WO2024124688A1 - 绝缘膜、电池单体、电池及用电装置 - Google Patents

绝缘膜、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024124688A1
WO2024124688A1 PCT/CN2023/076860 CN2023076860W WO2024124688A1 WO 2024124688 A1 WO2024124688 A1 WO 2024124688A1 CN 2023076860 W CN2023076860 W CN 2023076860W WO 2024124688 A1 WO2024124688 A1 WO 2024124688A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
battery cell
pressure relief
relief mechanism
weak portion
Prior art date
Application number
PCT/CN2023/076860
Other languages
English (en)
French (fr)
Inventor
全超
蒲玉杰
李耀
陈小波
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024124688A1 publication Critical patent/WO2024124688A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to an insulating film, a battery cell, a battery and an electrical device.
  • Battery cells are widely used in electronic devices, such as mobile phones, laptop computers, electric vehicles, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, and electric tools, etc.
  • Battery cells can include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, and secondary alkaline zinc-manganese battery cells, etc.
  • the present application provides an insulating film, a battery cell, a battery and an electrical device, which can improve battery safety.
  • An embodiment of the present application provides an insulating film for covering at least a portion of an outer shell of a battery cell.
  • the insulating film is provided with a weak portion, and the weak portion is used to cover at least a portion of a pressure relief mechanism installed on the outer shell in the battery cell.
  • the insulating film has a lower obstruction effect on the pressure relief mechanism, thereby ensuring that the pressure relief mechanism can be actuated in time to meet the pressure relief needs of the battery cell. Reduce the risk of long-term accumulation of high-temperature and high-pressure materials in battery cells and improve the safety of battery cells.
  • the insulating film includes a film body, and the weak portion includes a notch structure disposed on the film body.
  • a notch structure is provided on the membrane body, and compared with other positions of the membrane body, the notch structure has a smaller thickness and lower structural strength. Therefore, when thermal runaway occurs in the battery cell, the notch structure will be more easily damaged and ruptured under the action of external force, thereby forming a gap in the insulating film, thereby ensuring that the pressure relief mechanism can be activated in time, and high-temperature and high-pressure substances can be discharged from the battery cell in time, thereby improving the safety of the battery cell.
  • the notched structures are enclosed to form a closed loop structure.
  • the notched structure is enclosed to form a closed-loop structure, so that when thermal runaway occurs in the battery cell, the center portion can be separated from the membrane body, thereby forming a larger gap in the insulating membrane corresponding to the position of the pressure relief mechanism, to ensure that more high-temperature and high-pressure materials can leave the battery cell from the gap in time, reduce the possibility of explosion of the battery cell, and further improve the safety of the battery cell.
  • an outer contour of the closed-loop structure at least partially extends beyond the pressure relief mechanism.
  • this design when thermal runaway occurs in the battery cell, this design can ensure that a larger gap can be formed in the insulating film at the position corresponding to the pressure relief mechanism, so as to ensure that more high-temperature and high-pressure materials can leave the battery cell from the gap in time, reduce the possibility of explosion of the battery cell, and further improve the safety of the battery cell.
  • the contour of the closed-loop structure corresponds to the contour of the pressure relief mechanism.
  • the difficulty of aligning the insulating film on the housing is reduced, ensuring the accuracy of the position between the two.
  • the difficulty of aligning the closed-loop structure and the pressure relief mechanism can be reduced, so that the two can be set correspondingly, so that when the battery cell has thermal runaway, the insulating film can be actuated at the corresponding position of the pressure relief mechanism to meet the pressure relief needs and improve the safety of the battery cell.
  • the plurality of notch structures are arranged at intervals, that is, between two adjacent notch structures
  • the two layers do not intersect, so during the formation of the notch structure, any position in the insulating film will not be affected by double or even multiple processes. This can reduce the risk of the insulating film being broken down due to the process, reduce the impact of the notch structure on the pressure relief mechanism and the shell, and improve the reliability of the preparation of the battery cell.
  • the scoring structure includes a first scoring segment and a second scoring segment connected to each other, and the extension directions of the first scoring segment and the second scoring segment intersect.
  • the first notch segment and the second notch segment are arranged to extend in different directions respectively, so that the insulating film is provided with notches at different positions corresponding to the pressure relief mechanism area, ensuring that when thermal runaway occurs in the battery cell and different positions of the pressure relief mechanism are actuated, the insulating film can be ruptured in time to meet the pressure relief needs, and is suitable for the occurrence of different situations.
  • the weak portion is connected to the membrane body and the structural strength of any position in the weak portion is less than the structural strength of the membrane body.
  • the weak portion is covered by the pressure relief mechanism, thereby further reducing the obstruction of the insulating film on the pressure relief mechanism, thereby ensuring that the pressure relief mechanism can be activated in time to meet the pressure relief needs of the battery cell.
  • the weakened portion can cover the pressure relief mechanism.
  • the weak portion is covered by the pressure relief mechanism, thereby further reducing the obstruction of the insulating film on the pressure relief mechanism, thereby ensuring that the pressure relief mechanism can be activated in time to meet the pressure relief needs of the battery cell.
  • the material of the weak portion is different from the material at other positions of the membrane body, and the material strength of the weak portion is lower than the material strength of other positions of the membrane body.
  • the material strength of the weak part is lower than the material strength of the membrane body, thereby meeting the pressure relief needs of the battery cell and improving the safety of the pressure relief mechanism.
  • an embodiment of the present application provides a battery cell, comprising a housing, an electrode assembly, a pressure relief mechanism, and an insulating film in any of the above embodiments.
  • the electrode assembly is accommodated in the housing, the pressure relief mechanism is mounted on the housing, the insulating film covers at least a portion of the housing, and the weak portion is opposite to the pressure relief mechanism of the housing.
  • the housing includes a first wall and a second wall, and the pressure relief mechanism is installed on the first wall.
  • the battery cell further comprises an electrode terminal mounted on the second wall.
  • the electrode terminal is arranged on the second wall different from the first wall, thereby reducing the probability of the insulating film shielding the electrode terminal, ensuring the normal operation of the electrode terminal, and realizing the reliable transmission of the electric energy of the battery cell.
  • an insulating film is disposed covering the first wall.
  • the pressure relief mechanism is arranged on the first wall, and the insulating film covers the first wall, which can ensure that the pressure relief mechanism meets the insulation requirements at the position, and ensure that each position in the first wall is insulated and separated from external components by the insulating film.
  • This design prevents the electric energy stored in the battery cell from being transferred to the external structure through the first wall, thereby reducing the risk of leakage of the battery cell at the corresponding position of the first wall and improving the safety of the battery cell.
  • At least a portion of the insulating film covers all surfaces of the housing except the second wall. In other words, all surfaces of the housing except the second wall are provided with the insulating film.
  • any surface of the shell except the second wall is provided with a partial structure of the insulating film.
  • This design can improve the coverage of the shell by the insulating film, thereby reducing the risk of leakage on multiple surfaces of the battery cell, further improving the insulation performance, and improving the safety of the battery cell.
  • the battery cell further includes a protective film connected to the first wall and covering the pressure relief mechanism, and in the thickness direction along the first wall, the projection of the pressure relief mechanism is located within the projection of the weak portion, and the projection of the weak portion is located within the projection of the protective film.
  • the shortest distance between the orthographic projection of the weak portion on the protective film and the edge of the protective film is D, and D satisfies: D ⁇ 2 mm.
  • D may be one of 2 mm, 2.2 mm, 2.5 mm, and 3 mm.
  • the edge position of the weak portion can maintain a certain distance from the edge position of the protective film, thereby reducing the process influence on the edge position of the protective film during the formation of the weak portion, reducing the probability of the protective film being separated from the first wall due to the formation of the weak portion, and ensuring the structural reliability of the protective film.
  • the present application provides a battery, including any of the above embodiments.
  • Battery cells including any of the above embodiments.
  • an embodiment of the present application provides an electrical device, comprising a battery cell according to any of the aforementioned embodiments, wherein the battery cell is used to provide electrical energy.
  • FIG1 is a simplified schematic diagram of a vehicle provided in an embodiment of the present application.
  • FIG2 is an exploded schematic diagram of a battery provided in an embodiment of the present application.
  • FIG3 is a schematic structural diagram of the battery module shown in FIG2 ;
  • FIG4 is an exploded schematic diagram of a battery cell provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of an insulating film provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of another insulating film provided in an embodiment of the present application.
  • FIG7 is a schematic structural diagram of another insulating film provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of another insulating film provided in an embodiment of the present application.
  • FIG9 is a schematic structural diagram of another insulating film provided in an embodiment of the present application.
  • FIG10 is a schematic structural diagram of another insulating film provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a battery cell provided in an embodiment of the present application.
  • FIG12 is a schematic structural diagram of another insulating film provided in an embodiment of the present application.
  • FIG13 is a schematic structural diagram of another insulating film provided in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of another insulating film provided in an embodiment of the present application.
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells or magnesium-ion battery cells, etc., which are not limited in the embodiments of this application.
  • Battery cells may be cylindrical, flat, rectangular or in other shapes, etc., which are not limited in the embodiments of this application. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, which are not limited in the embodiments of this application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery or a battery pack.
  • the battery generally includes a box for encapsulating one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode collector.
  • the positive electrode collector not coated with the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer.
  • the positive electrode collector not coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode collector.
  • the negative electrode collector not coated with the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer.
  • the negative electrode collector not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode collector can be copper, and the negative electrode active material can be carbon or silicon, etc.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the diaphragm can be polypropylene (PP) or polyethylene (PE).
  • the electrode assembly can be a winding structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the battery cell also includes a housing for containing the electrode assembly and the electrolyte.
  • the housing includes a shell and an end cap connected to the shell, and the shell and the end cap form a receiving cavity to contain the electrode assembly and the electrolyte.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery cell. For example, when a short circuit or overcharge occurs, thermal runaway may occur inside the battery cell, causing a sudden increase in pressure. In this case, the pressure relief mechanism can be activated to release the internal pressure to the outside to prevent the battery cell from exploding or catching fire.
  • the pressure relief mechanism refers to an element or component that is activated to release the internal pressure or temperature of the battery cell when the internal pressure or temperature reaches a predetermined threshold.
  • the threshold design varies according to different design requirements. The threshold may depend on one or more materials of the positive electrode plate, negative electrode plate, electrolyte and separator in the battery cell.
  • the internal pressure of the battery cell is the pressure inside the shell.
  • the pressure relief mechanism may be in the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and may specifically be a pressure-sensitive element or structure, that is, when the internal pressure of the battery cell reaches a predetermined threshold, the pressure relief mechanism performs an action or an actuating portion provided in the pressure relief mechanism ruptures, thereby forming an opening or channel for the internal pressure to be released.
  • the actuating portion may be formed by providing notches, grooves or a material with relatively low strength.
  • the "actuation" mentioned in this application means that the pressure relief mechanism is in action or activated to a certain state, so that the internal pressure of the battery cell can be released.
  • the action produced by the pressure relief mechanism may include but is not limited to: at least a part of the pressure relief mechanism is ruptured, broken, torn or opened, etc.
  • the emissions from the battery cells mentioned in this application include, but are not limited to: electrolyte, dissolved or split positive and negative electrode plates, fragments of separators, high-temperature and high-pressure gases produced by the reaction, flames, etc.
  • an insulating film is provided on the outer surface of the battery cells.
  • the insulating film in some battery cells will cover the leakage of the battery cells.
  • the insulating film on the pressure relief mechanism will hinder the actuation of the pressure relief mechanism in the battery cell, which may easily lead to the extreme event of the battery cell losing control and failing to safely relieve pressure and causing explosion, thus causing safety hazards.
  • the present application provides an insulating film, a battery cell, a battery and an electrical device, which can reduce the risk of slippage of the insulating film relative to the electrode assembly.
  • batteries such as battery vehicles, electric vehicles, ships, spacecraft, electric toys and electric tools, etc.
  • spacecrafts include airplanes, rockets, space shuttles and spacecraft, etc.
  • electric toys include fixed or mobile electric toys, such as electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers.
  • the battery cells described in the embodiments of the present application are not limited to being applicable to the electrical devices described above, but for the sake of simplicity, the following embodiments are all described using electric vehicles as examples.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 may be provided inside the vehicle 1000.
  • the battery 100 may be provided at the bottom, front or rear of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000.
  • the battery 100 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may further include a controller 200 and a motor 300.
  • the controller 200 is used, for example, to control the battery to power the motor 300.
  • the battery may be used for starting and navigating the vehicle 1000.
  • the battery 100 may also be used to drive the vehicle 1000, replacing or partially replacing fuel or natural gas to provide drive for the vehicle 1000.
  • Fig. 2 is an exploded schematic diagram of a battery provided in some embodiments of the present application.
  • the battery 100 includes a box body 400 and a battery cell (not shown in Fig. 2 ), and the battery cell is accommodated in the box body 400 .
  • the box 400 is used to accommodate the battery cells.
  • the box 400 can have various structures.
  • the box 400 can include a first box portion 41 and a second box portion 42.
  • the first box portion 41 and the second box portion 42 cover each other.
  • the first box portion 41 and the second box portion 42 together define a receiving portion 43 for accommodating the battery cells.
  • the second box portion 42 can be a hollow box with one end open.
  • the first box body 41 is a plate-like structure, and the first box body 41 covers the open side of the second box body 42 to form a box body 400 with a receiving portion 43; the first box body 41 and the second box body 42 can also be a hollow structure with one side open, and the open side of the first box body 41 covers the open side of the second box body 42 to form a box body 400 with a receiving portion 43.
  • the first box body 41 and the second box body 42 can be in a variety of shapes, such as a cylinder, a cuboid, etc.
  • a sealing member such as a sealant, a sealing ring, etc., may also be provided between the first box body 41 and the second box body 42 .
  • the first box body portion 41 covers the top of the second box body portion 42
  • the first box body portion 41 can also be referred to as an upper box cover
  • the second box body portion 42 can also be referred to as a lower box.
  • the battery 100 there can be one or more battery cells. If there are more than one battery cell, the battery cells can be connected in series, in parallel or in a mixed connection.
  • a mixed connection means that the battery cells are connected in series and in parallel.
  • the battery cells can be directly connected in series, in parallel or in a mixed connection, and then the whole formed by the battery cells can be accommodated in the box 400; of course, the battery module 500 can also be formed by connecting the battery cells in series, in parallel or in a mixed connection, and then the battery modules 500 can be connected in series, in parallel or in a mixed connection to form a whole, and then accommodated in the box 400.
  • Fig. 3 is a schematic diagram of the structure of the battery module shown in Fig. 2. As shown in Fig. 3, in some embodiments, there are multiple battery cells 10, and multiple battery cells 10 are first connected in series, in parallel, or in mixed connection to form a battery module 500. Multiple battery modules 500 are then connected in series, in parallel, or in mixed connection to form a whole, and are accommodated in a box.
  • the multiple battery cells 10 in the battery module 500 are electrically connected through a busbar component to achieve parallel connection, series connection, or mixed connection of the multiple battery cells 10 in the battery module 500 .
  • Fig. 4 is an exploded schematic diagram of the battery cell 10 shown in Fig. 3.
  • the battery cell 10 includes a housing 11, an electrode assembly 12 and an insulating film 20, wherein the electrode assembly 12 is accommodated in the housing 11, and the insulating film 20 is coated on the housing 11 and covers at least part of the structure of the housing 11.
  • the electrode assembly 12 is a core component for the battery cell 10 to realize the charge and discharge functions, and includes a positive electrode sheet, a negative electrode sheet, and a separator.
  • the positive electrode sheet and the negative electrode sheet have opposite polarities, and the separator is used to insulate and isolate the positive electrode sheet from the negative electrode sheet.
  • the electrode assembly 12 mainly works by the movement of metal ions between the positive electrode sheet and the negative electrode sheet.
  • the housing 11 is a hollow structure, and a cavity for accommodating the electrode assembly 12 and the electrolyte is formed therein.
  • the housing 11 can be in various shapes, such as a cylinder, a cuboid, etc.
  • the shape of the housing 11 can be determined according to the specific shape of the electrode assembly 12. For example, if the electrode assembly 12 is a cylindrical structure, a cylindrical housing 11 can be selected; if the electrode assembly 12 is a cuboid structure, a cuboid housing 11 can be selected.
  • the housing 11 includes a housing 111 and an end cap 112.
  • the end cap 112 is sealed to the housing 111 to form a sealed space for accommodating the electrode assembly 12 and the electrolyte.
  • one end of the housing 111 has an opening, and the end cap 112 is provided as one and covers the opening of the housing 111.
  • both opposite ends of the housing 111 have openings, and the end caps 112 are provided as two, and the two end caps 112 respectively cover the two openings of the housing 111.
  • the shape of the end cap 112 can be adapted to the shape of the housing 111 to match the housing 111.
  • the end cap 112 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap 112 is not easily deformed when squeezed and collided, so that the battery cell 10 can have a higher structural strength and the safety performance can also be improved.
  • the shell 111 can be in various shapes and sizes, such as a rectangular parallelepiped, a cylindrical shape, a hexagonal prism shape, etc. Specifically, the shape of the shell 111 can be determined according to the specific shape and size of the electrode assembly 12.
  • the shell 111 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • electrode terminals 13 may be disposed on the end cap 112 .
  • the electrode terminal 13 may be used to electrically connect to the electrode assembly 12 to output or input electrical energy of the battery cell 10 .
  • the housing 11 is provided with a pressure relief mechanism T.
  • the high-temperature gas generated by the runaway inside the housing 111 can reach the position of the pressure relief mechanism T.
  • the pressure relief mechanism T is pushed open under the action of the impact force, and the high-temperature gas can be released in time, thereby improving the safety of the battery cell 10.
  • the pressure relief mechanism T can be provided on the end cover 112 or on the housing 111, and the embodiment of the present application does not limit this.
  • the insulating film 20 is disposed outside the housing 11 to play a role of insulating protection.
  • the structure of the insulating film 20 is described in detail below with reference to the accompanying drawings.
  • the present application embodiment provides an insulating film 20 for wrapping
  • the insulating film 20 covers at least a portion of the outer shell 11 of the battery cell 10 , and is provided with a weak portion 21 , which is used to cover at least a portion of the pressure relief mechanism T in the battery cell 10 installed on the outer shell 11 .
  • the "covering" mentioned in the embodiment of the present application means that the insulating film 20 covers at least part of the structure of the housing 11.
  • the insulating film 20 may completely cover the housing 11, or may only cover part of the structure of the housing 11.
  • the insulating film 20 may cover at least part of the structure in the housing 111, or may cover at least part of the structure of the end cap 112.
  • a weak portion 21 is provided on the insulating film 20, and the structural strength of at least part of the structure in the weak portion 21 is less than the structural strength of other structures on the insulating film 20 except the weak portion 21.
  • the "structural strength" mentioned in the embodiment of the present application refers to: the fracture resistance of the corresponding structure. The higher the structural strength, the less likely the structure is to break under the action of an external force; the smaller the structural strength, the greater the possibility that the structure is to break under the action of an external force. Therefore, compared with other structures on the insulating film 20, at least part of the structure in the weak portion 21 is more likely to break and damage under the action of an external force.
  • the structural strength of the weak portion 21 may be less than the structural strength of other structures in the insulating film 20 only at some positions.
  • the structural strength of the weak portion 21 may be less than the structural strength of other structures in the insulating film 20 at all positions, and the embodiments of the present application are not limited to this.
  • the weak portion 21 can be formed integrally with other structures in the insulating film 20, and then the structural strength of some positions in the insulating film 20 is reduced by a process, thereby forming the weak portion 21.
  • the weak portion 21 can also be prepared separately from other structures in the insulating film 20, and then connected and fixed to form a complete insulating film 20, wherein the connection method includes but is not limited to bonding and welding.
  • the present embodiment does not limit the parameters such as the material, size and shape of the weak portion 21.
  • the material of the weak portion 21 can be the same as or different from the material of other structures in the insulating film 20.
  • the weak portion 21 can be a block structure or a strip structure.
  • the weak portion 21 is a block structure, its shape includes but is not limited to a square, a circle and a triangle.
  • the weak portion 21 is a strip structure, its shape includes but is not limited to a straight line, a curve and a broken line.
  • the pressure relief mechanism T is installed on the housing 11. When thermal runaway occurs, the pressure relief mechanism T can release the high-temperature gas inside the housing 11 in time, thereby ensuring the safety of the battery cell 10.
  • the weak portion 21 covers at least part of the pressure relief mechanism T.
  • the “weak portion 21 covers at least part of the pressure relief mechanism T” mentioned in the embodiment of the present application means that the weak portion 21 can fully or partially cover the pressure relief mechanism T. Pressing mechanism T.
  • the pressure relief mechanism T When thermal runaway occurs, the pressure relief mechanism T will be deformed under the action of the internal pressure of the battery cell 10. Since the weak portion 21 in the insulating film 20 can cover at least part of the pressure relief mechanism T, the pressure relief mechanism T will come into contact with the weak portion 21. Since the structural strength of at least part of the structure in the weak portion 21 is low, the weak portion 21 has a low blocking effect on the pressure relief mechanism T. Under the action of the internal pressure of the battery cell 10, the pressure relief mechanism T and the weak portion 21 will be actuated at the same time, that is, the pressure relief mechanism T and the weak portion 21 will be broken, shattered, torn or opened.
  • the high-temperature and high-pressure substances inside the battery cell 10 will be discharged outward from the part where the pressure relief mechanism T and the weak portion 21 are actuated as emissions. In this way, the battery cell 10 can be depressurized under controllable pressure, thereby avoiding potential more serious accidents.
  • a weak portion 21 is provided on the insulating film 20, and the weak portion 21 covers at least a portion of the pressure relief mechanism T, so that when thermal runaway occurs in the battery cell 10, the insulating film 20 has a lower obstructive effect on the pressure relief mechanism T, thereby ensuring that the pressure relief mechanism T can be actuated in time to meet the pressure relief needs of the battery cell 10, reducing the risk of long-term accumulation of high-temperature and high-pressure materials in the battery cell 10, and improving the safety of the battery cell 10.
  • the insulating film 20 includes a film body 22
  • the weak portion 21 includes a notch structure 211 disposed on the film body 22 .
  • the membrane body 22 is the main part of the insulating film 20 for achieving the insulating effect, and the membrane body 22 includes an insulating material.
  • the membrane body 22 is a blue film structure.
  • the presence of the membrane body 22 can reduce the probability of direct contact between the housing 11 of adjacent battery cells 10, or reduce the risk of short circuit between the battery cell 10 and other structural components, thereby improving the safety of the battery cell 10.
  • the membrane body 22 can also include a waterproof material, so that after the battery cell 10 is provided with the insulating film 20, the waterproof performance of the insulating film 20 can be improved.
  • the weak portion 21 includes a notch structure 211 disposed on the membrane body 22.
  • the notch structure 211 may be disposed throughout the membrane body 22, or may be a groove structure disposed on the membrane body 22.
  • the embodiment of the present application does not limit the notch formation method.
  • the notch structure 211 may be formed on the membrane body 22 by stamping, laser etching, or cutting.
  • the size and shape of the notch structure 211 can be in various forms, and the present embodiment does not limit the size and shape of the notch structure 211.
  • the notch structure 211 can be a closed loop structure B or The thickness of the notch structure 211 is not limited in the present embodiment.
  • the thickness of the notch structure 211 depends on the structural strength of the membrane body 22. If the membrane body 22 has a low structural strength, the thickness of the notch structure 211 does not need to be set too small. If the membrane body 22 has a high structural strength, the thickness of the notch structure 211 needs to be set to be small, or even the membrane body 22 needs to be penetrated by a process to form the notch structure 211.
  • the number of the notch structures 211 can be one or more. When the number of the notch structures 211 is more than one, the plurality of notch structures 211 can be staggered or intersecting with each other. For example, referring to FIGS. 6 to 8 , the plurality of notch structures 211 can be in a cross shape, an X shape, a T shape, etc.
  • a notch structure 211 is provided on the membrane body 22.
  • the notch structure 211 has a smaller thickness and a lower structural strength. Therefore, when the battery cell 10 undergoes thermal runaway, the notch structure 211 is more likely to be damaged and ruptured under the action of external force, thereby forming a gap on the insulating film 20, thereby ensuring that the pressure relief mechanism T can be activated in time, and the high-temperature and high-pressure substances can be discharged from the inside of the battery cell 10 in time, thereby improving the safety of the battery cell 10.
  • the notched structures 211 enclose a closed loop structure B. As shown in FIG. 4 and FIG. 5 , the notched structures 211 enclose a closed loop structure B. As shown in FIG. 4 and FIG. 5 , the notched structures 211 enclose a closed loop structure B. As shown in FIG. 4 and FIG. 5 , the notched structures 211 enclose a closed loop structure B. As shown in FIG. 4 and FIG. 5 , the notched structures 211 enclose a closed loop structure B.
  • the closed-loop structure B has various forms. For example, please refer to Figures 5, 9 and 10.
  • the closed-loop structure B can be an elliptical ring structure, a circular ring structure or a triangular ring structure.
  • the embodiment of the present application does not limit the size of the closed-loop structure B.
  • the outer contour of the closed-loop structure B can be located within the outer contour of the pressure relief mechanism T, or it can at least partially exceed the outer contour of the pressure relief mechanism T, or the closed-loop structure B can also coincide with the outer contour of the pressure relief mechanism T.
  • the weak portion 21 when the notched structure 211 is enclosed to form a closed loop structure B, the weak portion 21 also includes a central portion 212 enclosed by the closed loop structure B, and the central portion 212 can cover at least part of the structure in the pressure relief mechanism T.
  • the structural strength of the central portion 212 can be greater than, less than, or equal to the structural strength of other positions in the membrane body 22.
  • the notched structure 211 is enclosed to form a closed loop structure B, so that When thermal runaway occurs in the battery cell 10, the central portion 212 can separate from the membrane body 22, thereby forming a larger gap in the insulating film 20 corresponding to the position of the pressure relief mechanism T, to ensure that more high-temperature and high-pressure materials can leave the battery cell 10 from the gap in time, reduce the possibility of explosion of the battery cell 10, and further improve the safety of the battery cell 10.
  • Figure 11 is a schematic structural diagram of the pressure relief mechanism T in the battery cell 10 after the insulating film 20 covers the housing 11 .
  • the pressure relief mechanism T is arranged on the first wall 113 of the housing 11, and the outer contour of the closed-loop structure B at least partially exceeds the pressure relief mechanism T.
  • the projection of the closed-loop structure B is at least partially located outside the projection of the pressure relief mechanism T.
  • the closed-loop structure B can completely cover the pressure relief mechanism T, that is, the outer contour of the closed-loop structure B exceeds the pressure relief mechanism T at all places; or the closed-loop structure B only covers part of the structure in the pressure relief mechanism T, that is, part of the outer contour of the closed-loop structure B exceeds the pressure relief mechanism T, and part is located in the pressure relief mechanism T.
  • the insulating film 20 is used to insulate the battery cell 10 from other components, and the central portion 212 covers at least part of the structure in the pressure relief mechanism T, and the central portion 212 can have an insulating effect on the pressure relief mechanism T.
  • the outer contour of the closed-loop structure B is at least partially set beyond the pressure relief mechanism T, thereby ensuring that the central portion 212 can have a certain size to meet the insulation function of the pressure relief mechanism T.
  • this design can ensure that a larger gap can be formed in the insulating film 20 at the position corresponding to the pressure relief mechanism T, so as to ensure that more high-temperature and high-pressure materials can leave the battery cell 10 from the gap in time, thereby reducing the possibility of explosion of the battery cell 10 and further improving the safety of the battery cell 10.
  • the contour of the closed-loop structure B corresponds to the contour of the pressure relief mechanism T.
  • the closed-loop structure B is a circular ring structure. If the pressure relief mechanism T is an elliptical structure, the closed-loop structure B is an elliptical ring structure. If the pressure relief mechanism T is a square structure, the closed-loop structure B is a square ring structure. Furthermore, the outer dimensions of the closed-loop structure B can be formed by scaling the outer dimensions of the pressure relief mechanism T by a specific magnification, and this design is conducive to the connection and cooperation between the insulating film 20 and the housing 11.
  • the closed-loop structure B can be aligned with the pressure relief mechanism T first, and then the insulating film 20 can be covered on the housing 11, which can improve the accuracy of the position of the insulating film 20 on the housing 11.
  • the center of the closed-loop structure B can be aligned with the center of the pressure relief mechanism T, so that the closed-loop structure B and the pressure relief mechanism T are aligned.
  • the embodiment of the present application reduces the difficulty of aligning the insulating film 20 on the housing 11 by making the contour of the closed-loop structure B correspond to the contour of the pressure relief mechanism T, thereby ensuring the accuracy of the position between the two. At the same time, it can also reduce the difficulty of aligning the closed-loop structure B and the pressure relief mechanism T, so that the two can be set correspondingly, so that when the battery cell 10 has thermal runaway, the insulating film 20 can be actuated at the corresponding position of the pressure relief mechanism T to meet the pressure relief needs and improve the safety of the battery cell 10.
  • the notch structure 211 can be formed on the membrane body 22 by stamping, laser etching or cutting. On this basis, if multiple notch structures 211 are arranged to intersect with each other, the insulating film 20 will be affected by double or even more processing techniques at the intersection, resulting in the insulating film 20 being easily affected by the process and being punctured at the intersection of multiple notches during the formation of the notch structure 211. If the notch structure 211 is formed after the insulating film 20 covers the outer shell 11, the pressure relief mechanism T or the outer shell 11 in the battery cell 10 is easily affected by the process and has the risk of damage and breakage, which affects the normal use and yield rate of the battery cell 10.
  • the plurality of notched structures 211 are arranged at intervals, and two adjacent notched structures 211 do not intersect each other. Therefore, during the formation of the notched structures 211, any position in the insulating film 20 will not be affected by double or even multiple processes. This can reduce the risk of the insulating film 20 being broken down due to the process, reduce the impact of the formation of the notched structures 211 on the pressure relief mechanism T and the housing 11, and improve the manufacturing reliability of the battery cell 10.
  • the notched structure 211 includes a first notched segment 211a and a second notched segment 211b connected to each other.
  • the extension direction of 211b intersects.
  • first notch segment 211a in its extension direction is connected to one end of the second notch segment 211b in its extension direction, and the first notch segment 211a and the second notch segment 211b can be a straight line structure or a curved line structure.
  • first notch segment 211a is a curved line structure
  • its extension direction is the direction of the line connecting the two ends of the first notch segment 211a.
  • the pressure at different positions of the pressure relief mechanism T is affected differently according to different actual conditions, and further, the pressure at different positions of the insulating film 20 is affected.
  • the embodiment of the present application sets the first notch segment 211a and the second notch segment 211b to extend in different directions respectively, so that the insulating film 20 is provided with notches at different positions corresponding to the pressure relief mechanism T area, ensuring that when thermal runaway occurs in the battery cell 10 and different positions of the pressure relief mechanism T are actuated, the insulating film 20 can be ruptured in time to meet the pressure relief needs, and is suitable for the occurrence of different situations.
  • the notch structure 211 may include more notch segments in addition to the first notch segment 211a and the second notch segment 211b.
  • the notch structure 211 also includes a third notch segment 211c, and the first notch segment 211a and the third notch segment 211c are respectively connected to the two ends of the second notch segment 211b.
  • the specific structure of the notch structure 211 may be designed according to actual needs, and the embodiment of the present application does not limit this.
  • the weak portion 21 can be formed in a variety of ways.
  • the weak portion 21 can be formed by thinning a portion of the insulating film 20, or the weak portion 21 can be formed by using a material with lower structural strength than the film body 22 and connecting the weak portion 21 to the film body 22 to form the insulating film 20.
  • the area This design can further reduce the obstruction of the insulating film 20 on the pressure relief mechanism T when the battery cell 10 undergoes thermal runaway, thereby ensuring that the pressure relief mechanism T can be activated in time to meet the pressure relief needs of the battery cell 10.
  • the weakened portion 21 can cover the pressure relief mechanism T.
  • the pressure relief mechanism T When thermal runaway occurs in the battery cell 10, the pressure relief mechanism T will be deformed. At this time, since the weak portion 21 can cover the pressure relief mechanism T, the deformation of the pressure relief mechanism T can make the pressure relief mechanism T contact with the area with lower structural strength in the insulating film 20 and apply a certain pressure thereto. Under the action of pressure, at least part of the structure in the area is damaged and fractured, so that the pressure relief mechanism T can realize the actuation function, ensure the pressure relief reliability of the battery cell 10, and improve the safety of use.
  • the material of the weak portion 21 is different from the material at other positions of the membrane body 22 , and the material strength of the weak portion 21 is lower than the material strength of other positions of the membrane body 22 .
  • the “material strength” mentioned in the embodiments of the present application refers to the ability of a material to resist damage under the action of an external force.
  • the material strength of a structure is positively correlated with its structural strength. Specifically, when parameters such as size and thickness are the same, the greater the material strength, the greater the corresponding structural strength.
  • the material strength of the weak portion 21 is set to be lower than the material strength of other positions of the membrane body 22, so that the material strength of the weak portion 21 is lower than the material strength of the membrane body 22, thereby meeting the pressure relief needs of the battery cell 10 and improving the safety of the pressure relief mechanism T.
  • the present application embodiment provides a battery cell 10, including a housing 11, an electrode assembly 12, a pressure relief mechanism T, and any of the above embodiments.
  • the electrode assembly 12 is accommodated in the housing 11, the pressure relief mechanism T is installed on the housing 11, the insulation film 20 covers at least a portion of the housing 11, and the weak portion 21 is opposite to the pressure relief mechanism T of the housing 11.
  • the battery cell 10 provided in the embodiment of the present application has the beneficial effects of the insulating film 20 in any of the aforementioned embodiments.
  • the insulating film 20 for details, please refer to the aforementioned introduction to the beneficial effects of the insulating film 20, which will not be repeated in the embodiment of the present application.
  • the first wall 113 and the second wall 114 are different surfaces on the housing 11.
  • the first wall 113 and the second wall 114 may be adjacent surfaces, in which case the first wall 113 and the second wall 114 are arranged to intersect.
  • the first wall 113 and the second wall 114 may also be opposite surfaces, in which case the first wall 113 and the second wall 114 are arranged in parallel.
  • the housing 11 includes a shell 111 and an end cover 112.
  • first wall 113 and the second wall 114 may be different surfaces of the shell 111, or one of the first wall 113 and the second wall 114 may be a surface of the end cover 112, and the other may be a surface of the shell 111, or the housing 11 includes two end covers 112, and the first wall 113 and the second wall 114 are two opposite end covers 112.
  • the electrode terminal 13 may be electrically connected to the electrode assembly 12 for outputting or inputting electric energy of the battery cell 10.
  • the battery cell 10 further includes a current collecting member 15 for electrically connecting the electrode terminal 13 to the electrode assembly 12.
  • the insulating film 20 will cover the pressure relief mechanism T, that is, the insulating film 20 will cover at least part of the structure in the first wall 113.
  • the embodiment of the present application sets the electrode terminal 13 on the second wall 114 different from the first wall 113, thereby reducing the probability of the insulating film 20 blocking the electrode terminal 13, ensuring the normal operation of the electrode terminal 13, and realizing the reliable transmission of the electric energy of the battery cell 10.
  • the insulating film 20 is disposed to cover the first wall 113 .
  • the pressure relief mechanism T is arranged on the first wall 113, and the insulating film 20 covers the first wall 113, which can ensure that the pressure relief mechanism T meets the insulation requirements at the position and ensure that each position in the first wall 113 is insulated from external components through the insulating film 20.
  • This design prevents the electric energy stored in the battery cell 10 from being transferred to the external structure through the first wall 113, thereby reducing the battery The risk of leakage of the battery cell 10 at the corresponding position of the first wall 113 is reduced, thereby improving the safety of the battery cell 10 in use.
  • At least a portion of the insulating film 20 covers all surfaces of the housing 11 except the second wall 114. In other words, all surfaces of the housing 11 except the second wall 114 are provided with the insulating film 20.
  • the insulating film 20 may completely cover the corresponding surface, or may only cover part of the corresponding surface.
  • the insulating film 20 may cover part of the structure of the second wall 114, or the insulating film 20 may not be disposed at the location of the second wall 114, and the embodiment of the present application does not limit this.
  • a partial structure of the insulating film 20 is provided on any surface of the outer shell 11 except the second wall 114.
  • This design can improve the coverage of the outer shell 11 by the insulating film 20, thereby reducing the risk of leakage on multiple surfaces of the battery cell 10, further improving the insulation performance, and improving the safety of the battery cell 10.
  • the battery cell 10 also includes a protective film 14 connected to the first wall 113 and covering the pressure relief mechanism T.
  • the projection of the pressure relief mechanism T is located within the projection of the weak portion 21, and the projection of the weak portion 21 is located within the projection of the protective film 14.
  • the protective film 14 is disposed on the side of the pressure relief mechanism T away from the electrode assembly 12, and the size of the protective film 14 is generally larger than the size of the pressure relief mechanism T, so that the protective film 14 can cover and protect the pressure relief mechanism T.
  • the contour shape of the protective film 14 can be the same as the contour shape of the pressure relief mechanism T, so that the protective film 14 can better cover the pressure relief mechanism T.
  • the projection of the weak portion 21 is set within the projection of the protective film 14 in the thickness direction Z, so as to improve the insulation reliability.
  • the weak portion 21 may include a notched structure 211 or a thinning structure formed by a process. Taking the laser etching process as an example, during the preparation of the insulating film 20, part of the structure in the weak portion 21 may be etched through due to process reasons. This results in the inability to meet the insulation requirements at some positions in the weak portion 21, and setting the projection of the weak portion 21 within the projection of the protective film 14 can ensure that the battery cell 10 can obtain a double insulation effect at the corresponding position of the weak portion 21. Even if part of the structure in the weak portion 21 is penetrated, the existence of the protective film 14 can still ensure that the battery cell 10 is at the corresponding position. The insulation effect of the installation reduces the risk of leakage.
  • a protective film 14 is provided, and in the thickness direction Z, the projection of the pressure relief mechanism T is located within the projection of the weak portion 21, and the projection of the weak portion 21 is located within the projection of the protective film 14, thereby ensuring that the battery cell 10 can obtain a double insulation effect at the position corresponding to the weak portion 21, thereby improving the insulation reliability.
  • the shortest distance between the orthographic projection of the weak portion 21 on the protective film 14 and the edge of the protective film 14 is D, and D satisfies: D ⁇ 2 mm.
  • D can be one of 2 mm, 2.2 mm, 2.5 mm and 3 mm.
  • the orthographic projection of the weak portion 21 on the protective film 14 is the projection of the weak portion 21 in the thickness direction Z of the first wall 113.
  • the "shortest distance D between the orthographic projection of the weak portion 21 on the protective film 14 and the edge of the protective film 14" mentioned in the embodiment of the present application refers to: the shortest distance between the edge position of the orthographic projection of the weak portion 21 on the protective film 14 and the edge of the protective film 14.
  • the shortest distances D corresponding to different edge positions of the weak portion 21 may be the same or different.
  • the contour shape of the weak portion 21 is the same as the contour shape of the protective film 14, and the center of the orthographic projection of the weak portion 21 on the protective film 14 coincides with the center of the protective film 14. This design can keep the shortest distances D corresponding to different edge positions of the weak portion 21 the same.
  • the edge position of the weak portion 21 can maintain a certain distance from the edge position of the protective film 14, thereby reducing the process influence on the edge position of the protective film 14 during the formation of the weak portion 21, reducing the probability of the protective film 14 being separated from the first wall 113 due to the formation of the weak portion 21, and ensuring the structural reliability of the protective film 14.
  • an embodiment of the present application provides a battery, comprising a battery cell 10 according to any of the aforementioned embodiments.
  • the battery provided in the embodiment of the present application has the beneficial effects of the battery cell 10 in any of the aforementioned embodiments.
  • the beneficial effects of the insulating film 20 and the battery cell 10 please refer to the aforementioned description of the beneficial effects of the insulating film 20 and the battery cell 10, which will not be repeated in the embodiment of the present application.
  • an embodiment of the present application provides an electrical device, comprising a battery cell 10 according to any of the aforementioned embodiments, wherein the battery cell 10 is used to provide electrical energy.
  • the battery cell 10 includes a shell 11, an electrode assembly 12, a pressure relief mechanism T, an electrode terminal 13, a protective film 14 and an insulating film 20, the electrode assembly 12 is accommodated in the shell 11, the shell 11 includes a first wall 113 and a second wall 114, the first wall 113 and the second wall 114 are arranged opposite to each other, the pressure relief mechanism T is installed on the first wall 113, the electrode terminal 13 is installed on the second wall 114, the protective film 14 is connected to the first wall 113 and covers the pressure relief mechanism T, and at least a portion of the insulating film 20 is covered on the entire surface of the shell 11 except the second wall 114.
  • the insulating film 20 includes a film body 22 and a weak portion 21 disposed on the film body 22, wherein the weak portion 21 includes a notch structure 211 in a closed loop structure B and a center portion 212 located in the closed loop structure B.
  • the weak portion 21 is disposed corresponding to the pressure relief mechanism T, and the contour of the closed loop structure B corresponds to the contour of the pressure relief mechanism T.
  • the contour of the weak portion 21 is located between the contour of the protective film 14 and the contour of the pressure relief mechanism T, and the shortest distance between the orthographic projection of the weak portion 21 on the protective film 14 and the edge of the protective film 14 is D, and D satisfies: D ⁇ 2 mm.

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供了一种绝缘膜、电池单体、电池及用电装置,绝缘膜用于包覆电池单体的外壳的至少部分,绝缘膜设置有薄弱部,薄弱部用于覆盖电池单体中安装于外壳的泄压机构的至少部分。在本申请实施例中,通过在绝缘膜上设置薄弱部,并将薄弱部覆盖泄压机构至少部分设置,从而在电池单体发生热失控时,绝缘膜对泄压机构的阻碍影响较低,以此来确保泄压机构能及时致动,满足电池单体的泄压需要,降低高温高压物质在电池单体内长时间堆积的风险,提高电池单体的安全性。

Description

绝缘膜、电池单体、电池及用电装置
相关申请的交叉引用
本申请要求享有于2022年12月13日提交的名称为“绝缘膜、电池单体、电池及用电装置”的中国专利申请202223328484.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,尤其涉及一种绝缘膜、电池单体、电池及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
但是现有的电池单体在使用过程中,可能出现***等安全隐患。
发明内容
鉴于上述问题,本申请提供了一种绝缘膜、电池单体、电池及用电装置,能够提高电池安全性。
本申请实施例提供了一种绝缘膜,用于包覆电池单体的外壳的至少部分,绝缘膜设置有薄弱部,薄弱部用于覆盖电池单体中安装于外壳的泄压机构的至少部分。
在上述方案中,通过在绝缘膜上设置薄弱部,并将薄弱部覆盖泄压机构的至少部分,从而在电池单体发生热失控时,绝缘膜对泄压机构的阻碍影响较低,以此来确保泄压机构能及时致动,满足电池单体的泄压需要, 降低高温高压物质在电池单体内长时间堆积的风险,提高电池单体的安全性。
在一些实施例中,绝缘膜包括膜本体,薄弱部包括设置在膜本体上的刻痕结构。
在上述方案中,膜本体上设置刻痕结构,相较于膜本体的其他位置,刻痕结构处的厚度更小,结构强度更低。因此在电池单体发生热失控时,刻痕结构处会更容易在外力作用下发生破损破裂,从而在绝缘膜上形成缺口,以此来确保泄压机构能及时致动,高温高压物质能够及时从电池单体内部排出,提高电池单体的安全性。
在一些实施例中,刻痕结构围合形成闭环结构。
在上述方案中,通过将刻痕结构围合形成闭环结构,从而在电池单体发生热失控时,使得中心部能够脱离膜本体,从而在绝缘膜对应于泄压机构位置处形成较大的缺口,以确保更多高温高压物质能够及时从缺口位置处离开电池单体,降低电池单体发生***的可能,进一步提高电池单体的安全性。
在一些实施例中,闭环结构的外轮廓至少部分超出泄压机构设置。
在上述方案中,当电池单体发生热失控时,这种设计能够确保绝缘膜在对应于泄压机构位置处能够形成较大的缺口,以确保更多高温高压物质能够及时从缺口位置处离开电池单体,降低电池单体发生***的可能,进一步提高电池单体的安全性。
在一些实施例中,闭环结构的轮廓外形与泄压机构的轮廓外形对应。
在上述方案中,通过将闭环结构的轮廓外形与泄压机构的轮廓外形对应,从而降低了绝缘膜在外壳上的对位难度,确保两者间位置的精确性。同时还可以降低闭环结构与泄压机构之间的对位难度,以使两者能够对应设置,从而在电池单体发生热失控时,绝缘膜能够在泄压机构对应位置处致动,满足泄压需要,提高电池单体的使用安全。
在一些实施例中,刻痕结构的数量为多个,多个刻痕结构在膜本体上间隔设置。
在上述方案中,多个刻痕结构间隔设置,即相邻两个刻痕结构之间 并不相交,因此在刻痕结构形成过程中,绝缘膜中任意位置处均不会受到双重甚至多重工艺的影响。这样可以降低绝缘膜因工艺而发生击穿的风险,降低因刻痕结构的形成对泄压机构以及外壳的影响,提高电池单体的制备可靠性。
在一些实施例中,刻痕结构包括相互连接的第一刻痕段和第二刻痕段,第一刻痕段和第二刻痕段的延伸方向相交。
在上述方案中,第一刻痕段与第二刻痕段设置为分别沿不同方向延伸,从而使得绝缘膜在对应于泄压机构区域中的不同位置均设置有刻痕,确保电池单体发生热失控时,泄压机构不同位置发生致动时,绝缘膜均可以及时破裂,以满足泄压需要,适用于不同情况的发生。
在一些实施例中,薄弱部连接于膜本体且薄弱部中任意位置处的结构强度均小于膜本体的结构强度。
在上述方案中,通过将薄弱部覆盖泄压机构设置,从而进一步降低绝缘膜对泄压机构的阻碍影响,以此来确保泄压机构能及时致动,满足电池单体的泄压需要。
在一些实施例中,薄弱部能够覆盖泄压机构。
在上述方案中,通过将薄弱部覆盖泄压机构设置,从而进一步降低绝缘膜对泄压机构的阻碍影响,以此来确保泄压机构能及时致动,满足电池单体的泄压需要。
在一些实施例中,薄弱部的材料与膜本体其他位置处的材料不同,且薄弱部的材料强度低于膜本体其他位置处的材料强度。
在上述方案中,通过将薄弱部的材料强度设置为小于膜本体处其他位置处的材料强度,使得薄弱部的材料强度低于膜本体的材料强度,从而满足电池单体的泄压需要,提高泄压机构的安全性。
第二方面,本申请实施例提供了一种电池单体,包括外壳、电极组件、泄压机构以及前述任一实施方式中的绝缘膜。电极组件容纳于外壳内,泄压机构安装于外壳,绝缘膜包覆外壳的至少部分,且薄弱部与外壳的泄压机构相对。
在一些实施例中,外壳包括第一壁和第二壁,泄压机构安装于第一 壁,电池单体还包括安装于第二壁的电极端子。
在上述方案中,电极端子设置在与第一壁不同的第二壁上,从而降低绝缘膜遮挡电极端子的概率,确保电极端子的正常工作,实现电池单体电能的可靠传输。
在一些实施例中,绝缘膜覆盖第一壁设置。
在上述方案中,泄压机构设置在第一壁上,绝缘膜覆盖第一壁设置,可以在确保泄压机构位置处满足绝缘需要的同时,确保第一壁中各位置处均通过绝缘膜与外界部件绝缘隔开。这种设计使得电池单体内部储蓄的电能无法通过第一壁传递至外部结构中,从而降低电池单体在第一壁对应位置处发生漏电的风险,提高电池单体的使用安全。
在一些实施例中,绝缘膜中的至少部分包覆于外壳中除第二壁外的全部表面。换言之,外壳上除第二壁以外的全部表面均设置有绝缘膜。
在上述方案中,外壳中除第二壁的任意表面均设置有绝缘膜的部分结构,这种设计能够提高绝缘膜对外壳的覆盖程度,从而降低电池单体多个表面发生漏电的风险,进一步提高绝缘性能,提高电池单体的使用安全。
在一些实施例中,电池单体还包括连接于第一壁并覆盖泄压机构的保护膜,在沿第一壁的厚度方向上,泄压机构的投影位于薄弱部的投影内,且薄弱部的投影位于保护膜的投影内。
通过设置保护膜,并在厚度方向上,将泄压机构的投影位于薄弱部的投影内,且薄弱部的投影位于保护膜的投影内,从而确保电池单体在薄弱部对应位置处能够得到双重绝缘效果,提高绝缘可靠性。
在一些实施例中,薄弱部在保护膜上的正投影与保护膜边缘的最短距离为D,D满足:D≥2mm。示例性地,D可以为2mm、2.2mm、2.5mm以及3mm中的一者。
在上述方案中,通过将D设置为D≥2mm,使得薄弱部的边缘位置能够与保护膜的边缘位置保持一定的距离,从而在薄弱部形成过程中,降低保护膜的边缘位置所受到的工艺影响,降低因形成薄弱部,导致保护膜与第一壁发生脱离的概率,确保保护膜的结构可靠性。
第三方面,本申请实施例提供了一种电池,包括前述任一实施方式 的电池单体
第四方面,本申请实施例提供了一种用电装置,包括前述任一实施方式的电池单体,电池单体用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例提供的一种车辆的简易示意图;
图2是本申请实施例提供的一种电池的***示意图;
图3是图2所示的电池模块的结构示意图;
图4是本申请实施例提供的一种电池单体的***示意图;
图5是本申请实施例提供的一种绝缘膜的结构示意图;
图6是本申请实施例提供的又一种绝缘膜的结构示意图;
图7是本申请实施例提供的还一种绝缘膜的结构示意图;
图8是本申请实施例提供的还一种绝缘膜的结构示意图;
图9是本申请实施例提供的还一种绝缘膜的结构示意图;
图10是本申请实施例提供的还一种绝缘膜的结构示意图;
图11是本申请实施例提供的一种电池单体的结构示意图;
图12是本申请实施例提供的还一种绝缘膜的结构示意图;
图13是本申请实施例提供的还一种绝缘膜的结构示意图;
图14是本申请实施例提供的还一种绝缘膜的结构示意图。
附图中:
1000、车辆;
100、电池;200、控制器;300、马达;400、箱体;41、第一箱体部;42、第二箱体部;43、容纳部;500、电池模块;
10、电池单体;11、外壳;111、壳体;112、端盖;113、第一壁;114、第二壁;12、电极组件;13、电极端子;14、保护膜;15、集流构件;
20、绝缘膜;21、薄弱部;211、刻痕结构;211a第一刻痕段;211b、第二刻痕段;211c、第三刻痕段;212、中心部;22、膜本体;
T、泄压机构;
B、闭环结构;
Z、厚度方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文 所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(Polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体还包括外壳,外壳用于容纳电极组件和电解液。外壳包括壳体和连接于壳体的端盖,壳体和端盖形成容纳腔,以容纳电极组件和电解质。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
电池单体上的泄压机构对电池单体的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力骤升。这种情况下通过泄压机构致动可以将内部压力向外释放,以防止电池单体***、起火。
泄压机构是指在电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。该阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离件中一种或几种的材料。电池单体的内部压力即为外壳内部的压力。
泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏元件或构造,即,当电池单体的内部压力达到预定阈值时,泄压机构执行动作或者泄压机构中设有的致动部破裂,从而形成可供内部压力泄放的开口或通道。致动部可以是通过设置刻痕、凹槽或强度较小材料等方式形成。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或***的正负极极片、隔离件的碎片、反应产生的高温高压气体、火焰,等等。
在电池单体使用过程中,发明人注意到,电池单体容易出现***的风险。
发明人研究发现,为了满足电池单体的表面绝缘需要,电池单体的外表面会设置有绝缘膜。部分电池单体中的绝缘膜会覆盖电池单体的泄 压机构,而位于泄压机构上的绝缘膜会阻碍电池单体中泄压机构的致动,容易出现电池单体失控无法安全泄压而发生***的极端事件,引发安全隐患。
基于发明人发现的上述问题,本申请提供了一种绝缘膜、电池单体、电池及用电装置,能够降低绝缘膜相对电极组件发生滑移的风险。
本申请实施例描述的技术方案适用于使用电池的用电装置,用电装置例如是电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,其中,航天器例如是飞机、火箭、航天飞机和宇宙飞船等等,电动玩具例如包括固定式或移动式的电动玩具,具体例如,电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具例如包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,具体例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请实施例描述的电池单体不仅仅局限适用于上述所描述的用电装置,但为描述简洁,下述实施例均以电动汽车为例进行说明。
请参阅图1,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部可以设置电池100,具体例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200例如用来控制电池为马达300的供电。电池可以用于车辆1000的启动、导航等,当然,电池100也可以用于驱动车辆1000行驶,替代或部分地替代燃油或天然气为车辆1000提供驱动。
图2为本申请一些实施例提供的电池的***示意图。如图2所示,电池100包括箱体400和电池单体(图2未示出),电池单体容纳于箱体400内。
箱体400用于容纳电池单体,箱体400可以是多种结构。在一些实施例中,箱体400可以包括第一箱体部41和第二箱体部42,第一箱体部41与第二箱体部42相互盖合,第一箱体部41和第二箱体部42共同限定出用于容纳电池单体的容纳部43。第二箱体部42可以是一端开口的空 心结构,第一箱体部41为板状结构,第一箱体部41盖合于第二箱体部42的开口侧,以形成具有容纳部43的箱体400;第一箱体部41和第二箱体部42也均可以是一侧开口的空心结构,第一箱体部41的开口侧盖合于第二箱体部42的开口侧,以形成具有容纳部43的箱体400。当然,第一箱体部41和第二箱体部42可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部41与第二箱体部42连接后的密封性,第一箱体部41与第二箱体部42之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部41盖合于第二箱体部42的顶部,第一箱体部41亦可称之为上箱盖,第二箱体部42亦可称之为下箱体。
在电池100中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体400内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块500,多个电池模块500再串联或并联或混联形成一个整体,并容纳于箱体400内。
图3为图2所示的电池模块的结构示意图。如图3所示,在一些实施例中,电池单体10为多个,多个电池单体10先串联或并联或混联组成电池模块500。多个电池模块500再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块500中的多个电池单体10通过汇流部件实现电连接,以实现电池模块500中的多个电池单体10的并联或串联或混联。
图4为图3所述的电池单体10的***示意图。如图4所示,电池单体10包括外壳11、电极组件12以及绝缘膜20,电极组件12容纳于外壳11内,绝缘膜20包覆于外壳11,并覆盖外壳11的至少部分结构。
电极组件12为电池单体10实现充放电功能的核心部件,其包括正极极片、负极极片和隔离件,正极极片和负极极片的极性相反,隔离件用于将正极极片和负极极片绝缘隔离。电极组件12主要依靠金属离子在正极极片和负极极片之间移动来工作。
外壳11为空心结构,其内部形成用于容纳电极组件12和电解液的容纳腔。外壳11可以是多种形状,比如,圆柱体、长方体等。外壳11的形状可根据电极组件12的具体形状来确定。比如,若电极组件12为圆柱体结构,则可选用为圆柱体外壳11;若电极组件12为长方体结构,则可选用长方体外壳11。
在一些实施例中,外壳11包括壳体111和端盖112。端盖112与壳体111密封连接,以形成用于容纳电极组件12和电解液的密封空间。在一些示例中,壳体111的一端具有开口,端盖112设置为一个并盖合于壳体111的开口。在另一些示例中,壳体111相对的两端均具有开口,端盖112设置为两个,两个端盖112分别盖合于壳体111的两个开口。
不限地,端盖112的形状可以与壳体111的形状相适应以配合壳体111。可选地,端盖112可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖112在受挤压碰撞时就不易发生形变,使电池单体10能够具备更高的结构强度,安全性能也可以有所提高。
壳体111可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体111的形状可以根据电极组件12的具体形状和尺寸大小来确定。壳体111的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金等,本申请实施例对此不作特殊限制。
在一些实施例中,端盖112上可以设置有如电极端子13等的功能性部件。电极端子13可以用于与电极组件12电连接,以用于输出或输入电池单体10的电能。
外壳11上设有泄压机构T,当电极组件12发生热失控时,壳体111内部失控产生的高温气体可以到达泄压机构T位置处,泄压机构T在冲击力的作用下被顶开,高温气体从而能够得到及时释放,提高电池单体10的安全性。需要说明的是,泄压机构T可以设置于端盖112上,也可以设置于壳体111上,本申请实施例对此不作限制。
绝缘膜20设置在外壳11外,起到绝缘保护的作用,以下结合附图对绝缘膜20的结构进行详细阐述。
请参阅图4和图5,本申请实施例提供了一种绝缘膜20,用于包 覆电池单体10的外壳11的至少部分,绝缘膜20设置有薄弱部21,薄弱部21用于覆盖电池单体10中安装于外壳11的泄压机构T的至少部分。
本申请实施例提到的“包覆”指的是:绝缘膜20覆盖外壳11的至少部分结构,绝缘膜20可以完全覆盖外壳11设置,也可以仅覆盖外壳11的部分结构。示例性地,绝缘膜20可以覆盖壳体111中的至少部分结构,也可以覆盖端盖112的至少部分结构。
绝缘膜20上设置有薄弱部21,薄弱部21中至少部分结构的结构强度小于绝缘膜20上除薄弱部21外的其他结构的结构强度。本申请实施例提到的“结构强度”指的是:对应结构的抗断裂的性质。结构强度越高,结构在外力作用下发生断裂的可能越小;结构强度越小,结构在外力作用下发生断裂的可能越大。因此相较于绝缘膜20上的其他结构,薄弱部21中的至少部分结构更容易在外力作用下出现断裂破损。
需要说明的是,薄弱部21可以仅部分位置处的结构强度小于绝缘膜20中其他结构的结构强度,可替代地,薄弱部21也可以全部位置处的结构强度均小于绝缘膜20中其他结构的结构强度,本申请实施例对此不作限制。同时薄弱部21可以与绝缘膜20中其他结构一体形成,然后通过工艺的方式使得绝缘膜20中的部分位置处的结构强度降低,从而形成薄弱部21。或者,薄弱部21也可以与绝缘膜20中其他结构分别制备形成,然后将其连接固定,从而形成完整的绝缘膜20,其中连接方式包括但不限于粘接焊接等。
此外,对于薄弱部21的材料以及尺寸形状等参数,本申请实施例不作限制。薄弱部21的材料可以与绝缘膜20中其他结构的材料相同,也可以不同。薄弱部21可以为块状结构,也可以为条状结构,当薄弱部21为块状结构时,其形状包括但不限于方形、圆形以及三角形等。当薄弱部21为条状结构时,其形状包括但不限于直线、曲线以及折线等。
泄压机构T安装于外壳11上,泄压机构T能够在发生热失控时,及时将外壳11内部的高温气体释放,从而确保电池单体10的使用安全。薄弱部21覆盖泄压机构T中的至少部分。本申请实施例提到的“薄弱部21覆盖泄压机构T中的至少部分”指的是:薄弱部21能够全部或部分覆盖泄 压机构T。
发生热失控时,泄压机构T会在电池单体10内部压力的作用下发生变形,由于绝缘膜20中薄弱部21能够覆盖泄压机构T的至少部分,因此泄压机构T会与薄弱部21发生接触。由于薄弱部21中至少部分结构的结构强度较低,因此薄弱部21对泄压机构T的阻挡效果较低,在电池单体10内部压力的作用下,泄压机构T与薄弱部21会同时致动,即泄压机构T与薄弱部21会出现破裂、破碎、被撕裂或者打开等现象。此时电池单体10的内部的高温高压物质作为排放物会从泄压机构T与薄弱部21致动的部位向外排出。以此方式能够在可控压力的情况下使电池单体10发生泄压,从而避免潜在的更严重的事故发生。
在本申请实施例中,通过在绝缘膜20上设置薄弱部21,并将薄弱部21覆盖泄压机构T中的至少部分,从而在电池单体10发生热失控时,绝缘膜20对泄压机构T的阻碍影响较低,以此来确保泄压机构T能及时致动,满足电池单体10的泄压需要,降低高温高压物质在电池单体10内长时间堆积的风险,提高电池单体10的安全性。
在一些实施例中,如图4和图5所示,绝缘膜20包括膜本体22,薄弱部21包括设置在膜本体22上的刻痕结构211。
膜本体22为绝缘膜20中用于实现绝缘效果的主要部分,膜本体22包括绝缘材料。示例性地,膜本体22为蓝膜结构。膜本体22的存在能够降低相邻电池单体10中外壳11直接接触的概率,或者降低电池单体10与其他结构部件发生短路的风险,提高电池单体10的使用安全。进一步地,膜本体22还可以包括防水材料,这样在电池单体10设置有绝缘膜20后,可以提高绝缘膜20的防水性能。
薄弱部21包括设置在膜本体22上的刻痕结构211,刻痕结构211可以贯穿膜本体22设置,也可以为设置在膜本体22上的凹槽结构。对于刻痕形成方式,本申请实施例不作限制。示例性地,可以通过冲压、激光刻蚀或切割去料等方式在膜本体22上形成刻痕结构211。
刻痕结构211的尺寸形状具有多种形式,对于刻痕结构211的尺寸形状,本申请实施例不作限制。刻痕结构211可以为闭环结构B,也可 以为线状结构。对于刻痕结构211的厚度,本申请实施例同样不作限制。其中刻痕结构211的厚度取决于膜本体22的结构强度,若膜本体22自身结构强度较低,则无需将刻痕结构211厚度设置过小;若膜本体22自身结构强度较高,则需要将刻痕结构211厚度设置为较小,甚至需要通过工艺贯穿膜本体22以形成刻痕结构211。
此外刻痕结构211的数量可以为一个,也可以为多个。当刻痕结构211的数量为多个时,多个刻痕结构211可以彼此错位分布,也可以彼此相交设置。示例性地,请参阅图6至图8,多个刻痕结构211可以呈十字形、X字形或丁字形等。
本申请实施例在膜本体22上设置刻痕结构211,相较于膜本体22的其他位置,刻痕结构211处的厚度更小,结构强度更低。因此在电池单体10发生热失控时,刻痕结构211处会更容易在外力作用下发生破损破裂,从而在绝缘膜20上形成缺口,以此来确保泄压机构T能及时致动,高温高压物质能够及时从电池单体10内部排出,提高电池单体10的安全性。
此外,在本申请实施例中绝缘膜20的制备过程中,不需要额外增加其他材料用于形成薄弱部21。只需要在现有工艺的基础上,增加一步刻痕工艺即可,操作简单并且不会增加绝缘膜20的生产成本。
在一些实施例中,如图4和图5所示,刻痕结构211围合形成闭环结构B。
闭环结构B的形式具有多种,示例性地,请一并参阅图5、图9以及图10,闭环结构B可以为椭圆环状结构、圆环结构或者三角环状结构等。对于闭环结构B的尺寸,本申请实施例不作限制。闭环结构B的外轮廓可以位于泄压机构T的外轮廓内,也可以至少部分超出泄压机构T的外轮廓,或者闭环结构B也可以与泄压机构T的外轮廓重合。
需要说明的是,当刻痕结构211围合形成闭环结构B时,薄弱部21还包括由闭环结构B围合形成的中心部212,中心部212能够覆盖泄压机构T中的至少部分结构。其中,中心部212的结构强度可以大于、小于或者等于膜本体22中其他位置处的结构强度。
本申请实施例通过将刻痕结构211围合形成闭环结构B,从而在 电池单体10发生热失控时,使得中心部212能够脱离膜本体22,从而在绝缘膜20对应于泄压机构T位置处形成较大的缺口,以确保更多高温高压物质能够及时从缺口位置处离开电池单体10,降低电池单体10发生***的可能,进一步提高电池单体10的安全性。
在一些实施例中,请参阅图4和图11,闭环结构B的外轮廓至少部分超出泄压机构T设置。其中,图11是绝缘膜20包覆外壳11后,电池单体10中泄压机构T所在位置处的结构示意图。
泄压机构T设置在外壳11的第一壁113上,闭环结构B的外轮廓至少部分超出泄压机构T设置。换言之,在沿第一壁113的厚度方向Z上,闭环结构B的投影至少部分位于泄压机构T的投影外。其中闭环结构B可以完全覆盖泄压机构T设置,即闭环结构B的外轮廓各处均超出泄压机构T;或者闭环结构B仅覆盖泄压机构T中的部分结构,即闭环结构B的外轮廓中的部分超出泄压机构T设置,部分位于泄压机构T内。
绝缘膜20用于将电池单体10与其他部件绝缘隔开,而中心部212覆盖泄压机构T中的至少部分结构,中心部212能够对泄压机构T起到绝缘效果。在此基础上,本申请实施例将闭环结构B的外轮廓至少部分超出泄压机构T设置,从而确保中心部212能够具有一定的尺寸,以满足对泄压机构T的绝缘功能。
此外,当电池单体10发生热失控时,这种设计能够确保绝缘膜20在对应于泄压机构T位置处能够形成较大的缺口,以确保更多高温高压物质能够及时从缺口位置处离开电池单体10,降低电池单体10发生***的可能,进一步提高电池单体10的安全性。
在一些实施例中,闭环结构B的轮廓外形与泄压机构T的轮廓外形对应。
举例来说,若泄压机构T为圆形结构,则闭环结构B为圆环结构。若泄压机构T为椭圆结构,则闭环结构B为椭圆环状结构。若泄压机构T为方形结构,则闭环结构B为方环结构。进一步地,闭环结构B的外形尺寸可以是泄压机构T外形尺寸通过缩放特定倍率后形成的,这种设计有利于绝缘膜20与外壳11之间的连接配合。
具体地说,若刻痕结构211在绝缘膜20包覆外壳11之前形成,由于闭环结构B的轮廓外形与泄压机构T的轮廓外形对应,因此在绝缘膜20连接于外壳11的过程中,可以先将闭环结构B与泄压机构T对位,然后再将绝缘膜20包覆在外壳11上,这样可以提高绝缘膜20在外壳11位置上的精确性。示例性地,可以将闭环结构B的中心与泄压机构T的中心对齐,从而实现闭环结构B与泄压机构T对位。
本申请实施例通过将闭环结构B的轮廓外形与泄压机构T的轮廓外形对应,从而降低了绝缘膜20在外壳11上的对位难度,确保两者间位置的精确性。同时还可以降低闭环结构B与泄压机构T之间的对位难度,以使两者能够对应设置,从而在电池单体10发生热失控时,绝缘膜20能够在泄压机构T对应位置处致动,满足泄压需要,提高电池单体10的使用安全。
在一些实施例中,请参阅图4和图12,刻痕结构211的数量为多个,多个刻痕结构211在膜本体22上间隔设置。
由前述内容可知,刻痕结构211可以通过冲压、激光刻蚀或切割去料等方式在膜本体22上形成。在此基础上,若多个刻痕结构211彼此相交设置,则在相交位置处,绝缘膜20会受到双重甚至更多重加工工艺的影响,从而导致在刻痕结构211形成过程中,绝缘膜20在多个刻痕相交的位置处容易受到工艺影响而被击穿。若刻痕结构211在绝缘膜20包覆外壳11之后加工形成,则在刻痕结构211形成过程中,电池单体10中的泄压机构T或外壳11等容易受到工艺影响出现损坏破损的风险,影响电池单体10的正常使用以及良品率。
而在本申请实施例中,多个刻痕结构211间隔设置,相邻两个刻痕结构211之间并不相交,因此在刻痕结构211形成过程中,绝缘膜20中任意位置处均不会受到双重甚至多重工艺的影响。这样可以降低绝缘膜20因工艺而发生击穿的风险,降低因刻痕结构211的形成对泄压机构T以及外壳11的影响,提高电池单体10的制备可靠性。
在一些实施例中,请参阅图4和图13,刻痕结构211包括相互连接的第一刻痕段211a和第二刻痕段211b,第一刻痕段211a和第二刻痕段 211b的延伸方向相交。
第一刻痕段211a在其延伸方向上的一端与第二刻痕段211b在其延伸方向上的一端相连,第一刻痕段211a与第二刻痕段211b可以为直线结构,也可以为曲线结构。当第一刻痕段211a为曲线结构时,其延伸方向为第一刻痕段211a两端的连线方向。
第一刻痕段211a与第二刻痕段211b的延伸方向相交,第一刻痕段211a和第二刻痕段211b分别向绝缘膜20的不同位置延伸。当电池单体10发生热失控时,根据实际情况的不同,泄压机构T不同位置处受到的压力影响不同,进一步地,绝缘膜20不同位置处受到的压力影响。
在此基础上,本申请实施例将第一刻痕段211a与第二刻痕段211b设置为分别沿不同方向延伸,从而使得绝缘膜20在对应于泄压机构T区域中的不同位置均设置有刻痕,确保电池单体10发生热失控时,泄压机构T不同位置发生致动时,绝缘膜20均可以及时破裂,以满足泄压需要,适用于不同情况的发生。
需要说明的是,刻痕结构211除了包括第一刻痕段211a和第二刻痕段211b外,还可以包括更多刻痕段。示例性地,刻痕结构211还包括第三刻痕段211c,第一刻痕段211a和第三刻痕段211c分别连接第二刻痕段211b的两端。刻痕结构211的具体结构可以根据实际需要来设计,本申请实施例对此不作限制。
在一些实施例中,请参阅图4和图14,薄弱部21连接于膜本体22且薄弱部21中任意位置处的结构强度均小于膜本体22的结构强度。
薄弱部21为块状结构,相较于膜本体22而言,薄弱部21各处的结构强度均低于膜本体22。其中,薄弱部21可以完全覆盖泄压机构T设置,也可以仅部分覆盖泄压机构T设置。
薄弱部21能够具有多种形成方式,示例性地,可以通过对绝缘膜20的部分区域进行减薄从而形成薄弱部21,或者可以采用比膜本体22结构强度更低的材料制备形成薄弱部21,并将薄弱部21连接至膜本体22上,从而形成绝缘膜20。
在本申请实施例中,由于薄弱部21中结构强度较低的区域面积 较大,因此薄弱部21更容易在外力作用下发生断裂破损。这种设计能够在电池单体10发生热失控时,进一步降低绝缘膜20对泄压机构T的阻碍影响,以此来确保泄压机构T能及时致动,满足电池单体10的泄压需要。
在一些实施例中,薄弱部21能够覆盖泄压机构T。
薄弱部21的尺寸可以大于或等于泄压机构T的尺寸,当薄弱部21的尺寸等于泄压机构T的尺寸时,薄弱部21的形状轮廓与泄压机构T的形状轮廓对应并重合设置。
在电池单体10发生热失控时,泄压机构T会发生变形,此时由于薄弱部21能够覆盖泄压机构T,因此泄压机构T的变形能够使泄压机构T与绝缘膜20中结构强度较低的区域接触,并向其施加一定的压力,在压力作用下,该区域中的至少部分结构发生破损断裂,从而使泄压机构T能够实现致动功能,确保电池单体10的泄压可靠性,提高使用安全。
在本申请实施例中,通过将薄弱部21覆盖泄压机构T设置,从而进一步降低绝缘膜20对泄压机构T的阻碍影响,以此来确保泄压机构T能及时致动,满足电池单体10的泄压需要。
在一些实施例中,薄弱部21的材料与膜本体22其他位置处的材料不同,且薄弱部21的材料强度低于膜本体22其他位置处的材料强度。
本申请实施例提到的“材料强度”指的是:材料在外力作用下抵抗破坏的能力。通常情况下,结构的材料强度与其结构强度呈正相关。具体地,在尺寸厚度等参数均相同的情况下,材料强度越大其对应的结构强度越大。
本申请实施例通过将薄弱部21的材料强度设置为小于膜本体22处其他位置处的材料强度,使得薄弱部21的材料强度低于膜本体22的材料强度,从而满足电池单体10的泄压需要,提高泄压机构T的安全性。
需要说明的是,对于薄弱部21的厚度等参数尺寸,本申请实施例不作限制。示例性地,薄弱部21的厚度可以大于、小于或者等于膜本体22其他位置处的厚度。
第二方面,如图4和图11所示,本申请实施例提供了一种电池单体10,包括外壳11、电极组件12、泄压机构T以及前述任一实施方式 中的绝缘膜20。电极组件12容纳于外壳11内,泄压机构T安装于外壳11,绝缘膜20包覆外壳11的至少部分,且薄弱部21与外壳11的泄压机构T相对。
需要说明的是,本申请实施例提供的电池单体10,具有前述任一实施方式中绝缘膜20的有益效果,具体内容请参照前述对绝缘膜20有益效果的介绍,本申请实施例不再赘述。
在一些实施例中,如图4和图11所示,外壳11包括第一壁113和第二壁114,泄压机构T安装于第一壁113,电池单体10还包括安装于第二壁114的电极端子13。
第一壁113和第二壁114为外壳11上的不同表面,第一壁113和第二壁114可以为相邻表明,此时第一壁113和第二壁114相交设置。或者第一壁113和第二壁114也可以为相对表面,此时第一壁113和第二壁114平行设置。外壳11包括壳体111和端盖112,示例性地,第一壁113和第二壁114可以为壳体111的不同表面,或者第一壁113和第二壁114中的一者为端盖112表面,另一者为壳体111的一个表面,或者外壳11包括两个端盖112,第一壁113和第二壁114分别为相对的两个端盖112。
电极端子13可以与电极组件12电连接,以用于输出或输入电池单体10的电能。示例性地,电池单体10还包括集流构件15,集流构件15用于实现电极端子13与电极组件12的电连接。
由前述内容可知,绝缘膜20会覆盖泄压机构T设置,即绝缘膜20会覆盖第一壁113中的至少部分结构。在此基础上,本申请实施例将电极端子13设置在与第一壁113不同的第二壁114上,从而降低绝缘膜20遮挡电极端子13的概率,确保电极端子13的正常工作,实现电池单体10电能的可靠传输。
在一些实施例中,绝缘膜20覆盖第一壁113设置。
泄压机构T设置在第一壁113上,绝缘膜20覆盖第一壁113设置,可以在确保泄压机构T位置处满足绝缘需要的同时,确保第一壁113中各位置处均通过绝缘膜20与外界部件绝缘隔开。这种设计使得电池单体10内部储蓄的电能无法通过第一壁113传递至外部结构中,从而降低电池 单体10在第一壁113对应位置处发生漏电的风险,提高电池单体10的使用安全。
在一些实施例中,绝缘膜20中的至少部分包覆于外壳11中除第二壁114外的全部表面。换言之,外壳11上除第二壁114以外的全部表面均设置有绝缘膜20。
针对于外壳11上除第二壁114外的各表面而言,绝缘膜20可以完全覆盖对应表面,也可以仅覆盖对应表面的部分。此外,对于第二壁114而言,绝缘膜20可以覆盖第二壁114的部分结构,或者绝缘膜20也可以不设置于第二壁114所在位置,本申请实施例对此不作限制。
在本申请实施例中,外壳11中除第二壁114的任意表面均设置有绝缘膜20的部分结构,这种设计能够提高绝缘膜20对外壳11的覆盖程度,从而降低电池单体10多个表面发生漏电的风险,进一步提高绝缘性能,提高电池单体10的使用安全。
在一些实施例中,如图4和图11所示,电池单体10还包括连接于第一壁113并覆盖泄压机构T的保护膜14,在沿第一壁113的厚度方向Z上,泄压机构T的投影位于薄弱部21的投影内,且薄弱部21的投影位于保护膜14的投影内。
保护膜14设置于泄压机构T背离电极组件12的一侧,并且保护膜14的尺寸通常大于泄压机构T的尺寸,以使保护膜14能够覆盖并保护泄压机构T。示例性地,保护膜14的轮廓形状可以与泄压机构T的轮廓形状相同,以使保护膜14能够更好地覆盖泄压机构T。
在此基础上,本申请实施例在厚度方向Z上,将薄弱部21的投影设置在保护膜14的投影内,从而提高绝缘可靠性。具体地说,由前述内容可知,薄弱部21可以包括通过工艺形成的刻痕结构211或减薄结构。以激光刻蚀工艺为例,在绝缘膜20制备过程中,薄弱部21中的部分结构可能因为工艺原因而被刻蚀穿透。这就导致薄弱部21中部分位置处的无法满足绝缘需要,而将薄弱部21的投影设置在保护膜14的投影内,可以确保电池单体10在薄弱部21对应位置处能够得到双重绝缘效果,即使薄弱部21中部分结构被穿透,保护膜14的存在仍可以保证电池单体10在对应位 置处的绝缘效果,降低发生漏电的风险。
在本申请实施例中,通过设置保护膜14,并在厚度方向Z上,将泄压机构T的投影位于薄弱部21的投影内,且薄弱部21的投影位于保护膜14的投影内,从而确保电池单体10在薄弱部21对应位置处能够得到双重绝缘效果,提高绝缘可靠性。
在一些实施例中,如图4和图11所示,薄弱部21在保护膜14上的正投影与保护膜14边缘的最短距离为D,D满足:D≥2mm。示例性地,D可以为2mm、2.2mm、2.5mm以及3mm中的一者。
薄弱部21在保护膜14上的正投影即薄弱部21在第一壁113的厚度方向Z上的投影,本申请实施例中提到的“薄弱部21在保护膜14上的正投影与保护膜14边缘的最短距离D”指的是:薄弱部21在保护膜14上的正投影的边缘位置处与保护膜14边缘之间的最短距离。
对应于薄弱部21的不同边缘位置处,其对应的最短距离D可以相同,也可以不同。示例性地,薄弱部21的轮廓形状与保护膜14的轮廓形状相同,且薄弱部21在保护膜14上的正投影中心与保护膜14的中心重合。这种设计可以使薄弱部21的不同边缘位置处,其对应的最短距离D能够保持相同一致。
在本申请实施例中,通过将D设置为D≥2mm,使得薄弱部21的边缘位置能够与保护膜14的边缘位置保持一定的距离,从而在薄弱部21形成过程中,降低保护膜14的边缘位置所受到的工艺影响,降低因形成薄弱部21,导致保护膜14与第一壁113发生脱离的概率,确保保护膜14的结构可靠性。
第三方面,本申请实施例提供了一种电池,包括前述任一实施方式的电池单体10。
需要说明的是,本申请实施例提供的电池,具有前述任一实施方式中电池单体10的有益效果,具体内容请参照前述对绝缘膜20以及电池单体10有益效果的描述,本申请实施例不再赘述。
第四方面,本申请实施例提供了一种用电装置,包括前述任一实施方式的电池单体10,电池单体10用于提供电能。
根据本申请的一些实施例,请参阅图4、图5以及图11,电池单体10包括外壳11、电极组件12、泄压机构T、电极端子13、保护膜14以及绝缘膜20,电极组件12容纳于外壳11内,外壳11包括第一壁113和第二壁114,第一壁113和第二壁114相对设置,泄压机构T安装于第一壁113,电极端子13安装于第二壁114,保护膜14连接于第一壁113并覆盖泄压机构T设置,绝缘膜20中的至少部分包覆于外壳11中除第二壁114外的全部表面。
绝缘膜20包括膜本体22以及设置于膜本体22上的薄弱部21,薄弱部21包括呈闭环结构B的刻痕结构211,以及位于闭环结构B内的中心部212。薄弱部21与泄压机构T对应设置,且闭环结构B的轮廓外形与泄压机构T的轮廓外形对应。薄弱部21的轮廓外形位于保护膜14的轮廓外形与泄压机构T的轮廓外形之间,并且薄弱部21在保护膜14上的正投影与保护膜14边缘的最短距离为D,D满足:D≥2mm。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种绝缘膜,用于包覆电池单体的外壳的至少部分,所述绝缘膜设有薄弱部,所述薄弱部用于覆盖所述电池单体中安装于所述外壳的泄压机构的至少部分。
  2. 根据权利要求1所述的绝缘膜,包括膜本体,所述薄弱部包括设置在所述膜本体上的刻痕结构。
  3. 根据权利要求2所述的绝缘膜,其中,所述刻痕结构围合形成闭环结构。
  4. 根据权利要求3所述的绝缘膜,其中,所述闭环结构的外轮廓至少部分超出所述泄压机构设置。
  5. 根据权利要求3或4所述的绝缘膜,其中,所述闭环结构的轮廓外形与所述泄压机构的轮廓外形对应。
  6. 根据权利要求2至5任一项所述的绝缘膜,其中,所述刻痕结构的数量为多个,多个所述刻痕结构在所述膜本体上间隔设置。
  7. 根据权利要求2至6任一项所述的绝缘膜,其中,所述刻痕结构包括相互连接的第一刻痕段和第二刻痕段,所述第一刻痕段和所述第二刻痕段的延伸方向相交。
  8. 根据权利要求1至7任一项所述的绝缘膜,包括膜本体,所述薄弱部连接于所述膜本体且所述薄弱部中任意位置处的结构强度小于所述膜本体的结构强度。
  9. 根据权利要求8所述的绝缘膜,其中,所述薄弱部能够覆盖所述泄压机构。
  10. 根据权利要求8或9所述的绝缘膜,其中,所述薄弱部的材料与所述膜本体其他位置处的材料不同,且所述薄弱部的材料强度低于所述膜本体其他位置处的材料强度。
  11. 一种电池单体,包括:
    外壳;
    电极组件,容纳于所述外壳内;
    泄压机构,安装于所述外壳;以及
    如权利要求1至10任一项所述的绝缘膜,包覆所述外壳的至少部分,且所述薄弱部与所述外壳的泄压机构相对。
  12. 根据权利要求11所述的电池单体,其中,所述外壳包括第一壁和第二壁,所述泄压机构安装于所述第一壁,所述电池单体还包括安装于所述第二壁的电极端子。
  13. 根据权利要求12所述的电池单体,其中,所述绝缘膜覆盖所述第一壁设置。
  14. 根据权利要求13所述的电池单体,其中,所述绝缘膜中的至少部分包覆于所述外壳中除所述第二壁外的全部表面。
  15. 根据权利要求12至14任一项所述的电池单体,还包括连接于所述第一壁并覆盖所述泄压机构的保护膜,在沿所述第一壁的厚度方向上,所述泄压机构的投影位于所述薄弱部的投影内,且所述薄弱部的投影位于所述保护膜的投影内。
  16. 根据权利要求15所述的电池单体,其中,所述薄弱部在所述保护膜上的正投影与所述保护膜边缘的最短距离为D,D满足:D≥2mm。
  17. 一种电池,包括如权利要求11-16任一项所述的电池单体。
  18. 一种用电装置,包括如权利要求11-16任一项所述的电池单体,所述电池单体用于提供电能。
PCT/CN2023/076860 2022-12-13 2023-02-17 绝缘膜、电池单体、电池及用电装置 WO2024124688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223328484.1 2022-12-13
CN202223328484.1U CN218632347U (zh) 2022-12-13 2022-12-13 绝缘膜、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024124688A1 true WO2024124688A1 (zh) 2024-06-20

Family

ID=85455791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076860 WO2024124688A1 (zh) 2022-12-13 2023-02-17 绝缘膜、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN218632347U (zh)
WO (1) WO2024124688A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310520A (zh) * 2019-10-21 2021-02-02 宁德时代新能源科技股份有限公司 连接组件、电池模块、电池组和装置
CN116544488B (zh) * 2023-07-06 2023-11-14 宁德时代新能源科技股份有限公司 底托板、电池单体、电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388846A1 (en) * 2010-05-20 2011-11-23 SB LiMotive Co., Ltd. Secondary battery
CN103247767A (zh) * 2012-02-14 2013-08-14 株式会社杰士汤浅国际 蓄电元件
JP2015115280A (ja) * 2013-12-13 2015-06-22 日立オートモティブシステムズ株式会社 二次電池
CN216698639U (zh) * 2021-12-28 2022-06-07 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池、用电设备及电池单体的制造设备
CN115036643A (zh) * 2022-08-12 2022-09-09 江苏时代新能源科技有限公司 电池单体、电池及用电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388846A1 (en) * 2010-05-20 2011-11-23 SB LiMotive Co., Ltd. Secondary battery
CN103247767A (zh) * 2012-02-14 2013-08-14 株式会社杰士汤浅国际 蓄电元件
JP2015115280A (ja) * 2013-12-13 2015-06-22 日立オートモティブシステムズ株式会社 二次電池
CN216698639U (zh) * 2021-12-28 2022-06-07 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池、用电设备及电池单体的制造设备
CN115036643A (zh) * 2022-08-12 2022-09-09 江苏时代新能源科技有限公司 电池单体、电池及用电设备

Also Published As

Publication number Publication date
CN218632347U (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
US20240079693A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2023137976A1 (zh) 电池单体、电池以及用电装置
WO2023098258A1 (zh) 电池单体、电池以及用电装置
US20230261312A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2024124688A1 (zh) 绝缘膜、电池单体、电池及用电装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2022109884A1 (zh) 电池单体及其制造方法和***、电池以及用电装置
WO2023279260A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023056719A1 (zh) 端盖、电池单体、电池以及用电装置
WO2023045527A1 (zh) 电池单体、电池以及用电设备
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
WO2023030404A1 (zh) 泄压装置、电池单体、电池及用电设备
CN114503334A (zh) 电极组件及其相关电池、装置、制造方法和制造装置
WO2022205325A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法及设备
WO2024087381A1 (zh) 电池单体、电池及用电设备
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
WO2023141842A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023050098A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023000202A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023236219A1 (zh) 电池单体、电池及用电设备
WO2023245431A1 (zh) 电池单体、电池及用电设备
WO2024031501A1 (zh) 电池单体、电池以及用电装置
WO2023097469A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023220886A1 (zh) 端盖、电池单体、电池及用电设备