WO2023065923A1 - 电池单体、电池和用电设备 - Google Patents

电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2023065923A1
WO2023065923A1 PCT/CN2022/119817 CN2022119817W WO2023065923A1 WO 2023065923 A1 WO2023065923 A1 WO 2023065923A1 CN 2022119817 W CN2022119817 W CN 2022119817W WO 2023065923 A1 WO2023065923 A1 WO 2023065923A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
electrode terminal
recess
electrode
Prior art date
Application number
PCT/CN2022/119817
Other languages
English (en)
French (fr)
Inventor
林蹬华
陈新祥
郭志君
郑于炼
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2023554054A priority Critical patent/JP2024509223A/ja
Priority to EP22882534.5A priority patent/EP4270608A1/en
Priority to KR1020237029867A priority patent/KR20230141846A/ko
Publication of WO2023065923A1 publication Critical patent/WO2023065923A1/zh
Priority to US18/449,511 priority patent/US20230395952A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery cell, a battery and an electric device.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the battery In order to adapt to people's fast-paced travel, the battery needs to meet the needs of fast charging during use. For this reason, the capacity of the battery cell needs to be increased, which may change the size of the battery cell, thus occupying more storage space. . Therefore, how to improve the space utilization rate of the battery cells has become a problem to be solved.
  • the present application provides a battery cell, a battery and an electrical device, which can improve the space utilization rate of the battery cell.
  • a battery cell including:
  • a first region of an edge of the first surface is sunken to form a first recess
  • a second surface for setting a first electrode terminal of the battery cell the first surface and the second surface are perpendicular to the first direction;
  • the depth of the first recess is larger than the height of the first electrode terminal, and the projected area of the first recess on the first surface is larger than that of the first electrode terminal on the first surface. The projected area on the first surface.
  • the edge of the first surface of the battery cell is provided with a first recess, and the first electrode terminal of the battery cell protrudes from the second surface opposite to the first surface, therefore, when multiple When the battery cells are arranged along the protruding direction of the first electrode terminal, the first recesses of other battery cells adjacent to the battery cell can be used to accommodate the first electrode terminal of the battery cell, and the first electrode terminal of the battery cell The first electrode terminal does not need to occupy additional space, thus improving the space utilization rate of the battery cell.
  • the difference between the size of the battery cell and the size of the first recess of the battery cell is greater than or equal to 2 mm.
  • the size of the battery cells at the position corresponding to the first recess is greater than or equal to 2 millimeters, so as to ensure that the size requirements of the first recess are met.
  • the size of the first recess on the first surface along the second direction is greater than or equal to 12 millimeters, and the second direction is perpendicular to the third side of the battery cell. surface, the third surface is perpendicular to the first surface and the second surface.
  • the first recess of the battery cell is on the first surface.
  • the size along the second direction should be set within a reasonable range, for example greater than or equal to 12 mm.
  • the size of the first recess on the first surface along the third direction is greater than or equal to 15 mm, and the third direction is perpendicular to the first direction and the second direction.
  • the battery cell includes a casing and an end cover, the casing is used to accommodate the electrode assembly of the battery cell, and the end cover covers the casing to The electrode assembly is enclosed in the casing, the bottom wall of the casing forms the first surface of the battery cell, and the end cap forms the second surface of the battery cell.
  • the area of the end cap corresponding to the electrode assembly protrudes in a direction away from the casing, so as to form a groove on the side of the end cap facing the casing .
  • the groove is used for positioning the electrode assembly during assembly of the electrode assembly.
  • the contour line between the edge region of the end cover and the groove is used to position the welding track during the welding process of the shell and the end cover.
  • the area of the end cap corresponding to the electrode assembly protrudes toward the direction away from its casing, so as to form a groove on the side of the end cap facing the casing.
  • Such a design not only enables the groove to position the electrode assembly during the assembly process of the electrode assembly, but also enables the contour line between the edge area of the end cover and the groove to be used in the process of welding the shell and the end cover. Position the welding trajectory.
  • the depth of the groove is between 0.4 mm and 3 mm.
  • the depth of the groove cannot be too large to avoid affecting the position of the welding tool in the welding process, and the depth of the groove cannot be too small, otherwise the above functions cannot be realized. Therefore, the depth is set at 0.4 to 3 mm is optimal.
  • the distance between the contour line and the welding track is greater than 0.5 mm.
  • the second region of the edge of the first surface is sunken to form a second recess
  • the first region is located at the first end of the first surface in the second direction
  • the The second region is located at the second end of the first surface in the second direction
  • the second electrode terminal of the battery cell protrudes from the second electrode terminal of the battery cell in the first direction.
  • the polarity of the second electrode terminal is opposite to that of the first electrode terminal.
  • the battery cell in addition to forming a first recess in the first region of the edge of the first surface of the battery cell, the battery cell also has a second recess and a second electrode terminal, wherein the first surface of the battery cell The second region of the edge is sunken to form the second recess, and the second electrode terminals of the battery cells protrude from the second surface opposite to the first surface. Therefore, when a plurality of battery cells along the second electrode When the protruding directions of the terminals are aligned, the second concave portion of another battery cell adjacent to the battery can accommodate the second electrode terminal of the battery cell and the first electrode terminal does not need to occupy additional space, thus improving the efficiency of the battery cell. space utilization.
  • a battery including the battery cell in the first aspect or any possible implementation manner of the first aspect.
  • a battery including the battery cell in the first aspect or any possible implementation manner of the first aspect.
  • an electric device including: the battery cell in the first aspect and any possible implementation manners of the first aspect, where the battery cell is used to provide electric energy.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 3 is a schematic structural view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 4 is a schematic structural view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of connecting adjacent battery cells through a confluence component disclosed in an embodiment of the present application
  • Fig. 7 is a schematic structural diagram of a confluence component disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a confluence component disclosed in an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a confluence component disclosed in an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a confluence component disclosed in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of the size of a confluence component disclosed in an embodiment of the present application.
  • Fig. 12 is a schematic diagram of the size of a confluence component disclosed in an embodiment of the present application.
  • Fig. 13 is a schematic structural view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 14 is a schematic diagram of a grouping process of battery cells disclosed in an embodiment of the present application.
  • Fig. 15 is a side view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 16 is a side view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 17 is a schematic structural view of a groove on an end cover of a battery cell disclosed in an embodiment of the present application.
  • a battery refers to a physical module including one or more battery cells to provide electrical energy.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in this embodiment of the present application.
  • a battery cell may also be referred to as a battery cell.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon. In order to ensure that a large current is passed without fusing, the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be polypropylene (Polypropylene, PP) or polyethylene (Polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • multiple battery cells in the battery can be connected in series, parallel or mixed, where the mixed connection refers to a mixture of series and parallel.
  • multiple battery cells can be connected in series, parallel or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery is further arranged in the electric device to provide electric energy for the electric device.
  • a signal transmission component may also be included.
  • the signal transmission component can be used to transmit signals such as the voltage and/or temperature of the battery cells.
  • the signal transmission component may include a confluence part, which is used to realize electrical connection among a plurality of battery cells, such as parallel connection, series connection or hybrid connection.
  • the bus component can realize the electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus member may be fixed to the electrode terminal of the battery cell by welding.
  • the bussing part transmits the voltage of the battery cells, and a higher voltage will be obtained after multiple battery cells are connected in series.
  • the electrical connection formed by the bussing part can also be called a "high voltage connection".
  • the signal transmission assembly may also include a sensor device for sensing the state of the battery cell, for example, the sensor device may be used to measure and transmit sensor signals such as temperature and state of charge of the battery cell.
  • the electrical connection components in the battery may include a current flow component and/or a sensor device.
  • Bus components and sensing devices can be encapsulated in an insulating layer to form a signal transmission assembly.
  • the signal transmission component can be used to transmit the voltage of the battery cell and/or the sensing signal.
  • the signal transmission component does not have an insulating layer at the connection with the electrode terminal of the battery cell, that is, the insulating layer has an opening here, so as to be connected with the electrode terminal of the battery cell.
  • the present application provides a technical solution, in which a recess is provided on the edge of the first surface of the battery cell, and the electrode terminals of the battery cell are arranged at corresponding positions on the second surface opposite to the first surface.
  • the concave portion of the second battery cell can be used to accommodate the electrode terminal of the first battery cell, so that the electrode terminal does not need to occupy additional space. Only need to bypass the side wall of the second battery cell so that the two ends of the current converging part are respectively connected to the electrode terminals of the first battery cell and the second battery cell, and the electric current between the two battery cells can be realized. connect.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1, for example, the battery 10 can be used as an operating power source of the vehicle 1, for the circuit system of the vehicle 1, for example, for starting, navigating and working power requirements of the vehicle 1 during operation.
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include a plurality of battery cells.
  • FIG. 2 which is a schematic structural diagram of a battery 10 according to an embodiment of the present application, the battery 10 may include at least one battery module 200 .
  • the battery module 200 includes a plurality of battery cells 20 .
  • the battery 10 may further include a box body 11 , the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body 11 .
  • the box body 11 may include two parts, referred to here as a first part 111 (upper box body) and a second part 112 (lower box body), and the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of a plurality of battery cells 20 , and at least one of the first part 111 and the second part 112 may have an opening.
  • both the first part 111 and the second part 112 can be hollow cuboids and only one face is an opening face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the opening of the second part 112 are arranged oppositely.
  • the second parts 112 are interlocked to form the box body 11 with a closed chamber. For another example, different from what is shown in FIG.
  • only one of the first part 111 and the second part 112 may be a hollow cuboid with an opening, while the other may be a plate to cover the opening.
  • the second part 112 is a hollow cuboid with only one face as an open face
  • the first part 111 is a plate-shaped example, so the first part 111 is covered at the opening of the second part 112 to form a box with a closed chamber , the cavity can be used to accommodate a plurality of battery cells 20 .
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel, and placed in the box 11 formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • the number of battery cells 20 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for the convenience of installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • a battery can include multiple battery modules that can be connected in series, parallel or in parallel.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and an end cap 212 .
  • the housing 211 and the end cap 212 form the housing or battery compartment 21 .
  • the walls of the casing 211 and the end caps 212 are called the walls of the battery cell 20 , wherein for the rectangular parallelepiped battery cell 20 , the walls of the casing 211 include a bottom wall and four side walls.
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the end cap 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the end cap 212 .
  • the end cap 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the end cap 212, and the two electrode terminals 214 are positive electrode terminals 214a and negative electrode terminals 214b respectively.
  • Each electrode terminal 214 is respectively provided with a connecting member 23 , or also called a current collecting member 23 , which is located between the end cap 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 can be arranged as a single one or in multiples. As shown in FIG. 3 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • a pressure relief mechanism 213 may also be provided on the battery cell 20 .
  • the pressure relief mechanism 213 is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • the plurality of battery cells 20 included in the battery 10 in the embodiment of the present application may be arranged and arranged in any direction in the box 11 .
  • the rectangular parallelepiped-shaped battery cell 20 as shown in FIG. 3 as an example, as shown in FIG.
  • the end caps 212 of the installed battery cells 20 face the upper case 111 , while the bottom walls of the housings 211 of the battery cells 20 face the lower case 112 .
  • a plurality of battery cells 20 as shown in FIG. 3 can also be arranged laterally in the box.
  • the battery cells 20 when subjected to an external force such as an impact, the battery cells 20 are likely to be misaligned with each other, resulting in the impact of the confluence component on the electrode terminals 214 of the battery cells 20 . Pulling, and the side wall area of the battery cell 20 is relatively large, which is prone to deformation.
  • the shape of the battery cell 20 can be set as a blade, that is, the length of the battery cell can be increased, so that the casing 211 of the battery cell 20 can play a certain supporting role, share a part of the force, and connect the electrode terminals 214 is disposed at the end of the battery cell 20 along the length direction, so as to reduce the pull between the electrode terminals 214 of the battery cell by the current-combining component.
  • the size of the battery cell 20 in the length direction increases, and the size in the thickness direction decreases, and the flatter the battery cell 20 is, the capacity of the battery cell 20 is avoided. If the current is too large, the overcurrent of the electrode terminal is too large, so that the heat generated on the electrode terminal exceeds the temperature requirement of the battery cell 20 . Due to the reduced thickness of the battery cell 20 , when the electrode terminal 214 is provided at the end of the battery cell 20 , the size of the electrode terminal 214 will be limited. If the size of the electrode terminal 214 is too small, the overcurrent requirement cannot be met.
  • the embodiment of the present application may adopt a blade-shaped battery cell 20 as shown in FIG. 4 .
  • the battery cell 20 includes a first surface 251 , a second surface 252 and a first electrode terminal 214 a.
  • the first region of the edge of the first surface 251 is indented to form the first recess 241, and the second surface 252 is used for setting the first electrode terminal 214a of the battery cell 20, wherein the first surface 251 and the second surface 252 are perpendicular to the first Direction X.
  • the battery cell 20 also includes a first electrode terminal.
  • the first electrode terminal may be the positive electrode terminal 214a or the negative electrode terminal 214b, and the following description will be made by taking the first electrode terminal as the positive electrode terminal 214a as an example.
  • the first electrode terminal 214 a protrudes from the second surface 252 of the battery cell 20 in the first direction X, and is opposite to the first concave portion 241 .
  • the positions of the positive electrode terminal 214a and the negative electrode terminal 214b in FIG. 4 can be interchanged.
  • the electrode terminal at the corresponding position of the first concave portion 241 is the positive electrode terminal 214a as an example for description.
  • the first surface 251 may be the bottom wall of the casing 211 of the battery cell 20 , and the first area of the first surface 251 is located at one edge of the battery cell 20 in the X direction.
  • the second surface 252 may be the surface of the end cap 212 of the battery cell.
  • the depth of the first concave portion 241 in the first direction X is greater than the height of the first electrode terminal 214a, and the projected area of the first concave portion 241 on the first surface 251 is larger than the projected area of the first electrode terminal 214a on the first surface 251 .
  • the first concave portion 241 can accommodate the first electrode terminals 214a of other battery cells 20 disposed adjacent to the battery cell 20 in the first direction.
  • FIG. 5 it is a side view of a battery 10 according to an embodiment of the present application.
  • the battery 10 includes a box body 211 and a plurality of battery cells 20 accommodated in the box body 211 , for example including adjacent first battery cells 201 and second battery cells 202 .
  • the plurality of battery cells 20 are arranged along the first direction X, and the first region of the edge of the first surface 251 of each of the plurality of battery cells 20 is recessed to form a first recess 241 .
  • the first electrode terminal 214 a of each battery cell 20 protrudes from the second surface 252 of the battery cell 20 .
  • the protruding direction of the first electrode terminal 214a is the first direction X.
  • the battery 10 also includes a first current-combining component 26, which is used to electrically connect the first electrode terminals 214a of two adjacent battery cells 20, such as the first battery cell 201 and the second battery cell 202.
  • the bus member 26 therebetween is used to electrically connect the first electrode terminal 214a of the first battery cell 201 and the first electrode terminal 214a of the second battery cell 202 .
  • the first confluence member 26 bypasses the side wall of the second battery cell 202 parallel to the first direction X, so that the first end 261 of the first confluence member 26 is connected to the side wall of the first battery cell 201 .
  • the first electrode terminal 214a, the second end 262 of the first bus unit 26 is connected to the first electrode terminal 214a of the second battery cell 202, wherein the first end 261 of the first bus unit 26 and the first battery unit 201
  • the first electrode terminals 214 a of the battery cells are jointly accommodated in the first concave portion 241 of the second battery cell 202 .
  • the edge of the first surface 251 of the battery cell 20 is provided with the first recess 241, and the first electrode terminal 214a of the battery cell 20 protrudes from the second surface 252 opposite to the first surface 251, therefore, when more When two battery cells 20 are arranged along the protruding direction of the first electrode terminal 214a, the first recess 241 of the second battery cell 202 among the two adjacent battery cells can accommodate the first electrode of the first battery cell 201.
  • Terminal 214a and accommodates the first bus component 26 for connecting two battery cells 20 .
  • the first bussing member 26 can bypass the side wall of the second battery cell 202, so that the first end 261 of the first bussing member 26 is connected to the first electrode terminal 214a of the first battery cell 201, and the second end 262 Connected to the first electrode terminal 214 a of the second battery cell 202 . Since a plurality of battery cells 20 are arranged along the protruding direction X of the respective first electrode terminals 214a, and the first electrode terminals 214a are accommodated in the first recesses 241 of adjacent battery cells 20, no module assembly space is occupied, Therefore, the space efficiency of the battery cell 20 is improved.
  • the first flow-combining component 26 includes a first end 261 , a second end 262 , and a bent portion 263 located between the first end 261 and the second end 262 .
  • the bending portion 263 is configured to be bendable, so that the first flow-combining member 26 can go around the side wall of the second battery cell 202 parallel to the first direction X.
  • the first flow-combining member 26 can more easily bypass the side walls of the battery cells 20 during the grouping process of a plurality of battery cells 20, facilitating Installation of the first flow-combining part 26 .
  • the bending portion 263 includes a first bending area 2631, a second bending area 2632, and a middle area 2633, wherein the first bending area 2631 is used for bending, To connect the first end 261 and the middle region 2633 , the second bending region 262 is used for bending to connect the second end 262 and the middle region 2633 .
  • the thickness of the first bending region 2631 and the thickness of the second bending region 2632 are smaller than the thickness of the middle region 2633 .
  • the thickness of the first bending region 2631 and the thickness of the second bending region 2632 of the bending portion 263 of the first flow-combining member 26 are smaller than the thickness of the middle region 2633, it is equivalent to the thickness of the first bending region 2631 and the second bending region 2631.
  • the thickness of the second bending area 2631 is reduced, so that it is easier to realize the bending of the first flow-combining component 26 .
  • the middle region 2633 is perpendicular to the first surface 251 and the second surface 252 of the battery cell 20 . Since the middle area of the bent portion of the first busbar 26 is perpendicular to the first surface 251 and the second surface 252 of the battery cell 20, the first busbar 26 is perpendicular to the first surface 251 and the second surface 252. The minimum space is occupied in the direction, which further improves the space utilization rate of the battery cell.
  • reinforcing ribs 264 may be provided on the middle region 2633 to improve the strength of the first flow-combining component 26 .
  • the reinforcing rib 264 may be parallel to the first direction X, for example.
  • an insulating layer 265 is provided on the surface of the bent portion 263 facing the battery cell 20 , and the insulating layer can be, for example, an insulating patch or an insulating coating; or, in another implementation manner, as shown in FIG. 10 , the bent portion 263 is wrapped with an insulating material 266 . Since the bending portion 263 is provided with an insulating layer 265 or wrapped with an insulating material 266, the electrical contact between the first bus member 26 and the first electrode terminal 214a of the battery cell 20 can be avoided, thereby improving the safety of the battery 10 .
  • the dimension H1 of the first concave portion 241 is greater than the sum of the height H3 of the first electrode terminal 214a and the dimension H2 of the first bus member 26, so that The first concave portion 241 of the battery cell 20 can accommodate the first electrode terminals 214 a of other adjacent battery cells 20 and the first bus member 26 .
  • the difference between the size H0 of the battery cell 20 (not including the height H3 of the first electrode terminal 214a) and the size H2 of the first recess 241 of the battery cell 20 may be greater than or equal to 2mm, that is, H0-H1>2mm.
  • the size of the battery cell 20 at the position corresponding to the first concave portion 241 is greater than or equal to 2mm, it is possible to ensure that the battery cell 20 can meet the size requirements of the first concave portion 241
  • the dimension L0 of the first recess 241 on the first surface 251 along the second direction Y is greater than or equal to 12 mm, and the second direction Y is perpendicular to the third surface 253 of the battery cell 20 .
  • the third surface 253 is perpendicular to the first surface 251 and the second surface 252 .
  • the first concave portion of the battery cell 20 The size of 241 along the second direction Y on the first surface 251 should be set within a reasonable range, for example greater than or equal to 12 mm.
  • the diameter D of the first electrode terminal 214a usually satisfies D ⁇ 5mm.
  • the dimension L4 of the first recess 241 along the third direction Z on the first surface 251 is greater than or equal to 15 mm, so as to satisfy the distance between the two first electrode terminals 214 a and the distance between each The thickness of the insulating wrapping of the first electrode terminal 214a and other requirements.
  • the second region of the edge of the first surface 251 of each battery cell 20 is sunken to form a second recess 242, wherein the first region is located on the first surface 251 at the second The first end in the second direction Y, and the second region is located at the second end of the first surface 251 in the second direction Y.
  • the second electrode terminal 214b of each battery cell 20 protrudes from the second surface 252 of the battery cell 20 , and the polarity of the second electrode terminal 214b is opposite to that of the first electrode terminal 214a.
  • the positions of the positive electrode terminal 214a and the negative electrode terminal 214b in FIG. 13 can be interchanged.
  • the electrode terminal at the corresponding position of the second concave portion 242 is the negative electrode terminal 214b as an example for description.
  • the plurality of battery cells 20 further include a third battery cell 203 adjacent to the second battery cell 202, and the battery 10 further includes a second bus component 27, which is used for connecting The second electrode terminal 214 b of the second battery cell 202 and the second electrode terminal 214 b of the third battery cell 203 .
  • the second flow-combining member 27 will eventually bypass the side wall of the third battery cell 203 parallel to the first direction X, so that the first end of the second flow-combining member 27 is connected to the second end of the second battery cell 202 .
  • the electrode terminal 214 b , the second end of the second bus member 27 is connected to the second electrode terminal 214 b of the third battery cell 203 .
  • the first end of the second bus component 27 connected to the second battery cell 202 and the second electrode terminal 214b of the second battery cell 202 are jointly accommodated in the second recess 242 of the third battery cell 203 .
  • a first electrode terminal is provided on the second surface 252 of the battery cell 20 corresponding to the first recess 241, and a second electrode terminal is provided on the second surface 252 of the battery cell 20 corresponding to the second recess 242,
  • the first electrode terminal and the second electrode terminal may be a positive electrode terminal 214a and a negative electrode terminal 214b, respectively, or the first electrode terminal and the second electrode terminal may be a negative electrode terminal 214b and a positive electrode terminal 214a, respectively.
  • the grouping process of a plurality of battery cells 20 will be described.
  • the first end 261 of the first busbar 26 is welded together with the first electrode terminal 214a at the corresponding position on the second surface 252 of the first battery cell 201; secondly, the The second surface 251 of the second battery cell 202 is stacked toward the first surface of the first battery cell 201 , and the first electrode terminal 214a of the first battery cell 201 is accommodated in the first concave portion of the second battery cell 202 241; then, bend the first flow-combining member 26, bypass the side wall of the second battery cell 202 parallel to the first direction X, and connect the second end 262 of the first flow-combining member 26 to the second battery cell
  • the first electrode terminals 214a of the body 202 are welded together.
  • a plurality of battery cells 20 are grouped in a similar manner to form the battery 10 .
  • a region of the end cap 212 of the battery cell 20 corresponding to the electrode assembly 22 protrudes away from the housing 211 to form a groove 2121 on a side of the end cap 212 facing the housing 211 .
  • the groove 2121 can position the electrode assembly 22 during the process of assembling the electrode assembly 22 . Further, the contour line 2122 between the edge area of the end cover 212 and the groove 2121 is used for positioning the welding track during the welding process of the shell 211 and the end cover 212 .
  • the size of the groove 2121 is greater than or equal to the size of the electrode assembly 22 so that the electrode assembly 22 can be accommodated in the groove 2121 .
  • the depth R1 of the groove 2121 in the first direction X is, for example, between 0.4 mm and 3 mm.
  • the depth of the groove 2121 cannot be too large to avoid affecting the position of the welding tool during welding, and the depth of the groove 2121 cannot be too small, otherwise the above functions cannot be realized. Therefore, it is optimal to set its depth between 0.4 and 3mm .
  • the distance R2 between the contour line 2122 and the welding track can be greater than 0.5 mm, for example, to reserve the position of the welding tool during the welding process, so as not to affect the positioning requirements of the laser welding lens.
  • the area of the end cap 212 corresponding to the electrode assembly 22 protrudes away from the casing 211 to form a groove 2121 on the side of the end cap 212 facing the casing 211 .
  • Such a design not only enables the groove 2121 to position the electrode assembly 22 during the assembly process of the electrode assembly 22, but also enables the contour line 2122 between the edge area of the end cap 212 and the groove 2121 to be welded to the shell 211.
  • the welding trace is positioned during the process with the end cap 212 .
  • An embodiment of the present application also provides an electric device, which may include the battery 10 in the foregoing embodiments, so as to provide electric energy for the electric device.
  • the electric device may be a vehicle, ship or spacecraft.
  • the battery 10 of the foregoing embodiment By arranging the battery 10 of the foregoing embodiment in the electrical equipment, since the electrode terminals of the battery cells 20 in the battery 10 are accommodated in the recesses of the adjacent battery cells, space is saved, the space utilization rate is improved, and it is convenient to use The promotion and use of electrical equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池单体、电池和用电设备,具有更高的空间利用率。所述电池单体包括:第一表面,所述第一表面的边缘的第一区域内陷形成第一凹部;第二表面,用于设置所述电池单体的第一电极端子,所述第一表面和所述第二表面垂直于第一方向;第一电极端子,所述第一电极端子在所述第一方向上凸出设置于所述第二表面,并且与所述第一凹部正对;其中,在所述第一方向,所述第一凹部的深度大于所述第一电极端子的高度,所述第一凹部在所述第一表面上的投影面积大于所述第一电极端子在所述第一表面上的投影面积。

Description

电池单体、电池和用电设备
本申请要求于2021年10月22日提交中国专利局、申请号为202122559769.5、名称为“电池单体、电池和用电设备”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
为了适应人们快节奏的出行,电池在使用过程中需要满足快充的需求,为此,需要提升电池单体的容量,这就使得电池单体的尺寸可能发生变化,从而占用更多的容纳空间。为此,如何提高电池单体的空间利用率,成为需要解决的问题。
发明内容
本申请提供一种电池单体、电池和用电设备,能够提高电池单体的空间利用率。
第一方面,提供了一种电池单体,包括:
第一表面,所述第一表面的边缘的第一区域内陷形成第一凹部;
第二表面,用于设置所述电池单体的第一电极端子,所述第一表面和所述第二表面垂直于第一方向;
第一电极端子,所述第一电极端子在所述第一方向上凸出设置于所述第二表面,并且与所述第一凹部正对;
其中,在所述第一方向,所述第一凹部的深度大于所述第一电极端子的高度,所述第一凹部在所述第一表面上的投影面积大于所述第一电极端子在所述第一表面上 的投影面积。
基于该技术方案,由于电池单体的第一表面的边缘设置有第一凹部,且电池单体的第一电极端子凸出设置于与该第一表面相对的第二表面,因此,当多个电池单体沿第一电极端子的凸出方向排列时,与该电池单体相邻的其他电池单体的第一凹部可以用来容纳该电池单体的第一电极端子,该电池单体的第一电极端子就无需占用额外的空间,因此提高了电池单体的空间利用率。
在一种可能的实现方式中,在所述第一方向,所述电池单体的尺寸,与所述电池单体的所述第一凹部的尺寸之差,大于或等于2毫米。
该实施例中,沿多个电池单体排列的第一方向,电池单体在第一凹部对应的位置处的尺寸大于或等于2毫米,以在满足第一凹部的尺寸需求的情况下,保证电池单体内部的转接部件、塑胶片、电极组件等部件的容纳空间。
在一种可能的实现方式中,所述第一凹部在所述第一表面上的沿第二方向的尺寸,大于或等于12毫米,所述第二方向垂直于所述电池单体的第三表面,所述第三表面垂直于所述第一表面和所述第二表面。
该实施例中,由于第一电极端子及其绝缘包边、电池单体的铆接块、以及铆接工具的定位等,都需要预留空间,因此,电池单体的第一凹部在第一表面上的沿第二方向的尺寸应当设置在合理范围,例如大于或等于12毫米。
在一种可能的实现方式中,所述第一凹部在所述第一表面上的沿第三方向的尺寸,大于或等于15毫米,所述第三方向垂直于所述第一方向和所述第二方向。
在一种可能的实现方式中,所述电池单体包括壳体和端盖,所述壳体用于容纳所述电池单体的电极组件,所述端盖盖合所述壳体,以将所述电极组件封闭于所述壳体内,所述壳体的底壁形成所述电池单体的所述第一表面,所述端盖形成所述电池单体的所述第二表面。
在一种可能的实现方式中,所述端盖的与所述电极组件对应的区域朝向背离所述壳体的方向凸起,以在所述端盖朝向所述壳体的一侧形成凹槽。
在一种可能的实现方式中,所述凹槽用于在装配所述电极组件的过程中对所述电极组件进行定位。
在一种可能的实现方式中,所述端盖的边缘区域与所述凹槽之间的轮廓线,用于在焊接所述壳体与所述端盖的过程中对焊接轨迹进行定位。
该实施例中,在电池单体中,端盖上与电极组件对应的区域朝向背离其壳体的方向凸起,以在端盖朝向壳体的一侧形成凹槽。这样的设计,不仅使该凹槽在装配电极组件的过程中能够对电极组件进行定位,还使该端盖的边缘区域与该凹槽之间的轮廓线能够在焊接壳体与端盖的过程中对焊接轨迹进行定位。
在一种可能的实现方式中,所述凹槽的深度位于0.4毫米至3毫米之间。
该实施例中,该凹槽的深度不能过大,以避免影响焊接过程中焊接工具的位置,该凹槽的深度也不能过小,否则无法实现上述功能,因此,设置其深度位于0.4至3毫米之间为最优。
在一种可能的实现方式中,所述轮廓线与所述焊接轨迹之间的距离大于0.5毫米。
在一种可能的实现方式中,所述第一表面的边缘的第二区域内陷形成第二凹部,所述第一区域位于所述第一表面在第二方向上的第一端,所述第二区域位于所述第一表面在所述第二方向上的第二端,所述电池单体的第二电极端子在所述第一方向上凸出设置于所述电池单体的第二表面,并且与所述第二凹部正对,所述第二电极端子和所述第一电极端子的极性相反。其中,在所述第一方向上,所述第二凹部的深度大于所述第二电极端子的高度,所述第二凹部在所述第一表面上的投影面积大于所述第二电极端子在所述第一表面上的投影面积。
该实施例中,除了电池单体的第一表面的边缘的第一区域内陷形成第一凹部,电池单体还具有第二凹部以及第二电极端子,其中,电池单体的第一表面的边缘的第二区域内陷形成该第二凹部,且电池单体的第二电极端子凸出设置于与该第一表面相对的第二表面,因此,当多个电池单体沿该第二电极端子的凸出方向排列时,与该电池相邻的另一电池单体的第二凹部可以容纳该电池单体的第二电极端子第一电极端子无需占用额外的空间,因此提高了电池单体的空间利用率。
第二方面,提供了一种电池,包括第一方面或第一方面的任意可能的实现方式中的电池单体。
第三方面,提供了一种电池,包括第一方面或第一方面的任意可能的实现方式中的电池单体。
第四方面,提供了一种用电设备,包括:第一方面和第一方面的任意可能的实现方式中的电池单体,所述电池单体用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的结构示意图;
图3是本申请一实施例公开的一种电池单体的结构示意图;
图4是本申请一实施例公开的一种电池单体的结构示意图;
图5是本申请一实施例公开的一种电池的结构示意图;
图6是本申请一实施例公开的一种通过汇流部件连接相邻电池单体的示意图;
图7是本申请一实施例公开的一种汇流部件的结构示意图;
图8是本申请一实施例公开的一种汇流部件的结构示意图;
图9是本申请一实施例公开的一种汇流部件的结构示意图;
图10是本申请一实施例公开的一种汇流部件的结构示意图;
图11是本申请一实施例公开的一种汇流部件的尺寸示意图;
图12是本申请一实施例公开的一种汇流部件的尺寸示意图;
图13是本申请一实施例公开的一种电池单体的结构示意图;
图14是本申请一实施例公开的一种电池单体的成组过程的示意图;
图15是本申请一实施例公开的一种电池单体的侧视图;
图16是本申请一实施例公开的一种电池单体的侧视图;
图17是本申请一实施例公开的一种电池单体的端盖上的凹槽的结构示意图;
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请 并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
本申请中,电池是指包括一个或多个电池单体以提供电能的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
可选地,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。在一些实施方式中,电池单体也可称之为电芯。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(Polypropylene,PP)或聚乙烯(Polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
为了满足不同的电力需求,电池中的多个电池单体之间可以串联、并联或混联,其中混联是指串联和并联的混合。可选地,多个电池单体可以先串联、并联或混联组成电池模块,多个电池模块再串联、并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
在电池的箱体中,还可以包括信号传输组件。信号传输组件可以用于传输电池单体的电压和/或温度等信号。该信号传输组件可以包括汇流部件,该汇流部件用于实现多个电池单体之间的电连接,例如并联、串联或混联。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固 定于电池单体的电极端子。汇流部件传输电池单体的电压,多个电池单体串联后会得到较高的电压,相应地,汇流部件形成的电连接也可称为“高压连接”。
除了汇流部件外,该信号传输组件还可以包括用于感测电池单体的状态的传感器件,例如,该传感器件可以用于测量以及传输电池单体的温度、荷电状态等传感信号。在本申请实施例中,电池内的电连接部件可以包括汇流部件和/或传感器件。
汇流部件和传感器件可以封装在绝缘层中,形成信号传输组件。相应地,信号传输组件可用于传输电池单体的电压和/或传感信号。信号传输组件在与电池单体的电极端子的连接处没有绝缘层,即,在此处绝缘层具有开孔,从而与电池单体的电极端子连接。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数。另外,还需要考虑电池单体的空间利用率,以减小电池体积,扩大电池的应用场景。
鉴于此,本申请提供了一种技术方案,在电池单体的第一表面的边缘设置凹部,电池单体的电极端子设置于与第一表面相对的第二表面上的相应位置。对于相邻的第一电池单体和第二电池单体,第二电池单体的凹部可以用来容纳第一电池单体的电极端子,从而电极端子无需占用额外空间。只需将汇流部件绕过第二电池单体的侧壁,使其两端分别连接至第一电池单体和第二电池单体的电极端子,即能实现两个电池单体之间的电连接。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的装置,还可以适用于所有使用电池的装置,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用 于车辆1的电路***,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
电池10可以包括多个电池单体。例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括至少一个电池模块200。电池模块200包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。如图2所示,箱体11可以包括两部分,这里分别称为第一部分111(上箱体)和第二部分112(下箱体),第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以中至少一个具有一个开口。例如,如图2所示,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联、串联或混联组合后,置于第一部分111和第二部分112扣合后形成的箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联、串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方 式进行连接。
作为示例,如图3所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和端盖212。壳体211和端盖212形成外壳或电池盒21。壳体211的壁以及端盖212均称为电池单体20的壁,其中对于长方体型电池单体20,壳体211的壁包括底壁和四个侧壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。端盖212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在端盖212上。端盖212通常是平板形状,两个电极端子214固定在端盖212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于端盖212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图3所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图3所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池 单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
应理解,本申请实施例中的电池10包括的多个电池单体20在箱体11内可以沿任意方向排列和摆放。例如,以如图3所示的长方体形状的电池单体20为例,如图2所示,可以将多个电池单体20按照如图3所示的竖直方向安装在箱体内,以使得安装之后的多个电池单体20的端盖212面向上箱体111,而电池单体20的壳体211的底壁面向下箱体112。再例如,与图2不同,还可以将多个如图3所示的电池单体20横向设置于箱体内。
上述图3所示的方形电池单体20在成组过程中,当受到冲击等外力时,电池单体20之间容易相互错动,导致汇流部件对电池单体20的电极端子214之间造成拉扯,并且电池单体20的侧壁面积较大,容易产生变形。为此,可以将电池单体20的形状设置为刀片状,即增加电池单体的长度,从而使电池单体20的壳体211能够起一定的支撑作用,分担一部分受力,并且将电极端子214设置于电池单体20沿长度方向的端部,以减轻汇流部件对电池单体的电极端子214之间的拉扯。
在电池单体20的能量密度一定的情况下,电池单体20在长度方向的尺寸增加,在厚度方向的尺寸就要减小,电池单体20就越扁平,以避免电池单体20的容量过大导致电极端子的过电流过大,从而使电极端子上产生的热量超过电池单体20的使用温度需求。由于电池单体20的厚度减小,在电池单体20的端部设置电极端子214时,就会限制电极端子214的尺寸,如果电极端子214的尺寸过小,就无法满足过电流的需求。
为此,本申请实施例可以采用如图4所示的刀片状的电池单体20。如图4所示,电池单体20包括第一表面251、第二表面252和第一电极端子214a。第一表面251的边缘的第一区域内陷形成第一凹部241,第二表面252用于设置电池单体20的第一电极端子214a,其中第一表面251和第二表面252垂直于第一方向X。
电池单体20还包括第一电极端子。第一电极端子可以是正电极端子214a或者负电极端子214b,以下以第一电极端子为正电极端子214a为例进行描述。其中,第一电极端子214a在第一方向X上凸出设置于电池单体20的第二表面252,并与第一凹部241正对。图4中的正电极端子214a可以和负电极端子214b的位置互换,以下,作为示例,均以第一凹部241的对应位置的电极端子为正电极端子214a为例进行描述。
第一表面251可以是电池单体20的壳体211的底壁,第一表面251的第一区域位于电池单体20的X方向的一个边缘。第二表面252可以是电池单体的端盖212的表面。其中,第一凹部241在第一方向X的深度大于第一电极端子214a的高度,且第一凹部241在第一表面251的投影的面积大于第一电极端子214a在第一表面251的投影面积。这样,第一凹部241能够容纳与电池单体20在第一方向上相邻设置的其他电池单体20的第一电极端子214a。
具体地,如图5所示,为本申请一个实施例的一种电池10的侧视图。电池10包括箱体211以及容纳于箱体211内的多个电池单体20,例如包括相邻的第一电池单体201和第二电池单体202。多个电池单体20沿第一方向X排列,多个电池单体20中的每个电池单体20的第一表面251的边缘的第一区域凹陷形成第一凹部241。每个电池单体20的第一电极端子214a凸出设置于该电池单体20的第二表面252。这里,第一电极端子214a的凸出方向即为第一方向X。
电池10还包括第一汇流部件26,第一汇流部件26用于电连接相邻设置的两个电池单体20的第一电极端子214a,例如第一电池单体201和第二电池单体202之间的汇流部件26用于电连接第一电池单体201的第一电极端子214a和第二电池单体202的第一电极端子214a。如图6所示,第一汇流部件26绕过第二电池单体202的平行于第一方向X的侧壁,使得第一汇流部件26的第一端261连接至第一电池单体201的第一电极端子214a,第一汇流部件26的第二端262连接至第二电池单体202的第一电极端子214a,其中,第一汇流部件26的第一端261和第一电池单体201的第一电极端子214a共同容纳于第二电池单体202的第一凹部241内。
由于电池单体20的第一表面251的边缘设置有第一凹部241,且电池单体20的第一电极端子214a凸出设置于与第一表面251相对的第二表面252,因此,当多个电池单体20沿第一电极端子214a的凸出方向排列时,相邻两个电池单体中的第二电池单体202的第一凹部241可以容纳第一电池单体201的第一电极端子214a,并容纳用于连接两个电池单体20的第一汇流部件26。第一汇流部件26能够绕过第二电池单体202的侧壁,以使得第一汇流部件26的第一端261连接至第一电池单体201的第一电极端子214a,且第二端262连接至第二电池单体202的第一电极端子214a。由于多个电池单体20沿各自的第一电极端子214a的凸出方向X排列,且第一电极端子214a容纳于相邻电池单体20的第一凹部241内,不占用模组装配空间,因此提高了电池单体20的空间 利用率。
在一种实现方式中,如图7所示,第一汇流部件26包括第一端261、第二端262、以及位于第一端261和第二端262之间的弯折部263。其中,弯折部263被配置为能够弯折,以使第一汇流部件26能够绕过第二电池单体202的平行于第一方向X的侧壁。
这样,由于在第一汇流部件26上设置了弯折部263,因此在多个电池单体20的成组过程中,第一汇流部件26可以更容易绕过电池单体20的侧壁,便于第一汇流部件26的安装。
在一种实现方式中,如图7所示,弯折部263包括第一弯折区域2631、第二弯折区域2632、以及中间区域2633,其中,第一弯折区域2631用于弯折,以连接第一端261和中间区域2633,第二弯折区域262用于弯折,以连接第二端262和中间区域2633。
在一种实现方式中,如图7所示,第一弯折区域2631的厚度和第二弯折区域2632的厚度小于中间区域2633的厚度。这样,由于第一汇流部件26的弯折部263的第一弯折区域2631的厚度和第二弯折区域2632的厚度,小于中间区域2633的厚度,相当于对第一弯折区域2631和第二弯折区域2631进行减薄,更容易实现第一汇流部件26的弯折。
在一种实现方式中,中间区域2633垂直于电池单体20的第一表面251和第二表面252。由于第一汇流部件26的弯折部的中间区域垂直于电池单体20的第一表面251和第二表面252,因此,第一汇流部件26在垂直于第一表面251和第二表面252的方向上占用了最小的空间,进一步提升了电池单体的空间利用率。
进一步地,如图8所示,中间区域2633上可以设置有加强筋264,以提高第一汇流部件26的强度。加强筋264例如可以平行于第一方向X。
在一种实现方式中,如图9所示,弯折部263的朝向电池单体20的表面上,设置有绝缘层265,该绝缘层例如可以是绝缘贴片或者绝缘涂层;或者,在另一种实现方式中,如图10所示,弯折部263包裹有绝缘材料266。由于弯折部263上设置有绝缘层265或者包裹有绝缘材料266,因此能够避免第一汇流部件26与电池单体20的第一电极端子214a之间的电接触,提高了电池10的安全性。
在一种实现方式中,如图11所示,在第一方向X,第一凹部241的尺寸H1,大于第一电极端子214a的高度H3与第一汇流部件26的尺寸H2之和,从而使电池单 体20的第一凹部241能够容纳相邻的其他电池单体20的第一电极端子214a以及第一汇流部件26。
例如,在第一方向X,电池单体20的尺寸H0(不包括第一电极端子214a的高度H3)与电池单体20的第一凹部241的尺寸H2之间的差值,可以大于或等于2mm,即H0-H1>2mm。这样,在第一方向X上,当电池单体20在第一凹部241对应的位置处的尺寸大于或等于2mm时,能够在满足第一凹部241的尺寸需求的情况下,保证电池单体20内部的转接部件、塑胶片、电极组件22等部件的容纳空间。
又例如,如图12所示,第一凹部241在第一表面251上的沿第二方向Y的尺寸L0,大于或等于12mm,第二方向Y垂直于电池单体20的第三表面253,第三表面253垂直于第一表面251和第二表面252。
在第二方向Y,由于第一电极端子214a及其绝缘包边、电池单体20的铆接块27、以及铆接工具的定位等,都需要预留空间,因此,电池单体20的第一凹部241在第一表面251上的沿第二方向Y的尺寸应当设置在合理范围,例如大于或等于12mm。通常,为了保证第一电极端子214a的过电流需求,第一电极端子214a的直径D通常满足D≥5mm。铆接块27在第二方向Y的单边尺寸例如可以设置为L1≥2-3mm,用于包裹第一电极端子214a的绝缘包边的单边厚度例如可以设置为L2≥0.6mm,铆接夹具在定位时的单边间隙例如可以设置为L3≥1mm。因此,第一凹部241的沿第二方向Y的尺寸L0,通常需要大于5+(2+0.6+1)*2=12.2mm。
又例如,如图12所示,第一凹部241在第一表面251上的沿第三方向Z的尺寸L4,大于或等于15mm,以满足两个第一电极端子214a之间的间距、以及每个第一电极端子214a的绝缘包边的厚度等需求。
在一种实现方式中,如图13所示,每个电池单体20的第一表面251的边缘的第二区域内陷形成第二凹部242,其中,第一区域位于第一表面251在第二方向Y上的第一端,第二区域位于第一表面251在第二方向Y上的第二端。其中,每个电池单体20的第二电极端子214b凸出设置于该电池单体20的第二表面252,第二电极端子214b和第一电极端子214a的极性相反。图13中的正电极端子214a可以和负电极端子214b的位置互换,本申请中以第二凹部242的对应位置的电极端子为负电极端子214b为例进行描述。
如图14所示,多个电池单体20还包括与第二电池单体202相邻的第三电池单 体203,电池10中还包括第二汇流部件27,第二汇流部件27用于连接第二电池单体202的第二电极端子214b和第三电池单体203的第二电极端子214b。类似地,第二汇流部件27最终会绕过第三电池单体203的平行于第一方向X的侧壁,使得第二汇流部件27的第一端连接至第二电池单体202的第二电极端子214b,第二汇流部件27的第二端连接至第三电池单体203的第二电极端子214b。其中,第二汇流部件27的与第二电池单体202相连的第一端、以及第二电池单体202的第二电极端子214b,共同容纳于第三电池单体203的第二凹部242内。
应理解,第二凹部242和第二汇流部件27的具体细节,可以参考前述针对第一凹部241和第一汇流部件26的相关描述,为了简洁,这里不再赘述。电池单体20的第二表面252上与第一凹部241对应的位置设置有第一电极端子,电池单体20的第二表面252上与第二凹部242对应的位置设置有第二电极端子,第一电极端子和第二电极端子可以分别为正电极端子214a和负电极端子214b,或者,第一电极端子和第二电极端子可以分别为负电极端子214b和正电极端子214a。
下面,以第一电池单体201和第二电池单体202的第一电极端子214a之间的连接为例,描述多个电池单体20的成组过程。第一电池单体201在设置完成后,将第一汇流部件26的第一端261与第一电池单体201的第二表面252上对应位置的第一电极端子214a焊接在一起;其次,将第二电池单体202的第二表面251朝向第一电池单体201的第一表面堆叠,并使第一电池单体201的第一电极端子214a容纳于第二电池单体202的第一凹部241中;接着,将第一汇流部件26弯折,绕过第二电池单体202的平行于第一方向X的侧壁,并将第一汇流部件26的第二端262与第二电池单体202的第一电极端子214a焊接在一起。这样,就完成了第一电池单体201和第二电池单体202的第一电极端子214a之间的电连接。类似地,还可以实现相邻的第二电池单体202和第三电池单体203的第二电极端子214b之间的电连接。多个电池单体20通过类似的方式成组后,形成电池10。
在一种实现方式中,参见图15至图17,其中图16是图15所示的电池单体沿A-A方向即第二方向Y的剖视图,图17是图16中的区域B的局部放大图。电池单体20的端盖212的与电极组件22对应的区域朝向背离壳体211的方向凸起,以在端盖212朝向壳体211的一侧形成凹槽2121。
凹槽2121可以在装配电极组件22的过程中对电极组件22进行定位。进一步 地,端盖212的边缘区域与凹槽2121之间的轮廓线2122,用于在焊接壳体211与端盖212的过程中对焊接轨迹进行定位。
可选地,在垂直于第一方向X的平面的截面上,凹槽2121的尺寸大于或等于电极组件22的尺寸,以使电极组件22能够容纳于凹槽2121内。
如图17所示,凹槽2121在第一方向X上的深度R1例如位于0.4mm-3mm之间。凹槽2121的深度不能过大,以避免影响焊接过程中焊接工具的位置,凹槽2121的深度也不能过小,否则无法实现上述功能,因此,设置其深度位于0.4至3mm之间为最优。
如图16所示,轮廓线2122与焊接轨迹之间的距离R2例如可以大于0.5mm,以留出焊接过程中焊接工具的位置,从而不影响激光焊接镜头的定位需求。
可见,在电池单体20中,端盖212上与电极组件22对应的区域朝向背离其壳体211的方向凸起,以在端盖212朝向壳体211的一侧形成凹槽2121。这样的设计,不仅使凹槽2121在装配电极组件22的过程中对电极组件22进行定位,还使该端盖212的边缘区域与该凹槽2121之间的轮廓线2122能够在焊接壳体211与端盖212的过程中对焊接轨迹进行定位。
本申请一个实施例还提供了一种用电设备,该用电设备可以包括前述各实施例中的电池10,以用于为该用电设备提供电能。可选地,用电设备可以为车辆、船舶或航天器。
通过在用电设备中设置前述实施例的电池10,由于电池10中的电池单体20的电极端子容纳于相邻电池单体的凹部内,因此节省了空间,提高了空间利用率,便于用电设备的推广和使用。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种电池单体,其特征在于,包括:
    第一表面,所述第一表面的边缘的第一区域内陷形成第一凹部;
    第二表面,用于设置所述电池单体的第一电极端子,所述第一表面和所述第二表面垂直于第一方向;
    第一电极端子,所述第一电极端子在所述第一方向上凸出设置于所述第二表面,并且与所述第一凹部正对;
    其中,在所述第一方向,所述第一凹部的深度大于所述第一电极端子的高度,所述第一凹部在所述第一表面上的投影面积大于所述第一电极端子在所述第一表面上的投影面积。
  2. 根据权利要求1所述的电池单体,其特征在于,在所述第一方向,所述电池单体的尺寸,与所述电池单体的所述第一凹部的尺寸之差,大于或等于2毫米。
  3. 根据权利要求1或2所述的电池单体,其特征在于,所述第一凹部在所述第一表面上的沿第二方向的尺寸,大于或等于12毫米,所述第二方向垂直于所述电池单体的第三表面,所述第三表面垂直于所述第一表面和所述第二表面。
  4. 根据权利要求3所述的电池单体,其特征在于,所述第一凹部在所述第一表面上的沿第三方向的尺寸,大于或等于15毫米,所述第三方向垂直于所述第一方向和所述第二方向。
  5. 根据权利要求1至4中任一项所述的电池单体,其特征在于,所述电池单体包括壳体和端盖,所述壳体用于容纳所述电池单体的电极组件,所述端盖盖合所述壳体,以将所述电极组件封闭于所述壳体内,所述壳体的底壁形成所述电池单体的所述第一表面,所述端盖形成所述电池单体的所述第二表面。
  6. 根据权利要求5所述的电池单体,其特征在于,所述端盖的与所述电极组件对应的区域朝向背离所述壳体的方向凸起,以在所述端盖朝向所述壳体的一侧形成凹槽。
  7. 根据权利要求6所述的电池单体,其特征在于,所述凹槽用于在装配所述电极组件的过程中对所述电极组件进行定位。
  8. 根据权利要求6或7所述的电池单体,其特征在于,所述端盖的边缘区域与所 述凹槽之间的轮廓线,用于在焊接所述壳体与所述端盖的过程中对焊接轨迹进行定位。
  9. 根据权利要求6至8中任一项所述的电池单体,其特征在于,所述凹槽的深度位于0.4毫米至3毫米之间。
  10. 根据权利要求8所述的电池单体,其特征在于,所述轮廓线与所述焊接轨迹之间的距离大于0.5毫米。
  11. 根据权利要求6至10中任一项所述的电池单体,其特征在于,在垂直于所述第一方向的平面的截面上,所述凹槽的尺寸大于或等于所述电极组件的尺寸。
  12. 根据权利要求1至11中任一项所述的电池单体,其特征在于,所述第一表面的边缘的第二区域内陷形成第二凹部,所述第一区域位于所述第一表面在第二方向上的第一端,所述第二区域位于所述第一表面在所述第二方向上的第二端,所述电池单体的第二电极端子在所述第一方向上凸出设置于所述电池单体的第二表面,并且与所述第二凹部正对,所述第二电极端子和所述第一电极端子的极性相反,
    其中,在所述第一方向上,所述第二凹部的深度大于所述第二电极端子的高度,所述第二凹部在所述第一表面上的投影面积大于所述第二电极端子在所述第一表面上的投影面积。
  13. 一种电池,其中,包括:根据权利要求1至12中任一项所述的电池单体。
  14. 一种用电设备,其中,包括:根据权利要求1至12中任一项所述的电池单体,所述电池单体用于提供电能。
PCT/CN2022/119817 2021-10-22 2022-09-20 电池单体、电池和用电设备 WO2023065923A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023554054A JP2024509223A (ja) 2021-10-22 2022-09-20 電池セル、電池および電気設備
EP22882534.5A EP4270608A1 (en) 2021-10-22 2022-09-20 Battery cell, battery and electric apparatus
KR1020237029867A KR20230141846A (ko) 2021-10-22 2022-09-20 배터리 셀, 배터리 및 전기 기기
US18/449,511 US20230395952A1 (en) 2021-10-22 2023-08-14 Battery cell, battery and electrical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122559769.5U CN216250906U (zh) 2021-10-22 2021-10-22 电池单体、电池和用电设备
CN202122559769.5 2021-10-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/449,511 Continuation US20230395952A1 (en) 2021-10-22 2023-08-14 Battery cell, battery and electrical device

Publications (1)

Publication Number Publication Date
WO2023065923A1 true WO2023065923A1 (zh) 2023-04-27

Family

ID=80990319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119817 WO2023065923A1 (zh) 2021-10-22 2022-09-20 电池单体、电池和用电设备

Country Status (6)

Country Link
US (1) US20230395952A1 (zh)
EP (1) EP4270608A1 (zh)
JP (1) JP2024509223A (zh)
KR (1) KR20230141846A (zh)
CN (1) CN216250906U (zh)
WO (1) WO2023065923A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216250906U (zh) * 2021-10-22 2022-04-08 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
WO2024077625A1 (zh) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 电池及用电设备
WO2024077633A1 (zh) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 电池和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201927662U (zh) * 2010-07-13 2011-08-10 刘粤荣 一种单体电池的结构及其外串联组合的电池组
CN204793007U (zh) * 2015-07-02 2015-11-18 重庆蓝岸通讯技术有限公司 可拼接电池及其组成的电池模块
KR20160056073A (ko) * 2014-11-11 2016-05-19 주식회사 엘지화학 간편한 결합 구조로 용량 확장이 가능한 이차전지 팩 및 이를 포함하는 이차전지 팩 어셈블리
CN208240733U (zh) * 2018-05-09 2018-12-14 天津普兰能源科技有限公司 一种锂离子电池壳体与极盖的焊接结构
CN216085053U (zh) * 2021-10-22 2022-03-18 宁德时代新能源科技股份有限公司 电池和用电设备
CN216250906U (zh) * 2021-10-22 2022-04-08 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201927662U (zh) * 2010-07-13 2011-08-10 刘粤荣 一种单体电池的结构及其外串联组合的电池组
KR20160056073A (ko) * 2014-11-11 2016-05-19 주식회사 엘지화학 간편한 결합 구조로 용량 확장이 가능한 이차전지 팩 및 이를 포함하는 이차전지 팩 어셈블리
CN204793007U (zh) * 2015-07-02 2015-11-18 重庆蓝岸通讯技术有限公司 可拼接电池及其组成的电池模块
CN208240733U (zh) * 2018-05-09 2018-12-14 天津普兰能源科技有限公司 一种锂离子电池壳体与极盖的焊接结构
CN216085053U (zh) * 2021-10-22 2022-03-18 宁德时代新能源科技股份有限公司 电池和用电设备
CN216250906U (zh) * 2021-10-22 2022-04-08 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备

Also Published As

Publication number Publication date
EP4270608A1 (en) 2023-11-01
CN216250906U (zh) 2022-04-08
KR20230141846A (ko) 2023-10-10
JP2024509223A (ja) 2024-02-29
US20230395952A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
CN216085053U (zh) 电池和用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
US11757161B2 (en) Battery cell, battery and electricity consuming device
EP4333172A1 (en) Battery cell, battery, electrical device, and method and device for fabricating battery cell
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2023070677A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
WO2022170489A1 (zh) 电池、装置、制备电池的方法和设备
CN219017777U (zh) 电池单体、电池、用电设备以及制备电池单体的装置
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2023236346A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023082155A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
CN214957173U (zh) 电池包与用电装置
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
CN114696012A (zh) 电池单体及其制造方法、电池以及用电装置
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2024055144A1 (zh) 转接部件、电池单体、电池及用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004780A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024055311A1 (zh) 电池单体、电池及用电设备
WO2023092344A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022882534

Country of ref document: EP

Effective date: 20230725

ENP Entry into the national phase

Ref document number: 20237029867

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237029867

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023554054

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE