WO2023173414A1 - 电池单体及其制造方法和制造***、电池以及用电装置 - Google Patents

电池单体及其制造方法和制造***、电池以及用电装置 Download PDF

Info

Publication number
WO2023173414A1
WO2023173414A1 PCT/CN2022/081730 CN2022081730W WO2023173414A1 WO 2023173414 A1 WO2023173414 A1 WO 2023173414A1 CN 2022081730 W CN2022081730 W CN 2022081730W WO 2023173414 A1 WO2023173414 A1 WO 2023173414A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
electrode
battery cell
terminal
battery
Prior art date
Application number
PCT/CN2022/081730
Other languages
English (en)
French (fr)
Inventor
林蹬华
陈龙
黄守君
陈新祥
郑于炼
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280060985.XA priority Critical patent/CN117941143A/zh
Priority to PCT/CN2022/081730 priority patent/WO2023173414A1/zh
Priority to PCT/CN2022/122119 priority patent/WO2023173721A1/zh
Priority to CN202280034609.3A priority patent/CN117296194A/zh
Publication of WO2023173414A1 publication Critical patent/WO2023173414A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell and its manufacturing method and system, batteries and electrical devices.
  • Battery cells are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, electric tools, etc.
  • the battery cells may include cadmium-nickel battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, etc.
  • the present application provides a battery cell, its manufacturing method and system, a battery and an electrical device, which can improve the performance of the battery cell.
  • a battery cell which includes a casing, a first electrode assembly, a second electrode assembly, a first electrode terminal and a second electrode terminal.
  • the first electrode assembly and the second electrode assembly are accommodated in the housing and arranged along the first direction, and the first electrode assembly is insulated from the second electrode assembly.
  • the first electrode terminal is disposed on the outer casing and electrically connected to the first electrode assembly to conduct electricity from the first electrode assembly.
  • the second electrode terminal is disposed on the housing and electrically connected to the second electrode assembly to lead out the electrical energy of the second electrode assembly.
  • the first electrode assembly and the second electrode assembly are arranged along the first direction, which can increase the size of the battery cell along the first direction, thereby increasing the space utilization of the battery cell in the battery and improving the energy density.
  • the first electrode assembly and the second electrode assembly are insulated, and the current generated by the first electrode assembly and the current generated by the second electrode assembly are drawn out through the first electrode terminal and the second electrode terminal respectively.
  • the first electrode assembly and the second electrode assembly There is no need to transmit current to each other, which can shorten the conductive path of the first electrode assembly and the second electrode assembly, reduce internal resistance, reduce heat generation, increase the power of the battery cell, and improve the charge and discharge performance of the battery cell.
  • the first electrode assembly and the second electrode assembly are spaced apart in the first direction.
  • the first electrode assembly and the second electrode assembly are separated by a certain distance in the first direction, which can reduce the possibility of contact between the pole piece of the first electrode assembly and the pole piece of the second electrode assembly and reduce short circuit. risks and improve safety.
  • the battery cell further includes a first insulating member, at least a portion of the first insulating member is located between the first electrode assembly and the second electrode assembly to insulate the first electrode assembly and the second electrode assembly.
  • the first insulating member insulates the first electrode assembly and the second electrode assembly.
  • the first insulating member can block the first electrode assembly and the second electrode assembly, reducing the The possibility of contact between the pole piece of the first electrode assembly and the pole piece of the second electrode assembly reduces the risk of short circuit and improves safety.
  • the first insulating member is provided with a through hole, which connects a space on a side of the first insulating member facing the first electrode assembly and a space on a side of the first insulating member facing the second electrode assembly.
  • the through hole can provide a flow channel for the electrolyte, and the electrolyte can flow in the space on both sides of the first insulating member through the through hole to improve the uniformity of the electrolyte infiltration into the first electrode assembly and the second electrode assembly. sex.
  • the battery cell further includes a second insulating member wrapped around the outside of the first electrode assembly to isolate the first electrode assembly from at least part of the housing.
  • the first insulating member is connected to the second insulating member.
  • the second insulating member can reduce the risk of the outer shell connecting the positive and negative electrode plates of the first electrode assembly, thereby improving safety.
  • the second insulating member is connected to the first insulating member to reduce the shaking amplitude of the first insulating member when the battery cell is subjected to external impact, thereby reducing the risk of failure of the first insulating member and improving safety.
  • the space outside the first electrode assembly is connected to the space outside the second electrode assembly.
  • the electrolyte can flow between the first electrode assembly and the second electrode assembly to improve the consistency of the electrolyte infiltrating the first electrode assembly and the second electrode assembly.
  • the first electrode terminal and the second electrode terminal are respectively installed at both ends of the housing along the first direction.
  • the above solution increases the distance between the connection structure between the first electrode terminal and the first electrode assembly and the connection structure between the second electrode terminal and the second electrode assembly, thereby reducing the risk of interference and simplifying the assembly process.
  • the first electrode terminal includes a first positive terminal and a first negative terminal, the first positive terminal is electrically connected to the positive electrode of the first electrode assembly, and the first negative terminal is electrically connected to the negative electrode of the first electrode assembly.
  • the second electrode terminal includes a second positive terminal and a second negative terminal. The second positive terminal is electrically connected to the positive electrode piece of the second electrode assembly, and the second negative terminal is electrically connected to the negative electrode piece of the second electrode assembly.
  • the maximum size of the battery cell along the first direction is 200mm-2000mm.
  • the battery cells have a larger size in the first direction, thereby reducing the number of battery cells in the battery, reducing the use of fixed structures for fixing battery cells, improving space utilization, and increasing Battery energy density.
  • the first electrode terminal and the second electrode terminal can respectively conduct the current of the first electrode assembly and the current of the second electrode assembly, which can reduce the current flowing between the first electrode assembly and the second electrode assembly, even if the battery cell
  • the overall length can also make the internal resistance of the first electrode assembly and the internal resistance of the second electrode assembly meet the requirements, reduce heat generation, and improve the charge and discharge performance of the battery cell.
  • the housing includes a housing and two end caps, the housing has openings at both ends along the first direction, and the two end caps are respectively used to cover the two openings.
  • the first electrode terminal and the second electrode terminal are respectively installed on the two end caps.
  • the housing includes two first side plates disposed oppositely along a second direction, the second direction being perpendicular to the first direction. At least one first side plate is provided with a pressure relief mechanism configured to be actuated when the internal pressure or temperature of the battery cell reaches a threshold value to relieve the internal pressure.
  • a pressure relief mechanism configured to be actuated when the internal pressure or temperature of the battery cell reaches a threshold value to relieve the internal pressure.
  • the pressure relief mechanism can release the internal pressure of the battery cell when the battery cell undergoes thermal runaway, thereby reducing the risk of battery cell explosion and improving safety.
  • the high-temperature and high-pressure substances discharged from the end of the first electrode assembly facing the second electrode assembly and the high-temperature and high-pressure substances discharged from the end of the second electrode assembly facing the first electrode assembly can quickly act on on the pressure relief mechanism so that the pressure relief mechanism can be activated in time and relieve the internal pressure.
  • the housing includes two second side plates disposed oppositely along a third direction, the third direction being perpendicular to the first direction and the second direction.
  • the area of the second side panel is greater than the area of the first side panel.
  • the first electrode assembly and the second electrode assembly will expand and squeeze the first side plate and the second side plate, causing the first side plate and the second side plate to deform; the area of the first side plate is small, and its area is small.
  • the expansion force received is also smaller, and the degree of deformation is also smaller.
  • the pressure relief mechanism is arranged on the first side plate with a smaller area, which can reduce the deformation of the pressure relief mechanism, reduce the risk of fatigue damage of the pressure relief mechanism, and improve safety.
  • the first direction is parallel to the length direction of the battery cell.
  • the first electrode assembly includes a first pole piece and a second pole piece, the first pole piece and the second pole piece are wound around a winding axis, and the winding axis is parallel to the first direction.
  • the first electrode assembly includes a plurality of first pole pieces and a plurality of second pole pieces, and the plurality of first pole pieces and the plurality of second pole pieces are alternately stacked along the third direction.
  • the third direction is perpendicular to the first direction.
  • the first electrode assembly includes a plurality of first pole pieces and a second pole piece
  • the second pole piece is continuously bent and includes a plurality of laminated segments and a plurality of bent segments, a plurality of laminated segments and a plurality of
  • the first pole pieces are alternately stacked along the third direction, and each bending section is used to connect two adjacent stacked sections.
  • the third direction is perpendicular to the first direction.
  • embodiments of the present application provide a battery including a plurality of battery cells according to any embodiment of the first aspect.
  • the battery further includes a first bus component, a second bus component, and a third bus component.
  • the first bus part is used to electrically connect the first electrode terminals of the plurality of battery cells.
  • the second bus part is used to electrically connect the second electrode terminals of the plurality of battery cells.
  • the third bus part is used to electrically connect the first electrode terminal of the at least one battery cell to the second electrode terminal.
  • embodiments of the present application provide an electrical device, including a battery cell according to any embodiment of the first aspect, and the battery cell is used to provide electric energy.
  • embodiments of the present application provide a method for manufacturing a battery cell, including: providing a casing, a first electrode terminal and a second electrode terminal, the first electrode terminal and the second electrode terminal being disposed on the casing; providing a first Electrode assembly and second electrode assembly; the first electrode assembly and the second electrode assembly are installed in the housing, and the first electrode terminal is electrically connected to the first electrode assembly, and the second electrode terminal is electrically connected to the second electrode assembly.
  • the first electrode assembly and the second electrode assembly are arranged along the first direction and are insulated.
  • the first electrode terminal is used to conduct electricity from the first electrode assembly, and the second electrode terminal is used to conduct electricity from the second electrode assembly.
  • embodiments of the present application provide a battery cell manufacturing system, including a first providing device, a second providing device, and an assembly device.
  • the first providing device is used to provide a housing, a first electrode terminal and a second electrode terminal, and the first electrode terminal and the second electrode terminal are arranged on the housing.
  • the second providing device is used to provide the first electrode assembly and the second electrode assembly.
  • the assembly device is used to install the first electrode assembly and the second electrode assembly in the housing, and electrically connect the first electrode terminal to the first electrode assembly and the second electrode terminal to the second electrode assembly.
  • the first electrode assembly and the second electrode assembly are arranged along the first direction and are insulated.
  • the first electrode terminal is used to conduct electricity from the first electrode assembly
  • the second electrode terminal is used to conduct electricity from the second electrode assembly.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic three-dimensional structural diagram of a battery cell provided by some embodiments of the present application.
  • Figure 4 is an exploded schematic diagram of the battery cell shown in Figure 3;
  • Figure 5 is a schematic cross-sectional view of the battery cell shown in Figure 3;
  • FIG. 6 is an enlarged schematic diagram of the battery cell shown in Figure 5 at box A;
  • Figure 7 is an enlarged schematic diagram of Figure 6 at circular frame B;
  • Figure 8 is a schematic cross-sectional view of the first electrode assembly of the battery cell provided by some embodiments of the present application.
  • Figure 9 is a schematic cross-sectional view of the first electrode assembly of a battery cell provided by other embodiments of the present application.
  • Figure 10 is a schematic cross-sectional view of the first electrode assembly of a battery cell according to some embodiments of the present application.
  • FIG 11 is a simplified schematic diagram of a battery provided by some embodiments of the present application.
  • Figure 12 is a schematic front view of a battery provided by some embodiments of the present application.
  • Figure 13 is a schematic flow chart of a manufacturing method of a battery cell provided by some embodiments of the present application.
  • Figure 14 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • Shell 11. Shell; 111. First side plate; 111a, pressure relief mechanism; 112. Second side plate; 113. Opening; 12. End cover;
  • X first direction
  • Y second direction
  • Z third direction
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • parallel not only includes absolutely parallel situations, but also includes generally parallel situations that are conventionally recognized in engineering; at the same time, “perpendicular” includes not only absolutely vertical situations, but also includes conventional engineering practices. A roughly vertical situation of cognition.
  • “Plural” appearing in this application means two or more (including two).
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.,
  • the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may be a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode tab.
  • the positive electrode current collector is coated with the positive electrode active material layer.
  • the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the cathode current collector can be aluminum, and the cathode active material layer includes cathode active materials.
  • the cathode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode piece includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector includes a negative electrode current collector and a negative electrode tab.
  • the negative electrode current collector is coated with the negative electrode active material layer.
  • the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the material of the isolator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery cell also includes a casing and an electrode terminal arranged on the casing.
  • the casing is used to accommodate the electrode assembly and the electrolyte, and the electrode terminal is used to electrically connect with the electrode assembly to draw out the electric energy of the electrode assembly.
  • a battery includes a case and a plurality of battery cells accommodated in the case.
  • the box is usually provided with a fixed structure for supporting and fixing the battery cells.
  • the space utilization rate is low, resulting in the energy density of the battery being unable to meet the requirements.
  • the inventor tried to increase the size of a single battery cell to reduce the number of battery cells in the battery, simplify the fixed structure in the box, and improve the space utilization inside the battery.
  • the inventor In order to adapt to the size of the battery cell, the inventor arranged multiple electrode assemblies in sequence within the casing of the battery cell, and connected the multiple electrode assemblies into a whole through series or parallel connection, which can reduce the size of a single electrode assembly. size, simplifying the molding process of the electrode assembly.
  • the current generated by the electrode assembly far away from the electrode terminal needs to pass through the electrode assembly close to the electrode terminal before it can be transmitted to the electrode terminal. This causes the current far away from the electrode terminal.
  • the conductive path of the electrode assembly is too long and the internal resistance is too large, resulting in low power of the battery cell.
  • the electrode assembly close to the electrode terminal not only needs to conduct the current generated by itself, but also needs to conduct the current generated by the electrode assembly far away from the electrode terminal. This will cause the electrode assembly close to the electrode terminal to generate more heat and affect the charge and discharge performance.
  • the battery cell includes a casing, a first electrode assembly, a second electrode assembly, a first electrode terminal and a second electrode terminal.
  • the first electrode assembly and the second electrode assembly are accommodated in the housing and arranged along the first direction, and the first electrode assembly is insulated from the second electrode assembly.
  • the first electrode terminal is disposed on the outer casing and electrically connected to the first electrode assembly to conduct electricity from the first electrode assembly.
  • the second electrode terminal is disposed on the housing and electrically connected to the second electrode assembly to lead out the electrical energy of the second electrode assembly.
  • the electric energy generated by the first electrode assembly and the electric energy generated by the second electrode assembly are derived through the first electrode terminal and the second electrode terminal respectively, which can shorten the conductive path, reduce internal resistance, reduce heat generation, and improve the battery The charge and discharge performance of the cell.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is provided inside the vehicle 1 , and the battery 2 can be provided at the bottom, head, or tail of the vehicle 1 .
  • the battery 2 may be used to power the vehicle 1 , for example, the battery 2 may be used as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4.
  • the controller 3 is used to control the battery 2 to provide power to the motor 4, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1.
  • the battery 2 can not only be used as the operating power source of the vehicle 1, but also can be used as the driving power source of the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a case 5 and a battery cell 6 , and the battery cell 6 is accommodated in the case 5 .
  • the box 5 is used to accommodate the battery cells 6, and the box 5 can be of various structures.
  • the box body 5 may include a first box body part 5a and a second box body part 5b.
  • the first box body part 5a and the second box body part 5b cover each other.
  • the first box body part 5a and the second box body part 5b cover each other.
  • the two box portions 5b jointly define an accommodating space 5c for accommodating the battery cells 6.
  • the second box part 5b can be a hollow structure with one end open, and the first box part 5a is a plate-like structure.
  • the first box part 5a is covered with the opening side of the second box part 5b to form a receiving space 5c.
  • the box body 5; the first box body part 5a and the second box body part 5b can also be a hollow structure with one side open, and the opening side of the first box body part 5a is covered with the opening side of the second box body part 5b , to form a box 5 having an accommodation space 5c.
  • the first box part 5a and the second box part 5b can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 5a and the second box part 5b, such as sealant, sealing ring, etc. .
  • the first box part 5a can also be called an upper box cover, and the second box part 5b can also be called a lower box.
  • the battery 2 there may be one battery cell 6 or a plurality of battery cells 6 . If there are multiple battery cells 6 , the multiple battery cells 6 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 6 are connected in series and in parallel.
  • Multiple battery cells 6 can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells 6 can be accommodated in the box 5; of course, multiple battery cells 6 can also be connected in series first. They are connected in parallel or mixed to form a battery module, and multiple battery modules are connected in series, parallel or mixed to form a whole, and are accommodated in the box 5 .
  • a plurality of battery cells 6 as a whole are directly installed on the box 5 .
  • the process of forming a battery module with multiple battery cells 6 can be omitted, and the fixed frame used to fix the battery cells 6 in the battery module can be omitted, which can simplify the structure of the battery and improve the energy density of the battery.
  • Figure 3 is a schematic three-dimensional structural view of a battery cell provided by some embodiments of the present application
  • Figure 4 is an exploded schematic view of the battery cell shown in Figure 3
  • Figure 5 is a schematic cross-sectional view of the battery cell shown in Figure 3.
  • the battery cell 6 in the embodiment of the present application includes a casing 10 , a first electrode assembly 20 , a second electrode assembly 30 , a first electrode terminal 40 and a second electrode terminal 50 .
  • the first electrode assembly 20 and the second electrode assembly 30 are accommodated in the housing 10 and arranged along the first direction X, and the first electrode assembly 20 and the second electrode assembly 30 are insulated.
  • the first electrode terminal 40 is disposed on the housing 10 and is electrically connected to the first electrode assembly 20 to conduct electricity from the first electrode assembly 20 .
  • the second electrode terminal 50 is disposed on the housing 10 and is electrically connected to the second electrode assembly 30 to conduct electricity from the second electrode assembly 30 .
  • the casing 10 has a hollow structure, and an accommodation cavity for accommodating the electrode assembly and the electrolyte is formed inside.
  • the housing 10 can be in various shapes, such as cylinder, cuboid, etc.
  • the shape of the housing 10 can be determined according to the specific shape of the electrode assembly. For example, if the electrode assembly has a cylindrical structure, a cylindrical shell can be selected; if the electrode assembly has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • the first electrode assembly 20 and the second electrode assembly 30 are core components for the battery cell 6 to realize the charging and discharging functions.
  • both the first electrode assembly 20 and the second electrode assembly 30 include a first pole piece, a second pole piece and a separator.
  • the first pole piece and the second pole piece have opposite polarities, and the separator is used to connect the first pole piece to the second pole piece.
  • the first pole piece and the second pole piece are insulated and isolated.
  • Both the first electrode assembly 20 and the second electrode assembly 30 mainly rely on metal ions to move between the first pole piece and the second pole piece to work.
  • One of the first pole piece and the second pole piece is a positive pole piece, and the other one of the first pole piece and the second pole piece is a negative pole piece.
  • first electrode assembly 20 There may be one first electrode assembly 20 or multiple first electrode components 20 , which is not limited in this embodiment.
  • there are a plurality of first electrode assemblies 20 and the plurality of first electrode assemblies 20 are stacked.
  • the stacking direction of the plurality of first electrode assemblies 20 may be perpendicular to the first direction X.
  • multiple first electrode assemblies 20 are connected in parallel.
  • the first electrode assembly 20 and the second electrode assembly 30 are insulated, which means that the first electrode assembly 20 and the second electrode assembly 30 are electrically isolated. It is difficult for electrons generated by the first electrode assembly 20 to pass through the outer shell. The components in the housing 10 are conducted to the second electrode assembly 30 , and the electrons generated by the second electrode assembly 30 are difficult to be conducted to the first electrode assembly 20 through the components in the housing 10 .
  • first electrode assembly 20 and the second electrode assembly 30 can be insulated from each other through other insulating components, or can be insulated from each other through their own structures.
  • first electrode assembly 20 and the second electrode assembly 30 may be insulated from each other by respective separators.
  • the first electrode terminal 40 is a component of the battery cell 6 used to draw out the electric energy generated by the first electrode assembly 20. It is at least partially exposed to the outside of the battery cell 6 to facilitate connection with other conductive structures (such as bus components). .
  • the electric energy generated by the first electrode assembly 20 is introduced through the first electrode terminal 40; when the battery cell 6 is charged, the electric energy provided by the external power source is introduced into the first electrode assembly 20 through the first electrode terminal 40.
  • the first electrode terminal 40 may be directly connected to the first electrode assembly 20 or may be indirectly connected to the first electrode assembly 20 through other components.
  • the second electrode terminal 50 is a component of the battery cell 6 used to draw out the electric energy generated by the second electrode assembly 30. It is at least partially exposed to the outside of the battery cell 6 to facilitate connection with other conductive structures (such as bus components). .
  • the electric energy generated by the second electrode assembly 30 is introduced through the second electrode terminal 50; when the battery cell 6 is charged, the electric energy provided by the external power source is introduced into the second electrode assembly 30 through the second electrode terminal 50.
  • the second electrode terminal 50 may be directly connected to the second electrode assembly 30 or may be indirectly connected to the second electrode assembly 30 through other components.
  • the first electrode assembly 20 and the second electrode assembly 30 are arranged along the first direction X, which can increase the size of the battery cell 6 along the first direction X, thereby increasing the size of the battery cell 6 in the battery. Improve space utilization and improve energy density.
  • the first electrode assembly 20 and the second electrode assembly 30 are insulated, and the current generated by the first electrode assembly 20 and the current generated by the second electrode assembly 30 are drawn out through the first electrode terminal 40 and the second electrode terminal 50 respectively.
  • the first electrode The assembly 20 and the second electrode assembly 30 do not need to transmit current to each other, which can shorten the conductive path of the first electrode assembly 20 and the second electrode assembly 30, reduce internal resistance, reduce heat generation, and improve the performance of the battery cell 6. power and improve the charging and discharging performance of the battery cell 6.
  • the space outside the first electrode assembly 20 is connected to the space outside the second electrode assembly 30 .
  • the electrolyte may flow between the first electrode assembly 20 and the second electrode assembly 30 to improve the consistency of the electrolyte infiltrating the first electrode assembly 20 and the second electrode assembly 30 .
  • the first electrode terminal 40 and the second electrode terminal 50 are respectively installed at both ends of the housing 10 along the first direction X.
  • This embodiment can increase the distance between the connection structure between the first electrode terminal 40 and the first electrode assembly 20 and the connection structure between the second electrode terminal 50 and the second electrode assembly 30, reduce the risk of interference, and simplify the assembly process. .
  • the battery cell 6 has a larger size in the first direction X.
  • the first electrode terminal 40 and the second electrode terminal 50 are respectively installed at both ends of the housing 10 along the first direction and the influence of the second electrode terminal 50 on the volume of the battery cell 6, thereby increasing the energy density of the battery cell 6.
  • the first electrode terminal 40 includes a first positive terminal 41 and a first negative terminal 42.
  • the first positive terminal 41 is electrically connected to the positive electrode piece of the first electrode assembly 20, and the first negative terminal 42 is electrically connected to The negative electrode piece of the first electrode assembly 20 .
  • the second electrode terminal 50 includes a second positive terminal 51 and a second negative terminal 52.
  • the second positive terminal 51 is electrically connected to the positive electrode piece of the second electrode assembly 30, and the second negative terminal 52 is electrically connected to the second electrode assembly 30. Negative pole piece.
  • the maximum size of the battery cell 6 along the first direction X is 200mm-2000mm.
  • the maximum size of the battery cell 6 along the first direction X is 200mm, 400mm, 500mm, 1000mm, 1200mm, 1500mm or 2000mm.
  • This embodiment can make the battery cells 6 have a larger size in the first direction X, so as to reduce the number of battery cells 6 in the battery, reduce the use of fixed structures for fixing the battery cells 6, and improve space utilization. rate, increasing the energy density of the battery.
  • the first electrode terminal 40 and the second electrode terminal 50 can conduct the current of the first electrode assembly 20 and the second electrode assembly 30 respectively, which can reduce the current flowing between the first electrode assembly 20 and the second electrode assembly 30 , even if the battery cell 6 is overall longer, the internal resistance of the first electrode assembly 20 and the second electrode assembly 30 can meet the requirements, reduce heat generation, and improve the charge and discharge performance of the battery cell 6 .
  • the housing 10 has a larger size in the first direction X, and correspondingly, the housing 10 has higher strength to reduce the risk of cracking of the housing 10 .
  • the size of the battery cells 6 is long enough to match the size of the box. Multiple battery cells 6 can be directly arranged side by side in the box without first assembling the battery cells 6 into battery modules. In this way, the frame structure for fixing the battery cells 6 in the battery module can be omitted, thereby saving the internal space of the battery, improving the space utilization and energy density of the battery, simplifying the assembly process of the battery cells 6, and reducing costs.
  • the maximum size of the battery cell 6 along the first direction X is 400mm-1200mm.
  • the first direction X is parallel to the length direction of the battery cell 6 .
  • Figure 6 is an enlarged schematic view of the battery cell shown in Figure 5 at box A;
  • Figure 7 is an enlarged schematic view of Figure 6 at round frame B.
  • the first electrode assembly 20 and the second electrode assembly 30 are spaced apart in the first direction X.
  • the first electrode assembly 20 and the second electrode assembly 30 are separated by a certain distance in the first direction possibility, reducing the risk of short circuits and improving safety.
  • the battery cell 6 further includes a first insulating member 60 , at least partially located between the first electrode assembly 20 and the second electrode assembly 30 to connect the first electrode assembly 20 and the second electrode assembly 30 .
  • the two electrode assemblies 30 are insulated and separated.
  • the first insulating member 60 insulates the first electrode assembly 20 and the second electrode assembly 30.
  • the first insulating member 60 can block the first electrode assembly 20 and the second electrode assembly 30.
  • the second electrode assembly 30 reduces the possibility of contact between the pole pieces of the first electrode assembly 20 and the pole pieces of the second electrode assembly 30, reduces the risk of short circuit, and improves safety.
  • the first insulating member 60 is provided with a through hole 61 that connects a space on the side of the first insulating member 60 facing the first electrode assembly 20 and a space on the side of the first insulating member 60 facing the second electrode assembly 30 The space on one side is connected.
  • the through hole 61 can provide a flow channel for the electrolyte, and the electrolyte can flow in the space on both sides of the first insulating member 60 through the through hole 61 to improve the electrolyte infiltration into the first electrode assembly 20 and the second electrode assembly 20 . Consistency of the two electrode assemblies 30.
  • the battery cell 6 further includes a second insulating member 70 wrapped around the outside of the first electrode assembly 20 to isolate the first electrode assembly 20 from at least part of the housing 10 .
  • the first insulating member 60 is connected to the second insulating member 70 .
  • the second insulating member 70 can reduce the risk that the housing 10 conducts the positive and negative electrode plates of the first electrode assembly 20 and improve safety.
  • the second insulating member 70 is connected to the first insulating member 60 to reduce the shaking amplitude of the first insulating member 60 when the battery cell 6 is subjected to an external impact, thereby reducing the risk of failure of the first insulating member 60 and improving safety.
  • a portion of the second insulating member 70 is located between the first electrode assembly 20 and the first insulating member 60 and is connected to the first insulating member 60 .
  • the second insulating member 70 can also play a role in insulating and isolating the first electrode assembly 20 and the second electrode assembly 30 .
  • the second insulating member 70 is a cylindrical structure with an open end formed by bending an insulating plate.
  • the first insulating member 60 is connected to the second insulating member 70 by bonding, welding or other means.
  • the battery cell 6 further includes a third insulating member 80 wrapped around the outside of the second electrode assembly 30 to isolate the second electrode assembly 30 from at least part of the housing 10 .
  • third insulating member 80 is located between first insulating member 60 and second electrode assembly 30 .
  • the first insulating member 60 is flat.
  • the thickness of the first insulating member 60 is 0.05mm-2mm.
  • first insulating member 60 is made of polypropylene, polyethylene, polyethylene terephthalate, or other insulating material.
  • the housing 10 includes a housing 11 and two end caps 12.
  • the housing 11 has openings 113 at both ends along the first direction X.
  • the two end caps 12 are respectively used to cover the two openings 113.
  • the first electrode terminal 40 and the second electrode terminal 50 are respectively installed on the two end caps 12 .
  • the battery cell 6 can be assembled according to the following steps: connect the first electrode terminal 40 pre-installed on one end cap 12 to the first electrode assembly 20 , and connect the first electrode terminal 40 pre-installed on the other end cap 12 .
  • the two electrode terminals 50 are connected to the second electrode assembly 30; the first electrode assembly 20 is installed into the housing 11 through one opening 113, and the second electrode assembly 30 is installed into the housing 11 through another opening 113; the housing is connected 11 and two end caps 12.
  • the first electrode assembly 20 and the second electrode assembly 30 can be easily inserted into the case, thereby simplifying the assembly process of the battery cell 6 .
  • the housing 11 includes two first side plates 111 oppositely arranged along a second direction Y, which is perpendicular to the first direction X. At least one first side plate 111 is provided with a pressure relief mechanism 111a configured to be activated when the internal pressure or temperature of the battery cell 6 reaches a threshold value to relieve the internal pressure.
  • a pressure relief mechanism 111a configured to be activated when the internal pressure or temperature of the battery cell 6 reaches a threshold value to relieve the internal pressure.
  • the end of the first electrode assembly 20 facing the second electrode assembly 30 at least partially overlaps with the pressure relief mechanism 111a
  • the end of the second electrode assembly 30 facing the first electrode assembly 20 overlaps with the pressure relief mechanism 111a.
  • 111a at least partially overlaps.
  • the pressure relief mechanism 111a refers to an element or component that is activated to relieve the internal pressure when the internal pressure of the battery cell 6 reaches a predetermined threshold.
  • This threshold design varies based on design requirements. The threshold may depend on one or more materials of the positive electrode piece, the negative electrode piece, the electrolyte and the separator in the battery cell 6 .
  • the internal pressure of the battery cell 6 is the pressure inside the casing 10 .
  • the pressure relief mechanism 111a may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and may specifically adopt a pressure-sensitive element or structure. That is, when the internal pressure of the battery cell 6 reaches a predetermined threshold, the pressure relief mechanism 111a The mechanism 111a performs an action or the weak portion provided in the pressure relief mechanism 111a ruptures, thereby forming an opening or channel for the internal pressure to be released.
  • the “actuation” mentioned in this application means that the pressure relief mechanism 111a acts or is activated to a certain state, so that the internal pressure of the battery cell 6 can be released.
  • the actions generated by the pressure relief mechanism 111a may include, but are not limited to: at least a part of the pressure relief mechanism 111a is broken, broken, torn or opened, and so on.
  • the emissions from battery cells 6 mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-pressure gases generated by reactions, flames, etc. .
  • the pressure relief mechanism 111a can release the internal pressure of the battery cell 6 when the battery cell 6 experiences thermal runaway, thereby reducing the risk of the battery cell 6 exploding and improving safety.
  • the battery cell 6 is thermally runaway, high-temperature and high-pressure substances are discharged from the end of the first electrode assembly 20 facing the second electrode assembly 30 and high-temperature and high-pressure substances are discharged from the end of the second electrode assembly 30 facing the first electrode assembly 20 It can quickly act on the pressure relief mechanism 111a, so that the pressure relief mechanism 111a can be activated in time and relieve the internal pressure.
  • the second direction Y is parallel to the vertical direction
  • the pressure relief mechanism 111a of the battery cell 6 is disposed between the first electrode assembly 20 and the second electrode assembly 30 on the underside.
  • the pressure relief mechanism 111a is actuated, the discharged high-temperature and high-pressure substances will erupt downward, which can reduce the risk of injury to the user.
  • the housing 11 includes two second side plates 112 oppositely arranged along a third direction Z, which is perpendicular to the first direction X and the second direction Y.
  • the area of the second side plate 112 is larger than the area of the first side plate 111 .
  • the first electrode assembly 20 and the second electrode assembly 30 will expand and squeeze the first side plate 111 and the second side plate 112 during the charging process, causing the first side plate 111 and the second side plate 112 to Deformation; the area of the first side plate 111 is small, the expansion force it receives is also small, and the degree of deformation is also small.
  • the pressure relief mechanism 111a is arranged on the first side plate 111 with a smaller area, which can reduce the deformation of the pressure relief mechanism 111a, reduce the risk of fatigue damage of the pressure relief mechanism 111a, and improve safety.
  • Figure 8 is a schematic cross-sectional view of the first electrode assembly of a battery cell provided by some embodiments of the present application.
  • the first electrode assembly 20 includes a plurality of first pole pieces 21 and a plurality of second pole pieces 22.
  • the plurality of first pole pieces 21 and the plurality of second pole pieces 22 are arranged along
  • the third direction Z is stacked alternately.
  • the third direction Z is perpendicular to the first direction.
  • the stacking direction of the first pole piece 21 and the second pole piece 22 is perpendicular to the first direction X, and the end of the first pole piece 21 along the first direction A gap for gas to pass through will be formed between the ends in the direction and relieve internal pressure.
  • the first pole piece 21 and the second pole piece 22 have opposite polarities.
  • one of the first pole piece 21 and the second pole piece 22 is a positive pole piece, and the other is a negative pole piece.
  • the expansion of the first electrode assembly 20 along the third direction Z is maximum, and the squeezing force between the first electrode assembly 20 and the second side plate is greater than the pressure between the first electrode assembly 20 and the first side plate. Due to the expansion force, the deformation of the first side plate is smaller than the deformation of the second side plate. Therefore, the pressure relief mechanism can be provided on the first side plate.
  • the first electrode assembly 20 further includes an isolation member 23 , which is used to insulate and isolate the adjacent first pole piece 21 and the second pole piece 22 .
  • the second electrode assembly also includes a plurality of first pole pieces and a plurality of second pole pieces, and the plurality of first pole pieces and the plurality of second pole pieces are alternately stacked along the third direction.
  • Figure 9 is a schematic cross-sectional view of the first electrode assembly of a battery cell provided by other embodiments of the present application.
  • the first electrode assembly 20 includes a plurality of first pole pieces 21 and a second pole piece 22.
  • the second pole piece 22 is continuously bent and includes a plurality of laminated segments 221 and a plurality of The bent sections 222 , a plurality of laminated sections 221 and a plurality of first pole pieces 21 are alternately stacked along the third direction Z, and each bent section 222 is used to connect two adjacent laminated sections 221 .
  • the third direction Z is perpendicular to the first direction.
  • the stacking direction of the first pole piece 21 and the stacked section 221 is perpendicular to the first direction X, and the end of the first pole piece 21 along the first direction X and the second pole piece 22 are along the first direction X.
  • a gap for gas to pass through will be formed between the ends of the first electrode assembly 20; when the first electrode assembly 20 experiences thermal runaway, the gas can pass through the gap and act on the pressure relief mechanism, so that the pressure relief mechanism can be activated and released in time. Release internal pressure.
  • the third direction Z is parallel to the thickness direction of the stacked section 221 and the thickness direction of the first pole piece 21 .
  • the first pole piece 21 and the stacked section 221 are both rectangular flat plates and are arranged parallel to each other.
  • the expansion of the first electrode assembly 20 along the third direction Z is maximum, and the squeezing force between the first electrode assembly 20 and the second side plate is greater than the pressure between the first electrode assembly 20 and the first side plate. Due to the expansion force, the deformation of the first side plate is smaller than the deformation of the second side plate. Therefore, the pressure relief mechanism 111a can be provided on the first side plate.
  • FIG. 10 is a schematic cross-sectional view of the first electrode assembly of a battery cell according to some embodiments of the present application.
  • the first electrode assembly 20 includes a first pole piece 21 and a second pole piece 22 .
  • the first pole piece 21 and the second pole piece 22 are wound around a winding axis, and the winding axis is parallel to the first pole piece 21 .
  • One direction X is
  • the winding direction of the first pole piece 21 and the second pole piece 22 is perpendicular to the first direction X, and the end of the first pole piece 21 along the first direction A gap for gas to pass through will be formed between the ends in one direction move and relieve internal pressure.
  • the first electrode assembly 20 is a rolled structure and includes two first surfaces 20a and two second surfaces 20b.
  • the two first surfaces 20a are opposite along the second direction Y, and the two second surfaces 20b Opposing each other along the third direction Z, the first direction X, the second direction Y and the third direction Z are perpendicular to each other.
  • the area of the second surface 20b is larger than the area of the first surface 20a.
  • the first electrode assembly 20 also includes a spacer 23 .
  • the first pole piece 21, the second pole piece 22 and the separator 23 are all strip-shaped structures.
  • the first pole piece 21 , the separator 23 and the second pole piece 22 are sequentially stacked and wound along the winding axis for at least two turns to form the first electrode assembly 20 .
  • the winding axis is parallel to the first direction.
  • the expansion of the first electrode assembly 20 along the third direction Z is maximum, and the squeezing force between the first electrode assembly 20 and the second side plate is greater than the pressure between the first electrode assembly 20 and the first side plate. Due to the expansion force, the deformation of the first side plate is smaller than the deformation of the first side plate. Therefore, the pressure relief mechanism 111a can be provided on the first side plate.
  • At least a portion of first surface 20a is arcuate.
  • Figure 11 is a simplified schematic diagram of a battery provided by some embodiments of the present application
  • Figure 12 is a schematic front view of a battery provided by some embodiments of the present application.
  • an embodiment of the present application also provides a battery 2.
  • the battery 2 includes a plurality of battery cells 6 of any of the previous embodiments.
  • the battery 2 further includes a first bus part 7a, a second bus part 7b and a third bus part 7c.
  • the first bus member 7 a is used to electrically connect the first electrode terminals 40 of the plurality of battery cells 6 .
  • the second bus member 7 b is used to electrically connect the second electrode terminals 50 of the plurality of battery cells 6 .
  • the third bus part 7 c is used to electrically connect the first electrode terminal 40 of at least one battery cell 6 to the second electrode terminal 50 .
  • the first bus part 7a is used to connect the first electrode assemblies of the plurality of battery cells 6 in series, parallel or mixed connection.
  • the first bus part 7a connects the first positive terminal 41 of one battery cell 6 and the first negative terminal 42 of another battery cell 6 to connect the first electrode assemblies of the two battery cells 6 in series.
  • the second bus part 7b is used to connect the second electrode assemblies of the plurality of battery cells 6 in series, parallel or mixed connection.
  • the second bus part 7b connects the second positive terminal 51 of one battery cell 6 and the second negative terminal 52 of the other battery cell 6 to connect the second electrode assemblies of the two battery cells 6 in series.
  • the third bus part 7c is used to connect the first electrode assembly and the second electrode assembly of at least one battery cell 6 in series or in parallel.
  • the third bus part 7c is used to connect the first electrode assembly and the second electrode assembly of one battery cell 6 in parallel.
  • the third bus component 7 c is used to connect the first positive terminal 41 and the second positive terminal 51 of one battery cell 6 in parallel to serve as the total positive output electrode of the battery 2 .
  • the battery 2 electrically connects the first electrode assemblies and the second electrode assemblies of the plurality of battery cells 6 through a plurality of bus parts outside the battery cells 6 to realize the first electrode assembly and the second electrode assembly. of the confluence output.
  • An embodiment of the present application also provides an electrical device, including the battery cell 6 of any of the above embodiments.
  • the battery cell 6 is used to provide electrical energy to the electrical device.
  • the powered device can be any of the aforementioned devices or systems that use batteries.
  • the battery cell 6 of the embodiment of the present application includes a housing 10 , a first electrode assembly 20 , a second electrode assembly 30 , a first electrode terminal 40 and a second electrode terminal 50.
  • the housing 10 includes a housing 11 and two end caps 12.
  • the housing 11 has openings at both ends along the first direction X.
  • the two end caps 12 are respectively used to cover the two openings.
  • the first electrode assembly 20 and the second electrode assembly 30 are accommodated in the housing 10 and arranged along the first direction X.
  • the first insulating member 60 is disposed between the first electrode assembly 20 and the second electrode assembly 30 .
  • the first electrode terminal 40 includes a first positive terminal 41 and a first negative terminal 42 provided on one end cover 12 .
  • the first positive terminal 41 is electrically connected to the positive electrode piece of the first electrode assembly 20
  • the first negative terminal 42 is electrically connected to the positive electrode piece of the first electrode assembly 20
  • the negative electrode piece is connected to the first electrode assembly 20 to extract the electric energy generated by the first electrode assembly 20
  • the second electrode terminal 50 includes a second positive terminal 51 and a second negative terminal 52 disposed on the other end cap 12 .
  • the second positive terminal 51 is electrically connected to the positive electrode piece of the second electrode assembly 30
  • the second negative terminal 52 The negative electrode piece is electrically connected to the second electrode assembly 30 to extract the electric energy generated by the second electrode assembly 30 .
  • Figure 13 is a schematic flowchart of a method for manufacturing a battery cell according to some embodiments of the present application.
  • an embodiment of the present application provides a method for manufacturing a battery cell, which includes:
  • S100 Provide a housing, a first electrode terminal and a second electrode terminal, and the first electrode terminal and the second electrode terminal are arranged on the housing;
  • S200 Provide a first electrode assembly and a second electrode assembly
  • first electrode assembly and the second electrode assembly are arranged along the first direction and are insulated.
  • the first electrode terminal is used to export the electric energy of the first electrode assembly
  • the second electrode terminal is used to export the electric energy of the second electrode assembly.
  • steps S100 and S200 are executed in no particular order and can also be executed at the same time.
  • Figure 14 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • this embodiment of the present application provides a battery cell manufacturing system 90 , which includes a first providing device 91 , a second providing device 92 and an assembly device 93 .
  • the first providing device 91 is used to provide a housing, a first electrode terminal and a second electrode terminal, and the first electrode terminal and the second electrode terminal are provided in the housing.
  • the second providing device 92 is used to provide the first electrode assembly and the second electrode assembly.
  • the assembly device 93 is used to install the first electrode assembly and the second electrode assembly in the housing, and electrically connect the first electrode terminal to the first electrode assembly and the second electrode terminal to the second electrode assembly.
  • the first electrode assembly and the second electrode assembly are arranged along the first direction and are insulated.
  • the first electrode terminal is used to conduct electricity from the first electrode assembly
  • the second electrode terminal is used to conduct electricity from the second electrode assembly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池单体及其制造方法和制造***、电池以及用电装置。电池单体包括外壳、第一电极组件、第二电极组件、第一电极端子和第二电极端子。第一电极组件和第二电极组件容纳于外壳内并沿第一方向布置,且第一电极组件与第二电极组件绝缘设置。第一电极端子设置于外壳并电连接于第一电极组件,以将第一电极组件的电能导出。第二电极端子设置于外壳并电连接于第二电极组件,以将第二电极组件的电能导出。本申请实施例能够缩短第一电极组件的导电路径和第二电极组件的导电路径,减小内阻,减少产热,提高电池单体的功率,改善电池单体的充放电性能。

Description

电池单体及其制造方法和制造***、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体及其制造方法和制造***、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,如何改善电池单体的性能,是电池技术中的一个研究方向。
发明内容
本申请提供了一种电池单体及其制造方法和制造***、电池以及用电装置,其能改善电池单体的性能。
第一方面,本申请实施例提供了一种电池单体,其包括外壳、第一电极组件、第二电极组件、第一电极端子和第二电极端子。第一电极组件和第二电极组件容纳于外壳内并沿第一方向布置,且第一电极组件与第二电极组件绝缘设置。第一电极端子设置于外壳并电连接于第一电极组件,以将第一电极组件的电能导出。第二电极端子设置于外壳并电连接于第二电极组件,以将第二电极组件的电能导出。
在上述方案中,第一电极组件和第二电极组件沿第一方向布置,可以增大电池单体沿第一方向的尺寸,从而增大电池单体在电池中的空间利用率,提高能量密度。第一电极组件和第二电极组件绝缘设置,且第一电极组件产生的电流和第二电极组件产生的电流分别通过第一电极端子和第二电极端子引出,第一电极组件和第二电极组件无需传输彼此的电流,这样可以缩短第一电极组件的导电路径和第二电极组件的导电路径,减小内阻,减少产热,提高电池单体的功率,改善电池单体的充放电性能。
在一些实施方式中,第一电极组件和第二电极组件在第一方向上间隔设置。
在上述方案中,第一电极组件和第二电极组件在第一方向上间隔一定的距离,这样可以减小第一电极组件的极片和第二电极组件的极片接触的可能性,降低短路风险,提高安全性。
在一些实施方式中,电池单体还包括第一绝缘构件,第一绝缘构件的至少部分位于第一电极组件和第二电极组件之间,以将第一电极组件和第二电极组件绝缘隔开。
在上述方案中,第一绝缘构件将第一电极组件和第二电极组件绝缘隔开,在电池单体受到外部冲击时,第一绝缘构件能够阻挡第一电极组件和第二电极组件,减小第一电极组件的极片和第二电极组件的极片接触的可能性,降低短路风险,提高安全性。
在一些实施方式中,第一绝缘构件设有通孔,通孔将第一绝缘构件的面向第一电极组件一侧的空间与第一绝缘构件的面向第二电极组件一侧的空间连通。
在上述方案中,通孔能够为电解液提供流动的通道,电解液可以通过通孔在第一绝缘构件两侧的空间内流动,以改善电解液浸润第一电极组件和第二电极组件的一致性。
在一些实施方式中,电池单体还包括第二绝缘构件,第二绝缘构件包覆在第一电极组件的外侧,以将第一电极组件与外壳的至少部分隔开。第一绝缘构件连接于第二绝缘构件。
在上述方案中,第二绝缘构件可以降低外壳将第一电极组件的正负极片导通的风险,提高安全性。第二绝缘构件连接于第一绝缘构件,以在电池单体受到外部冲击时减小第一绝缘构件的晃动幅度,降低第一绝缘构件失效的风险,提高安全性。
在一些实施方式中,第一电极组件外侧的空间连通于第二电极组件外侧的空间。
在上述方案中,电解液可以在第一电极组件和第二电极组件之间流动,以改善电解液浸润第一电极组件和第二电极组件的一致性。
在一些实施方式中,第一电极端子和第二电极端子分别安装于外壳沿第一方向的两端。
上述方案增大第一电极端子和第一电极组件之间的连接结构与第二电极端子和第二电极组件之间的连接结构的间距,降低干涉的风险,简化装配工艺。
在一些实施方式中,第一电极端子包括第一正极端子和第一负极端子,第一正极端子电连接于第一电极组件的正极极片,第一负极端子电连接于第一电极组件的负极极片。第二电极端子包括第二正极端子和第二负极端子,第二正极端子电连接于第二电极组件的正极极片,第二负极端子电连接于第二电极组件的负极极片。
在一些实施方式中,电池单体沿第一方向的最大尺寸为200mm-2000mm。
在上述方案中,电池单体在第一方向上具有较大的尺寸,从而减少电池中的电池单体的数量,减少用于固定电池单体的固定结构的使用,提高空间利用率,增大电池的能量密度。第一电极端子和第二电极端子能够分别传导第一电极组件的电流和第二电极组件的电流,这样可以减少在第一电极组件和第二电极组件之间流动的电流,即使电池单体的整体较长,也可以使第一电极组件的内阻和第二电极组件的内阻满足要求,减少产热,改善电池单体的充放电性能
在一些实施方式中,外壳包括壳体和两个端盖,壳体沿第一方向的两端具有开口,两个端盖分别用于盖合于两个开口。第一电极端子和第二电极端子分别安装于两个端盖。
在上述方案中,通过设置两个开口和两个端盖,可便于实现第一电极组件的入壳和第二电极组件的入壳,简化电池单体的装配工艺。
在一些实施方式中,壳体包括沿第二方向相对设置的两个第一侧板,第二方向垂直于第一方向。至少一个第一侧板设有泄压机构,泄压机构被配置为在电池单体的内部压力或温度达到阈值时致动,以泄放内部压力。在第二方向上,第一电极组件的面向第二电极组件的端部与泄压机构至少部分重叠,第二电极组件的面向第一电极组件的端部与泄压机构至少部分重叠。
在上述方案中,泄压机构能够在电池单体出现热失控时释放电池单体的内部压力,从而降低电池单体***的风险,提高安全性。在电池单体热失控时,第一电极组件的面向第二电极组件的端部排出的高温高压物质以及第二电极组件的面向第一电极组件的端部排出的高温高压物质能够快速的作用在泄压机构上,以使泄压机构及时致动并泄放内部压力。
在一些实施方式中,壳体包括沿第三方向相对设置的两个第二侧板,第三方向垂直于第一方向和第二方向。第二侧板的面积大于第一侧板的面积。
第一电极组件和第二电极组件在充电过程中会膨胀并挤压第一侧板和第二侧板,造成第一侧板和第二侧板变形;第一侧板的面积较小,其受到的膨胀力也较小,变形的程度也较小。上述方案将泄压机构设置在面积较小的第一侧板上,可以减小泄压机构的变形,降低泄压机构疲劳破损的风险,提高安全性。
在一些实施方式中,第一方向平行于电池单体的长度方向。
在一些实施方式中,第一电极组件包括第一极片和第二极片,第一极片和第二极片绕卷绕轴线卷绕,卷绕轴线平行于第一方向。
在一些实施方式中,第一电极组件包括多个第一极片和多个第二极片,多个第一极片和多个第二极片沿第三方向交替层叠。第三方向垂直于第一方向。
在一些实施方式中,第一电极组件包括多个第一极片和第二极片,第二极片连续弯折且包括多个层叠段和多个折弯段,多个层叠段和多个第一极片沿第三方向交替层叠,各折弯段用于连接相邻的两个层叠段。第三方向垂直于第一方向。
第二方面,本申请实施例提供了一种电池,包括多个第一方面任一实施方式的电池单体。
在一些实施方式中,电池还包括第一汇流部件、第二汇流部件和第三汇流部件。第一汇流部件用于电连接多个电池单体的第一电极端子。第二汇流部件用于电连接多个电池单体的第二电极端子。第三汇流部件用于将至少一个电池单体的第一电极端子电连接到第二电极端子。
第三方面,本申请实施例提供了一种用电装置,包括第一方面任一实施方式的电池单体,电池单体用于提供电能。
第四方面,本申请实施例提供了一种电池单体的制造方法,包括:提供外壳、第一电极端子和第二电极端子,第一电极端子和第二电极端子设置于外壳;提供第一电极组件和第二电极组件;将第一电极组件和第二电极组件安装于外壳内,并使第一电极端子电连接于第一电极组件、第二电极端子电连接于第二电极组件。第一电极组件和第二电极组件并沿第一方向布置并绝缘设置,第一电极端子用于将第一电极组件的电能导出,第二电极端子用于将第二电极组件的电能导出。
第五方面,本申请实施例提供了一种电池单体的制造***,包括第一提供装置、第二提供装置和组装装置。第一提供装置用于提供外壳、第一电极端子和第二电极端子,第一电极端子和第二电极端子设置于外壳。第二提供装置用于提供第一电极组件和第二电极组件。组装装置用于将第一电极组件和第二电极组件安装于外壳内,并使第一电极端子电连接于第一电极组件、第二电极端子电连接于第二电极组件。第一电极组件和第二电极组件并沿第一方向布置并绝缘设置,第一电极端子用于将第一电极组件的电能导出,第二电极端子用于将第二电极组件的电能导出。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的***示意图;
图3为本申请一些实施例提供的电池单体的立体结构示意图;
图4为图3所示的电池单体的***示意图;
图5为图3所示的电池单体的剖视示意图;
图6为图5所示的电池单体在方框A处的放大示意图;
图7为图6在圆框B处的放大示意图;
图8为本申请一些实施例提供的电池单体的第一电极组件的剖视示意图;
图9为本申请另一些实施例提供的电池单体的第一电极组件的剖视示意图;
图10为本申请又一些实施例提供的电池单体的第一电极组件的剖视示意图;
图11为本申请一些实施例提供的电池的简化示意图;
图12为本申请一些实施例提供的电池的正视示意图;
图13为本申请一些实施例提供的电池单体的制造方法的流程示意图;
图14为本申请一些实施例提供的电池单体的制造***的示意性框图。
具体实施方式的附图标记如下:
1、车辆;2、电池;3、控制器;4、马达;5、箱体;5a、第一箱体部;5b、第二箱体部;5c、容纳空间;6、电池单体;7a、第一汇流部件;7b、第二汇流部件;7c、第三汇流部件;
10、外壳;11、壳体;111、第一侧板;111a、泄压机构;112、第二侧板;113、开口;12、端盖;
20、第一电极组件;21、第一极片;22、第二极片;221、层叠段;222、折弯段;23、隔离件;20a、第一表面;20b、第二表面;
30、第二电极组件;
40、第一电极端子;41、第一正极端子;42、第一负极端子;
50、第二电极端子;51、第二正极端子;52、第二负极端子;
60、第一绝缘构件;61、通孔;
70、第二绝缘构件;
80、第三绝缘构件;
90、制造***;91、第一提供装置;92、第二提供装置;93、组装装置;
X、第一方向;Y、第二方向;Z、第三方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认知的大致垂直的情况。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以是电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括外壳和设置于外壳的电极端子,外壳用于容纳电极组件和电解液,电极端子用于与电极组件电连接,以将电极组件的电能引出。
随着电池技术的发展,用户对电池的容量的需求越来越高。例如,随着新能源车的不断普及,对新能源车中的电池的使用要求变得越来越高。用户对新能源车续航里程要求的不断提高,对新能源车使用的电池而言,其容量需要不断的提高;同时,在电池的使用过程中,因内阻导致的内耗和发热则要求尽量减少。
一般而言,电池包括箱体和容纳于箱体内的多个电池单体。箱体通常设置有用于支撑和固定电池单体的固定结构。对于电池而言,在电池容量一定的前提下,电池单体的尺寸越小,电池单体的数量越多,箱体需要设置更多的固定结构来固定电池单体,这会造成电池内部的空间利用率底,导致电池的能量密度无法满足要求。
为了简化电池的结构,提高电池的能量密度,发明人尝试增大单个电池单体的尺寸,以减少电池中的电池单体的数量,简化箱体内的固定结构,提高电池内部的空间利用率。
为了适配电池单体的尺寸,发明人将多个电极组件依次排布在电池单体的外壳内,并使多个电极组件通过串联或并联连为一个整体,这样可以减小单个电极组件的尺寸,简化电极组件的成型工艺。
然而,发明人发现,多个电极组件需要通过相同的电极端子将电流引出,远离电极端子的电极组件产生的电流需要经过靠近电极端子的电极组件才能够传输到电极端子,这造成远离电极端子的电极组件的导电路径偏长、内阻偏大,进而导致电池单 体的功率较低。靠近电极端子的电极组件不仅要传导自身产生的电流,还需要传导远离电极端子的电极组件产生的电流,这会导致靠近电极端子的电极组件产生更多的热量,影响充放电性能。
鉴于此,本申请实施例提供了一种技术方案,在该技术方案中,电池单体包括外壳、第一电极组件、第二电极组件、第一电极端子和第二电极端子。第一电极组件和第二电极组件容纳于外壳内并沿第一方向布置,且第一电极组件与第二电极组件绝缘设置。第一电极端子设置于外壳并电连接于第一电极组件,以将第一电极组件的电能导出。第二电极端子设置于外壳并电连接于第二电极组件,以将第二电极组件的电能导出。在该技术方案中,第一电极组件产生的电能和第二电极组件产生的电能分别通过第一电极端子和第二电极端子导出,可缩短导电路径,减小内阻,减少产热,改善电池单体的充放电性能。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。
如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的***示意图。
如图2所示,电池2包括箱体5和电池单体6,电池单体6容纳于箱体5内。
箱体5用于容纳电池单体6,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部5a和第二箱体部5b,第一箱体部5a与第二箱体部5b相互盖合,第一箱体部5a和第二箱体部5b共同限定出用于容纳电池单体6的容纳空间5c。第二箱体部5b可以是一端开口的空心结构,第一箱体部5a为板状结构,第一箱体部5a盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5;第一箱体部5a和第二箱体部5b也均可以是一侧开口的空心结构,第一箱体部5a的开口侧盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5。当然,第一箱体部5a和第二箱体 部5b可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部5a与第二箱体部5b连接后的密封性,第一箱体部5a与第二箱体部5b之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部5a盖合于第二箱体部5b的顶部,第一箱体部5a亦可称之为上箱盖,第二箱体部5b亦可称之为下箱体。
在电池2中,电池单体6可以是一个,也可以是多个。若电池单体6为多个,多个电池单体6之间可串联或并联或混联,混联是指多个电池单体6中既有串联又有并联。
多个电池单体6之间可直接串联或并联或混联在一起,再将多个电池单体6构成的整体容纳于箱体5内;当然,也可以是多个电池单体6先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体5内。
在一些实施例中,多个电池单体6构成的整体直接安装于箱体5。这样可以省去将多个电池单体6组成电池模块的工艺,并省去电池模块中的用于固定电池单体6的固定框架,这样可以简化电池的结构,提高电池的能量密度。
图3为本申请一些实施例提供的电池单体的立体结构示意图;图4为图3所示的电池单体的***示意图;图5为图3所示的电池单体的剖视示意图。
如图3至图5所示,本申请实施例的电池单体6包括外壳10、第一电极组件20、第二电极组件30、第一电极端子40和第二电极端子50。第一电极组件20和第二电极组件30容纳于外壳10内并沿第一方向X布置,且第一电极组件20与第二电极组件30绝缘设置。第一电极端子40设置于外壳10并电连接于第一电极组件20,以将第一电极组件20的电能导出。第二电极端子50设置于外壳10并电连接于第二电极组件30,以将第二电极组件30的电能导出。
外壳10为空心结构,其内部形成用于容纳电极组件和电解液的容纳腔。外壳10可以是多种形状,比如,圆柱体、长方体等。外壳10的形状可根据电极组件的具体形状来确定。比如,若电极组件为圆柱体结构,则可选用为圆柱体外壳;若电极组件为长方体结构,则可选用长方体外壳。
第一电极组件20和第二电极组件30是电池单体6实现充放电功能的核心部件。示例性地,第一电极组件20和第二电极组件30均包括第一极片、第二极片和隔离件,第一极片和第二极片的极性相反,隔离件用于将第一极片和第二极片绝缘隔离。第一电极组件20和第二电极组件30均主要依靠金属离子在第一极片和第二极片之间移动来工作。
第一极片和第二极片中的一者为正极极片,第一极片和第二极片中的另一者为负极极片。
第一电极组件20可以是一个,也可以是多个,本实施例对此不作限制。示例性地,第一电极组件20为多个,多个第一电极组件20层叠设置,多个第一电极组件20的层叠方向可垂直于第一方向X。可选地,多个第一电极组件20并联。
第二电极组件30可以是一个,也可以是多个,本实施例对此不作限制。
在本实施例中,第一电极组件20与第二电极组件30绝缘设置,指的是第一电 极组件20与第二电极组件30之间电气隔离,第一电极组件20产生的电子难以通过外壳10内的部件传导至第二电极组件30,第二电极组件30产生的电子难以通过外壳10内的部件传导至第一电极组件20。
在本实施例中,第一电极组件20和第二电极组件30可以通过其它绝缘构件实现彼此绝缘,也可以通过自身的结构实现彼此绝缘。示例性地,第一电极组件20和第二电极组件30可以通过各自的隔离件实现彼此绝缘。
第一电极端子40是电池单体6的用于将第一电极组件20产生的电能引出的部件,其至少部分露出到电池单体6的外部,以便于与其它导电结构(例如汇流部件)连接。在电池单体6放电时,第一电极组件20产生的电能通过第一电极端子40引出;在电池单体6充电时,外部电源提供的电能通过第一电极端子40引入到第一电极组件20。第一电极端子40可以直接连接到第一电极组件20,也可以通过其它构件间接地连接到第一电极组件20。
第二电极端子50是电池单体6的用于将第二电极组件30产生的电能引出的部件,其至少部分露出到电池单体6的外部,以便于与其它导电结构(例如汇流部件)连接。在电池单体6放电时,第二电极组件30产生的电能通过第二电极端子50引出;在电池单体6充电时,外部电源提供的电能通过第二电极端子50引入到第二电极组件30。第二电极端子50可以直接连接到第二电极组件30,也可以通过其它构件间接地连接到第二电极组件30。
在本申请实施例中,第一电极组件20和第二电极组件30沿第一方向X布置,可以增大电池单体6沿第一方向X的尺寸,从而增大电池单体6在电池中的空间利用率,提高能量密度。第一电极组件20和第二电极组件30绝缘设置,且第一电极组件20产生的电流和第二电极组件30产生的电流分别通过第一电极端子40和第二电极端子50引出,第一电极组件20和第二电极组件30无需传输彼此的电流,这样可以缩短第一电极组件20的导电路径和第二电极组件30的导电路径,减小内阻,减少产热,提高电池单体6的功率,改善电池单体6的充放电性能。
在一些实施例中,第一电极组件20外侧的空间连通于第二电极组件30外侧的空间。
在本实施例中,电解液可以在第一电极组件20和第二电极组件30之间流动,以改善电解液浸润第一电极组件20和第二电极组件30的一致性。
在一些实施例中,第一电极端子40和第二电极端子50分别安装于外壳10沿第一方向X的两端。
本实施例可以增大第一电极端子40和第一电极组件20之间的连接结构与第二电极端子50和第二电极组件30之间的连接结构的间距,降低干涉的风险,简化装配工艺。
电池单体6在第一方向X上具有较大的尺寸,将第一电极端子40和第二电极端子50分别安装于外壳10沿第一方向X的两端,可以减小第一电极端子40和第二电极端子50对电池单体6的体积的影响,增大电池单体6的能量密度。
在一些实施例中,第一电极端子40包括第一正极端子41和第一负极端子42, 第一正极端子41电连接于第一电极组件20的正极极片,第一负极端子42电连接于第一电极组件20的负极极片。第二电极端子50包括第二正极端子51和第二负极端子52,第二正极端子51电连接于第二电极组件30的正极极片,第二负极端子52电连接于第二电极组件30的负极极片。
在一些实施例中,电池单体6沿第一方向X的最大尺寸为200mm-2000mm。可选地,电池单体6沿第一方向X的最大尺寸为200mm、400mm、500mm、1000mm、1200mm、1500mm或2000mm。
本实施例可以使电池单体6在第一方向X上具有较大的尺寸,以减少电池中的电池单体6的数量,减少用于固定电池单体6的固定结构的使用,提高空间利用率,增大电池的能量密度。第一电极端子40和第二电极端子50能够分别传导第一电极组件20的电流和第二电极组件30的电流,这样可以减少在第一电极组件20和第二电极组件30之间流动的电流,即使电池单体6的整体较长,也可以使第一电极组件20的内阻和第二电极组件30的内阻满足要求,减少产热,改善电池单体6的充放电性能。
外壳10在第一方向X上具有较大的尺寸,对应地,外壳10具有更高的强度,以降低外壳10开裂的风险。
在一些实施例中,电池单体6的尺寸足够长,能够与箱体的尺寸相匹配,多个电池单体6可以直接并列布置在箱体内,无需先将电池单体6组装成电池模块,这样可以省去电池模块中的用于固定电池单体6的框架结构,从而节省了电池的内部空间,提高了电池的空间利用率和能量密度,简化电池单体6的组装工艺,降低成本。
在一些实施例中,电池单体6沿第一方向X的最大尺寸为400mm-1200mm。
在一些实施例中,第一方向X平行于电池单体6的长度方向。
图6为图5所示的电池单体在方框A处的放大示意图;图7为图6在圆框B处的放大示意图。
请一并参照图4至图7,在一些实施例中,第一电极组件20和第二电极组件30在第一方向X上间隔设置。
在本申请中,第一电极组件20和第二电极组件30在第一方向X上间隔一定的距离,这样可以减小第一电极组件20的极片和第二电极组件30的极片接触的可能性,降低短路风险,提高安全性。
在一些实施例中,电池单体6还包括第一绝缘构件60,第一绝缘构件60的至少部分位于第一电极组件20和第二电极组件30之间,以将第一电极组件20和第二电极组件30绝缘隔开。
在本实施例中,第一绝缘构件60将第一电极组件20和第二电极组件30绝缘隔开,在电池单体6受到外部冲击时,第一绝缘构件60能够阻挡第一电极组件20和第二电极组件30,减小第一电极组件20的极片和第二电极组件30的极片接触的可能性,降低短路风险,提高安全性。
在一些实施例中,第一绝缘构件60设有通孔61,通孔61将第一绝缘构件60的面向第一电极组件20一侧的空间与第一绝缘构件60的面向第二电极组件30一侧的空间连通。
在本实施例中,通孔61能够为电解液提供流动的通道,电解液可以通过通孔61在第一绝缘构件60两侧的空间内流动,以改善电解液浸润第一电极组件20和第二电极组件30的一致性。
在一些实施例中,电池单体6还包括第二绝缘构件70,第二绝缘构件70包覆在第一电极组件20的外侧,以将第一电极组件20与外壳10的至少部分隔开。第一绝缘构件60连接于第二绝缘构件70。
在本实施例中,第二绝缘构件70可以降低外壳10将第一电极组件20的正负极片导通的风险,提高安全性。第二绝缘构件70连接于第一绝缘构件60,以在电池单体6受到外部冲击时减小第一绝缘构件60的晃动幅度,降低第一绝缘构件60失效的风险,提高安全性。
在一些实施例中,在第一方向X上,第二绝缘构件70的一部分位于第一电极组件20和第一绝缘构件60之间并连接于第一绝缘构件60。在本实施例中,第二绝缘构件70也可以起到绝缘隔离第一电极组件20和第二电极组件30的作用。
在一些实施例中,第二绝缘构件70为通过弯折绝缘板形成的一端开口的筒状结构。
在一些实施例中,第一绝缘构件60通过粘接、熔接或其它方式连接于第二绝缘构件70。
在一些实施例中,电池单体6还包括第三绝缘构件80,第三绝缘构件80包覆在第二电极组件30的外侧,以将第二电极组件30与外壳10的至少部分隔开。
在一些实施例中,第三绝缘构件80的至少部分位于第一绝缘构件60和第二电极组件30之间。
在一些实施例中,第一绝缘构件60为平板状。示例性地,第一绝缘构件60的厚度为0.05mm-2mm。
在一些实施例中,第一绝缘构件60由聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯或其它绝缘材料制成。
在一些实施例中,外壳10包括壳体11和两个端盖12,壳体11沿第一方向X的两端具有开口113,两个端盖12分别用于盖合于两个开口113。第一电极端子40和第二电极端子50分别安装于两个端盖12。
示例性地,电池单体6可按照下述步骤装配:将预先安装到一个端盖12上的第一电极端子40连接到第一电极组件20,将预先安装到另一个端盖12上的第二电极端子50连接到第二电极组件30;经由一个开口113将第一电极组件20安装到壳体11内,经由另一个开口113将第二电极组件30安装到壳体11内;连接壳体11和两个端盖12。
本实施例通过设置两个开口113和两个端盖12,可便于实现第一电极组件20的入壳和第二电极组件30的入壳,简化电池单体6的装配工艺。
在一些实施例中,壳体11包括沿第二方向Y相对设置的两个第一侧板111,第二方向Y垂直于第一方向X。至少一个第一侧板111设有泄压机构111a,泄压机构111a被配置为在电池单体6的内部压力或温度达到阈值时致动,以泄放内部压力。在第二方向Y上,第一电极组件20的面向第二电极组件30的端部与泄压机构111a至少部分 重叠,第二电极组件30的面向第一电极组件20的端部与泄压机构111a至少部分重叠。
泄压机构111a是指在电池单体6的内部压力达到预定阈值时致动以泄放内部压力的元件或部件。该阈值设计根据设计需求不同而不同。该阈值可能取决于电池单体6中的正极极片、负极极片、电解液和隔离件中一种或几种的材料。电池单体6的内部压力即为外壳10内部的压力。
泄压机构111a可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏元件或构造,即,当电池单体6的内部压力达到预定阈值时,泄压机构111a执行动作或者泄压机构111a中设有的薄弱部破裂,从而形成可供内部压力泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构111a产生动作或被激活至一定的状态,从而使得电池单体6的内部压力得以被泄放。泄压机构111a产生的动作可以包括但不限于:泄压机构111a中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构111a在致动时,电池单体6的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力的情况下使电池单体6发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体6的排放物包括但不限于:电解液、被溶解或***的正负极极片、隔离件的碎片、反应产生的高温高压气体、火焰,等等。
在本实施例中,泄压机构111a能够在电池单体6出现热失控时释放电池单体6的内部压力,从而降低电池单体6***的风险,提高安全性。在电池单体6热失控时,第一电极组件20的面向第二电极组件30的端部排出的高温高压物质以及第二电极组件30的面向第一电极组件20的端部排出的高温高压物质能够快速的作用在泄压机构111a上,以使泄压机构111a及时致动并泄放内部压力。
在一些实施例中,当电池单体6布置在电池的箱体内时,第二方向Y平行于竖直方向,电池单体6的泄压机构111a设置在第一电极组件20和第二电极组件30的下侧。在车辆中,当泄压机构111a致动时,排出的高温高压物质会向下喷发,这样可以降低用户被伤害的风险。
在一些实施例中,壳体11包括沿第三方向Z相对设置的两个第二侧板112,第三方向Z垂直于第一方向X和第二方向Y。第二侧板112的面积大于第一侧板111的面积。
在本实施例中,第一电极组件20和第二电极组件30在充电过程中会膨胀并挤压第一侧板111和第二侧板112,造成第一侧板111和第二侧板112变形;第一侧板111的面积较小,其受到的膨胀力也较小,变形的程度也较小。本实施例将泄压机构111a设置在面积较小的第一侧板111上,可以减小泄压机构111a的变形,降低泄压机构111a疲劳破损的风险,提高安全性。
图8为本申请一些实施例提供的电池单体的第一电极组件的剖视示意图。
如图8所示,在一些实施例中,第一电极组件20包括多个第一极片21和多个第二极片22,多个第一极片21和多个第二极片22沿第三方向Z交替层叠。第三方向Z垂直于第一方向。
在本申请实施例中,第一极片21和第二极片22的层叠方向垂直于第一方向X,第一极片21沿第一方向X的端部和第二极片22沿第一方向X的端部之间会形成供气体穿过的缝隙;当第一电极组件20出现热失控时,气体能够经由该缝隙穿过并作用在泄压机构上,以使泄压机构及时致动并泄放内部压力。
第一极片21和第二极片22的极性相反。示例性地,第一极片21和第二极片22中的一者为正极极片,另一者为负极极片。
在充电的过程中,第一电极组件20沿第三方向Z的膨胀最大,第一电极组件20与第二侧板之间的挤压力大于第一电极组件20与第一侧板之间的膨胀力,第一侧板的变形要小于第二侧板的变形,因此,泄压机构可设置在第一侧板上。
在一些实施例中,第一电极组件20还包括隔离件23,隔离件23用于将相邻的第一极片21和第二极片22绝缘隔离。
在一些实施例中,第二电极组件也包括多个第一极片和多个第二极片,多个第一极片和多个第二极片沿第三方向交替层叠。
图9为本申请另一些实施例提供的电池单体的第一电极组件的剖视示意图。
如图9所示,在一些实施例中,第一电极组件20包括多个第一极片21和第二极片22,第二极片22连续弯折且包括多个层叠段221和多个折弯段222,多个层叠段221和多个第一极片21沿第三方向Z交替层叠,各折弯段222用于连接相邻的两个层叠段221。第三方向Z垂直于第一方向。
在本申请实施例中,第一极片21和层叠段221的层叠方向垂直于第一方向X,第一极片21沿第一方向X的端部和第二极片22沿第一方向X的端部之间会形成供气体穿过的缝隙;当第一电极组件20出现热失控时,气体能够经由该缝隙穿过并作用在泄压机构上,以使泄压机构及时致动并泄放内部压力。
第三方向Z平行于层叠段221的厚度方向和第一极片21的厚度方向。示例性地,第一极片21和层叠段221均为矩形平板且彼此平行设置。
在充电的过程中,第一电极组件20沿第三方向Z的膨胀最大,第一电极组件20与第二侧板之间的挤压力大于第一电极组件20与第一侧板之间的膨胀力,第一侧板的变形要小于第二侧板的变形,因此,泄压机构111a可设置在第一侧板上。
图10为本申请又一些实施例提供的电池单体的第一电极组件的剖视示意图。
如图10所示,第一电极组件20包括第一极片21和第二极片22,第一极片21和第二极片22绕卷绕轴线卷绕,卷绕轴线平行于所述第一方向X。
在本申请实施例中,第一极片21和第二极片22的卷绕方向垂直于第一方向X,第一极片21沿第一方向X的端部和第二极片22沿第一方向X的端部之间会形成供气体穿过的缝隙;当第一电极组件20出现热失控时,气体能够经由该缝隙穿过并作用在泄压机构上,以使泄压机构及时致动并泄放内部压力。
在一些实施例中,第一电极组件20为卷绕结构且包括两个第一表面20a和两个第二表面20b,两个第一表面20a沿第二方向Y相对,两个第二表面20b沿第三方向Z相对,第一方向X、第二方向Y和第三方向Z两两垂直。第二表面20b的面积大于第一表面20a的面积。
第一电极组件20还包括隔离件23。第一极片21、第二极片22和隔离件23均为带状结构。第一极片21、隔离件23和第二极片22依次层叠并沿卷绕轴线卷绕至少两圈,以形成第一电极组件20。卷绕轴线平行于第一方向。
在充电的过程中,第一电极组件20沿第三方向Z的膨胀最大,第一电极组件20与第二侧板之间的挤压力大于第一电极组件20与第一侧板之间的膨胀力,第一侧板的变形要小于第一侧板的变形,因此,泄压机构111a可设置在第一侧板上。
在一些实施例中,第一表面20a的至少部分为弧形。
图11为本申请一些实施例提供的电池的简化示意图;图12为本申请一些实施例提供的电池的正视示意图。
如图11和图12所示,本申请实施例还提供了一种电池2,电池2包括多个前述任一实施例的电池单体6。
在一些实施例中,电池2还包括第一汇流部件7a、第二汇流部件7b和第三汇流部件7c。第一汇流部件7a用于电连接多个电池单体6的第一电极端子40。第二汇流部件7b用于电连接多个电池单体6的第二电极端子50。第三汇流部件7c用于将至少一个电池单体6的第一电极端子40电连接到第二电极端子50。
第一汇流部件7a用于将多个电池单体6的第一电极组件串联、并联或混联。示例性地,第一汇流部件7a连接一个电池单体6的第一正极端子41和另一个电池单体6的第一负极端子42,以将两个电池单体6的第一电极组件串联。
第二汇流部件7b用于将多个电池单体6的第二电极组件串联、并联或混联。示例性地,第二汇流部件7b连接一个电池单体6的第二正极端子51和另一个电池单体6的第二负极端子52,以将两个电池单体6的第二电极组件串联。
第三汇流部件7c用于将至少一个电池单体6的第一电极组件和第二电极组件串联或并联。示例性地,第三汇流部件7c用于将一个电池单体6的第一电极组件和第二电极组件并联。例如,第三汇流部件7c用于将一个电池单体6的第一正极端子41和第二正极端子51并联,以作为电池2的总正输出极。
在本实施例中,电池2通过电池单体6外部的多个汇流部件将多个电池单体6的第一电极组件和第二电极组件电连接,以实现第一电极组件和第二电极组件的汇流输出。
本申请实施例还提供了一种用电装置,包括以上任一实施例的电池单体6,电池单体6用于为用电装置提供电能。用电装置可以是前述任一应用电池的设备或***。
根据本申请的一些实施例,参照图3至图5,本申请实施例的电池单体6包括外壳10、第一电极组件20、第二电极组件30、第一电极端子40和第二电极端子50。外壳10包括壳体11和两个端盖12,壳体11沿第一方向X的两端具有开口,两个端盖12分别用于盖合于两个开口。第一电极组件20和第二电极组件30容纳于外壳10内并沿第一方向X布置,第一电极组件20与第二电极组件30之间设有第一绝缘构件60。第一电极端子40包括设于一个端盖12上的第一正极端子41和第一负极端子42,第一正极端子41电连接于第一电极组件20的正极极片,第一负极端子42电连接于第一电极组件20的负极极片,以将第一电极组件20产生的电能引出。第二电极端子50包括 设置于另一个端盖12上的第二正极端子51和第二负极端子52,第二正极端子51电连接于第二电极组件30的正极极片,第二负极端子52电连接于第二电极组件30的负极极片,以将第二电极组件30产生的电能引出。
图13为本申请一些实施例提供的电池单体的制造方法的流程示意图。
如图13所示,本申请实施例提供了一种电池单体的制造方法,其包括:
S100、提供外壳、第一电极端子和第二电极端子,第一电极端子和第二电极端子设置于外壳;
S200、提供第一电极组件和第二电极组件;
S200、将第一电极组件和第二电极组件安装于外壳内,并使第一电极端子电连接于第一电极组件、第二电极端子电连接于第二电极组件;
其中,第一电极组件和第二电极组件并沿第一方向布置并绝缘设置,第一电极端子用于将第一电极组件的电能导出,第二电极端子用于将第二电极组件的电能导出。
需要说明的是,通过上述电池单体的制造方法制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
在基于上述的电池单体的制造方法制造电池单体时,不必按照上述步骤依次进行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S100、S200的执行不分先后,也可以同时进行。
图14为本申请一些实施例提供的电池单体的制造***的示意性框图。
如图14所示,本申请实施例提供了一种电池单体的制造***90,其包括第一提供装置91、第二提供装置92和组装装置93。第一提供装置91用于提供外壳、第一电极端子和第二电极端子,第一电极端子和第二电极端子设置于外壳。第二提供装置92用于提供第一电极组件和第二电极组件。组装装置93用于将第一电极组件和第二电极组件安装于外壳内,并使第一电极端子电连接于第一电极组件、第二电极端子电连接于第二电极组件。第一电极组件和第二电极组件并沿第一方向布置并绝缘设置,第一电极端子用于将第一电极组件的电能导出,第二电极端子用于将第二电极组件的电能导出。
通过上述制造***制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (19)

  1. 一种电池单体,包括:
    外壳;
    第一电极组件和第二电极组件,容纳于所述外壳内并沿第一方向布置,所述第一电极组件与所述第二电极组件绝缘设置;
    第一电极端子,设置于所述外壳并电连接于所述第一电极组件,以将所述第一电极组件的电能导出;以及
    第二电极端子,设置于所述外壳并电连接于所述第二电极组件,以将所述第二电极组件的电能导出。
  2. 根据权利要求1所述的电池单体,其中,所述第一电极组件和所述第二电极组件在所述第一方向上间隔设置。
  3. 根据权利要求2所述的电池单体,还包括第一绝缘构件,所述第一绝缘构件的至少部分位于所述第一电极组件和所述第二电极组件之间,以将所述第一电极组件和所述第二电极组件绝缘隔开。
  4. 根据权利要求3所述的电池单体,其中,所述第一绝缘构件设有通孔,所述通孔将所述第一绝缘构件的面向所述第一电极组件一侧的空间与所述第一绝缘构件的面向所述第二电极组件一侧的空间连通。
  5. 根据权利要求3或4所述的电池单体,还包括第二绝缘构件,所述第二绝缘构件包覆在所述第一电极组件的外侧,以将所述第一电极组件与所述外壳的至少部分隔开;
    所述第一绝缘构件连接于所述第二绝缘构件。
  6. 根据权利要求1-5中任一项所述的电池单体,其中,所述第一电极组件外侧的空间连通于所述第二电极组件外侧的空间。
  7. 根据权利要求1-6中任一项所述的电池单体,其中,所述第一电极端子和所述第二电极端子分别安装于所述外壳沿所述第一方向的两端。
  8. 根据权利要求1-7中任一项所述的电池单体,其中,所述第一电极端子包括第一正极端子和第一负极端子,所述第一正极端子电连接于所述第一电极组件的正极极片,所述第一负极端子电连接于所述第一电极组件的负极极片;
    所述第二电极端子包括第二正极端子和第二负极端子,所述第二正极端子电连接于所述第二电极组件的正极极片,所述第二负极端子电连接于所述第二电极组件的负极极片。
  9. 根据权利要求1-8中任一项所述的电池单体,其中,所述电池单体沿所述第一方向的最大尺寸为200mm-2000mm。
  10. 根据权利要求1-9中任一项所述的电池单体,其中,所述外壳包括壳体和两个端盖,所述壳体沿所述第一方向的两端具有开口,两个所述端盖分别用于盖合于两个所述开口;
    所述第一电极端子和所述第二电极端子分别安装于两个所述端盖。
  11. 根据权利要求10所述的电池单体,其中,所述壳体包括沿第二方向相对设置的两个第一侧板,所述第二方向垂直于所述第一方向;
    至少一个所述第一侧板设有泄压机构,所述泄压机构被配置为在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部压力;
    在所述第二方向上,所述第一电极组件的面向所述第二电极组件的端部与所述泄压机构至少部分重叠,所述第二电极组件的面向所述第一电极组件的端部与所述泄压机构至少部分重叠。
  12. 根据权利要求11所述的电池单体,其中,所述壳体包括沿第三方向相对设置的两个第二侧板,所述第三方向垂直于所述第一方向和所述第二方向;
    所述第二侧板的面积大于所述第一侧板的面积。
  13. 根据权利要求1-12任一项所述的电池单体,其中,所述第一方向平行于所述电池单体的长度方向。
  14. 根据权利要求1-13任一项所述的电池单体,其中,
    所述第一电极组件包括第一极片和第二极片,所述第一极片和所述第二极片绕卷绕轴线卷绕,所述卷绕轴线平行于所述第一方向;或者
    所述第一电极组件包括多个第一极片和多个第二极片,多个所述第一极片和多个所述第二极片沿第三方向交替层叠,所述第三方向垂直于所述第一方向;或者
    所述第一电极组件包括多个第一极片和第二极片,所述第二极片连续弯折且包括多个层叠段和多个折弯段,多个所述层叠段和多个所述第一极片沿第三方向交替层叠,各所述折弯段用于连接相邻的两个所述层叠段,所述第三方向垂直于所述第一方向。
  15. 一种电池,包括多个根据权利要求1-14中任一项所述的电池单体。
  16. 根据权利要求15所述的电池,还包括:
    第一汇流部件,用于电连接多个所述电池单体的所述第一电极端子;
    第二汇流部件,用于电连接多个所述电池单体的所述第二电极端子;以及
    第三汇流部件,用于将至少一个所述电池单体的所述第一电极端子电连接到所述第二电极端子。
  17. 一种用电装置,包括根据权利要求1-14中任一项所述的电池单体,所述电池单体用于提供电能。
  18. 一种电池单体的制造方法,包括:
    提供外壳、第一电极端子和第二电极端子,所述第一电极端子和所述第二电极端子设置于所述外壳;
    提供第一电极组件和第二电极组件;
    将所述第一电极组件和所述第二电极组件安装于所述外壳内,并使所述第一电极端子电连接于所述第一电极组件、所述第二电极端子电连接于所述第二电极组件;
    其中,所述第一电极组件和所述第二电极组件并沿第一方向布置并绝缘设置,所述第一电极端子用于将所述第一电极组件的电能导出,所述第二电极端子用于将所述第二电极组件的电能导出。
  19. 一种电池单体的制造***,包括:
    第一提供装置,用于提供外壳、第一电极端子和第二电极端子,所述第一电极端子和所述第二电极端子设置于所述外壳;
    第二提供装置,用于提供第一电极组件和第二电极组件;
    组装装置,用于将所述第一电极组件和所述第二电极组件安装于所述外壳内,并使所述第一电极端子电连接于所述第一电极组件、所述第二电极端子电连接于所述第二电极组件;
    其中,所述第一电极组件和所述第二电极组件并沿第一方向布置并绝缘设置,所述第一电极端子用于将所述第一电极组件的电能导出,所述第二电极端子用于将所述第二电极组件的电能导出。
PCT/CN2022/081730 2022-03-18 2022-03-18 电池单体及其制造方法和制造***、电池以及用电装置 WO2023173414A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280060985.XA CN117941143A (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造***、电池以及用电装置
PCT/CN2022/081730 WO2023173414A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造***、电池以及用电装置
PCT/CN2022/122119 WO2023173721A1 (zh) 2022-03-18 2022-09-28 电池单体、电池模组、电池和用电装置
CN202280034609.3A CN117296194A (zh) 2022-03-18 2022-09-28 电池单体、电池模组、电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081730 WO2023173414A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造***、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/440,779 Continuation US20240222818A1 (en) 2024-02-13 Battery cell, method and system for manufacturing battery cell, battery and electrical apparatus

Publications (1)

Publication Number Publication Date
WO2023173414A1 true WO2023173414A1 (zh) 2023-09-21

Family

ID=88021970

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/081730 WO2023173414A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造***、电池以及用电装置
PCT/CN2022/122119 WO2023173721A1 (zh) 2022-03-18 2022-09-28 电池单体、电池模组、电池和用电装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122119 WO2023173721A1 (zh) 2022-03-18 2022-09-28 电池单体、电池模组、电池和用电装置

Country Status (2)

Country Link
CN (2) CN117941143A (zh)
WO (2) WO2023173414A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133585A (ko) * 2012-05-29 2013-12-09 삼성에스디아이 주식회사 파우치형 이차전지
CN112768783A (zh) * 2021-01-07 2021-05-07 Oppo广东移动通信有限公司 电池组件及其制备方法、电子设备
CN112838297A (zh) * 2020-12-29 2021-05-25 宁德新能源科技有限公司 电芯及电子设备
CN112838303A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN113471631A (zh) * 2021-07-05 2021-10-01 宁德新能源科技有限公司 电化学装置及包含该电化学装置的电子装置
CN115004441A (zh) * 2021-07-14 2022-09-02 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209675429U (zh) * 2019-05-21 2019-11-22 宁德时代新能源科技股份有限公司 一种二次电池
CN113131045B (zh) * 2020-01-13 2023-06-13 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN216054967U (zh) * 2021-05-27 2022-03-15 上海汽车集团股份有限公司 电池模组
CN217158545U (zh) * 2022-02-25 2022-08-09 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
CN217788621U (zh) * 2022-03-18 2022-11-11 宁德时代新能源科技股份有限公司 电池单体及其制造设备、电池、用电设备
CN217158410U (zh) * 2022-03-18 2022-08-09 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN217158412U (zh) * 2022-04-02 2022-08-09 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN217740741U (zh) * 2022-04-12 2022-11-04 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133585A (ko) * 2012-05-29 2013-12-09 삼성에스디아이 주식회사 파우치형 이차전지
CN112838303A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN112838297A (zh) * 2020-12-29 2021-05-25 宁德新能源科技有限公司 电芯及电子设备
CN112768783A (zh) * 2021-01-07 2021-05-07 Oppo广东移动通信有限公司 电池组件及其制备方法、电子设备
CN113471631A (zh) * 2021-07-05 2021-10-01 宁德新能源科技有限公司 电化学装置及包含该电化学装置的电子装置
CN115004441A (zh) * 2021-07-14 2022-09-02 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Also Published As

Publication number Publication date
CN117941143A (zh) 2024-04-26
WO2023173721A1 (zh) 2023-09-21
CN117296194A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2023004723A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2022247292A1 (zh) 电池单体、电池以及用电装置
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2023134479A1 (zh) 电池和用电设备
WO2024124688A1 (zh) 绝缘膜、电池单体、电池及用电装置
WO2024045692A1 (zh) 电池模组、电池以及用电装置
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023025104A1 (zh) 电池单体、电池以及用电装置
CN217158410U (zh) 电池单体、电池以及用电装置
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023050281A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023004722A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023173414A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
JP2023547006A (ja) 電池単体、その製造方法および製造システム、電池および電力使用装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
US20240222818A1 (en) Battery cell, method and system for manufacturing battery cell, battery and electrical apparatus
WO2023197133A1 (zh) 电池单体的壳体、电池单体、电池以及用电装置
WO2023023916A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2024016158A1 (zh) 电池单体的端盖组件、电池单体、电池以及用电装置
WO2023230880A1 (zh) 电池单体、电池以及用电装置
WO2023092300A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280060985.X

Country of ref document: CN