WO2023167037A1 - Viscosity index improver composition and lubricating oil composition - Google Patents

Viscosity index improver composition and lubricating oil composition Download PDF

Info

Publication number
WO2023167037A1
WO2023167037A1 PCT/JP2023/006006 JP2023006006W WO2023167037A1 WO 2023167037 A1 WO2023167037 A1 WO 2023167037A1 JP 2023006006 W JP2023006006 W JP 2023006006W WO 2023167037 A1 WO2023167037 A1 WO 2023167037A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
viscosity index
group
monomer
index improver
Prior art date
Application number
PCT/JP2023/006006
Other languages
French (fr)
Japanese (ja)
Inventor
健司 山▲崎▼
聡 松本
雄一 竹之下
和志 植野
祥幸 桑田
弘記 山下
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Publication of WO2023167037A1 publication Critical patent/WO2023167037A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/02Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon well-defined aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential

Definitions

  • the present invention relates to a viscosity index improver composition and a lubricating oil composition.
  • Viscosity index improvers methacrylic acid ester copolymers (Patent Documents 1 to 3) and comb copolymers (Patent Documents 4 to 6) are used. It is known to be highly effective in improving Viscosity index improvers are generally distributed as viscosity index improver compositions containing a high concentration of a copolymer in a base oil, from the viewpoint of ease of handling.
  • a viscosity index improver composition containing a comb polymer has a viscosity maximum point in the range of 40 to 100° C., and the viscosity at the maximum point is high, so there is a problem of poor handleability during handling. . Therefore, there is a demand for a viscosity index improver composition having a low maximum viscosity point.
  • An object of the present invention is to provide a viscosity index improver composition containing a comb copolymer, which has a low viscosity maximum point in the range of 40 to 100° C. and is excellent in handleability. be.
  • the present invention provides a (co)polymer (A) containing a polyolefin monomer (a) represented by the following general formula (1) as an essential constituent monomer, and A viscosity index improver composition comprising a GTL oil (B) having a viscosity of .6 mm 2 /s; A lubricating oil composition containing at least one additive selected from the group consisting of depressants, friction and wear modifiers, extreme pressure agents, defoamers, demulsifiers, metal deactivators and corrosion inhibitors be.
  • R 1 is a hydrogen atom or a methyl group
  • -X 1 - is a group represented by -O-, -O(AO) m - or -NH-, and A has 2 carbon atoms
  • m is an integer of 1 to 10, and when m is 2 or more, A may be the same or different
  • R 2 is a carbonization containing a 1,2-butylene group as a structural unit A residue obtained by removing one hydrogen atom from a hydrogen polymer
  • p is a number of 0 or 1;
  • the viscosity index improver composition of the present invention has a low maximum point of viscosity in the range of 40 to 100°C, and has an effect of being excellent in handleability.
  • FIG. 2 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 1-3 and Comparative Example 1.
  • FIG. 4 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 4 and Comparative Example 2.
  • FIG. 4 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 5-6 and Comparative Example 3.
  • FIG. 4 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 7-8 and Comparative Example 4.
  • FIG. 2 is a graph showing the complex viscosities at 30 to 100° C.
  • FIG. 2 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 10 and Comparative Example 6.
  • FIG. 2 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 11 and Comparative Example 7.
  • the viscosity index improver composition of the present invention comprises a (co)polymer (A) containing a polyolefin monomer (a) represented by the following general formula (1) as an essential constituent monomer, and a kinematic viscosity at 100° C. is 1.0 to 2.6 mm 2 /s and GTL oil (B).
  • a kinematic viscosity at 100° C. is 1.0 to 2.6 mm 2 /s and GTL oil (B).
  • the viscosity index improver composition containing the (co)polymer (A) in the base oil has a viscosity index improver composition of 40 to 100.
  • the present inventors proposed a viscosity index improver composition containing a (co)polymer (A) and a GTL oil (B) having a kinematic viscosity at 100° C. of 1.0 to 2.6 mm 2 /s. In the range of 40 to 100° C., the maximum point of viscosity is low, and the handleability is improved. For example, when the viscosity index improver composition contains the (co)polymer (A) at a high concentration, the maximum point of viscosity in the range of 40 to 100° C.
  • R 1 is a hydrogen atom or a methyl group
  • -X 1 - is a group represented by -O-, -O(AO) m - or -NH-, and A has 2 carbon atoms
  • m is an integer of 1 to 10
  • R 2 is a carbonization containing a 1,2-butylene group as a structural unit A residue obtained by removing one hydrogen atom from a hydrogen polymer
  • p is a number of 0 or 1;
  • the (co)polymer (A) in the present invention is a polymer containing the polyolefin monomer (a) represented by the general formula (1) as an essential constituent monomer.
  • the polyolefin monomer (a) in the present invention is a monomer obtained by modifying a hydrocarbon polymer described later and reacting it with (meth)acrylic acid.
  • (meth)acryl means methacryl or acryl.
  • R 1 in general formula (1) is a hydrogen atom or a methyl group.
  • the methyl group is preferable from the viewpoint of the effect of improving the viscosity index.
  • -X 1 - in general formula (1) is a group represented by -O-, -O(AO) m - or -NH-.
  • A is an alkylene group having 2 to 4 carbon atoms. Examples of the alkylene group having 2 to 4 carbon atoms include ethylene group, 1,2- or 1,3-propylene group, and 1,2-, 1,3- or 1,4-butylene group.
  • m is an integer of 1 to 10, preferably an integer of 1 to 4, more preferably an integer of 1 to 2, from the viewpoint of HTHS viscosity in the effective temperature range.
  • A may be the same or different, and the (AO) m portion may be a random bond or a block bond.
  • groups represented by -O- and -O(AO) m - are preferable from the viewpoint of HTHS viscosity in the effective temperature range (80 to 150°C), and more preferably - It is a group represented by O— and —O(CH 2 CH 2 O)—.
  • p is the number of 0 or 1.
  • R 2 in general formula (1) is a hydrocarbon polymer containing a 1,2-butylene group (—CH 2 CH(CH 2 CH 3 )— or —CH(CH 2 CH 3 )CH 2 —) as a structural unit. is a residue obtained by removing one hydrogen atom from Hydrocarbon polymers having a 1,2-butylene group as a constituent unit include polymers having 1-butene as a constituent monomer, and 1,2-adducts obtained by polymerizing 1,3-butadiene. Examples thereof include polymers in which bonds are hydrogenated.
  • the hydrocarbon polymer may be a block polymer or a random polymer.
  • the hydrocarbon polymer containing a 1,2-butylene group as a structural unit may be a hydrocarbon polymer further containing a structural unit other than the 1,2-butylene group.
  • Constituent monomers constituting the hydrocarbon polymer include (1) aliphatic unsaturated hydrocarbons, (2) alicyclic unsaturated hydrocarbons and (3) aromatic group-containing unsaturated hydrocarbons. .
  • the hydrocarbon polymer When the hydrocarbon polymer has double bonds, it may be obtained by hydrogenating part or all of the double bonds by hydrogenation.
  • Aliphatic unsaturated hydrocarbons olefins having 2 to 36 carbon atoms (e.g., ethylene, propylene, isobutene, 1-butene, 2-butene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, triacocene and hexadecene triacosene, etc.), dienes having 2 to 36 carbon atoms (e.g., 1,2-butadiene, 1,3-butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.)] (2) alicyclic unsaturated hydrocarbons [e.g.
  • styrene ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, crotyl benzene, vinylnaphthalene, divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, etc.).
  • the constituent monomers constituting the hydrocarbon polymer have two or more double bonds, part or all of the double bonds derived from the constituent monomers in the hydrocarbon polymer are hydrogenated. good too.
  • the hydrocarbon polymer for R 2 may be a hydrocarbon polymer using only a monomer having 4 carbon atoms as a constituent monomer, and the monomer having 4 carbon atoms is 1-butene and 1,3-butadiene, or a combination of isobutene and at least one selected from the group consisting of 1-butene and 1,3-butadiene.
  • 1,3-butadiene is used as a constituent monomer, the terminal double bond of the 1,2-adduct of 1,3-butadiene in the hydrocarbon polymer may be hydrogenated.
  • the number average molecular weight (hereinafter abbreviated as Mn) of the monomer (a) is preferably from 800 to 10,000, more preferably from 1,000 to 9,500, still more preferably from 1,200 to 9,500. 000, particularly preferably 2,000 to 8,700.
  • Mn of the monomer (a) is 800 or more, the solubility in the GTL oil (B) tends to be good, and when it is 10,000 or less, the copolymerizability with other monomers is good. tend to be
  • the weight average molecular weight (hereinafter abbreviated as Mw) and Mn can be measured by gel permeation chromatography (hereinafter abbreviated as GPC) under the following conditions.
  • Mw and Mn measurement conditions Apparatus: "HLC-8320GPC” [manufactured by Tosoh Corporation] Column: 2 "TSKgel GMHXL” [manufactured by Tosoh Corporation] 1 "TSKgel Multipore H XL -M” Measurement temperature: 40 ° C.
  • Detection device refractive index detector
  • Reference material standard polystyrene (TS reference material: standard polystyrene (TSKstandard POLYSTYRENE)) 12 points (molecular weight: 589, 1,050, 2,630, 9,100, 19,500, 37,900, 96,400, 190,000, 355,000, 1,090,000, 2,110,000 , 4,480,000) [manufactured by Tosoh Corporation]
  • the monomer (a) is obtained by introducing a hydroxyl group at one end of a hydrocarbon polymer, and a polymer (Y) containing a hydroxyl group at one end, and (meth)acrylic acid through an esterification reaction. Obtainable. Alternatively, it can be obtained by a transesterification reaction between a polymer (Y) containing a hydroxyl group at one end and an alkyl (meth)acrylate (preferably having 1 to 4 carbon atoms) such as methyl (meth)acrylate.
  • polymer (Y) containing a hydroxyl group at one end include the following (Y1) to (Y4).
  • Alkylene oxide adduct (Y1) A hydrocarbon polymer obtained by polymerizing an unsaturated hydrocarbon (x) in the presence of an ionic polymerization catalyst (such as a sodium catalyst) is added with an alkylene oxide (such as ethylene oxide and propylene oxide).
  • an ionic polymerization catalyst such as a sodium catalyst
  • alkylene oxide such as ethylene oxide and propylene oxide
  • Maleic anhydride-ene-aminoalcohol adduct (Y3); a reactant obtained by an ene reaction between a hydrocarbon polymer of an unsaturated hydrocarbon (x) having a double bond at one end and maleic anhydride, Those obtained by imidization with an amino alcohol (in this case, the monomer (a) is a compound in which -X 1 - is -O- and p is 1 in general formula (1)).
  • these polymers (Y) containing a hydroxyl group at one end from the viewpoint of improving the viscosity index, preferred are alkylene oxide adducts (Y1) and hydroborides (Y2), and more preferred are alkylene Oxide adduct (Y1).
  • Ratio of butadiene among all monomers constituting R 2 in general formula (1) is preferably 50% by weight or more, more preferably 75% by weight or more, still more preferably 85% by weight or more, and particularly preferably 90% by weight or more, from the viewpoint of improving the viscosity index.
  • the hydrocarbon polymer containing a 1,2-butylene group in general formula (1) as a structural unit may have an isobutylene group from the viewpoint of improving the viscosity index.
  • the total amount of the isobutylene group and the 1,2-butylene group is preferably 30 mol% or more based on the total number of moles of the constituent monomers of the hydrocarbon polymer, from the viewpoint of improving the viscosity index. It is more preferably 40 mol % or more, still more preferably 50 mol % or more.
  • the following method can be employed as a method for increasing the ratio of the total amount of isobutylene groups and 1,2-butylene groups in the hydrocarbon polymer.
  • the reaction temperature is lowered ⁇ for example, the boiling point of 1,3-butadiene ( ⁇ 4.4° C.) or lower ⁇
  • the ratio of the total amount of isobutylene groups and 1,2-butylene groups in the hydrocarbon polymer can be increased.
  • a 1,2-butylene group based on the total number of moles of the constituent monomers of the hydrocarbon polymer
  • the ratio is 30 mol% or more from the viewpoint of the effect of improving the viscosity index and copolymerization with other monomers. It is preferably 30 to 70 mol %, more preferably 30 to 70 mol %.
  • the proportion of 1,2-butylene groups can be measured by 13 C-NMR.
  • the hydrocarbon polymer is analyzed by 13 C-NMR, and the structure of the hydrocarbon polymer is determined using the following formula (1).
  • the mole percent of 1,2-butylene groups based on the total number of moles of units can be calculated and determined.
  • 13 C-NMR a peak derived from the tertiary carbon atom (-CH 2 CH(CH 2 CH 3 )-) of the 1,2-butylene group appears at an integral value (integral value B) of 26 to 27 ppm. It can be obtained from the integrated value of the above peak and the integrated value (integrated value C) of the total carbon peak of the hydrocarbon polymer.
  • Ratio of 1,2-butylene groups ⁇ (integral value B) ⁇ 4 ⁇ /(integral value C) ⁇ 100 (1)
  • the reaction temperature should be below the boiling point of 1,3-butadiene ( ⁇ 4.4° C.)
  • the amount of the polymerization initiator to be added may be reduced with respect to 1,3-butadiene. The dosage should be increased.
  • the total amount of isobutylene groups and 1,2-butylene groups in the hydrocarbon polymer containing 1,2-butylene groups as structural units in general formula (1) can be measured by 13 C-NMR. Specifically, for example, when only a monomer having 4 carbon atoms is used, the hydrocarbon polymer is analyzed by 13 C-NMR and calculated using the following formula (2). It is possible to determine the total mole % of the isobutylene group and the 1,2-butylene group based on the total number of moles of the constitutional units.
  • the peak derived from the methyl group of the isobutylene group is the integrated value (integral value A) of 30 to 32 ppm, the branched methylene group (-CH 2 CH (CH 2 CH 3 )- of the 1,2-butylene group) Alternatively, a peak derived from —CH(CH 2 CH 3 )CH 2 —) appears at an integral value (integral value B) of 26 to 27 ppm.
  • the total mol % of the isobutylene group and the 1,2-butylene group based on the total number of moles of the structural units of the hydrocarbon polymer is the integral value of the above peak and the integral value of the total carbon peak of the hydrocarbon polymer ( It can be obtained from the integrated value C).
  • Total amount of isobutylene group and 1,2-butylene group (mol%) 100 x ⁇ (integral value A) x 2 + (integral value B) x 4 ⁇ /(integral value C) (2)
  • the hydrocarbon polymer for R 2 contains butadiene, or butadiene and 1-butene as constituent monomers, butadiene or butadiene and 1 -In the structure derived from butene, the molar ratio of the 1,2-adduct and the 1,4-adduct (1,2-adduct/1,4-adduct) is effective in improving the viscosity index and with other monomers From the viewpoint of copolymerizability, it is preferably 5/95 to 95/5, more preferably 20/80 to 80/20, still more preferably 30/70 to 70/30.
  • the hydrocarbon polymer for R 2 contains 1,3-butadiene, or 1,3-butadiene and 1-butene as constituent monomers, it constitutes part or all of R 2 in general formula (1)
  • the molar ratio of 1,2-adducts/1,4-adducts in structures derived from 1,3-butadiene or 1,3-butadiene and 1-butene is 1 H-NMR, 13 C-NMR, Raman It can be measured by spectroscopy or the like.
  • the solubility parameter (hereinafter abbreviated as SP value) of the structural unit derived from the monomer (a) (structure in which the (meth)acryloyl group of the monomer (a) reacts to form a single bond) is From the viewpoint of making the SP value of the (co)polymer (A) moderate and from the viewpoint of the solubility in the GTL oil (B), it is preferably 7.0 to 9.0 (cal/cm 3 ) 1/2. , more preferably 7.3 to 8.5 (cal/cm 3 ) 1/2 .
  • the SP value tends to be smaller when the degree of branching of R 2 is high and the number of carbon atoms is large, and tends to be large when the degree of branching is low and the number of carbon atoms is small.
  • the SP value of the structural unit derived from the monomer (a) can be calculated using the above parameters based on the molecular structure of the structural unit derived from the monomer (a). A desired range can be obtained by appropriately adjusting the weight fraction of (unsaturated hydrocarbon (x)). Further, when the (co)polymer (A) uses two or more monomers (a) in combination, the SP value of each of the plurality of structural units constituting the monomer (a) is determined by the above method. Calculated with, the SP value of the structural unit derived from each monomer (a), the arithmetic average value based on the weight fraction of the structural monomer unit derived from the monomer (a) It is preferable to satisfy the SP value range of the structural unit to be used.
  • the (co)polymer (A) includes, in addition to the monomer (a), a (meth)acrylic acid alkyl ester (b) having an alkyl group having 1 to 4 carbon atoms and/or an alkyl group having 9 carbon atoms.
  • a copolymer containing a (meth)acryloyl monomer (c) having an alkyl group of up to 36 as a constituent monomer may be used.
  • Examples of the (meth)acrylic acid alkyl ester (b) having an alkyl group having 1 to 4 carbon atoms include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, (meth) ) Isopropyl acrylate, isobutyl (meth)acrylate, n-butyl (meth)acrylate, 1-methylpropyl (meth)acrylate, 2-methylpropyl (meth)acrylate, 1,1-(meth)acrylate dimethylethyl and the like.
  • ethyl (meth) acrylate, n-butyl (meth) acrylate and isobutyl (meth) acrylate are preferred, and more preferably ethyl (meth) acrylate and (meth) acrylate, from the viewpoint of improving the viscosity index.
  • Examples of the (meth)acryloyl monomer (c) having an alkyl group having 9 to 36 carbon atoms include (meth)acrylic acid alkyl esters having a linear alkyl group ⁇ e.g., n-nonyl (meth)acrylate , n-decyl (meth)acrylate, n-dodecyl (meth)acrylate, n-tridecyl (meth)acrylate, n-tetradecyl (meth)acrylate, n-pentadecyl (meth)acrylate, (meth)acrylic n-hexadecyl acid, n-heptadecyl (meth)acrylate, n-octadecyl (meth)acrylate, n-icosyl (meth)acrylate, n-docosyl (meth)acrylate, n-tetracosyl (meth)acrylate, n-triaconty
  • linear alkyl (meth)acrylate ((meth)acrylic acid alkyl ester having a linear alkyl group) and branched alkyl (meth)acrylate (branched chain A (meth)acrylic acid alkyl ester having a triangular alkyl group is preferred.
  • Examples of the monomer (c) include Neodol (registered trademark) 23 (a mixture of linear and branched alkyl alcohols having 12 to 15 carbon atoms, manufactured by SHELL), Neodol (registered trademark) 45 (a straight chain having 14 to 16 carbon atoms, (Meth)acrylic acid esters of mixtures of alkyl alcohols such as mixtures of chained and branched alkyl alcohols (SHELL) may also be used.
  • Neodol (registered trademark) 23 a mixture of linear and branched alkyl alcohols having 12 to 15 carbon atoms, manufactured by SHELL
  • Neodol (registered trademark) 45 a straight chain having 14 to 16 carbon atoms
  • (Meth)acrylic acid esters of mixtures of alkyl alcohols such as mixtures of chained and branched alkyl alcohols (SHELL) may also be used.
  • the (co)polymer (A) is preferably a copolymer containing a monomer (d) represented by the following general formula (2) as a constituent monomer.
  • the (co)polymer (A) comprises, in addition to the monomer (a), at least one monomer selected from the group consisting of the monomer (b), the monomer (c) and the monomer (d). It may be a copolymer containing a monomer as a constituent monomer, and in addition to the monomer (a), the monomer (b), the monomer (c) and the monomer (d) are constituent monomers It may be a copolymer containing as.
  • R 3 is a hydrogen atom or a methyl group
  • -X 2 - is a group represented by -O- or -NH-
  • R 4 is an alkylene group having 2 to 4 carbon atoms; an alkyl group having 1 to 18 carbon atoms, or an aryl group having 6 to 20 carbon atoms
  • q is an integer of 1 to 20, and when q is 2 or more, R 4 may be the same or different;
  • R 3 in general formula (2) is a hydrogen atom or a methyl group.
  • the methyl group is preferable from the viewpoint of the effect of improving the viscosity index and reducing the HTHS viscosity at 100°C.
  • —X 2 — in general formula (2) is a group represented by —O— or —NH—.
  • the group represented by -O- is preferable from the viewpoint of improving the viscosity index and reducing the HTHS viscosity at 100°C.
  • R 4 in general formula (2) is an alkylene group having 2 to 4 carbon atoms.
  • alkylene groups having 2 to 4 carbon atoms include ethylene group, isopropylene group, 1,2- or 1,3-propylene group, isobutylene group, and 1,2-, 1,3- or 1,4- A butylene group etc. are mentioned.
  • R 4 O is an alkyleneoxy group having 2 to 4 carbon atoms, such as ethyleneoxy group, 1,2- or 1,3-propyleneoxy group, and 1,2-, 1,3- or 1,4- butyleneoxy group and the like.
  • q in the general formula (2) is an integer of 1 to 20, preferably an integer of 1 to 5, more preferably an integer of 1 to 2, from the viewpoint of reducing the HTHS viscosity at 100°C.
  • R 4 O may be the same or different, and the bonding form of (R 4 O) q moieties may be random or block.
  • R 5 in general formula (2) is an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • R 5 includes, for example, an alkyl group having 1 to 4 carbon atoms (straight or branched alkyl group having 1 to 4 carbon atoms) ⁇ eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group , isobutyl group, s-butyl group and t-butyl group, etc. ⁇ , alkyl groups having 5 to 18 carbon atoms ⁇ e.g., pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, etc. ⁇ ,
  • straight chain alkyl groups having 1 to 4 carbon atoms are preferable from the viewpoint of reducing HTHS viscosity at 100° C., and more preferably straight chain alkyl groups having 4 carbon atoms. It is a straight chain alkyl group (n-butyl group).
  • the monomer (d) include methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, propoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate ⁇ for example, (meth)acrylic acid 2-( n-butyloxy)ethyl, 2-(tert-butyloxy)ethyl (meth)acrylate, 2-(sec-butyloxy)ethyl (meth)acrylate, 2-(isobutyloxy)ethyl (meth)acrylate, etc. ⁇ , methoxy Propyl (meth) acrylate, ethoxypropyl (meth) acrylate, propoxypropyl (meth) acrylate, butoxypropyl (meth) acrylate ⁇ for example, 2-(n-butyloxy) propyl (meth) acrylate, 2- (meth) acrylate (tert-butyloxy)propyl
  • ethoxyethyl (meth)acrylate and butoxyethyl (meth)acrylate are preferred from the viewpoint of improving the viscosity index and reducing the HTHS viscosity at 100°C, and n-butoxy is more preferred. It is ethyl (meth)acrylate.
  • the (co)polymer (A) in the present invention includes, in addition to the above monomers (a) to (d), a nitrogen atom-containing monomer (e) other than the monomers (a) to (d), Other monomers such as hydroxyl group-containing monomer (f), phosphorus atom-containing monomer (g), aromatic ring-containing vinyl monomer (h), monomer (i) to monomer (m), etc. body as a constituent monomer.
  • Each of the monomers (e) to (m) may be used alone, or two or more thereof may be used in combination.
  • nitrogen atom-containing monomer (e) examples include the following monomers (e1) to (e4), excluding the monomers (a) to (d).
  • Nitro group-containing monomer (e2) 4-nitrostyrene and the like.
  • Nitrile group-containing monomer (e4) (Meth)acrylonitrile and the like.
  • (e1) and (e3) more preferred are N-(N',N'-diphenylaminoethyl)(meth)acrylamide, N-(N' , N'-dimethylaminoethyl) (meth)acrylamide, N-(N',N'-diethylaminoethyl) (meth)acrylamide, N-(N',N'-dimethylaminopropyl) (meth)acrylamide, N, N-dimethylaminoethyl (meth)acrylate and N,N-diethylaminoethyl (meth)acrylate.
  • Examples of the phosphorus atom-containing monomer (g) include the following monomers (g1) to (g2).
  • "(meth)acryloyloxy” means acryloyloxy or methacryloyloxy.
  • Phosphono group-containing monomer (g2) (Meth) acryloyloxy alkyl (2-4 carbon atoms) phosphonic acid [(meth) acryloyloxyethyl phosphonic acid, etc.] and alkenyl (2-12 carbon atoms) phosphonic acid [vinyl phosphonic acid, allyl phosphonic acid and octenyl phosphonic acid, etc.] and the like.
  • (g1) more preferred is (meth)acryloyloxyalkyl (C 2-4) phosphate ester, and particularly preferred is (meth)acryloyl It is oxyethyl phosphate.
  • styrene and ⁇ -methylstyrene preferred are styrene and ⁇ -methylstyrene, and more preferred is styrene.
  • Examples of monomer (i) include those having two or more unsaturated groups, such as divinylbenzene, alkadiene having 4 to 12 carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,6-heptadiene and 1,7-octadiene, etc.), (di)cyclopentadiene, vinylcyclohexene and ethylidenebicycloheptene, limonene, ethylene di(meth)acrylate, polyalkylene oxide glycol di(meth)acrylate, pentaerythritol triallyl ether, pentaerythritol tri (meth)acrylates, pentaerythritol tetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, esters of unsaturated carboxylic acids with a Mn of 500 or more and glycols and unsaturated esters described in WO01/009242 Examples include
  • Vinyl esters, vinyl ethers, vinyl ketones (j) (sometimes abbreviated as monomer (j)): Vinyl esters of saturated fatty acids with 2 to 12 carbon atoms (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl octanoate, etc.), alkyl, aryl or alkoxyalkyl vinyl ethers with 1 to 12 carbon atoms (methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether) , butyl vinyl ether, 2-ethylhexyl vinyl ether, phenyl vinyl ether, vinyl-2-methoxyethyl ether and vinyl-2-butoxyethyl ether, etc.) and alkyl or aryl vinyl ketones having 1 to 8 carbon atoms (methyl vinyl ketone, ethyl vinyl ketone and phenyl vinyl ketone, etc.).
  • Epoxy group-containing monomer (k) (sometimes abbreviated as monomer (k)): glycidyl (meth)acrylate, glycidyl (meth)allyl ether, and the like.
  • Halogen element-containing monomer (l) (sometimes abbreviated as monomer (l)): Examples include vinyl chloride, vinyl bromide, vinylidene chloride, (meth)allyl chloride, and halogenated styrene (dichlorostyrene, etc.).
  • Ester (m) of unsaturated polycarboxylic acid (sometimes abbreviated as monomer (m)): Alkyl, cycloalkyl or aralkyl esters of unsaturated polycarboxylic acids [alkyl diesters with 1 to 8 carbon atoms of unsaturated dicarboxylic acids (maleic acid, fumaric acid, itaconic acid, etc.) (dimethyl maleate, dimethyl fumarate, diethyl maleate) and dioctyl maleate)] and the like.
  • the weight ratio of the monomer (a) among the constituent monomers of the (co)polymer (A) is Based on the total weight of the constituting monomers, preferably 1 to 50% by weight, more preferably 5 to 40% by weight, particularly preferably 8 to 40% by weight, most preferably 10 to 30% by weight. be.
  • the weight ratio of the monomer (b) among the constituent monomers of the (co)polymer (A) is set to It is preferably 1 to 80% by weight, more preferably 3 to 70% by weight, based on the total weight of the constituent monomers.
  • the weight ratio of the monomer (c) among the constituent monomers of the (co)polymer (A) is set to It is preferably 1 to 60% by weight, more preferably 1 to 35% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the constituent monomers.
  • the weight ratio of the monomer (d) among the constituent monomers of the (co)polymer (A) is set to It is preferably 1 to 35% by weight, more preferably 1 to 20% by weight, particularly preferably 5 to 15% by weight, based on the total weight of the constituent monomers.
  • the total weight ratio of the monomers (e) to (m) among the constituent monomers of the (co)polymer (A) is the (co)weight It is preferably 5% by weight or less, more preferably 1% by weight or less, based on the total weight of the monomers constituting the coalescence (A).
  • the (co)polymer (A) contains 1 to 50% by weight of the monomer (a) based on the total weight of the monomers constituting the (co)polymer (A) as constituent monomers, and the monomer It may be a copolymer containing 1 to 80% by weight of body (b), 1 to 60% by weight of monomer (c), and 1 to 35% by weight of monomer (d).
  • Mw of the (co)polymer (A) is preferably 5,000 to 2,000,000 from the viewpoint of HTHS viscosity and low-temperature viscosity in the effective temperature range, and a more preferable range is the viscosity index improver composition
  • the range shown in Table 2 varies depending on the product and the application of the lubricating oil composition, including the viscosity index improver composition.
  • the molecular weight distribution (Mw/Mn) of the (co)polymer (A) is preferably 1.0 to 4.0, more preferably 1.5 to 3.5, from the viewpoint of shear stability.
  • the conditions for measuring Mw and molecular weight distribution (Mw/Mn) of the (co)polymer (A) are the same as those for measuring Mw and Mn of the monomer (a).
  • the SP value of the (co)polymer (A) is 8.0 to 10.0 (cal/ cm 3 ) 1/2 is preferred, and 9.0 to 9.5 (cal/cm 3 ) 1/2 is more preferred.
  • the SP value of the copolymer (A) is calculated using the above SP value calculation method, using the structural units derived from each monomer constituting the (co)polymer (A) (a vinyl group is converted into a single bond by a polymerization reaction. It means the value obtained by calculating the SP value of the structure) and arithmetically averaging based on the weight fraction of each constituent monomer at the time of preparation.
  • the constitutional unit derived from methyl methacrylate has 2 CH3 , 1 CH2 , 1 C, and 1 CO2 as atomic groups. From the following formula, it can be seen that the SP value of the structural unit derived from methyl methacrylate is 9.933 (cal/cm 3 ) 1/2 . A similar calculation reveals that the SP value of the structural unit derived from ethyl methacrylate is 9.721 (cal/cm 3 ) 1/2 .
  • the SP value of the copolymer is the weight of the SP value of the structural unit derived from each monomer as follows. Calculated by arithmetic averaging based on fractions.
  • the SP value of the (co)polymer (A) can be adjusted to a desired range by appropriately adjusting the monomers and weight fractions used. Specifically, the SP value can be decreased by using a large amount of a monomer with a long alkyl group having a long carbon number, and the SP value can be increased by using a large amount of a monomer with a short alkyl group having a short carbon number. can do.
  • the viscosity index improver composition of the present invention can be obtained by a known production method. oil, etc.) in the presence of a polymerization catalyst, and the like.
  • Polymerization catalysts include azo catalysts (2,2′-azobis(2-methylbutyronitrile) and 2,2′-azobis(2,4-dimethylvaleronitrile), etc.), peroxide catalysts (benzoyl peroxide oxide, cumyl peroxide, lauryl peroxide, etc.) and redox catalysts (mixtures of benzoyl peroxide and tertiary amines, etc.).
  • a known chain transfer agent alkylmercaptan having 2 to 20 carbon atoms, etc.
  • the polymerization temperature is preferably 25-140°C, more preferably 50-120°C.
  • the polymerization form of the (co)polymer (A) contained in the viscosity index improver composition may be either a random addition polymer or an alternating copolymer, or a graft copolymer or block copolymer. Either is fine.
  • the content of the (co)polymer (A) in the viscosity index improver composition of the present invention is preferably 10 to 30% by weight, based on the weight of the viscosity index improver composition, from the viewpoint of handleability. More preferably 15 to 25% by weight.
  • the viscosity maximum point in the range of 40 to 100° C. of the viscosity index improver composition of the present invention can be measured by the following method.
  • the highest complex viscosity among the 61 points of data in the range of 40°C to 100°C is the improvement of the viscosity index. It is defined as the maximum point of viscosity in the range of 40 to 100°C of the agent composition.
  • the viscosity index improver composition of the present invention contains a GTL (Gas to Liquid) oil (B) having a 100° C. kinematic viscosity of 1.0 to 2.6 mm 2 /s.
  • GTL oil is a hydrocarbon with a narrow molecular weight distribution produced by recombining molecular structures after decomposing natural gas into carbon monoxide and hydrogen.
  • the viscosity index improver composition contains the above (co)polymer (A) in a base oil containing the above low-viscosity (low carbon number) GTL oil (B).
  • the component in the GTL oil (B) suppresses the spread of the side chain derived from the monomer (a), which is the constituent monomer of the (co)polymer (A), in the range of 40 to 100 ° C. It is speculated that the resulting viscosity index improver composition is less likely to increase in viscosity and has excellent handleability.
  • the kinematic viscosity of GTL oil (B) at 100° C. (measured according to JIS-K2283 (2000)) (unit: mm 2 /s, abbreviated hereinafter) is 1.0 to 2.6 mm 2 /s. . If the kinematic viscosity of the GTL oil (B) at 100 ° C. is less than 1.0 mm 2 / s, the flash point is too low, so it is used when the viscosity index improver composition is contained in the lubricating oil composition. I have a problem that I can't. Further, when the kinematic viscosity of the GTL oil (B) at 100 ° C.
  • the GTL oil (B) may have a kinematic viscosity at 100° C. (measured according to JIS-K2283 (2000)) of 1.3 to 2.1 mm 2 /s. The kinematic viscosity of the GTL base oil at 40° C.
  • the viscosity index of GTL oil (B) (measured according to JIS-K2283 (2000)) is preferably 100 or more from the viewpoint of viscosity index and low-temperature fluidity when used as a lubricating oil composition.
  • the viscosity index improver composition of the present invention includes, in addition to the (co)polymer (A) and the GTL oil (B), a base oil other than the GTL oil (B) [for example, hydrocarbon oil ⁇ mineral oil (solvent Refined oil, paraffin oil, high viscosity index oil containing isoparaffin, high viscosity index oil obtained by hydrocracking isoparaffin and naphthenic oil, etc.), poly ⁇ -olefin synthetic lubricating oil, etc. ⁇ , ester oil, etc.], the above (co- ) A (meth)acrylic acid alkyl ester (co)polymer (C) other than the polymer (A) may be contained.
  • a base oil other than the GTL oil (B) from the viewpoint of the solubility of the (co)polymer (A), base oils of API (American Petroleum Institute) Classification Groups I to V are preferable.
  • Kinematic viscosity at 100 ° C. of base oils other than GTL oil (B) is the viscosity index and HTHS at the execution temperature From the viewpoint of viscosity, it is preferably 1.0 to 15, more preferably 1.0 to 5.0.
  • the viscosity index (measured according to JIS-K2283 (2000)) of the base oil other than the GTL oil (B) is preferably 100 or more, more preferably 110 or more, from the viewpoint of HTHS viscosity in the effective temperature range. be.
  • the content of the GTL oil (B) in the viscosity index improver composition of the present invention is preferably 2% by weight or more, more preferably 5% by weight, based on the weight of the viscosity index improver composition, from the viewpoint of handleability. % by weight or more, particularly preferably 20% by weight or more.
  • the content of the base oil other than the GTL oil (B) in the viscosity index improver composition of the present invention is preferably 78% by weight or less, based on the weight of the viscosity index improver composition, from the viewpoint of handleability. More preferably, it is 68% by weight or less.
  • the ratio ⁇ (A)/(B) ⁇ of the weight of the (co)polymer (A) and the weight of the GTL oil (B) in the viscosity index improver composition of the present invention is 0 from the viewpoint of handling. .1 to 10 is preferred, more preferably 0.1 to 4.0, still more preferably 0.1 to 2.5, particularly preferably 0.1 to 1.1, most preferably 0.1 ⁇ 0.7.
  • the content of the GTL oil (B) in the viscosity index improver composition of the present invention is 5% by weight or more, based on the total weight of the base oils contained in the viscosity index improver composition, from the viewpoint of handleability. It is preferably 25% by weight or more, and particularly preferably 50% by weight or more.
  • the content of the base oils other than the GTL oil (B) in the viscosity index improver composition of the present invention is 95% based on the total weight of the base oils contained in the viscosity index improver composition, from the viewpoint of handleability. % by weight or less is preferable, 75% by weight or less is more preferable, and 50% by weight or less is particularly preferable.
  • the viscosity index improver composition of the present invention may contain one type of GTL oil (B), or may contain two or more types of GTL oil (B).
  • the content of the GTL oils (B) means the total content of the respective GTL oils (B).
  • the viscosity index improver composition of the present invention preferably contains the (meth)acrylic acid alkyl ester (co)polymer (C) from the viewpoint of low-temperature viscosity reduction.
  • the (co)polymer (C) includes a (co)polymer that does not contain the monomer (a), and for example, a (meth)acrylic acid alkyl ester having an alkyl group having 9 to 36 carbon atoms is essential. Examples thereof include (co)polymers used as monomers.
  • n-dodecyl (meth)acrylate, n-tetradecyl (meth)acrylate, n-hexadecyl (meth)acrylate and n-octadecyl (meth)acrylate copolymer n-(meth)acrylate -octadecyl/n-dodecyl (meth)acrylate (molar ratio 10 to 30/90 to 70) copolymer, n-tetradecyl (meth)acrylate/n-dodecyl (meth)acrylate (molar ratio 10 to 30/ 90-70) copolymer, n-hexadecyl (meth)acrylate/n-dodecyl (meth)acrylate/methyl (meth)acrylate (molar ratio 20-40/55-75/0-10) copolymer and n-dodecyl acrylate/n-dodecyl methacrylate (
  • Mw of the (co)polymer (C) is preferably 5,000 to 100,000, more preferably 10,000 to 80,000, from the viewpoint of lowering the pour point temperature.
  • the SP value of the (co)polymer (C) is preferably 7.0 to 10, more preferably 8.0 to 9.5, from the viewpoint of solubility in the GTL oil (B).
  • the conditions for measuring the Mw of the (co)polymer (C) are the same as the conditions for measuring the Mw of the monomer (a).
  • the content of the (co)polymer (C) in the viscosity index improver composition of the present invention is 0.01 to 30, based on the weight of the (co)polymer (A), from the viewpoint of low-temperature viscosity reduction. % by weight is preferred, and 0.01 to 10% by weight is more preferred.
  • the viscosity index improver composition of the present invention has excellent handleability.
  • Lubricating oil compositions containing the viscosity index improver composition of the present invention include gear oils (differential oils, industrial gear oils, etc.), MTF, transmission oils [ATF, DCTF, belt-CVTF, etc.], traction oils (toroidal -CVTF, etc.), shock absorber oil, power steering oil, hydraulic oil (construction machine hydraulic oil and industrial hydraulic oil, etc.) and engine oil (for gasoline and diesel), especially for internal combustion engines can be suitably used as a lubricating oil composition, particularly a lubricating oil composition for hybrid vehicles.
  • the lubricating oil composition of the present invention comprises the viscosity index improver composition of the present invention, a detergent, a dispersant, an antioxidant, an oiliness improver, a pour point depressant, a friction and wear modifier, an extreme pressure agent, and an antifoaming agent. at least one additive selected from the group consisting of demulsifiers, demulsifiers, metal deactivators and corrosion inhibitors.
  • the side chain derived from the monomer (a) which is a constituent monomer of the (co)polymer (A) due to the presence of the component in the GTL oil (B) It is speculated that the spread of is affected and the viscosity index of the lubricating oil composition can be higher.
  • the content of the viscosity index improver composition in the lubricating oil composition is preferably 1.5 to 30% by weight, more preferably 2, based on the weight of the lubricating oil composition, from the viewpoint of viscosity index and HTHS viscosity. ⁇ 20% by weight.
  • the content of the (co)polymer (A) in the lubricating oil composition of the present invention is 0.1% by weight or more and 10% by weight based on the weight of the lubricating oil composition, from the viewpoint of the effect of improving the viscosity index and cost. It is preferably less than, more preferably 0.5 to 3% by weight.
  • the content of the GTL oil (B) in the lubricating oil composition is preferably 0.4 to 27% by weight, more preferably 1 to 20%, based on the weight of the lubricating oil composition, from the viewpoint of fuel consumption reduction and cost. % by weight.
  • the content of the (co)polymer (C) in the lubricating oil composition of the present invention is preferably from 0.01 to 5% by weight based on the weight of the lubricating oil composition from the viewpoint of low-temperature viscosity reduction.
  • the content of the base oil other than the GTL oil (B) in the lubricating oil composition of the present invention is preferably 43 to 94% by weight, based on the weight of the lubricating oil composition, from the viewpoint of fuel consumption reduction and cost. It is preferably 57 to 93% by weight.
  • additives in the present invention include the following.
  • Detergency Basic, overbased or neutral metal salts [such as overbased or alkaline earth metal salts of sulfonates (petroleum sulfonates, alkylbenzene sulfonates and alkylnaphthalene sulfonates, etc.)], salicylates, phenates, naphthenates , carbonates, phosphonates and mixtures thereof;
  • Dispersant succinimides (bis- or mono-polybutenyl succinimides), Mannich condensates and borates, etc.
  • Antioxidants hindered phenols and aromatic secondary amines;
  • Oiliness improver Long-chain fatty acids and their esters (oleic acid and oleic acid esters, etc.), long-chain amines and their amides (oleylamine and oleylamide, etc.), etc.
  • Pour point depressant Polyalkyl methacryl
  • One of these additives may be added, or two or more additives may be added as necessary.
  • a mixture of these additives is sometimes called a performance additive or a package additive, and may be added.
  • the content of each of these additives is preferably 0.1 to 15% by weight based on the total amount of the lubricating oil composition.
  • the total content of each additive is preferably 0.1 to 30% by weight, more preferably 0.3 to 20% by weight, and further preferably 3 to 10% by weight based on the total amount of the lubricating oil composition. %.
  • the viscosity index of the lubricating oil composition is 250 to 290 from the viewpoint of fuel economy. is preferred, more preferably 260-280.
  • the viscosity index of the lubricating oil composition is 300 to 330 from the viewpoint of fuel economy. is preferred, more preferably 310-325.
  • the HTHS viscosity (100° C.) (according to ASTM D4683) of the lubricating oil composition is 3.50 to 4.0 from the viewpoint of fuel saving. 50 mPa ⁇ s is preferable, and 3.60 to 4.30 mPa ⁇ s is more preferable.
  • the HTHS viscosity (100° C.) (according to ASTM D4683) of the lubricating oil composition is 4.00 to 5.00 from the viewpoint of fuel saving. 0 mPa ⁇ s is preferable, and 4.10 to 4.70 mPa ⁇ s is more preferable.
  • the kinematic viscosity (100 ° C.) of the lubricating oil composition is from the viewpoint of fuel economy. , 6.00 to 6.70 mm 2 /s, more preferably 6.10 to 6.60 mm 2 /s.
  • the kinematic viscosity (100 ° C.) of the lubricating oil composition is from the viewpoint of fuel economy. , 7.40 to 7.80 mm 2 /s, more preferably 7.50 to 7.70 mm 2 /s.
  • the kinematic viscosity (40 ° C.) of the lubricating oil composition is from the viewpoint of fuel economy. , 22.0 to 23.5 mm 2 /s, more preferably 22.5 to 23.0 mm 2 /s.
  • the kinematic viscosity (40 ° C.) of the lubricating oil composition is, from the viewpoint of fuel saving, It is preferably from 22.5 to 25.0 mm 2 /s, more preferably from 23.0 to 24.5 mm 2 /s.
  • the lubricating oil composition of the present invention includes gear oils (differential oils, industrial gear oils, etc.), MTF, transmission oils [ATF, DCTF, belt-CVTF, etc.], traction oils (toroidal-CVTF, etc.), shock absorber oils, It is suitably used for power steering fluids, hydraulic fluids (construction machinery hydraulic fluids, industrial hydraulic fluids, etc.) and engine oils (for gasoline and diesel), especially lubricating oil compositions for internal combustion engines, especially for hybrid vehicles. It can be suitably used as a lubricating oil composition.
  • the present disclosure (1) is a (co)polymer (A) containing a polyolefin monomer (a) represented by the following general formula (1) as an essential constituent monomer, and A viscosity index improver composition comprising a GTL oil (B) having a viscosity of ⁇ 2.6 mm 2 /s.
  • R 1 is a hydrogen atom or a methyl group
  • -X 1 - is a group represented by -O-, -O(AO) m - or -NH-, and A has 2 carbon atoms
  • m is an integer of 1 to 10, and when m is 2 or more, A may be the same or different
  • R 2 is a carbonization containing a 1,2-butylene group as a structural unit A residue obtained by removing one hydrogen atom from a hydrogen polymer
  • p is a number of 0 or 1;
  • the ratio ⁇ (A)/(B) ⁇ of the weight of the (co)polymer (A) and the weight of the GTL oil (B) contained in the viscosity index improver composition is The viscosity index improver composition according to (1) of the present disclosure, which is 0.1 to 10.
  • the present disclosure (3) is the present disclosure (1) or (2), wherein the (co)polymer (A) has a solubility parameter of 8.0 to 10.0 (cal/cm 3 ) 1/2 is a viscosity index improver composition.
  • the (co)polymer (A) contains a (meth)acrylic acid alkyl ester (b) having an alkyl group having 1 to 4 carbon atoms and/or an alkyl group having 9 to 36 carbon atoms.
  • the viscosity index improver composition according to any one of (1) to (3) of the present disclosure, which is a copolymer containing a (meth)acryloyl monomer (c) having as a constituent monomer.
  • the present disclosure (5) is the present disclosure (4), wherein the (co)polymer (A) is a copolymer containing a monomer (d) represented by the following general formula (2) as a constituent monomer It is a viscosity index improver composition according to.
  • R 3 is a hydrogen atom or a methyl group
  • -X 2 - is a group represented by -O- or -NH-
  • R 4 is an alkylene group having 2 to 4 carbon atoms; an alkyl group having 1 to 18 carbon atoms, or an aryl group having 6 to 20 carbon atoms
  • q is an integer of 1 to 20, and when q is 2 or more, R 4 may be the same or different.
  • the (co)polymer (A) contains the polyolefin-based monomer ( 1 to 50% by weight of a), 1 to 80% by weight of the (meth)acrylic acid alkyl ester (b), 1 to 60% by weight of the monomer (c), and 1 to 1% of the monomer (d)
  • the viscosity index improver composition according to (5) of the present disclosure which is a copolymer containing ⁇ 35% by weight.
  • the present disclosure (7) is the viscosity according to any one of the present disclosure (1) to (6), wherein the (co)polymer (A) has a weight average molecular weight of 5,000 to 2,000,000.
  • An index improver composition is the viscosity according to any one of the present disclosure (1) to (6), wherein the (co)polymer (A) has a weight average molecular weight of 5,000 to 2,000,000.
  • the present disclosure (8) further includes any one of the present disclosure (1) to (7), which contains a base oil of API classification Groups I to V as a base oil other than the GTL oil (B) A viscosity index improver composition as described.
  • (9) of the present disclosure is a viscosity index improver composition according to any one of (1) to (8) of the present disclosure, a detergent, a dispersant, an antioxidant, an oiliness improver, and a pour point depressant , and at least one additive selected from the group consisting of friction and wear modifiers, extreme pressure agents, defoamers, demulsifiers, metal deactivators and corrosion inhibitors.
  • the organic phase of the reaction solution was collected with a separating funnel, heated to 70° C., and the solvent was removed under reduced pressure of 0.027 to 0.040 MPa over 2 hours.
  • the obtained polybutadiene containing a hydroxyl group at one end was transferred to a reaction vessel equipped with a temperature control device, a stirrer and a hydrogen introduction tube, and 150 parts by weight of tetrahydrofuran was added to uniformly dissolve the polybutadiene.
  • a suspension prepared by mixing 10 parts by weight of palladium carbon and 50 parts by weight of tetrahydrofuran in advance the mixture was reacted at room temperature for 8 hours while supplying hydrogen into the liquid at a flow rate of 30 mL/min from the hydrogen introduction pipe. Ta.
  • the molecular weight of the obtained monomer (a-1) was measured by GPC, and the ratio of 1,2-butylene groups was measured by 13 C-NMR.
  • Mw 6,900
  • Mn 6,800
  • the ratio of 1,2-butylene groups 45 mol%
  • -X 1 - in general formula (1) is -O(CH 2 CH 2 O) 1 -
  • the group represented, p 0.
  • Example 1 Hydrocarbon oil-1 (SP value: 8.3 (cal/cm 3 ) 1/2 , 100° C.) was added to a reaction vessel equipped with a stirrer, a heating/cooling device, a thermometer, and a nitrogen inlet tube as a base oil for polymerization.
  • Kinematic viscosity: 4.2 mm 2 /s, viscosity index: 128) 200 parts by weight, a total of 100 parts by weight of the monomer blend for producing the copolymer (A) shown in Table 3 were charged, and nitrogen replacement was performed. (gas phase oxygen concentration 100 ppm), then heated to 76 ° C.
  • the base oil for polymerization and the base oil for dilution are separately mixed, and the kinematic viscosity at 100 ° C. is measured by the method of JIS-K2283 (2000).
  • the input amount of the diluent base oil was determined so that the 100° C. kinematic viscosity of the entire oil could be 2.94 mm 2 /s.
  • the SP value of the obtained copolymer (A-1) was calculated by the above method, and the Mw was measured by the above method. Table 3 shows the results.
  • KV 100 in Tables 3 to 13 means kinematic viscosity at 100°C.
  • Example 1 The kinematic viscosity at 100° C. of the entire base oil was adjusted to 2.94 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 3, and 20.0 Viscosity index improver compositions (R-2 to R-3, S-1) containing 1% by weight of the copolymer (A-1) were obtained.
  • Example 4 Comparative Example 2> The 100° C. kinematic viscosity of the entire base oil was adjusted to 2.60 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 4, and 20% by weight Viscosity index improver compositions (R-4, S-2) containing the copolymer (A-1) were obtained.
  • Examples 5 to 6 Comparative Example 3> The kinematic viscosity at 100° C. of the entire base oil was adjusted to 2.05 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 5, and 15% by weight Viscosity index improver compositions (R-5 to R-6, S-3) containing the copolymer (A-1) were obtained.
  • Example 4 The 100° C. kinematic viscosity of the entire base oil was adjusted to 2.05 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 6, and the content was 25% by weight. Viscosity index improver compositions (R-7 to R-8, S-4) containing the copolymer (A-1) were obtained.
  • Example 9 Comparative Example 5> The 100° C. kinematic viscosity of the entire base oil was adjusted to 3.45 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 7, and 20% by weight Viscosity index improver compositions (R-9, S-5) containing the copolymer (A-1) were obtained.
  • Example 10 Comparative Example 6> The kinematic viscosity at 100° C. of the entire base oil was adjusted to 2.36 mm 2 /s in the same manner as in Example 1 except that the base oil for polymerization and the base oil for dilution were those shown in Table 8, and the content was 18% by weight.
  • Example 11 Comparative Example 7> The 100° C. kinematic viscosity of the entire base oil was adjusted to 2.75 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 9, and 20% by weight A viscosity index improver composition (R-11, S-7) containing the copolymer (A-1) was obtained.
  • Example 12 Comparative Example 8> The whole base oil was prepared in the same manner as in Example 1 except that the base oil for polymerization, the base oil for dilution and the monomer blend were as shown in Table 10, and the amount of the polymerization catalyst was as shown in Table 10. was adjusted to 2.36 mm 2 /s to obtain viscosity index improver compositions (R-12, S-8) containing 15.0% by weight of the copolymer (A-2). Ta.
  • Example 13 Comparative Example 9> The whole base oil was prepared in the same manner as in Example 1 except that the base oil for polymerization, the base oil for dilution and the monomer blend were as shown in Table 11, and the amount of the polymerization catalyst was as shown in Table 11. was adjusted to 3.73 mm 2 /s to obtain viscosity index improver compositions (R-13, S-9) containing 22.0% by weight of the copolymer (A-3). Ta.
  • Example 14 Comparative Example 10> The whole base oil was prepared in the same manner as in Example 1 except that the base oil for polymerization, the base oil for dilution and the monomer blend were as shown in Table 12, and the amount of the polymerization catalyst was as shown in Table 12. was adjusted to 2.99 mm 2 /s to obtain viscosity index improver compositions (R-14, S-10) containing 20.0% by weight of the copolymer (A-4). Ta.
  • Example 15 Comparative Example 11> The whole base oil was prepared in the same manner as in Example 1 except that the base oil for polymerization, the base oil for dilution and the monomer blend were as shown in Table 13, and the amount of the polymerization catalyst was as shown in Table 12. was adjusted to 1.67 mm 2 /s to obtain viscosity index improver compositions (R-15, S-11) containing 13.0% by weight of the copolymer (A-5). Ta.
  • compositions of monomers (a) to (d) listed in Tables 3 to 13 are as described below.
  • (c- 3): A mixture of linear and branched alkyl methacrylates having 14 to 16 carbon atoms (a mixture of Neodol 45 manufactured by SHELL (weight ratio
  • Structural units derived from monomers (a-1), (a-2), (c-2), and (c-3) (structure in which carbon-carbon double bonds react to form single bonds ) was calculated based on the following formula.
  • Hydrocarbon oil-1 manufactured by SK Lubricants, product name “Yubase4”, API classification Group III (kinematic viscosity at 100° C.: 4.2 mm 2 /s, kinematic viscosity at 40° C.: 19.12 mm 2 /s)
  • Hydrocarbon oil-2 manufactured by Idemitsu Kosan Co., Ltd., product name “Idemitsu Supersol LA41”, API classification Group I (kinematic viscosity at 100° C.: 1.5 mm 2 /s, kinematic viscosity at 40° C.: 4.26 mm 2 /s)
  • GTL oil-1 Group III of API classification (kinematic viscosity at 100° C.: 1.3 mm 2 /s, kinematic viscosity at 40° C.: 3.4 mm 2 /s)
  • GTL oil-2 Group III of API classification (kinematic viscosity at 100° C.: 2.1 mm 2 /s, kinematic viscosity at 40°
  • Viscosity Index improver Composition-Rheometer ⁇ Method for Measuring Complex Viscosity (30 to 100°C) of Viscosity Index Improver Composition-Rheometer>
  • the viscosity of the viscosity index improver composition in the present specification is measured using a rheometer (rheometer "Physica MCR302" manufactured by Antonoul), and the complex viscosity (mPa s ).
  • the measurement conditions were as follows.
  • Measuring jig Parallel plate (diameter 50mm) Temperature control: Lower surface Peltier gap: 0.5mm Strain amount: 1% Frequency: 1Hz Temperature rise: 5°C/min (30-100°C) Number of data points: 71 points Of the 71 points of data, the highest complex viscosity among the 61 points of data in the range of 40°C to 100°C was taken as the viscosity at the maximum point (mPa ⁇ s).
  • FIGS. 1 to 7 The complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Examples 1 to 11 and Comparative Examples 1 to 7 are shown in FIGS. 1 to 7.
  • FIG. 1 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 1-3 and Comparative Example 1.
  • FIG. 2 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 4 and Comparative Example 2.
  • FIG. 3 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 5-6 and Comparative Example 3.
  • FIG. 4 is a graph showing the complex viscosities at 30-100° C.
  • FIG. 5 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 9 and Comparative Example 5.
  • FIG. 6 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 10 and Comparative Example 6.
  • FIG. 7 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 11 and Comparative Example 7.
  • FIG. Although not shown, the complex viscosities at 30 to 100°C of the viscosity index improver compositions obtained in Examples 12 to 15 and Comparative Examples 8 to 11 were also measured in the same manner. was calculated.
  • ⁇ Method for measuring the viscosity of the lubricating oil composition Kinematic viscosities at 40° C. and 100° C. were measured by the method of JIS-K2283 (2000), and the viscosity index was calculated by the method of JIS-K2283 (2000). It means that the larger the value of the viscosity index, the higher the effect of improving the viscosity index.
  • the viscosity index improver composition of the present invention containing GTL oil (B) having a 100° C. kinematic viscosity of 1.0 to 2.6 mm 2 /s It can be seen that the product has a low viscosity maximum point in the range of 40 to 100°C when combined with the 100°C kinematic viscosity of the base oil, and is excellent in handleability.
  • Example 11 Comparative Example 7 in Table 9 (including GTL oil having a kinematic viscosity at 100°C of 2.7 mm 2 /s)
  • GTL oil (B) had a kinematic viscosity of 1.0 to 1.0 at 100°C.
  • the maximum point of viscosity can be suppressed to an extremely low 77%, indicating excellent handling properties.
  • the viscosity index improver composition of the present invention has a high viscosity index improving effect when added to a lubricating oil composition, and is extremely excellent as a viscosity index improver composition.
  • the viscosity index improver composition of the present invention has a low viscosity maximum point in the range of 40 to 100 ° C., is excellent in handleability during handling, and has an excellent effect of improving the viscosity index.
  • gear oil, etc. MTF, transmission oil [ATF, DCTF and belt-CVTF, etc.], traction oil (toroidal-CVTF, etc.), shock absorber oil, power steering oil, hydraulic oil (construction machine hydraulic oil and industrial hydraulic oil etc.) and engine oils (for gasoline and diesel), particularly lubricating oil compositions for internal combustion engines, particularly lubricating oil compositions for hybrid vehicles.

Abstract

The purpose of the present invention is to provide a viscosity index improver composition which contains a comb-shaped copolymer and has a low local maximum point of viscosity within the range of 40°C to 100°C, while having excellent handling properties. The present invention relates to: a viscosity index improver composition which contains a (co)polymer (A) that comprises a polyolefin monomer (a) represented by general formula (1) as an essential constituent monomer and a GTL oil (B) that has a kinematic viscosity at 100°C of 1.0 to 2.6 mm2/s; a lubricating oil composition which contains this viscosity index improver composition and at least one additive that is selected from the group consisting of a detergent, a dispersant, an antioxidant, an oiliness improver, a pour point depressant, a friction/wear regulator, an extreme-pressure additive, an antifoaming agent, a demulsifier, a metal deactivation agent and a corrosion inhibitor; and the like.

Description

粘度指数向上剤組成物及び潤滑油組成物Viscosity index improver composition and lubricating oil composition
 本発明は、粘度指数向上剤組成物及び潤滑油組成物に関する。 The present invention relates to a viscosity index improver composition and a lubricating oil composition.
 近年、CO排出量低減及び石油資源保護等の実現のために、自動車の省燃費化がより一層要求されている。省燃費化の一つとして、エンジンオイルの低粘度化が挙げられる。しかし、特に高温側で低粘度化しすぎると、液漏れや焼付きといった問題が生じてくる。この問題に対しては米国SAEのエンジン油用粘度規格(SAE J300)で最低保証粘度が定められている。0W-20グレードにおいては、高温高剪断下での粘度(HTHS粘度)として、150℃HTHS粘度(ASTM D4683又はD5481)が2.6mPa・s以上及び0W-16グレードでは2.3mPa・s以上と規定されている。
 また、近年では電気とガソリンを組み合わせたハイブリッド車、プラグインハイブリッド車等のハード面による省燃費化も行われている。このようなハイブリッド車は従来のガソリン車と異なり、走行中のエンジンオイルの温度が低く、具体的にはガソリン車の場合は通常走行時で80~100℃に対して、ハイブリッド車では40~80℃となる。そのため、ハイブリッド車などに使用されるエンジンオイルについては、40℃~80℃領域での低粘度化がより一層求められる。そこで潤滑油に粘度指数向上剤を添加して粘度の温度依存性を改善する方法が広く行われている。粘度指数向上剤としては、メタクリル酸エステル共重合体(特許文献1~3)、櫛型共重合体(特許文献4~6)が使用され、特に櫛型共重合体が粘度の温度依存性を改善する効果が高いことが知られている。
 粘度指数向上剤は、取り扱い性の観点から、基油中に共重合体を高濃度に含む粘度指数向上剤組成物として流通するのが一般的である。しかしながら、櫛型重合体を含む粘度指数向上剤組成物は40~100℃の範囲において粘度の極大点を有し、極大点における粘度が高いため、取り扱い時におけるハンドリング性が悪いとの問題がある。そのため、粘度の極大点が低い粘度指数向上剤組成物が要望されている。
In recent years, in order to reduce CO 2 emissions and conserve petroleum resources, there has been an increasing demand for fuel-saving automobiles. One way to save fuel is to reduce the viscosity of engine oil. However, if the viscosity is too low, especially on the high temperature side, problems such as liquid leakage and seizure will occur. For this problem, the US SAE engine oil viscosity standard (SAE J300) defines the minimum guaranteed viscosity. In the 0W-20 grade, the viscosity (HTHS viscosity) under high temperature and high shear is 150 ° C. HTHS viscosity (ASTM D4683 or D5481) of 2.6 mPa s or more, and 0W-16 grade is 2.3 mPa s or more. stipulated.
Moreover, in recent years, efforts have been made to reduce fuel consumption through the use of hardware such as hybrid vehicles that combine electricity and gasoline, plug-in hybrid vehicles, and the like. Unlike a conventional gasoline vehicle, such a hybrid vehicle has a low engine oil temperature during running. ℃. Therefore, engine oil used in hybrid vehicles and the like is required to have a lower viscosity in the range of 40°C to 80°C. Therefore, a method of adding a viscosity index improver to a lubricating oil to improve the temperature dependence of the viscosity is widely practiced. As viscosity index improvers, methacrylic acid ester copolymers (Patent Documents 1 to 3) and comb copolymers (Patent Documents 4 to 6) are used. It is known to be highly effective in improving
Viscosity index improvers are generally distributed as viscosity index improver compositions containing a high concentration of a copolymer in a base oil, from the viewpoint of ease of handling. However, a viscosity index improver composition containing a comb polymer has a viscosity maximum point in the range of 40 to 100° C., and the viscosity at the maximum point is high, so there is a problem of poor handleability during handling. . Therefore, there is a demand for a viscosity index improver composition having a low maximum viscosity point.
特許第2732187号公報Japanese Patent No. 2732187 特許第2754343号公報Japanese Patent No. 2754343 特許第3831203号公報Japanese Patent No. 3831203 特許第3474918号公報Japanese Patent No. 3474918 特表2008-546894号公報Japanese Patent Publication No. 2008-546894 特表2010-532805号公報Japanese translation of PCT publication No. 2010-532805
 本発明の目的は、櫛型共重合体を含む粘度指数向上剤組成物において、40~100℃の範囲における粘度の極大点が低く、ハンドリング性に優れる粘度指数向上剤組成物を提供することである。 An object of the present invention is to provide a viscosity index improver composition containing a comb copolymer, which has a low viscosity maximum point in the range of 40 to 100° C. and is excellent in handleability. be.
 本発明者等は、鋭意検討した結果、本発明に至った。
 すなわち本発明は、下記一般式(1)で示されるポリオレフィン系単量体(a)を必須構成単量体として含む(共)重合体(A)と、100℃動粘度が1.0~2.6mm/sであるGTL油(B)とを含有してなる粘度指数向上剤組成物;前記粘度指数向上剤組成物と、清浄剤、分散剤、酸化防止剤、油性向上剤、流動点降下剤、摩擦摩耗調整剤、極圧剤、消泡剤、抗乳化剤、金属不活性剤及び腐食防止剤からなる群より選ばれる少なくとも1種の添加剤とを含有してなる潤滑油組成物である。
Figure JPOXMLDOC01-appb-C000003
[一般式(1)においてRは水素原子又はメチル基;-X-は-O-、-O(AO)-又は-NH-で表される基であって、Aは炭素数2~4のアルキレン基であり、mは1~10の整数であり、mが2以上の場合のAは同一でも異なっていてもよい;Rは1,2-ブチレン基を構成単位として含む炭化水素重合体から水素原子を1つ除いた残基;pは0又は1の数である。]
The present inventors arrived at the present invention as a result of intensive studies.
That is, the present invention provides a (co)polymer (A) containing a polyolefin monomer (a) represented by the following general formula (1) as an essential constituent monomer, and A viscosity index improver composition comprising a GTL oil (B) having a viscosity of .6 mm 2 /s; A lubricating oil composition containing at least one additive selected from the group consisting of depressants, friction and wear modifiers, extreme pressure agents, defoamers, demulsifiers, metal deactivators and corrosion inhibitors be.
Figure JPOXMLDOC01-appb-C000003
[In general formula (1), R 1 is a hydrogen atom or a methyl group; -X 1 - is a group represented by -O-, -O(AO) m - or -NH-, and A has 2 carbon atoms; is an alkylene group of ∼4, m is an integer of 1 to 10, and when m is 2 or more, A may be the same or different; R 2 is a carbonization containing a 1,2-butylene group as a structural unit A residue obtained by removing one hydrogen atom from a hydrogen polymer; p is a number of 0 or 1; ]
 本発明の粘度指数向上剤組成物は、40~100℃の範囲における粘度の極大点が低く、ハンドリング性に優れるという効果を奏する。 The viscosity index improver composition of the present invention has a low maximum point of viscosity in the range of 40 to 100°C, and has an effect of being excellent in handleability.
実施例1~3及び比較例1で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。2 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 1-3 and Comparative Example 1. FIG. 実施例4及び比較例2で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。4 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 4 and Comparative Example 2. FIG. 実施例5~6及び比較例3で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。4 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 5-6 and Comparative Example 3. FIG. 実施例7~8及び比較例4で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。4 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 7-8 and Comparative Example 4. FIG. 実施例9及び比較例5で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。2 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 9 and Comparative Example 5. FIG. 実施例10及び比較例6で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。2 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 10 and Comparative Example 6. FIG. 実施例11及び比較例7で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。2 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 11 and Comparative Example 7. FIG.
 本発明の粘度指数向上剤組成物は、下記一般式(1)で示されるポリオレフィン系単量体(a)を必須構成単量体として含む(共)重合体(A)と、100℃動粘度が1.0~2.6mm/sであるGTL油(B)とを含有してなる。
 (共)重合体(A)が構成単量体としてポリオレフィン系単量体(a)を含む場合、基油中に(共)重合体(A)を含む粘度指数向上剤組成物の40~100℃の範囲における粘度の極大点が高いと、製造後の移送等、取り扱い時におけるハンドリング性が悪いという問題が生じる。本発明者等は、(共)重合体(A)と100℃動粘度が1.0~2.6mm/sであるGTL油(B)とを含有する粘度指数向上剤組成物とすることで、40~100℃の範囲において粘度の極大点が低く、ハンドリング性が向上することを見いだしたものである。
 例えば、粘度指数向上剤組成物が(共)重合体(A)を高濃度に含む場合は、40~100℃の範囲における粘度の極大点が高くなりやすいが、(共)重合体(A)と100℃動粘度が1.0~2.6mm/sであるGTL油(B)とを含有する粘度指数向上剤組成物とすることで、40~100℃の範囲における粘度の極大点を低くすることができる。
Figure JPOXMLDOC01-appb-C000004
[一般式(1)においてRは水素原子又はメチル基;-X-は-O-、-O(AO)-又は-NH-で表される基であって、Aは炭素数2~4のアルキレン基であり、mは1~10の整数であり、mが2以上の場合のAは同一でも異なっていてもよい;Rは1,2-ブチレン基を構成単位として含む炭化水素重合体から水素原子を1つ除いた残基;pは0又は1の数である。]
The viscosity index improver composition of the present invention comprises a (co)polymer (A) containing a polyolefin monomer (a) represented by the following general formula (1) as an essential constituent monomer, and a kinematic viscosity at 100° C. is 1.0 to 2.6 mm 2 /s and GTL oil (B).
When the (co)polymer (A) contains a polyolefin monomer (a) as a constituent monomer, the viscosity index improver composition containing the (co)polymer (A) in the base oil has a viscosity index improver composition of 40 to 100. If the maximum point of the viscosity in the range of °C is high, there arises a problem of poor handleability during handling such as transfer after production. The present inventors proposed a viscosity index improver composition containing a (co)polymer (A) and a GTL oil (B) having a kinematic viscosity at 100° C. of 1.0 to 2.6 mm 2 /s. In the range of 40 to 100° C., the maximum point of viscosity is low, and the handleability is improved.
For example, when the viscosity index improver composition contains the (co)polymer (A) at a high concentration, the maximum point of viscosity in the range of 40 to 100° C. tends to be high, but the (co)polymer (A) and a GTL oil (B) having a kinematic viscosity at 100° C. of 1.0 to 2.6 mm 2 /s. can be lowered.
Figure JPOXMLDOC01-appb-C000004
[In general formula (1), R 1 is a hydrogen atom or a methyl group; -X 1 - is a group represented by -O-, -O(AO) m - or -NH-, and A has 2 carbon atoms; is an alkylene group of ∼4, m is an integer of 1 to 10, and when m is 2 or more, A may be the same or different; R 2 is a carbonization containing a 1,2-butylene group as a structural unit A residue obtained by removing one hydrogen atom from a hydrogen polymer; p is a number of 0 or 1; ]
<(共)重合体(A)>
 本発明における(共)重合体(A)は、上記一般式(1)で示されるポリオレフィン系単量体(a)を必須構成単量体とする重合体である。
 本発明におけるポリオレフィン系単量体(a)は、後述する炭化水素重合体を変性し、(メタ)アクリル酸と反応させた単量体である。なお、「(メタ)アクリル」は、メタクリル又はアクリルを意味する。
<(Co)polymer (A)>
The (co)polymer (A) in the present invention is a polymer containing the polyolefin monomer (a) represented by the general formula (1) as an essential constituent monomer.
The polyolefin monomer (a) in the present invention is a monomer obtained by modifying a hydrocarbon polymer described later and reacting it with (meth)acrylic acid. In addition, "(meth)acryl" means methacryl or acryl.
 一般式(1)におけるRは、水素原子又はメチル基である。これらのうち、粘度指数向上効果の観点から好ましいのは、メチル基である。 R 1 in general formula (1) is a hydrogen atom or a methyl group. Among these, the methyl group is preferable from the viewpoint of the effect of improving the viscosity index.
 一般式(1)における-X-は、-O-、-O(AO)-又は-NH-で表される基である。
 Aは炭素数2~4のアルキレン基である。
 炭素数2~4のアルキレン基としては、エチレン基、1,2-又は1,3-プロピレン基、及び1,2-、1,3-又は1,4-ブチレン基等が挙げられる。
 mは1~10の整数であり、実効温度域でのHTHS粘度の観点から好ましくは1~4の整数、更に好ましくは1~2の整数である。
 mが2以上の場合のAは同一でも異なっていてもよく、(AO)部分はランダム結合でもブロック結合でもよい。
 -X-のうち、実効温度域(80~150℃)でのHTHS粘度の観点から好ましいのは、-O-及び-O(AO)-で表される基であり、更に好ましくは-O-及び-O(CHCHO)-で表される基である。
-X 1 - in general formula (1) is a group represented by -O-, -O(AO) m - or -NH-.
A is an alkylene group having 2 to 4 carbon atoms.
Examples of the alkylene group having 2 to 4 carbon atoms include ethylene group, 1,2- or 1,3-propylene group, and 1,2-, 1,3- or 1,4-butylene group.
m is an integer of 1 to 10, preferably an integer of 1 to 4, more preferably an integer of 1 to 2, from the viewpoint of HTHS viscosity in the effective temperature range.
When m is 2 or more, A may be the same or different, and the (AO) m portion may be a random bond or a block bond.
Among -X 1 -, groups represented by -O- and -O(AO) m - are preferable from the viewpoint of HTHS viscosity in the effective temperature range (80 to 150°C), and more preferably - It is a group represented by O— and —O(CH 2 CH 2 O)—.
 pは0又は1の数である。 p is the number of 0 or 1.
 一般式(1)におけるRは、1,2-ブチレン基(-CHCH(CHCH)-又は-CH(CHCH)CH-)を構成単位として含む炭化水素重合体から水素原子を1つ除いた残基である。
 1,2-ブチレン基を構成単位とする炭化水素重合体としては、1-ブテンを構成単量体とする重合体、並びに1,3-ブタジエンを重合した1,2-付加物の末端二重結合を水素化した重合体等が挙げられる。
 炭化水素重合体は、ブロック重合体でもランダム重合体であってもよい。
 1,2-ブチレン基を構成単位として含む炭化水素重合体は、1,2-ブチレン基以外の構成単位を更に含む炭化水素重合体であってもよい。
 炭化水素重合体を構成する構成単量体としては、(1)脂肪族不飽和炭化水素、(2)脂環式不飽和炭化水素及び(3)芳香族基含有不飽和炭化水素等が挙げられる。炭化水素重合体が、二重結合を有する場合には、水素添加により、二重結合の一部又は全部を水素化したものであってもよい。
R 2 in general formula (1) is a hydrocarbon polymer containing a 1,2-butylene group (—CH 2 CH(CH 2 CH 3 )— or —CH(CH 2 CH 3 )CH 2 —) as a structural unit. is a residue obtained by removing one hydrogen atom from
Hydrocarbon polymers having a 1,2-butylene group as a constituent unit include polymers having 1-butene as a constituent monomer, and 1,2-adducts obtained by polymerizing 1,3-butadiene. Examples thereof include polymers in which bonds are hydrogenated.
The hydrocarbon polymer may be a block polymer or a random polymer.
The hydrocarbon polymer containing a 1,2-butylene group as a structural unit may be a hydrocarbon polymer further containing a structural unit other than the 1,2-butylene group.
Constituent monomers constituting the hydrocarbon polymer include (1) aliphatic unsaturated hydrocarbons, (2) alicyclic unsaturated hydrocarbons and (3) aromatic group-containing unsaturated hydrocarbons. . When the hydrocarbon polymer has double bonds, it may be obtained by hydrogenating part or all of the double bonds by hydrogenation.
 炭化水素重合体を構成する構成単量体としては、
(1)脂肪族不飽和炭化水素[炭素数2~36のオレフィン(例えば、エチレン、プロピレン、イソブテン、1-ブテン、2-ブテン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン、トリアコセン及びヘキサトリアコセン等)、炭素数2~36のジエン(例えば1,2-ブタジエン、1,3-ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエン及び1,7-オクタジエン等)等]
(2)脂環式不飽和炭化水素[例えばシクロヘキセン、(ジ)シクロペンタジエン、ピネン、リモネン、インデン、ビニルシクロヘキセン及びエチリデンビシクロヘプテン等]
(3)芳香族基含有不飽和炭化水素(例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、クロチルベンゼン、ビニルナフタレン、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン及びトリビニルベンゼン等)等が挙げられる。
 炭化水素重合体を構成する構成単量体が二重結合を2つ以上有する場合には、炭化水素重合体において構成単量体に由来する二重結合の一部又は全部が水素化されていてもよい。
As the constituent monomers constituting the hydrocarbon polymer,
(1) Aliphatic unsaturated hydrocarbons [olefins having 2 to 36 carbon atoms (e.g., ethylene, propylene, isobutene, 1-butene, 2-butene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, triacocene and hexadecene triacosene, etc.), dienes having 2 to 36 carbon atoms (e.g., 1,2-butadiene, 1,3-butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.)]
(2) alicyclic unsaturated hydrocarbons [e.g. cyclohexene, (di)cyclopentadiene, pinene, limonene, indene, vinylcyclohexene and ethylidenebicycloheptene, etc.]
(3) aromatic group-containing unsaturated hydrocarbons (e.g. styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, crotyl benzene, vinylnaphthalene, divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, etc.).
When the constituent monomers constituting the hydrocarbon polymer have two or more double bonds, part or all of the double bonds derived from the constituent monomers in the hydrocarbon polymer are hydrogenated. good too.
 一態様において、Rにおける炭化水素重合体は、構成単量体として炭素数4の単量体のみを用いた炭化水素重合体であってよく、炭素数4の単量体は、1-ブテン及び1,3-ブタジエンからなる群より選択される少なくとも1種、又は、イソブテンと1-ブテン及び1,3-ブタジエンからなる群より選択される少なくとも1種との併用であってよい。構成単量体として1,3-ブタジエンを用いる場合、炭化水素重合体において1,3-ブタジエンの1,2-付加物の末端二重結合が水素化されていてもよい。 In one embodiment, the hydrocarbon polymer for R 2 may be a hydrocarbon polymer using only a monomer having 4 carbon atoms as a constituent monomer, and the monomer having 4 carbon atoms is 1-butene and 1,3-butadiene, or a combination of isobutene and at least one selected from the group consisting of 1-butene and 1,3-butadiene. When 1,3-butadiene is used as a constituent monomer, the terminal double bond of the 1,2-adduct of 1,3-butadiene in the hydrocarbon polymer may be hydrogenated.
 単量体(a)の数平均分子量(以下Mnと略記する)は好ましくは800~10,000であり、より好ましくは1,000~9,500であり、さらに好ましくは1,200~9,000、特に好ましくは2,000~8,700である。単量体(a)のMnが800以上であるとGTL油(B)への溶解性が良好である傾向があり、10,000以下であると他の単量体との共重合性が良好である傾向がある。 The number average molecular weight (hereinafter abbreviated as Mn) of the monomer (a) is preferably from 800 to 10,000, more preferably from 1,000 to 9,500, still more preferably from 1,200 to 9,500. 000, particularly preferably 2,000 to 8,700. When the Mn of the monomer (a) is 800 or more, the solubility in the GTL oil (B) tends to be good, and when it is 10,000 or less, the copolymerizability with other monomers is good. tend to be
 本発明において、重量平均分子量(以下Mwと略記する)及びMnは以下の条件でゲルパーミエーションクロマトグラフィー(以下GPCと略記する)によって測定することができる。
<Mw及びMnの測定条件>
装置   :「HLC-8320GPC」[東ソー(株)製]
カラム  :「TSKgel GMHXL」[東ソー(株)製]2本
      「TSKgel Multipore HXL-M」 1本
測定温度 :40℃
試料溶液 :0.25重量%のテトラヒドロフラン溶液
溶液注入量:10.0μl
検出装置 :屈折率検出器
基準物質 :標準ポリスチレン(TS 基準物質 :標準ポリスチレン(TSKstandard POLYSTYRENE))
12点(分子量:589、1,050、2,630、9,100、19,500、37,900、96,400、190,000、355,000、1,090,000、2,110,000、4,480,000)[東ソー(株)製]
In the present invention, the weight average molecular weight (hereinafter abbreviated as Mw) and Mn can be measured by gel permeation chromatography (hereinafter abbreviated as GPC) under the following conditions.
<Mw and Mn measurement conditions>
Apparatus: "HLC-8320GPC" [manufactured by Tosoh Corporation]
Column: 2 "TSKgel GMHXL" [manufactured by Tosoh Corporation] 1 "TSKgel Multipore H XL -M" Measurement temperature: 40 ° C.
Sample solution: 0.25% by weight tetrahydrofuran solution Injection amount: 10.0 μl
Detection device: refractive index detector Reference material: standard polystyrene (TS reference material: standard polystyrene (TSKstandard POLYSTYRENE))
12 points (molecular weight: 589, 1,050, 2,630, 9,100, 19,500, 37,900, 96,400, 190,000, 355,000, 1,090,000, 2,110,000 , 4,480,000) [manufactured by Tosoh Corporation]
 単量体(a)は、炭化水素重合体の片末端に水酸基を導入して得られた、片末端に水酸基を含有する重合体(Y)と、(メタ)アクリル酸とのエステル化反応により得ることができる。あるいは、片末端に水酸基を含有する重合体(Y)と(メタ)アクリル酸メチル等の(メタ)アクリル酸アルキル(好ましくは炭素数1~4)エステルとのエステル交換反応により得ることができる。 The monomer (a) is obtained by introducing a hydroxyl group at one end of a hydrocarbon polymer, and a polymer (Y) containing a hydroxyl group at one end, and (meth)acrylic acid through an esterification reaction. Obtainable. Alternatively, it can be obtained by a transesterification reaction between a polymer (Y) containing a hydroxyl group at one end and an alkyl (meth)acrylate (preferably having 1 to 4 carbon atoms) such as methyl (meth)acrylate.
 片末端に水酸基を含有する重合体(Y)の具体例としては、以下の(Y1)~(Y4)が挙げられる。
 アルキレンオキサイド付加物(Y1);不飽和炭化水素(x)をイオン重合触媒(ナトリウム触媒等)存在下に重合して得られた炭化水素重合体に、アルキレンオキサイド(エチレンオキサイド及びプロピレンオキサイド等)を付加して得られたもの等(この場合、単量体(a)は、一般式(1)において、-X-が-(AO)-であり、p=0である化合物)。
 ヒドロホウ素化物(Y2);片末端に二重結合を有する不飽和炭化水素(x)の炭化水素重合体のヒドロホウ素化反応物(例えば米国特許第4,316,973号明細書に記載のもの)等(この場合、単量体(a)は、一般式(1)において、-X-が-O-であり、p=0である化合物)。
 無水マレイン酸-エン-アミノアルコール付加物(Y3);片末端に二重結合を有する不飽和炭化水素(x)の炭化水素重合体と無水マレイン酸とのエン反応で得られた反応物を、アミノアルコールでイミド化して得られたもの等(この場合、単量体(a)は、一般式(1)において、-X-が-O-であり、p=1である化合物)。
 ヒドロホルミル-水素化物(Y4);片末端に二重結合を有する不飽和炭化水素(x)の炭化水素重合体をヒドロホルミル化し、次いで水素化反応して得られたもの(例えば特開昭63-175096号公報に記載のもの)等(この場合、単量体(a)は、一般式(1)において、-X-が-O-であり、p=0である化合物)。
 これらの片末端に水酸基を含有する重合体(Y)のうち、粘度指数向上効果の観点から、好ましいのはアルキレンオキサイド付加物(Y1)、ヒドロホウ素化物(Y2)であり、より好ましいのはアルキレンオキサイド付加物(Y1)である。
Specific examples of the polymer (Y) containing a hydroxyl group at one end include the following (Y1) to (Y4).
Alkylene oxide adduct (Y1): A hydrocarbon polymer obtained by polymerizing an unsaturated hydrocarbon (x) in the presence of an ionic polymerization catalyst (such as a sodium catalyst) is added with an alkylene oxide (such as ethylene oxide and propylene oxide). Those obtained by addition (in this case, the monomer (a) is a compound in which -X 1 - is -(AO) m - and p=0 in general formula (1)).
Hydroboride (Y2); a hydroboration reaction product of a hydrocarbon polymer of an unsaturated hydrocarbon (x) having a double bond at one end (for example, those described in U.S. Pat. No. 4,316,973) ) and the like (in this case, the monomer (a) is a compound in which -X 1 - is -O- and p=0 in the general formula (1)).
Maleic anhydride-ene-aminoalcohol adduct (Y3); a reactant obtained by an ene reaction between a hydrocarbon polymer of an unsaturated hydrocarbon (x) having a double bond at one end and maleic anhydride, Those obtained by imidization with an amino alcohol (in this case, the monomer (a) is a compound in which -X 1 - is -O- and p is 1 in general formula (1)).
Hydroformyl hydride (Y4); obtained by hydroformylating a hydrocarbon polymer of unsaturated hydrocarbon (x) having a double bond at one end and then hydrogenating it (for example, JP-A-63-175096 (In this case, the monomer (a) is a compound in which —X 1 — is —O— and p=0 in general formula (1)).
Among these polymers (Y) containing a hydroxyl group at one end, from the viewpoint of improving the viscosity index, preferred are alkylene oxide adducts (Y1) and hydroborides (Y2), and more preferred are alkylene Oxide adduct (Y1).
 一般式(1)中のRを構成する全単量体のうちブタジエンの比率(1,2-ブチレン基を構成単位として含む炭化水素重合体において、全構成単量体中の1,3-ブタジエンの重量割合)は、粘度指数向上効果の観点から、50重量%以上が好ましく、より好ましくは75重量%以上、さらに好ましくは85重量%以上、特に好ましくは90重量%以上である。 Ratio of butadiene among all monomers constituting R 2 in general formula (1) (in a hydrocarbon polymer containing a 1,2-butylene group as a constituent unit, 1,3- The weight percentage of butadiene) is preferably 50% by weight or more, more preferably 75% by weight or more, still more preferably 85% by weight or more, and particularly preferably 90% by weight or more, from the viewpoint of improving the viscosity index.
 一般式(1)における1,2-ブチレン基を構成単位として含む炭化水素重合体において、粘度指数向上効果の観点から、イソブチレン基を有していてもよい。
 イソブチレン基と1,2-ブチレン基との合計量は、粘度指数向上効果の観点から、炭化水素重合体の構成単量体の合計モル数に基づいて、30モル%以上であることが好ましく、40モル%以上であることがより好ましく、さらに好ましくは50モル%以上である。
 炭化水素重合体におけるイソブチレン基と1,2-ブチレン基との合計量の比率を上げる方法として、例えば、下記の方法などを採用することができる。上記のアルキレンオキサイド付加物(Y1)の場合は、例えば1,3-ブタジエンを用いたアニオン重合において、反応温度を低く{例えば1,3-ブタジエンの沸点(-4.4℃)以下}し、且つ、重合開始剤の投入量を1,3-ブタジエンに対して少なくすることにより、炭化水素重合体中のイソブチレン基と1,2-ブチレン基との合計量の比率を上げることができる。上記のヒドロホウ素化物(Y2)、無水マレイン酸-エン-アミノアルコール付加物(Y3)及びヒドロホルミル-水素化物(Y4)の場合は片末端に二重結合を有する炭化水素重合体の重合度を大きくすることで、上記比率を上げることができる。
The hydrocarbon polymer containing a 1,2-butylene group in general formula (1) as a structural unit may have an isobutylene group from the viewpoint of improving the viscosity index.
The total amount of the isobutylene group and the 1,2-butylene group is preferably 30 mol% or more based on the total number of moles of the constituent monomers of the hydrocarbon polymer, from the viewpoint of improving the viscosity index. It is more preferably 40 mol % or more, still more preferably 50 mol % or more.
As a method for increasing the ratio of the total amount of isobutylene groups and 1,2-butylene groups in the hydrocarbon polymer, for example, the following method can be employed. In the case of the above alkylene oxide adduct (Y1), for example, in the anionic polymerization using 1,3-butadiene, the reaction temperature is lowered {for example, the boiling point of 1,3-butadiene (−4.4° C.) or lower}, In addition, by reducing the amount of the polymerization initiator charged relative to 1,3-butadiene, the ratio of the total amount of isobutylene groups and 1,2-butylene groups in the hydrocarbon polymer can be increased. In the case of the above hydroboride (Y2), maleic anhydride-ene-aminoalcohol adduct (Y3) and hydroformyl-hydride (Y4), the degree of polymerization of the hydrocarbon polymer having a double bond at one end is increased. By doing so, the above ratio can be increased.
 一般式(1)における炭化水素重合体の1-ブテン及び/又は1,3-ブタジエン由来の構造について、炭化水素重合体の構成単量体の合計モル数を基準として、1,2-ブチレン基の比率(1,2-ブチレン基のモル数/構成単量体の合計モル数×100)は、粘度指数向上効果及び他の単量体との共重合性の観点から、30モル%以上が好ましく、更に好ましくは30~70モル%である。
 1,2-ブチレン基の比率は、13C-NMRによって測定することができる。具体的には、例えば、単量体として炭素数4のもののみを用いた場合、炭化水素重合体を13C-NMRにより分析し、下記数式(1)を用いて、炭化水素重合体の構成単位の合計モル数に基づく1,2-ブチレン基のモル%を計算し決定することができる。13C-NMRにおいて、1,2-ブチレン基の3級炭素原子(-CHCH(CHCH)-)に由来するピークが26~27ppmの積分値(積分値B)に現れる。上記ピークの積分値と、炭化水素重合体の全炭素のピークに関する積分値(積分値C)から求めることができる。
1,2-ブチレン基の比率(モル%)={(積分値B)×4}/(積分値C)×100 (1)
 なお、1,2-ブチレン基の比率を大きくするには、例えば1,3-ブタジエンを用いたアニオン重合においては、反応温度を1,3-ブタジエンの沸点(-4.4℃)以下とし、且つ、重合開始剤の投入量を1,3-ブタジエンに対して少なくすればよく、1,2-ブチレン基の比率を小さくするには、反応温度を1,3-ブタジエンの沸点以上とし、開始剤量を多くすればよい。
For the structure derived from 1-butene and/or 1,3-butadiene of the hydrocarbon polymer in general formula (1), a 1,2-butylene group based on the total number of moles of the constituent monomers of the hydrocarbon polymer The ratio (number of moles of 1,2-butylene group / total number of moles of constituent monomers × 100) is 30 mol% or more from the viewpoint of the effect of improving the viscosity index and copolymerization with other monomers. It is preferably 30 to 70 mol %, more preferably 30 to 70 mol %.
The proportion of 1,2-butylene groups can be measured by 13 C-NMR. Specifically, for example, when only a monomer having 4 carbon atoms is used, the hydrocarbon polymer is analyzed by 13 C-NMR, and the structure of the hydrocarbon polymer is determined using the following formula (1). The mole percent of 1,2-butylene groups based on the total number of moles of units can be calculated and determined. In 13 C-NMR, a peak derived from the tertiary carbon atom (-CH 2 CH(CH 2 CH 3 )-) of the 1,2-butylene group appears at an integral value (integral value B) of 26 to 27 ppm. It can be obtained from the integrated value of the above peak and the integrated value (integrated value C) of the total carbon peak of the hydrocarbon polymer.
Ratio of 1,2-butylene groups (mol%) = {(integral value B) × 4}/(integral value C) × 100 (1)
In order to increase the ratio of 1,2-butylene groups, for example, in anionic polymerization using 1,3-butadiene, the reaction temperature should be below the boiling point of 1,3-butadiene (−4.4° C.), In addition, the amount of the polymerization initiator to be added may be reduced with respect to 1,3-butadiene. The dosage should be increased.
 一般式(1)における1,2-ブチレン基を構成単位として含む炭化水素重合体におけるイソブチレン基と1,2-ブチレン基との合計量は、13C-NMRによって測定することができる。具体的には、例えば、単量体として炭素数4のもののみを用いた場合、炭化水素重合体を13C-NMRにより分析し、下記数式(2)を用いて計算し、炭化水素重合体の構成単位の合計モル数に基づくイソブチレン基と1,2-ブチレン基との合計のモル%を決定することができる。13C-NMRにおいて、イソブチレン基のメチル基に由来するピークが30~32ppmの積分値(積分値A)、1,2-ブチレン基の分岐メチレン基(-CHCH(CHCH)-又は-CH(CHCH)CH-)に由来するピークが26~27ppmの積分値(積分値B)に現れる。炭化水素重合体の構成単位の合計モル数に基づくイソブチレン基と1,2-ブチレン基との合計のモル%は、上記ピークの積分値と、炭化水素重合体の全炭素のピークに関する積分値(積分値C)から求めることができる。
イソブチレン基と1,2-ブチレン基との合計量(モル%)=100×{(積分値A)×2+(積分値B)×4}/(積分値C) (2)
The total amount of isobutylene groups and 1,2-butylene groups in the hydrocarbon polymer containing 1,2-butylene groups as structural units in general formula (1) can be measured by 13 C-NMR. Specifically, for example, when only a monomer having 4 carbon atoms is used, the hydrocarbon polymer is analyzed by 13 C-NMR and calculated using the following formula (2). It is possible to determine the total mole % of the isobutylene group and the 1,2-butylene group based on the total number of moles of the constitutional units. In 13 C-NMR, the peak derived from the methyl group of the isobutylene group is the integrated value (integral value A) of 30 to 32 ppm, the branched methylene group (-CH 2 CH (CH 2 CH 3 )- of the 1,2-butylene group) Alternatively, a peak derived from —CH(CH 2 CH 3 )CH 2 —) appears at an integral value (integral value B) of 26 to 27 ppm. The total mol % of the isobutylene group and the 1,2-butylene group based on the total number of moles of the structural units of the hydrocarbon polymer is the integral value of the above peak and the integral value of the total carbon peak of the hydrocarbon polymer ( It can be obtained from the integrated value C).
Total amount of isobutylene group and 1,2-butylene group (mol%) = 100 x {(integral value A) x 2 + (integral value B) x 4}/(integral value C) (2)
 Rにおける炭化水素重合体が構成単量体にブタジエン、又は、ブタジエン及び1-ブテンを含む場合、一般式(1)中のRの一部又は全部を構成するブタジエン、又は、ブタジエン及び1-ブテン由来の構造において、1,2-付加体と1,4-付加体のモル比(1,2-付加体/1,4-付加体)は粘度指数向上効果及び他の単量体との共重合性の観点から、好ましくは5/95~95/5、より好ましくは20/80~80/20、さらに好ましくは30/70~70/30である。 When the hydrocarbon polymer for R 2 contains butadiene, or butadiene and 1-butene as constituent monomers, butadiene or butadiene and 1 -In the structure derived from butene, the molar ratio of the 1,2-adduct and the 1,4-adduct (1,2-adduct/1,4-adduct) is effective in improving the viscosity index and with other monomers From the viewpoint of copolymerizability, it is preferably 5/95 to 95/5, more preferably 20/80 to 80/20, still more preferably 30/70 to 70/30.
 Rにおける炭化水素重合体が構成単量体に1,3-ブタジエン、又は、1,3-ブタジエン及び1-ブテンを含む場合、一般式(1)中のRの一部又は全部を構成する1,3-ブタジエン、又は、1,3-ブタジエン及び1-ブテン由来の構造における1,2-付加体/1,4-付加体のモル比はH-NMRや13C-NMR、ラマン分光法などで測定することができる。 When the hydrocarbon polymer for R 2 contains 1,3-butadiene, or 1,3-butadiene and 1-butene as constituent monomers, it constitutes part or all of R 2 in general formula (1) The molar ratio of 1,2-adducts/1,4-adducts in structures derived from 1,3-butadiene or 1,3-butadiene and 1-butene is 1 H-NMR, 13 C-NMR, Raman It can be measured by spectroscopy or the like.
 単量体(a)に由来する構成単位(単量体(a)の(メタ)アクリロイル基が反応して単結合になった構造)の溶解性パラメーター(以下、SP値と略記する)は、(共)重合体(A)のSP値を適度にする観点及びGTL油(B)への溶解性の観点から、好ましくは7.0~9.0(cal/cm1/2であり、より好ましくは7.3~8.5(cal/cm1/2である。
 SP値は、例えば、Rの分岐度が大きく炭素数が大きい方が小さくなる傾向があり、分岐度が小さく炭素数が小さい方が大きくなる傾向がある。
 なお、本発明におけるSP値は、Fedors法(Polymer Engineering and Science,February,1974,Vol.14、No.2、P147~154)の152頁(Table.5)に記載の数値(原子又は官能基の25℃における蒸発熱及びモル体積)を用いて、同153頁の数式(28)により算出される値を意味する。具体的には、Fedors法のパラメータである下記表1に記載のΔe及びviの数値から、分子構造内の原子及び原子団の種類に対応した数値を用いて、下記数式に当てはめることで算出することができる。
SP値=(ΣΔe/Σv1/2
Figure JPOXMLDOC01-appb-T000005
The solubility parameter (hereinafter abbreviated as SP value) of the structural unit derived from the monomer (a) (structure in which the (meth)acryloyl group of the monomer (a) reacts to form a single bond) is From the viewpoint of making the SP value of the (co)polymer (A) moderate and from the viewpoint of the solubility in the GTL oil (B), it is preferably 7.0 to 9.0 (cal/cm 3 ) 1/2. , more preferably 7.3 to 8.5 (cal/cm 3 ) 1/2 .
For example, the SP value tends to be smaller when the degree of branching of R 2 is high and the number of carbon atoms is large, and tends to be large when the degree of branching is low and the number of carbon atoms is small.
In addition, the SP value in the present invention is the numerical value (atom or functional group (heat of vaporization at 25°C and molar volume of Specifically, from the values of Δe i and v i described in Table 1 below, which are the parameters of the Fedors method, values corresponding to the types of atoms and atomic groups in the molecular structure are used and applied to the following formula. can be calculated.
SP value = (ΣΔe i /Σv i ) 1/2
Figure JPOXMLDOC01-appb-T000005
 単量体(a)に由来する構成単位のSP値は、単量体(a)に由来する構成単位の分子構造に基づいて、上記パラメータを用いて算出することができ、使用する単量体(不飽和炭化水素(x))の重量分率を適宜調整することにより所望の範囲にすることができる。
 また、(共)重合体(A)が2種以上の単量体(a)を併用している場合は、単量体(a)を構成する複数の構成単位それぞれのSP値を上記の方法で算出し、それぞれの単量体(a)に由来する構成単位のSP値を、構成単量体単位の重量分率に基づいて相加平均値した値が上記単量体(a)に由来する構成単位のSP値の範囲を満たすことが好ましい。
The SP value of the structural unit derived from the monomer (a) can be calculated using the above parameters based on the molecular structure of the structural unit derived from the monomer (a). A desired range can be obtained by appropriately adjusting the weight fraction of (unsaturated hydrocarbon (x)).
Further, when the (co)polymer (A) uses two or more monomers (a) in combination, the SP value of each of the plurality of structural units constituting the monomer (a) is determined by the above method. Calculated with, the SP value of the structural unit derived from each monomer (a), the arithmetic average value based on the weight fraction of the structural monomer unit derived from the monomer (a) It is preferable to satisfy the SP value range of the structural unit to be used.
 本発明において、(共)重合体(A)は、上記単量体(a)以外に、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステル(b)及び/又は炭素数9~36のアルキル基を有する(メタ)アクリロイル単量体(c)を構成単量体として含む共重合体であってもよい。 In the present invention, the (co)polymer (A) includes, in addition to the monomer (a), a (meth)acrylic acid alkyl ester (b) having an alkyl group having 1 to 4 carbon atoms and/or an alkyl group having 9 carbon atoms. A copolymer containing a (meth)acryloyl monomer (c) having an alkyl group of up to 36 as a constituent monomer may be used.
 炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステル(b)としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸1-メチルプロピル、(メタ)アクリル酸2-メチルプロピル、(メタ)アクリル酸1,1-ジメチルエチル等が挙げられる。
 これらのうち、粘度指数向上効果の観点から、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル及び(メタ)アクリル酸イソブチルが好ましく、さらに好ましくは(メタ)アクリル酸エチル及び(メタ)アクリル酸n-ブチルであり、特に好ましくは(メタ)アクリル酸n-ブチルである。
Examples of the (meth)acrylic acid alkyl ester (b) having an alkyl group having 1 to 4 carbon atoms include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, (meth) ) Isopropyl acrylate, isobutyl (meth)acrylate, n-butyl (meth)acrylate, 1-methylpropyl (meth)acrylate, 2-methylpropyl (meth)acrylate, 1,1-(meth)acrylate dimethylethyl and the like.
Among these, ethyl (meth) acrylate, n-butyl (meth) acrylate and isobutyl (meth) acrylate are preferred, and more preferably ethyl (meth) acrylate and (meth) acrylate, from the viewpoint of improving the viscosity index. It is n-butyl acrylate, particularly preferably n-butyl (meth)acrylate.
 炭素数9~36のアルキル基を有する(メタ)アクリロイル単量体(c)としては、例えば、直鎖状アルキル基を有する(メタ)アクリル酸アルキルエステル{例えば、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸n-トリデシル、(メタ)アクリル酸n-テトラデシル、(メタ)アクリル酸n-ペンタデシル、(メタ)アクリル酸n-ヘキサデシル、(メタ)アクリル酸n-ヘプタデシル、(メタ)アクリル酸n-オクタデシル、(メタ)アクリル酸n-イコシル、(メタ)アクリル酸n-ドコシル、(メタ)アクリル酸n-テトラコシル、(メタ)アクリル酸n-トリアコンチル及び(メタ)アクリル酸n-ヘキサトリアコンチル等}、直鎖状アルキル基を有する(メタ)アクリルアミド{例えば、N-ノニル(メタ)アクリルアミド、N-デシル(メタ)アクリルアミド、N-ドデシル(メタ)アクリルアミド、N-トリデシル(メタ)アクリルアミド、N-テトラデシル(メタ)アクリルアミド、N-ペンタデシル(メタ)アクリルアミド、N-ヘキサデシル(メタ)アクリルアミド等}、分岐鎖状アルキル基を有する(メタ)アクリル酸アルキルエステル{例えば、(メタ)アクリル酸2-メチルウンデシル、(メタ)アクリル酸イソドデシル、(メタ)アクリル酸2-メチルドデシル、(メタ)アクリル酸イソトリデシル、(メタ)アクリル酸2-メチルトリデシル、(メタ)アクリル酸イソテトラデシル、(メタ)アクリル酸2-メチルテトラデシル、(メタ)アクリル酸イソペンタデシル、(メタ)アクリル酸2-メチルペンタデシル、(メタ)アクリル酸イソヘキサデシル、(メタ)アクリル酸2-オクチルデシル、エチレングリコールモノ-2-オクチルペンタデシルエーテルと(メタ)アクリル酸とのエステル化物、(メタ)アクリル酸2-n-オクチルドデシル、(メタ)アクリル酸2-n-デシルテトラデシル、(メタ)アクリル酸2-n-ドデシルヘキサデシル、(メタ)アクリル酸2-n-テトラデシルオクタデシル、(メタ)アクリル酸2-n-ドデシルペンタデシル、(メタ)アクリル酸2-n-テトラデシルヘプタデシル、(メタ)アクリル酸2-n-ヘキサデシルヘプタデシル、(メタ)アクリル酸2-n-ヘプタデシルイコシル、(メタ)アクリル酸2-n-ヘキサデシルドコシル、(メタ)アクリル酸2-n-エイコシルドコシル、(メタ)アクリル酸2-n-テトラコシルヘキサコシル等}、分岐鎖状アルキル基を有する(メタ)アクリルアミド{例えば、N-2-メチルウンデシル(メタ)アクリルアミド、N-イソドデシル(メタ)アクリルアミド、N-2-メチルドデシル(メタ)アクリルアミド、N-イソトリデシル(メタ)アクリルアミド、N-2-メチルトリデシル(メタ)アクリルアミド、N-イソテトラデシル(メタ)アクリルアミド、N-2-メチルテトラデシル(メタ)アクリルアミド、N-イソペンタデシル(メタ)アクリルアミド、N-2-メチルペンタデシル(メタ)アクリルアミド、N-イソヘキサデシル(メタ)アクリルアミド等}、炭素数9~36のアルキルアルコールのアルキレンオキサイド(炭素数2~4)1~20モル付加物と(メタ)アクリル酸とのエステル化物等が挙げられる。
 単量体(c)としては、粘度指数向上効果の観点から、直鎖アルキル(メタ)アクリレート(直鎖状アルキル基を有する(メタ)アクリル酸アルキルエステル)及び分岐アルキル(メタ)アクリレート(分岐鎖状アルキル基を有する(メタ)アクリル酸アルキルエステル)が好ましい。
 単量体(c)としては、Neodol(登録商標)23(炭素数12~15の直鎖及び分岐アルキルアルコールの混合物、SHELL社製)、Neodol(登録商標)45(炭素数14~16の直鎖及び分岐アルキルアルコールの混合物、SHELL社製)等のアルキルアルコールの混合物の(メタ)アクリル酸エステルを用いてもよい。
Examples of the (meth)acryloyl monomer (c) having an alkyl group having 9 to 36 carbon atoms include (meth)acrylic acid alkyl esters having a linear alkyl group {e.g., n-nonyl (meth)acrylate , n-decyl (meth)acrylate, n-dodecyl (meth)acrylate, n-tridecyl (meth)acrylate, n-tetradecyl (meth)acrylate, n-pentadecyl (meth)acrylate, (meth)acrylic n-hexadecyl acid, n-heptadecyl (meth)acrylate, n-octadecyl (meth)acrylate, n-icosyl (meth)acrylate, n-docosyl (meth)acrylate, n-tetracosyl (meth)acrylate, n-triacontyl (meth)acrylate and n-hexatriacontyl (meth)acrylate}, (meth)acrylamide having a linear alkyl group {e.g., N-nonyl (meth)acrylamide, N-decyl (meth) ) acrylamide, N-dodecyl (meth)acrylamide, N-tridecyl (meth)acrylamide, N-tetradecyl (meth)acrylamide, N-pentadecyl (meth)acrylamide, N-hexadecyl (meth)acrylamide, etc.}, branched alkyl group (Meth) acrylic acid alkyl ester {e.g., 2-methylundecyl (meth) acrylate, isododecyl (meth) acrylate, 2-methyldodecyl (meth) acrylate, isotridecyl (meth) acrylate, (meth) 2-methyltridecyl acrylate, isotetradecyl (meth)acrylate, 2-methyltetradecyl (meth)acrylate, isopentadecyl (meth)acrylate, 2-methylpentadecyl (meth)acrylate, (meth) ) isohexadecyl acrylate, 2-octyldecyl (meth)acrylate, an ester of ethylene glycol mono-2-octylpentadecyl ether and (meth)acrylic acid, 2-n-octyldodecyl (meth)acrylate, 2-n-decyltetradecyl (meth)acrylate, 2-n-dodecylhexadecyl (meth)acrylate, 2-n-tetradecyloctadecyl (meth)acrylate, 2-n-dodecylpenta(meth)acrylate Decyl, 2-n-tetradecylheptadecyl (meth)acrylate, 2-n-hexadecylheptadecyl (meth)acrylate, 2-n-heptadecylicosyl (meth)acrylate, 2 (meth)acrylic acid -n-hexadecyl docosyl, 2-n-eicosyl docosyl (meth) acrylate, 2-n-tetracosyl hexacosyl (meth) acrylate, etc.}, (meth) having a branched alkyl group Acrylamide {for example, N-2-methylundecyl (meth)acrylamide, N-isododecyl (meth)acrylamide, N-2-methyldodecyl (meth)acrylamide, N-isotridecyl (meth)acrylamide, N-2-methyltridecyl (Meth)acrylamide, N-isotetradecyl (meth)acrylamide, N-2-methyltetradecyl (meth)acrylamide, N-isopentadecyl (meth)acrylamide, N-2-methylpentadecyl (meth)acrylamide, N -isohexadecyl(meth)acrylamide, etc.}, esters of (meth)acrylic acid and adducts of 1 to 20 moles of alkylene oxide (2 to 4 carbon atoms) of alkyl alcohols having 9 to 36 carbon atoms.
As the monomer (c), linear alkyl (meth)acrylate ((meth)acrylic acid alkyl ester having a linear alkyl group) and branched alkyl (meth)acrylate (branched chain A (meth)acrylic acid alkyl ester having a triangular alkyl group is preferred.
Examples of the monomer (c) include Neodol (registered trademark) 23 (a mixture of linear and branched alkyl alcohols having 12 to 15 carbon atoms, manufactured by SHELL), Neodol (registered trademark) 45 (a straight chain having 14 to 16 carbon atoms, (Meth)acrylic acid esters of mixtures of alkyl alcohols such as mixtures of chained and branched alkyl alcohols (SHELL) may also be used.
 (共)重合体(A)は、下記一般式(2)で示される単量体(d)を構成単量体として含む共重合体であることが好ましい。(共)重合体(A)は、単量体(a)以外に、単量体(b)、単量体(c)及び単量体(d)からなる群より選ばれる少なくとも1種の単量体を構成単量体として含む共重合体であってよく、単量体(a)以外に単量体(b)、単量体(c)及び単量体(d)を構成単量体として含む共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000006
[一般式(2)においてRは水素原子又はメチル基;-X-は-O-又は-NH-で表される基;Rは炭素数2~4のアルキレン基;Rは炭素数1~18のアルキル基、又は炭素数6~20のアリール基;qは1~20の整数であり、qが2以上の場合のRは同一でも異なっていてもよい。]
The (co)polymer (A) is preferably a copolymer containing a monomer (d) represented by the following general formula (2) as a constituent monomer. The (co)polymer (A) comprises, in addition to the monomer (a), at least one monomer selected from the group consisting of the monomer (b), the monomer (c) and the monomer (d). It may be a copolymer containing a monomer as a constituent monomer, and in addition to the monomer (a), the monomer (b), the monomer (c) and the monomer (d) are constituent monomers It may be a copolymer containing as.
Figure JPOXMLDOC01-appb-C000006
[In the general formula (2), R 3 is a hydrogen atom or a methyl group; -X 2 - is a group represented by -O- or -NH-; R 4 is an alkylene group having 2 to 4 carbon atoms; an alkyl group having 1 to 18 carbon atoms, or an aryl group having 6 to 20 carbon atoms; q is an integer of 1 to 20, and when q is 2 or more, R 4 may be the same or different; ]
 一般式(2)におけるRは、水素原子又はメチル基である。これらのうち、粘度指数向上効果及び100℃でのHTHS粘度低減の観点から、好ましいのはメチル基である。 R 3 in general formula (2) is a hydrogen atom or a methyl group. Among these, the methyl group is preferable from the viewpoint of the effect of improving the viscosity index and reducing the HTHS viscosity at 100°C.
 一般式(2)における-X-は、-O-又は-NH-で表される基である。これらのうち、粘度指数向上効果及び100℃でのHTHS粘度低減の観点から、好ましいのは-O-で表される基である。 —X 2 — in general formula (2) is a group represented by —O— or —NH—. Among these, the group represented by -O- is preferable from the viewpoint of improving the viscosity index and reducing the HTHS viscosity at 100°C.
 一般式(2)におけるRは、炭素数2~4のアルキレン基である。
 炭素数2~4のアルキレン基としては、例えば、エチレン基、イソプロピレン基、1,2-又は1,3-プロピレン基、イソブチレン基、及び1,2-、1,3-又は1,4-ブチレン基等が挙げられる。
 ROは炭素数2~4のアルキレンオキシ基であり、例えば、エチレンオキシ基、1,2-又は1,3-プロピレンオキシ基、及び1,2-、1,3-又は1,4-ブチレンオキシ基等が挙げられる。
 一般式(2)におけるqは1~20の整数であり、100℃でのHTHS粘度低減の観点から、好ましくは1~5の整数であり、更に好ましくは1~2の整数である。
 qが2以上の場合のROは同一でも異なっていてもよく、(RO)部分の結合形式はランダム状でもブロック状でもよい。
R 4 in general formula (2) is an alkylene group having 2 to 4 carbon atoms.
Examples of alkylene groups having 2 to 4 carbon atoms include ethylene group, isopropylene group, 1,2- or 1,3-propylene group, isobutylene group, and 1,2-, 1,3- or 1,4- A butylene group etc. are mentioned.
R 4 O is an alkyleneoxy group having 2 to 4 carbon atoms, such as ethyleneoxy group, 1,2- or 1,3-propyleneoxy group, and 1,2-, 1,3- or 1,4- butyleneoxy group and the like.
q in the general formula (2) is an integer of 1 to 20, preferably an integer of 1 to 5, more preferably an integer of 1 to 2, from the viewpoint of reducing the HTHS viscosity at 100°C.
When q is 2 or more, R 4 O may be the same or different, and the bonding form of (R 4 O) q moieties may be random or block.
 一般式(2)におけるRは、炭素数1~18のアルキル基、又は炭素数6~20のアリール基である。Rとしては、例えば、炭素数1~4のアルキル基(炭素数1~4の直鎖又は分岐アルキル基){例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基及びt-ブチル基等}、炭素数5~18のアルキル基{例えば、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等}、炭素数6~20のアリール基{例えば、フェニル基、ベンジル基、フェニルエチル基、トルイル基、ナフチル基、ナフチルメチル基、アントラセニル基、フェナントレニル基、フルオレニル基等}等が挙げられる。
 炭素数1~4の直鎖又は分岐アルキル基のうち、100℃でのHTHS粘度低減の観点から好ましいのは、炭素数1~4の直鎖アルキル基であり、更に好ましいのは炭素数4の直鎖アルキル基(n-ブチル基)である。
R 5 in general formula (2) is an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 20 carbon atoms. R 5 includes, for example, an alkyl group having 1 to 4 carbon atoms (straight or branched alkyl group having 1 to 4 carbon atoms) {eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group , isobutyl group, s-butyl group and t-butyl group, etc.}, alkyl groups having 5 to 18 carbon atoms {e.g., pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, etc.}, aryl group having 6 to 20 carbon atoms {e.g., phenyl group, benzyl group, phenylethyl group, toluyl group, naphthyl group, naphthylmethyl group, anthracenyl group, phenanthrenyl group , a fluorenyl group, etc.} and the like.
Among straight or branched alkyl groups having 1 to 4 carbon atoms, straight chain alkyl groups having 1 to 4 carbon atoms are preferable from the viewpoint of reducing HTHS viscosity at 100° C., and more preferably straight chain alkyl groups having 4 carbon atoms. It is a straight chain alkyl group (n-butyl group).
 単量体(d)として具体的には、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、プロポキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート{例えば、(メタ)アクリル酸2-(n-ブチルオキシ)エチル、(メタ)アクリル酸2-(tert-ブチルオキシ)エチル、(メタ)アクリル酸2-(sec-ブチルオキシ)エチル、(メタ)アクリル酸2-(イソブチルオキシ)エチル等}、メトキシプロピル(メタ)アクリレート、エトキシプロピル(メタ)アクリレート、プロポキシプロピル(メタ)アクリレート、ブトキシプロピル(メタ)アクリレート{例えば、(メタ)アクリル酸2-(n-ブチルオキシ)プロピル、(メタ)アクリル酸2-(tert-ブチルオキシ)プロピル、(メタ)アクリル酸2-(sec-ブチルオキシ)プロピル、(メタ)アクリル酸2-(イソブチルオキシ)プロピル等}、メトキシブチル(メタ)アクリレート、エトキシブチル(メタ)アクリレート、プロポキシブチル(メタ)アクリレート及びブトキシブチル(メタ)アクリレート、並びに炭素数1~4の直鎖又は分岐アルキルアルコールにエチレンオキサイド、プロピレンオキサイド及びブチレンオキサイドからなる群より選ばれる少なくとも1種を2~20モル付加したものと(メタ)アクリル酸とのエステル化物等が挙げられる。
 単量体(d)のうち、粘度指数向上効果及び100℃でのHTHS粘度低減の観点から好ましいのは、エトキシエチル(メタ)アクリレート及びブトキシエチル(メタ)アクリレートであり、更に好ましくはn-ブトキシエチル(メタ)アクリレートである。
Specific examples of the monomer (d) include methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, propoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate {for example, (meth)acrylic acid 2-( n-butyloxy)ethyl, 2-(tert-butyloxy)ethyl (meth)acrylate, 2-(sec-butyloxy)ethyl (meth)acrylate, 2-(isobutyloxy)ethyl (meth)acrylate, etc.}, methoxy Propyl (meth) acrylate, ethoxypropyl (meth) acrylate, propoxypropyl (meth) acrylate, butoxypropyl (meth) acrylate {for example, 2-(n-butyloxy) propyl (meth) acrylate, 2- (meth) acrylate (tert-butyloxy)propyl, 2-(sec-butyloxy)propyl (meth)acrylate, 2-(isobutyloxy)propyl (meth)acrylate}, methoxybutyl (meth)acrylate, ethoxybutyl (meth)acrylate, Propoxybutyl (meth)acrylate and butoxybutyl (meth)acrylate, and 2 to 20 moles of at least one selected from the group consisting of ethylene oxide, propylene oxide and butylene oxide in linear or branched alkyl alcohols having 1 to 4 carbon atoms Esterified products of added products and (meth)acrylic acid, and the like can be mentioned.
Of the monomers (d), ethoxyethyl (meth)acrylate and butoxyethyl (meth)acrylate are preferred from the viewpoint of improving the viscosity index and reducing the HTHS viscosity at 100°C, and n-butoxy is more preferred. It is ethyl (meth)acrylate.
 本発明における(共)重合体(A)は、上記単量体(a)~(d)に加え、さらに単量体(a)~(d)以外の窒素原子含有単量体(e)、水酸基含有単量体(f)、リン原子含有単量体(g)、芳香環含有ビニル単量体(h)、単量体(i)~単量体(m)、等のその他の単量体を構成単量体として含んでもよい。
 単量体(e)~(m)はそれぞれ1種を用いてもよく、2種以上を併用してもよい。
The (co)polymer (A) in the present invention includes, in addition to the above monomers (a) to (d), a nitrogen atom-containing monomer (e) other than the monomers (a) to (d), Other monomers such as hydroxyl group-containing monomer (f), phosphorus atom-containing monomer (g), aromatic ring-containing vinyl monomer (h), monomer (i) to monomer (m), etc. body as a constituent monomer.
Each of the monomers (e) to (m) may be used alone, or two or more thereof may be used in combination.
 窒素原子含有単量体(e)としては、単量体(a)~単量体(d)を除く、以下の単量体(e1)~(e4)が挙げられる。
アミド基含有単量体(e1):
 (メタ)アクリルアミド、N-(N’-モノアルキルアミノアルキル)(メタ)アクリルアミド[窒素原子に炭素数1~4のアルキル基が1つ結合したアミノアルキル基(炭素数2~6)を有するもの;例えばN-(N’-メチルアミノエチル)(メタ)アクリルアミド、N-(N’-エチルアミノエチル)(メタ)アクリルアミド、N-(N’-イソプロピルアミノ-n-ブチル)(メタ)アクリルアミド及びN-(N’-n-又はイソブチルアミノ-n-ブチル)(メタ)アクリルアミド等]、ジアルキル(メタ)アクリルアミド[窒素原子に炭素数1~4のアルキル基が2つ結合したもの;例えばN,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド及びN,N-ジ-n-ブチル(メタ)アクリルアミド等]、N-(N’,N’-ジアルキルアミノアルキル)(メタ)アクリルアミド[アミノアルキル基の窒素原子に炭素数1~4のアルキル基が2つ結合したアミノアルキル基(炭素数2~6)を有するもの;例えばN-(N’,N’-ジメチルアミノエチル)(メタ)アクリルアミド、N-(N’,N’-ジエチルアミノエチル)(メタ)アクリルアミド、N-(N’,N’-ジメチルアミノプロピル)(メタ)アクリルアミド及びN-(N’,N’-ジ-n-ブチルアミノブチル)(メタ)アクリルアミド等];N-ビニルカルボン酸アミド[N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-n-又はイソプロピオン酸アミド及びN-ビニルヒドロキシアセトアミド等]等が挙げられる。
Examples of the nitrogen atom-containing monomer (e) include the following monomers (e1) to (e4), excluding the monomers (a) to (d).
Amido group-containing monomer (e1):
(Meth)acrylamide, N-(N'-monoalkylaminoalkyl)(meth)acrylamide [having an aminoalkyl group (2 to 6 carbon atoms) in which one alkyl group having 1 to 4 carbon atoms is bonded to the nitrogen atom for example N-(N'-methylaminoethyl)(meth)acrylamide, N-(N'-ethylaminoethyl)(meth)acrylamide, N-(N'-isopropylamino-n-butyl)(meth)acrylamide and N-(N'-n- or isobutylamino-n-butyl) (meth)acrylamide, etc.], dialkyl(meth)acrylamide [one in which two alkyl groups having 1 to 4 carbon atoms are bonded to the nitrogen atom; N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-diisopropyl(meth)acrylamide and N,N-di-n-butyl(meth)acrylamide], N-(N', N'-dialkylaminoalkyl)(meth)acrylamide [having an aminoalkyl group (having 2 to 6 carbon atoms) in which two alkyl groups having 1 to 4 carbon atoms are bonded to the nitrogen atom of the aminoalkyl group; N',N'-dimethylaminoethyl)(meth)acrylamide, N-(N',N'-diethylaminoethyl)(meth)acrylamide, N-(N',N'-dimethylaminopropyl)(meth)acrylamide and N-(N',N'-di-n-butylaminobutyl) (meth)acrylamide, etc.]; N-vinylcarboxylic acid amide [N-vinylformamide, N-vinylacetamide, N-vinyl-n- or isopropion acid amide, N-vinylhydroxyacetamide, etc.] and the like.
ニトロ基含有単量体(e2):
 4-ニトロスチレン等が挙げられる。
Nitro group-containing monomer (e2):
4-nitrostyrene and the like.
1~3級アミノ基含有単量体(e3):
 1級アミノ基含有単量体{炭素数3~6のアルケニルアミン[(メタ)アリルアミン及びクロチルアミン等]、アミノアルキル(炭素数2~6)(メタ)アクリレート[アミノエチル(メタ)アクリレート等]};2級アミノ基含有単量体{モノアルキルアミノアルキル(メタ)アクリレート[窒素原子に炭素数1~6のアルキル基が1つ結合したアミノアルキル基(炭素数2~6)を有するもの;例えばN-t-ブチルアミノエチル(メタ)アクリレート及びN-メチルアミノエチル(メタ)アクリレート等]、炭素数6~12のジアルケニルアミン[ジ(メタ)アリルアミン等]};3級アミノ基含有単量体{ジアルキルアミノアルキル(メタ)アクリレート[窒素原子に炭素数1~6のアルキル基が2つ結合したアミノアルキル基(炭素数2~6)を有するもの;例えばN,N-ジメチルアミノエチル(メタ)アクリレート及びN,N-ジエチルアミノエチル(メタ)アクリレート等]、窒素原子を有する脂環式(メタ)アクリレート[モルホリノエチル(メタ)アクリレート等]、芳香族系単量体[N-(N’,N’-ジフェニルアミノエチル)(メタ)アクリルアミド、N,N-ジメチルアミノスチレン、4-ビニルピリジン、2-ビニルピリジン、N-ビニルピロール、N-ビニルピロリドン及びN-ビニルチオピロリドン等]}、及びこれらの塩酸塩、硫酸塩、リン酸塩又は低級アルキル(炭素数1~8)モノカルボン酸(酢酸及びプロピオン酸等)塩等が挙げられる。
Primary to tertiary amino group-containing monomer (e3):
Primary amino group-containing monomers {alkenylamines having 3 to 6 carbon atoms [(meth)allylamine, crotylamine, etc.], aminoalkyl (carbon atoms 2 to 6) (meth)acrylates [aminoethyl (meth)acrylate, etc.]} ; Secondary amino group-containing monomer {monoalkylaminoalkyl (meth)acrylate [having an aminoalkyl group (2 to 6 carbon atoms) in which one alkyl group having 1 to 6 carbon atoms is bonded to a nitrogen atom; Nt-butylaminoethyl (meth)acrylate and N-methylaminoethyl (meth)acrylate, etc.], dialkenylamine having 6 to 12 carbon atoms [di(meth)allylamine, etc.]}; tertiary amino group-containing monomer body {dialkylaminoalkyl (meth)acrylate [those having an aminoalkyl group (2 to 6 carbon atoms) in which two alkyl groups having 1 to 6 carbon atoms are bonded to a nitrogen atom; ) acrylates and N,N-diethylaminoethyl (meth)acrylate, etc.], alicyclic (meth)acrylates having a nitrogen atom [morpholinoethyl (meth)acrylate, etc.], aromatic monomers [N-(N', N′-diphenylaminoethyl)(meth)acrylamide, N,N-dimethylaminostyrene, 4-vinylpyridine, 2-vinylpyridine, N-vinylpyrrole, N-vinylpyrrolidone and N-vinylthiopyrrolidone, etc.]}, and Hydrochlorides, sulfates, phosphates, or lower alkyl (C1-8) monocarboxylic acid (acetic acid, propionic acid, etc.) salts thereof are included.
ニトリル基含有単量体(e4):
 (メタ)アクリロニトリル等が挙げられる。
Nitrile group-containing monomer (e4):
(Meth)acrylonitrile and the like.
 単量体(e)のうち好ましいのは、(e1)及び(e3)であり、更に好ましいのは、N-(N’,N’-ジフェニルアミノエチル)(メタ)アクリルアミド、N-(N’,N’-ジメチルアミノエチル)(メタ)アクリルアミド、N-(N’,N’-ジエチルアミノエチル)(メタ)アクリルアミド、N-(N’,N’-ジメチルアミノプロピル)(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート及びN,N-ジエチルアミノエチル(メタ)アクリレートである。 Among the monomers (e), preferred are (e1) and (e3), more preferred are N-(N',N'-diphenylaminoethyl)(meth)acrylamide, N-(N' , N'-dimethylaminoethyl) (meth)acrylamide, N-(N',N'-diethylaminoethyl) (meth)acrylamide, N-(N',N'-dimethylaminopropyl) (meth)acrylamide, N, N-dimethylaminoethyl (meth)acrylate and N,N-diethylaminoethyl (meth)acrylate.
水酸基含有単量体(f):
 水酸基含有芳香族単量体(p-ヒドロキシスチレン等)、ヒドロキシアルキル(炭素数2~6)(メタ)アクリレート[2-ヒドロキシエチル(メタ)アクリレート、及び2-又は3-ヒドロキシプロピル(メタ)アクリレート等]、モノ-又はビス-ヒドロキシアルキル(炭素数1~4)置換(メタ)アクリルアミド[N,N-ビス(ヒドロキシメチル)(メタ)アクリルアミド、N,N-ビス(ヒドロキシプロピル)(メタ)アクリルアミド、N,N-ビス(2-ヒドロキシブチル)(メタ)アクリルアミド等]、ビニルアルコール、炭素数3~12のアルケノール[(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1-オクテノール及び1-ウンデセノール等]、炭素数4~12のアルケンモノオール又はアルケンジオール[1-ブテン-3-オール、2-ブテン-1-オール及び2-ブテン-1,4-ジオール等]、ヒドロキシアルキル(炭素数1~6)アルケニル(炭素数3~10)エーテル(2-ヒドロキシエチルプロペニルエーテル等)、多価(3~8価)アルコール(グリセリン、ペンタエリスリトール、ソルビトール、ソルビタン、ジグリセリン、糖類及び蔗糖等)のアルケニル(炭素数3~10)エーテル又は(メタ)アクリレート[蔗糖(メタ)アリルエーテル等]等、ポリオキシアルキレングリコール(アルキレン基の炭素数2~4、重合度2~50)、ポリオキシアルキレンポリオール[上記3~8価のアルコールのポリオキシアルキレンエーテル(アルキレン基の炭素数2~4、重合度2~100)]、ポリオキシアルキレングリコール又はポリオキシアルキレンポリオールのアルキル(炭素数1~4)エーテルのモノ(メタ)アクリレート[ポリエチレングリコール(Mn:100~300)モノ(メタ)アクリレート、ポリプロピレングリコール(Mn:130~500)モノ(メタ)アクリレート、メトキシポリエチレングリコール(Mn:110~310)(メタ)アクリレート、ラウリルアルコールエチレンオキサイド付加物(2~30モル)(メタ)アクリレート及びモノ(メタ)アクリル酸ポリオキシエチレン(Mn:150~230)ソルビタン等]等;が挙げられる。
Hydroxyl group-containing monomer (f):
Hydroxyl group-containing aromatic monomer (p-hydroxystyrene, etc.), hydroxyalkyl (C2-C6) (meth)acrylate [2-hydroxyethyl (meth)acrylate, and 2- or 3-hydroxypropyl (meth)acrylate etc.], mono- or bis-hydroxyalkyl (1 to 4 carbon atoms) substituted (meth)acrylamide [N,N-bis(hydroxymethyl)(meth)acrylamide, N,N-bis(hydroxypropyl)(meth)acrylamide , N,N-bis(2-hydroxybutyl) (meth)acrylamide, etc.], vinyl alcohol, alkenols having 3 to 12 carbon atoms [(meth)allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1-octenol and 1 -undecenol, etc.], alkene monools or alkenediols having 4 to 12 carbon atoms [1-butene-3-ol, 2-buten-1-ol and 2-butene-1,4-diol, etc.], hydroxyalkyls (carbon Numbers 1-6) Alkenyl (C 3-10) ethers (2-hydroxyethyl propenyl ether, etc.), polyhydric (tri- to octahydric) alcohols (glycerin, pentaerythritol, sorbitol, sorbitan, diglycerin, sugars and sucrose, etc.) ) of alkenyl (carbon number 3-10) ether or (meth) acrylate [sucrose (meth) allyl ether, etc.], polyoxyalkylene glycol (alkylene group carbon number 2-4, degree of polymerization 2-50), polyoxy Alkylene polyol [polyoxyalkylene ether of the above tri- to octahydric alcohol (alkylene group with 2 to 4 carbon atoms, polymerization degree of 2 to 100)], polyoxyalkylene glycol or polyoxyalkylene polyol alkyl (with 1 to 4 carbon atoms) ) ether mono (meth) acrylate [polyethylene glycol (Mn: 100 to 300) mono (meth) acrylate, polypropylene glycol (Mn: 130 to 500) mono (meth) acrylate, methoxy polyethylene glycol (Mn: 110 to 310) ( meth)acrylate, lauryl alcohol ethylene oxide adduct (2 to 30 mol) (meth)acrylate and polyoxyethylene mono(meth)acrylate (Mn: 150 to 230) sorbitan, etc.];
 リン原子含有単量体(g)としては、以下の単量体(g1)~(g2)が挙げられる。 Examples of the phosphorus atom-containing monomer (g) include the following monomers (g1) to (g2).
リン酸エステル基含有単量体(g1):
 (メタ)アクリロイロキシアルキル(炭素数2~4)リン酸エステル[(メタ)アクリロイロキシエチルホスフェート及び(メタ)アクリロイロキシイソプロピルホスフェート]及びリン酸アルケニルエステル[リン酸ビニル、リン酸アリル、リン酸プロペニル、リン酸イソプロペニル、リン酸ブテニル、リン酸ペンテニル、リン酸オクテニル、リン酸デセニル及びリン酸ドデセニル等]等が挙げられる。なお、「(メタ)アクリロイロキシ」は、アクリロイロキシ又はメタクリロイロキシを意味する。
Phosphate ester group-containing monomer (g1):
(Meth)acryloyloxyalkyl (C2-C4) phosphate [(meth)acryloyloxyethyl phosphate and (meth)acryloyloxyisopropyl phosphate] and alkenyl phosphate [vinyl phosphate, allyl phosphate, propenyl phosphate, isopropenyl phosphate, butenyl phosphate, pentenyl phosphate, octenyl phosphate, decenyl phosphate, dodecenyl phosphate, etc.] and the like. In addition, "(meth)acryloyloxy" means acryloyloxy or methacryloyloxy.
ホスホノ基含有単量体(g2):
 (メタ)アクリロイロキシアルキル(炭素数2~4)ホスホン酸[(メタ)アクリロイロキシエチルホスホン酸等]及びアルケニル(炭素数2~12)ホスホン酸[ビニルホスホン酸、アリルホスホン酸及びオクテニルホスホン酸等]等が挙げられる。
Phosphono group-containing monomer (g2):
(Meth) acryloyloxy alkyl (2-4 carbon atoms) phosphonic acid [(meth) acryloyloxyethyl phosphonic acid, etc.] and alkenyl (2-12 carbon atoms) phosphonic acid [vinyl phosphonic acid, allyl phosphonic acid and octenyl phosphonic acid, etc.] and the like.
 単量体(g)のうち好ましいのは(g1)であり、更に好ましいのは(メタ)アクリロイロキシアルキル(炭素数2~4)リン酸エステルであり、特に好ましいのは(メタ)アクリロイロキシエチルホスフェートである。 Of the monomers (g), preferred is (g1), more preferred is (meth)acryloyloxyalkyl (C 2-4) phosphate ester, and particularly preferred is (meth)acryloyl It is oxyethyl phosphate.
芳香環含有ビニル単量体(h):
 スチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、4-エチルスチレン、4-イソプロピルスチレン、4-ブチルスチレン、4-フェニルスチレン、4-シクロヘキシルスチレン、4-ベンジルスチレン、4-クロチルベンゼン、インデン及び2-ビニルナフタレン等が挙げられる。
Aromatic ring-containing vinyl monomer (h):
Styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, 4-ethylstyrene, 4-isopropylstyrene, 4-butylstyrene, 4-phenylstyrene, 4-cyclohexylstyrene, 4-benzylstyrene, 4-chloro Thylbenzene, indene, 2-vinylnaphthalene, and the like.
 単量体(h)のうち好ましいのは、スチレン及びα-メチルスチレンであり、更に好ましいのはスチレンである。 Among the monomers (h), preferred are styrene and α-methylstyrene, and more preferred is styrene.
 単量体(i)としては、不飽和基を2つ以上有するものが含まれ、例えば、ジビニルベンゼン、炭素数4~12のアルカジエン(ブタジエン、イソプレン、1,4-ペンタジエン、1,6-ヘプタジエン及び1,7-オクタジエン等)、(ジ)シクロペンタジエン、ビニルシクロヘキセン及びエチリデンビシクロヘプテン、リモネン、エチレンジ(メタ)アクリレート、ポリアルキレンオキサイドグリコールジ(メタ)アクリレート、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、国際公開WO01/009242号公報に記載の、Mnが500以上の不飽和カルボン酸とグリコールとのエステル及び不飽和アルコールとカルボン酸のエステルなどが挙げられる。 Examples of monomer (i) include those having two or more unsaturated groups, such as divinylbenzene, alkadiene having 4 to 12 carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,6-heptadiene and 1,7-octadiene, etc.), (di)cyclopentadiene, vinylcyclohexene and ethylidenebicycloheptene, limonene, ethylene di(meth)acrylate, polyalkylene oxide glycol di(meth)acrylate, pentaerythritol triallyl ether, pentaerythritol tri (meth)acrylates, pentaerythritol tetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, esters of unsaturated carboxylic acids with a Mn of 500 or more and glycols and unsaturated esters described in WO01/009242 Examples include esters of alcohols and carboxylic acids.
ビニルエステル、ビニルエーテル、ビニルケトン類(j)(単量体(j)と略記することがある):
 炭素数2~12の飽和脂肪酸のビニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル及びオクタン酸ビニル等)、炭素数1~12のアルキル、アリール又はアルコキシアルキルビニルエーテル(メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、フェニルビニルエーテル、ビニル-2-メトキシエチルエーテル及びビニル-2-ブトキシエチルエーテル等)及び炭素数1~8のアルキル又はアリールビニルケトン(メチルビニルケトン、エチルビニルケトン及びフェニルビニルケトン等)等が挙げられる。
Vinyl esters, vinyl ethers, vinyl ketones (j) (sometimes abbreviated as monomer (j)):
Vinyl esters of saturated fatty acids with 2 to 12 carbon atoms (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl octanoate, etc.), alkyl, aryl or alkoxyalkyl vinyl ethers with 1 to 12 carbon atoms (methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether) , butyl vinyl ether, 2-ethylhexyl vinyl ether, phenyl vinyl ether, vinyl-2-methoxyethyl ether and vinyl-2-butoxyethyl ether, etc.) and alkyl or aryl vinyl ketones having 1 to 8 carbon atoms (methyl vinyl ketone, ethyl vinyl ketone and phenyl vinyl ketone, etc.).
エポキシ基含有単量体(k)(単量体(k)と略記することがある):
 グリシジル(メタ)アクリレート及びグリシジル(メタ)アリルエーテル等が挙げられる。
Epoxy group-containing monomer (k) (sometimes abbreviated as monomer (k)):
glycidyl (meth)acrylate, glycidyl (meth)allyl ether, and the like.
ハロゲン元素含有単量体(l)(単量体(l)と略記することがある):
 塩化ビニル、臭化ビニル、塩化ビニリデン、塩化(メタ)アリル及びハロゲン化スチレン(ジクロロスチレン等)等が挙げられる。
Halogen element-containing monomer (l) (sometimes abbreviated as monomer (l)):
Examples include vinyl chloride, vinyl bromide, vinylidene chloride, (meth)allyl chloride, and halogenated styrene (dichlorostyrene, etc.).
不飽和ポリカルボン酸のエステル(m)(単量体(m)と略記することがある):
 不飽和ポリカルボン酸のアルキル、シクロアルキル又はアラルキルエステル[不飽和ジカルボン酸(マレイン酸、フマール酸及びイタコン酸等)の炭素数1~8のアルキルジエステル(ジメチルマレエート、ジメチルフマレート、ジエチルマレエート及びジオクチルマレエート)]等が挙げられる。
Ester (m) of unsaturated polycarboxylic acid (sometimes abbreviated as monomer (m)):
Alkyl, cycloalkyl or aralkyl esters of unsaturated polycarboxylic acids [alkyl diesters with 1 to 8 carbon atoms of unsaturated dicarboxylic acids (maleic acid, fumaric acid, itaconic acid, etc.) (dimethyl maleate, dimethyl fumarate, diethyl maleate) and dioctyl maleate)] and the like.
 (共)重合体(A)の構成単量体のうち単量体(a)の重量割合は、100℃におけるHTHS粘度低減及び粘度指数向上効果の観点から、(共)重合体(A)を構成する単量体の合計重量に基づいて、好ましくは1~50重量%であり、更に好ましくは5~40重量%、特に好ましくは8~40重量%、最も好ましいのは10~30重量%である。
 (共)重合体(A)の構成単量体のうち単量体(b)の重量割合は、100℃におけるHTHS粘度低減及び粘度指数向上効果の観点から、(共)重合体(A)を構成する単量体の合計重量に基づいて、1~80重量%が好ましく、更に好ましくは3~70重量%である。
 (共)重合体(A)の構成単量体のうち単量体(c)の重量割合は、100℃におけるHTHS粘度低減及び粘度指数向上効果の観点から、(共)重合体(A)を構成する単量体の合計重量に基づいて、1~60重量%が好ましく、更に好ましくは1~35重量%、特に好ましくは2~30重量%である。
 (共)重合体(A)の構成単量体のうち単量体(d)の重量割合は、100℃におけるHTHS粘度低減及び粘度指数向上効果の観点から、(共)重合体(A)を構成する単量体の合計重量に基づいて、1~35重量%が好ましく、更に好ましくは1~20重量%であり、特に好ましくは5~15重量%である。
 (共)重合体(A)の構成単量体のうち単量体(e)~(m)の合計重量割合は、100℃におけるHTHS粘度低減及び粘度指数向上効果の観点から、(共)重合体(A)を構成する単量体の合計重量に基づいて、5重量%以下が好ましく、さらに好ましくは1重量%以下である。
 (共)重合体(A)は、構成単量体として(共)重合体(A)を構成する単量体の合計重量に基づいて単量体(a)を1~50重量%、単量体(b)を1~80重量%、単量体(c)を1~60重量%、単量体(d)を1~35重量%含有する共重合体であってよい。
From the viewpoint of HTHS viscosity reduction and viscosity index improvement effect at 100° C., the weight ratio of the monomer (a) among the constituent monomers of the (co)polymer (A) is Based on the total weight of the constituting monomers, preferably 1 to 50% by weight, more preferably 5 to 40% by weight, particularly preferably 8 to 40% by weight, most preferably 10 to 30% by weight. be.
The weight ratio of the monomer (b) among the constituent monomers of the (co)polymer (A) is set to It is preferably 1 to 80% by weight, more preferably 3 to 70% by weight, based on the total weight of the constituent monomers.
The weight ratio of the monomer (c) among the constituent monomers of the (co)polymer (A) is set to It is preferably 1 to 60% by weight, more preferably 1 to 35% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the constituent monomers.
The weight ratio of the monomer (d) among the constituent monomers of the (co)polymer (A) is set to It is preferably 1 to 35% by weight, more preferably 1 to 20% by weight, particularly preferably 5 to 15% by weight, based on the total weight of the constituent monomers.
The total weight ratio of the monomers (e) to (m) among the constituent monomers of the (co)polymer (A) is the (co)weight It is preferably 5% by weight or less, more preferably 1% by weight or less, based on the total weight of the monomers constituting the coalescence (A).
The (co)polymer (A) contains 1 to 50% by weight of the monomer (a) based on the total weight of the monomers constituting the (co)polymer (A) as constituent monomers, and the monomer It may be a copolymer containing 1 to 80% by weight of body (b), 1 to 60% by weight of monomer (c), and 1 to 35% by weight of monomer (d).
 (共)重合体(A)のMwは、実効温度域でのHTHS粘度及び低温粘度の観点から、好ましくは5,000~2,000,000であり、更に好ましい範囲は、粘度指数向上剤組成物及び粘度指数向上剤組成物を含む潤滑油組成物の用途によって異なり、表2に記載の範囲である。 Mw of the (co)polymer (A) is preferably 5,000 to 2,000,000 from the viewpoint of HTHS viscosity and low-temperature viscosity in the effective temperature range, and a more preferable range is the viscosity index improver composition The range shown in Table 2 varies depending on the product and the application of the lubricating oil composition, including the viscosity index improver composition.
Figure JPOXMLDOC01-appb-T000007
 * :オートマチックトランスミッション油
 ** :ベルト-コンティニュアスリーバリュアブルトランスミッション油
 *** :マニュアルトランスミッション油
Figure JPOXMLDOC01-appb-T000007
* : Automatic transmission oil ** : Belt-continuously variable transmission oil *** : Manual transmission oil
 (共)重合体(A)の分子量分布(Mw/Mn)は、剪断安定性の観点から、1.0~4.0が好ましく、さらに好ましくは1.5~3.5である。
 なお、(共)重合体(A)のMw、分子量分布(Mw/Mn)の測定条件は上記単量体(a)のMw及びMnの測定条件と同様である。
The molecular weight distribution (Mw/Mn) of the (co)polymer (A) is preferably 1.0 to 4.0, more preferably 1.5 to 3.5, from the viewpoint of shear stability.
The conditions for measuring Mw and molecular weight distribution (Mw/Mn) of the (co)polymer (A) are the same as those for measuring Mw and Mn of the monomer (a).
 (共)重合体(A)のSP値は、基油(GTL油(B)及びその他の基油)への溶解性及び粘度指数向上効果の観点から、8.0~10.0(cal/cm1/2が好ましく、更に好ましくは9.0~9.5(cal/cm1/2である。
 共重合体(A)のSP値は、上記SP値の算出方法を用いて(共)重合体(A)を構成する各単量体に由来する構成単位(ビニル基が重合反応により単結合となった構造)のSP値を算出し、仕込み時の各構成単量体の重量分率に基づいて相加平均した値を意味する。例えば、単量体がメタクリル酸メチルの場合、メタクリル酸メチルに由来する構成単位は、原子団として、CHが2個、CHが1個、Cが1個、COが1個なので、下記数式により、メタクリル酸メチルに由来する構成単位のSP値は9.933(cal/cm1/2であることが分かる。同様に計算して、メタクリル酸エチルに由来する構成単位のSP値は9.721(cal/cm1/2であることがわかる。
ΣΔe=1125×2+1180+350+4300=8080
Σv=33.5×2+16.1-19.2+18.0=81.9
δ=(8080/81.9)1/2=9.933(cal/cm1/2
 共重合体がメタクリル酸メチル50重量%とメタクリル酸エチル50重量%との重合物である場合、共重合体のSP値は、下記の通り各単量体に由来する構成単位のSP値の重量分率に基づいて相加平均することにより算出される。
共重合体のSP値=(9.933×50+9.721×50)/100=9.827
 また、(共)重合体(A)のSP値は、使用する単量体、重量分率を適宜調整することにより所望の範囲にすることができる。具体的には、アルキル基の炭素数の長い単量体を多く使用することでSP値を小さくすることができ、アルキル基の炭素数の短い単量体を多く使用することでSP値を大きくすることができる。
The SP value of the (co)polymer (A) is 8.0 to 10.0 (cal/ cm 3 ) 1/2 is preferred, and 9.0 to 9.5 (cal/cm 3 ) 1/2 is more preferred.
The SP value of the copolymer (A) is calculated using the above SP value calculation method, using the structural units derived from each monomer constituting the (co)polymer (A) (a vinyl group is converted into a single bond by a polymerization reaction. It means the value obtained by calculating the SP value of the structure) and arithmetically averaging based on the weight fraction of each constituent monomer at the time of preparation. For example, when the monomer is methyl methacrylate, the constitutional unit derived from methyl methacrylate has 2 CH3 , 1 CH2 , 1 C, and 1 CO2 as atomic groups. From the following formula, it can be seen that the SP value of the structural unit derived from methyl methacrylate is 9.933 (cal/cm 3 ) 1/2 . A similar calculation reveals that the SP value of the structural unit derived from ethyl methacrylate is 9.721 (cal/cm 3 ) 1/2 .
ΣΔe i =1125×2+1180+350+4300=8080
Σv i =33.5×2+16.1−19.2+18.0=81.9
δ=(8080/81.9) 1/2 =9.933 (cal/cm 3 ) 1/2
When the copolymer is a polymer of 50% by weight of methyl methacrylate and 50% by weight of ethyl methacrylate, the SP value of the copolymer is the weight of the SP value of the structural unit derived from each monomer as follows. Calculated by arithmetic averaging based on fractions.
SP value of the copolymer = (9.933 × 50 + 9.721 × 50) / 100 = 9.827
Also, the SP value of the (co)polymer (A) can be adjusted to a desired range by appropriately adjusting the monomers and weight fractions used. Specifically, the SP value can be decreased by using a large amount of a monomer with a long alkyl group having a long carbon number, and the SP value can be increased by using a large amount of a monomer with a short alkyl group having a short carbon number. can do.
 本発明の粘度指数向上剤組成物は、公知の製造方法によって得ることができ、具体的には上記の単量体を基油(GTL油(B)、後述のGTL油(B)以外の基油等)中で重合触媒存在下に溶液重合することにより得る方法等が挙げられる。
 重合触媒としては、アゾ系触媒(2,2’-アゾビス(2-メチルブチロニトリル)及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)等)、過酸化物系触媒(ベンゾイルパーオキサイド、クミルパーオキサイド及びラウリルパーオキサイド等)及びレドックス系触媒(ベンゾイルパーオキサイドと3級アミンの混合物等)が挙げられる。更に分子量調整のために必要により、公知の連鎖移動剤(炭素数2~20のアルキルメルカプタン等)を使用することもできる。
 重合温度は、好ましくは25~140℃であり、更に好ましくは50~120℃である。また、上記基油中での溶液重合の他に、塊状重合、乳化重合又は懸濁重合により(共)重合体(A)を得た後、GTL油(B)を含む基油中に溶解することにより得ることができる。
 粘度指数向上剤組成物中に含まれる(共)重合体(A)の重合形態としては、ランダム付加重合体又は交互共重合体のいずれでもよく、また、グラフト共重合体又はブロック共重合体のいずれでもよい。
The viscosity index improver composition of the present invention can be obtained by a known production method. oil, etc.) in the presence of a polymerization catalyst, and the like.
Polymerization catalysts include azo catalysts (2,2′-azobis(2-methylbutyronitrile) and 2,2′-azobis(2,4-dimethylvaleronitrile), etc.), peroxide catalysts (benzoyl peroxide oxide, cumyl peroxide, lauryl peroxide, etc.) and redox catalysts (mixtures of benzoyl peroxide and tertiary amines, etc.). Further, a known chain transfer agent (alkylmercaptan having 2 to 20 carbon atoms, etc.) may be used if necessary for molecular weight adjustment.
The polymerization temperature is preferably 25-140°C, more preferably 50-120°C. In addition to the solution polymerization in the base oil, after obtaining the (co)polymer (A) by bulk polymerization, emulsion polymerization or suspension polymerization, it is dissolved in the base oil containing the GTL oil (B). can be obtained by
The polymerization form of the (co)polymer (A) contained in the viscosity index improver composition may be either a random addition polymer or an alternating copolymer, or a graft copolymer or block copolymer. Either is fine.
 本発明の粘度指数向上剤組成物中の(共)重合体(A)の含有量は、ハンドリング性の観点から、粘度指数向上剤組成物の重量に基づいて、10~30重量%が好ましく、さらに好ましくは15~25重量%である。 The content of the (co)polymer (A) in the viscosity index improver composition of the present invention is preferably 10 to 30% by weight, based on the weight of the viscosity index improver composition, from the viewpoint of handleability. More preferably 15 to 25% by weight.
 本発明の粘度指数向上剤組成物の40~100℃の範囲における粘度の極大点は、下記の方法で測定することができる。
 40~100℃まで昇温した際の1℃毎の複素粘度(mPa・s)を計測したとき、40℃~100℃の範囲の61点のデータの中で最も高い複素粘度を、粘度指数向上剤組成物の40~100℃の範囲における粘度の極大点とする。
The viscosity maximum point in the range of 40 to 100° C. of the viscosity index improver composition of the present invention can be measured by the following method.
When measuring the complex viscosity (mPa s) for each 1°C when the temperature is raised from 40 to 100°C, the highest complex viscosity among the 61 points of data in the range of 40°C to 100°C is the improvement of the viscosity index. It is defined as the maximum point of viscosity in the range of 40 to 100°C of the agent composition.
<GTL油(B)>
 本発明の粘度指数向上剤組成物は、100℃動粘度が1.0~2.6mm/sであるGTL(Gas to Liquid)油(B)を含有する。GTL油は天然ガスを一酸化炭素と水素とに分解後、分子構造を組み替えて製造される分子量分布の狭い炭化水素である。
 本発明において、粘度指数向上剤組成物は、上記のような低粘度(炭素数の短い)のGTL油(B)を含む基油中に上記(共)重合体(A)を含有する。そのため、上記GTL油(B)中の成分により、40~100℃の範囲における、(共)重合体(A)の構成単量体である単量体(a)由来の側鎖の広がりが抑制され、粘度が上昇しにくく、ハンドリング性に優れる粘度指数向上剤組成物となると推察される。
<GTL oil (B)>
The viscosity index improver composition of the present invention contains a GTL (Gas to Liquid) oil (B) having a 100° C. kinematic viscosity of 1.0 to 2.6 mm 2 /s. GTL oil is a hydrocarbon with a narrow molecular weight distribution produced by recombining molecular structures after decomposing natural gas into carbon monoxide and hydrogen.
In the present invention, the viscosity index improver composition contains the above (co)polymer (A) in a base oil containing the above low-viscosity (low carbon number) GTL oil (B). Therefore, the component in the GTL oil (B) suppresses the spread of the side chain derived from the monomer (a), which is the constituent monomer of the (co)polymer (A), in the range of 40 to 100 ° C. It is speculated that the resulting viscosity index improver composition is less likely to increase in viscosity and has excellent handleability.
 GTL油(B)の100℃における動粘度(JIS-K2283(2000年)で測定したもの)(単位:mm/s、以下略記する)は、1.0~2.6mm/sである。GTL油(B)の100℃における動粘度は、1.0mm/s未満であると、引火点が低すぎるため、粘度指数向上剤組成物を潤滑油組成物中に含有させた際に使用できなくなる問題がある。また、GTL油(B)の100℃における動粘度が、2.6mm/s以下であると、(共)重合体(A)の構成単量体である単量体(a)由来の側鎖の広がりを抑制しやすく、粘度が上昇しにくく、40~100℃の範囲における粘度の極大点が低くなり、ハンドリング性に優れる粘度指数向上剤組成物を得ることができる。
 GTL油(B)の100℃における動粘度(JIS-K2283(2000年)で測定したもの)は、1.3~2.1mm/sであってもよい。
 GTL基油の40℃における動粘度(JIS-K2283(2000年)で測定したもの)(単位:mm/s、以下略記する)は、燃費低減の観点から、2.4~9.5が好ましく、更に好ましくは3.0~7.0である。
The kinematic viscosity of GTL oil (B) at 100° C. (measured according to JIS-K2283 (2000)) (unit: mm 2 /s, abbreviated hereinafter) is 1.0 to 2.6 mm 2 /s. . If the kinematic viscosity of the GTL oil (B) at 100 ° C. is less than 1.0 mm 2 / s, the flash point is too low, so it is used when the viscosity index improver composition is contained in the lubricating oil composition. I have a problem that I can't. Further, when the kinematic viscosity of the GTL oil (B) at 100 ° C. is 2.6 mm 2 / s or less, the side derived from the monomer (a) which is the constituent monomer of the (co)polymer (A) It is possible to obtain a viscosity index improver composition that easily suppresses chain spreading, does not easily increase viscosity, has a low maximum viscosity point in the range of 40 to 100° C., and is excellent in handleability.
The GTL oil (B) may have a kinematic viscosity at 100° C. (measured according to JIS-K2283 (2000)) of 1.3 to 2.1 mm 2 /s.
The kinematic viscosity of the GTL base oil at 40° C. (measured according to JIS-K2283 (2000)) (unit: mm 2 /s, abbreviated hereinafter) is 2.4 to 9.5 from the viewpoint of reducing fuel consumption. It is preferably 3.0 to 7.0, more preferably 3.0 to 7.0.
 GTL油(B)の粘度指数(JIS-K2283(2000年)で測定したもの)は、潤滑油組成物とした場合の粘度指数及び低温流動性の観点から、好ましくは100以上である。 The viscosity index of GTL oil (B) (measured according to JIS-K2283 (2000)) is preferably 100 or more from the viewpoint of viscosity index and low-temperature fluidity when used as a lubricating oil composition.
 本発明の粘度指数向上剤組成物は、上記(共)重合体(A)及び上記GTL油(B)以外に、GTL油(B)以外の基油[例えば、炭化水素油{鉱物油(溶剤精製油、パラフィン油、イソパラフィンを含有する高粘度指数油、イソパラフィンの水素化分解による高粘度指数油及びナフテン油等)、ポリα-オレフィン系合成潤滑油等}、エステル油等]、上記(共)重合体(A)以外の(メタ)アクリル酸アルキルエステル(共)重合体(C)等を含有してもよい。
 GTL油(B)以外の基油としては、(共)重合体(A)の溶解性の観点から、API(アメリカ石油協会)分類のGroupI~Vの基油が好ましい。
The viscosity index improver composition of the present invention includes, in addition to the (co)polymer (A) and the GTL oil (B), a base oil other than the GTL oil (B) [for example, hydrocarbon oil {mineral oil (solvent Refined oil, paraffin oil, high viscosity index oil containing isoparaffin, high viscosity index oil obtained by hydrocracking isoparaffin and naphthenic oil, etc.), poly α-olefin synthetic lubricating oil, etc.}, ester oil, etc.], the above (co- ) A (meth)acrylic acid alkyl ester (co)polymer (C) other than the polymer (A) may be contained.
As the base oil other than the GTL oil (B), from the viewpoint of the solubility of the (co)polymer (A), base oils of API (American Petroleum Institute) Classification Groups I to V are preferable.
 GTL油(B)以外の基油の100℃における動粘度(JIS-K2283(2000年)で測定したもの)(単位:mm/s、以下略記する)は、粘度指数及び実行温度でのHTHS粘度の観点から、1.0~15が好ましく、さらに好ましくは1.0~5.0である。
 GTL油(B)以外の基油の粘度指数(JIS-K2283(2000年)で測定したもの)は、実効温度域でのHTHS粘度の観点から好ましくは100以上であり、更に好ましくは110以上である。
Kinematic viscosity at 100 ° C. of base oils other than GTL oil (B) (measured according to JIS-K2283 (2000)) (unit: mm / s, abbreviated hereinafter) is the viscosity index and HTHS at the execution temperature From the viewpoint of viscosity, it is preferably 1.0 to 15, more preferably 1.0 to 5.0.
The viscosity index (measured according to JIS-K2283 (2000)) of the base oil other than the GTL oil (B) is preferably 100 or more, more preferably 110 or more, from the viewpoint of HTHS viscosity in the effective temperature range. be.
 本発明の粘度指数向上剤組成物中のGTL油(B)の含有量は、ハンドリング性の観点から、粘度指数向上剤組成物の重量に基づいて、2重量%以上が好ましく、さらに好ましくは5重量%以上であり、特に好ましくは20重量%以上である。
 本発明の粘度指数向上剤組成物中のGTL油(B)以外の基油の含有量は、ハンドリング性の観点から、粘度指数向上剤組成物の重量に基づいて、78重量%以下が好ましく、さらに好ましくは68重量%以下である。
 本発明の粘度指数向上剤組成物中の(共)重合体(A)の重量とGTL油(B)の重量との比率{(A)/(B)}は、ハンドリング性の観点から、0.1~10が好ましく、より好ましくは0.1~4.0、さらに好ましくは0.1~2.5であり、特に好ましくは0.1~1.1であり、最も好ましくは0.1~0.7である。
 本発明の粘度指数向上剤組成物中のGTL油(B)の含有量は、ハンドリング性の観点から、粘度指数向上剤組成物に含まれる基油の合計重量に基づいて、5重量%以上が好ましく、さらに好ましくは25重量%以上であり、特に好ましくは50重量%以上である。
 本発明の粘度指数向上剤組成物中のGTL油(B)以外の基油の含有量は、ハンドリング性の観点から、粘度指数向上剤組成物に含まれる基油の合計重量に基づいて、95重量%以下が好ましく、さらに好ましくは75重量%以下であり、特に好ましくは50重量%以下である。
The content of the GTL oil (B) in the viscosity index improver composition of the present invention is preferably 2% by weight or more, more preferably 5% by weight, based on the weight of the viscosity index improver composition, from the viewpoint of handleability. % by weight or more, particularly preferably 20% by weight or more.
The content of the base oil other than the GTL oil (B) in the viscosity index improver composition of the present invention is preferably 78% by weight or less, based on the weight of the viscosity index improver composition, from the viewpoint of handleability. More preferably, it is 68% by weight or less.
The ratio {(A)/(B)} of the weight of the (co)polymer (A) and the weight of the GTL oil (B) in the viscosity index improver composition of the present invention is 0 from the viewpoint of handling. .1 to 10 is preferred, more preferably 0.1 to 4.0, still more preferably 0.1 to 2.5, particularly preferably 0.1 to 1.1, most preferably 0.1 ~0.7.
The content of the GTL oil (B) in the viscosity index improver composition of the present invention is 5% by weight or more, based on the total weight of the base oils contained in the viscosity index improver composition, from the viewpoint of handleability. It is preferably 25% by weight or more, and particularly preferably 50% by weight or more.
The content of the base oils other than the GTL oil (B) in the viscosity index improver composition of the present invention is 95% based on the total weight of the base oils contained in the viscosity index improver composition, from the viewpoint of handleability. % by weight or less is preferable, 75% by weight or less is more preferable, and 50% by weight or less is particularly preferable.
 本発明の粘度指数向上剤組成物は、1種のGTL油(B)を含んでいてもよく、2種以上のGTL油(B)を含んでいてもよい。粘度指数向上剤組成物が2種以上のGTL油(B)を含む場合、GTL油(B)の含有量は、それぞれのGTL油(B)の含有量の合計値を意味する。 The viscosity index improver composition of the present invention may contain one type of GTL oil (B), or may contain two or more types of GTL oil (B). When the viscosity index improver composition contains two or more GTL oils (B), the content of the GTL oils (B) means the total content of the respective GTL oils (B).
<(共)重合体(C)>
 本発明の粘度指数向上剤組成物は、(メタ)アクリル酸アルキルエステル(共)重合体(C)を含有することが低温粘度低減の観点から好ましい。
 (共)重合体(C)としては、単量体(a)を含まない(共)重合体が含まれ、例えば炭素数9~36のアルキル基を有する(メタ)アクリル酸アルキルエステルを必須構成単量体とする(共)重合体等が挙げられる。具体的には、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸n-テトラデシル、(メタ)アクリル酸n-ヘキサデシル及び(メタ)アクリル酸n-オクタデシル共重合体、(メタ)アクリル酸n-オクタデシル/(メタ)アクリル酸n-ドデシル(モル比10~30/90~70)共重合体、(メタ)アクリル酸n-テトラデシル/(メタ)アクリル酸n-ドデシル(モル比10~30/90~70)共重合体、(メタ)アクリル酸n-ヘキサデシル/(メタ)アクリル酸n-ドデシル/(メタ)アクリル酸メチル(モル比20~40/55~75/0~10)共重合体及びアクリル酸n-ドデシル/メタクリル酸n-ドデシル(モル比10~40/90~60)共重合体等が挙げられ、これらは単独でも2種以上を併用してもよい。
<(Co)polymer (C)>
The viscosity index improver composition of the present invention preferably contains the (meth)acrylic acid alkyl ester (co)polymer (C) from the viewpoint of low-temperature viscosity reduction.
The (co)polymer (C) includes a (co)polymer that does not contain the monomer (a), and for example, a (meth)acrylic acid alkyl ester having an alkyl group having 9 to 36 carbon atoms is essential. Examples thereof include (co)polymers used as monomers. Specifically, n-dodecyl (meth)acrylate, n-tetradecyl (meth)acrylate, n-hexadecyl (meth)acrylate and n-octadecyl (meth)acrylate copolymer, n-(meth)acrylate -octadecyl/n-dodecyl (meth)acrylate (molar ratio 10 to 30/90 to 70) copolymer, n-tetradecyl (meth)acrylate/n-dodecyl (meth)acrylate (molar ratio 10 to 30/ 90-70) copolymer, n-hexadecyl (meth)acrylate/n-dodecyl (meth)acrylate/methyl (meth)acrylate (molar ratio 20-40/55-75/0-10) copolymer and n-dodecyl acrylate/n-dodecyl methacrylate (molar ratio 10 to 40/90 to 60) copolymers and the like, and these may be used alone or in combination of two or more.
 (共)重合体(C)のMwは、流動点温度低下の観点から、5,000~100,000が好ましく、さらに好ましくは10,000~80,000である。
 (共)重合体(C)のSP値は、GTL油(B)への溶解性の観点から、7.0~10が好ましく、さらに好ましくは8.0~9.5である。
 なお、(共)重合体(C)のMwの測定条件は上記単量体(a)のMwの測定条件と同様である。
Mw of the (co)polymer (C) is preferably 5,000 to 100,000, more preferably 10,000 to 80,000, from the viewpoint of lowering the pour point temperature.
The SP value of the (co)polymer (C) is preferably 7.0 to 10, more preferably 8.0 to 9.5, from the viewpoint of solubility in the GTL oil (B).
The conditions for measuring the Mw of the (co)polymer (C) are the same as the conditions for measuring the Mw of the monomer (a).
 本発明の粘度指数向上剤組成物中の(共)重合体(C)の含有量は、低温粘度低減の観点から、(共)重合体(A)の重量に基づいて、0.01~30重量%が好ましく、さらに好ましくは0.01~10重量%である。 The content of the (co)polymer (C) in the viscosity index improver composition of the present invention is 0.01 to 30, based on the weight of the (co)polymer (A), from the viewpoint of low-temperature viscosity reduction. % by weight is preferred, and 0.01 to 10% by weight is more preferred.
 本発明の粘度指数向上剤組成物はハンドリング性に優れている。また本発明の粘度指数向上剤組成物を含む潤滑油組成物は、ギヤ油(デファレンシャル油及び工業用ギヤ油等)、MTF、変速機油[ATF、DCTF及びbelt-CVTF等]、トラクション油(トロイダル-CVTF等)、ショックアブソーバー油、パワーステアリング油、作動油(建設機械用作動油及び工業用作動油等)及びエンジン油(ガソリン用及びディーゼル用)に好適に用いることができ、特に内燃機関用の潤滑油組成物、特にハイブリッド車用の潤滑油組成物として好適に使用できる。 The viscosity index improver composition of the present invention has excellent handleability. Lubricating oil compositions containing the viscosity index improver composition of the present invention include gear oils (differential oils, industrial gear oils, etc.), MTF, transmission oils [ATF, DCTF, belt-CVTF, etc.], traction oils (toroidal -CVTF, etc.), shock absorber oil, power steering oil, hydraulic oil (construction machine hydraulic oil and industrial hydraulic oil, etc.) and engine oil (for gasoline and diesel), especially for internal combustion engines can be suitably used as a lubricating oil composition, particularly a lubricating oil composition for hybrid vehicles.
<潤滑油組成物>
 本発明の潤滑油組成物は、本発明の粘度指数向上剤組成物と、清浄剤、分散剤、酸化防止剤、油性向上剤、流動点降下剤、摩擦摩耗調整剤、極圧剤、消泡剤、抗乳化剤、金属不活性剤及び腐食防止剤からなる群より選ばれる少なくとも1種の添加剤を含有してなる。
 本発明の粘度指数向上剤組成物を用いることで、GTL油(B)中の成分の存在により(共)重合体(A)の構成単量体である単量体(a)由来の側鎖の広がりが影響を受け、潤滑油組成物の粘度指数をより高くすることができると推察される。
<Lubricating oil composition>
The lubricating oil composition of the present invention comprises the viscosity index improver composition of the present invention, a detergent, a dispersant, an antioxidant, an oiliness improver, a pour point depressant, a friction and wear modifier, an extreme pressure agent, and an antifoaming agent. at least one additive selected from the group consisting of demulsifiers, demulsifiers, metal deactivators and corrosion inhibitors.
By using the viscosity index improver composition of the present invention, the side chain derived from the monomer (a) which is a constituent monomer of the (co)polymer (A) due to the presence of the component in the GTL oil (B) It is speculated that the spread of is affected and the viscosity index of the lubricating oil composition can be higher.
 潤滑油組成物中の粘度指数向上剤組成物の含有量は、潤滑油組成物の重量に基づいて、粘度指数及びHTHS粘度の観点から、1.5~30重量%が好ましく、更に好ましくは2~20重量%である。
 本発明の潤滑油組成物中の(共)重合体(A)の含有量は、粘度指数向上効果及びコストの観点から、潤滑油組成物の重量に基づいて0.1重量%以上10重量%未満が好ましく、更に好ましくは0.5~3重量%である。
 潤滑油組成物中のGTL油(B)の含有量は、潤滑油組成物の重量に基づいて、燃費低減及びコストの観点から、0.4~27重量%が好ましく、更に好ましくは1~20重量%である。
 本発明の潤滑油組成物中の(共)重合体(C)の含有量は、低温粘度低減の観点から、潤滑油組成物の重量に基づいて0.01~5重量%が好ましい。
 本発明の潤滑油組成物中のGTL油(B)以外の基油の含有量は、燃費低減及びコストの観点から、潤滑油組成物の重量に基づいて、43~94重量%が好ましく、更に好ましくは57~93重量%である。
The content of the viscosity index improver composition in the lubricating oil composition is preferably 1.5 to 30% by weight, more preferably 2, based on the weight of the lubricating oil composition, from the viewpoint of viscosity index and HTHS viscosity. ~20% by weight.
The content of the (co)polymer (A) in the lubricating oil composition of the present invention is 0.1% by weight or more and 10% by weight based on the weight of the lubricating oil composition, from the viewpoint of the effect of improving the viscosity index and cost. It is preferably less than, more preferably 0.5 to 3% by weight.
The content of the GTL oil (B) in the lubricating oil composition is preferably 0.4 to 27% by weight, more preferably 1 to 20%, based on the weight of the lubricating oil composition, from the viewpoint of fuel consumption reduction and cost. % by weight.
The content of the (co)polymer (C) in the lubricating oil composition of the present invention is preferably from 0.01 to 5% by weight based on the weight of the lubricating oil composition from the viewpoint of low-temperature viscosity reduction.
The content of the base oil other than the GTL oil (B) in the lubricating oil composition of the present invention is preferably 43 to 94% by weight, based on the weight of the lubricating oil composition, from the viewpoint of fuel consumption reduction and cost. It is preferably 57 to 93% by weight.
 本発明において添加剤としては、以下のものが挙げられる。
 (1)清浄剤:
 塩基性、過塩基性又は中性の金属塩[スルフォネート(石油スルフォネート、アルキルベンゼンスルフォネート及びアルキルナフタレンスルフォネート等)の過塩基性又はアルカリ土類金属塩等]、サリシレート類、フェネート類、ナフテネート類、カーボネート類、フォスフォネート類及びこれらの混合物;
 (2)分散剤:
 コハク酸イミド類(ビス-又はモノ-ポリブテニルコハク酸イミド類)、マンニッヒ縮合物及びボレート類等;
 (3)酸化防止剤:
 ヒンダードフェノール類及び芳香族2級アミン類等;
 (4)油性向上剤:
 長鎖脂肪酸及びそれらのエステル(オレイン酸及びオレイン酸エステル等)、長鎖アミン及びそれらのアミド(オレイルアミン及びオレイルアミド等)等;
 (5)流動点降下剤:
 ポリアルキルメタクリレート、エチレン-酢酸ビニル共重合体等;
 (6)摩擦摩耗調整剤:
 モリブデン系及び亜鉛系化合物(モリブデンジチオフォスフェート、モリブデンジチオカーバメート及びジンクジアルキルジチオフォスフェート等)等;
 (7)極圧剤:
 硫黄系化合物(モノ又はジスルフィド、スルフォキシド及び硫黄フォスファイド化合物)、フォスファイド化合物及び塩素系化合物(塩素化パラフィン等)等;
 (8)消泡剤:
 シリコン油、金属石けん、脂肪酸エステル及びフォスフェート化合物等;
 (9)抗乳化剤:
 4級アンモニウム塩(テトラアルキルアンモニウム塩等)、硫酸化油及びフォスフェート(ポリオキシエチレン含有非イオン性界面活性剤のフォスフェート等)、炭化水素系溶剤(トルエン、キシレン、エチルベンゼン)等;
 (10)金属不活性剤:
 窒素原子含有化合物(ベンゾトリアゾール等)、窒素原子含有キレート化合物(N,N’-ジサリチデン-1,2-ジアミノプロパン等)、窒素・硫黄原子含有化合物(2-(n-ドデシルチオ)ベンズイミダゾール等)等;
 (11)腐食防止剤:
 窒素原子含有化合物(ベンゾトリアゾール及び1,3,4-チオジアゾリル-2,5-ビスジアルキルジチオカーバメート等)等。
Examples of additives in the present invention include the following.
(1) Detergency:
Basic, overbased or neutral metal salts [such as overbased or alkaline earth metal salts of sulfonates (petroleum sulfonates, alkylbenzene sulfonates and alkylnaphthalene sulfonates, etc.)], salicylates, phenates, naphthenates , carbonates, phosphonates and mixtures thereof;
(2) Dispersant:
succinimides (bis- or mono-polybutenyl succinimides), Mannich condensates and borates, etc.;
(3) Antioxidants:
hindered phenols and aromatic secondary amines;
(4) Oiliness improver:
Long-chain fatty acids and their esters (oleic acid and oleic acid esters, etc.), long-chain amines and their amides (oleylamine and oleylamide, etc.), etc.;
(5) Pour point depressant:
Polyalkyl methacrylate, ethylene-vinyl acetate copolymer, etc.;
(6) Friction and wear modifier:
molybdenum-based and zinc-based compounds (molybdenum dithiophosphate, molybdenum dithiocarbamate and zinc dialkyldithiophosphate, etc.);
(7) extreme pressure agent:
sulfur compounds (mono- or disulfides, sulfoxides and sulfur phosphide compounds), phosphide compounds and chlorine compounds (chlorinated paraffins, etc.);
(8) Defoamer:
Silicon oil, metallic soap, fatty acid ester and phosphate compound, etc.;
(9) Demulsifier:
Quaternary ammonium salts (tetraalkylammonium salts, etc.), sulfated oils and phosphates (polyoxyethylene-containing nonionic surfactant phosphates, etc.), hydrocarbon solvents (toluene, xylene, ethylbenzene), etc.;
(10) Metal deactivator:
nitrogen atom-containing compounds (benzotriazole, etc.), nitrogen atom-containing chelate compounds (N,N'-disalitidene-1,2-diaminopropane, etc.), nitrogen/sulfur atom-containing compounds (2-(n-dodecylthio)benzimidazole, etc.) etc;
(11) Corrosion inhibitor:
nitrogen atom-containing compounds (benzotriazole and 1,3,4-thiodiazolyl-2,5-bisdialkyldithiocarbamate, etc.);
 これらの添加剤は1種だけ添加してもよいし、必要に応じて2つ以上の添加剤を添加することもできる。またこれらの添加剤を配合したものを性能添加剤、又はパッケージ添加剤と呼ぶこともあり、それを添加してもよい。
 これらの添加剤のそれぞれの含有量は潤滑油組成物全量を基準として0.1~15重量%であることが好ましい。また各添加剤を合計した含有量は潤滑油組成物全量を基準として0.1~30重量%が好ましく、さらに好ましくは0.3~20重量%であり、次にさらに好ましくは3~10重量%である。
One of these additives may be added, or two or more additives may be added as necessary. A mixture of these additives is sometimes called a performance additive or a package additive, and may be added.
The content of each of these additives is preferably 0.1 to 15% by weight based on the total amount of the lubricating oil composition. The total content of each additive is preferably 0.1 to 30% by weight, more preferably 0.3 to 20% by weight, and further preferably 3 to 10% by weight based on the total amount of the lubricating oil composition. %.
 潤滑油組成物がエンジン油(0W-16)として使用される場合、潤滑油組成物の粘度指数(JIS-K2283(2000年)で測定したもの)は、省燃費性の観点から、250~290が好ましく、更に好ましくは260~280である。
 潤滑油組成物がエンジン油(0W-20)として使用される場合、潤滑油組成物の粘度指数(JIS-K2283(2000年)で測定したもの)は、省燃費性の観点から、300~330が好ましく、更に好ましくは310~325である。
When the lubricating oil composition is used as an engine oil (0W-16), the viscosity index of the lubricating oil composition (measured according to JIS-K2283 (2000)) is 250 to 290 from the viewpoint of fuel economy. is preferred, more preferably 260-280.
When the lubricating oil composition is used as an engine oil (0W-20), the viscosity index of the lubricating oil composition (measured according to JIS-K2283 (2000)) is 300 to 330 from the viewpoint of fuel economy. is preferred, more preferably 310-325.
 潤滑油組成物がエンジン油(0W-16)として使用される場合、潤滑油組成物のHTHS粘度(100℃)(ASTM D4683に準拠)は、省燃費性の観点から、3.50~4.50mPa・sが好ましく、更に好ましくは3.60~4.30mPa・sである。
 潤滑油組成物がエンジン油(0W-20)として使用される場合、潤滑油組成物のHTHS粘度(100℃)(ASTM D4683に準拠)は、省燃費性の観点から、4.00~5.0mPa・sが好ましく、更に好ましくは4.10~4.70mPa・sである。
When the lubricating oil composition is used as an engine oil (0W-16), the HTHS viscosity (100° C.) (according to ASTM D4683) of the lubricating oil composition is 3.50 to 4.0 from the viewpoint of fuel saving. 50 mPa·s is preferable, and 3.60 to 4.30 mPa·s is more preferable.
When the lubricating oil composition is used as an engine oil (0W-20), the HTHS viscosity (100° C.) (according to ASTM D4683) of the lubricating oil composition is 4.00 to 5.00 from the viewpoint of fuel saving. 0 mPa·s is preferable, and 4.10 to 4.70 mPa·s is more preferable.
 潤滑油組成物がエンジン油(0W-16)として使用される場合、潤滑油組成物の動粘度(100℃)(JIS-K2283(2000年)で測定したもの)は、省燃費性の観点から、6.00~6.70mm/sが好ましく、更に好ましくは6.10~6.60mm/sである。
 潤滑油組成物がエンジン油(0W-20)として使用される場合、潤滑油組成物の動粘度(100℃)(JIS-K2283(2000年)で測定したもの)は、省燃費性の観点から、7.40~7.80mm/sが好ましく、更に好ましくは7.50~7.70mm/sである。
When the lubricating oil composition is used as an engine oil (0W-16), the kinematic viscosity (100 ° C.) of the lubricating oil composition (measured according to JIS-K2283 (2000)) is from the viewpoint of fuel economy. , 6.00 to 6.70 mm 2 /s, more preferably 6.10 to 6.60 mm 2 /s.
When the lubricating oil composition is used as an engine oil (0W-20), the kinematic viscosity (100 ° C.) of the lubricating oil composition (measured according to JIS-K2283 (2000)) is from the viewpoint of fuel economy. , 7.40 to 7.80 mm 2 /s, more preferably 7.50 to 7.70 mm 2 /s.
 潤滑油組成物がエンジン油(0W-16)として使用される場合、潤滑油組成物の動粘度(40℃)(JIS-K2283(2000年)で測定したもの)は、省燃費性の観点から、22.0~23.5mm/sが好ましく、更に好ましくは22.5~23.0mm/sである。
 潤滑油組成物がエンジン油(0W-20)として使用される場合、潤滑油組成物の動粘度(40℃)(JIS-K2283(2000年)で測定したもの)は、省燃費の観点から、22.5~25.0mm/sが好ましく、更に好ましくは23.0~24.5mm/sである。
When the lubricating oil composition is used as an engine oil (0W-16), the kinematic viscosity (40 ° C.) of the lubricating oil composition (measured according to JIS-K2283 (2000)) is from the viewpoint of fuel economy. , 22.0 to 23.5 mm 2 /s, more preferably 22.5 to 23.0 mm 2 /s.
When the lubricating oil composition is used as an engine oil (0W-20), the kinematic viscosity (40 ° C.) of the lubricating oil composition (measured according to JIS-K2283 (2000)) is, from the viewpoint of fuel saving, It is preferably from 22.5 to 25.0 mm 2 /s, more preferably from 23.0 to 24.5 mm 2 /s.
 本発明の潤滑油組成物は、ギヤ油(デファレンシャル油及び工業用ギヤ油等)、MTF、変速機油[ATF、DCTF及びbelt-CVTF等]、トラクション油(トロイダル-CVTF等)、ショックアブソーバー油、パワーステアリング油、作動油(建設機械用作動油及び工業用作動油等)及びエンジン油(ガソリン用及びディーゼル用)に好適に用いられ、特に内燃機関用の潤滑油組成物、特にハイブリッド車用の潤滑油組成物として好適に使用できる。 The lubricating oil composition of the present invention includes gear oils (differential oils, industrial gear oils, etc.), MTF, transmission oils [ATF, DCTF, belt-CVTF, etc.], traction oils (toroidal-CVTF, etc.), shock absorber oils, It is suitably used for power steering fluids, hydraulic fluids (construction machinery hydraulic fluids, industrial hydraulic fluids, etc.) and engine oils (for gasoline and diesel), especially lubricating oil compositions for internal combustion engines, especially for hybrid vehicles. It can be suitably used as a lubricating oil composition.
 本明細書には以下の事項が開示されている。 The following items are disclosed in this specification.
 本開示(1)は、下記一般式(1)で示されるポリオレフィン系単量体(a)を必須構成単量体として含む(共)重合体(A)と、100℃動粘度が1.0~2.6mm/sであるGTL油(B)とを含有してなる粘度指数向上剤組成物である。
Figure JPOXMLDOC01-appb-C000008
[一般式(1)においてRは水素原子又はメチル基;-X-は-O-、-O(AO)-又は-NH-で表される基であって、Aは炭素数2~4のアルキレン基であり、mは1~10の整数であり、mが2以上の場合のAは同一でも異なっていてもよい;Rは1,2-ブチレン基を構成単位として含む炭化水素重合体から水素原子を1つ除いた残基;pは0又は1の数である。]
The present disclosure (1) is a (co)polymer (A) containing a polyolefin monomer (a) represented by the following general formula (1) as an essential constituent monomer, and A viscosity index improver composition comprising a GTL oil (B) having a viscosity of ~2.6 mm 2 /s.
Figure JPOXMLDOC01-appb-C000008
[In general formula (1), R 1 is a hydrogen atom or a methyl group; -X 1 - is a group represented by -O-, -O(AO) m - or -NH-, and A has 2 carbon atoms; is an alkylene group of ∼4, m is an integer of 1 to 10, and when m is 2 or more, A may be the same or different; R 2 is a carbonization containing a 1,2-butylene group as a structural unit A residue obtained by removing one hydrogen atom from a hydrogen polymer; p is a number of 0 or 1; ]
 本開示(2)は、粘度指数向上剤組成物中に含まれる前記(共)重合体(A)の重量と前記GTL油(B)の重量との比率{(A)/(B)}が0.1~10である本開示(1)に記載の粘度指数向上剤組成物である。 (2) of the present disclosure provides that the ratio {(A)/(B)} of the weight of the (co)polymer (A) and the weight of the GTL oil (B) contained in the viscosity index improver composition is The viscosity index improver composition according to (1) of the present disclosure, which is 0.1 to 10.
 本開示(3)は、前記(共)重合体(A)の溶解性パラメーターが8.0~10.0(cal/cm1/2である本開示(1)又は(2)に記載の粘度指数向上剤組成物である。 The present disclosure (3) is the present disclosure (1) or (2), wherein the (co)polymer (A) has a solubility parameter of 8.0 to 10.0 (cal/cm 3 ) 1/2 is a viscosity index improver composition.
 本開示(4)は、前記(共)重合体(A)が、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステル(b)及び/又は炭素数9~36のアルキル基を有する(メタ)アクリロイル単量体(c)を構成単量体として含む共重合体である本開示(1)~(3)のいずれか1項に記載の粘度指数向上剤組成物である。 In the present disclosure (4), the (co)polymer (A) contains a (meth)acrylic acid alkyl ester (b) having an alkyl group having 1 to 4 carbon atoms and/or an alkyl group having 9 to 36 carbon atoms. The viscosity index improver composition according to any one of (1) to (3) of the present disclosure, which is a copolymer containing a (meth)acryloyl monomer (c) having as a constituent monomer.
 本開示(5)は、前記(共)重合体(A)が、下記一般式(2)で示される単量体(d)を構成単量体として含む共重合体である本開示(4)に記載の粘度指数向上剤組成物である。
Figure JPOXMLDOC01-appb-C000009
[一般式(2)においてRは水素原子又はメチル基;-X-は-O-又は-NH-で表される基;Rは炭素数2~4のアルキレン基;Rは炭素数1~18のアルキル基、又は炭素数6~20のアリール基;qは1~20の整数であり、qが2以上の場合のRは同一でも異なっていてもよい。]
The present disclosure (5) is the present disclosure (4), wherein the (co)polymer (A) is a copolymer containing a monomer (d) represented by the following general formula (2) as a constituent monomer It is a viscosity index improver composition according to.
Figure JPOXMLDOC01-appb-C000009
[In general formula (2), R 3 is a hydrogen atom or a methyl group; -X 2 - is a group represented by -O- or -NH-; R 4 is an alkylene group having 2 to 4 carbon atoms; an alkyl group having 1 to 18 carbon atoms, or an aryl group having 6 to 20 carbon atoms; q is an integer of 1 to 20, and when q is 2 or more, R 4 may be the same or different. ]
 本開示(6)は、前記(共)重合体(A)が、構成単量体として(共)重合体(A)を構成する単量体の合計重量に基づいて前記ポリオレフィン系単量体(a)を1~50重量%、前記(メタ)アクリル酸アルキルエステル(b)を1~80重量%、前記単量体(c)を1~60重量%、前記単量体(d)を1~35重量%含有する共重合体である本開示(5)に記載の粘度指数向上剤組成物である。 In the present disclosure (6), the (co)polymer (A) contains the polyolefin-based monomer ( 1 to 50% by weight of a), 1 to 80% by weight of the (meth)acrylic acid alkyl ester (b), 1 to 60% by weight of the monomer (c), and 1 to 1% of the monomer (d) The viscosity index improver composition according to (5) of the present disclosure, which is a copolymer containing ∼35% by weight.
 本開示(7)は、前記(共)重合体(A)の重量平均分子量が5,000~2,000,000である本開示(1)~(6)のいずれか1項に記載の粘度指数向上剤組成物である。 The present disclosure (7) is the viscosity according to any one of the present disclosure (1) to (6), wherein the (co)polymer (A) has a weight average molecular weight of 5,000 to 2,000,000. An index improver composition.
 本開示(8)は、さらに、前記GTL油(B)以外の基油として、API分類のGroupI~Vの基油を含有してなる本開示(1)~(7)のいずれか1項に記載の粘度指数向上剤組成物である。 The present disclosure (8) further includes any one of the present disclosure (1) to (7), which contains a base oil of API classification Groups I to V as a base oil other than the GTL oil (B) A viscosity index improver composition as described.
 本開示(9)は、本開示(1)~(8)のいずれか1項に記載の粘度指数向上剤組成物と、清浄剤、分散剤、酸化防止剤、油性向上剤、流動点降下剤、摩擦摩耗調整剤、極圧剤、消泡剤、抗乳化剤、金属不活性剤及び腐食防止剤からなる群より選ばれる少なくとも1種の添加剤とを含有してなる潤滑油組成物である。 (9) of the present disclosure is a viscosity index improver composition according to any one of (1) to (8) of the present disclosure, a detergent, a dispersant, an antioxidant, an oiliness improver, and a pour point depressant , and at least one additive selected from the group consisting of friction and wear modifiers, extreme pressure agents, defoamers, demulsifiers, metal deactivators and corrosion inhibitors.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。 The present invention will be further described below with reference to Examples and Comparative Examples, but the present invention is not limited to these.
<製造例1>
 温度調節装置及び撹拌機を備えたSUS製耐圧反応容器に、脱気及び脱水したヘキサンを400重量部、テトラヒドロフラン1重量部、1,3-ブタジエン75重量部、n-ブチルリチウム2重量部を仕込んだ後、重合温度を70℃とし重合させた。
 重合率がほぼ100%となった後、エチレンオキサイド2重量部を加え、50℃で3時間反応させた。反応を停止させるために水50重量部と1N-塩酸水溶液25重量部を加えて80℃で1時間撹拌した。反応溶液の有機相を分液ロートにて回収し、70℃に昇温後、0.027~0.040MPaの減圧下で溶媒を2時間かけて除去した。
 得られた片末端水酸基含有のポリブタジエンを、温度調節装置、攪拌機、水素導入管を備えた反応容器に移し入れ、テトラヒドロフラン150重量部を加えて均一に溶解させた。そこにパラジウム炭素10重量部とテトラヒドロフラン50重量部をあらかじめ混合した懸濁液を注ぎ入れた後、水素導入管より30mL/分の流量で液中に水素を供給しながら、室温で8時間反応させた。その後ろ過にてパラジウム炭素を取り除き、得られたろ液を70℃に昇温して0.027~0.040MPaの減圧下でテトラヒドロフランを除去して水素化ポリブタジエンの片末端水酸基含有重合体(Y1-1)(イソブチレン基及び1,2-ブチレン基の合計比率;45モル%、1,2-付加体/1,4-付加体(モル比);45/55、水酸基価;8.0mgKOH/g、結晶化温度;-60℃以下)を得た。
 水素化ポリブタジエンの片末端水酸基含有重合体(Y1-1)245重量部、メタクリル酸245重量部、スルホン酸基担持無機多孔体(酸価45mgKOH/g、粒径240μm)98重量部を投入し、120℃にてエステル化を行った。次いで、スルホン酸基担持無機多孔体をろ過にて取り除き、減圧下(0.027~0.040MPa)にて反応液から余分なメタクリル酸を除去し、単量体(a-1)を得た。得られた単量体(a-1)の分子量をGPCで測定し、1,2-ブチレン基の比率を13C-NMRにて測定した。結果はMw=6,900、Mn=6,800、1,2-ブチレン基の比率=45モル%、一般式(1)における-X-は-O(CHCHO)-で表される基、p=0であった。
<Production Example 1>
400 parts by weight of degassed and dehydrated hexane, 1 part by weight of tetrahydrofuran, 75 parts by weight of 1,3-butadiene, and 2 parts by weight of n-butyllithium were charged into a SUS pressure-resistant reaction vessel equipped with a temperature controller and a stirrer. After that, polymerization was carried out at a polymerization temperature of 70°C.
After the polymerization rate reached approximately 100%, 2 parts by weight of ethylene oxide was added and reacted at 50° C. for 3 hours. In order to stop the reaction, 50 parts by weight of water and 25 parts by weight of 1N-hydrochloric acid aqueous solution were added and stirred at 80° C. for 1 hour. The organic phase of the reaction solution was collected with a separating funnel, heated to 70° C., and the solvent was removed under reduced pressure of 0.027 to 0.040 MPa over 2 hours.
The obtained polybutadiene containing a hydroxyl group at one end was transferred to a reaction vessel equipped with a temperature control device, a stirrer and a hydrogen introduction tube, and 150 parts by weight of tetrahydrofuran was added to uniformly dissolve the polybutadiene. After pouring a suspension prepared by mixing 10 parts by weight of palladium carbon and 50 parts by weight of tetrahydrofuran in advance, the mixture was reacted at room temperature for 8 hours while supplying hydrogen into the liquid at a flow rate of 30 mL/min from the hydrogen introduction pipe. Ta. After that, palladium carbon is removed by filtration, and the obtained filtrate is heated to 70 ° C. and tetrahydrofuran is removed under a reduced pressure of 0.027 to 0.040 MPa to remove hydrogenated polybutadiene one-end hydroxyl group-containing polymer (Y1- 1) (Total ratio of isobutylene group and 1,2-butylene group: 45 mol%, 1,2-adduct/1,4-adduct (molar ratio): 45/55, hydroxyl value: 8.0 mgKOH/g , crystallization temperature: −60° C. or lower).
245 parts by weight of a hydrogenated polybutadiene hydroxyl-containing polymer (Y1-1), 245 parts by weight of methacrylic acid, and 98 parts by weight of an inorganic porous material carrying a sulfonic acid group (acid value: 45 mgKOH/g, particle size: 240 μm) were added, Esterification was carried out at 120°C. Next, the sulfonic acid group-supporting inorganic porous material was removed by filtration, and excess methacrylic acid was removed from the reaction solution under reduced pressure (0.027 to 0.040 MPa) to obtain a monomer (a-1). . The molecular weight of the obtained monomer (a-1) was measured by GPC, and the ratio of 1,2-butylene groups was measured by 13 C-NMR. As a result, Mw = 6,900, Mn = 6,800, the ratio of 1,2-butylene groups = 45 mol%, -X 1 - in general formula (1) is -O(CH 2 CH 2 O) 1 - The group represented, p=0.
<製造例2>
 温度調節装置及び撹拌機を備えた1LのSUS製耐圧反応容器に、脱気・脱水したヘキサンを400重量部、テトラヒドロフラン1重量部、n-ブチルリチウム0.4重量部を仕込んだ後、-40℃まで冷却した。ここに-40℃で液化させた1,3-ブタジエン90重量部を加え、重合温度を-40℃とし重合させた。その後は製造例1と同様に行い、水素化ポリブタジエンの片末端水酸基含有重合体(Y1-2)(イソブチレン基及び1,2-ブチレン基の合計比率;65モル%、1,2-付加体/1,4-付加体(モル比);65/35、水酸基価;13.1mgKOH/g、結晶化温度;-60℃以下)を得た。さらに、(Y1-2)とメタクリル酸とのエステル化を行い、単量体(a-2)を得た。得られた単量体(a-2)の分子量をGPCで測定し、1,2-ブチレン基の比率を13C-NMRにて測定した。結果はMw=6,900、Mn=6,800、1,2-ブチレン基の比率=65モル%、一般式(1)における-X-は-O(CHCHO)-で表される基、p=0であった。
<Production Example 2>
400 parts by weight of degassed and dehydrated hexane, 1 part by weight of tetrahydrofuran, and 0.4 parts by weight of n-butyllithium were charged in a 1 L SUS pressure-resistant reaction vessel equipped with a temperature controller and a stirrer, and then -40. Cooled to °C. 90 parts by weight of 1,3-butadiene liquefied at -40°C was added thereto, and polymerization was carried out at a polymerization temperature of -40°C. After that, the procedure was carried out in the same manner as in Production Example 1, and the hydrogenated polybutadiene one-end hydroxyl group-containing polymer (Y1-2) (total ratio of isobutylene group and 1,2-butylene group; 65 mol%, 1,2-adduct/ 1,4-adduct (molar ratio): 65/35, hydroxyl value: 13.1 mgKOH/g, crystallization temperature: -60°C or lower). Furthermore, (Y1-2) was esterified with methacrylic acid to obtain a monomer (a-2). The molecular weight of the obtained monomer (a-2) was measured by GPC, and the ratio of 1,2-butylene groups was measured by 13 C-NMR. As a result, Mw = 6,900, Mn = 6,800, the ratio of 1,2-butylene groups = 65 mol%, -X 1 - in general formula (1) is -O(CH 2 CH 2 O) 1 - The group represented, p=0.
<実施例1>
 撹拌装置、加熱冷却装置、温度計及び窒素導入管を備えた反応容器に、重合時基油として炭化水素油-1(SP値:8.3(cal/cm1/2、100℃の動粘度:4.2mm/s、粘度指数:128)200重量部、表3に記載の共重合体(A)を製造するための単量体配合物合計100重量部を投入し、窒素置換(気相酸素濃度100ppm)を行った後、密閉下、撹拌しながら76℃に昇温した後、表3に記載の量の重合触媒(2,2-アゾビス(2-メチルブチロニトリル))を投入し、同温度で4時間重合反応を行った。90℃に昇温し2時間反応させた後120~130℃に昇温し、希釈用基油としてGTL油-2(100℃の動粘度:2.1mm/s、粘度指数:152)を200.0重量部投入し、基油全体の100℃動粘度を2.94mm/sに調整し、20重量%の共重合体(A-1)を含有する粘度指数向上剤組成物(R-1)を得た。なお、希釈用基油の投入量については、別途、重合時基油と希釈用基油とを混合し、JIS-K2283(2000年)の方法で100℃の動粘度を測定することで、基油全体の100℃動粘度を2.94mm/sとすることができる希釈用基油の投入量を決定した。得られた共重合体(A-1)のSP値を上記の方法で計算し、Mwを上記の方法で測定した。結果を表3に示す。なお表3~13でのKV 100は、100℃の動粘度を意味する。
<Example 1>
Hydrocarbon oil-1 (SP value: 8.3 (cal/cm 3 ) 1/2 , 100° C.) was added to a reaction vessel equipped with a stirrer, a heating/cooling device, a thermometer, and a nitrogen inlet tube as a base oil for polymerization. Kinematic viscosity: 4.2 mm 2 /s, viscosity index: 128) 200 parts by weight, a total of 100 parts by weight of the monomer blend for producing the copolymer (A) shown in Table 3 were charged, and nitrogen replacement was performed. (gas phase oxygen concentration 100 ppm), then heated to 76 ° C. with stirring under a closed condition, and then the amount of polymerization catalyst (2,2-azobis (2-methylbutyronitrile)) shown in Table 3. was added, and the polymerization reaction was carried out at the same temperature for 4 hours. After raising the temperature to 90° C. and reacting for 2 hours, the temperature was raised to 120 to 130° C., and GTL oil-2 (kinematic viscosity at 100° C.: 2.1 mm 2 /s, viscosity index: 152) was used as a base oil for dilution. 200.0 parts by weight of the viscosity index improver composition (R -1) was obtained. Regarding the input amount of the base oil for dilution, the base oil for polymerization and the base oil for dilution are separately mixed, and the kinematic viscosity at 100 ° C. is measured by the method of JIS-K2283 (2000). The input amount of the diluent base oil was determined so that the 100° C. kinematic viscosity of the entire oil could be 2.94 mm 2 /s. The SP value of the obtained copolymer (A-1) was calculated by the above method, and the Mw was measured by the above method. Table 3 shows the results. KV 100 in Tables 3 to 13 means kinematic viscosity at 100°C.
<実施例2~3,比較例1>
 重合時基油及び希釈用基油を表3に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を2.94mm/sに調整し、20.0重量%の共重合体(A-1)を含有する粘度指数向上剤組成物(R-2~R-3、S-1)を得た。
<Examples 2 to 3, Comparative Example 1>
The kinematic viscosity at 100° C. of the entire base oil was adjusted to 2.94 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 3, and 20.0 Viscosity index improver compositions (R-2 to R-3, S-1) containing 1% by weight of the copolymer (A-1) were obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<実施例4、比較例2>
 重合時基油及び希釈用基油を表4に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を2.60mm/sに調整し、20重量%の共重合体(A-1)を含有する粘度指数向上剤組成物(R-4、S-2)を得た。
<Example 4, Comparative Example 2>
The 100° C. kinematic viscosity of the entire base oil was adjusted to 2.60 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 4, and 20% by weight Viscosity index improver compositions (R-4, S-2) containing the copolymer (A-1) were obtained.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<実施例5~6、比較例3>
 重合時基油及び希釈用基油を表5に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を2.05mm/sに調整し、15重量%の共重合体(A-1)を含有する粘度指数向上剤組成物(R-5~R-6、S-3)を得た。
<Examples 5 to 6, Comparative Example 3>
The kinematic viscosity at 100° C. of the entire base oil was adjusted to 2.05 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 5, and 15% by weight Viscosity index improver compositions (R-5 to R-6, S-3) containing the copolymer (A-1) were obtained.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<実施例7~8、比較例4>
 重合時基油及び希釈用基油を表6に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を2.05mm/sに調整し、25重量%の共重合体(A-1)を含有する粘度指数向上剤組成物(R-7~R-8、S-4)を得た。
<Examples 7 to 8, Comparative Example 4>
The 100° C. kinematic viscosity of the entire base oil was adjusted to 2.05 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 6, and the content was 25% by weight. Viscosity index improver compositions (R-7 to R-8, S-4) containing the copolymer (A-1) were obtained.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<実施例9、比較例5>
 重合時基油及び希釈用基油を表7に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を3.45mm/sに調整し、20重量%の共重合体(A-1)を含有する粘度指数向上剤組成物(R-9、S-5)を得た。
<Example 9, Comparative Example 5>
The 100° C. kinematic viscosity of the entire base oil was adjusted to 3.45 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 7, and 20% by weight Viscosity index improver compositions (R-9, S-5) containing the copolymer (A-1) were obtained.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<実施例10、比較例6>
 重合時基油及び希釈用基油を表8に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を2.36mm/sに調整し、18重量%の共重合体(A-1)を含有する粘度指数向上剤組成物(R-10、S-6)を得た。
<Example 10, Comparative Example 6>
The kinematic viscosity at 100° C. of the entire base oil was adjusted to 2.36 mm 2 /s in the same manner as in Example 1 except that the base oil for polymerization and the base oil for dilution were those shown in Table 8, and the content was 18% by weight. A viscosity index improver composition (R-10, S-6) containing the copolymer (A-1) was obtained.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<実施例11、比較例7>
 重合時基油及び希釈用基油を表9に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を2.75mm/sに調整し、20重量%の共重合体(A-1)を含有する粘度指数向上剤組成物(R-11、S-7)を得た。
<Example 11, Comparative Example 7>
The 100° C. kinematic viscosity of the entire base oil was adjusted to 2.75 mm 2 /s in the same manner as in Example 1, except that the base oil for polymerization and the base oil for dilution were those shown in Table 9, and 20% by weight A viscosity index improver composition (R-11, S-7) containing the copolymer (A-1) was obtained.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<実施例12、比較例8>
 重合時基油、希釈用基油及び単量体配合物を表10に記載のものとし、重合触媒の量を表10に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を2.36mm/sに調整し、15.0重量%の共重合体(A-2)を含有する粘度指数向上剤組成物(R-12、S-8)を得た。
<Example 12, Comparative Example 8>
The whole base oil was prepared in the same manner as in Example 1 except that the base oil for polymerization, the base oil for dilution and the monomer blend were as shown in Table 10, and the amount of the polymerization catalyst was as shown in Table 10. was adjusted to 2.36 mm 2 /s to obtain viscosity index improver compositions (R-12, S-8) containing 15.0% by weight of the copolymer (A-2). Ta.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<実施例13、比較例9>
 重合時基油、希釈用基油及び単量体配合物を表11に記載のものとし、重合触媒の量を表11に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を3.73mm/sに調整し、22.0重量%の共重合体(A-3)を含有する粘度指数向上剤組成物(R-13、S-9)を得た。
<Example 13, Comparative Example 9>
The whole base oil was prepared in the same manner as in Example 1 except that the base oil for polymerization, the base oil for dilution and the monomer blend were as shown in Table 11, and the amount of the polymerization catalyst was as shown in Table 11. was adjusted to 3.73 mm 2 /s to obtain viscosity index improver compositions (R-13, S-9) containing 22.0% by weight of the copolymer (A-3). Ta.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<実施例14、比較例10>
 重合時基油、希釈用基油及び単量体配合物を表12に記載のものとし、重合触媒の量を表12に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を2.99mm/sに調整し、20.0重量%の共重合体(A-4)を含有する粘度指数向上剤組成物(R-14、S-10)を得た。
<Example 14, Comparative Example 10>
The whole base oil was prepared in the same manner as in Example 1 except that the base oil for polymerization, the base oil for dilution and the monomer blend were as shown in Table 12, and the amount of the polymerization catalyst was as shown in Table 12. was adjusted to 2.99 mm 2 /s to obtain viscosity index improver compositions (R-14, S-10) containing 20.0% by weight of the copolymer (A-4). Ta.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<実施例15、比較例11>
 重合時基油、希釈用基油及び単量体配合物を表13に記載のものとし、重合触媒の量を表12に記載のものとする以外は実施例1と同様にして、基油全体の100℃動粘度を1.67mm/sに調整し、13.0重量%の共重合体(A-5)を含有する粘度指数向上剤組成物(R-15、S-11)を得た。
<Example 15, Comparative Example 11>
The whole base oil was prepared in the same manner as in Example 1 except that the base oil for polymerization, the base oil for dilution and the monomer blend were as shown in Table 13, and the amount of the polymerization catalyst was as shown in Table 12. was adjusted to 1.67 mm 2 /s to obtain viscosity index improver compositions (R-15, S-11) containing 13.0% by weight of the copolymer (A-5). Ta.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表3~13に記載の単量体(a)~(d)の組成は、以下に記載した通りである。
 (a-1):(Y1-1)のメタクリル酸エステル化物[Mn:6800]
 (a-2):(Y1-2)のメタクリル酸エステル化物[Mn:6800]
 (b-1):メタクリル酸メチル
 (b-2):メタクリル酸エチル
 (b-3):メタクリル酸n-ブチル
 (c-1):メタクリル酸n-ドデシル
 (c-2):炭素数12~15の直鎖及び分岐アルキルメタクリレート混合物(SHELL社製Neodol23(重量比=直鎖C12:分岐C12:直鎖C13:分岐C13=40:10:40:10)の混合物)のメタクリル酸エステル
 (c-3):炭素数14~16の直鎖及び分岐アルキルメタクリレート混合物(SHELL社製Neodol45(重量比=直鎖C14:分岐C14:直鎖C15:分岐C15=40:10:40:10)の混合物)のメタクリル酸エステル
 (c-4):メタクリル酸n-ヘキサデシル
 (c-5):メタクリル酸n-オクタデシル
 (d-1):n-ブトキシエチルメタクリレート
The compositions of monomers (a) to (d) listed in Tables 3 to 13 are as described below.
(a-1): methacrylic acid ester of (Y1-1) [Mn: 6800]
(a-2): Methacrylate of (Y1-2) [Mn: 6800]
(b-1): methyl methacrylate (b-2): ethyl methacrylate (b-3): n-butyl methacrylate (c-1): n-dodecyl methacrylate (c-2): carbon number 12 ~ methacrylic acid ester of a mixture of linear and branched alkyl methacrylates (SHELL Neodol 23 (weight ratio = mixture of linear C12: branched C12: linear C13: branched C13 = 40:10:40:10)) (c- 3): A mixture of linear and branched alkyl methacrylates having 14 to 16 carbon atoms (a mixture of Neodol 45 manufactured by SHELL (weight ratio = linear C14: branched C14: linear C15: branched C15 = 40:10:40:10)) Methacrylate ester of (c-4): n-hexadecyl methacrylate (c-5): n-octadecyl methacrylate (d-1): n-butoxyethyl methacrylate
 (a-1)、(a-2)、(c-2)、(c-3)の各単量体に由来する構成単位(炭素-炭素二重結合が反応して単結合になった構造)のSP値は、下記数式に基づいて算出した。
(a-1)に由来する構成単位
ΣΔe=1125(CH)+1180(CH)+350(C)+4300(CO)=6955
Σv=33.5(CH)+16.1(CH)-19.2(C)+18.0(CO)=48.4
ΣΔe=1180(CH)×2+800(O)=3160
Σv=16.1(CH)×2+3.8(O)=36
ΣΔe=1180(CH)×2+1125(CH)+820(CH)=4305
Σv=16.1(CH)×2+33.5(CH)-1.0(CH)=64.7
ΣΔe=1180(CH)×4=4720
Σv=16.1(CH)×4=64.4
ここで、1,2-ブチレン基及び1,4-ブチレン基の合計個数は下記である。
1,2-ブチレン基及び1,4-ブチレン基の合計個数=(6800-85-44)/56=119.125
したがって、(a-1)に由来する構成単位のパラメーターは下記である。
ΣΔe=6955+3160+4305×119.125×0.45+4720×119.125×0.55=550138.4
Σv=48.4+36+64.7×119.125×0.45+64.4×119.125×0.55=7772.132
SP値=(ΣΔe/Σv1/2=(550138.4/7772.132)1/2=8.413
Structural units derived from monomers (a-1), (a-2), (c-2), and (c-3) (structure in which carbon-carbon double bonds react to form single bonds ) was calculated based on the following formula.
Structural unit ΣΔe i derived from (a-1) = 1125 (CH 3 ) + 1180 (CH 2 ) + 350 (C) + 4300 (CO 2 ) = 6955
Σv i =33.5(CH 3 )+16.1(CH 2 )−19.2(C)+18.0(CO 2 )=48.4
ΣΔe i =1180(CH 2 )×2+800(O)=3160
Σv i =16.1(CH 2 )×2+3.8(O)=36
ΣΔe i =1180( CH2 )×2+1125( CH3 )+820(CH)=4305
Σv i =16.1(CH 2 )×2+33.5(CH 3 )−1.0(CH)=64.7
ΣΔe i =1180(CH 2 )×4=4720
Σv i =16.1(CH 2 )×4=64.4
Here, the total number of 1,2-butylene groups and 1,4-butylene groups is as follows.
Total number of 1,2-butylene groups and 1,4-butylene groups = (6800-85-44)/56 = 119.125
Therefore, the parameters of the structural unit derived from (a-1) are as follows.
ΣΔe i =6955+3160+4305×119.125×0.45+4720×119.125×0.55=550138.4
Σv i =48.4+36+64.7×119.125×0.45+64.4×119.125×0.55=7772.132
SP value=(ΣΔe i /Σv i ) 1/2 =(550138.4/7772.132) 1/2 =8.413
(a-2)に由来する構成単位
1,2-ブチレン基及び1,4-ブチレン基の合計個数=(6800-85-44)/56=119.125
ΣΔe=6955+3160+4305×119.125×0.65+4720×119.125×0.35=540251
Σv=48.4+36+64.7×119.125×0.65+64.4×119.125×0.35=7779.279
SP値=(ΣΔe/Σv1/2=(540251/7779.279)1/2=8.334
Total number of structural units 1,2-butylene groups and 1,4-butylene groups derived from (a-2) = (6800-85-44)/56 = 119.125
ΣΔe i =6955+3160+4305×119.125×0.65+4720×119.125×0.35=540251
Σv i =48.4+36+64.7×119.125×0.65+64.4×119.125×0.35=7779.279
SP value=(ΣΔe i /Σv i ) 1/2 =(540251/7779.279) 1/2 =8.334
(c-2)に由来する構成単位
直鎖C12
ΣΔe=6955+1180×11+1125=21060
Σv=48.4+16.1×11+33.5=259
SP値=(ΣΔe/Σv1/2=(21060/259)1/2=9.017
分岐C12
ΣΔe=6955+1180×9+1125×2+820=20645
Σv=48.4+16.1×9+33.5×2-1.0=259.3
SP値=(ΣΔe/Σv1/2=(20645/259.3)1/2=8.923
直鎖C13
ΣΔe=6955+1180×12+1125=22240
Σv=48.4+16.1×12+33.5=275.1
SP値=(ΣΔe/Σv1/2=(22240/275.1)1/2=8.991
分岐C13
ΣΔe=6955+1180×10+1125×2+820=21825
Σv=48.4+16.1×10+33.5×2-1.0=275.4
SP値=(ΣΔe/Σv1/2=(21825/275.4)1/2=8.902
(c-2)に由来する構成単位のSP値=(9.017×40+8.923×10+8.991×40+8.902×10)/100=8.986
Structural unit straight chain C12 derived from (c-2)
ΣΔe i =6955+1180×11+1125=21060
Σv i =48.4+16.1×11+33.5=259
SP value=(ΣΔe i /Σv i ) 1/2 =(21060/259) 1/2 =9.017
Branch C12
ΣΔe i =6955+1180×9+1125×2+820=20645
Σv i =48.4+16.1×9+33.5×2−1.0=259.3
SP value=(ΣΔe i /Σv i ) 1/2 =(20645/259.3) 1/2 =8.923
Linear C13
ΣΔe i =6955+1180×12+1125=22240
Σv i =48.4+16.1×12+33.5=275.1
SP value=(ΣΔe i /Σv i ) 1/2 =(22240/275.1) 1/2 =8.991
Branch C13
ΣΔe i =6955+1180×10+1125×2+820=21825
Σv i =48.4+16.1×10+33.5×2−1.0=275.4
SP value=(ΣΔe i /Σv i ) 1/2 =(21825/275.4) 1/2 =8.902
SP value of structural unit derived from (c-2) = (9.017 × 40 + 8.923 × 10 + 8.991 × 40 + 8.902 × 10) / 100 = 8.986
(c-3)に由来する構成単位
直鎖C14
ΣΔe=6955+1180×13+1125=23420
Σv=48.4+16.1×13+33.5=291.2
SP値=(ΣΔe/Σv1/2=(23420/291.2)1/2=8.968
分岐C14
ΣΔe=6955+1180×11+1125×2+820=23005
Σv=48.4+16.1×11+33.5×2-1.0=291.5
SP値=(ΣΔe/Σv1/2=(23005/291.5)1/2=8.884
直鎖C15
ΣΔe=6955+1180×14+1125=24600
Σv=48.4+16.1×14+33.5=307.3
SP値=(ΣΔe/Σv1/2=(24600/307.3)1/2=8.947
分岐C15
ΣΔe=6955+1180×12+1125×2+820=24185
Σv=48.4+16.1×12+33.5×2-1.0=307.6
SP値=(ΣΔe/Σv1/2=(24185/307.6)1/2=8.867
(c-3)に由来する構成単位のSP値=(8.968×40+8.884×10+8.947×40+8.867×10)/100=8.941
Structural unit straight chain C14 derived from (c-3)
ΣΔe i =6955+1180×13+1125=23420
Σv i =48.4+16.1×13+33.5=291.2
SP value=(ΣΔe i /Σv i ) 1/2 =(23420/291.2) 1/2 =8.968
Branch C14
ΣΔe i =6955+1180×11+1125×2+820=23005
Σv i =48.4+16.1×11+33.5×2−1.0=291.5
SP value=(ΣΔe i /Σv i ) 1/2 =(23005/291.5) 1/2 =8.884
Linear C15
ΣΔe i =6955+1180×14+1125=24600
Σv i =48.4+16.1×14+33.5=307.3
SP value=(ΣΔe i /Σv i ) 1/2 =(24600/307.3) 1/2 =8.947
Branch C15
ΣΔe i =6955+1180×12+1125×2+820=24185
Σv i =48.4+16.1×12+33.5×2−1.0=307.6
SP value=(ΣΔe i /Σv i ) 1/2 =(24185/307.6) 1/2 =8.867
SP value of structural unit derived from (c-3) = (8.968 × 40 + 8.884 × 10 + 8.947 × 40 + 8.867 × 10) / 100 = 8.941
 また、表3~13に記載の基油は下記を用いた。
炭化水素油-1:SKルブリカンツ社製、製品名「Yubase4」、API分類のGroupIII(100℃の動粘度:4.2mm/s、40℃の動粘度:19.12mm/s)
炭化水素油-2:出光興産(株)社製、製品名「出光スーパゾルLA41」、API分類のGroupI(100℃の動粘度:1.5mm/s、40℃の動粘度:4.26mm/s)
GTL油-1:API分類のGroupIII(100℃の動粘度:1.3mm/s、40℃の動粘度:3.4mm/s)
GTL油-2:API分類のGroupIII(100℃の動粘度:2.1mm/s、40℃の動粘度:6.0mm/s)
GTL油-3:API分類のGroupIII(100℃の動粘度:2.7mm/s、40℃の動粘度:9.8mm/s)
エステル油-1:API分類のGroupV(ビス(2-エチルへキシル)セバケート、100℃の動粘度:3.2mm/s、40℃の動粘度:11.5mm/s)
The following base oils were used in Tables 3 to 13.
Hydrocarbon oil-1: manufactured by SK Lubricants, product name “Yubase4”, API classification Group III (kinematic viscosity at 100° C.: 4.2 mm 2 /s, kinematic viscosity at 40° C.: 19.12 mm 2 /s)
Hydrocarbon oil-2: manufactured by Idemitsu Kosan Co., Ltd., product name “Idemitsu Supersol LA41”, API classification Group I (kinematic viscosity at 100° C.: 1.5 mm 2 /s, kinematic viscosity at 40° C.: 4.26 mm 2 /s)
GTL oil-1: Group III of API classification (kinematic viscosity at 100° C.: 1.3 mm 2 /s, kinematic viscosity at 40° C.: 3.4 mm 2 /s)
GTL oil-2: Group III of API classification (kinematic viscosity at 100° C.: 2.1 mm 2 /s, kinematic viscosity at 40° C.: 6.0 mm 2 /s)
GTL oil-3: Group III of API classification (kinematic viscosity at 100° C.: 2.7 mm 2 /s, kinematic viscosity at 40° C.: 9.8 mm 2 /s)
Ester oil-1: API classification Group V (bis(2-ethylhexyl) sebacate, kinematic viscosity at 100°C: 3.2 mm 2 /s, kinematic viscosity at 40°C: 11.5 mm 2 /s)
<基油の粘度の測定方法>
 JIS-K2283(2000年)の方法で40℃と100℃の動粘度を測定した。粘度指数についても同様にJIS-K2283(2000年)の方法で計算した。
<Method for measuring viscosity of base oil>
Kinematic viscosities at 40°C and 100°C were measured according to JIS-K2283 (2000). The viscosity index was similarly calculated by the method of JIS-K2283 (2000).
<粘度指数向上剤組成物の複素粘度(30~100℃)の測定方法-レオメーター>
 本明細書における粘度指数向上剤組成物の粘度はレオメーター(Anton paar社製レオメーター「Physica MCR302」)を用い、30~100℃まで昇温した際の1℃毎の複素粘度(mPa・s)の値である。測定条件は下記のとおりとした。
測定治具:パラレルプレート(直径50mm)
温度制御:下面ペルチェ
ギャップ:0.5mm
ひずみ量:1%
周波数:1Hz
昇温:5℃/min(30-100℃)
データ点数:71点
 上記71点のデータのうち、40℃~100℃の範囲の61点のデータの中で最も高い複素粘度を極大点の粘度(mPa・s)とした。
<Method for Measuring Complex Viscosity (30 to 100°C) of Viscosity Index Improver Composition-Rheometer>
The viscosity of the viscosity index improver composition in the present specification is measured using a rheometer (rheometer "Physica MCR302" manufactured by Anton paar), and the complex viscosity (mPa s ). The measurement conditions were as follows.
Measuring jig: Parallel plate (diameter 50mm)
Temperature control: Lower surface Peltier gap: 0.5mm
Strain amount: 1%
Frequency: 1Hz
Temperature rise: 5°C/min (30-100°C)
Number of data points: 71 points Of the 71 points of data, the highest complex viscosity among the 61 points of data in the range of 40°C to 100°C was taken as the viscosity at the maximum point (mPa·s).
 実施例1~11及び比較例1~7で得られた粘度指数向上剤組成物の30~100℃における複素粘度を図1~図7に示す。
 図1は、実施例1~3及び比較例1で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。
 図2は、実施例4及び比較例2で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。
 図3は、実施例5~6及び比較例3で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。
 図4は、実施例7~8及び比較例4で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。
 図5は、実施例9及び比較例5で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。
 図6は、実施例10及び比較例6で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。
 図7は、実施例11及び比較例7で得られた粘度指数向上剤組成物の30~100℃における複素粘度を示すグラフである。
 図示しないが、実施例12~15及び比較例8~11で得られた粘度指数向上剤組成物の30~100℃における複素粘度も同様に測定を行い、40℃~100℃の範囲における極大点の粘度を算出した。
The complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Examples 1 to 11 and Comparative Examples 1 to 7 are shown in FIGS. 1 to 7. FIG.
FIG. 1 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 1-3 and Comparative Example 1. FIG.
2 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 4 and Comparative Example 2. FIG.
3 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 5-6 and Comparative Example 3. FIG.
4 is a graph showing the complex viscosities at 30-100° C. of the viscosity index improver compositions obtained in Examples 7-8 and Comparative Example 4. FIG.
5 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 9 and Comparative Example 5. FIG.
6 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 10 and Comparative Example 6. FIG.
7 is a graph showing the complex viscosities at 30 to 100° C. of the viscosity index improver compositions obtained in Example 11 and Comparative Example 7. FIG.
Although not shown, the complex viscosities at 30 to 100°C of the viscosity index improver compositions obtained in Examples 12 to 15 and Comparative Examples 8 to 11 were also measured in the same manner. was calculated.
 <実施例21~23、比較例21(0W-16グレードとしての評価)>
 撹拌装置を備えたステンレス製容器に、表14に記載の配合となるようにYubase4(100℃の動粘度:4.2mm/s、粘度指数:128)とYubase3(100℃の動粘度:3.1mm/s、粘度指数:107)とエンジン油用パッケージ添加剤を投入し、添加剤含有基油を調製した。得られる潤滑油組成物の100℃の動粘度が6.50mm/s及びNOACK蒸発量が22%になるように、添加剤含有基油にそれぞれ粘度指数向上剤組成物(R-1)、(R-4)、(R-9)又は(S-1)を添加し、潤滑油組成物(V-1)~(V-3)、(W-1)を得た。
 潤滑油組成物(V-1)~(V-3)、(W-1)の剪断安定性、HTHS粘度(150℃、100℃)、動粘度(40℃、100℃)、粘度指数、添加剤含有基油への共重合体の溶解性を以下の方法で測定した。結果を表14に示す。
<Examples 21 to 23, Comparative Example 21 (evaluation as 0W-16 grade)>
In a stainless steel container equipped with a stirrer, Yubase 4 (100 ° C kinematic viscosity: 4.2 mm 2 / s, viscosity index: 128) and Yubase 3 (100 ° C kinematic viscosity: 3 .1 mm 2 /s, viscosity index: 107) and an engine oil package additive were added to prepare an additive-containing base oil. Add the viscosity index improver composition (R-1), (R-4), (R-9) or (S-1) was added to obtain lubricating oil compositions (V-1) to (V-3) and (W-1).
Shear stability of lubricating oil compositions (V-1) to (V-3) and (W-1), HTHS viscosity (150°C, 100°C), kinematic viscosity (40°C, 100°C), viscosity index, addition The solubility of the copolymer in the agent-containing base oil was measured by the following method. Table 14 shows the results.
<潤滑油組成物のNOACK蒸発量の測定方法>
 ASTM D 5800の方法に準じて測定した。
<Method for measuring NOACK evaporation amount of lubricating oil composition>
It was measured according to the method of ASTM D5800.
<潤滑油組成物の剪断安定性の測定方法及び計算方法>
 ASTM D 6278の方法で測定し、ASTM D 6022の方法で計算した。値が小さいほど、剪断安定性が高いことを意味する。
<Method for measuring and calculating shear stability of lubricating oil composition>
Measured by ASTM D 6278 method and calculated by ASTM D 6022 method. A smaller value means a higher shear stability.
<潤滑油組成物のHTHS粘度の測定方法>
 ASTM D 5481の方法により、150℃と100℃で測定した。
<Method for measuring HTHS viscosity of lubricating oil composition>
Measured at 150°C and 100°C according to ASTM D 5481 method.
<潤滑油組成物の粘度の測定方法>
 JIS-K2283(2000年)の方法で40℃及び100℃の動粘度を測定し、JIS-K2283(2000年)の方法で粘度指数を計算した。粘度指数の値が大きいほど粘度指数向上効果が高いことを意味する。
<Method for measuring the viscosity of the lubricating oil composition>
Kinematic viscosities at 40° C. and 100° C. were measured by the method of JIS-K2283 (2000), and the viscosity index was calculated by the method of JIS-K2283 (2000). It means that the larger the value of the viscosity index, the higher the effect of improving the viscosity index.
<添加剤含有基油への共重合体の溶解性の評価方法>
 潤滑油組成物(V1)~(V3)、(W1)の外観を目視で観察し、以下の評価基準で基油溶解性を評価した。
[評価基準]
 ○:外観が均一であり、不溶解物がない
 ×:外観が不均一であり、不溶解物が認められる
<Method for evaluating solubility of copolymer in additive-containing base oil>
The appearance of the lubricating oil compositions (V1) to (V3) and (W1) was visually observed, and the base oil solubility was evaluated according to the following evaluation criteria.
[Evaluation criteria]
○: Appearance is uniform, no insoluble matter ×: Appearance is uneven, insoluble matter is observed
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表3~13及び図1~7の結果から明らかなように、100℃動粘度が1.0~2.6mm/sであるGTL油(B)を含有する本発明の粘度指数向上剤組成物は、基油の100℃動粘度を合わせた場合における40~100℃の範囲における粘度の極大点が低く、ハンドリング性に優れることがわかる。特に、表9の実施例11と比較例7(100℃動粘度が2.7mm/sのGTL油を含む)との比較から、GTL油(B)の100℃動粘度が1.0~2.6mm/sであることで、粘度の極大点を77%と極めて低く抑えることができ、ハンドリング性に優れることがわかる。
 さらに、表14の結果から、本発明の粘度指数向上剤組成物は、潤滑油組成物に添加した場合、粘度指数向上効果が高く、粘度指数向上剤組成物としても極めて優れることがわかる。
As is clear from the results in Tables 3 to 13 and FIGS. 1 to 7, the viscosity index improver composition of the present invention containing GTL oil (B) having a 100° C. kinematic viscosity of 1.0 to 2.6 mm 2 /s It can be seen that the product has a low viscosity maximum point in the range of 40 to 100°C when combined with the 100°C kinematic viscosity of the base oil, and is excellent in handleability. In particular, from a comparison between Example 11 and Comparative Example 7 in Table 9 (including GTL oil having a kinematic viscosity at 100°C of 2.7 mm 2 /s), it was found that GTL oil (B) had a kinematic viscosity of 1.0 to 1.0 at 100°C. At 2.6 mm 2 /s, the maximum point of viscosity can be suppressed to an extremely low 77%, indicating excellent handling properties.
Furthermore, from the results of Table 14, it can be seen that the viscosity index improver composition of the present invention has a high viscosity index improving effect when added to a lubricating oil composition, and is extremely excellent as a viscosity index improver composition.
 本発明の粘度指数向上剤組成物は40~100℃の範囲における粘度の極大点が低く、取り扱い時におけるハンドリング性に優れ、粘度指数向上効果も優れているので、ギヤ油(デファレンシャル油及び工業用ギヤ油等)、MTF、変速機油[ATF、DCTF及びbelt-CVTF等]、トラクション油(トロイダル-CVTF等)、ショックアブソーバー油、パワーステアリング油、作動油(建設機械用作動油及び工業用作動油等)及びエンジン油(ガソリン用及びディーゼル用)に好適に用いられ、特に内燃機関用の潤滑油組成物、特にハイブリッド車用の潤滑油組成物として好適に使用できる。

 
The viscosity index improver composition of the present invention has a low viscosity maximum point in the range of 40 to 100 ° C., is excellent in handleability during handling, and has an excellent effect of improving the viscosity index. gear oil, etc.), MTF, transmission oil [ATF, DCTF and belt-CVTF, etc.], traction oil (toroidal-CVTF, etc.), shock absorber oil, power steering oil, hydraulic oil (construction machine hydraulic oil and industrial hydraulic oil etc.) and engine oils (for gasoline and diesel), particularly lubricating oil compositions for internal combustion engines, particularly lubricating oil compositions for hybrid vehicles.

Claims (9)

  1.  下記一般式(1)で示されるポリオレフィン系単量体(a)を必須構成単量体として含む(共)重合体(A)と、100℃動粘度が1.0~2.6mm/sであるGTL油(B)とを含有してなる粘度指数向上剤組成物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)においてRは水素原子又はメチル基;-X-は-O-、-O(AO)-又は-NH-で表される基であって、Aは炭素数2~4のアルキレン基であり、mは1~10の整数であり、mが2以上の場合のAは同一でも異なっていてもよい;Rは1,2-ブチレン基を構成単位として含む炭化水素重合体から水素原子を1つ除いた残基;pは0又は1の数である。]
    A (co)polymer (A) containing a polyolefin monomer (a) represented by the following general formula (1) as an essential constituent monomer, and a kinematic viscosity at 100° C. of 1.0 to 2.6 mm 2 /s A viscosity index improver composition comprising a GTL oil (B).
    Figure JPOXMLDOC01-appb-C000001
    [In general formula (1), R 1 is a hydrogen atom or a methyl group; -X 1 - is a group represented by -O-, -O(AO) m - or -NH-, and A has 2 carbon atoms; is an alkylene group of ∼4, m is an integer of 1 to 10, and when m is 2 or more, A may be the same or different; R 2 is a carbonization containing a 1,2-butylene group as a structural unit A residue obtained by removing one hydrogen atom from a hydrogen polymer; p is a number of 0 or 1; ]
  2.  粘度指数向上剤組成物中に含まれる前記(共)重合体(A)の重量と前記GTL油(B)の重量との比率{(A)/(B)}が0.1~10である請求項1に記載の粘度指数向上剤組成物。 The ratio {(A)/(B)} of the weight of the (co)polymer (A) and the weight of the GTL oil (B) contained in the viscosity index improver composition is 0.1 to 10. The viscosity index improver composition of claim 1.
  3.  前記(共)重合体(A)の溶解性パラメーターが8.0~10.0(cal/cm1/2である請求項1に記載の粘度指数向上剤組成物。 2. The viscosity index improver composition according to claim 1, wherein the (co)polymer (A) has a solubility parameter of 8.0 to 10.0 (cal/cm 3 ) 1/2 .
  4.  前記(共)重合体(A)が、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステル(b)及び/又は炭素数9~36のアルキル基を有する(メタ)アクリロイル単量体(c)を構成単量体として含む共重合体である請求項1に記載の粘度指数向上剤組成物。 The (co)polymer (A) is a (meth)acrylic acid alkyl ester (b) having an alkyl group having 1 to 4 carbon atoms and/or a (meth)acryloyl monomer having an alkyl group having 9 to 36 carbon atoms. 2. The viscosity index improver composition according to claim 1, which is a copolymer containing body (c) as a constituent monomer.
  5.  前記(共)重合体(A)が、下記一般式(2)で示される単量体(d)を構成単量体として含む共重合体である請求項4に記載の粘度指数向上剤組成物。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)においてRは水素原子又はメチル基;-X-は-O-又は-NH-で表される基;Rは炭素数2~4のアルキレン基;Rは炭素数1~18のアルキル基、又は炭素数6~20のアリール基;qは1~20の整数であり、qが2以上の場合のRは同一でも異なっていてもよい。]
    5. The viscosity index improver composition according to claim 4, wherein the (co)polymer (A) is a copolymer containing a monomer (d) represented by the following general formula (2) as a constituent monomer. .
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (2), R 3 is a hydrogen atom or a methyl group; -X 2 - is a group represented by -O- or -NH-; R 4 is an alkylene group having 2 to 4 carbon atoms; an alkyl group having 1 to 18 carbon atoms, or an aryl group having 6 to 20 carbon atoms; q is an integer of 1 to 20, and when q is 2 or more, R 4 may be the same or different; ]
  6.  前記(共)重合体(A)が、構成単量体として(共)重合体(A)を構成する単量体の合計重量に基づいて前記ポリオレフィン系単量体(a)を1~50重量%、前記(メタ)アクリル酸アルキルエステル(b)を1~80重量%、前記単量体(c)を1~60重量%、前記単量体(d)を1~35重量%含有する共重合体である請求項5に記載の粘度指数向上剤組成物。 The (co)polymer (A) contains 1 to 50 wt. %, 1 to 80% by weight of the (meth)acrylic acid alkyl ester (b), 1 to 60% by weight of the monomer (c), and 1 to 35% by weight of the monomer (d) 6. The viscosity index improver composition of claim 5, which is a polymer.
  7.  前記(共)重合体(A)の重量平均分子量が5,000~2,000,000である請求項1に記載の粘度指数向上剤組成物。 The viscosity index improver composition according to claim 1, wherein the (co)polymer (A) has a weight average molecular weight of 5,000 to 2,000,000.
  8.  さらに、前記GTL油(B)以外の基油として、API分類のGroupI~Vの基油を含有してなる請求項1に記載の粘度指数向上剤組成物。 The viscosity index improver composition according to claim 1, further comprising a base oil of API Groups I to V as a base oil other than the GTL oil (B).
  9.  請求項1~8のいずれか1項に記載の粘度指数向上剤組成物と、清浄剤、分散剤、酸化防止剤、油性向上剤、流動点降下剤、摩擦摩耗調整剤、極圧剤、消泡剤、抗乳化剤、金属不活性剤及び腐食防止剤からなる群より選ばれる少なくとも1種の添加剤とを含有してなる潤滑油組成物。

     
    The viscosity index improver composition according to any one of claims 1 to 8, a detergent, a dispersant, an antioxidant, an oiliness improver, a pour point depressant, a friction and wear modifier, an extreme pressure agent, an A lubricating oil composition containing at least one additive selected from the group consisting of foaming agents, demulsifiers, metal deactivators and corrosion inhibitors.

PCT/JP2023/006006 2022-03-02 2023-02-20 Viscosity index improver composition and lubricating oil composition WO2023167037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022031787 2022-03-02
JP2022-031787 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023167037A1 true WO2023167037A1 (en) 2023-09-07

Family

ID=87883451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006006 WO2023167037A1 (en) 2022-03-02 2023-02-20 Viscosity index improver composition and lubricating oil composition

Country Status (1)

Country Link
WO (1) WO2023167037A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224243A (en) * 2013-04-18 2014-12-04 三洋化成工業株式会社 Viscosity index improver and lubricant composition
JP2017031400A (en) * 2015-08-05 2017-02-09 三洋化成工業株式会社 Viscosity index improver composition and lubricant composition
WO2018174188A1 (en) * 2017-03-23 2018-09-27 三洋化成工業株式会社 Viscosity index improver and lubricating oil composition
JP2020105347A (en) * 2018-12-27 2020-07-09 Emgルブリカンツ合同会社 Lubricant composition
JP2022022992A (en) * 2020-06-22 2022-02-07 三洋化成工業株式会社 Viscosity index improver and lubricating oil composition
WO2022039266A1 (en) * 2020-08-20 2022-02-24 三洋化成工業株式会社 Viscosity index improver composition and lubricating oil composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224243A (en) * 2013-04-18 2014-12-04 三洋化成工業株式会社 Viscosity index improver and lubricant composition
JP2017031400A (en) * 2015-08-05 2017-02-09 三洋化成工業株式会社 Viscosity index improver composition and lubricant composition
WO2018174188A1 (en) * 2017-03-23 2018-09-27 三洋化成工業株式会社 Viscosity index improver and lubricating oil composition
JP2020105347A (en) * 2018-12-27 2020-07-09 Emgルブリカンツ合同会社 Lubricant composition
JP2022022992A (en) * 2020-06-22 2022-02-07 三洋化成工業株式会社 Viscosity index improver and lubricating oil composition
WO2022039266A1 (en) * 2020-08-20 2022-02-24 三洋化成工業株式会社 Viscosity index improver composition and lubricating oil composition

Similar Documents

Publication Publication Date Title
KR102318183B1 (en) Viscosity index improver and lubricating oil composition
JP7266367B2 (en) Lubricant base oil composition
WO2018174188A1 (en) Viscosity index improver and lubricating oil composition
JP6703453B2 (en) Viscosity index improver composition and lubricating oil composition
JP5878199B2 (en) Viscosity index improver and lubricating oil composition
JP2016169368A (en) Lubricating oil composition
JP5878057B2 (en) Viscosity index improver and lubricating oil composition
JP2017057378A (en) Viscosity index improver composition and lubricating oil composition
JP6748593B2 (en) Viscosity index improver and lubricating oil composition
JP5926761B2 (en) Viscosity index improver and lubricating oil composition
JP7320679B2 (en) Viscosity index improver composition and lubricating oil composition
JP2015007225A (en) Viscosity index improver and lubricant composition
JP7195717B2 (en) Viscosity index improver and lubricating oil composition
WO2023167037A1 (en) Viscosity index improver composition and lubricating oil composition
JP2015004055A (en) Viscosity index improver and lubricating oil composition
WO2020262088A1 (en) Viscosity index-improving composition and lubricating oil composition
JP7349032B2 (en) Viscosity index improver and lubricating oil composition
JP2021014578A (en) Viscosity index improver and lubricant composition
JP6165817B2 (en) Lubricant
JP2023004932A (en) Lubricant composition
JP2023004934A (en) Viscosity index improver and lubricating oil composition
JP2023004933A (en) Lubricant composition
JP2015183123A (en) viscosity index improver and lubricating oil composition
WO2023238603A1 (en) Viscosity index improver composition and lubricating oil composition
JP2014091767A (en) Viscosity index improver composition and lubricating oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763296

Country of ref document: EP

Kind code of ref document: A1