WO2023004723A1 - 电池单体及其制造方法和制造***、电池以及用电装置 - Google Patents

电池单体及其制造方法和制造***、电池以及用电装置 Download PDF

Info

Publication number
WO2023004723A1
WO2023004723A1 PCT/CN2021/109405 CN2021109405W WO2023004723A1 WO 2023004723 A1 WO2023004723 A1 WO 2023004723A1 CN 2021109405 W CN2021109405 W CN 2021109405W WO 2023004723 A1 WO2023004723 A1 WO 2023004723A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
battery cell
relief mechanism
flow channel
electrode assembly
Prior art date
Application number
PCT/CN2021/109405
Other languages
English (en)
French (fr)
Inventor
杨飘飘
陈小波
李耀
顾明光
钱欧
金秋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21949525.6A priority Critical patent/EP4170801A4/en
Priority to PCT/CN2021/109405 priority patent/WO2023004723A1/zh
Priority to JP2023511977A priority patent/JP2023541357A/ja
Priority to CN202180055111.0A priority patent/CN116114109A/zh
Priority to KR1020237005076A priority patent/KR20230035667A/ko
Publication of WO2023004723A1 publication Critical patent/WO2023004723A1/zh
Priority to US18/344,835 priority patent/US20230344071A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiments of the present application relate to the battery field, and more specifically, relate to a battery cell, a manufacturing method and system thereof, a battery, and an electrical device.
  • Battery cells are widely used in electronic equipment, such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • Embodiments of the present application provide a battery cell, a manufacturing method and manufacturing system thereof, a battery, and an electrical device, which can enhance the safety of the battery cell.
  • an embodiment of the present application provides a battery cell, including an electrode assembly, a casing, a pressure relief mechanism, and a cover assembly.
  • the casing is provided with an accommodating space for accommodating the electrode assembly;
  • the casing includes a first side plate located on one side along the first direction;
  • the pressure relief mechanism is arranged on the first side plate;
  • the cover assembly is used to seal the casing body;
  • the inner surface of the first side plate of the casing is provided with a first flow channel extending along the inner surface, and the first flow channel is used to guide the gas in the accommodation space to the pressure relief mechanism, so that the pressure relief mechanism Actuates and relieves pressure when threshold is reached.
  • the embodiment of the present application provides the first flow channel on the first side plate of the casing, which can guide the gas released by the battery cell from the storage space to the pressure relief mechanism when the battery is out of control, so that the pressure relief mechanism can be activated in time. It can move and release the gas, increase the exhaust rate when the battery cell is thermally out of control, and improve the safety of the battery cell.
  • the first flow channel includes a plurality of first grooves disposed on the inner surface of the first side plate and extending along the inner surface of the first side plate, one end of each first groove is connected to the pressure release mechanism connected.
  • the first flow channel is set as a plurality of first grooves, and each first groove communicates with the pressure relief mechanism.
  • Mechanism discharge improve the exhaust rate when the battery cell is thermally out of control, improve the safety of the battery cell, and at the same time, the first groove is set on the inner surface of the first side plate, which will not occupy the accommodation space and affect the energy of the battery cell density.
  • the plurality of first grooves are parallel to each other, which is beneficial to improve the exhaust efficiency along the length direction of the first grooves.
  • the plurality of first grooves extend divergently around the pressure relief mechanism, which is beneficial to improve the exhaust efficiency of the pressure relief mechanism in the circumferential direction.
  • the inner surface of the first side plate is formed with a raised portion protruding toward the accommodating space, the raised portion has a top surface away from the inner surface, and the first flow channel is formed on the top surface of the raised portion and the inner surface. in the space between the surfaces.
  • the top surface of the protrusion is used to support the electrode assembly, and the first flow channel is formed in the space between the top surface and the inner surface of the protrusion, which can improve the exhaust rate when the battery cell is thermally out of control , improve the safety of the battery cell.
  • the first channel includes a plurality of branch channels communicated with the pressure relief mechanism; there are multiple protrusions, and the plurality of protrusions diverge from the center of the pressure relief mechanism and extend around and are spaced apart from each other.
  • a flow channel is formed between two adjacent protrusions and the inner surface.
  • the plurality of protrusions extend around the pressure relief mechanism in a diverging shape and are spaced apart from each other, which is beneficial to improving the exhaust efficiency in the circumferential direction of the pressure relief mechanism.
  • the first flow channel includes a plurality of branch channels and connecting flow channels; there are multiple protrusions, and each protrusion generally extends along the second direction of the first side plate; the plurality of protrusions extend along the second direction of the first side plate.
  • the third direction of the first side plate is arranged at intervals and spaced from each other; a flow channel is formed between two adjacent protrusions and the inner surface, and the two adjacent flow channels are connected through a connecting flow channel; the flow channel in the flow channel At least one of them communicates with the pressure relief mechanism through a connecting channel; the second direction is perpendicular to the first direction; and the third direction is perpendicular to the first direction and the second direction.
  • the housing includes a pair of second side plates oppositely arranged along the second direction; each protruding portion is provided between an end portion in the second direction and an adjacent second side plate.
  • the third gap, the third gap forms at least a part of the connecting channel.
  • At least one protrusion includes a plurality of sub-protrusions, the sub-protrusions are arranged at intervals along the second direction, a fourth gap is formed between adjacent sub-protrusions, and the fourth gap forms a connecting flow channel at least part of .
  • the raised portion is configured as an arc or broken line that protrudes away from the pressure relief mechanism in the third direction.
  • the arc-shaped or broken-line protrusions protruding away from the pressure relief mechanism can guide the airflow toward the pressure relief mechanism during exhaust, which is beneficial to the rapid discharge of gas.
  • an insulating layer is provided on the top surface of the protruding part, and the insulating layer is used to realize the insulation between the electrode assembly and the casing, without additional support members, which reduces the occupation of space and does not affect the battery. In the case of monomer exhaust, it is beneficial to improve the energy density of the battery cell.
  • the casing includes a pair of second side plates opposite to each other in a second direction
  • the accommodating space includes a first gap provided between the electrode assembly and each second side plate; the second direction is perpendicular to the second side plate One direction;
  • the casing also includes a pair of third side plates oppositely arranged in the third direction, and the accommodating space also includes a second gap provided between the electrode assembly and each third side plate;
  • the third direction is perpendicular to the first direction and the second direction;
  • the first channel communicates with the first gap and/or the second gap.
  • the first flow channel communicates with the first gap and/or the second gap to realize the communication between the first flow channel and the accommodating space.
  • the depth of at least part of the first flow passage decreases gradually along a direction away from the pressure relief mechanism. Furthermore, the depth of at least part of the length of the first flow channel gradually increases along the direction approaching the pressure relief mechanism, forming a slope inclined toward the exhaust direction of the pressure relief mechanism, which is more conducive to guiding the gas to the pressure relief mechanism for discharge, and improving the exhaust pressure. efficiency.
  • a supporting member is further included, disposed between the first side plate and the electrode assembly to support the electrode assembly; the supporting member is provided with a second flow channel, and the second flow channel communicates with the first flow channel and the containing space.
  • the second flow channel is formed on the supporting member to communicate with the first flow channel and the accommodation space, so that the exhaust flow channel area can be increased and the exhaust efficiency can be improved.
  • the second flow channel includes a first through hole penetrating the support member along the first direction, and the first through hole communicates with the first flow channel and the containing space.
  • the casing includes a pair of second side plates opposite to each other in a second direction
  • the accommodating space includes a first gap provided between the electrode assembly and each second side plate
  • the second direction is perpendicular to the second side plate One direction
  • the casing also includes a pair of third side plates oppositely arranged in the third direction
  • the accommodating space also includes a second gap provided between the electrode assembly and each third side plate
  • the third direction is perpendicular to the first direction and a second direction
  • the support member has a first surface and a second surface oppositely arranged, the first surface faces the first side plate, and the second surface faces the electrode assembly
  • the second flow channel includes a second surface arranged on the first surface
  • the groove, the second groove communicates with the first gap and/or the second gap
  • the second groove communicates with the first flow channel.
  • it also includes an insulating film for wrapping a part of the electrode assembly and separating the electrode assembly and the casing;
  • the insulating film includes a first side film located between the electrode assembly and the supporting member;
  • the first side film has a second
  • projections in the first direction of the second through hole and the first through hole of the supporting member do not overlap. Projections in the first direction of the second through hole on the first side film of the insulating film and the first through hole on the support member do not overlap, so that reliable insulation between the electrode assembly and the first side plate can be achieved through
  • the first through hole and the second through hole realize the communication between the accommodation space and the first flow channel, thereby improving the exhaust efficiency.
  • a battery including the battery cell of the first aspect.
  • an electric device including: the battery of the second aspect.
  • the powered device is a vehicle, ship or spacecraft.
  • a method for manufacturing a battery cell including providing an electrode assembly; providing a casing, the casing is provided with an accommodating space for accommodating the electrode assembly; the casing includes a The first side plate; provide a pressure relief mechanism, the pressure relief mechanism is arranged on the first side plate; provide a cover assembly, the cover assembly is used to seal the case; assemble the electrode assembly, the case, the pressure relief mechanism and the cover assembly to form a battery A single body; wherein, providing the housing includes forming a first flow channel extending along the inner surface on the inner surface of the first side plate of the housing, the first flow channel is used to guide the gas in the accommodation space to the pressure relief mechanism, so that the pressure relief mechanism The pressure mechanism activates and releases pressure when the pressure reaches a threshold.
  • a battery cell manufacturing system including an electrode assembly providing device for providing an electrode assembly; a case providing device for providing a case, and the case is provided with a
  • the housing includes a first side plate located on one side along the first direction; the pressure relief mechanism providing device is used to provide a pressure relief mechanism, and the pressure relief mechanism is used to be arranged on the first side plate; the cover assembly provides means , used to provide a cover assembly, the cover assembly is used to seal the casing; the assembly device is used to assemble the electrode assembly, the casing, the pressure relief mechanism and the cover assembly to form a battery cell; wherein, on the first side plate of the casing The inner surface forms a first flow channel extending along the inner surface, and the first flow channel is used to guide the gas in the containing space to the pressure relief mechanism, so that the pressure relief mechanism is activated and releases the pressure when the pressure reaches a threshold.
  • the battery cell and its manufacturing method and manufacturing system, battery and electrical device provided in the present application can improve the exhaust efficiency of the battery cell when thermal runaway occurs, and improve the safety of the battery cell.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2;
  • Fig. 4 is a schematic explosion diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 5 is a schematic structural diagram of a housing of a battery cell provided in some embodiments of the present application.
  • Fig. 6 is a schematic cross-sectional view of the housing shown in Fig. 5 along A-A;
  • FIG. 7 is a schematic top view of a battery cell provided by some embodiments of the present application.
  • Fig. 8 is a schematic cross-sectional view at B-B of the battery cell shown in Fig. 7 using the housing of the embodiment of Fig. 5;
  • FIG. 9 is an enlarged schematic view of the battery cell shown in FIG. 8 at C;
  • FIG. 10 is an enlarged schematic view of the battery cell shown in FIG. 8 at D;
  • Fig. 11 is a schematic structural diagram of a housing of a battery cell provided in another embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a housing of a battery cell provided in another embodiment of the present application.
  • FIG. 13 is a schematic top view of a battery cell provided in another embodiment of the present application.
  • FIG. 14 is a schematic cross-sectional view at E-E of the battery cell shown in FIG. 13 using the housing of the embodiment of FIG. 12;
  • FIG. 15 is an enlarged schematic view of the battery cell shown in FIG. 14 at F;
  • Fig. 16 is a schematic structural diagram of a casing of a battery cell provided in another embodiment of the present application.
  • Fig. 17 is a schematic structural view of a casing of a battery cell provided in another embodiment of the present application.
  • Fig. 18 is a schematic structural view of a battery cell provided with a supporting member according to another embodiment of the present application.
  • Fig. 19 is a schematic structural view of a supporting member of a battery cell provided in another embodiment of the present application.
  • Fig. 20 is a schematic structural view of a supporting member of a battery cell provided in another embodiment of the present application.
  • Fig. 21 is a schematic structural view of a supporting member of a battery cell provided in another embodiment of the present application.
  • Fig. 22 is a schematic structural view of a battery cell provided with a support member and an insulating film according to another embodiment of the present application;
  • Fig. 23 is an exploded schematic diagram of a supporting member and an insulating film of a battery cell provided in another embodiment of the present application;
  • FIG. 24 is a schematic top view of the combination of the supporting member and the insulating film shown in FIG. 23;
  • Fig. 25 is a schematic flowchart of a method for manufacturing a battery cell provided in some embodiments of the present application.
  • Fig. 26 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector;
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode protrusion protruding from the positive electrode current collector, and the positive electrode current collector part is coated with a positive electrode active material layer, at least part of the positive electrode convex part is not coated with a positive electrode active material layer, and the positive electrode convex part is used as a positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, the positive electrode active material layer includes the positive electrode active material, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode protrusion protruding from the negative electrode current collector. part is coated with a negative electrode active material layer, at least part of the negative electrode convex part is not coated with a negative electrode active material layer, and the negative electrode convex part is used as a negative electrode tab.
  • the material of negative electrode current collector can be copper, and negative electrode active material layer comprises negative electrode active material, and negative electrode active material can be carbon or silicon etc.
  • negative electrode active material can be carbon or silicon etc.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the battery cell may also include a casing assembly, and the casing assembly has an accommodating chamber inside, and the accommodating chamber is a closed space provided by the casing assembly for the electrode assembly and the electrolyte.
  • the main safety hazard comes from the charging and discharging process, and at the same time, there is a suitable ambient temperature design.
  • the protective measures include at least the switching element, the selection of an appropriate spacer material, and a pressure relief mechanism.
  • the switching element refers to an element that can stop charging or discharging the battery when the temperature or resistance inside the battery cell reaches a certain threshold.
  • the separator is used to isolate the positive pole piece and the negative pole piece. When the temperature rises to a certain value, it can automatically dissolve the micron-scale (or even nanoscale) micropores attached to it, so that metal ions cannot pass through the separator. Terminate the internal reaction of the battery cell.
  • the pressure relief mechanism refers to an element or component that is activated to release the internal pressure when the internal pressure of the battery cell reaches a predetermined threshold.
  • the threshold design varies according to design requirements. The threshold value may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can take the form of an explosion-proof valve, gas valve, pressure relief valve or safety valve, etc., and can specifically adopt a pressure sensitive element or structure, that is, when the internal pressure of the battery cell reaches a predetermined threshold, the pressure relief mechanism executes A weak structure in the action or pressure relief mechanism ruptures, thereby forming an opening or flow path for internal pressure or temperature relief.
  • the "activation" mentioned in this application means that the pressure relief mechanism is activated or activated to a certain state, so that the internal pressure of the battery cell can be released. Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, shatter, be torn, or open, among others.
  • the pressure relief mechanism When the pressure relief mechanism is actuated, the high-temperature and high-pressure material inside the battery cell will be discharged from the actuated part as discharge. In this manner, the battery cells can be depressurized under controllable pressure, thereby avoiding potential more serious accidents.
  • the emissions from battery cells mentioned in this application include, but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separators, high-temperature and high-pressure gases generated by reactions, flames, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery cell. For example, when a short circuit, overcharge, etc. occur, it may cause thermal runaway inside the battery cell and a sudden increase in pressure. In this case, the internal pressure can be released outward by actuating the pressure relief mechanism to prevent the battery cells from exploding and igniting.
  • the pressure relief mechanism is usually mounted on the housing assembly.
  • the inventors found that in order to increase the energy density of the battery cell, the space for gas flow inside the battery cell is limited, resulting in a low rate of gas discharge during thermal runaway.
  • the pressure relief mechanism may be affected by components inside the housing assembly. The occlusion will lead to poor exhaust and cause safety hazards.
  • the embodiment of the present application provides a technical solution, in which the battery cell includes an electrode assembly, a casing, a pressure relief mechanism and a cover assembly.
  • the casing is provided with an accommodating space for accommodating the electrode assembly;
  • the casing includes a first side plate located on one side along the first direction;
  • the pressure relief mechanism is arranged on the first side plate;
  • the cover assembly is used to seal the casing body;
  • the inner surface of the first side plate of the casing is provided with a first flow channel extending along the inner surface, and the first flow channel is used to guide the gas in the accommodation space to the pressure relief mechanism, so that the pressure relief mechanism Actuates and relieves pressure when threshold is reached.
  • the battery cell with this structure guides the high-temperature and high-pressure gas to the pressure relief mechanism when the heat is out of control, so as to increase the exhaust rate and improve the safety performance.
  • Electric devices can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and electric tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiments of the present application do not impose special limitations on the above-mentioned electrical devices.
  • the electric device is taken as an example for description.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is arranged inside the vehicle 1 , and the battery 2 can be arranged at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4.
  • the controller 3 is used to control the battery 2 to supply power to the motor 4, for example, for the starting, navigation and working power requirements of the vehicle 1 during driving.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 to provide driving power for the vehicle 1 instead of or partially replacing fuel oil or natural gas.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a box body 5 and a battery cell (not shown in FIG. 2 ), and the battery cell is accommodated in the box body 5 .
  • the box body 5 is used to accommodate the battery cells, and the box body 5 may have various structures.
  • the box body 5 may include a first box body part 51 and a second box body part 52, the first box body part 51 and the second box body part 52 cover each other, the first box body part 51 and the second box body part 51
  • the two box parts 52 jointly define an accommodating space 53 for accommodating the battery cells.
  • the second box part 52 can be a hollow structure with an open end, and the first box part 51 is a plate-shaped structure, and the first box part 51 covers the opening side of the second box part 52 to form an accommodating space.
  • the first casing part 51 and the second casing part 52 also all can be the hollow structure of one side opening, and the opening side of the first casing part 51 covers the opening of the second casing part 52 side to form a box body 5 with an accommodating space 53 .
  • the first box body part 51 and the second box body part 52 can be in various shapes, such as a cylinder, a cuboid, and the like.
  • a sealing member may also be provided between the first box body portion 51 and the second box body portion 52, such as sealant, sealing ring, etc. .
  • the first box part 51 covers the top of the second box part 52
  • the first box part 51 can also be called an upper box cover
  • the second box part 52 can also be called a lower box.
  • the battery 2 there may be one or more battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series, in parallel or in parallel.
  • the hybrid connection means that there are both series and parallel connections among the multiple battery cells.
  • a plurality of battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of a plurality of battery cells is accommodated in the box 5; of course, it is also possible to first connect a plurality of battery cells in series or parallel or
  • the battery modules 6 are formed by parallel connection, and multiple battery modules 6 are connected in series or in parallel or in series to form a whole, and are housed in the box body 5 .
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2 .
  • there are multiple battery cells 7 and the multiple battery cells 7 are connected in series, in parallel, or in parallel to form a battery module 6 .
  • a plurality of battery modules 6 are connected in series, in parallel or in parallel to form a whole, and accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a confluence component, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • Fig. 4 is a schematic exploded view of a battery cell provided by some embodiments of the present application.
  • the battery cell 7 provided by the embodiment of the present application includes an electrode assembly 10 and a casing assembly 20 , and the electrode assembly 10 is accommodated in the casing assembly 20 .
  • the battery cell 7 includes: an electrode assembly 10 , a casing 21 , a pressure relief mechanism 30 and an end cap 22 .
  • the casing 21 is provided with an accommodating space 216 for accommodating the electrode assembly 10;
  • the casing 10 includes a first side plate 212 located on one side along the first direction Z;
  • the pressure relief mechanism 30 is arranged on the first side plate 212;
  • the end cover 22 is used to seal the housing 21; wherein, the inner surface 2120 of the first side plate 212 of the housing 21 is provided with a first flow channel extending along the inner surface 2120, and the first flow channel is used to transfer the liquid in the accommodating space 216 to The gas is directed to the pressure relief mechanism 30 so that the pressure relief mechanism 30 actuates and relieves the pressure when the pressure reaches a threshold.
  • housing assembly 20 may also be used to contain an electrolyte, such as electrolyte solution.
  • Housing assembly 20 may be of various configurations.
  • the housing assembly 20 may include a housing 21 and a cover assembly 22, the housing 21 is a hollow structure with one side open, and the cover assembly 22 covers the opening of the housing 21 and forms a sealed connection to form a The accommodating cavity for accommodating the electrode assembly 10 and the electrolyte.
  • the housing 21 can be in various shapes, such as cylinder, cuboid and so on.
  • the shape of the casing 21 may be determined according to the specific shape of the electrode assembly 10 . For example, if the electrode assembly 10 has a cylindrical structure, a cylindrical shell can be selected; if the electrode assembly 10 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • the cover assembly 22 includes an end cover 221 , and the end cover 221 covers the opening of the housing 21 .
  • the end cap 221 can be of various structures, for example, the end cap 221 is a plate-like structure.
  • the housing 21 is a cuboid structure, and the end cover 221 is a plate-shaped structure, and the end cover 221 covers the opening at the top of the housing 21 .
  • the end cap 221 can be made of insulating material (such as plastic), or can be made of conductive material (such as metal).
  • the cover assembly 22 may further include an insulating plate located on a side of the end cap 221 facing the electrode assembly 10 to insulate the end cap 221 from the electrode assembly 10 .
  • the cap assembly 22 may further include an electrode terminal 222 mounted on the end cap.
  • the housing assembly 20 can also be of other structures.
  • the housing assembly 20 includes a housing 21 and two cover assemblies 22.
  • the housing 21 is a hollow structure with openings on opposite sides, and one cover assembly 22 corresponds to Covering an opening of the casing 21 to form a sealed connection, so as to form an accommodating cavity for accommodating the electrode assembly 10 and the electrolyte.
  • two electrode terminals 222 may be provided on one cover assembly 22 while no electrode terminal 222 is provided on the other cover assembly 22 , or one electrode terminal 222 may be provided on each of the two cover assemblies 22 .
  • the battery cell 7 there may be one electrode assembly 10 housed in the case assembly 20 or a plurality of them. Exemplarily, in FIG. 4 , there are two electrode assemblies 10 .
  • the electrode assembly 10 includes a positive pole piece, a negative pole piece and a separator.
  • the electrode assembly 10 may be a wound electrode assembly, a laminated electrode assembly or other forms of electrode assemblies.
  • the electrode assembly 10 is a wound electrode assembly.
  • the positive pole piece, the negative pole piece and the separator are all strip-shaped structures.
  • the positive pole piece, the separator, and the negative pole piece can be stacked in sequence and wound more than two times to form the electrode assembly 10 .
  • the electrode assembly 10 is a laminated electrode assembly.
  • the electrode assembly 10 includes a plurality of positive electrode sheets and a plurality of negative electrode sheets, the positive electrode sheets and the negative electrode sheets are alternately stacked, and the stacking direction is parallel to the thickness direction of the positive electrode sheet and the thickness direction of the negative electrode sheet.
  • the electrode assembly 10 includes a main body 11 and a tab 12 connected to the main body.
  • the main body portion extends from an end of the main body portion close to the cover assembly.
  • the two tabs are respectively defined as a positive tab and a negative tab.
  • the positive pole tab and the negative pole tab may extend from the same end of the main body 11 , or may extend from opposite ends of the main body 11 respectively.
  • the main body 11 is the core part of the electrode assembly 10 to realize the charging and discharging function, and the tab part 12 is used to lead out the current generated by the main body 11 .
  • the main body portion 11 includes a positive current collector of a positive current collector, a positive active material layer, a negative current collector of a negative current collector, a negative active material layer, and a separator.
  • the positive pole tab part includes a plurality of positive pole tabs
  • the negative pole tab part includes a plurality of negative pole tabs.
  • the tab portion 12 is used to be electrically connected to the electrode terminal 222 .
  • the tab portion 12 may be directly connected to the electrode terminal 222 by means of welding or the like, or may be indirectly connected to the electrode terminal 222 through other components.
  • the battery cell 7 further includes a current collecting member 13 for electrically connecting the electrode terminal 222 and the tab portion 12 .
  • the two current collecting members 13 are respectively defined as a positive current collecting member and a negative current collecting member, the positive current collecting member is used to electrically connect the positive electrode terminal and the positive electrode ear, and the negative current collecting member
  • the negative electrode terminal and the negative electrode tab are electrically connected.
  • the first side panel 212 is located on one side of the shell assembly 20 along the first direction Z.
  • the housing 21 of the housing assembly 20 has an end opening at the other side along the first direction Z opposite to the first side plate 212 .
  • the first side plate 212 is the bottom plate of the casing 21 on the side of the electrode assembly 10 away from the cover assembly 22 .
  • the pressure relief mechanism 30 is disposed on the first side plate 212 .
  • the pressure relief mechanism 30 may be a part of the first side plate 212 , or may be a separate structure from the first side plate 212 .
  • the first side plate 212 is provided with a pressure relief hole 210 penetrating through its thickness direction, and the pressure relief mechanism 30 is fixed on the first side plate 212 by welding or the like and covers the pressure relief hole 210 .
  • the pressure relief mechanism 30 seals the pressure relief hole 210 to separate the space between the inner and outer sides of the first side plate 212 and prevent electrolyte from flowing out through the pressure relief hole 210 during normal operation.
  • the pressure relief mechanism 30 is used to actuate to release the internal pressure when the internal pressure of the battery cell 7 reaches a threshold value.
  • the pressure relief mechanism 30 performs an action or the weak structure provided in the pressure relief mechanism 30 is broken, and the gas and other high-temperature and high-pressure substances pass through The cracked opening of the pressure relief mechanism 30 and the pressure relief hole 210 are released outward, thereby preventing the battery cell 7 from exploding.
  • the pressure relief mechanism 30 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 30 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 7 provided with the pressure-sensitive pressure relief mechanism reaches a threshold value.
  • notches, grooves or other structures are formed on the pressure relief mechanism 30 to reduce the local strength of the pressure relief mechanism 30 and form a weak structure on the pressure relief mechanism 30;
  • the pressure relief mechanism 30 is broken at the weak structure, and the pressure relief mechanism 30 is folded along the part provided at the rupture to form an opening to release high temperature and high pressure substances.
  • the battery cell 7 When short-circuit, overcharge, etc. occur, the battery cell 7 will go into thermal runaway and release a large amount of high-temperature and high-pressure substances, such as high-temperature and high-pressure gas; Pressure mechanism 30, the gas acts on the pressure-bearing surface of the pressure relief mechanism 30 and applies pressure to the pressure relief mechanism 30; as the gas increases, the pressure on the pressure relief mechanism 30 is greater, and the pressure relief mechanism 30 will Activate to release gas and other high-temperature and high-pressure substances to the outside of the battery cell 7, thereby releasing the internal pressure of the battery cell 7 to prevent the battery cell 7 from exploding and igniting.
  • high-temperature and high-pressure substances such as high-temperature and high-pressure gas
  • Pressure mechanism 30 the gas acts on the pressure-bearing surface of the pressure relief mechanism 30 and applies pressure to the pressure relief mechanism 30; as the gas increases, the pressure on the pressure relief mechanism 30 is greater, and the pressure relief mechanism 30 will Activate to release gas and other high-temperature and high
  • the gas released by the battery cell 7 during thermal runaway can be guided from the accommodating space 216 to the pressure relief mechanism 30, so that the pressure relief mechanism 30 actuate and release the gas in time, increase the exhaust rate when the battery cell 7 is thermally out of control, and improve the safety of the battery cell 7 .
  • FIG. 5 is a schematic structural view of the casing of a battery cell provided in some embodiments of the present application
  • Fig. 6 is a schematic cross-sectional view of the casing shown in Fig. 5 along A-A
  • Fig. 7 is a schematic diagram of a battery provided in some embodiments of the present application A schematic top view of the cell
  • FIG. 8 is a schematic cross-sectional view at B-B of the battery cell shown in FIG. 7 using the housing of the embodiment of FIG. 5
  • FIG. 10 is the enlarged schematic diagram at D of the battery cell shown in FIG. 8 .
  • the first channel 2151 includes a plurality of first grooves 2141 disposed on the inner surface 2120 of the first side plate 212 and extending along the inner surface 2120 of the first side plate 212 , one end of each first groove 2141 communicates with the pressure relief mechanism 30 .
  • the first flow channel 2151 is set as a plurality of first grooves 2141, and each first groove 2141 communicates with the pressure relief mechanism 30.
  • the released gas can flow from the first groove 2141 to
  • the accommodating space 216 is guided to the pressure relief mechanism 30 to discharge, so as to increase the exhaust rate of the battery cell 7 when it is thermally out of control, and improve the safety of the battery cell 7.
  • the first groove 2141 is arranged on the inner surface of the first side plate 212 , will not occupy the accommodation space 216 to affect the energy density of the battery cell 7 .
  • the plurality of first grooves 2141 are parallel to each other and spaced apart from each other.
  • each first groove 2141 extends along a third direction Y, and the third direction Y is perpendicular to the first direction Z;
  • a plurality of first grooves 2141 are arranged along a second direction X, and the second direction X is vertical in the first direction Z and perpendicular to the third direction Y.
  • the plurality of first grooves 2141 may have the same or different widths from each other. In some embodiments, along the first direction Z, the plurality of first grooves 2141 may have the same or different depths from each other.
  • the casing 21 includes a pair of second side plates 213 oppositely arranged along the third direction Y, and a pair of third side plates 211 oppositely arranged along the second direction X. Both the second side panel 213 and the third side panel 211 are connected to the first side panel 212 , and adjacent second side panels 213 and third side panels 211 are also connected to form a receiving space 216 .
  • One end of the plurality of first grooves 2141 communicates with the pressure relief hole 210 , and the other end extends to a position close to the second side plate 213 .
  • the receiving space 216 includes a first gap G1 provided between the electrode assembly 10 and each second side plate 213 .
  • the first channel 2151 communicates with the first gap G1.
  • the first flow channel 2151 communicates with the first gap G1 to realize the communication between the first flow channel 2151 and the accommodating space 216 .
  • the gas generated inside the electrode assembly 10 can also directly enter the pressure relief mechanism 30 from the first flow channel 2151 .
  • a first gap G1 is formed between the electrode assembly 10 and each second side plate 213, and a plurality of first grooves 2141 constituting the first flow channel 2151 extend to the adjacent second side plate in the third direction Y. 213 , crosses the lower edge of the electrode assembly 10 in the third direction Y, and communicates with the first gap G1 . Furthermore, when the gas generated by the battery cell 7 is too much so that the internal pressure of the casing 21 rises and reaches a threshold value, after the gas passes through the first gap G1, it can pass through the plurality of first grooves 2141 without being blocked by the electrode assembly 10 In addition, the gas generated inside the electrode assembly 10 can also directly enter the first flow channel 2151 into the pressure relief mechanism 30, which improves the exhaust efficiency.
  • a first gap G1 is formed between the electrode assembly 10 and each second side plate 213, and a plurality of first grooves 2141 respectively connect the first gap G1 on both sides and the drain in the third direction Y. Press mechanism 30.
  • the depth H of at least part of the first flow passage 2151 gradually decreases along the direction away from the pressure relief mechanism 30 .
  • the depth H of the first groove 2141 is at least part of the length along the third direction Y of each first groove 2141 constituting the first flow passage 2151. gradually decreases along the direction away from the pressure relief mechanism 30 .
  • the depth H of at least part of the first groove 2141 gradually increases along the direction approaching the pressure relief mechanism 30, forming a slope inclined toward the exhaust direction of the pressure relief mechanism 30, which is more conducive to displacing the gas. Guided to the pressure relief mechanism 30 to discharge, improving the exhaust efficiency.
  • the slope can be straight or curved.
  • the partial length means that the part where the depth H changes only occupies a part of the length of the first flow channel 2151 connected to the pressure relief mechanism 30 in the third direction Y, and the depth of the first flow channel 2151 in the rest of the length can remain unchanged.
  • the depth H of the first channel 2151 may also vary throughout the entire length of the first channel 2151 .
  • the position where the first flow passage 2151 communicates with the pressure relief mechanism 30 refers to the position where the first flow passage 2151 is connected to the edge of the pressure relief mechanism 30 .
  • the position where the first flow passage 2151 communicates with the pressure relief mechanism 30 refers to the position where the first flow passage 2151 is connected to the pressure relief hole 210 .
  • FIG. 11 is a schematic structural diagram of a casing of a battery cell provided by another embodiment of the present application.
  • the plurality of first grooves 2141 jointly form the first flow channel 2151 , and the plurality of first grooves 2141 diverge from the center of the pressure relief mechanism 30 and extend around and are spaced apart from each other. Extending in a diverging shape means that the plurality of first grooves 2141 are centered on the pressure relief mechanism 30 , and the plurality of first grooves 2141 generally extend along a radial direction centered on the center of the pressure relief mechanism 30 .
  • One end of the plurality of first grooves 2141 communicates with the pressure relief mechanism 30 , and in some embodiments, the plurality of first grooves 2141 is connected to the pressure relief hole 210 .
  • the other end of a part of the first grooves 2141 extends to the vicinity of the adjacent second side plate 213 , and the other end of a part of the first grooves 2141 extends to the vicinity of the third side plate 211 .
  • the accommodating space 216 includes a first gap G1 provided between the electrode assembly 10 and each second side plate 213, extending to a part of the first groove 2141 near the adjacent second side plate 213 and the first gap G1.
  • a gap G1 is connected.
  • the accommodation space 216 also includes a second gap G2 disposed between the electrode assembly 10 and each third side plate 211 , and a part of the first groove 2141 extending to the vicinity of the third side plate 211 communicates with the second gap G2 .
  • the gas generated inside the electrode assembly 10 can also directly enter the pressure relief mechanism 30 through the first flow channel 2151 . Increase the exhaust rate when the battery cell 7 is thermally out of control, and improve the safety of the battery cell 7 .
  • Fig. 12 is a schematic structural view of the housing of a battery cell provided by another embodiment of the present application
  • Fig. 13 is a schematic top view of a battery cell provided by another embodiment of the present application
  • FIG. 12 is a schematic cross-sectional view of the battery cell of the housing of the embodiment at E-E
  • FIG. 15 is an enlarged schematic view of the battery cell shown in FIG. 14 at F.
  • the inner surface of the first side plate 212 is formed with a raised portion 2142 protruding toward the receiving space 216 , and the raised portion 2142 has a distance away from
  • the first channel 2152 is formed in a space between the top surface 2140 of the protrusion 2142 and the inner surface 2120 .
  • the top surface 2140 of the raised portion 2142 is used to support the electrode assembly 10, and the first flow channel 2152 is formed in the space between the top surface 2140 of the raised portion 2142 and the inner surface 2120, which can improve the stability of the battery cell. 7
  • the exhaust rate when the heat is out of control improves the safety of the battery cell 7.
  • the first channel 2152 includes a plurality of branch channels 21521 communicating with the pressure relief mechanism 30; Extending divergently from the center and spaced apart from each other, a flow channel 21521 is formed between two adjacent protrusions 2142 and the inner surface 2120 .
  • the plurality of protruding portions 2142 diverge around the pressure relief mechanism 30 and extend in a divergent manner and are spaced apart from each other, which is beneficial to improve the exhaust efficiency in the circumferential direction of the pressure relief mechanism 30 .
  • a split flow channel 21521 is formed between two adjacent protrusions 2142 and the inner surface 2120 , and the plurality of flow split channels 21521 diverge from the center of the pressure relief mechanism 30 and extend around and are spaced apart from each other. Extending in a divergent shape means that the plurality of flow passages 21521 center on the pressure relief mechanism 30 , and the plurality of flow passages 21521 generally extend in a radial direction with the center point of the pressure relief mechanism 30 as the axis. One end of the plurality of flow passages 21521 communicates with the pressure relief mechanism 30 , and in some embodiments, the plurality of flow passages 21521 are connected to the pressure relief hole 210 .
  • the other end of a part of the flow channel 21521 extends to the vicinity of a second side plate 213 and communicates with the first gap G1; the other end of a part of the flow channel 21521 extends to the vicinity of a third side plate 211 and communicates with the second gap G2 connected.
  • the accommodating space 216 includes a first gap G1 provided between the electrode assembly 10 and each second side plate 213, and a part of the shunt channel 21521 extending to the vicinity of a second side plate 213 is connected to the first gap G1 Pass.
  • the accommodating space 216 also includes a second gap G2 provided between the electrode assembly 10 and each third side plate 211, extending to a part of the shunt channel 21521 near a third side plate 211 and The second gap G2 is connected.
  • the gas can be guided to the pressure relief mechanism 30 along the first flow channel 2152 in the circumferential direction of the pressure relief mechanism 30 .
  • the gas generated inside the electrode assembly 10 can also directly enter the pressure relief mechanism 30 through the first flow channel 2152 . Increase the exhaust rate when the battery cell 7 is thermally out of control, and improve the safety of the battery cell 7 .
  • FIG. 16 is a schematic structural diagram of a casing of a battery cell provided in yet another embodiment of the present application.
  • the first flow channel 2153 includes a plurality of branch channels 21531 and connecting flow channels 21532; there are multiple protrusions 2143, and each protrusion 2143 is roughly Extend along the second direction X of the first side plate 212; a plurality of protrusions 2143 are arranged at intervals along the third direction Y of the first side plate 212 and spaced from each other; two adjacent protrusions 2143 and the inner surface
  • a split channel 21531 is formed between 2120, and two adjacent split channels 21531 are connected through the connecting flow channel 21532; at least one of the split channels 21531 is connected with the pressure relief mechanism 30 through the connecting flow channel 21532;
  • the second direction X is vertical in the first direction Z;
  • the third direction Y is perpendicular to the first direction Z and the second direction X.
  • a split flow channel 21531 is formed between two adjacent protrusions 2143 and the inner surface 2120, and the split flow is divided through the connecting flow channel 21532.
  • the channel 21531 is connected to the pressure relief mechanism 30, which can improve the exhaust efficiency in the second direction X.
  • the first flow channel 2153 in this embodiment can provide a better exhaust effect.
  • a third gap G3 is provided between one end of each protrusion 2143 in the second direction X and the adjacent second side plate 213, and the third gap G3 forms at least part.
  • the connecting channel 21532 extends along the third direction Y as a whole.
  • FIG. 17 is a schematic structural diagram of a casing of a battery cell provided by another embodiment of the present application.
  • At least one raised portion 2144 includes a plurality of sub-raised portions 21441, and the sub-raised portions 21441 extend along the second direction.
  • X is arranged at intervals, and a fourth gap G4 is formed between adjacent sub-protrusions 21441, and the fourth gap G4 also forms at least a part of the connecting flow channel 21532, that is, in this embodiment, the connecting flow channel 21532 is composed of the third gap The side connection flow channel 21533 as a part of G3 and the middle connection flow channel 21534 as a part of the fourth gap G4.
  • the middle connecting flow channel 21534 cooperates with the side connecting flow channel 21533 so that the gas in the split flow channel 21531 can pass through the connecting flow channel 21532 quickly Lead to the pressure relief mechanism 30 to discharge.
  • the protruding portion 2143 or the protruding portion 2144 is configured as an arc or broken line protruding in the third direction Y toward a direction away from the pressure relief mechanism 30 .
  • the arc-shaped or broken line-shaped raised portion 2143 or raised portion 2144 protruding away from the pressure relief mechanism 30 in the third direction Y can guide the airflow toward the pressure relief mechanism 30 during exhaust, which is beneficial Gas escapes quickly.
  • an insulating layer may also be provided on the top surface 2140 of the raised portion 2143 or the raised portion 2144, and the insulating layer is used to realize the insulation between the electrode assembly 10 and the casing 21, without additional support members , reducing the occupancy of the accommodation space 216 is conducive to improving the energy density of the battery cell 7 without affecting the exhaust of the battery cell 7 .
  • FIG. 18 is a schematic structural diagram of a battery cell provided by another embodiment of the present application.
  • a support member 40 is added.
  • the support member 40 is disposed between the electrode assembly 10 and the first side plate 212 and used to support the electrode assembly 10 .
  • the electrode assembly 10 , the support member 40 and the first side plate 212 are sequentially arranged along the first direction Z.
  • the supporting member 40 is made of insulating material, which can insulate and separate the first side plate 212 from the electrode assembly 10 .
  • the supporting member 40 can support the electrode assembly 10 to reduce the shaking of the electrode assembly 10 when the battery cell 7 vibrates, and reduce the risk of falling off of the active material of the electrode assembly 10 .
  • the supporting member 40 may directly lean against the electrode assembly 10 to support the electrode assembly 10 , or may support the electrode assembly 10 through other members.
  • the battery cell 7 further includes an insulating film covering the outside of the main body 11 of the electrode assembly 10 , a part of the insulating film is located between the support member 40 and the electrode assembly 10 , and the support member 40 supports the electrode assembly 10 through the insulating film.
  • the support member 40 has a first surface 41 and a second surface 42 oppositely disposed, the first surface 41 faces the first side plate 212 , and the second surface 42 faces the electrode assembly 10 .
  • the support member 40 may lean against the first side plate 212, for example, in the embodiments of FIGS.
  • the plate 212 is in contact with the inner surface 2120 of the first side plate 212.
  • a first flow channel is formed between them.
  • the support member 40 forms a fifth gap G5 between the second side plate 213 in the third direction Y, and referring to the embodiment in FIG.
  • a sixth gap G6 is formed between the three side plates 211 .
  • the first gap G1 communicates with the first channel 2151 through the fifth gap G5.
  • the second gap G2 communicates with the first channel 2151 through the sixth gap G6.
  • the supporting member 40 may also be spaced from the first side plate 212 in the first direction Z.
  • the supporting member 40 may be placed on the surface of the raised portion 2142 , 2143 or 2144 , and be spaced apart from the inner surface 2120 of the first side plate 212 .
  • the first flow channel 2152 or 2153 is formed between the first surface 41 of the support member 40 and the inner surface 2120 of the first side plate 212 .
  • Fig. 19 is a schematic structural view of a supporting member of a battery cell provided by another embodiment of the present application
  • Fig. 20 is a schematic structural view of a supporting member of a battery cell provided by another embodiment of the present application
  • Fig. 21 is another embodiment of the present application Schematic diagram of the structure of the supporting member of the battery cell provided in the example.
  • the support member 40 is provided with a second flow channel, and the second flow channel communicates with the first flow channel 2151 , 2152 or 2153 and the containing space 216 .
  • the second flow channel is formed on the supporting member 40 to communicate with the first flow channel 2151 , 2152 or 2153 and the accommodating space 216 , which can increase the exhaust flow channel area and improve the exhaust efficiency.
  • the second flow channel includes a first through hole 402 penetrating the support member 40 along the first direction Z, and the first through hole 402 communicates with the first flow channel 2151, the first through hole 402 in the first direction Z, 2152 or 2153 and the accommodation space 216.
  • the second flow channel includes a second groove 401 provided on the first surface 41, and the second groove 401 communicates with the first gap G1 and/or the second gap G2, And the second groove 401 communicates with the first flow channel.
  • the second groove 401 can be formed as a groove penetrating in the second direction X and/or the third direction Y, and the second groove 401 extends to the support in the second direction X and/or the third direction Y.
  • the second groove 401 communicates with the fifth gap G5 and/or the sixth gap G6 , and communicates with the accommodating space 216 through the fifth gap G5 and/or the sixth gap G6 .
  • a first through hole 402 and a second groove 401 are provided on the support member 40 , and the first through hole 402 communicates with the second groove 401 .
  • the flow channel area of the exhaust gas can be further increased, and the exhaust efficiency can be improved.
  • Fig. 22 is a schematic structural view of a battery cell provided with a support member and an insulating film according to another embodiment of the present application
  • Fig. 23 is an exploded schematic diagram of a support member and an insulating film of a battery cell provided by another embodiment of the present application
  • FIG. 24 is a schematic top view of the combination of the supporting member and the insulating film shown in FIG. 23 .
  • the battery cell 7 further includes an insulating film 50 coated on the outside of the main body portion 11 of the electrode assembly 10, and a part of the insulating film 50 is located between the supporting member 40 and the electrode. Between the assemblies 10 , the support member 40 supports the electrode assembly 10 through the insulating film 50 .
  • the support member 40 has a first surface 41 and a second surface 42 oppositely disposed, the first surface 41 faces the first side plate 2120 , and the second surface 42 faces the insulating film 50 .
  • the insulating film 50 is used to wrap a part of the electrode assembly 10 and separate the electrode assembly 10 and the casing 21; the insulating film 50 includes a first side film 501 located between the electrode assembly 10 and the supporting member 40; the second One side of the film 501 has a second through hole 5011 , and the projections of the second through hole 5011 and the first through hole 402 of the support member 40 in the first direction Z do not overlap. Projections in the first direction Z of the second through hole 5011 of the first side film 501 of the insulating film 50 and the first through hole 402 on the support member 40 do not overlap, which can prevent the electrode assembly 10 from contacting the first side of the casing 21.
  • the plate 212 is in direct contact, and while achieving reliable insulation between the electrode assembly 10 and the first side plate 212, the accommodation space 216 is connected to the first flow channel 2151, 2152 or 2153 connected to improve exhaust efficiency.
  • the first side film 501 is located on one side of the insulating film 50 in the first direction Z.
  • the insulating film 50 is provided with a third side film 502 oppositely arranged in the third direction Y, and an opening 510 is provided at a position where the third side film 502 is close to the first side film 501, and the electrode assembly 10 wrapped by the insulating film 50 is formed.
  • the gas can be connected to the first flow channel 2151, 2152 or 2153 through the second through hole 5011 and the first through hole 402; on the other hand, it can be connected to the first flow channel 2151, 2151, 2152 or 2153, and then discharged through the pressure relief mechanism 30, which can increase the exhaust flow channel area and improve the exhaust efficiency.
  • Fig. 25 is a schematic flowchart of a method for manufacturing a battery cell provided by some embodiments of the present application.
  • the manufacturing method of the battery cell in the embodiment of the present application includes:
  • the casing is provided with an accommodating space for accommodating the electrode assembly;
  • the casing includes a first side plate located on one side along the first direction;
  • the step S200 of providing the casing also includes forming a first flow channel extending along the inner surface on the inner surface of the first side plate of the casing, the first flow channel is used to guide the gas in the accommodation space to the pressure relief mechanism, so as to Causes the pressure relief mechanism to actuate and relieve pressure when the pressure reaches a threshold.
  • steps S100 , S200 , S300 , and S400 are executed in no particular order, and may also be executed simultaneously.
  • Fig. 26 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • the battery cell manufacturing system 8 of the embodiment of the present application includes: an electrode assembly providing device 81 for providing an electrode assembly; a casing providing device 82 for providing a casing, and the casing is provided for containing The accommodation space of the electrode assembly; the casing includes a first side plate located on one side along the first direction; the pressure relief mechanism providing device 83 is used to provide a pressure relief mechanism, and the pressure relief mechanism is used to be arranged on the first side plate; the cover The assembly providing device 84 is used to provide a cover assembly, and the cover assembly is used to seal the casing; the assembly device 85 is used to assemble the electrode assembly, the casing, the pressure relief mechanism and the cover assembly to form a battery cell; wherein, in the casing The inner surface of the first side plate forms a first flow channel extending along the inner surface, the first flow channel is used to guide the gas in the containing space to the pressure relief mechanism, so that the pressure relief mechanism is activated and releases the pressure when the pressure reaches a threshold value .

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本申请实施例提供一种电池单体及其制造方法和制造***、电池以及用电装置。本实施例的电池单体包括电极组件、壳体、泄压机构和盖组件。其中,壳体,设有用于容纳电极组件的容纳空间;壳体包括位于沿第一方向一侧的第一侧板;泄压机构,设置于第一侧板上;盖组件,用于密封壳体;其中,在壳体的第一侧板的内表面设有沿内表面延伸的第一流道,第一流道用于将容纳空间内的气体引导到泄压机构,以使泄压机构在压力达到阈值时致动并泄放压力。本申请能够提高在电池单体热失控时的排气速率,提高电池单体的安全性。

Description

电池单体及其制造方法和制造***、电池以及用电装置 技术领域
本申请实施例涉及电池领域,并且更具体地,涉及一种电池单体及其制造方法和制造***、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,除了提高电池单体的性能外,安全问题也是一个不可忽视的问题。如果电池单体的安全问题不能保证,那该电池单体就无法使用。因此,如何增强电池单体的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供一种电池单体及其制造方法和制造***、电池以及用电装置,能够增强电池单体的安全性。
根据本申请的第一方面,本申请实施例提供了一种电池单体,包括电极组件、壳体、泄压机构和盖组件。其中,壳体,设有用于容纳电极组件的容纳空间;壳体包括位于沿第一方向一侧的第一侧板;泄压机构,设置于第一侧板上;盖组件,用于密封壳体;其中,在壳体的第一侧板的内表面设有沿内表面延伸的第一流道,第一流道用于将容纳空间内的气体引导到泄压机构,以使泄压机构在压力达到阈值时致动并泄放压力。
上述方案中,本申请实施例通过在壳体的第一侧板上设置第一流道,能够将电池单体在热失控时释放的气体从容纳空间引导至泄压机构,使泄压机构及时致动并泄放气体,提高在电池单体热失控时的排气速率,提高电池单体的安全性。
在一些实施例中,第一流道包括设置于第一侧板的内表面上并沿第一侧 板的内表面延伸的多个第一凹槽,每个第一凹槽的一端与泄压机构连通。将第一流道设置为多个第一凹槽,每个第一凹槽与泄压机构连通,当电池单体发生热失控时,释放的气体可沿第一凹槽从容纳空间引导至泄压机构排出,提高在电池单体热失控时的排气速率,提高电池单体的安全性,同时第一凹槽设置在第一侧板的内表面,不会占用容纳空间影响电池单体的能量密度。
在一些实施例中,多个第一凹槽相互平行,有利于提升沿第一凹槽的长度方向上的排气效率。或者多个第一凹槽以泄压机构为中心向四周呈发散状延伸,有利于提升泄压机构的周向方向上的排气效率。
在一些实施例中,第一侧板的内表面上形成有向容纳空间凸出的凸起部,凸起部具有远离内表面的顶面,第一流道形成在凸起部的顶面和内表面之间的空间中。该实施例中,凸起部的顶面用以支撑电极组件,在凸起部的顶面和内表面之间的空间中形成第一流道,可提高在电池单体热失控时的排气速率,提高电池单体的安全性。
在一些实施例中,第一流道包括多个与泄压机构连通的分流道;凸起部为多个,多个凸起部以泄压机构为中心向四周呈发散状延伸并相互间隔,在两个相邻的凸起部和内表面之间形成一个分流道。多个凸起部以泄压机构为中心向四周呈发散状延伸并相互间隔,有利于提升在泄压机构的周向方向上的排气效率。
在一些实施例中,第一流道包括多个分流道和连接流道;凸起部为多个,每个凸起部大体上沿第一侧板的第二方向延伸;多个凸起部沿第一侧板的第三方向间隔排列并相互间隔;在两个相邻的凸起部和内表面之间形成一个分流道,相邻的两个分流道通过连接流道相连通;分流道中的至少一个通过连接流道与泄压机构相连通;第二方向垂直于第一方向;第三方向垂直于第一方向和第二方向。通过设置沿第一侧板的第二方向延伸的凸起部,在两个相邻的凸起部和内表面之间形成一个分流道,并通过连接流道将分流道连接至泄压机构,可提高在第二方向上的排气效率。
在一些实施例中,壳体包括沿第二方向相对设置的一对第二侧板;每个凸起部在第二方向上的一个端部与相邻的一个第二侧板之间设有第三间隙,第三间隙形成连接流道的至少一部分。通过设置第三间隙形成将分流道连接至泄压机构的连接流道的一部分,可将分流道的气体通过连接流道快速引导至泄压机构排出。
在一些实施中,至少一个凸起部包括多个子凸起部,子凸起部沿第二方向间隔设置,相邻的子凸起部之间形成有第四间隙,第四间隙形成连接流道的至少一部分。通过设置第四间隙形成将分流道连接至泄压机构的连接流道的一部分,可将分流道的气体通过连接流道快速引导至泄压机构排出。
在一些实施中,凸起部构成为在第三方向上朝远离泄压机构方向凸出的弧形或折线形。朝远离泄压机构方向凸出的弧形或折线形的凸起部在排气时可将气流朝向泄压机构的方向引导,有利于气体快速排出。
在一些实施例中,在凸起部的顶面上设有绝缘层,绝缘层用以实现电极组件和壳体之间的绝缘,无需额外设置支撑构件,减少对空间的占用,在不影响电池单体排气的情况下,有利于提高电池单体的能量密度。
在一些实施例中,壳体包括位于第二方向相对设置的一对第二侧板,容纳空间包括在电极组件和每个第二侧板之间设置的第一间隙;第二方向垂直于第一方向;壳体还包括位于第三方向相对设置的一对第三侧板,容纳空间还包括在电极组件和每个第三侧板之间设置的第二间隙;第三方向垂直于第一方向和第二方向;第一流道与第一间隙和/或第二间隙相连通。第一流道通过与第一间隙和/或第二间隙相连通实现第一流道与容纳空间的连通。
在一些实施例中,从第一流道连通泄压机构的位置开始,至少部分第一流道的深度沿远离泄压机构的方向逐渐减小。进而使得至少部分长度的第一流道的深度沿着接近泄压机构的方向逐渐增加,形成朝泄压机构的排气方向倾斜的斜坡,更有利于将气体引导至泄压机构排出,提升排气效率。
在一些实施例中,还包括支撑构件,设置于第一侧板和电极组件之间,以支撑电极组件;支撑构件上设有第二流道,第二流道连通第一流道和容纳空间。在支撑构件上形成第二流道,连通第一流道和容纳空间,可提高排气的流道面积,提高排气效率。
在一些实施例中,第二流道包括沿第一方向贯通支撑构件的第一通孔,第一通孔连通第一流道和容纳空间。
在一些实施例中,壳体包括位于第二方向相对设置的一对第二侧板,容纳空间包括在电极组件和每个第二侧板之间设置的第一间隙;第二方向垂直于第一方向;壳体还包括位于第三方向相对设置的一对第三侧板,容纳空间还包括在电极组件和每个第三侧板之间设置的第二间隙;第三方向垂直于第一方向和第二方向;支撑构件具有相对设置的第一表面和第二表面,第一表 面面向第一侧板,第二表面面向电极组件;第二流道包括设于第一表面上的第二凹槽,第二凹槽与第一间隙和/或第二间隙连通,并且第二凹槽与第一流道连通。支撑构件上通过设置与第一间隙和/或第二间隙,以及与第一流流道连通的第二凹槽,可提高排气的流道面积,提高排气效率。
在一些实施例中,还包括绝缘膜,用于包裹电极组件的一部分,并分隔电极组件和壳体;绝缘膜包括位于电极组件和支撑构件之间的第一侧膜;第一侧膜具有第二通孔,第二通孔和支撑构件的第一通孔在第一方向上的投影不重叠。绝缘膜的第一侧膜上的第二通孔和支撑构件上的第一通孔在第一方向上的投影不重叠,可在实现电极组件与第一侧板之间可靠绝缘的同时,通过第一通孔和第二通孔实现将容纳空间与第一流道连通,提高排气效率。
根据本申请的第二方面,提供了一种电池,包括第一方面的电池单体。
根据本申请的第三方面,提供了一种用电装置,包括:第二方面的电池。
在一些实施例中,用电装置为车辆、船舶或航天器。
根据本申请的第四方面,提供了一种电池单体的制造方法,包括提供电极组件;提供壳体,壳体设有用于容纳电极组件的容纳空间;壳体包括位于沿第一方向一侧的第一侧板;提供泄压机构,泄压机构设置于第一侧板上;提供盖组件,盖组件用于密封壳体;组装电极组件、壳体、泄压机构和盖组件以形成电池单体;其中,提供壳体包括在壳体的第一侧板的内表面形成沿内表面延伸的第一流道,第一流道用于将容纳空间内的气体引导到泄压机构,以使泄压机构在压力达到阈值时致动并泄放压力。
根据本申请的第五方面,提供了一种电池单体的制造***,包括电极组件提供装置,用于提供电极组件;壳体提供装置,用于提供壳体,壳体设有用于容纳电极组件的容纳空间;壳体包括位于沿第一方向一侧的第一侧板;泄压机构提供装置,用于提供泄压机构,泄压机构用于设置在第一侧板上;盖组件提供装置,用于提供盖组件,盖组件用于密封壳体;组装装置,用于组装电极组件、壳体、泄压机构和盖组件以形成电池单体;其中,在壳体的第一侧板的内表面形成沿内表面延伸的第一流道,第一流道用于将容纳空间内的气体引导到泄压机构,以使泄压机构在压力达到阈值时致动并泄放压力。
本申请提供的电池单体及其制造方法和制造***、电池以及用电装置, 可以提高电池单体热失控时的排气效率,提高电池单体的安全性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的***示意图;
图3为图2所示的电池模块的结构示意图;
图4为本申请一些实施例提供的电池单体的***示意图;
图5为本申请一些实施例提供的电池单体的壳体的结构示意图;
图6为图5所示的壳体沿A-A做出的剖视示意图;
图7为本申请一些实施例提供的电池单体的俯视示意图;
图8为图7中所示的采用了图5的实施例的壳体的电池单体在B-B处的剖视示意图;
图9为图8中所示的电池单体在C处的放大示意图;
图10为图8中所示的电池单体在D处的放大示意图;
图11为本申请又一实施例提供的电池单体的壳体的结构示意图;
图12为本申请又一实施例提供的电池单体的壳体的结构示意图;
图13为本申请又一实施例提供的电池单体的俯视示意图;
图14为图13中所示的采用了图12的实施例的壳体的电池单体在E-E处的剖视示意图;
图15为图14中所示的电池单体在F处的放大示意图;
图16为本申请又一实施例提供的电池单体的壳体的结构示意图;
图17为本申请又一实施例提供的电池单体的壳体的结构示意图;
图18为本申请又一实施例提供的设有支撑构件的电池单体的结构示意图;
图19为本申请又一实施例提供的电池单体的支撑构件的结构示意图;
图20为本申请又一实施例提供的电池单体的支撑构件的结构示意图;
图21为本申请又一实施例提供的电池单体的支撑构件的结构示意图;
图22为本申请又一实施例提供的设有支撑构件和绝缘膜的电池单体的 结构示意图;
图23为本申请又一实施例提供的电池单体的支撑构件和绝缘膜的***示意图;
图24为图23中所示的支撑构件和绝缘膜组合后的俯视示意图;
图25为本申请一些实施例提供的电池单体的制造方法的流程示意图;
图26为本申请一些实施例提供的电池单体的制造***的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和凸出于正极集流部的正极凸部,正极集流部涂覆有正极活性物质层,正极凸部的至少部分未涂覆正极活性物质层,正极凸部作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和凸出于负极集流部的负极凸部,负极集流部涂覆有负极活性物质层,负极凸部的至少部分未涂覆负极活性物质层,负极凸部作为负极极耳。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可 以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体还可以包括外壳组件,外壳组件内部具有容纳腔,该容纳腔是外壳组件为电极组件和电解质提供的密闭空间。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计,为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离件材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离件用于隔离正极极片和负极极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离件上通过,终止电池单体的内部反应。
泄压机构是指电池单体的内部压力达到预定阈值时致动以泄放内部压力的元件或部件。该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离件中一种或几种的材料。泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏元件或构造,即,当电池单体的内部压力达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构破裂,从而形成可供内部压力或温度泄放的开口或流道。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或***的正负极极片、隔离件的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池单体的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力骤升。这种情况下通过泄压机构致动可以将内部压力向外释放,以防止电池单体***、起火。
泄压机构通常安装于外壳组件。发明人发现,为了提高电池单体的能量密度,电池单体内部可供气体流动的空间有限,造成在热失控时气体排出的速率较低,另外,泄压机构可能会受到外壳组件内部的构件的遮挡,导致排气不畅,引发安全隐患。
鉴于此,本申请实施例提供了一种技术方案,在该技术方案中,电池单体包括电极组件、壳体、泄压机构和盖组件。其中,壳体,设有用于容纳电极组件的容纳空间;壳体包括位于沿第一方向一侧的第一侧板;泄压机构,设置于第一侧板上;盖组件,用于密封壳体;其中,在壳体的第一侧板的内表面设有沿内表面延伸的第一流道,第一流道用于将容纳空间内的气体引导到泄压机构,以使泄压机构在压力达到阈值时致动并泄放压力。具有这种结构的电池单体在热失控时将高温高压气体引导至泄压机构,提高排气速率,提高安全性能。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达 4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的***示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部51和第二箱体部52,第一箱体部51与第二箱体部52相互盖合,第一箱体部51和第二箱体部52共同限定出用于容纳电池单体的容置空间53。第二箱体部52可以是一端开口的空心结构,第一箱体部51为板状结构,第一箱体部51盖合于第二箱体部52的开口侧,以形成具有容置空间53的箱体5;第一箱体部51和第二箱体部52也均可以是一侧开口的空心结构,第一箱体部51的开口侧盖合于第二箱体部52的开口侧,以形成具有容置空间53的箱体5。当然,第一箱体部51和第二箱体部52可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部51与第二箱体部52连接后的密封性,第一箱体部51与第二箱体部52之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部51盖合于第二箱体部52的顶部,第一箱体部51亦可称之为上箱盖,第二箱体部52亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为图2所示的电池模块的结构示意图。如图3所示,在一些实施例中,电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。
图4为本申请一些实施例提供的电池单体的***示意图。
如图4所示,本申请实施例提供的电池单体7包括电极组件10和外壳组件20,电极组件10容纳于外壳组件20内。
在一些实施例中,电池单体7包括:电极组件10、壳体21、泄压机构30和端盖22。其中,壳体21设有用于容纳电极组件10的容纳空间216;壳体10包括位于沿第一方向Z一侧的第一侧板212;泄压机构30,设置于第一侧板212上;端盖22,用于密封壳体21;其中,在壳体21的第一侧板212的内表面2120设有沿内表面2120延伸的第一流道,第一流道用于将容纳空间216内的气体引导到泄压机构30,以使泄压机构30在压力达到阈值时致动并泄放压力。
在一些实施例中,外壳组件20还可用于容纳电解质,例如电解液。外壳组件20可以是多种结构形式。
在一些实施例中,外壳组件20可以包括壳体21和盖组件22,壳体21为一侧开口的空心结构,盖组件22盖合于壳体21的开口处并形成密封连接,以形成用于容纳电极组件10和电解质的容纳腔。
壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。
在一些实施例中,盖组件22包括端盖221,端盖221盖合于壳体21的开口处。端盖221可以是多种结构,比如,端盖221为板状结构。示例性的,在图4中,壳体21为长方体结构,端盖221为板状结构,端盖221盖合于壳体21顶部的开口处。
端盖221可以由绝缘材料(例如塑胶)制成,也可以由导电材料(例如金属)制成。当端盖221由金属材料制成时,盖组件22还可包括绝缘板,绝缘板位于端盖221面向电极组件10的一侧,以将端盖221和电极组件10绝缘隔开。
在一些实施例中,盖组件22还可以包括电极端子222,电极端子222安装于端盖上。电极端子222为两个,两个电极端子222分别定义为正极电极端子和负极电极端子,正极电极端子和负极电极端子均用于与电极组件10电连接,以输出电极组件10所产生的电能。
在另一些实施例中,外壳组件20也可以是其他结构,比如,外壳组件 20包括壳体21和两个盖组件22,壳体21为相对的两侧开口的空心结构,一个盖组件22对应盖合于壳体21的一个开口处并形成密封连接,以形成用于容纳电极组件10和电解质的容纳腔。在这种结构中,可以一个盖组件22上设有两个电极端子222,而另一个盖组件22上未设置电极端子222,也可以两个盖组件22各设置一个电极端子222。
在电池单体7中,容纳于外壳组件20内的电极组件10可以是一个,也可以是多个。示例性的,在图4中,电极组件10为两个。
电极组件10包括正极极片、负极极片和隔离件。电极组件10可以是卷绕式电极组件、叠片式电极组件或其它形式的电极组件。
在一些实施例中,电极组件10为卷绕式电极组件。正极极片、负极极片和隔离件均为带状结构。本申请实施例可以将正极极片、隔离件以及负极极片依次层叠并卷绕两圈以上形成电极组件10。
在另一些实施例中,电极组件10为叠片式电极组件。具体地,电极组件10包括多个正极极片和多个负极极片,正极极片和负极极片交替层叠,层叠的方向平行于正极极片的厚度方向和负极极片的厚度方向。
从电极组件10的外形来看,电极组件10包括主体部11和连接于主体部的极耳部12。示例性地,主体部从主体部的靠近盖组件的一端延伸出。
在一些实施例中,极耳部12为两个,两个极耳部分别定义为正极极耳部和负极极耳部。正极极耳部和负极极耳部可以从主体部11的同一端延伸出,也可以分别从主体部11的相反的两端延伸出。
主体部11为电极组件10实现充放电功能的核心部分,极耳部12用于将主体部11产生的电流引出。主体部11包括正极集流体的正极集流部、正极活性物质层、负极集流体的负极集流部、负极活性物质层以及隔离件。正极极耳部包括多个正极极耳,负极极耳部包括多个负极极耳。
极耳部12用于电连接于电极端子222。极耳部12可以通过焊接等方式直接连接于电极端子222,也可以通过其它构件间接地连接于电极端子222。例如,电池单体7还包括集流构件13,集流构件13用于电连接电极端子222和极耳部12。集流构件13为两个,两个集流构件13分别定义为正极集流构件和负极集流构件,正极集流构件用于电连接正极电极端子和正极极耳部,负极集流构件用于电连接负极电极端子和负极极耳部。当电池单体7设有多个电极组件10时,多个电极组件10的正极集流构件可以一体设置, 多个电极组件10的负极集流构件可以一体设置。
第一侧板212位于外壳组件20的沿第一方向Z的一侧。外壳组件20的壳体21在沿第一方向Z的与第一侧板212相对的另一侧具有端部开口。
在壳体21为一端开口的空心结构时,第一侧板212是壳体21的位于电极组件10的背离盖组件22的一侧的底板。
泄压机构30设置于第一侧板212上。泄压机构30可以是第一侧板212的一部分,也可以与第一侧板212为分体结构。第一侧板212设置有沿自身厚度方向贯通的泄压孔210,泄压机构30通过焊接等方式固定在第一侧板212上并覆盖泄压孔210。泄压机构30将泄压孔210密封,以隔开第一侧板212内外两侧的空间,避免电解质在正常工作时经由泄压孔210流出。
泄压机构30用于在电池单体7的内部压力达到阈值时致动以泄放内部压力。当电池单体7产生的气体太多使得壳体21内部压力升高并达到阈值时,泄压机构30执行动作或者泄压机构30中设有的薄弱结构被破裂,气体和其它高温高压物质通过泄压机构30裂开的开口和泄压孔210向外释放,进而避免电池单体7发生***。
泄压机构30可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构30可以为压敏泄压机构,压敏泄压机构被配置为在设有压敏泄压机构的电池单体7的内部气压达到阈值时能够破裂。
在一些实施例中,泄压机构30上形成有刻痕、凹槽或其它结构,以减小泄压机构30的局部强度并在泄压机构30上形成薄弱结构;在电池单体7的内部压力达到阈值时,泄压机构30在薄弱结构处破裂,泄压机构30沿着破裂处设置的部分翻折并形成开口,以泄放高温高压物质。
当发生短路、过充等现象时,电池单体7发生热失控并释放出大量的高温高压物质,例如高温高压气体;第一流道可以引导气体流动,以将容纳空间216内的气体引导到泄压机构30,气体作用在泄压机构30的承压表面上并向泄压机构30施加压力;随着气体的增多,泄压机构30承受的压力越大,泄压机构30在压力达到阈值时致动,以将气体和其它高温高压物质泄放到电池单体7的外部,从而将电池单体7的内部压力向外释放,以防止电池单体7***、起火。
本申请实施例通过在壳体21的第一侧板212上设置第一流道2151,能够将电池单体7在热失控时释放的气体从容纳空间216引导至泄压机构30, 使泄压机构30及时致动并泄放气体,提高在电池单体7热失控时的排气速率,提高电池单体7的安全性。
图5为本申请一些实施例提供的电池单体的壳体的结构示意图;图6为图5所示的壳体沿A-A做出的剖视示意图;图7为本申请一些实施例提供的电池单体的俯视示意图;图8为图7中所示的采用了图5的实施例的壳体的电池单体在B-B处的剖视示意图;图9为图8中所示的电池单体在C处的放大示意图;图10为图8中所示的电池单体在D处的放大示意图。
参照图5至图10,在一些实施例中,第一流道2151包括设置于第一侧板212的内表面2120上并沿第一侧板212的内表面2120延伸的多个第一凹槽2141,每个第一凹槽2141的一端与泄压机构30连通。将第一流道2151设置为多个第一凹槽2141,每个第一凹槽2141与泄压机构30连通,当电池单体7在热失控时,释放的气体可沿第一凹槽2141从容纳空间216引导至泄压机构30排出,提高在电池单体7热失控时的排气速率,提高电池单体7的安全性,同时第一凹槽2141设置在第一侧板212的内表面,不会占用容纳空间216影响电池单体7的能量密度。
参照图5和图6,在一些实施例中,多个第一凹槽2141相互平行并相互间隔。在一些实施例中,每个第一凹槽2141沿第三方向Y延伸,第三方向Y垂直于第一方向Z;多个第一凹槽2141沿第二方向X排列,第二方向X垂直于第一方向Z和垂直于第三方向Y。
在一些实施例中,沿第二方向X,多个第一凹槽2141可以具有彼此相同或者不同的宽度。在一些实施例中,沿第一方向Z,多个第一凹槽2141可以具有彼此相同或者不同的深度。
壳体21包括沿第三方向Y相对设置的一对第二侧板213,以及沿第二方向X相对设置的一对第三侧板211。第二侧板213与第三侧板211均连接于第一侧板212,并且相邻的第二侧板213与第三侧板211之间也相连接共同形成容纳空间216。
多个第一凹槽2141一端与泄压孔210连通,另一端延伸至靠近第二侧板213的位置。
参照图7至图10,容纳空间216包括在电极组件10和每个第二侧板213之间设置的第一间隙G1。第一流道2151与第一间隙G1相连通。第一流道2151通过与第一间隙G1相连通实现第一流道2151与容纳空间216的 连通,此外电极组件10内部产生的气体也可直接从第一流道2151进入到泄压机构30。
参照图9,电极组件10与每个第二侧板213之间形成第一间隙G1,构成第一流道2151的多个第一凹槽2141在第三方向Y延伸至相邻的第二侧板213的附近,在第三方向Y上越过电极组件10的下边缘,并与与第一间隙G1相连通。进而在当电池单体7产生的气体太多使得壳体21内部压力升高并达到阈值时,气体经过第一间隙G1后,可以不受电极组件10的阻挡,经过多个第一凹槽2141运动到泄压机构30排出,此外电极组件10内部产生的气体也可直接第一流道2151进入到泄压机构30,提高了排气效率。
在一些实施例中,电极组件10与每个第二侧板213之间形成一个第一间隙G1,多个第一凹槽2141在第三方向Y上分别连接两侧的第一间隙G1和泄压机构30。
参照图10所示,在一些实施例中,从第一流道2151连通泄压机构30的位置开始,至少部分长度的第一流道2151的深度H沿远离泄压机构30的方向逐渐减小。
具体地,从第一流道2151连通泄压机构30的位置开始,构成第一流道2151的每个第一凹槽2141的沿第三方向Y的至少部分长度上,第一凹槽2141的深度H沿远离泄压机构30的方向逐渐减小。参照图10中所示,至少部分长度的第一凹槽2141的深度H沿着接近泄压机构30的方向逐渐增加,形成朝泄压机构30的排气方向倾斜的斜坡,更有利于将气体引导至泄压机构30排出,提升排气效率。斜坡可以呈直线或者弧线倾斜。
部分长度是指深度H变化的部分只是占据了第一流道2151在第三方向Y上与泄压机构30相连接的一部分长度,其余部分长度的第一流道2151的深度可以保持不变。在另一些实施例中,第一流道2151也可以在第一流道2151的整个长度上有深度H的变化。
第一流道2151连通泄压机构30的位置指的是第一流道2151连接至泄压机构30的边缘的位置。当壳体21上设置有泄压口210时,第一流道2151连通泄压机构30的位置指的是第一流道2151连接至泄压孔210的位置。
图11为本申请又一实施例提供的电池单体的壳体的结构示意图。
参照图11中的实施例,图11中的壳体21与与图5中实施例的壳体21的区别在于多个第一凹槽2141以泄压机构30为中心向四周呈发散状延伸并 相互间隔。
具体的,多个第一凹槽2141共同组成了第一流道2151,多个第一凹槽2141以泄压机构30为中心向四周呈发散状延伸并相互间隔。呈发散状延伸指的是多个第一凹槽2141以泄压机构30为中心,多个第一凹槽2141大致沿以泄压机构30的中心为轴的径向方向延伸。多个第一凹槽2141的一端与泄压机构30相连通,在一些实施例中,多个第一凹槽2141连接到泄压孔210。其中的一部分第一凹槽2141的另一端延伸至相邻的第二侧板213的附近,一部分第一凹槽2141的另一端延伸至第三侧板211的附近。
该实施例中,容纳空间216包括在电极组件10和每个第二侧板213之间设置的第一间隙G1,延伸至相邻的第二侧板213的附近一部分第一凹槽2141与第一间隙G1相连通。容纳空间216还包括在电极组件10和每个第三侧板211之间设置的第二间隙G2,延伸至第三侧板211的附近一部分第一凹槽2141与第二间隙G2相连通。这样,当电池单体7发生热失控时,气体可在泄压机构30的周向方向分别通过第一间隙G1和第二间隙G2沿第一流道2151引导到泄压机构30处。此外电极组件10内部产生的气体也可直接第一流道2151进入到泄压机构30。提高在电池单体7热失控时的排气速率,提高电池单体7的安全性。
图12为本申请又一实施例提供的电池单体的壳体的结构示意图;图13为本申请又一实施例提供的电池单体的俯视示意图;图14为图13中所示的采用了图12的实施例的壳体的电池单体在E-E处的剖视示意图;图15为图14中所示的电池单体在F处的放大示意图。
参照图12-15中所示,在一些实施例中,在壳体21中,第一侧板212的内表面上形成有向容纳空间216凸出的凸起部2142,凸起部2142具有远离内表面2120的顶面2140,第一流道2152形成在凸起部2142的顶面2140和内表面2120之间的空间中。该实施例中,凸起部2142的顶面2140用以支撑电极组件10,在凸起部2142的顶面2140和内表面2120之间的空间中形成第一流道2152,可提高在电池单体7热失控时的排气速率,提高电池单体7的安全性。
在一些实施例中,参照图12中所示,第一流道2152包括多个与泄压机构30连通的分流道21521;凸起部2142为多个,多个凸起部2142以泄压机构30为中心向四周呈发散状延伸并相互间隔,在两个相邻的凸起部2142和 内表面2120之间形成一个分流道21521。多个凸起部2142以泄压机构30为中心向四周呈发散状延伸并相互间隔,有利于提升在泄压机构30的周向方向上的排气效率。
具体的,在两个相邻的凸起部2142和内表面2120之间形成一个分流道21521,多个分流道21521以泄压机构30为中心向四周呈发散状延伸并相互间隔。呈发散状延伸指的是多个分流道21521以泄压机构30为中心,多个分流道21521大致沿以泄压机构30的中心点为轴的径向方向延伸。多个分流道21521的一端与泄压机构30相连通,在一些实施例中,多个分流道21521连接到泄压孔210。其中的一部分分流道21521的另一端延伸至一个第二侧板213的附近,与第一间隙G1连通;一部分分流道21521的另一端延伸至一个第三侧板211的附近,与第二间隙G2连通。
该实施例中,容纳空间216包括在电极组件10和每个第二侧板213之间设置的第一间隙G1,延伸至一个第二侧板213的附近一部分分流道21521与第一间隙G1相连通。参照图14和15中所示,容纳空间216还包括在电极组件10和每个第三侧板211之间设置的第二间隙G2,延伸至一个第三侧板211的附近一部分分流道21521与第二间隙G2相连通。这样,当电池单体7发生热失控时,气体可在泄压机构30的周向方向上沿第一流道2152引导到泄压机构30处。此外电极组件10内部产生的气体也可直接经过第一流道2152进入到泄压机构30。提高在电池单体7热失控时的排气速率,提高电池单体7的安全性。
此外,图11和图12的实施例中,也可以参考图10的实施例,从第一流道2151连通泄压机构30的位置开始,至少部分长度的第一流道2151的深度H沿远离泄压机构30的方向逐渐减小。
图16为本申请又一实施例提供的电池单体的壳体的结构示意图。
参照图16中所示,在一些实施例中,在壳体21中,第一流道2153包括多个分流道21531和连接流道21532;凸起部2143为多个,每个凸起部2143大体上沿第一侧板212的第二方向X延伸;多个凸起部2143沿第一侧板212的第三方向Y间隔排列并相互间隔;在两个相邻的凸起部2143和内表面2120之间形成一个分流道21531,相邻的两个分流道21531通过连接流道21532相连通;分流道21531中的至少一个通过连接流道21532与泄压机构30相连通;第二方向X垂直于第一方向Z;第三方向Y垂直于第一方向 Z和第二方向X。通过设置沿第一侧板212的第二方向X延伸的凸起部2143,在两个相邻的凸起部2143和内表面2120之间形成一个分流道21531,并通过连接流道21532将分流道21531连接至泄压机构30,可提高在第二方向X上的排气效率。当壳体21在第二方向X上的宽度与第三方向Y上的长度较为接近时,本实施例的第一流道2153能够提供较好的排气效果。
该实施例中,每个凸起部2143在第二方向X上的一个端部与相邻的第二侧板213之间设有第三间隙G3,第三间隙G3形成连接流道21532的至少一部分。连接流道21532整体上沿第三方向Y延伸。通过设置第三间隙G3形成将分流道21531连接至泄压机构30的连接流道的一部分,可将分流道21531的气体通过连接流道21532快速引导至泄压机构30排出。
图17为本申请又一实施例提供的电池单体的壳体的结构示意图。
参照图17中所示,该实施例与图16中的实施例的区别在于,在壳体21中,至少一个凸起部2144包括多个子凸起部21441,子凸起部21441沿第二方向X间隔设置,相邻的子凸起部21441之间形成有第四间隙G4,第四间隙G4也形成连接流道21532的至少一部分,即该实施例中,连接流道21532包括由第三间隙G3作为一部分的侧连接流道21533和由第四间隙G4作为一部分的中间连接流道21534。通过设置第四间隙G4形成将分流道21531连接至泄压机构的中间连接流道21534,中间连接流道21534与侧连接流道21533共同配合,可将分流道21531的气体通过连接流道21532快速引导至泄压机构30排出。
可选地,在图16、17所示的实施例中,凸起部2143或凸起部2144构成为在第三方向Y上朝远离泄压机构30方向凸出的弧形或折线形。在第三方向Y上朝远离泄压机构30方向凸出的弧形或折线形的凸起部2143或凸起部2144可在排气时可将气流朝向泄压机构30的方向引导,有利于气体快速排出。
在以上实施例中,在凸起部2143或凸起部2144的顶面2140上还可以设有绝缘层,绝缘层用以实现电极组件10和壳体21之间的绝缘,无需额外设置支撑构件,减少对容纳空间216的占用,在不影响电池单体7排气的情况下,有利于提高电池单体7的能量密度。
图18为本申请又一实施例提供的电池单体的结构示意图。
参照图18中所示,该实施例中,与以上实施例的区别在于,增加了支撑构件40。支撑构件40设置于电极组件10和第一侧板212之间并用于支撑电极组件10。电极组件10、支撑构件40和第一侧板212沿第一方向Z依次布置。示例性地,支撑构件40由绝缘材料制成,其能够将第一侧板212和电极组件10绝缘隔开。支撑构件40能够支撑电极组件10,以在电池单体7震动时减小电极组件10的晃动,降低电极组件10的活性物质脱落的风险。
支撑构件40可以直接抵靠在电极组件10上以支撑电极组件10,也可以通过其它构件支撑电极组件10。例如,电池单体7还包括包覆在电极组件10的主体部11的外侧的绝缘膜,绝缘膜的一部分位于支撑构件40和电极组件10之间,支撑构件40通过绝缘膜支撑电极组件10。支撑构件40具有相对设置的第一表面41和第二表面42,第一表面41面向第一侧板212,第二表面42面向电极组件10。
在一些实施例中,支撑构件40可以抵靠在第一侧板212上,例如,在图5-11的实施例中,支撑构件40可以在电极组件10的重力作用下抵靠在第一侧板212上,与第一侧板212的内表面2120相接触,参照图9和图10的实施例,在支撑构件40的第一表面41与第一侧板212之间的第一凹槽2141之间形成第一流道。参见图9,支撑构件40在第三方向Y上与第二侧板213之间形成第五间隙G5,此外参考图15中的实施例,支撑构件40在第二方向X上与相邻的第三侧板211之间形成第六间隙G6。第一间隙G1通过第五间隙G5与第一流道2151相连通。第二间隙G2通过第六间隙G6与第一流道2151相连通。
支撑构件40也可以在第一方向Z上与第一侧板212间隔设置。例如,在图12-17的实施例中,支撑构件40可以放置在凸起部2142、2143或2144表面,与第一侧板212的内表面2120之间间隔设置。第一流道2152或2153形成在支撑构件40的第一表面41和第一侧板212的内表面2120之间。
图19为本申请又一实施例提供的电池单体的支撑构件的结构示意图;图20为本申请又一实施例提供的电池单体的支撑构件的结构示意图;图21为本申请又一实施例提供的电池单体的支撑构件的结构示意图。
在一些实施例中,支撑构件40上设有第二流道,第二流道连通第一流道2151、2152或2153和容纳空间216。在支撑构件40上形成第二流道,连通第一流道2151、2152或2153和容纳空间216,可提高排气的流道面积, 提高排气效率。
参照图19所示,在一些实施例中,第二流道包括沿第一方向Z贯通支撑构件40的第一通孔402,第一通孔402在第一方向Z上连通第一流道2151、2152或2153和容纳空间216。
参照图20所示,在一些实施例中,第二流道包括设于第一表面41上的第二凹槽401,第二凹槽401与第一间隙G1和/或第二间隙G2连通,并且第二凹槽401与第一流道连通。支撑构件40上通过设置与第一间隙G1和/或第二间隙G2,以及与第一流道2151、2152或2153连通的第二凹槽401,可提高排气的流道面积,提高排气效率。
具体地,第二凹槽401可以形成为在第二方向X和/或第三方向Y方向贯通的凹槽,第二凹槽401在第二方向X和/或第三方向Y方向延伸至支撑构件40的边缘,第二凹槽401与第五间隙G5和/或第六间隙G6相连通,通过第五间隙G5和/或第六间隙G6连通容纳空间216。
参照图21所示,在一些实施例中,在支撑构件40上设置了第一通孔402和第二凹槽401,第一通孔402与第二凹槽401相连通。可进一步提高排气的流道面积,提高排气效率。
图22为本申请又一实施例提供的设有支撑构件和绝缘膜的电池单体的结构示意图;图23为本申请又一实施例提供的电池单体的支撑构件和绝缘膜的***示意图;图24为图23中所示的支撑构件和绝缘膜组合后的俯视示意图。
参照图22至图24中所示,在一些实施例中,电池单体7还包括包覆在电极组件10的主体部11的外侧的绝缘膜50,绝缘膜50的一部分位于支撑构件40和电极组件10之间,支撑构件40通过绝缘膜50支撑电极组件10。支撑构件40具有相对设置的第一表面41和第二表面42,第一表面41面向第一侧板2120,第二表面42面向绝缘膜50。
在一些实施例中,绝缘膜50用于包裹电极组件10的一部分,并分隔电极组件10和壳体21;绝缘膜50包括位于电极组件10和支撑构件40之间的第一侧膜501;第一侧膜501具有第二通孔5011,第二通孔5011和支撑构件40的第一通孔402在第一方向Z上的投影不重叠。绝缘膜50的第一侧膜501的第二通孔5011和支撑构件40上的第一通孔402在第一方向Z上的投影不重叠,可避免电极组件10与壳体21的第一侧板212发生直接接触,可 在实现电极组件10与第一侧板212之间可靠绝缘的同时,通过第一通孔402和第二通孔5011实现将容纳空间216与第一流道2151、2152或2153连通,提高排气效率。
在一些实施例中,参照图23和图9中所示,第一侧膜501位于绝缘膜50在第一方向Z上的一侧。绝缘膜50在第三方向Y上设有相对设置的第三侧膜502,在第三侧膜502靠近第一侧膜501的位置设有开口510,绝缘膜50包裹的电极组件10内产生的气体一方面可通过第二通孔5011和第一通孔402连接第一流道2151、2152或2153,另一方面可通过开口510和第一间隙G1、第三间隙G3连接到第一流道2151、2152或2153,进而通过泄压机构30排出,可提高排气的流道面积,提高排气效率。
图25为本申请一些实施例提供的电池单体的制造方法的流程示意图。
如图25所示,本申请实施例的电池单体的制造方法包括:
S100、提供电极组件;
S200、提供壳体,壳体设有用于容纳电极组件的容纳空间;壳体包括位于沿第一方向一侧的第一侧板;
S300、提供泄压机构,泄压机构设置于第一侧板上;
S400、提供盖组件,盖组件用于密封壳体;
S500、组装电极组件、壳体、泄压机构和盖组件以形成电池单体;
其中,提供壳体的步骤S200中还包括在壳体的第一侧板的内表面形成沿内表面延伸的第一流道,第一流道用于将容纳空间内的气体引导到泄压机构,以使泄压机构在压力达到阈值时致动并泄放压力。
需要说明的是,通过上述电池单体的制造方法制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
在基于上述的电池单体的制造方法组装电池单体时,不必按照上述步骤依次进行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S100、S200、S300、S400的执行不分先后,也可以同时进行。
图26为本申请一些实施例提供的电池单体的制造***的示意性框图。
如图26所示,本申请实施例的电池单体的制造***8包括:电极组件提供装置81,用于提供电极组件;壳体提供装置82,用于提供壳体,壳体设有用于容纳电极组件的容纳空间;壳体包括位于沿第一方向一侧的第一侧 板;泄压机构提供装置83,用于提供泄压机构,泄压机构用于设置在第一侧板上;盖组件提供装置84,用于提供盖组件,盖组件用于密封壳体;组装装置85,用于组装电极组件、壳体、泄压机构和盖组件以形成电池单体;其中,在壳体的第一侧板的内表面形成沿内表面延伸的第一流道,第一流道用于将容纳空间内的气体引导到泄压机构,以使泄压机构在压力达到阈值时致动并泄放压力。
通过上述制造***制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种电池单体,包括
    电极组件;
    壳体,设有用于容纳所述电极组件的容纳空间;所述壳体包括位于沿第一方向一侧的第一侧板;
    泄压机构,设置于所述第一侧板上;
    盖组件,用于密封所述壳体;
    其中,在所述壳体的所述第一侧板的内表面设有沿所述内表面延伸的第一流道,所述第一流道用于将所述容纳空间内的气体引导到所述泄压机构,以使所述泄压机构在压力达到阈值时致动并泄放所述压力。
  2. 根据权利要求1所述的电池单体,其中,所述第一流道包括设置于所述第一侧板的内表面上并沿所述第一侧板的内表面延伸的多个第一凹槽,每个所述第一凹槽的一端与所述泄压机构连通。
  3. 根据权利要求2所述的电池单体,其中,所述多个第一凹槽相互平行;或者
    所述多个第一凹槽以所述泄压机构为中心向四周呈发散状延伸。
  4. 根据权利要求1所述的电池单体,其中,所述第一侧板的内表面上形成有向所述容纳空间凸出的凸起部,所述凸起部具有远离所述内表面的顶面,所述第一流道形成在所述凸起部的顶面和所述内表面之间的空间中。
  5. 根据权利要求4所述的电池单体,其中,所述第一流道包括多个与所述泄压机构连通的分流道;所述凸起部为多个,所述多个凸起部以所述泄压机构为中心向四周呈发散状延伸并相互间隔,在两个相邻的凸起部和所述内表面之间形成一个所述分流道。
  6. 根据权利要求4所述的电池单体,其中,所述第一流道包括多个分流道和连接流道;所述凸起部为多个,每个凸起部大体上沿所述第一侧板的第二方向延伸;多个所述凸起部沿所述第一侧板的第三方向间隔排列并相互间隔;在两个相邻的凸起部和所述内表面之间形成一个所述分流道,相邻的两个分流道通过所述连接流道相连通;所述分流道中的至少一个通过所述连接流道与所述泄压机构相连通;所述第二方向垂直于所述第一方向;所述第三方向垂直于所述第一方向和所述第二方向。
  7. 根据权利要求6所述的电池单体,其中,所述壳体包括沿所述第二 方向相对设置的一对第二侧板;
    每个所述凸起部在所述第二方向上的一个端部与相邻的一个所述第二侧板之间设有第三间隙,所述第三间隙形成所述连接流道的至少一部分。
  8. 根据权利要求6或7所述的电池单体,其中,至少一个凸起部包括多个子凸起部,多个所述子凸起部沿所述第二方向间隔设置,相邻的子凸起部之间形成有第四间隙,所述第四间隙形成所述连接流道的至少一部分。
  9. 根据权利要求4-8中任一项所述的电池单体,其中,所述凸起部构成为在第三方向上朝远离所述泄压机构方向凸出的弧形或折线形。
  10. 根据权利要求4-8中任一项所述的电池单体,其中,在所述凸起部的所述顶面上设有绝缘层。
  11. 根据权利要求1-10中任一项所述的电池单体,其中,
    所述壳体包括位于第二方向相对设置的一对第二侧板,所述容纳空间包括在所述电极组件和每个所述第二侧板之间设置的第一间隙;所述第二方向垂直于所述第一方向;
    所述壳体还包括位于第三方向相对设置的一对第三侧板,所述容纳空间还包括在所述电极组件和每个所述第三侧板之间设置的第二间隙;所述第三方向垂直于所述第一方向和所述第二方向;
    所述第一流道与所述第一间隙和/或所述第二间隙相连通。
  12. 根据权利要求1-11中任一项所述的电池单体,其中,从所述第一流道连通所述泄压机构的位置开始,至少部分长度的所述第一流道的深度沿远离所述泄压机构的方向逐渐减小。
  13. 根据权利要求1-12中任一项所述的电池单体,其中,还包括:
    支撑构件,设置于所述第一侧板和所述电极组件之间,以支撑所述电极组件;所述支撑构件上设有第二流道,所述第二流道连通所述第一流道和所述容纳空间。
  14. 根据权利要求13所述的电池单体,其中,
    第二流道包括沿所述第一方向贯通所述支撑构件的第一通孔,所述第一通孔连通所述第一流道和所述容纳空间。
  15. 根据权利要求13或14所述的电池单体,其中,
    所述壳体包括位于第二方向相对设置的一对第二侧板,所述容纳空间包括在所述电极组件和每个所述第二侧板之间设置的第一间隙;所述第二方向 垂直于所述第一方向;
    所述壳体还包括位于第三方向相对设置的一对第三侧板,所述容纳空间还包括在所述电极组件和每个所述第三侧板之间设置的第二间隙;所述第三方向垂直于所述第一方向和所述第二方向;
    所述支撑构件具有相对设置的第一表面和第二表面,所述第一表面面向所述第一侧板,所述第二表面面向所述电极组件;
    所述第二流道包括设于所述第一表面上的第二凹槽,所述第二凹槽与所述第一间隙和/或第二间隙连通,并且所述第二凹槽与所述第一流道连通。
  16. 根据权利要求14所述的电池单体,其中,还包括:
    绝缘膜,用于包裹所述电极组件的一部分,并分隔所述电极组件和所述壳体;所述绝缘膜包括位于所述电极组件和所述支撑构件之间的第一侧膜;
    所述第一侧膜具有第二通孔,所述第二通孔和所述支撑构件的所述第一通孔在所述第一方向上的投影不重叠。
  17. 一种电池,包括如权利要求1-16中任一项所述的电池单体。
  18. 一种用电装置,包括权利要求17所述的电池。
  19. 一种电池单体的制造方法,包括:
    提供电极组件;
    提供壳体,所述壳体设有用于容纳所述电极组件的容纳空间;所述壳体包括位于沿第一方向一侧的第一侧板;
    提供泄压机构,所述泄压机构设置于所述第一侧板上;
    提供盖组件,所述盖组件用于密封所述壳体;
    组装所述电极组件、所述壳体、所述泄压机构和所述盖组件以形成所述电池单体;
    其中,所述提供壳体包括在所述壳体的所述第一侧板的内表面形成沿所述内表面延伸的第一流道,所述第一流道用于将所述容纳空间内的气体引导到所述泄压机构,以使所述泄压机构在压力达到阈值时致动并泄放所述压力。
  20. 一种电池单体的制造***,包括:
    电极组件提供装置,用于提供电极组件;
    壳体提供装置,用于提供壳体,所述壳体设有用于容纳所述电极组件的容纳空间;所述壳体包括位于沿第一方向一侧的第一侧板;
    泄压机构提供装置,用于提供泄压机构,所述泄压机构用于设置在所述第一侧板上;
    盖组件提供装置,用于提供盖组件,所述盖组件用于密封所述壳体;
    组装装置,用于组装所述电极组件、所述壳体、所述泄压机构和所述盖组件以形成所述电池单体;
    其中,在所述壳体的所述第一侧板的内表面形成沿所述内表面延伸的第一流道,所述第一流道用于将所述容纳空间内的气体引导到所述泄压机构,以使所述泄压机构在压力达到阈值时致动并泄放所述压力。
PCT/CN2021/109405 2021-07-29 2021-07-29 电池单体及其制造方法和制造***、电池以及用电装置 WO2023004723A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21949525.6A EP4170801A4 (en) 2021-07-29 2021-07-29 BATTERY CELL AND PRODUCTION METHOD AND SYSTEM THEREOF, BATTERY AND POWER CONSUMPTION DEVICE
PCT/CN2021/109405 WO2023004723A1 (zh) 2021-07-29 2021-07-29 电池单体及其制造方法和制造***、电池以及用电装置
JP2023511977A JP2023541357A (ja) 2021-07-29 2021-07-29 電池セル及びその製造方法並びに製造システム、電池及び電力消費装置
CN202180055111.0A CN116114109A (zh) 2021-07-29 2021-07-29 电池单体及其制造方法和制造***、电池以及用电装置
KR1020237005076A KR20230035667A (ko) 2021-07-29 2021-07-29 배터리 셀 및 그 제조방법과 제조 시스템, 배터리 및 전기장치
US18/344,835 US20230344071A1 (en) 2021-07-29 2023-06-29 Battery cell, method and system for manufacture same, battery, and power consuming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109405 WO2023004723A1 (zh) 2021-07-29 2021-07-29 电池单体及其制造方法和制造***、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,835 Continuation US20230344071A1 (en) 2021-07-29 2023-06-29 Battery cell, method and system for manufacture same, battery, and power consuming device

Publications (1)

Publication Number Publication Date
WO2023004723A1 true WO2023004723A1 (zh) 2023-02-02

Family

ID=85086091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109405 WO2023004723A1 (zh) 2021-07-29 2021-07-29 电池单体及其制造方法和制造***、电池以及用电装置

Country Status (6)

Country Link
US (1) US20230344071A1 (zh)
EP (1) EP4170801A4 (zh)
JP (1) JP2023541357A (zh)
KR (1) KR20230035667A (zh)
CN (1) CN116114109A (zh)
WO (1) WO2023004723A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544488A (zh) * 2023-07-06 2023-08-04 宁德时代新能源科技股份有限公司 底托板、电池单体、电池和用电装置
CN116706416A (zh) * 2023-08-07 2023-09-05 蜂巢能源科技股份有限公司 一种动力电池及电池包
CN117525774A (zh) * 2024-01-08 2024-02-06 深圳海辰储能科技有限公司 储能装置和用电设备
CN117525728A (zh) * 2024-01-04 2024-02-06 深圳海辰储能科技有限公司 一种储能装置及用电设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023004722A1 (zh) * 2021-07-29 2023-02-02 宁德时代新能源科技股份有限公司 电池单体及其制造方法和制造***、电池以及用电装置
CN116526060B (zh) * 2023-07-03 2023-11-17 宁德时代新能源科技股份有限公司 电池及用电设备
CN116593059B (zh) * 2023-07-19 2023-11-10 宁德时代新能源科技股份有限公司 一种传感器、制造方法、电池单体、电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030946A (ja) * 2002-06-21 2004-01-29 Toyota Motor Corp 角形非水電解液電池の安全構造
CN101578721A (zh) * 2007-03-30 2009-11-11 丰田自动车株式会社 蓄电装置
CN107394063A (zh) * 2016-05-16 2017-11-24 宁德时代新能源科技股份有限公司 二次电池
CN110739424A (zh) * 2019-10-28 2020-01-31 广州小鹏汽车科技有限公司 一种电池箱和一种电池箱热失控监控方法
CN112688019A (zh) * 2020-12-25 2021-04-20 中国第一汽车股份有限公司 一种动力电池热流泄放装置及动力电池热流泄放方法
CN213546446U (zh) * 2020-07-10 2021-06-25 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680400B2 (ja) * 2017-02-28 2020-04-15 株式会社豊田自動織機 蓄電装置
CN111640888B (zh) * 2020-05-19 2023-01-03 威睿电动汽车技术(宁波)有限公司 一种电池包泄压防护***及其设计方法和车辆
CN213026309U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置和制备电池的装置
CN213692271U (zh) * 2020-11-20 2021-07-13 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030946A (ja) * 2002-06-21 2004-01-29 Toyota Motor Corp 角形非水電解液電池の安全構造
CN101578721A (zh) * 2007-03-30 2009-11-11 丰田自动车株式会社 蓄电装置
CN107394063A (zh) * 2016-05-16 2017-11-24 宁德时代新能源科技股份有限公司 二次电池
CN110739424A (zh) * 2019-10-28 2020-01-31 广州小鹏汽车科技有限公司 一种电池箱和一种电池箱热失控监控方法
CN213546446U (zh) * 2020-07-10 2021-06-25 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
CN112688019A (zh) * 2020-12-25 2021-04-20 中国第一汽车股份有限公司 一种动力电池热流泄放装置及动力电池热流泄放方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170801A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544488A (zh) * 2023-07-06 2023-08-04 宁德时代新能源科技股份有限公司 底托板、电池单体、电池和用电装置
CN116544488B (zh) * 2023-07-06 2023-11-14 宁德时代新能源科技股份有限公司 底托板、电池单体、电池和用电装置
CN116706416A (zh) * 2023-08-07 2023-09-05 蜂巢能源科技股份有限公司 一种动力电池及电池包
CN116706416B (zh) * 2023-08-07 2023-10-13 蜂巢能源科技股份有限公司 一种动力电池及电池包
CN117525728A (zh) * 2024-01-04 2024-02-06 深圳海辰储能科技有限公司 一种储能装置及用电设备
CN117525728B (zh) * 2024-01-04 2024-03-12 深圳海辰储能科技有限公司 一种储能装置及用电设备
CN117525774A (zh) * 2024-01-08 2024-02-06 深圳海辰储能科技有限公司 储能装置和用电设备
CN117525774B (zh) * 2024-01-08 2024-04-09 深圳海辰储能科技有限公司 储能装置和用电设备

Also Published As

Publication number Publication date
EP4170801A1 (en) 2023-04-26
US20230344071A1 (en) 2023-10-26
EP4170801A4 (en) 2024-03-06
JP2023541357A (ja) 2023-10-02
CN116114109A (zh) 2023-05-12
CN116114109A8 (zh) 2024-05-17
KR20230035667A (ko) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2023004723A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2022142609A1 (zh) 盖组件、电池、用电设备、电池单体及其制造方法
WO2023098258A1 (zh) 电池单体、电池以及用电装置
US20230261312A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2022105010A1 (zh) 电池单体、电池及用电装置
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022213400A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2022109884A1 (zh) 电池单体及其制造方法和***、电池以及用电装置
WO2023279260A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023056719A1 (zh) 端盖、电池单体、电池以及用电装置
US20220416360A1 (en) Battery cell, manufacturing method and manufacturing system therefor, battery and electric device
WO2024124688A1 (zh) 绝缘膜、电池单体、电池及用电装置
WO2023087285A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2023050278A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2022252010A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023097584A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
EP4138183A1 (en) Battery cell, battery, electric device, and method and device for manufacturing battery cell
WO2022082391A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2023173414A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023097469A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023236219A1 (zh) 电池单体、电池及用电设备
WO2023133855A1 (zh) 电池、用电设备及电池的制备方法和制备装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021949525

Country of ref document: EP

Effective date: 20230118

ENP Entry into the national phase

Ref document number: 20237005076

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023511977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE