WO2023165194A1 - 一种不含稀土元素的生物可降解镁合金及其制备方法、应用 - Google Patents

一种不含稀土元素的生物可降解镁合金及其制备方法、应用 Download PDF

Info

Publication number
WO2023165194A1
WO2023165194A1 PCT/CN2022/135496 CN2022135496W WO2023165194A1 WO 2023165194 A1 WO2023165194 A1 WO 2023165194A1 CN 2022135496 W CN2022135496 W CN 2022135496W WO 2023165194 A1 WO2023165194 A1 WO 2023165194A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
rare earth
biodegradable magnesium
alloy
earth element
Prior art date
Application number
PCT/CN2022/135496
Other languages
English (en)
French (fr)
Inventor
梁栋科
赵铮
尚磊
李涛
林森
Original Assignee
上海康德莱医疗器械股份有限公司
上海璞镁医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海康德莱医疗器械股份有限公司, 上海璞镁医疗器械有限公司 filed Critical 上海康德莱医疗器械股份有限公司
Priority to EP22865880.3A priority Critical patent/EP4272774A4/en
Priority to JP2023518052A priority patent/JP2024513622A/ja
Publication of WO2023165194A1 publication Critical patent/WO2023165194A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present application relates to the field of medical materials, in particular to a biodegradable magnesium alloy containing no rare earth elements and its preparation method and application.
  • Medical metal materials are biomaterials that have developed rapidly in recent years. Due to their excellent mechanical properties, they are more suitable for implant materials in load-bearing parts than non-metal materials.
  • Today's commonly used medical metal materials include stainless steel, titanium and titanium alloys, cobalt-chromium alloys, precious metals, magnesium alloys, etc.
  • Magnesium alloy has become a widely used medical metal material due to its low density, high strength, and easy machining and welding. Magnesium in the human body undergoes a chemical reaction in the solution medium and turns into magnesium ions. Magnesium ions adjust the balance through absorption in the body and metabolism in the kidney, so that the magnesium alloy material is gradually degraded and absorbed in the body. Magnesium alloys have become the first choice for human body brackets, supports, and load-bearing materials because of their good mechanical properties, controllable corrosion properties, and minimal side effects of degradation products. However, magnesium is relatively active, and it is easily corroded in the human body, that is, the degradation rate is too fast. This was once a shortcoming of magnesium alloys used in the human body. However, unlike other metal materials, magnesium itself is an important element necessary for the human body. element, magnesium alloy can be utilized as a material that absorbs and degrades in the human body. Many scholars and researchers in the prior art have conducted research on magnesium alloys applied to the human body.
  • CN112760537A discloses a magnesium alloy comprising 88-93 parts of Mg, 2-6 parts of Zn, 0.2-1 part of Ca, 0.3-1 part of Mn, 0.3-1 part of Sn and 0.7-5 parts of rare earth metals.
  • the application also discloses the above-mentioned magnesium alloy preparation method and its application in the preparation of medical devices.
  • Mg is used as the main body, mixed with specific proportions of Zn, Ca, Mn, Sn and rare earth metals to prepare alloys, the degradation rate of which is controllable and has strong mechanical strength.
  • CN102296220A relates to a biomedical corrosion-resistant magnesium alloy that can be used as a human body implant material.
  • Ca 0.5 to 1.0%, the balance being Mg and unavoidable impurities.
  • the preparation method is as follows: Weigh the raw materials according to the proportion and put them into a graphite crucible, use high-purity argon as the protective gas to melt the alloy in a vacuum induction furnace, start the electromagnetic stirring device when the melting temperature reaches 770°C, stir for 10-20min and wait for Tilt the crucible several times, then refine with C2Cl6 refining agent for 3-5 minutes, then stir the melt, and pour it into a mold to form an alloy ingot when it is cooled to 700-720°C.
  • the magnesium alloy provided by this application not only has good mechanical properties, especially has excellent corrosion resistance, can effectively solve the problem of too fast corrosion and degradation rate of biomedical magnesium alloys in body fluids, but also has good biocompatibility, and the degradation products are harmful to the human body. It has no toxic effect and is expected to obtain important applications in the field of biomedicine.
  • CN109972007A relates to a biodegradable magnesium alloy staple material and a preparation method thereof.
  • the composition of the magnesium alloy is Mg-Zn-Ca-M, wherein M is one or any combination of Ag, Mn, Sn, Sr, Zr and Ge elements.
  • the target alloy is obtained through smelting and casting, homogenization treatment, hot extrusion or drawing at room temperature and annealing treatment.
  • the magnesium alloy material prepared by using the composition and preparation method described in this application has higher strength and plasticity and a controllable degradation rate, and can be naturally degraded in the living body, and the degradation products not only have no toxic side effects, Moreover, it can provide necessary nutritional supplements and has high biological security.
  • the trace silver element released in it can also inhibit the occurrence of bacterial inflammation around the implant.
  • the inventors of the present application found that although magnesium alloy orthopedic implant materials do not add rare earth elements, the problems of bioincompatibility and cytotoxicity caused by rare earth elements can be alleviated, but the degradable magnesium alloys in the prior art that do not contain rare earth elements There are still problems such as low strength, severe pitting or pit corrosion and rapid deterioration that cannot be resolved.
  • the crucial factor affecting the strength and corrosion performance of magnesium alloys is the internal structure of magnesium alloys. Generally speaking, grain refinement can improve the strength of magnesium alloys. Corrosion, especially the formation of pitting corrosion, is generally caused by the cathode and anode effects on the metal surface: when the alloy surface layer (usually the oxide layer is destroyed, a cathode is formed.
  • the inventor adopts means including: performing an accurate and controllable post-processing procedure on the cast magnesium alloy.
  • Optional post-processing includes process-controlled heat treatment, rolling and hot extrusion.
  • the heat treatment process the inhomogeneous inclusions and precipitates appearing in the magnesium alloy structure during casting and solidification can be eliminated or reduced by diffusion, so as to reduce the hindrance of grain refinement or recrystallization process in the subsequent processing; and then use regulated hot extrusion
  • the rolling process achieves the first refinement of the internal structure of the magnesium alloy, and during extrusion, the cracks in the alloy surface film are repaired and become denser; the subsequent controlled rolling process achieves the second refinement of the magnesium alloy grains. sub-refinement. This precise control of the morphology and structure of magnesium alloys is crucial to the control of the properties of the final product.
  • the first aspect of the present application provides the following biodegradable magnesium alloy that does not contain rare earth elements, and the magnesium alloy includes the following elements in mass percentage:
  • the average grain size of the above-mentioned magnesium alloy is 5-10 ⁇ m, and the average density of microcrack distribution on the surface is ⁇ 20 number/mm 2 .
  • Zn accounts for 1.0-3.0%
  • Ca accounts for 0.5-1.0%
  • Mn accounts for 0.5-1.0%
  • Zr accounts for 0.3-0.5%.
  • the mass ratio of impurities in the magnesium alloy is below 0.003wt%.
  • the magnesium alloy does not contain aluminum as an impurity.
  • the second aspect of the present application provides a method for preparing the above-mentioned biodegradable magnesium alloy, which specifically includes the following steps:
  • Hot extrusion put the heat-treated alloy into a hot extrusion mold, control the temperature at 250-300°C, control the extrusion rate at 2-5mm/s, and set the extrusion ratio to 10-15:1 ;
  • Roll forming Rolling is carried out at 320-350° C., the speed is controlled at 20-30 m/min, and the downforce of each rolling is controlled at 50-80%, to obtain a formed degradable magnesium alloy.
  • the above-mentioned rolling is completed, and a further heat treatment process may be performed as required.
  • preheating is performed before the rolling, and the preheating time does not exceed 10 minutes.
  • the rolling passes are no more than 10 times.
  • argon is blown and stirred by blowing argon gas from a gas port at the bottom of the molten ladle.
  • the third aspect of the present application also provides the use of the above-mentioned biodegradable magnesium alloy in the preparation of medical devices.
  • the biodegradable magnesium alloy is further processed into a block shape, a tube shape or a rod shape.
  • the medical device includes a bone nail, a bone plate, a bracket, etc., for example, used as an orthopedic implant, an intracardiac interventional stent, or a vascular interventional stent.
  • this application prepares biodegradable magnesium alloys, by controlling its microstructure, this application uses ⁇ -Mg as the main phase, and mixes Zn, Zr and Mn in a specific proportion to prepare an alloy with controllable morphology and structure, and its degradation rate can be controlled. Control and ensure sufficient mechanical strength, and there is no rare earth element harmful to the human body, and its degradation in the human body will not affect the human body.
  • This application preheats the alloy obtained by casting to modify the precipitated inhomogeneous inclusions to achieve the effect of diffusing and eliminating the segregated and aggregated precipitates and reducing the area of the precipitates. Refactoring removes the block.
  • the subsequent processing procedures of the present application refine the crystal grains and repair the cracks on the surface film of the magnesium alloy, thereby improving the strength and corrosion resistance.
  • adding Zn can improve the strength and elongation of the magnesium alloy. If it is too small, the desired effect cannot be obtained in this application, and if it is too much, it exceeds the limit, forming Zn-rich precipitates, and reducing the corrosion resistance; In the present application, Ca maintains the strength of the magnesium alloy and improves the effect of corrosion resistance. If it is too small, the present application cannot obtain the desired effect, and if it is too large, it is easy to form precipitates; in the present application, Mn plays an important role in the refinement of the alloy. And corrosion resistance promotion aspect has effect, too little then this application can not obtain desired effect, too much then easily influences its machinability; Add a small amount of Zr, Sn and Sr in this application, can refine the magnesium alloy grains, and improve its strength and plasticity.
  • Fig. 1 is the microstructure contrast figure of the cross-section of the sample of embodiment 1 of the present application and comparative example 1;
  • Fig. 2 is the comparison diagram of the microstructure topography of the sample surface of Example 1 and Comparative Example 1 of the present application;
  • Fig. 3 is a comparative diagram of the tensile-strain curves of the samples of Examples 1-3 and Comparative Example 1.
  • the magnesium alloys that the present application is used for orthopedic implants are all based on Mg, doped with other alloying elements, and do not contain rare earth elements.
  • magnesium alloys for such orthopedic implants require certain strength and degradation rate.
  • strength the tensile strength and yield strength of the magnesium alloy obtained in this application are both over 250 MPa; in terms of degradation rate, the degradable magnesium alloy of this application has a degradation rate of 0.5-1.5mm/year in simulated body fluid.
  • the magnesium alloys for orthopedic implants in the following examples of the present application have remarkable corrosion resistance, especially have obvious inhibitory effect on the formation of pitting corrosion.
  • Regulating the corrosion rate is the main contribution made by the magnesium alloy of this application to the prior art, because when the magnesium alloy is implanted in the living body, it must be ensured that the implant has sufficient strength not to be corroded in a large area for a period of time, and it can be Optionally does not affect the healing process of the organism itself.
  • the magnesium alloy of the present application exhibits excellent strength.
  • the embodiment of the present application obtains a degradable magnesium alloy, and no large-area, irregular columnar grains or strip grains or grain structures with obvious aspect ratios appear under control, and the grain size distribution is optional. Uniform equiaxed fine grains and surface layer structure distribution is relatively dense. These morphological features in particular make it particularly advantageous to use the magnesium alloys of the present application as alloy materials, eg for biodegradable orthopedic implants.
  • the degradable bio-magnesium alloy obtained by the application has a wide range of applications, and can be used as orthopedic implants, intracardiac interventional stents or vascular interventional stents, and is widely used (or used as after molding) as nails, screws, and seams in the body. Nails, fixed plates, curved rods, joint bolts, locking bolts, spinal support, honeycomb support, etc., all meet the needs of living organisms.
  • the powder purity of the metal raw materials used in the following examples and comparative examples is not less than 99.999%.
  • the reagents or instruments used are not indicated by the manufacturer, and they are all commercially available conventional reagent products.
  • This embodiment provides a biodegradable magnesium alloy without rare earth elements.
  • the preparation method is as follows: The metal powder is fully mixed, then melted at 700°C and then cast into shape; heat treatment: heat the alloy obtained by casting, control the temperature at 200°C, anneal for 1 minute, and cool; hot extrusion: put the alloy after heat treatment into the hot extrusion
  • the temperature is controlled at 300°C
  • the extrusion rate is controlled at 5mm/s
  • the extrusion ratio is set at 10:1
  • rolling forming rolling at 350°C, the speed is controlled at 30m/min, each rolling
  • the pressing amount of the manufacturing process is controlled at 60%, and the number of passes is no more than 10 times, so as to obtain a molded biodegradable magnesium alloy.
  • This embodiment provides a biodegradable magnesium alloy that does not contain rare earth elements.
  • the preparation method is as follows: The metal powder is fully mixed, then melted at 750°C and cast into shape; heat treatment: heat the alloy obtained by casting, control the temperature at 250°C, anneal for 2 minutes, and cool; hot extrusion: put the alloy after heat treatment into the hot extrusion In the pressing mold, the temperature is controlled at 300°C, the extrusion rate is controlled at 5mm/s, and the extrusion ratio is set at 15:1; rolling forming: rolling at 350°C, the speed is controlled at 20m/min, each rolling The pressing amount of the manufacturing pass is controlled at 50%, and the pass is not more than 10 times, so as to obtain the formed biodegradable magnesium alloy.
  • This embodiment provides a biodegradable magnesium alloy that does not contain rare earth elements.
  • the preparation method is as follows: The metal powder is fully mixed, then melted at 700°C and then cast into shape; heat treatment: heat the alloy obtained by casting, control the temperature at 200°C, anneal for 1 minute, and cool; hot extrusion: put the alloy after heat treatment into the hot extrusion In the pressed mold, the temperature is controlled at 250°C, the extrusion rate is controlled at 5mm/s, and the extrusion ratio is set at 15:1; rolling forming: rolling at 320°C, the speed is controlled at 30m/min, each rolling The pressing amount of the manufacturing pass is controlled at 80%, and the pass is not more than 10 times, so as to obtain the formed biodegradable magnesium alloy.
  • FIG. 1 The comparison diagram of the microstructure of the cross sections of the samples of Example 1 and Comparative Example 1 of the present application is shown in FIG. 1 . It can be clearly seen that compared with the sample of Comparative Example 1, in the microstructure of the magnesium alloy sample obtained by the method of the present application, the grain size is more uniform, indicating that the recrystallization of the microstructure in the process is more thorough; at the same time, the grain is finer and the segregation There are fewer phases, indicating that the pre-heat treatment reduces the precipitates and reduces the resistance of the grains to refine the crystallization.
  • the comparative diagram of the microstructure morphology of the sample surface of Example 1 and Comparative Example 1 of the present application is shown in FIG. 2 . It can be seen from the comparison that the cracks on the surface of the magnesium alloy sample obtained by the method of the present application are obviously suppressed, and the width, length and density of the cracks are all significantly reduced.
  • the crack density of the surface film of the present application is lower than 20 numbers/mm 2
  • the surface crack density of the sample of Comparative Example 1 is higher than 100 numbers/mm 2 .
  • the tension-stress curve of Fig. 4 may visually show that the yield strength of the magnesium alloy obtained in Examples 1-3 is all greater than 250MPa, the tensile strength is all greater than 275MPa, and the elongation is all greater than 20%; while the magnesium alloy of Comparative Example 1
  • the yield strength of the sample is lower than 225MPa, and the tensile strength is also lower than 260MPa, and the elongation is less than 17%. Therefore, compared with the sample of the comparative example, the strength performance of the sample of the present application is improved by at least 10-20%.
  • the biodegradable magnesium alloy obtained in the embodiment of the present application has well controlled its degradation rate in simulated body fluid, and can provide strength for a certain period of time while meeting the healing time of the organism's own tissue.
  • the degradation rate of Comparative Example 1 is too fast and uncontrollable, which is unfavorable for the control of precipitates after degradation and the maintenance of implant strength.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本申请提供一种不含稀土元素的生物可降解镁合金,所述镁合金包括质量百分比的元素:Zn 1.0-5.0%;Mn 0.1-1.0%;Ca 0.1-1.0%;Sr 0.1-1.0%;Sn 0.1-3.0%;Zr 0.1-0.8%;Mg余量,所述镁合金中的杂质不含有稀土。本申请还提供了上述生物可降解镁合金制备方法以及在制备医疗器械的用途。本申请以Mg为主体,和特定比例的Zn、Ca和Mn混合制备合金,其降解速度可控且具有较强的机械强度,且不存在对人体有害的元素,其且在人体体内降解不会对人体造成影响。

Description

一种不含稀土元素的生物可降解镁合金及其制备方法、应用
交叉引用
本申请要求在2022年3月3日提交中国国家知识产权局、申请号为202210204770.2、发明名称为“不含稀土元素的生物可降解镁合金及其制备方法、应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医用材料领域,具体来说涉及一种不含稀土元素的生物可降解镁合金及其制备方法和应用。
背景技术
医用金属材料是近几年高速发展的生物材料,由于其优良的机械性能,相比非金属材料而言更加适合承重部位的植入材料。如今常用的医用金属材料包括不锈钢、钛及钛合金、钴铬合金、贵金属、镁合金等。
镁合金由于其较低的密度,较高的强度,以及容易进行机械加工和焊接的特性,成为广泛使用的医用金属材料。人体内的镁在溶液介质中发生化学反应转变为镁离子,镁离子通过体内的吸收和肾脏的代谢来调节平衡,从而使镁合金材料在体内逐渐被降解吸收。镁合金因具有良好的力学性能、可控腐蚀性能和降解产物的最小副作用等优点而成为人体支架或支撑、承重材料的首选。但是镁性质比较活泼,在人体内很容易被腐蚀,即降解速率过快,这曾经是镁合金在人体内被应用的缺点,但是和其他金属材料不 同,镁本身是人体所必须的一种重要元素,可以将镁合金作为一种在人体内吸收降解性材料来利用。现有技术中不少学者和研究人员针对应用在人体的镁合金作了研究。
CN112760537A公开了一种镁合金,所述镁合金包括88-93份Mg、2-6份Zn、0.2-1份Ca、0.3-1份Mn、0.3-1份Sn和0.7-5份稀土金属。本申请还公开了上述镁合金制备方法以及在制备医疗器械的用途。本申请以Mg为主体,和特定比例的Zn、Ca、Mn、Sn和稀土金属混合制备合金,其降解速度可控且具有较强的机械强度。
CN102296220A涉及一种可用于人体植入材料的生物医用耐蚀镁合金,其组分及质量百分含量为:Zn:1.5%~2.5%、Mn:0.8~1.4%、Nd:0.5~1.5%、Ca:0.5~1.0%,余量为Mg和不可避免的杂质。其制备方法为:按配比称量原材料并放入石墨坩埚中以高纯氩气为保护气体在真空感应电炉中熔炼合金,待熔炼温度达到770℃时启动电磁搅拌装置,搅拌10-20min且其间倾转坩埚数次,然后用C2Cl6精炼剂精炼处理3-5min,之后搅拌熔体、待其冷却到700-720℃时浇入模具中形成合金铸锭。本申请提供的镁合金不仅具有良好的力学性能,特别具有优异的耐蚀性能、能有效解决生物医用镁合金在体液中腐蚀降解速率过快的问题,而且生物相容性好,降解产物对人体不具有毒害作用,有望在生物医学领域获得重要应用。
CN109972007A涉及了一种生物体内可降解镁合金吻合钉材料及其制备方法。所述镁合金组成为Mg-Zn-Ca-M,其中M为Ag、Mn、Sn、Sr、Zr、Ge元素中的一种或一种以上的任意组合。经过熔炼铸造,均匀化处理,热挤压或再进行室温拉拔及其退火处理得到目标合金。与现有技术相比,采 用本申请所述成分及制备方法制备的镁合金材料,具有较高的强度及塑性以及可控的降解速率,可在生物体内自然降解,降解产物不仅无毒副作用,而且可提供必要的营养补充,具有较高的生物安全性。适用于口腔、胃肠等器官的缝合或吻合手术中的吻合器用吻合钉材料,避免二次手术,为患者减轻痛苦。其中释放的微量银元素,还可抑制植入物周围细菌性炎症的发生。
现有技术中表明镁合金加入稀土元素的镁合金在强度方面有了提升,但是稀土(特别是降解后)能够引起肝脏毒性等一系列不良反应。虽然现有技术中存在大量对用于生物体内骨科植入物用镁合金的非稀土掺杂元素作了研究,但是作为生物可降解镁合金,现有技术还是存一些未曾解决的问题,例如镁合金在体内的降解速度、腐蚀速率过快(尤其是点蚀扩展迅速)和降解效果的调节以及如何弥补稀土元素缺失带来的强度损失,这影响到了医用镁合金的使用效果。因此亟需开发出一种即能保证强度又能调控降解效果和腐蚀的镁合金。
发明内容
本申请为了解决现有的生物可降解镁合金降解速度不可控,且降解和腐蚀过快后会造成生物毒性、不加稀土影响强度下降以及耐腐蚀性下降的问题,从而提供一种不含稀土元素的生物可降解镁合金。
本申请的发明人发现,虽然镁合金骨科植入物材料不添加稀土元素可缓解稀土元素引起的生物不相容、细胞毒性等问题,但是现有技术中的不含稀土元素的可降解镁合金依然存在强度低,点蚀或凹坑腐蚀严重及恶化迅速等问题未能解决。影响镁合金的强度以及腐蚀性能的至关重要的因素就 是镁合金的内部组织结构。一般来说,细化晶粒能提高镁合金的强度,腐蚀特别是点蚀的形成,一般都是金属表面的阴阳极效应引起:当合金表面层(一般为氧化物层被破坏时,形成阴极,而裸露的内部本征镁合金形成“阳极”,阴阳极之间的作用自形成后电极效应会不断累积,形成越来越深的腐蚀坑,并且这种坑会不断扩散和累积,最终会给镁合金的强度以及耐腐蚀性能造成极大的破坏。现有技术存在将铸造的镁合金进行加工,例如挤压等塑形变形,希望能达到组织结构重构的的效果。但是目前的浇铸后的合金加工后得到的工件性能改善有限。
发明人为解决上述问题,采用的手段包括:对铸造后的镁合金进行精确可控的后加工工序。可选的后加工包括工艺可控的热处理、轧制和热挤压。利用热处理过程中借过扩散作用先消除或缩小浇铸凝固中镁合金组织中出现的不均匀夹杂析出物,降低后续加工过程中的晶粒细化或再结晶过程的阻碍;然后利用调控的热挤压工艺实现镁合金内部组织的第一次细化,并且在挤出时,合金表面层膜的裂纹得到了修复,变得更加致密;其后的调控轧制工艺实现镁合金晶粒的第二次细化。这种对镁合金的形貌组织进行精确控制,对于最终产品的性质控制是至关重要的。
具体地,本申请的第一方面提供如下一种不含稀土元素的生物可降解镁合金,所述镁合金包括如下质量百分比的元素:
Figure PCTCN2022135496-appb-000001
Figure PCTCN2022135496-appb-000002
其中上述镁合金的晶粒平均尺寸为5-10μm,表面的微裂纹分布的平均密度为≦20个数/mm 2
在可选的实施方案中,所述镁合金中,Zn占1.0-3.0%,Ca占0.5-1.0%,Mn占0.5-1.0%,Zr占0.3-0.5%。
在可选的实施方案中,所述镁合金中的杂质质量比在0.003wt%以下。
在可选的实施方案中,所述镁合金中的杂质不含有铝。
本申请的第二方面提供一种上述生物可降解镁合金的制备方法,具体包括如下步骤:
1)熔融浇铸:密闭容器中,将各金属粉末按照需要的比例充分添加至熔融包中,控制温度在700-800℃下熔解,吹氩搅拌,进行浇铸,冷却;
2)热处理:将铸造得到的合金加热,控制温度200-250℃,退火处理1-5min,冷却;
3)热挤压:将热处理完成后的合金置入热挤压的模具中,控制温度250-300℃,挤出速率控制2-5mm/s,挤压的比例设定为10-15:1;
4)轧制成型:在320-350℃进行轧制,速度控制为20-30m/min,每道轧制的下压量控制在50-80%,得到成型的可降解镁合金。
在可选的实施例中,上述轧制完全成,可根据需要,进一步进行一道热处理工序。
在可选的实施例中,所述轧制前进行预热,预热时间不超过10min。
在可选的实施例中,所述轧制道次不超过10次。
在可选的实施例中,所述熔融浇铸时,吹氩搅拌是将氩气从熔融包中底部的气体口吹入。
本申请的第三方面还提供上述生物可降解镁合金在制备医疗器械的用途,根据具体的应用需要,将所述生物可降解镁合金进一步被加工成块状、管状或棒状。
在可选的实施例中,所述医疗器械包括骨钉、骨板、支架等,例如作为骨科植入物、心内介入支架或血管介入支架的使用。
本申请获得的技术效果包括如下:
本申请制备生物可降解镁合金时,通过控制其组织形态的调控,本申请以α-Mg为主体相,和特定比例的Zn、Zr和Mn混合制备形态组织可控的合金,其降解速度可控且保证足够的机械强度,且不存在对人体有害的稀土元素,其在人体体内降解不会对人体造成影响。
本申请先通过对铸造得到合金进行预热处理,对析出的不均匀夹杂物进行改性,达到使偏析聚集的析出物进行扩散消除,以及缩小析出物的面积的效果,为后续的组织、结构重构消除了阻碍。
同时本申请后续的加工工序,细化晶粒以及修复了镁合金表面膜的裂纹,改善了强度以及耐腐蚀性能。
本申请中,加入Zn可以提高镁合金的强度和伸长率,过少则本申请得不到所需的效果,过多则超过了极限,形成Zn富集的析出物,使耐蚀性下降;本申请中,Ca保持镁合金的强度,并提高耐蚀性的效果,过少则本申请得不到所需的效果,过多则容易形成析出物;本申请中,Mn在合金的精 细化及耐蚀性提升方面具有效果,过少则本申请得不到所需的效果,过多则容易影响其机械加工性;本申请中加入少量的Zr、Sn和Sr,可以细化镁合金的晶粒,并提高其强度和塑性。
附图说明
图1为本申请实施例1与对比例1的样品的截面的微观组织对比图;
图2为本申请实施例1与对比例1样品表面的微观组织形貌对比图;
图3为实施例1-3与对比例1样品的拉伸-应变曲线对比图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的模块或具有相同或类似功能的模块。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本申请用于骨科植入物的镁合金,都是以Mg为主相,掺入其他的合金 元素,不含稀土元素。一般对这类骨科植入的镁合金,要求有一定的强度以及降解速率。强度上,本申请得到的镁合金的抗拉强度以及屈服强度均超过250MPa;降解速率上,本申请的可降解镁合金在模拟体液中具有0.5-1.5mm/每年的降解速率。与现有技术中常规的镁合金相比,本申请下述实施例中的骨科植入镁合金具有显著的耐腐蚀性能,尤其对于点蚀的形成具有明显的抑制作用。调控腐蚀率是本申请镁合金对现有技术作出的主要的贡献,因为当镁合金植入生物体内后,要确保植入物一段时间段内不被大面积腐蚀损失具有足够的强度,并且可选地不影响生物体自身的愈合过程。另外,本申请的镁合金展现了优异的强度。
组织形态上,本申请实施方案得到可降解镁合金,控制都未出现大面积的、不规则的柱状晶或条状晶粒或长径比明显的晶粒组织,可选地是晶粒尺寸分布均匀的等轴细晶粒以及表面层组织分布比较致密。这些形态上的特点尤其使得特别有利于使用本申请的镁合金作为例如用于生物可降解骨科植入物的合金材料应用。
对于本申请得到的可降解生物镁合金的应用广泛,可作为骨科植入物、心内介入支架或血管介入支架使用,广泛用作(或经成型加工后用作)体内的钉、螺丝、缝钉、固定板、曲杆、关节螺栓、锁定螺栓、脊内支架、蜂窝支撑体等等,均满足生物体的需要。
实施例中未注明的部分具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。
下述的实施例和对比例中其使用的金属原料的粉末纯度均不小于99.999%,所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常 规试剂产品。
实施例1
本实施例提供一种不含稀土元素的生物可降解镁合金,其制备方法为,将91份Mg、4份Zn、1份Ca、1份Mn、0.8份Zr、2份Sn、0.2份Sr的金属粉末充分混合,然后在700℃下熔解后浇铸成型;热处理:将铸造得到的合金加热,控制温度200℃,退火处理1min,冷却;热挤压:将热处理完成后的合金置入热挤压的模具中,控制温度300℃,挤出速率控制5mm/s,挤压的比例设定为10:1;轧制成型:在350℃进行轧制,速度控制为30m/min,每道轧制的下压量控制在60%,道次不超过10次,得到成型的生物可降解镁合金。
实施例2
本实施例提供一种不含稀土元素的生物可降解镁合金,其制备方法为,将89.2份Mg、5份Zn、1份Ca、1份Mn、0.8份Zr、2份Sn、1份Sr的金属粉末充分混合,然后在750℃下熔解后浇铸成型;热处理:将铸造得到的合金加热,控制温度250℃,退火处理2min,冷却;热挤压:将热处理完成后的合金置入热挤压的模具中,控制温度300℃,挤出速率控制5mm/s,挤压的比例设定为15:1;轧制成型:在350℃进行轧制,速度控制为20m/min,每道轧制道次的下压量控制在50%,道次不超过10次,得到成型的生物可降解镁合金。
实施例3
本实施例提供一种不含稀土元素的生物可降解镁合金,其制备方法为,将90份Mg、5份Zn、1份Ca、1份Mn、0.8份Zr、1.2份Sn、1份Sr 的金属粉末充分混合,然后在700℃下熔解后浇铸成型;热处理:将铸造得到的合金加热,控制温度200℃,退火处理1min,冷却;热挤压:将热处理完成后的合金置入热挤压的模具中,控制温度250℃,挤出速率控制5mm/s,挤压的比例设定为15:1;轧制成型:在320℃进行轧制,速度控制为30m/min,每道轧制道次的下压量控制在80%,道次不超过10次,得到成型的生物可降解镁合金。
对比例1
本对比例除了未含步骤2)的热处理外,其余参数和工艺同实施例1相同。
合金微观组织形态测试
取实施例1与对比例1得到的镁合金进行制样,进行微观组织形态的观察对比。
本申请实施例1与对比例1的样品的截面的微观组织对比图,如图1所示。可以清楚地看出,相对对比例1的样品,本申请方法得到的镁合金样品的组织形貌中,晶粒尺寸更加均匀,说明工艺中的组织重新结晶更彻底;同时晶粒更细,偏析相更少,说明预先的热处理减少了析出物,降低了晶粒重新细化结晶的阻力。
本申请实施例1与对比例1样品表面的微观组织形貌对比图,如图2所示。通过对比可以看出,本申请方法得到的镁合金样品表面的裂纹明显得到抑制,无论从裂纹的宽度以及长度、密度都明显地减少了。本申请表面膜的裂纹密度低于20个数/mm 2,而对比例1的样品表面裂纹密度高于100个数/mm 2
合金强度能性测试
将实施例1-3及对比例1得到的生物可降解镁合金,按照GB-T228-2002测定抗拉强度、屈服强度及延伸率,进行强度指标的测试,测试结果如表1以及图4所示:
表1
样品 抗拉强度MPa 屈服强度MPa 延伸率
实施例1 330 300 21
实施例2 330 280 21
实施例3 300 255 21
对比例1 255 225 17
由图4的拉伸-应力曲线可能直观地显示,实施例1-3得到镁合金的屈服强度都大于250MPa,抗拉强度都大于275MPa,延伸率均大于20%;而对比例1的镁合金样品屈服强度低于225MPa,以及抗拉强度也低于260MPa,延伸率不足17%。所以相对于对比例的样品,本申请样品的强度性能至少提高了10-20%以上。
合金降解性能
取实施例1-3及对比例1得到的生物可降解镁合金,制成棒材,每个棒材取厚度为1mm,直径10mm的材料,将其浸入37%生理盐水中模拟在人体内部体液的降解情况,模拟测试结果如下表所示:
表2
Figure PCTCN2022135496-appb-000003
Figure PCTCN2022135496-appb-000004
由上表可知,本申请实施例得到的生物可降解镁合金很好地控制了其在模拟体液中的降解速度,能够同时提供一定时间的强度的同时,又能满足生物体自身组织的愈合时间。而对比例1的降解速率过快且不可控,对于降解后的沉淀析出物控制以及植入物强度的维持都是不利的。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (10)

  1. 一种不含稀土元素的生物可降解镁合金,所述镁合金包括如下质量百分比的元素:
    Figure PCTCN2022135496-appb-100001
    其中上述镁合金的晶粒平均尺寸为5-10μm,表面的微裂纹分布的平均密度为≦20个数/mm 2
  2. 根据权利要求1所述的一种不含稀土元素的生物可降解镁合金,其特征在于,进一步的,所述镁合金中,Zn占1.0-3.0%,Ca占0.5-1.0%,Mn占0.5-1.0%,Zr占0.3-0.5%。
  3. 根据权利要求1所述的一种不含稀土元素的生物可降解镁合金,其特征在于,所述镁合金中的杂质质量比在0.003wt%以下。
  4. 根据权利要求1所述的一种不含稀土元素的生物可降解镁合金,其特征在于,所述镁合金中的杂质不含有铝。
  5. 一种如上述权利要求1-4之一生物可降解镁合金的制备方法,具体包括如下步骤:
    1)熔融浇铸:密闭容器中,将各金属粉末按照需要的比例充分添加至熔融包中,控制温度在700-800℃下熔解,吹氩搅拌,进 行浇铸,冷却;
    2)热处理:将铸造得到的合金加热,控制温度200-250℃,退火处理1-5min,冷却;
    3)热挤压:将热处理完成后的合金置入热挤压的模具中,控制温度250-300℃,挤出速率控制2-5mm/s,挤压的比例设定为10-15:1;
    4)轧制成型:在320-350℃进行轧制,速度控制为20-30m/min,每道轧制的下压量控制在50-80%,得到成型的可降解镁合金。
  6. 根据权利要求5所述的一种不含稀土元素的生物可降解镁合金的制备方法,其特征在于,所述轧制完成后,可根据需要,进一步进行一道热处理工序。
  7. 根据权利要求5所述的一种不含稀土元素的生物可降解镁合金的制备方法,其特征在于,所述轧制前进行预热,预热时间不超过10min。
  8. 根据权利要求5所述的一种不含稀土元素的生物可降解镁合金的制备方法,其特征在于,所述轧制道次不超过10次。
  9. 根据权利要求5所述的一种不含稀土元素的生物可降解镁合金的制备方法,其特征在于,在可选的实施例中,所述熔融浇铸时,吹氩搅拌是将氩气从熔融包中底部的气体口吹入。
  10. 根据权利要求1所述的一种不含稀土元素的生物可降解镁合金在医疗器械中的应用,其特征在于,将所述生物降解镁合金作为骨科植入物、心内介入支架或血管介入支架使用。
PCT/CN2022/135496 2022-03-03 2022-11-30 一种不含稀土元素的生物可降解镁合金及其制备方法、应用 WO2023165194A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22865880.3A EP4272774A4 (en) 2022-03-03 2022-11-30 BIODEGRADABLE MAGNESIUM ALLOY WITHOUT RARE EARTH ELEMENTS AND PRODUCTION PROCESS AND USE THEREOF
JP2023518052A JP2024513622A (ja) 2022-03-03 2022-11-30 希土類元素フリー生分解性マグネシウム合金、その製造方法及び使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210204770.2A CN114561579A (zh) 2022-03-03 2022-03-03 不含稀土元素的生物可降解镁合金及其制备方法、应用
CN202210204770.2 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023165194A1 true WO2023165194A1 (zh) 2023-09-07

Family

ID=81717577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135496 WO2023165194A1 (zh) 2022-03-03 2022-11-30 一种不含稀土元素的生物可降解镁合金及其制备方法、应用

Country Status (4)

Country Link
EP (1) EP4272774A4 (zh)
JP (1) JP2024513622A (zh)
CN (1) CN114561579A (zh)
WO (1) WO2023165194A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561579A (zh) * 2022-03-03 2022-05-31 上海康德莱医疗器械股份有限公司 不含稀土元素的生物可降解镁合金及其制备方法、应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030044997A (ko) * 2003-05-23 2003-06-09 연우인더스트리(주) 성형성이 우수한 마그네슘합금 및 이를 이용한마그네슘합금 제품의 제조방법
CN101768689A (zh) * 2010-01-28 2010-07-07 西安理工大学 一种高强超韧低密度镁合金及其制备方法
KR20100106137A (ko) * 2009-03-23 2010-10-01 주식회사 지알로이테크놀로지 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법
CN102296220A (zh) 2011-09-15 2011-12-28 重庆大学 一种生物医用耐蚀镁合金及其制备方法
CN103614601A (zh) * 2013-12-16 2014-03-05 苏州奥芮济医疗科技有限公司 生物体内可控降解Mg-Ag-Zn-Mn抑菌镁合金植入材料及其制备
CN104328318A (zh) * 2014-10-20 2015-02-04 东北大学 一种高耐蚀性生物可降解镁合金的制备方法
CN109972007A (zh) 2019-03-20 2019-07-05 北京科技大学 一种生物体内可降解Mg-Zn-Ca-M的吻合钉材料及其制备方法
CN112695237A (zh) * 2020-12-22 2021-04-23 上海康德莱医疗器械股份有限公司 不含稀土元素的生物可降解镁合金及其制备方法
CN112760537A (zh) 2020-12-22 2021-05-07 上海康德莱医疗器械股份有限公司 一种镁合金及其制备方和用途
CN114561579A (zh) * 2022-03-03 2022-05-31 上海康德莱医疗器械股份有限公司 不含稀土元素的生物可降解镁合金及其制备方法、应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392344A (zh) * 2008-11-06 2009-03-25 上海交通大学 生物体内可降解Mg-Mn-Zn-Ca多元镁合金材料
EP2864516B1 (en) * 2012-06-26 2020-05-06 Biotronik AG Implant made from magnesium-zinc-calcium alloy, and method for production thereof
CN103526091B (zh) * 2013-09-15 2016-02-03 郑州大学 一种可降解生物医用镁合金及其制备方法
CN106811706B (zh) * 2015-11-30 2018-07-10 中国科学院金属研究所 一种调控镁合金腐蚀速率的有效方法
CN107304466A (zh) * 2016-04-19 2017-10-31 上海交通大学 生物降解可吸收高强韧耐蚀镁合金材料及其制备和用途
CN109680195B (zh) * 2019-02-19 2020-03-27 北京大学 一种Mg-RE系镁合金及其制备方法与应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030044997A (ko) * 2003-05-23 2003-06-09 연우인더스트리(주) 성형성이 우수한 마그네슘합금 및 이를 이용한마그네슘합금 제품의 제조방법
KR20100106137A (ko) * 2009-03-23 2010-10-01 주식회사 지알로이테크놀로지 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법
CN101768689A (zh) * 2010-01-28 2010-07-07 西安理工大学 一种高强超韧低密度镁合金及其制备方法
CN102296220A (zh) 2011-09-15 2011-12-28 重庆大学 一种生物医用耐蚀镁合金及其制备方法
CN103614601A (zh) * 2013-12-16 2014-03-05 苏州奥芮济医疗科技有限公司 生物体内可控降解Mg-Ag-Zn-Mn抑菌镁合金植入材料及其制备
CN104328318A (zh) * 2014-10-20 2015-02-04 东北大学 一种高耐蚀性生物可降解镁合金的制备方法
CN109972007A (zh) 2019-03-20 2019-07-05 北京科技大学 一种生物体内可降解Mg-Zn-Ca-M的吻合钉材料及其制备方法
CN112695237A (zh) * 2020-12-22 2021-04-23 上海康德莱医疗器械股份有限公司 不含稀土元素的生物可降解镁合金及其制备方法
CN112760537A (zh) 2020-12-22 2021-05-07 上海康德莱医疗器械股份有限公司 一种镁合金及其制备方和用途
CN114561579A (zh) * 2022-03-03 2022-05-31 上海康德莱医疗器械股份有限公司 不含稀土元素的生物可降解镁合金及其制备方法、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4272774A4

Also Published As

Publication number Publication date
EP4272774A1 (en) 2023-11-08
EP4272774A4 (en) 2024-07-24
CN114561579A (zh) 2022-05-31
JP2024513622A (ja) 2024-03-27

Similar Documents

Publication Publication Date Title
CN109097629B (zh) 一种可生物降解Zn-Mo系锌合金及其制备方法
EP2224032A1 (en) Process for manufacturing magnesium alloy based products
CN109112377B (zh) 一种耐蚀生物医用镁合金及其制备方法和应用
CN108754232B (zh) 一种高强高塑可生物降解Zn-Mn-Li系锌合金及其用途
CN105349858B (zh) 可降解的骨固定用镁合金植入材料及制备方法
CN110317973B (zh) 一种生物可降解LiZn4-Zn复相材料及其制备方法
CN109966568B (zh) 一种Zn-Ge-X三元生物医用材料及其制备方法
CN111187943A (zh) 一种生物医用Zn-Cu-Mg系合金及其制备方法
WO2021243683A1 (zh) 一种生物医用镁合金丝材的制备方法
WO2023165194A1 (zh) 一种不含稀土元素的生物可降解镁合金及其制备方法、应用
CN112494725B (zh) 一种可生物降解的复合材料及其制备方法和应用
CN105401033A (zh) 一种可降解高强韧耐蚀生物医用镁合金及其制备方法
CN108165782B (zh) 一种医用锌基合金带材及其制备方法
CN110923486B (zh) 一种可降解镁合金的热处理工艺
CN114107712B (zh) 一种医用镁基复合材料棒材及其制备方法
CN115029584A (zh) 一种生物可降解医用锌合金及其制备方法和应用
CN117737548A (zh) 一种用于生物医学毛细管的高延性钴铬基合金及其制备方法
CN113444919A (zh) 一种用于可降解心血管支架的锌合金材料及其制备方法
CN110512117B (zh) 一种医用锌合金材料及制备方法
CN108642359B (zh) 一种高强度的快速降解生物医用Mg-Zn-Zr-Fe合金材料及其制备方法
CN116219227A (zh) 一种生物可降解Zn-Mg-Ca-Sr锌合金及其制备方法和应用
CN111154992B (zh) 一种锌铜过饱和固溶体血管支架材料的制备方法及应用
CN114075634B (zh) 医用可降解Zn-Cu-Li三元合金及其制备与用途
CN112472868A (zh) 一种可降解的Mg-Nd-Zn-Sc生物医用镁合金及其制备方法
CN113122761A (zh) 一种可降解、强韧性的镁合金及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023518052

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022865880

Country of ref document: EP

Effective date: 20230313