WO2023173713A1 - 一种车辆的转向控制方法、装置、车辆及存储介质 - Google Patents

一种车辆的转向控制方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2023173713A1
WO2023173713A1 PCT/CN2022/119435 CN2022119435W WO2023173713A1 WO 2023173713 A1 WO2023173713 A1 WO 2023173713A1 CN 2022119435 W CN2022119435 W CN 2022119435W WO 2023173713 A1 WO2023173713 A1 WO 2023173713A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
trajectory
point
preview
vehicle
Prior art date
Application number
PCT/CN2022/119435
Other languages
English (en)
French (fr)
Inventor
康代轲
李力耘
陈建兴
郭笑非
肖智冲
Original Assignee
广州小鹏自动驾驶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州小鹏自动驾驶科技有限公司 filed Critical 广州小鹏自动驾驶科技有限公司
Publication of WO2023173713A1 publication Critical patent/WO2023173713A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics

Definitions

  • the present application relates to the field of vehicle control technology, and in particular to a vehicle steering control method, device, vehicle and storage medium.
  • the vehicle's assisted driving functions are becoming increasingly powerful.
  • the lateral control of the vehicle is usually based on the bilateral/unilateral lane line information recognized by the camera, and then generated based on the lane line information. Vehicle tracking trajectory.
  • lane lines are often blurred or blocked, resulting in the vehicle being unable to accurately extract lane line information.
  • vehicle driving trajectories generated based on lane line information cannot truly reflect the drivable conditions of the road. For example, when there are unrecognized potholes, warning signs and other obstacles in the middle of the road, if the vehicle cannot effectively avoid them, there will be Certain safety hazards.
  • the trajectory planning process during vehicle assisted driving usually involves previewing information by identifying the coordinates of the position point in front of the vehicle to generate the planned trajectory of the vehicle.
  • the position point in front of the lane may not be identified. Coordinate information makes it impossible to accurately obtain the planned trajectory of the vehicle at all times.
  • This application provides a vehicle steering control method, which method includes:
  • trajectory information as the driving trajectory information of the target vehicle to preview the target vehicle according to the preset preview time and determine the preview point information
  • Steering control is performed on the target vehicle according to the preview point information.
  • using the trajectory information as the driving trajectory information of the target vehicle to preview the target vehicle according to the preset preview time and determine the preview point information includes:
  • preview point information corresponding to the preview distance is determined.
  • determining the preview point information corresponding to the preview distance in the trajectory information includes:
  • trajectory information determine the preview point corresponding to the preview distance, and the first trajectory point and the second trajectory point adjacent to the preview point;
  • Preview point information is determined based on the first trajectory point and the second trajectory point.
  • determining preview point information based on the first trajectory point and the second trajectory point includes:
  • the target coordinate information of the preview point is determined on the trajectory information.
  • determining preview point information based on the first trajectory point and the second trajectory point includes:
  • Curvature information of the preview point is determined according to the first curvature information and the second curvature information.
  • determining preview point information based on the first trajectory point and the second trajectory point includes:
  • trajectory information determine third curvature information of multiple trajectory points from the nearest trajectory point of the target vehicle to the preview point and distance information between adjacent trajectory points;
  • the heading angle information of the preview point is determined based on the heading angle change between the adjacent track points.
  • the method further includes:
  • This application also provides a vehicle steering control device, which device includes:
  • a trajectory information acquisition module configured to obtain trajectory information composed of multiple trajectory points collected for the preceding vehicle when it is detected that there is a preceding vehicle traveling in the same direction in front of the target vehicle;
  • a preview point information determination module is used to use the trajectory information as the driving trajectory information of the target vehicle to preview the target vehicle according to the preset preview time and determine the preview point information;
  • a steering control module is used to perform steering control on the target vehicle according to the preview point information.
  • the application also provides a vehicle, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a vehicle including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program is executed by the processor, the vehicle as described above is implemented. steering control method.
  • the present application also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the vehicle steering control method as described above is implemented.
  • trajectory information composed of multiple trajectory points collected for the preceding vehicle is obtained, and then the trajectory information is used as the target
  • the driving trajectory information of the vehicle is used to preview the target vehicle according to the preset preview time and determine the preview point information, so that the target vehicle can be steered and controlled according to the preview point information, thereby achieving
  • Figure 1a is a schematic diagram of a vehicle driving road provided by an embodiment of the present application.
  • Figure 1b is a schematic diagram of a lane with obscured lane lines provided by an embodiment of the present application
  • Figure 1c is a schematic diagram of a lane with obstacles provided by an embodiment of the present application.
  • Figure 1d is a schematic diagram of tracking the trajectory of a preceding vehicle provided by an embodiment of the present application
  • Figure 1e is a schematic diagram of a leading vehicle trajectory tracking system provided by an embodiment of the present application.
  • Figure 1f is a step flow chart of a vehicle steering control method provided by an embodiment of the present application.
  • Figure 1g is a schematic diagram of trajectory point coordinate conversion provided by an embodiment of the present application.
  • Figure 1h is a schematic diagram of trajectory point curvature calculation provided by an embodiment of the present application.
  • Figure 2 is a step flow chart of another vehicle steering control method provided by an embodiment of the present application.
  • Figure 3a is a step flow chart of yet another vehicle steering control method provided by an embodiment of the present application.
  • Figure 3b is a schematic diagram of preview point interpolation of a vehicle provided by an embodiment of the present application.
  • Figure 3c is a schematic diagram of a vehicle's preview point information determination process provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a vehicle steering control device provided by an embodiment of the present application.
  • the assisted driving functions of vehicles are becoming increasingly powerful.
  • the bilateral/unilateral lane line information (the solid line part of the left lane line and the right lane line in Figure 1a) is obtained through the camera installed in front of the vehicle, and the driving direction of the vehicle is obtained.
  • Trajectory (the dotted line part in Figure 1a)
  • preview a point (point X in Figure 1a) on the driving trajectory in front of the vehicle, and then perform steering control based on this preview point.
  • lane lines may be blocked by obstacles.
  • vehicles on both sides of the vehicle are blocked by obstacles (such as other vehicles, etc.), so that the vehicle cannot obtain the complete lane lines and thus cannot obtain the driving trajectory.
  • the coordinate information of the position point in front of the vehicle cannot be recognized, and preview cannot be achieved, so that the vehicle's driving trajectory information cannot be accurately obtained at all times.
  • embodiments of the present application propose a vehicle steering control method that is applicable to a wide range of scenarios.
  • Figure 1d during the driving process of the vehicle, when there is a vehicle driving in front of the vehicle on the road, multiple trajectory points of the preceding vehicle can be collected as the driving trajectory of the own vehicle to perform vehicle steering control.
  • the leading vehicle trajectory extraction and tracking system includes a leading vehicle trajectory point acquisition module, a leading vehicle trajectory point tracking module, a preview point calculation module, and a steering control module.
  • the preceding vehicle trajectory extraction and tracking system is connected to the vehicle camera and the vehicle radar, and can obtain the collected information of the camera and radar.
  • the preceding vehicle trajectory extraction and tracking system is also connected to the electric power steering system (Electric Power Steering, EPS).
  • EPS Electric Power Steering
  • the vehicle's camera and radar collect information about the vehicle's surrounding environment, including data collection and identification of the environment in front of the vehicle.
  • the vehicle's front vehicle track point collection module can be used to collect data.
  • the camera and/or radar collects the track points of the preceding vehicle, and during the process of collecting the track points, the leading vehicle track point update module continuously updates the leading vehicle track points according to the current position of the vehicle, and passes the update after the track points are updated.
  • the preview point calculation module determines the relevant preview point information, and then can input the preview point information to the vehicle's steering control module to output relevant vehicle steering control data. After the steering control data module obtains the vehicle steering control-related data, it will To input into the vehicle's electric power steering system to achieve steering control of the vehicle.
  • the vehicle does not need to recognize the lane lines on the road, and the path traveled by the vehicle in front can avoid potholes or small obstacles in the middle of the road. Therefore, the vehicle will also follow the path of the vehicle in front. Avoid dangerous road sections and achieve safe driving.
  • FIG. 1f a step flow chart of a vehicle steering control method provided by an embodiment of the present application is shown, which may specifically include the following steps:
  • Step 101 When it is detected that there is a preceding vehicle traveling in the same direction in front of the target vehicle, obtain trajectory information composed of multiple trajectory points collected for the preceding vehicle.
  • One or more sensing devices can be installed on the target vehicle so that the target vehicle can better perceive the surrounding environment.
  • the sensing device can be a camera device of the vehicle, a radar of the vehicle body, etc. In the embodiment of the present application, This sensing device for detecting the trajectory of the vehicle in front does not have too many restrictions.
  • the vehicle When the vehicle detects the surrounding environment through the sensing device, it can detect the vehicle in front of the target vehicle.
  • the vehicle in front of the vehicle and traveling in the same direction as the target vehicle is defined as the preceding vehicle.
  • the preceding vehicle is traveling at this time.
  • the trajectory of can be the trajectory that the target vehicle is about to drive. Since the vehicle in front can avoid obstacles and drive, the actual trajectory of the vehicle in front is used as the trajectory of the target vehicle, which can effectively ensure the safety of the vehicle during driving.
  • the target vehicle When the target vehicle detects the preceding vehicle, it can continuously collect the trajectory points of the preceding vehicle during driving, and the trajectory information of the preceding vehicle can be formed by collecting multiple trajectory points of the preceding vehicle.
  • the sensing device can continuously collect the latest trajectory points of the target vehicle.
  • the latest collected trajectory points will actually be different from the previously collected trajectory points. are not in the same coordinate system. Therefore, the previously collected trajectory points need to be coordinate transformed according to the current coordinate system of the target vehicle so that all collected trajectory points are in the current coordinate system of the target vehicle for subsequent vehicle steering. control.
  • the coordinate transformation of all trajectory points in the trajectory information within a calculation period can be performed in the following manner (as shown in Figure 1g, the target object is the trajectory point of the coordinate system to be converted in the trajectory information):
  • L is the axle of the target vehicle
  • v is the current speed of the target vehicle
  • is the front wheel angle
  • K is the stability factor (a parameter calibrated in advance, associated with the vehicle system)
  • t represents a calculation period
  • (x, y ) is the coordinate of the trajectory point in the previous calculation cycle relative to the target vehicle
  • (x', y') is the coordinate of the trajectory point in the current calculation cycle relative to the target vehicle
  • equations (1), (2) and (3) By substituting equations (1), (2) and (3) into equations (4) and (5), the transformation matrix can be obtained, which can then convert the trajectory point coordinates in the trajectory information into the current coordinates of the target vehicle. Coordinate points in the coordinate system.
  • the target vehicle when the target vehicle obtains the latest trajectory point of the preceding vehicle, it can determine the coordinate information, curvature information, and distance information of the trajectory point from the previous trajectory point, and can combine the coordinate information, curvature information, etc.
  • Information and distance information are stored in the information structure of the current trajectory point.
  • the curvature information of the latest trajectory point can be calculated through the two trajectory points collected before the latest trajectory point, as shown in Figure 1h.
  • the three-point curvature calculation method can be used to determine the curvature information based on the first two points A and B.
  • the curvature of the latest point C, any A, B, C that are not on a straight line can form a circle, and the curvature can be obtained by calculating the radius of the circle.
  • k represents the curvature of the trajectory point (i.e., curvature information)
  • R is the radius of curvature
  • a, b, and c are the side lengths of the triangle composed of A, B, and C respectively
  • is the angle of point A in triangle ABC.
  • the distance between the two trajectory points can be calculated based on the coordinate information of the two, as shown in Eq. 9 shown.
  • the coordinates of point B are (x b , y b ), and the coordinates of point C are (x c , y c ).
  • the coordinate information, curvature information and distance information of each track point from the previous track point are calculated according to the above method, so that the coordinate information, curvature information and adjacent track points of each track point can be obtained. distance information.
  • the target vehicle stores a new trajectory point every time it travels a preset distance (the preset distance can be calibrated, such as 1m); the target vehicle can store the points in a cyclic update manner, such as setting a preset storage point number ( The number of storage points can be calibrated, such as 50 track points).
  • the number of storage points can be calibrated, such as 50 track points.
  • the target vehicle advances a certain distance, a new track point of the preceding vehicle will be generated.
  • the target vehicle will store a new track point every time. , the oldest points can be discarded.
  • the target vehicle and the preceding vehicle may be vehicles connected to the Internet of Vehicles system, so that the trajectory information of the preceding vehicle that has recently passed through the road section where the target vehicle is currently located can be obtained through the Internet of Vehicles system, and the trajectory information can be used Assist the target vehicle to pass this road section.
  • Step 102 Use the trajectory information as the driving trajectory information of the target vehicle to preview the target vehicle according to the preset preview time and determine the preview point information.
  • the preceding trajectory information can be used as the driving trajectory information of the target vehicle, that is, the vehicle can perform automatic driving according to the driving trajectory information. During automatic driving, it can preview on the trajectory information.
  • the preview time of the target vehicle can be determined (the preview time can be set according to user needs, and there are no excessive restrictions on the preview time here), and then according to the preview time The time can interpolate the preview point in the trajectory information to determine the preview point information.
  • Step 103 Perform steering control on the target vehicle according to the preview point information.
  • the preview point information may include coordinate information, curvature information, heading angle information, etc. of the preview point.
  • the preview point information can be converted into steering control parameters related to the target vehicle (such as steering wheel angle information), and then the vehicle can be controlled to steer according to these parameters.
  • trajectory information composed of multiple trajectory points collected for the preceding vehicle is obtained, and then the trajectory information is used as The driving trajectory information of the target vehicle is used to preview the target vehicle according to the preset preview time and determine the preview point information, so that the target vehicle can be steered according to the preview point information,
  • the driving trajectory information of the target vehicle is used to preview the target vehicle according to the preset preview time and determine the preview point information, so that the target vehicle can be steered according to the preview point information
  • FIG. 2 a step flow chart of another vehicle steering control method provided by an embodiment of the present application is shown, which may specifically include the following steps:
  • Step 201 When it is detected that there is a preceding vehicle traveling in the same direction in front of the target vehicle, obtain trajectory information composed of multiple trajectory points collected for the preceding vehicle.
  • Step 202 Obtain the speed information of the target vehicle.
  • Step 203 Determine the preview distance based on the speed information and the preset preview time.
  • the preview distance can be the X coordinate of the target vehicle's preview point in the current coordinate system, and can change with the real-time speed of the target vehicle.
  • the preset preview time of the target vehicle can be calibrated in advance (such as 0.5 S), thus, after obtaining the speed information of the target vehicle, the preview distance of the target vehicle can be obtained by multiplying the speed information by the preset preview time.
  • Step 204 Determine preview point information corresponding to the preview distance in the trajectory information.
  • interpolation operations can be performed in the trajectory information according to the distance to obtain the preview point corresponding to the preview distance, so that the preview point information can be determined.
  • Step 205 Perform steering control on the target vehicle according to the preview point information.
  • trajectory information composed of multiple trajectory points collected for the preceding vehicle is obtained, and then the trajectory information of the target vehicle is obtained.
  • Speed information and based on the speed information and the preset preview time, determine the preview distance, and determine the preview point information corresponding to the preview distance in the trajectory information, so that the preview point information can be determined according to the preview time.
  • Aiming point information is used to control the steering of the target vehicle, thereby realizing the preview and steering control of the own vehicle by collecting the trajectory of the preceding vehicle, without relying on lane line recognition, and can effectively avoid the current sensing device temporarily. Unreachable obstacles improve the safety of assisted driving.
  • FIG. 3a a step flow chart of another vehicle steering control method provided by an embodiment of the present application is shown, which may specifically include the following steps:
  • Step 301 When it is detected that there is a preceding vehicle traveling in the same direction in front of the target vehicle, obtain trajectory information composed of multiple trajectory points collected for the preceding vehicle;
  • Step 302 obtain the speed information of the target vehicle
  • Step 303 determine the preview distance based on the speed information and the preset preview time
  • Step 304 In the trajectory information, determine the preview point corresponding to the preview distance, and the first trajectory point and the second trajectory point adjacent to the preview point.
  • interpolation can be performed according to the preview distance in the trajectory information, so that the preview point corresponding to the maximum preview distance can be determined, and the two adjacent trajectory points before and after the preview point can be determined, that is, the first a first trajectory point and a second trajectory point.
  • trajectory points of the trajectory information can be searched forward and backward according to the preview distance to obtain two adjacent trajectory points.
  • Step 305 Determine preview point information based on the first trajectory point and the second trajectory point.
  • the preview point information of the preview point can be determined based on the first trajectory point and the second trajectory point.
  • the preview point information may include coordinate information, curvature information, heading angle information, etc. of the preview point.
  • step 305 may include the following sub-steps:
  • Sub-step 3051 determine the first coordinate information of the first trajectory point and the second coordinate information of the second trajectory point;
  • each trajectory point in the trajectory information can have its corresponding information structure, so that the coordinate information of the first trajectory point and the second trajectory point can be determined, that is, the first coordinate information and the second coordinate information.
  • Sub-step 3052 Determine the target coordinate information of the preview point on the trajectory information according to the first coordinate information, the second coordinate information and the preview distance.
  • the preview distance can be combined to determine the preview offset of the preview point in the trajectory information, that is, the Y coordinate of the preview point, and then the preview distance and preview can be combined Offset, get the target coordinate information of the preview point.
  • step 305 also includes the following sub-steps:
  • Sub-step 3053 determine the first curvature information of the first trajectory point and the second curvature information of the second trajectory point;
  • each trajectory point in the trajectory information can have its corresponding information structure, so that the curvature information of the first trajectory point and the second trajectory point can be determined, that is, the first curvature information and the second curvature information. .
  • Sub-step 3054 Determine the curvature information of the preview point according to the first curvature information and the second curvature information.
  • the curvature at B is calculated by interpolating the distance between the curvatures of points A1 and C1 in the X direction, which is the curvature at the preview point.
  • M filter parameter, which can be adjusted according to the sensor error
  • the curvature at the preview point can be calculated, in which the curvature of point A is k a1 , the curvature of point B1 is k b1 , and the curvature of point C1 is k c1 .
  • step 305 also includes the following sub-steps:
  • Sub-step 3055 In the trajectory information, determine the third curvature information of multiple trajectory points from the nearest trajectory point of the target vehicle to the preview point and the distance information between adjacent trajectory points.
  • Sub-step 3056 Determine the heading angle change amount between adjacent trajectory points according to the third curvature information and the distance information.
  • Sub-step 3057 Determine the heading angle information of the preview point based on the heading angle change amount between the adjacent trajectory points.
  • ⁇ 0 is the heading angle of the nearest track point in front of the target vehicle at the current moment
  • ⁇ i is the heading angle change between two adjacent track points
  • ⁇ ab is the heading angle change from point A1 to point B1
  • ⁇ n is A1
  • k i is the curvature of the point
  • d i represents the distance from this point to the previous point
  • R a is the radius of curvature of point A1.
  • is the heading angle of the preview point B1.
  • equation (14) into equation (13) to get the heading angle of the preview point.
  • Step 306 Perform steering control on the target vehicle according to the preview point information.
  • trajectory information composed of multiple trajectory points collected for the preceding vehicle is obtained, and then the trajectory information of the target vehicle is obtained.
  • Speed information and based on the speed information and the preset preview time, determine the preview distance, and in the trajectory information, determine the preview point corresponding to the preview distance, and the relative distance of the preview point.
  • the adjacent first trajectory point and the second trajectory point can be determined based on the first trajectory point and the second trajectory point, so that the target vehicle can be targeted according to the preview point information.
  • steps ( 2) when no preceding vehicle is detected that meets the above preset conditions, the process ends.
  • the trajectory point of the preceding vehicle can be calculated and the coordinate information of the preceding vehicle's trajectory point can be stored.
  • the coordinate systems of the track points collected in history are different from the track points collected by the target vehicle at the current moment, so that the coordinate system of the leading vehicle track points can be converted to Update all the leading vehicle track points so that all track points are track points in the coordinate system where the target vehicle is located at the current moment, and store the updated coordinate information in the information structure of the track point.
  • a circle is formed based on three points that are not on the same straight line, the curvature of the latest trajectory point is determined, and the calculated curvature is stored in the information structure of the trajectory point.
  • the distance from the latest trajectory point to the previous trajectory point ie, distance information
  • the calculated distance is stored in the information structure of the associated trajectory point.
  • the preset preview time determines the preview distance (i.e., the X coordinate of the preview point) based on the current speed of the target vehicle, and interpolate the preview point in the trajectory of the preceding vehicle to get Preview point offset (i.e. Y coordinate of preview point).
  • FIG. 4 a schematic structural diagram of a vehicle steering control device provided by an embodiment of the present application is shown. Specifically, it may include the following modules:
  • the trajectory information acquisition module 401 is used to obtain trajectory information composed of multiple trajectory points collected for the preceding vehicle when it is detected that there is a preceding vehicle traveling in the same direction in front of the target vehicle;
  • the preview point information determination module 402 is used to use the trajectory information as the driving trajectory information of the target vehicle to preview the target vehicle according to the preset preview time and determine the preview point information;
  • the steering control module 403 is used to perform steering control on the target vehicle according to the preview point information.
  • the preview point information determination module 402 may include:
  • Speed information determination submodule used to obtain the speed information of the target vehicle
  • a preview distance determination submodule used to determine the preview distance based on the speed information and the preset preview time
  • the preview point information determination submodule is used to determine the preview point information corresponding to the preview distance in the trajectory information.
  • the preview point information determination sub-module may include:
  • a trajectory point determination unit configured to determine the preview point corresponding to the preview distance in the trajectory information, and the first trajectory point and the second trajectory point adjacent to the preview point;
  • a preview point information determining unit is configured to determine preview point information based on the first trajectory point and the second trajectory point.
  • the preview point information determining unit may include:
  • a trajectory point coordinate information determination subunit used to determine the first coordinate information of the first trajectory point and the second coordinate information of the second trajectory point;
  • a preview point coordinate information determination subunit is used to determine the target coordinate information of the preview point on the trajectory information according to the first coordinate information, the second coordinate information and the preview distance.
  • the preview point information determining unit may include:
  • a trajectory point curvature determination subunit used to determine the first curvature information of the first trajectory point and the second curvature information of the second trajectory point;
  • a preview point curvature determination subunit is configured to determine curvature information of the preview point based on the first curvature information and the second curvature information.
  • the preview point information determining unit may include:
  • Curvature and distance determination subunit used to determine, in the trajectory information, third curvature information of multiple trajectory points from the nearest trajectory point of the target vehicle to the preview point and distance information between adjacent trajectory points ;
  • a heading angle change amount determination subunit configured to determine the heading angle change amount between adjacent trajectory points based on the third curvature information and the distance information;
  • the heading angle information determination subunit is used to determine the heading angle information of the preview point according to the heading angle change amount between the adjacent trajectory points.
  • the device may further include:
  • a coordinate conversion module configured to coordinate all the trajectory points in the trajectory information according to the current coordinate system of the target vehicle when the latest trajectory point of the preceding vehicle is collected during the driving of the target vehicle. Convert.
  • trajectory information composed of multiple trajectory points collected for the preceding vehicle is obtained, and then the trajectory information is used as The driving trajectory information of the target vehicle is used to preview the target vehicle according to the preset preview time and determine the preview point information, so that the target vehicle can be steered and controlled according to the preview point information,
  • the driving trajectory information of the target vehicle is used to preview the target vehicle according to the preset preview time and determine the preview point information, so that the target vehicle can be steered and controlled according to the preview point information
  • An embodiment of the present application also provides a vehicle, which may include a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • a vehicle which may include a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • the computer program is executed by the processor, the steps of the above vehicle steering control method are implemented. .
  • An embodiment of the present application also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the steps of the above vehicle steering control method are implemented.
  • the description is relatively simple. For relevant details, please refer to the partial description of the method embodiment.
  • embodiments of the present application may be provided as methods, devices, or computer program products. Therefore, embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing terminal device to produce a machine such that the instructions are executed by the processor of the computer or other programmable data processing terminal device. Means are generated for implementing the functions specified in the process or processes of the flowchart diagrams and/or the block or blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing terminal equipment to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the The instruction means implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing terminal equipment, so that a series of operating steps are performed on the computer or other programmable terminal equipment to produce computer-implemented processing, thereby causing the computer or other programmable terminal equipment to perform a computer-implemented process.
  • the instructions executed on provide steps for implementing the functions specified in a process or processes of the flow diagrams and/or a block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请实施例提供了一种车辆的转向控制方法、装置、车辆及存储介质,所述方法包括:在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息;将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息;按照所述预瞄点信息,对所述目标车辆进行转向控制。

Description

一种车辆的转向控制方法、装置、车辆及存储介质
相关申请
本申请要求于2022年3月16日申请的、申请号为202210258907.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆控制技术领域,特别是涉及一种车辆的转向控制方法、装置、车辆及存储介质。
背景技术
随着智能汽车的发展,车辆的辅助驾驶功能也日益强大,在目前的车辆辅助驾驶中,针对车辆的横向控制通常是依据摄像头识别的双侧/单侧车道线信息,进而根据车道线信息生成车辆的跟踪轨迹。
然而,车辆在行驶过程中,会经常发生车道线模糊或者被遮挡,从而导致车辆无法准确的提取车道线信息。此外,依据车道线信息生成的车辆行驶轨迹也无法真实的体现道路可行驶情况,比如,当道路中间有不被识别的坑洼、警示牌等障碍物时,车辆如无法有效地避开,存在一定的安全隐患。
而且,在车辆辅助驾驶过程中的轨迹规划过程,通常是通过识别车辆前方位置点坐标的信息进行预瞄,从而生成车辆的规划轨迹,当车辆前方存在障碍物时,可能无法识别车道前方位置点坐标的信息,进而无法时刻准确获取车辆的规划轨迹。
发明内容
鉴于上述问题,提出了以便提供克服上述问题或者至少部分地解决上述问题的一种车辆的转向控制方法、装置、车辆及存储介质,包括:
本申请提供一种车辆的转向控制方法,所述方法包括:
在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息;
将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息;
按照所述预瞄点信息,对所述目标车辆进行转向控制。
在一实施例中,所述将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息,包括:
获取所述目标车辆的速度信息;
基于所述速度信息和预设预瞄时间,确定预瞄距离;
在所述轨迹信息中,确定所述预瞄距离对应的预瞄点信息。
在一实施例中,所述在所述轨迹信息中,确定所述预瞄距离对应的预瞄点信息,包括:
在所述轨迹信息中,确定所述预瞄距离对应的预瞄点,以及所述预瞄点相邻的第一轨迹点和第二轨迹点;
根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息。
在一实施例中,所述根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息,包括:
确定所述第一轨迹点的第一坐标信息和所述第二轨迹点的第二坐标信息;
根据所述第一坐标信息、所述第二坐标信息以及所述预瞄距离,在所述轨迹信息上确定所述预瞄点的目标坐标信息。
在一实施例中,所述根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息,包括:
确定所述第一轨迹点的第一曲率信息和所述第二轨迹点的第二曲率信息;
根据所述第一曲率信息和所述第二曲率信息,确定所述预瞄点的曲率信息。
在一实施例中,所述根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息,包括:
在所述轨迹信息中,确定从目标车辆最近的轨迹点到所述预瞄点的多个轨迹点的第三曲率信息以及相邻轨迹点之间的距离信息;
根据所述第三曲率信息和所述距离信息,确定相邻轨迹点之间的航向角改变量;
根据所述相邻轨迹点之间的航向角改变量,确定所述预瞄点的航向角信息。
在一实施例中,在获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息之后,还包括:
在所述目标车辆行驶过程中,当采集到所述前车车辆的最新轨迹点时,将所述轨迹信息中的所有轨迹点按照所述目标车辆当前的坐标系进行坐标转换。
本申请还提供一种车辆的转向控制装置,所述装置包括:
轨迹信息获取模块,用于在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息;
预瞄点信息确定模块,用于将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息;
转向控制模块,用于按照所述预瞄点信息,对所述目标车辆进行转向控制。
本申请还提供一种车辆,包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的车辆的转向控制方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的车辆的转向控制方法。
本申请实施例具有以下优点:
本申请实施例通过在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息,进而将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息,从而可以按照所述预瞄点信息,对所述目标车辆进行转向控制,从而实现了通过采集前车轨迹用于本车车辆的预瞄以及转向控制,无需依赖车道线识别,且可以有效地避开目前传感装置暂时获取不到的障碍物,提高了辅助驾驶的安全性。
附图说明
为了更清楚地说明本申请的技术方案,下面将对本申请的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a是本申请一实施例提供的一种车辆行驶道路的示意图;
图1b是本申请一实施例提供的一种车道线被遮蔽的车道的示意图;
图1c是本申请一实施例提供的一种存在障碍物的车道示意图;
图1d是本申请一实施例提供的一种跟踪前车轨迹的示意图;
图1e是本申请一实施例提供的一种前车轨迹跟踪***的示意图;
图1f是本申请一实施例提供的一种车辆的转向控制方法的步骤流程图;
图1g是本申请一实施例提供的一种轨迹点坐标转换示意图;
图1h是本申请一实施例提供的一种轨迹点曲率计算示意图;
图2是本申请一实施例提供的另一种车辆的转向控制方法的步骤流程图;
图3a是本申请一实施例提供的又一种车辆的转向控制方法的步骤流程图;
图3b是本申请一实施例提供的一种车辆的预瞄点插值示意图;
图3c是本申请一实施例提供的一种车辆的预瞄点信息确定过程示意图;
图4是本申请一实施例提供的车辆的转向控制装置的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着智能汽车的发展,车辆的辅助驾驶功能也日益强大。如图1a所示为在车辆的辅助驾驶过程 中,通过安装在车辆前方的摄像头获取双侧/单侧车道线信息(图1a中实线部分左车道线、右车道线),获取车辆的行驶轨迹(图1a中虚线部分),在车辆前方的行驶轨迹上预瞄一个点(图1a中的点X),进而根据该预瞄点进行转向控制。
在实际应用中,车道线可以会被障碍物遮挡,如图1b所示,车辆两侧车辆被障碍物(如其他车辆等)遮挡,从而车辆无法获取完整车道线,从而无法获得行驶轨迹。
在另一种情况下,车辆的行驶轨迹上可能存在无法被识别的障碍物,即生成的行驶轨迹并没有避开这些障碍物,则会存在安全隐患,如图1c所示,为行驶轨迹上存在不被识别的障碍物(如警示牌、坑洼地段等)。
而且,当车辆前方存在不被识别的障碍物时,也无法识别车辆前方位置点坐标信息,无法实现预瞄,从而无法时刻准确得到车辆的行驶轨迹信息。
为解决上述车道线遮挡以及障碍物不被识别导致的车辆辅助驾驶问题,本申请实施例提出了一种适用场景广泛的车辆转向控制方法。如图1d所示,在车辆行驶过程中,当车辆在道路上行驶前方有车辆行驶时,可以通过采集前车的多个轨迹点作为本车辆的行驶轨迹,以进行车辆转向控制。
如图1e所示,为车辆中的一种前车轨迹提取跟踪***,该前车轨迹提取跟踪***,包括前车轨迹点采集模块、前车轨迹点跟踪模块,预瞄点计算模块,转向控制模块。
其中,该前车轨迹提取跟踪***与车辆摄像头以及车辆雷达连接,可获取摄像头与雷达的采集信息,所述前车轨迹提取跟踪***还与电动助力转向***(Electric Power Steering,EPS)连接。
在车辆行驶过程中,车辆的摄像头与雷达采集车辆周围环境信息,其中,包括对车辆前方的环境进行数据采集和识别,当车辆前方出现行驶车辆时,可以通过车辆的前车轨迹点采集模块通过摄像头和/或雷达采集该前车车辆的轨迹点,并在采集轨迹点的过程中,在前车轨迹点更新模块不断根据车辆当前位置对前车轨迹点进行更新,并在轨迹点更新后通过预瞄点计算模块确定相关的预瞄点信息,进而可以将预瞄点信息输入到车辆的转向控制模块,以输出相关车辆转向控制数据,转向控制数据模块得到车辆转向控制相关的数据后,将去输入到车辆的电动助力转向***中,以实现对车辆的转向控制。
在该方法中,车辆不必识别道路上的车道线,而前车行驶过的路径可以会避开道路中间的坑洼地段或小障碍物,从而,本车在紧跟前车轨迹时同样也会避开危险路段,实现了安全驾驶。
参照图1f,示出了本申请一实施例提供的一种车辆的转向控制方法的步骤流程图,具体可以包括如下步骤:
步骤101,在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多 个轨迹点所构成的轨迹信息。
在目标车辆上可以设置一个或多个传感设备,以使目标车辆可以更好地感知周围环境,其中,传感设备可以是车辆的摄像头设备、车身的雷达等,在本申请实施例中对此检测前车轨迹的传感设备不做过多限制。
当车辆通过传感设备检测到周围环境时,可以会检测到目标车辆前方的车辆,对于位于车辆前方,且与目标车辆同方向行驶的车辆被定义为前车车辆,该前车车辆此时行驶的轨迹可以为目标车辆即将行驶的轨迹,由于前车车辆可以避障行驶,从而以前车车辆实际行驶的轨迹作为目标车辆的行驶轨迹,可以有效确保车辆行驶过程的安全。
在目标车辆检测到前车车辆时,可以在行驶过程中不断采集前车车辆的轨迹点,通过采集的多个前车车辆的轨迹点可以构成前车车辆的轨迹信息。
在本申请实施例中,在获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息之后,还包括:
在所述目标车辆行驶过程中,当采集到所述前车车辆的最新轨迹点时,将所述轨迹信息中的所有轨迹点按照所述目标车辆当前的坐标系进行坐标转换。
在实际应用中,在目标车辆行驶过程中,传感设备可以不断采集目标车辆的最新轨迹点,但是,由于目标车辆在不断移动,从而会导致最新采集的轨迹点与之前采集的轨迹点实际上不处于相同的坐标系中,从而,需要按照目标车辆当前的坐标系对之前采集的轨迹点进行坐标转换,使所有采集的轨迹点均处于目标车辆当前的坐标系下,以便进行后续车辆的转向控制。
在一示例中,可以通过以下方式对一个计算周期内的轨迹信息中的所有轨迹点进行坐标转换(如图1g所示,目标物即为轨迹信息中待转换坐标系的轨迹点):
(1)获取目标车辆的前轮转角信息、实时车速信息、目标车辆的轴距以及目标车辆的两次数据时间戳。
(2)根据前轮转角信息、实时车速信息、轴距、时间戳信息,确定目标车辆在一个计算周期内的位姿变化信息。
(3)根据所述位姿变化信息,对所述轨迹点进行坐标转换。
Figure PCTCN2022119435-appb-000001
Figure PCTCN2022119435-appb-000002
Figure PCTCN2022119435-appb-000003
Figure PCTCN2022119435-appb-000004
Figure PCTCN2022119435-appb-000005
其中,L为目标车辆的车轴;v为目标车辆的当前车速;δ为前轮转角;K为稳定性因素(提前标定的参数,与车辆***关联);t表示一个计算周期;(x,y)是上一个计算周期轨迹点相对于目标车辆的坐标;(x’,y’)是当前计算周期轨迹点相对于目标车辆的坐标,
Figure PCTCN2022119435-appb-000006
指在一个计算周期目标车辆的位姿变化信息。
将式(1)、式(2)以及式(3)代入式(4)与式(5)中,即可得到变换矩阵,进而可以实现将轨迹信息中的轨迹点地坐标转换为目标车辆当前坐标系下的坐标点。
在一示例中,在目标车辆获取前车车辆的最新轨迹点时,可以确点轨迹点的坐标信息、曲率信息以及该轨迹点与上一轨迹点的距离信息等,并可以将坐标信息,曲率信息以及距离信息存入当前轨迹点的信息结构内。
在实际应用中,可以通过最新轨迹点前采集的两个轨迹点计算最新轨迹点的曲率信息,如图1h所示,可以运用三点计算曲率的方式,依据前两个点A、B,确定最新点C的曲率,任意不在一条直线上的A、B、C可以形成一个圆,计算出圆的半径即可得到曲率。
Figure PCTCN2022119435-appb-000007
Figure PCTCN2022119435-appb-000008
Figure PCTCN2022119435-appb-000009
其中,k表示轨迹点的曲率(即曲率信息),R为曲率半径,a,b,c分别为A、B、C组成三角形的边长,α为三角形ABC中A点的角度。
将式(7)和式(8)代入式(6)中即可得到C点曲率。
在实际应用中,当确定最新轨迹点的坐标,并对最新轨迹点相邻的一个轨迹点进行坐标系装换后,可以根据两个的坐标信息,计算两轨迹点之间的距离,如式9所示。
Figure PCTCN2022119435-appb-000010
其中,B点坐标为(x b,y b),C点坐标为(x c,y c)。
在每次更新轨迹点时,按照上述方式计算每个轨迹点的坐标信息、曲率信息以及与上一轨迹点的距离信息,从而可以得到每个轨迹点的坐标信息、曲率信息以及相邻轨迹点之间的距离信息。
在一示例中,目标车辆每行驶预设距离(预设距离可标定,如1m)就存储一个新的轨迹点;目标车辆可以采用循环更新的方式对点进行存储,如设置预设存储点数(存储点数可标定,如50个轨迹点),当目标车辆每前进一定距离时就会产生新的前车轨迹点,当存储数量达预设存储点数时,目标车辆每存储一个新的轨迹点时,可以丢弃最旧的点。
在一示例中,目标车辆与前车车辆了可以是接入车联网***中的车辆,从而可以通过车联网***获取最近通过目标车辆当前所处路段的前车车辆的轨迹信息,利用该轨迹信息辅助目标车辆通过该路段。
步骤102,将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息。
在确定前车车辆的轨迹信息后,可以将前改轨迹信息作为目标车辆的行驶轨迹信息,即车辆可以按照该行驶轨迹信息进行自动驾驶,在自动驾驶中,可以通过在轨迹信息上进行预瞄以确定目标车辆的转向需要的各项参数,具体的,可以确定目标车辆的预瞄时间(预瞄时间可以按照用户需求设置,在此并不对预瞄时间进行过多限制),进而根据预瞄时间可以在轨迹信息插值预瞄点,确定预瞄点信息。
步骤103,按照所述预瞄点信息,对所述目标车辆进行转向控制。
在一示例中,预瞄点信息可以包括预瞄点的坐标信息、曲率信息以及航向角信息等。
在确定预瞄点信息后,预瞄点信息可以被转化为目标车辆相关的转向控制参数(如方向盘转角信息),进而可以按照这些参数控制车辆进行转向。
在本申请实施例中,通过在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息,进而将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息,从而可以按照所述预瞄点信息,对所述目标车辆进行转向控制,从而实现了通过采集前车轨迹用于本车车辆的预瞄以及转向控制,无需 依赖车道线识别,且可以有效地避开目前传感装置暂时获取不到的障碍物,提高了辅助驾驶的安全性。
参照图2,示出了本申请一实施例提供的另一种车辆的转向控制方法的步骤流程图,具体可以包括如下步骤:
步骤201,在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息。
步骤202,获取所述目标车辆的速度信息。
步骤203,基于所述速度信息和预设预瞄时间,确定预瞄距离。
预瞄距离可以为目标车辆在当前坐标系下预瞄点的X坐标,可以随目标车辆的实时车速发生变化,在确定预瞄距离时,可以提前标定目标车辆的预设预瞄时间(如0.5S),从而,在获取目标车辆的速度信息后,可以通过将速度信息乘以预设预瞄时间得到目标车辆的预瞄距离。
步骤204,在所述轨迹信息中,确定所述预瞄距离对应的预瞄点信息。
在确定预瞄距离后,可以按照距离在轨迹信息中进行插值运算,得到预瞄距离对应的预瞄点,从而可以确定预瞄点信息。
步骤205,按照所述预瞄点信息,对所述目标车辆进行转向控制。
在本申请实施例中,通过在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息,进而获取所述目标车辆的速度信息,并基于所述速度信息和所述预设预瞄时间,确定预瞄距离,并在所述轨迹信息中,确定所述预瞄距离对应的预瞄点信息,从而可以按照所述预瞄点信息,对所述目标车辆进行转向控制,从而实现了通过采集前车轨迹用于本车车辆的预瞄以及转向控制,无需依赖车道线识别,且可以有效地避开目前传感装置暂时获取不到的障碍物,提高了辅助驾驶的安全性。
参照图3a,示出了本申请一实施例提供的另一种车辆的转向控制方法的步骤流程图,具体可以包括如下步骤:
步骤301,在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息;
步骤302,获取所述目标车辆的速度信息;
步骤303,基于所述速度信息和所述预设预瞄时间,确定预瞄距离;
步骤304,在所述轨迹信息中,确定所述预瞄距离对应的预瞄点,以及所述预瞄点相邻的第一轨迹点和第二轨迹点。
在确定预瞄距离后,可以在轨迹信息中,按照预瞄距离进行插值,从而的大预瞄距离对应的预瞄 点,并可以确定该预瞄点前后相邻的两个轨迹点,即第一轨迹点和第二轨迹点。
具体的,可以按照预瞄距离在轨迹信息的轨迹点中进行前后搜索,得到相邻的两个轨迹点。
步骤305,根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息。
在确定第一轨迹点和第二轨迹点后,可以根据第一轨迹点和第二轨迹点确定预瞄点的预瞄点信息。
其中,预瞄点信息可以包括预瞄点的坐标信息、曲率信息以及航向角信息等。
在本申请一实施例中,步骤305可以包括以下子步骤:
子步骤3051,确定所述第一轨迹点的第一坐标信息和所述第二轨迹点的第二坐标信息;
在实际应用中,在轨迹信息中的每个轨迹点中可以由其对应的信息结构,从而,可以确定第一轨迹点和第二轨迹点的坐标信息,即第一坐标信息与第二坐标信息。
子步骤3052,根据所述第一坐标信息、所述第二坐标信息以及所述预瞄距离,在所述轨迹信息上确定所述预瞄点的目标坐标信息。
在得到第一坐标信息和第二坐标信息后,可以结合预瞄距离,确定轨迹信息中预瞄点的预瞄偏移量,即预瞄点的Y坐标,进而可以结合预瞄距离和预瞄偏移量,得到预瞄点的目标坐标信息。
如图3b所示,通过B1点(预瞄点)的预瞄距离,在轨迹信息中进行前后搜索,得到A1,C1两点轨迹点,通过X轴方向的距离进行插值计算B1点的Y坐标。设A1点坐标为(x a1,y a1),B1点坐标(x b1,y b1),为且x b1为预瞄距离,C1点的坐标为(x c1,y c1)。
Figure PCTCN2022119435-appb-000011
y b1=y a1+p*(y c1-y a1)         式(11)
将式(10)代入式(11)即可计算出预瞄点偏移量y b1
在本申请另一实施例中,所述步骤305还包括以下子步骤:
子步骤3053,确定所述第一轨迹点的第一曲率信息和所述第二轨迹点的第二曲率信息;
在实际应用中,在轨迹信息中的每个轨迹点中可以由其对应的信息结构,从而,可以确定第一轨迹点和第二轨迹点的曲率信息,即第一曲率信息与第二曲率信息。
子步骤3054,根据所述第一曲率信息和所述第二曲率信息,确定所述预瞄点的曲率信息。
如图3b所示,通过A1、C1两点的曲率在X方向的距离进行插值计算B处的曲率,即为预瞄点处曲率,M(滤波参数,可以根据传感器误差进行调整)为插值斜率,代入下述式(12)即可计算出预瞄点处曲率,其中A点曲率为k a1,B1点的曲率为k b1,C1点的曲率为k c1
k b1=k a1+M*(k c1-k a1)                 式(12)
在本申请另一实施例中,所述步骤305还包括以下子步骤:
子步骤3055,在所述轨迹信息中,确定从目标车辆最近的轨迹点到所述预瞄点的多个轨迹点的第三曲率信息以及相邻轨迹点之间的距离信息。
子步骤3056,根据所述第三曲率信息和所述距离信息,确定相邻轨迹点之间的航向角改变量。
子步骤3057,根据所述相邻轨迹点之间的航向角改变量,确定所述预瞄点的航向角信息。
如图3b所示,θ0为当前时刻目标车辆前方最近轨迹点的航向角,θi为相邻两轨迹点间的航向角改变量,θab为A1点到B1点的航向角改变量,θn为A1点到C1点的航向角改变量,k i为该点的曲率,d i代表该点到上一点的距离,R a为A1点的曲率半径。
Figure PCTCN2022119435-appb-000012
θi=k i*d i                             式(14)
其中,α为预瞄点B1的航向角,将式(14)代入式(13)得到预瞄点的航向角。
步骤306,按照所述预瞄点信息,对所述目标车辆进行转向控制。
在本申请实施例中,通过在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息,进而获取所述目标车辆的速度信息,并基于所述速度信息和所述预设预瞄时间,确定预瞄距离,并在所述轨迹信息中,确定所述预瞄距离对应的预瞄点,以及所述预瞄点相邻的第一轨迹点和第二轨迹点,进而可以根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息,从而可以按照所述预瞄点信息,对所述目标车辆进行转向控制,从而实现了通过预瞄点前后的轨迹点实现预瞄以及转向控制,无需依赖车道线识别,且可以有效地避开目前传感装置暂时获取不到的障碍物,提高了辅助驾驶的安全性。
以下结合图3c对本申请实施例进行示例性说明:
(1)是否有前车
在目标车辆行驶的过程中,根据目标车辆的摄像头或者雷达等传感器检测周围环境中的障碍物并确认障碍物种类,当检测到在目标车辆前方有同向行驶的前车车辆时,执行步骤(2),当未检测到符合上述预设条件的前车车辆时,则该流程结束。
(2)前车轨迹点X,Y坐标存储
当存在前车车辆时,可以埃及前车车辆的轨迹点,并存储前车轨迹点的坐标信息。
(3)前车轨迹点X,Y坐标系转换后更新
当采集到多个前车轨迹点时,在目标车辆移动过程中,历史采集到的轨迹点与当前时刻目标车辆 采集的轨迹点的坐标系不同,从而可以对前车轨迹点进行坐标系转换以更新所有的前车轨迹点,使所有轨迹点均为当前时刻目标车辆所处的坐标系下轨迹点,将更新后的坐标信息存储在轨迹点的信息结构内。
(4)前车轨迹点曲率计算更新
在更新轨迹点后,根据不在同一直线上的三点构成圆,确定最新轨迹点的曲率,将计算得到的曲率存入该轨迹点的信息结构内。
(5)前车轨迹点到上一点的路程计算
在轨迹点的坐标后,还可以通过坐标信息,计算最新轨迹点到上一轨迹点的路程(即距离信息),并将计算的路程存入关联的轨迹点的信息结构内。
(6)预瞄点偏移量计算
在更新轨迹点坐标后,还可以设置预设预瞄时间,并根据目标车辆的当前车速确定预瞄距离(即预瞄点的X坐标),进行在前车轨迹中进行预瞄点插值,得到预瞄点偏移量(即预瞄点的Y坐标)。
(7)预瞄点航向角计算
从目标车辆当前所处位置开始,从最近的轨迹点到预瞄点,确定各点的曲率以及相邻两点的路程,进而通过曲率和路程对航向角进行累加,得到预瞄点的航向角信息。
(7)预瞄点曲率计算
根据预瞄点相邻的前后两个轨迹点的曲率计算预瞄点的曲率。
需要说明的是,对于方法实施例,为了简单描述,故将其表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图4,示出了本申请一实施例提供的一种车辆的转向控制装置的结构示意图,具体可以包括如下模块:
轨迹信息获取模块401,用于在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息;
预瞄点信息确定模块402,用于将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息;
转向控制模块403,用于按照所述预瞄点信息,对所述目标车辆进行转向控制。
在本申请一实施例中,所述预瞄点信息确定模块402可以包括:
速度信息确定子模块,用于获取所述目标车辆的速度信息;
预瞄距离确定子模块,用于基于所述速度信息和所述预设预瞄时间,确定预瞄距离;
预瞄点信息确定子模块,用于在所述轨迹信息中,确定所述预瞄距离对应的预瞄点信息。
在本申请一实施例中,所述预瞄点信息确定子模块可以包括:
轨迹点确定单元,用于在所述轨迹信息中,确定所述预瞄距离对应的预瞄点,以及所述预瞄点相邻的第一轨迹点和第二轨迹点;
预瞄点信息确定单元,用于根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息。
在本申请一实施例中,所述预瞄点信息确定单元可以包括:
轨迹点坐标信息确定子单元,用于确定所述第一轨迹点的第一坐标信息和所述第二轨迹点的第二坐标信息;
预瞄点坐标信息确定子单元,用于根据所述第一坐标信息、所述第二坐标信息以及所述预瞄距离,在所述轨迹信息上确定所述预瞄点的目标坐标信息。
在本申请一实施例中,所述预瞄点信息确定单元可以包括:
轨迹点曲率确定子单元,用于确定所述第一轨迹点的第一曲率信息和所述第二轨迹点的第二曲率信息;
预瞄点曲率确定子单元,用于根据所述第一曲率信息和所述第二曲率信息,确定所述预瞄点的曲率信息。
在本申请一实施例中,所述预瞄点信息确定单元可以包括:
曲率与距离确定子单元,用于在所述轨迹信息中,确定从目标车辆最近的轨迹点到所述预瞄点的多个轨迹点的第三曲率信息以及相邻轨迹点之间的距离信息;
航向角改变量确定子单元,用于根据所述第三曲率信息和所述距离信息,确定相邻轨迹点之间的航向角改变量;
航向角信息确定子单元,用于根据所述相邻轨迹点之间的航向角改变量,确定所述预瞄点的航向角信息。
在本申请一实施例中,所述装置还可以包括:
坐标转换模块,用于在所述目标车辆行驶过程中,当采集到所述前车车辆的最新轨迹点时,将所述轨迹信息中的所有轨迹点按照所述目标车辆当前的坐标系进行坐标转换。
在本申请实施例中,通过在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息,进而将所述轨迹信息作为所述目标车辆的行驶轨迹信息, 以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息,从而可以按照所述预瞄点信息,对所述目标车辆进行转向控制,从而实现了通过采集前车轨迹用于本车车辆的预瞄以及转向控制,无需依赖车道线识别,且可以有效地避开目前传感装置暂时获取不到的障碍物,提高了辅助驾驶的安全性。
本申请一实施例还提供了一种车辆,可以包括处理器、存储器及存储在存储器上并能够在处理器上运行的计算机程序,计算机程序被处理器执行时实现如上车辆的转向控制方法的步骤。
本申请一实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储计算机程序,计算机程序被处理器执行时实现如上车辆的转向控制方法的步骤。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念, 则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对所提供的一种车辆的转向控制方法、装置、车辆及存储介质,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种车辆的转向控制方法,其中,所述方法包括:
    在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息;
    将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息;
    按照所述预瞄点信息,对所述目标车辆进行转向控制。
  2. 根据权利要求1所述的方法,其中,所述将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息,包括:
    获取所述目标车辆的速度信息;
    基于所述速度信息和预设预瞄时间,确定预瞄距离;
    在所述轨迹信息中,确定所述预瞄距离对应的预瞄点信息。
  3. 根据权利要求2所述的方法,其中,所述在所述轨迹信息中,确定所述预瞄距离对应的预瞄点信息,包括:
    在所述轨迹信息中,确定所述预瞄距离对应的预瞄点,以及所述预瞄点相邻的第一轨迹点和第二轨迹点;
    根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息。
  4. 根据权利要求3所述的方法,其中,所述根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息,包括:
    确定所述第一轨迹点的第一坐标信息和所述第二轨迹点的第二坐标信息;
    根据所述第一坐标信息、所述第二坐标信息以及所述预瞄距离,在所述轨迹信息上确定所述预瞄点的目标坐标信息。
  5. 根据权利要求3或4所述的方法,其中,所述根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息,包括:
    确定所述第一轨迹点的第一曲率信息和所述第二轨迹点的第二曲率信息;
    根据所述第一曲率信息和所述第二曲率信息,确定所述预瞄点的曲率信息。
  6. 根据权利要求5所述的方法,其中,所述根据所述第一轨迹点和所述第二轨迹点,确定预瞄点信息,包括:
    在所述轨迹信息中,确定从目标车辆最近的轨迹点到所述预瞄点的多个轨迹点的第三曲率信息以及相邻轨迹点之间的距离信息;
    根据所述第三曲率信息和所述距离信息,确定相邻轨迹点之间的航向角改变量;
    根据所述相邻轨迹点之间的航向角改变量,确定所述预瞄点的航向角信息。
  7. 根据权利要求1所述的方法,其中,在获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息之后,还包括:
    在所述目标车辆行驶过程中,当采集到所述前车车辆的最新轨迹点时,将所述轨迹信息中的所有轨迹点按照所述目标车辆当前的坐标系进行坐标转换。
  8. 一种车辆的转向控制装置,其中,所述装置包括:
    轨迹信息获取模块,用于在检测到目标车辆前方存在同向行驶的前车车辆时,获取针对所述前车车辆采集的多个轨迹点所构成的轨迹信息;
    预瞄点信息确定模块,用于将所述轨迹信息作为所述目标车辆的行驶轨迹信息,以按照预设预瞄时间对所述目标车辆进行预瞄,确定预瞄点信息;
    转向控制模块,用于按照所述预瞄点信息,对所述目标车辆进行转向控制。
  9. 一种车辆,其中,包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的车辆的转向控制方法。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的车辆的转向控制方法。
PCT/CN2022/119435 2022-03-16 2022-09-16 一种车辆的转向控制方法、装置、车辆及存储介质 WO2023173713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210258907.2 2022-03-16
CN202210258907.2A CN114735002B (zh) 2022-03-16 2022-03-16 一种车辆的转向控制方法、装置、车辆及存储介质

Publications (1)

Publication Number Publication Date
WO2023173713A1 true WO2023173713A1 (zh) 2023-09-21

Family

ID=82277850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119435 WO2023173713A1 (zh) 2022-03-16 2022-09-16 一种车辆的转向控制方法、装置、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN114735002B (zh)
WO (1) WO2023173713A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735002B (zh) * 2022-03-16 2023-05-16 广州小鹏自动驾驶科技有限公司 一种车辆的转向控制方法、装置、车辆及存储介质
CN115683116A (zh) * 2022-11-02 2023-02-03 联创汽车电子有限公司 前车轨迹生成方法及模块
CN115973162B (zh) * 2023-02-14 2024-05-31 吉咖智能机器人有限公司 用于确定车辆行驶轨迹的方法、装置、电子设备和介质
CN116931574B (zh) * 2023-07-24 2024-06-21 国广顺能(上海)能源科技有限公司 一种车体多模式循迹方法、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358287A (zh) * 2011-09-05 2012-02-22 北京航空航天大学 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法
CN110316193A (zh) * 2019-07-02 2019-10-11 华人运通(上海)自动驾驶科技有限公司 预瞄距离的设置方法、装置、设备及计算机可读存储介质
KR20200081524A (ko) * 2018-12-17 2020-07-08 현대자동차주식회사 차량 및 그 제어 방법
WO2021102957A1 (zh) * 2019-11-29 2021-06-03 驭势(上海)汽车科技有限公司 一种车道保持方法、车载设备和存储介质
CN113353103A (zh) * 2021-07-27 2021-09-07 中国第一汽车股份有限公司 一种弯道车速控制方法、装置、设备及介质
CN114735002A (zh) * 2022-03-16 2022-07-12 广州小鹏自动驾驶科技有限公司 一种车辆的转向控制方法、装置、车辆及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358287A (zh) * 2011-09-05 2012-02-22 北京航空航天大学 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法
KR20200081524A (ko) * 2018-12-17 2020-07-08 현대자동차주식회사 차량 및 그 제어 방법
CN110316193A (zh) * 2019-07-02 2019-10-11 华人运通(上海)自动驾驶科技有限公司 预瞄距离的设置方法、装置、设备及计算机可读存储介质
WO2021102957A1 (zh) * 2019-11-29 2021-06-03 驭势(上海)汽车科技有限公司 一种车道保持方法、车载设备和存储介质
CN113353103A (zh) * 2021-07-27 2021-09-07 中国第一汽车股份有限公司 一种弯道车速控制方法、装置、设备及介质
CN114735002A (zh) * 2022-03-16 2022-07-12 广州小鹏自动驾驶科技有限公司 一种车辆的转向控制方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
CN114735002A (zh) 2022-07-12
CN114735002B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2023173713A1 (zh) 一种车辆的转向控制方法、装置、车辆及存储介质
US9428187B2 (en) Lane change path planning algorithm for autonomous driving vehicle
US9457807B2 (en) Unified motion planning algorithm for autonomous driving vehicle in obstacle avoidance maneuver
KR101551096B1 (ko) 자율주행차량의 차선변경장치 및 방법
JP6025273B2 (ja) 車両の走行制御装置
CN110785328B (zh) 停车辅助方法及停车控制装置
CN110361013B (zh) 一种用于车辆模型的路径规划***及方法
CN108136988B (zh) 停车路径计算装置、停车辅助装置以及停车路径计算方法
KR101512784B1 (ko) 자동주차 지원방법 및 자동주차 지원시스템
US10885358B2 (en) Method for detecting traffic signs
CN109789875B (zh) 行驶路径设定方法及行驶路径设定装置
JP6610799B2 (ja) 車両の走行制御方法および走行制御装置
CN111830979A (zh) 一种轨迹优化方法和装置
CN112327830B (zh) 车辆自动驾驶变道轨迹的规划方法及电子设备
JP2017061264A (ja) 車両の操舵制御装置
CN113591618B (zh) 前方道路形状估算方法、***、车辆及存储介质
JP2016224802A (ja) 車両制御装置及びプログラム
US20220314967A1 (en) Vehicular control system
CN113753028B (zh) 驾驶辅助装置、驾驶辅助方法及电脑可读取记录介质
CN112433531A (zh) 一种自动驾驶车辆的轨迹跟踪方法、装置及计算机设备
CN112677959A (zh) 一种泊车的方法和装置
JP2020006917A (ja) 操舵制御装置、操舵制御方法、及び操舵制御システム
JP2017043255A (ja) 車両の走行制御装置
CN114074674A (zh) 一种引导车辆历史轨迹曲线的获取方法及相关装置
JP3440956B2 (ja) 車両用走行路検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931734

Country of ref document: EP

Kind code of ref document: A1