Nb及びTaより選択される金属単体又はこれらの合金、前記金属単体又は合金の窒化物、若しくは、前記金属単体又は合金に他の金属がドープしたものが挙げられ、好ましくは、Ni、Cr、W、Ti、及びNbより選択される金属単体又はこれらの合金、前記金属単体又は合金の窒化物、若しくは、前記金属単体又は合金に他の金属がドープしたものである。
 バッファー層の厚みは、一例として、1~20nm、好ましくは1~10nmである。バッファー層の波長590nmの光の複素屈折率は、一例として、屈折率が0.20~3.80であり、消衰係数が1.80~7.20である。
 図8に示す層L(3)は所定の屈折率を有する上記組成物、例えばニッケルクロム合金(NiCr)からなる。層L(3)の屈折率は、層L(2)の屈折率と層L(4)の屈折率よりも高い。層L(3)は層L(2)よりも薄い。層L(9)は所定の屈折率を有する組成物、例えばニッケルクロム合金(NiCr)からなる。層L(5)の屈折率は、層L(4)の屈折率と層L(6)の屈折率よりも高い。層L(5)は層L(6)よりも薄い。
 図8に示す金属層Mtの一つである層L(8)は層L(6)と保護膜Prとの間に位置する。層L(4)を第1金属層ともいう。層L(8)を第2金属層ともいう。層L(10)は層L(8)と保護膜Prとの間に位置する。層L(10)は第3誘電体層ともいう。
 図8に示すように誘電体層Deの各層と金属層Mtの各層とは隣り合っているとともに、バッファー層として働く層L(3)、L(5)、L(7)及びL(9)で連結されている。各バッファー層は、これで連結される誘電体層De及び金属層Mtよりも高い屈折率を有する組成物、例えばニッケルクロム合金(NiCr)からなる。一態様において各バッファー層は各誘電体層よりも薄い。一態様において各バッファー層は各金属層よりも薄い。
 図8に示す一態様において低放射性膜Leは、保護膜Prから板ガラスGsに向かって以下の9層を有する。
  層L(10)_第3誘電体層__厚み10~70nm
  層L(9)__バッファー層__厚み1~20nm
  層L(8)__第2金属層___厚み1~30nm
  層L(7)__バッファー層__厚み1~20nm
  層L(6)__第2誘電体層__厚み10~120nm
  層L(5)__バッファー層__厚み1~20nm
  層L(4)__第1金属層___厚み1~30nm
  層L(3)__バッファー層__厚み1~20nm
  層L(2)__第1誘電体層__厚み10~70nm
 図8に示す別の一態様において低放射性膜Leは、保護膜Prから板ガラスGsに向かって以下の9層を有する。
  層L(10)_第3誘電体層__厚み10~45nm
  層L(9)__バッファー層__厚み1~9nm
  層L(8)__第2金属層___厚み5~20nm
  層L(7)__バッファー層__厚み1~9nm
  層L(6)__第2誘電体層__厚み51~99nm
  層L(5)__バッファー層__厚み1~9nm
  層L(4)__第1金属層___厚み8~20nm
  層L(3)__バッファー層__厚み1~9nm
  層L(2)__第1誘電体層__厚み16~48nm
 図8に示す別の一態様において低放射性膜Leは、保護膜Prから板ガラスGsに向かって以下の9層を有する。
  層L(10)_第3誘電体層__厚み10~45nm
  層L(9)__バッファー層__厚み1~9nm
  層L(8)__第2金属層___厚み12~20nm
  層L(7)__バッファー層__厚み1~9nm
  層L(6)__第2誘電体層__厚み51~99nm
  層L(5)__バッファー層__厚み5~9nm
  層L(4)__第1金属層___厚み8~12nm
  層L(3)__バッファー層__厚み1~9nm
  層L(2)__第1誘電体層__厚み16~48nm
 図8に示す別の一態様において低放射性膜Leは、保護膜Prから板ガラスGsに向かって以下の9層を有する。
  層L(10)_第3誘電体層__厚み10~45nm
  層L(9)__バッファー層__厚み1~9nm
  層L(8)__第2金属層___厚み5~18nm
  層L(7)__バッファー層__厚み1~9nm
  層L(6)__第2誘電体層__厚み51~99nm
  層L(5)__バッファー層__厚み1~9nm
  層L(4)__第1金属層___厚み12~20nm
  層L(3)__バッファー層__厚み1~9nm
  層L(2)__第1誘電体層__厚み16~48nm
 別の態様において低放射性膜Leは、保護膜Prから板ガラスGsに向かって以下の3層を有する。
  層L(6)__第2誘電体層__厚み10~120nm
  層L(4)__第1金属層___厚み1~30nm
  層L(2)__第1誘電体層__厚み10~70nm
 さらに別の態様において低放射性膜Leは、保護膜Prから板ガラスGsに向かって以下の5層を有する。
  層L(6)__第2誘電体層__厚み10~120nm
  層L(5)__バッファー層__厚み1~20nm
  層L(4)__第1金属層___厚み1~30nm
  層L(3)__バッファー層__厚み1~20nm
  層L(2)__第1誘電体層__厚み10~70nm
 また別の態様において低放射性膜Leは、保護膜Prから板ガラスGsに向かって以下の7層を有する。
  層L(10)_第3誘電体層__厚み10~70nm
  層L(9)__バッファー層__厚み1~20nm
  層L(6)__第2誘電体層__厚み10~120nm
  層L(5)__バッファー層__厚み1~20nm
  層L(4)__第1金属層___厚み1~30nm
  層L(3)__バッファー層__厚み1~20nm
  層L(2)__第1誘電体層__厚み10~70nm
<被覆板ガラスの製造方法>
 被覆板ガラスCgの製造方法について、5層からなる低放射性膜Leを備える場合を例に、説明する。
 板ガラスGsの上に第1誘電体層Deを設置する工程と、
 第1誘電体層の上に第1バッファー層を設置する工程と、
 第1バッファー層の上に金属層Mtを設置する工程と、
 金属層の上に第2バッファー層を設置する工程と、
 第2バッファー層の上に第2誘電体層Deを設置する工程と、
 第2誘電体層の上にシリカに基づく保護膜Prを設置する工程と、
 を有する。
 第1誘電体層、第1バッファー層、金属層、第2バッファー層および第2誘電体層の設置方法は、特に限られず、従来の任意の成膜方法用いて成膜できる。例えばインライン型スパッタリング装置を用いる場合、誘電体層はアルゴンなどの不活性ガスと、窒素などの活性ガスを含む雰囲気下で反応性ACスパッタリングを行い成膜し、バッファー層、金属層はアルゴン雰囲気下でDCスパッタリングを行い成膜する。
 シリカに基づく保護膜Prの設置方法は、特に限られず、従来の任意の成膜方法、例えばロールコートまたはダイコートにて成膜される。塗工は固形分濃度2~5%程度のゾルゲルシリカ液を用い、保護膜Prを設置する工程の後、必要な場合、被覆板ガラスCgを熱処理する工程を実施してもよい。熱処理として、例えば100-700℃で、2分-1時間、被覆板ガラスCgを大気雰囲気に保持することにより行われる。
<色味の選択>
 図9はシミュレーションの結果をa値及びb値の二次元座標系で表したものである。低放射性膜は、保護膜から板ガラスに向かって以下の9層を有する。グラフは代表的なシミュレーションの結果4件、Result-1からResult-4、を含んでいる。Result-1では両向きの矢印に沿ってひし形のプロットが列を成している。この列は、公差の範囲内での保護膜の厚みの変動、すなわち偏差の変動に由来する色味の変動を示す。ひし形のプロットの一つ一つは保護膜の厚みの一つ一つの値に対応する。
 図9においてResult-2及びResult-4ではそれぞれΔEが所定の範囲、例えば0<ΔE<3.5、の中にある。Result-1及びResult-3ではそれぞれΔEが当該範囲の外にある。
 図9においてResult-2及びResult-4からなる集合から好ましい色味を伴う結果をさらに選ぶ。第3象限の原点付近の破線で表された長方形は、a値が-15以上、好ましくは-10以上、0以下であるとともに、b値が-20以上、0以下である範囲、以下、色味指定(hue designation)という、を示す。Result-2は色味指定を満たしている。ただしResult-2の色味の変動の一部が、色味指定を超えている。このため再度シミュレーションを行い、色味の変動の全体が色味指定を満たす結果を得てもよい。
 図9に示すResult-2をもたらした変数の組み合わせに基づき被覆板ガラスを作製する。その被覆面上では色味指定の通りの色味が観察される。図に示した色味指定は、相対的に見て青みを強く反射するものの、可視光の透過率が高いガラスを志向している。a値及びb値の範囲を他の範囲とすることで他の色味指定を得られる。そのような色味指定を用いてもよい。
<用途>
 上述するシミュレーションで得られた結果に基づく各層の厚みの決定手法は、様々な被覆板ガラスの設計及び製造に適用可能である。当該手法は特にロールコート、ダイコート及びスプレーコートのいずれかにて保護膜が形成される被覆板ガラスに有用である。
 図10は板ガラス上にシリカに基づく保護膜をロールコートにて形成した時に、被覆面上の厚みの変化を色の濃淡で表したものである。板ガラスの保護膜は、特にロールコートの立ち上がり付近にて、うねりWvを有することがしばしば見られる。うねりWvは図3に示す保護膜Prの断面において凹凸となって表れる。
 上述のシミュレーションでは、図3に示すように保護膜Prの厚みが偏差を有していたとしても、被覆面上のΔEが所定の範囲内になるような設計を提供できる。当該設計には保護膜Prの最小許容寸法Lsと、図2に示す低放射性膜Leの各層の厚みD、DN-1・・・Dと、板ガラスの厚みDとの特定が含まれる。
<最大の色差についての補足>
 図3に示すように、保護膜Prの厚みが最大となる地点Mxと最小となる地点Mnとの色差ΔEが被覆面上の最大の色差ΔEである。ここで地点Mnの色味と保護膜Prの厚みが中間的な値をとる地点の色味との色差ΔEが、被覆面上の最大の色差ΔEである可能性を考察する。
 図11の上段はモデル化された被覆板ガラスCgの側面を表す。下段に示すグラフは保護膜の厚みの偏差Dvに対する色差ΔEの変化の一例を表す。本実施形態において保護膜Prの厚みの偏差Dvの最大値は、保護膜Prの厚みの最小許容寸法の10%である。すなわち厚みの公差は最小許容寸法の10%である。
 図11に示すように偏差Dvが1ポイント(%)増えるごとに、偏差Dvが0である地点Mnの色味と0より大きい偏差Dvを有する地点の色味との色差ΔEをシミュレーションする。グラフはシミュレーション中の結果の一つを例示したものである。グラフ中では偏差Dvが最小許容寸法Lsの4%である地点において、色差ΔEが最大となっている。その色差ΔEは偏差Dvが0である地点Mnの色味と偏差Dvが10%である地点Mxの色味との色差ΔEよりも大きい。
 しかしながら図11において保護膜Prの厚みの最小許容寸法Lsが約500nmを上回らない限り、シミュレーションのいずれの結果においても地点Mnの色味と地点Mxの色味との色差ΔEが最大となることを発明者らは確認した。保護膜の厚み、低放射性膜の各層の厚み、板ガラスの厚みの範囲は以下のとおりである。
         保護膜_____厚み25mmより大きい
  層L(10)_第3誘電体層__厚み10~50nm
  層L(9)__バッファー層__厚み0.5~20nm
  層L(8)__第2金属層___厚み5~30nm
  層L(7)__バッファー層__厚み0.5~20nm
  層L(6)__第2誘電体層__厚み10~100nm
  層L(5)__バッファー層__厚み0.5~20nm
  層L(4)__第1金属層___厚み5~30nm
  層L(3)__バッファー層__厚み0.5~20nm
  層L(2)__第1誘電体層__厚み10~50nm
  層L(1)__板ガラス____厚み3mm
*層L(1)~L(10)について図7を参照のこと
 以上を踏まえ保護膜Prの厚みの最小許容寸法Lsは0~500nmとする。最小許容寸法Lsの上限は50、75、100、150、200、300及び400nmのいずれかでもよい。最小許容寸法Lsの下限は25、50、75、100、150、200、300nmのいずれかでもよい。
<製品の検査>
 製造された被覆板ガラスが設計通りの構成を有することは例えば以下の検査手法で確認できる:
A.X線光電子分光法(XPS)を用いて保護膜の表面より深さ方向に保護膜の構成元素を分析する。
B.走査電子顕微鏡(SEM)及びエネルギー分散型X線分光法(EDX)の組み合わせにより保護膜の断面を探査することで保護膜の厚みを同定する。
C.エッチングで保護膜を除去し、さらに低放射性膜中の各層を1層ずつ除去しながら各層の特性を計測する。特性としては反射率、透過率、膜厚及び屈折率が挙げられる。膜厚及び屈折率はエリプソメーターで計測できる。
D.A~Cで得られた計測値を基に光学シミュレーションにて各層の屈折率及び複素屈折率を同定する。
<例1>6,000パターンのシミュレーション
 下記の範囲内で保護膜の最小許容寸法並びに低放射性膜内の層L(2)~層L(10)及び板ガラスからなる層L(1)の厚みの組み合わせを、乱数を用いてランダムに変化させた。この組み合わせを6,000パターン得た。各パターンの厚みの組み合わせに基づきさらにL表色系におけるL値、a値及びb値の組を求めた。
         保護膜_____厚み25~75mm
  層L(10)_第3誘電体層__厚み10~50nm
  層L(9)__バッファー層__厚み0.5~9.5nm
  層L(8)__第2金属層___厚み12~20nm
  層L(7)__バッファー層__厚み0.5~9.5nm
  層L(6)__第2誘電体層__厚み50~100nm
  層L(5)__バッファー層__厚み0.5~9.5nm
  層L(4)__第1金属層___厚み8~12nm
  層L(3)__バッファー層__厚み0.5~9.5nm
  層L(2)__第1誘電体層__厚み10~50nm
  層L(1)__板ガラス____厚み3mm
 図12は6,000パターンのa値及びb値を二次元座標系にプロットしたものである。各ドットは各パターンに対応する。第3象限の原点付近の破線の長方形は、色味指定(hue designation)、すなわちa値が-10以上、0以下であるとともに、b値が-20以上、0以下である範囲を示す。図9と異なるのは、保護膜の厚みの偏差を変動させた計算結果はこの座標系に表されていない点である。6,000パターンの中に所望の色味指定を有するパターンが存在する。保護膜の厚み、低放射性膜の各層の厚み、板ガラスの厚みの範囲は以下のとおりである。
 さらに保護膜の厚みを最小許容寸法に10%の公差を足したもの、すなわち最大許容寸法に変更して再度6,000パターンのL値、a値及びb値の組を求めた。保護膜の厚みが公差の分だけ変化した場合の色差ΔEを6,000パターン取得した。
 図13に示すように6,000パターンより、色差ΔE<1となる13パターンを抽出した。これらのパターンを二次元座標系にプロットした。各パターンにおける保護膜と低放射性膜の各層と板ガラスの厚みを以下に示す。色味指定(hue designation)を満たすパターンがいくつか見られた。
 表2は13パターンの厚みの組み合わせを示す。なお表2中の「+公差」は「最小許容寸法+公差」を表す。
Figure JPOXMLDOC01-appb-T000026
 図14に示すように6,000パターンより、色差ΔE<2となる482パターンを抽出した。これらのパターンを二次元座標系にプロットした。色味指定(hue designation)を満たすパターンが数多く見られた。
 図15に示すように、6,000パターンより、色差ΔE<3.5となる1,949パターンを抽出した。これらのパターンを二次元座標系にプロットした。
 図16に示すように1,949パターンより、色味指定(hue designation)、a値が-10以上、0以下であるとともに、b値が-20以上、0以下である範囲を満たす24パターンを抽出したプロットを表す。
 表3は24パターンの厚みの組み合わせを示す。なお表3中の「+公差」は「最小許容寸法+公差」を表す。
Figure JPOXMLDOC01-appb-T000027
 低放射性膜が上記9層を有する被覆板ガラスは、所望の色差ΔE及び所望の色味指定を有することが分かった。
<例2>保護膜の厚みが50nm以上であるパターン
 <例1>に係る6,000パターンより、保護膜の厚みが50nm以上である1,713パターンを抽出した。さらに1,713パターンより、色味指定(hue designation)、a値が-10以上、0以下であるとともに、b値が-20以上、0以下である範囲を満たす206パターンを抽出した。図17に示すようにこれらの206パターンを二次元座標系にプロットした。
 図18に示すように1,713パターンを色味指定及び色差ΔEにより分類した。青みの色味指定(hue designation)は図17の説明の中で示したものである。赤みの色味指定(hue designation)は、a値が0以上、+10以下であるとともに、b値が0以上、+20以下とした。1,713パターンより、赤みの色味指定を満たす157パターンを抽出した。
<例3>3層からなる低放射性膜のシミュレーション
 以下の点を除き<例1>と同様にシミュレーションを行った。下記の範囲内で保護膜の最小許容寸法並びに低放射性膜内の層L(2)~層L(4)及び板ガラスからなる層L(1)の厚みの組み合わせを、乱数を用いてランダムに変化させた。
 図19に示すようにこの組み合わせを2,000パターン得た。各パターンの厚みの組み合わせに基づきさらにL表色系におけるL値、a値及びb値の組を求めた。
         保護膜_____厚み25~75mm
  層L(4)__第2誘電体層__厚み10~50nm
  層L(3)__金属層_____厚み5~50nm
  層L(2)__第1誘電体層__厚み10~50nm
  層L(1)__板ガラス____厚み3mm
 図20に示すように2,000パターンより、色差ΔE<1となる390パターンを抽出した。これらのパターンを二次元座標系にプロットした。
 図21に示すように2,000パターンより、色差ΔE<2となる1,136パターンを抽出した。これらのパターンを二次元座標系にプロットした。
 図22に示すように、2,000パターンより、色差ΔE<3となる1,753パターンを抽出した。これらのパターンを二次元座標系にプロットした。
<例4>5層からなる低放射性膜のシミュレーション
 以下の点を除き<例1>と同様にシミュレーションを行った。下記の範囲内で保護膜の最小許容寸法並びに低放射性膜内の層L(2)~層L(6)及び板ガラスからなる層L(1)の厚みの組み合わせを、乱数を用いてランダムに変化させた。
 図23に示すようにこの組み合わせを3,000パターン得た。各パターンの厚みの組み合わせに基づきさらにL表色系におけるL値、a値及びb値の組を求めた。
         保護膜_____厚み25~75mm
  層L(6)__第2誘電体層__厚み10~100nm
  層L(5)__バッファー層__厚み0.5~9.5nm
  層L(4)__金属層_____厚み8~12nm
  層L(3)__バッファー層__厚み0.5~9.5nm
  層L(2)__第1誘電体層__厚み10~50nm
  層L(1)__板ガラス____厚み3mm
 図24に示すように3,000パターンより、色差ΔE<1となる13パターンを抽出した。これらのパターンを二次元座標系にプロットした。
 図25に示すように3,000パターンより、色差ΔE<2となる519パターンを抽出した。これらのパターンを二次元座標系にプロットした。
 図26に示すように、3,000パターンより、色差ΔE<3となる1,556パターンを抽出した。これらのパターンを二次元座標系にプロットした。
<例5>7層からなる低放射性膜のシミュレーション
 以下の点を除き<例1>と同様にシミュレーションを行った。下記の範囲内で保護膜の最小許容寸法並びに低放射性膜内の層L(2)~層L(6)及び板ガラスからなる層L(1)の厚みの組み合わせを、乱数を用いてランダムに変化させた。
 図27に示すようにこの組み合わせを3,000パターン得た。各パターンの厚みの組み合わせに基づきさらにL表色系におけるL値、a値及びb値の組を求めた。
         保護膜_____厚み25~75mm
  層L(8)__第3誘電体層__厚み10~50nm
  層L(7)__バッファー層__厚み0.5~9.5nm
  層L(6)__第2誘電体層__厚み50~100nm
  層L(5)__バッファー層__厚み0.5~9.5nm
  層L(4)__金属層_____厚み8~12nm
  層L(3)__バッファー層__厚み0.5~9.5nm
  層L(2)__第1誘電体層__厚み10~50nm
  層L(1)__板ガラス____厚み3mm
 図28に示すように3,000パターンより、色差ΔE<1となる95パターンを抽出した。これらのパターンを二次元座標系にプロットした。
 図29に示すように3,000パターンより、色差ΔE<2となる408パターンを抽出した。これらのパターンを二次元座標系にプロットした。
 図30に示すように、3,000パターンより、色差ΔE<3となる1,088パターンを抽出した。これらのパターンを二次元座標系にプロットした。
<例6>9層からなる低放射性膜のシミュレーション
 以下の点を除き<例1>と同様にシミュレーションを行った。下記の範囲内で保護膜の最小許容寸法並びに低放射性膜内の層L(2)~層L(6)及び板ガラスからなる層L(1)の厚みの組み合わせを、乱数を用いてランダムに変化させた。
 図31に示すようにこの組み合わせを10,000パターン得た。各パターンの厚みの組み合わせに基づきさらにL表色系におけるL値、a値及びb値の組を求めた。
         保護膜_____厚み25~200mm
  層L(10)_第3誘電体層__厚み10~50nm
  層L(9)__バッファー層__厚み0.5~20nm
  層L(8)__金属層_____厚み5~30nm
  層L(7)__バッファー層__厚み0.5~20nm
  層L(6)__第2誘電体層__厚み10~100nm
  層L(5)__バッファー層__厚み0.5~20nm
  層L(4)__金属層_____厚み5~20nm
  層L(3)__バッファー層__厚み0.5~20nm
  層L(2)__第1誘電体層__厚み10~50nm
  層L(1)__板ガラス____厚み3mm
 図32に示すように10,000パターンより、色差ΔE<3.5となる1,588パターンを抽出した。これらのパターンを二次元座標系にプロットした。
 図33に示すように1,588パターンより、色味指定(hue designation)、a値が-10以上、0以下であるとともに、b値が-20以上、0以下である範囲を満たす171パターンを抽出したプロットを表す。
<例7>実際に製造した9層からなる低放射性膜と保護膜を備える被覆板ガラス
 板ガラス(フロートガラス)からなる層L(1)の上に下記表4に記載の構成の低放射性膜層L(2)~層L(10)及び保護膜を以下の方法により形成し、被覆板ガラスを得た。
 まず板ガラス上にインライン型スパッタリング装置を用いてSiN層、NiCr層、Ag層、NiCr層、SiN層、NiCr層、Ag層、NiCr層、SiN層の順になるように低放射性膜を成膜して、低放射性膜付き板ガラスを得た。なお、下記表4のL(2)~L(10)の各層の厚さは、事前に設定した投入電力で成膜した場合の厚さに基づき、投入電力で比例換算することにより算出した。
 具体的には、SiN層は、スパッタリングターゲットとしてシリコンを主成分とするターゲットを配置し、アルゴンと窒素を含む雰囲気下でACスパッタリングを行い成膜した。
 NiCr層はスパッタリングターゲットとしてニッケルクロム合金(重量%比Ni:Cr=80:20)を主成分とするターゲットを配置し、アルゴン雰囲気下でDCスパッタリングを行い成膜した。
 Ag層はスパッタリングターゲットとして銀を主成分とするターゲットを配置し、アルゴン雰囲気下でDCスパッタリングを行い成膜した。
 上記低放射性膜付き板ガラス(サイズ:200mm×300mm)を純水にて洗浄後、風乾した。
 風乾後、ジルコニア粒子を含む保護膜形成用ゾルゲルシリカ液(固形分濃度2.4wt%)を低放射性膜付きガラスの低放射性膜の表面にロールコート法にて塗工し、塗膜が形成された塗膜付き板ガラスを作製した。
 炉内温度を130℃に調整した熱風炉内に塗膜付き板ガラスを投入し、10分間加熱して塗膜を硬化した後、室温下で冷却を行うことで、例7の被覆板ガラスを得た。なお各層の厚みは表4に記載の通りである。
<例8>実際に製造した9層からなる低放射性膜と保護膜を備える被覆板ガラス
 まず板ガラス上にインライン型反応性DCマグネトロンスパッタリング装置を用いてSiN層、NiCr層、Ag層、NiCr層、SiN層、NiCr層、Ag層、NiCr層、SiN層の順になるように低放射性膜を成膜して、低放射性膜付き板ガラスを得た。なお、下記表4のL(2)~L(10)の各層の厚さは、事前に設定した投入電力で成膜した場合の厚さに基づき、投入電力で比例換算することにより算出した。
 具体的には、SiN層は、スパッタリングターゲットとしてシリコンを主成分とするターゲット(ターゲットザイス:70mm×200mm)を配置し、アルゴンと窒素を含む雰囲気下(Ar:N2=40sccm:60sccm、圧力0.4Pa)でスパッタリングを行い成膜した。スパッタ電力は500Wとした。
 NiCr層はスパッタリングターゲットとしてニッケルクロム合金(重量%比Ni:Cr = 80:20)を主成分とするターゲット(ターゲットザイス:70mm×200mm)を配置し、アルゴン雰囲気下(100sccm、圧力0.4Pa)でスパッタリングを行い成膜した。スパッタ電力は100Wとした。
 Ag層はスパッタリングターゲットとして銀を主成分とするターゲット(ターゲットザイス:70mm×200mm)を配置し、アルゴン雰囲気下(50sccm)でスパッタリングを行い成膜した。スパッタ電力は100Wとした。
 上記低放射性膜付き板ガラス(サイズ:200mm×300mm)を純水にて洗浄後、風乾した。
 風乾後、ジルコニア粒子を含む保護膜形成用ゾルゲルシリカ液(固形分濃度2.4wt%)を低放射性膜付きガラスの低放射性膜の表面にロールコート法にて塗工し、塗膜が形成された塗膜付き板ガラスを作製した。
 炉内温度を130℃に調整した熱風炉内に塗膜付き板ガラスを投入し、10分間加熱して塗膜を硬化した後、室温下で冷却を行うことで、例8の被覆板ガラスを得た。なお各層の厚みは表4に記載の通りである。
[評価]
<面内色差ΔE測定>
 例7、例8の被覆板ガラス各々について、コニカミノルタ社製分光測色計CM-600dを用いて色度を測定した。測定はロールコートの搬送方向と平行な方向同一直線状に30点実施した。その際の測定位置の間隔は5mmである。そしてすべての測定点に対して隣り合う測定点との色差を算出し、最大の色差をΔEとした。
 また、測色計を用いて被覆面上のa値とb値の平均値(30点)を算出した。結果を表5に示す。
<反射率測定>
 例7、例8の被覆板ガラス各々について、コニカミノルタ社製分光測色計CM-600dを用いて反射スペクトルを計測した。反射率測定は、低放射性膜の側からの波長380nm~780nmの反射率を計測し平均反射率を求めた。結果を表5に示す。
<スジ状の模様の観察>
 例7、例8の被覆板ガラス各々について、表面を、面光源を用いて反射像を観察したところ、例7,例8ともに図10のようなスジ状の模様は観察されなかった。
Figure JPOXMLDOC01-appb-T000028
 表4及び表5に示されるように、低反射膜と保護膜を備え、保護膜の厚みのばらつきが特定範囲、且つ、面内色差ΔEが3.5以下である例7及び例8の被覆板ガラスは、スジ状の模様が低減されることが示された。
 この出願は、2022年3月25日に出願された日本出願特願2022-049823を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Cg 被覆板ガラス、 Cs 被覆面、 D 保護膜の厚み、 D-D 層の厚み、 De 誘電体層、 Dv 偏差、 Gs 板ガラス、 L(1)-L(N) 第1層-第N層、 Le 低放射性膜、 Lg 積層体、 Ls 最小許容寸法、 Mn 地点、 Mt 金属層、 Mx 地点、 Ob 観察者、 Pr 保護膜、 Tr 公差、 Wt 白色光、 θ1 光の入射角、 θ2 屈折角

Claims (19)

  1.  被覆面を有する板ガラスと、前記被覆面上に設けられた低放射性膜であって金属層及び誘電体層を有するものと、前記低放射性膜上に設けられた保護膜であってシリカに基づくものとを備える、被覆板ガラスであって、
     前記保護膜の各地点における厚みはバラツキを有し、前記各地点における厚みの有する、前記各地点における厚みの最小許容寸法に対する偏差は前記各地点における厚みの公差の範囲内にあり、前記公差は前記最小許容寸法の10%以下の値で設定されており、
     前記保護膜上で前記被覆板ガラスを観察した時、前記保護膜の厚みが最大許容寸法となる地点と最小許容寸法となる地点との2点間の色差ΔEが3.5以下であり、
     前記色差ΔEは、下記式より求められる、
    Figure JPOXMLDOC01-appb-M000001
     ΔLはL表色系における各地点のL値の差である、
     ΔaはL表色系における各地点のa値の差である、
     ΔbはL表色系における各地点のb値の差である、
     被覆板ガラス。
  2.  前記低放射性膜は複数の誘電体層を有し、
     前記複数の誘電体層は、前記板ガラスの前記被覆面と前記金属層との間に位置する第1誘電体層と、前記金属層と前記保護膜との間に位置する第2誘電体層とからなる、
     請求項1に記載の被覆板ガラス。
  3.  前記低放射性膜はさらに複数のバッファー層を備え、
     前記複数のバッファー層は、第1誘電体層と前記金属層との間に位置する第1バッファー層と、前記金属層と前記第2誘電体層との間に位置する第2バッファー層とを含み、
     前記第1バッファー層は、前記第1誘電体層の屈折率及び前記金属層の屈折率よりも高い屈折率を有する組成物からなるとともに、前記第1誘電体層よりも薄く、
     前記第2バッファー層の屈折率は、前記金属層の屈折率及び前記第2誘電体層の屈折率よりも高い屈折率を有する組成物からなるとともに、前記第2誘電体層よりも薄い、
     請求項2に記載の被覆板ガラス。
  4.  前記低放射性膜は前記金属層、以下第1金属層という、に加えて第2誘電体層と前記保護膜との間に位置する第2金属層を備え、
     前記複数の誘電体層は、さらに前記第2金属層と前記保護膜との間に位置する第3誘電体層とを含み、
     隣り合う誘電体層と金属層とは、バッファー層で連結されており、
     各バッファー層は、これで連結される誘電体層及び金属層のそれぞれの屈折率よりも高い屈折率を有する組成物からなるとともに、各誘電体層よりも薄い、
     請求項2に記載の被覆板ガラス。
  5.  前記被覆面上において実際に測定される前記保護膜の厚みの最小値は25nm以上、200nm以下である、
     請求項1に記載の被覆板ガラス。
  6.  前記被覆面上において実際に測定される前記保護膜の厚みの最小値は75nm以下である、
     請求項5に記載の被覆板ガラス。
  7.  前記被覆面上において前記保護膜の厚みの最小値は50nm以上である、
     請求項5に記載の被覆板ガラス。
  8.  前記低放射性膜は、前記保護膜から前記板ガラスに向かって、以下の9層を有する、
    ・第3誘電体層 10~70nm
    ・バッファー層 1~20nm
    ・第2金属層  1~30nm
    ・バッファー層 1~20nm
    ・第2誘電体層 10~120nm
    ・バッファー層 1~20nm
    ・第1金属層  1~30nm
    ・バッファー層 1~20nm
    ・第1誘電体層 10~70nm
     請求項5に記載の被覆板ガラス。
  9.  前記低放射性膜は、前記保護膜から前記板ガラスに向かって、以下の9層を有する、
    ・第3誘電体層 10~45nm
    ・バッファー層 1~9nm
    ・第2金属層  5~20nm
    ・バッファー層 1~9nm
    ・第2誘電体層 51~99nm
    ・バッファー層 1~9nm
    ・第1金属層  8~20nm
    ・バッファー層 1~9nm
    ・第1誘電体層 16~48nm
     請求項5に記載の被覆板ガラス。
  10.  前記低放射性膜は、前記保護膜から前記板ガラスに向かって、以下の9層を有する、
    ・第3誘電体層 10~45nm
    ・バッファー層 1~9nm
    ・第2金属層  12~20nm
    ・バッファー層 1~9nm
    ・第2誘電体層 51~99nm
    ・バッファー層 5~9nm
    ・第1金属層  8~12nm
    ・バッファー層 1~9nm
    ・第1誘電体層 16~48nm
     請求項5に記載の被覆板ガラス。
  11.  前記低放射性膜は、前記保護膜から前記板ガラスに向かって、以下の9層を有する、
    ・第3誘電体層 10~45nm
    ・バッファー層 1~9nm
    ・第2金属層  5~18nm
    ・バッファー層 1~9nm
    ・第2誘電体層 51~99nm
    ・バッファー層 1~9nm
    ・第1金属層  12~20nm
    ・バッファー層 1~9nm
    ・第1誘電体層 16~48nm
     請求項5に記載の被覆板ガラス。
  12.  前記保護膜の側から前記板ガラスを観察した時、前記被覆面上のa値は-15以上、0以下であるとともに、b値は-20以上、0以下である、
     請求項5に記載の被覆板ガラス。
  13.  前記保護膜の側から前記板ガラスを観察した時、前記被覆面上のa値は-10以上、0以下であるとともに、b値は-20以上、0以下である、
     請求項5に記載の被覆板ガラス。
  14.  単板ガラスである、
     請求項1に記載の被覆板ガラス。
  15.  前記低放射性膜の側から前記板ガラスの波長380nm~780nmの反射率を測定した時、前記反射率が15%以下である、
     請求項14に記載の被覆板ガラス。
  16.  前記低放射性膜の側から前記板ガラスの波長380nm~780nmの反射率を測定した時、前記反射率が5%以下である、
     請求項14に記載の被覆板ガラス。
  17.  被覆面を有する板ガラスと、前記被覆面上に設けられた低放射性膜であって金属層及び誘電体層を有するものと、前記低放射性膜上に設けられた保護膜であってシリカに基づくものとを備える、被覆板ガラスであって、
     前記保護膜の各地点における厚みを測定した時、前記保護膜の最大の厚みと前記保護膜の最小の厚みとの差は前記最小の厚みの10%以下の値であり、
     前記保護膜上で前記被覆板ガラスを観察した時、前記最大の厚みとなる地点と前記最小の厚みとなる地点との2点間の色差ΔEが3.5以下であり、
     前記色差ΔEは、下記式より求められる、
    Figure JPOXMLDOC01-appb-M000002
     ΔLはL表色系における各地点のL値の差である、
     ΔaはL表色系における各地点のa値の差である、
     ΔbはL表色系における各地点のb値の差である、
     被覆板ガラス。
  18.  請求項1~17のいずれかに記載の被覆板ガラスを作製する方法であって、
     前記保護膜はシリカ膜であり、前記低放射性膜上にアルコキシシランのゾルをロールコート、ダイコート及びスプレーコートのいずれかにて積層するとともに、前記低放射性膜上で前記ゾルをゲル化する、
     又は
     前記保護膜はシリカ膜であり、前記低放射性膜上にシラザンをロールコート、ダイコート及びスプレーコートのいずれかにて積層するとともに、前記低放射性膜上で前記シラザンをシリカに変換する、
     方法。
  19.  請求項1~17のいずれかに記載の被覆板ガラスの前記保護膜の厚み、前記低放射性膜の有する各層の厚み及び前記板ガラスの厚みの組み合わせを、シミュレーションで得られた複数のパターンから選ぶことで設計する方法であって、
     前記保護膜の厚みの前記最小許容寸法、前記低放射性膜の有する各層の厚み及び前記板ガラスの厚みの組み合わせの各パターンにおいて前記被覆面上の分光立体角反射率R(λ)を求め、さらに各パターンにおいて前記保護膜の厚みを前記最大許容寸法に入れ替えて前記分光立体角反射率R(λ)を求め、
     前記保護膜の厚みの最小許容寸法及び最大許容寸法に係る分光立体角反射率R(λ)に基づき、各パターンにおいてL表色系におけるL値、a値及びb値の組を取得し、
     下記式に従い、各パターンにおいて下記式で表される色差ΔEを求める、
    Figure JPOXMLDOC01-appb-M000003
     ΔLは、前記保護膜の厚みの前記最小許容寸法に対応するL値と前記最大許容寸法に対応するL値との差である、
     Δaは、前記保護膜の厚みの前記最小許容寸法に対応するa値と前記最大許容寸法に対応するa値との差である、
     Δbは、前記保護膜の厚みの前記最小許容寸法に対応するb値と前記最大許容寸法に対応するb値との差である、
     方法。
PCT/JP2023/010478 2022-03-25 2023-03-16 被覆板ガラス、及び被覆板ガラスを作製する方法 WO2023182188A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049823 2022-03-25
JP2022-049823 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182188A1 true WO2023182188A1 (ja) 2023-09-28

Family

ID=88101546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010478 WO2023182188A1 (ja) 2022-03-25 2023-03-16 被覆板ガラス、及び被覆板ガラスを作製する方法

Country Status (1)

Country Link
WO (1) WO2023182188A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239245A (ja) * 1995-01-17 1996-09-17 Guardian Ind Corp スパッタ被覆ガラス製品及びその断熱ガラス・ユニット
JP2015532256A (ja) * 2012-10-04 2015-11-09 ガーディアン・インダストリーズ・コーポレーション 低い可視光線透過率を有する低放射率被覆製品
WO2019189109A1 (ja) * 2018-03-26 2019-10-03 日本板硝子株式会社 薄膜付き基材及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239245A (ja) * 1995-01-17 1996-09-17 Guardian Ind Corp スパッタ被覆ガラス製品及びその断熱ガラス・ユニット
JP2015532256A (ja) * 2012-10-04 2015-11-09 ガーディアン・インダストリーズ・コーポレーション 低い可視光線透過率を有する低放射率被覆製品
WO2019189109A1 (ja) * 2018-03-26 2019-10-03 日本板硝子株式会社 薄膜付き基材及びその製造方法

Similar Documents

Publication Publication Date Title
JP6113656B2 (ja) 焼入れ可能な3層反射防止コーティングを含む被覆物品及び/又はその製造方法
US9067822B2 (en) Low emissivity coating with low solar heat gain coefficient, enhanced chemical and mechanical properties and method of making the same
CN106458725B (zh) 带有用于日光防护的薄层叠层的窗玻璃
JP2878173B2 (ja) スパッタ被覆ガラス製品及びその断熱ガラス・ユニット
JP6970754B2 (ja) ガラス基板用の低放射率コーティング
CN112218834A (zh) 在银下方具有掺杂的晶种层的低辐射可匹配涂覆制品以及对应的方法
CZ322196A3 (en) Neutral system of very high efficiency with low emissivity for glass coating, glass units produced from such system and process for producing the glass units
EA016220B1 (ru) Прозрачная противоотражающая подложка, обладающая нейтральным отраженным цветом
EA029118B1 (ru) Прозрачная основа для остекления и стеклопакет, содержащий ее
KR20070085962A (ko) 글레이징 패널
JP7094114B2 (ja) コーティングされた保護ウインドウ
SA515370185B1 (ar) تزجيج ذو انبعاثية منخفضة ومضاد للطاقة الشمسية
TWI583807B (zh) 透明基板之層系統以及用於生產層系統的方法
CN103857639B (zh) 包含含有NiCu合金层的遮阳玻璃
JP2004514636A (ja) 金属反射用の薄層を含む多層皮膜を有する透明基板
CN106435497B (zh) 一种金色低辐射节能窗膜及其制备方法
KR101975637B1 (ko) 저방사 유리
WO2023182188A1 (ja) 被覆板ガラス、及び被覆板ガラスを作製する方法
CN103221847B (zh) 包含抗反射涂层的透明基材
KR20190022453A (ko) 낮은 태양 인자 값을 갖는 청색 착색된 열 처리 가능한 코팅된 물품
CN112585100B (zh) 在银下方具有掺杂的晶种层的低-e可匹配涂覆制品以及对应的方法
JP7380708B2 (ja) 扉または壁
CN103946174A (zh) 具有高光透射系数的绝缘性装配玻璃
CN113614046B (zh) 具有吸收膜的低e可匹配涂覆制品及相应方法
CN114430732B (zh) 具有吸收膜的低e可匹配涂覆制品及相应方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774784

Country of ref document: EP

Kind code of ref document: A1