WO2023163032A1 - Appareil d'émission d'ondes térahertz et procédé d'émission d'ondes térahertz - Google Patents

Appareil d'émission d'ondes térahertz et procédé d'émission d'ondes térahertz Download PDF

Info

Publication number
WO2023163032A1
WO2023163032A1 PCT/JP2023/006430 JP2023006430W WO2023163032A1 WO 2023163032 A1 WO2023163032 A1 WO 2023163032A1 JP 2023006430 W JP2023006430 W JP 2023006430W WO 2023163032 A1 WO2023163032 A1 WO 2023163032A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
layer
terahertz
output device
intermediate layer
Prior art date
Application number
PCT/JP2023/006430
Other languages
English (en)
Japanese (ja)
Inventor
誠 中嶋
幹彦 西谷
大陽 松永
ウサラ バリン カトリン ペンダン マグ
バーダッド カニーラ アグルート
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2023163032A1 publication Critical patent/WO2023163032A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Definitions

  • the present disclosure relates to a terahertz wave output device.
  • Terahertz waves are expected to be a next-generation elemental technology, such as for use in the 6th generation mobile communication system (6G).
  • Patent Literature 1 discloses a technique for increasing the intensity by overlapping the irradiation regions of two terahertz waves.
  • Patent Document 1 has the problem that the intensity of terahertz waves cannot be efficiently increased.
  • a terahertz wave output device includes a radiation layer that emits electromagnetic waves in the terahertz band, a reflective layer that is arranged behind the radiation layer and reflects the electromagnetic waves in the terahertz band, the radiation layer and the reflection layer. and an intermediate layer that is positioned between and transmits electromagnetic waves in the terahertz band.
  • a terahertz wave output method causes a radiation layer to radiate a first wave, which is an electromagnetic wave in the terahertz band, in front thereof, and radiates a second wave, which is an electromagnetic wave in the terahertz band, behind the radiation layer. and outputs a terahertz wave obtained by superimposing the reflected light obtained by forwardly reflecting the second wave and the first wave.
  • the intensity of terahertz waves is efficiently increased.
  • FIG. 1 is a perspective view showing a configuration example of a terahertz wave output device of this embodiment
  • FIG. 3 is a schematic diagram showing the action of the terahertz wave output device of the present embodiment
  • 3 is a perspective view showing a configuration example and action of a radiation layer 2.
  • FIG. 1 is a schematic diagram showing a configuration example of a terahertz wave output device according to an embodiment
  • FIG. 4 is a graph showing an example of a first wave from the emissive layer
  • FIG. It is a graph which shows an example of reflected light. It is a graph which shows the case where a 1st wave and a reflected wave are constructive.
  • FIG. 10 is a graph showing terahertz waves output when the first wave and the reflected wave construct each other; 5 is a graph showing the difference in output intensity between the terahertz wave output device according to the present embodiment and a comparative example;
  • 1 is a block diagram showing the configuration of a sensing device using a terahertz wave output device;
  • FIG. 4 is a perspective view showing another configuration example of the terahertz wave output device of the present embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment;
  • FIG. 10 is a graph showing terahertz waves output when the first wave and the reflected wave construct each other;
  • 5 is a graph showing the difference in output intensity between the terahertz wave output device according to the present embodiment and a comparative example;
  • 1 is a block diagram
  • FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment;
  • FIG. 1 is a perspective view showing a configuration example of the terahertz wave output device of this embodiment.
  • FIG. 2 is a schematic diagram showing the operation of the terahertz wave output device of this embodiment.
  • the terahertz wave output device 20 includes a radiation layer 2 that radiates electromagnetic waves in the terahertz band, a reflection layer 4 that is arranged behind the radiation layer 2 and reflects the electromagnetic waves in the terahertz band, An intermediate layer 3 is located between the emitting layer 2 and the reflecting layer 4 and transmits electromagnetic waves in the terahertz band.
  • a first wave WF which is an electromagnetic wave in the terahertz band
  • a second wave WS which is an electromagnetic wave in the terahertz band
  • the terahertz band is, for example, 0.05 to 50 [THz], and the output terahertz waves WT are electromagnetic waves in this frequency band. Forward means the direction in which the terahertz wave WT is output.
  • the radiation layer 2 may be the radiation section (electromagnetic wave generation section) 2
  • the intermediate layer 3 may be the intermediate section 3
  • the reflection layer 4 may be the reflection section 4 .
  • the radiation layer 2 emits a first wave WF in the terahertz band forward and a second wave WS in the terahertz band backward.
  • a terahertz wave WT generated by superimposing the WR and the first wave WF is output forward.
  • the intensity of the terahertz wave WT (output wave) can be increased. can.
  • FIG. 3 is a perspective view showing a configuration example and action of the radiation layer 2.
  • the radiation layer 2 has a first layer 11 which is a magnetic layer containing a magnetic metal and a second layer 12 which is a nonmagnetic layer containing a nonmagnetic metal. Also called emitter).
  • the first and second layers 11 and 12 are laminated so that the first layer 11 faces the front, but this is not the only option.
  • the first layer 11 may be laminated on the rear side.
  • the magnetic metal contained in the first layer 11 may be a ferromagnetic metal.
  • the first layer 11 may be composed of a single substance or a compound containing at least one of Fe (iron), Co (cobalt), Ni (nickel) and Gd (gadolinium). An example is Fe.
  • the first layer 11 may contain at least one of CoFeB and GdFe.
  • the thickness of the first layer 11 can be 1 to 20 [nm]. An example is 5 [nm].
  • the second layer 12 is at least one of Pt (platinum), Au (gold), Ru (ruthenium), Cu (copper), Ta (tantalum), Pd (lead), W (tungsten), and Al (aluminum). It may be composed of a single substance or a compound containing An example is Pt.
  • Pt platinum
  • Au gold
  • Ru ruthenium
  • Cu copper
  • Ta tantalum
  • Pd lead
  • W tungsten
  • Al aluminum
  • It may be composed of a single substance or a compound containing An example is Pt.
  • the thickness of the second layer 12 can be 1 to 20 [nm]. An example is 5 [nm].
  • the emitting layer 2 which is the STE, receives the excitation light LK and emits electromagnetic waves in the terahertz band.
  • the excitation light LK is, for example, discontinuous wave laser light (infrared pulse laser light) with a wavelength of about 800 nm.
  • FIG. 3 for example, when the emission layer 2 is irradiated with femtosecond pulsed laser light, spin polarization occurs at the interface between the first and second layers 11 and 12, and the first layer 11 and the second layer 12 A spin current Js flowing between the first and second layers 11 and 12 is converted into an actual current Jc flowing in a direction parallel to the interface of the first and second layers 11 and 12 (reverse spin Hall effect).
  • the emitting layer 2 which is STE, has multiple advantages such as high strength, large area, broadband, low cost, and high damage threshold.
  • the reflective layer 4 is a layer that reflects the second wave WS, which is an electromagnetic wave in the terahertz band, and can be made of, for example, a conductor or a dielectric.
  • An example of the conductor is indium tin oxide (ITO) with a thickness of 50 [nm] to 2.0 [ ⁇ m].
  • An example of the sheet resistance is 6 ⁇ /sq.
  • a light transmissive material such as ITO is preferred.
  • ITO indium zinc oxide
  • AgMg alloy light-transmitting metal ultrathin film
  • An insulating material having a large refractive index can be used as the dielectric.
  • the excitation light LK is incident on the emitting layer 2 from the front (described later), the light transmittance of the reflecting layer 4 does not matter.
  • the intermediate layer 3 is a layer that transmits electromagnetic waves in the terahertz band, and can be made of, for example, a dielectric.
  • a dielectric an inorganic insulator such as silicon oxide, silicon nitride, sapphire, etc. or an organic insulator such as resin having a thickness of about 1.0 to 500 [ ⁇ m] can be used.
  • One example is 10 to 100 ⁇ m glass (eg, microsheet glass) or transparent resin.
  • the intermediate layer 3 preferably has a smaller refractive index for electromagnetic waves in the terahertz band than the reflective layer 4 .
  • the intermediate layer 3 is a phase control layer that controls the phases of the second wave WS and the reflected wave WR. is set (detailed later).
  • the intermediate layer 3 may perform phase control to align the phases of the first wave WF and the reflected wave WR (that is, the first wave WF and the reflected wave WR are coherently combined to increase the electromagnetic wave intensity).
  • the intermediate layer 3 has optical transparency. , the optical transparency of the intermediate layer 3 does not matter.
  • the emitting layer 2, intermediate layer 3 and reflective layer 4 are laminated in this order.
  • the intermediate layer 3 may be sandwiched between the substrate on which the emissive layer 2 is deposited and the substrate on which the reflective layer 4 is deposited. Further, the substrate having the emissive layer 2 formed thereon may be disposed on the intermediate layer 3 having the reflective layer 4 formed thereon.
  • the emitting layer 2 may be deposited on one side of the intermediate layer 3 and the reflective layer 4 may be deposited on the other side.
  • FIG. 4 is a schematic diagram showing a configuration example of the terahertz wave output device of this embodiment. 1 and 2, the excitation light LK is irradiated from behind the terahertz wave output device 20, and the excitation light LK transmitted through the reflection layer 4 and the intermediate layer 3 is made incident on the emission layer 2 (second layer 12). but not limited to this. As shown in FIG. 4, the excitation light LK may be irradiated from the front of the terahertz wave output device 20 to directly enter the emission layer 2 (first layer 11).
  • FIG. 5 is a graph showing an example of the first wave from the emissive layer.
  • FIG. 6 is a graph showing an example of assumed reflected light.
  • a 3 [nm] Fe film as the first layer 11 a 3 [nm] Pt film as the second layer 12
  • a 500 [nm] ITO film as the reflective layer 4 a 30 [ ⁇ m] thickness as the intermediate layer 3.
  • sheet glass and the excitation light LK, which is femtosecond pulsed laser light (wavelength: 800 nm), is irradiated to the emitting layer 2 from behind.
  • the first wave WF is a pulse wave.
  • FIG. 1 is a pulse wave.
  • the amplitude of the reflected light WR is about 30% smaller than that of the first wave WF, and the pulse position (time axis) is delayed by 0.32 [picoseconds]. This corresponds to the fact that about 70% of the electromagnetic wave in the terahertz band is transmitted through the radiation layer 2 and the time required to make a round trip through the intermediate layer 3 is 0.32 [picoseconds].
  • the speed at which the terahertz-band electromagnetic wave travels through the intermediate layer 3 is the speed of light c/n (n is the refractive index of the intermediate layer with respect to the terahertz-band electromagnetic wave). It corresponds to the speed of light c ⁇ 0.32 ⁇ 10 ⁇ 12 /n.
  • the first wave WF and the reflected wave WR are coherently
  • the intermediate layer 3 may perform phase control such that the reflected wave WR that has passed through the intermediate layer 3 and the radiation layer 4 and the first wave WF are coherent, and the first wave WF and the reflected wave WR is a pulse wave, the pulse of the first wave WF and the pulse of the reflected wave WR are positively superimposed in front of the radiation layer 2 .
  • the product of the refractive index n of the intermediate layer 3 and the thickness d of the intermediate layer 3 with respect to the second wave WS is 1/4 wavelength ( ⁇ /4) or more of the second wave WS.
  • FIG. 7 is a graph showing a case where the first wave and the reflected wave are constructive.
  • FIG. 8 is a graph showing a terahertz wave output when the first wave and the reflected wave are constructive. 7 and 8, it can be seen that the amplitude AT of the output terahertz wave WT is approximately 1.4 times the amplitude AF of the first wave WF.
  • FIG. 9 is a graph showing the difference in output intensity between the terahertz wave output device according to this embodiment and the comparative example. As can be seen from FIG. 9, according to the terahertz wave output device 20, an output intensity about 2.4 times higher than that of the comparative example (output intensity in the case of only the radiation layer) can be obtained.
  • FIG. 10 is a block diagram showing the configuration of a sensing device using a terahertz wave output device.
  • the sensing device 70 includes the light source 10 of the excitation light LK, the terahertz wave output device 20, the detection device 30, and the imaging device 40 (optical photodiode, CMOS camera, etc.) and a display device 50 for displaying image data from the imaging device 40 .
  • the imaging device 40 optical photodiode, CMOS camera, etc.
  • the target TG is irradiated with the terahertz wave WT from the terahertz wave output device 20, and the terahertz wave transmitted through the target TG is input to the detection device 30, thereby displaying a perspective image of the target TG on the display device 50.
  • the terahertz wave output device 20 and the light source 10 of the excitation light LK can be integrated (as one device).
  • the magnetic field device for applying an external magnetic field to the radiation layer 2 and the terahertz wave output device 20 can be integrated (to form one device).
  • FIG. 11 is a perspective view showing another configuration example of the terahertz wave output device of this embodiment.
  • the radiation layer 2 in FIG. 11 includes a first layer 11 which is a magnetic layer containing a magnetic metal, a second layer 12 which is a nonmagnetic layer containing a nonmagnetic metal, and a third layer 12 which is a nonmagnetic layer containing a nonmagnetic metal.
  • the third layer 13 is located in front of the first layer 11 . That is, the third layer 13, the first layer 11, and the second layer 12 are laminated in this order.
  • the third layer 13 is at least one of Pt (platinum), Au (gold), Ru (ruthenium), Cu (copper), Ta (tantalum), Pd (lead), W (tungsten), and Al (aluminum). It may be composed of a single substance or a compound containing
  • FIG. 12 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment.
  • the terahertz wave output device 20 may be configured by monolithically forming the radiation layer 2, the intermediate layer 3 and the reflection layer 4 on the substrate 6 in this order.
  • the substrate 6 is a glass substrate
  • the emitting layer 2 is STE
  • the intermediate layer 3 is a resin (for example, a coatable transparent resin)
  • the reflective layer 4 is a translucent conductive film (for example, ITO, IZO, etc.) or a high refractive index.
  • An insulating film can be used.
  • FIG. 13 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment.
  • the emitting layer 2 may be formed on one surface of the intermediate layer 3 having a substrate function
  • the reflective layer 4 may be formed on the other surface of the intermediate layer 3 .
  • STE can be used as the emitting layer 2
  • glass or resin e.g., polyimide
  • a translucent conductive film e.g., ITO, IZO, etc.
  • a high refractive index insulating film can be used as the reflective layer 4.
  • FIG. 14 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment.
  • a plano-convex lens 7 having a convex surface 7S and a flat surface 7F may be used as a substrate, and the emitting layer 2, the intermediate layer 3 and the reflective layer 4 may be monolithically formed on the flat surface 7F in this order.
  • An emissive layer 2 (STE) may be provided on the convex surface 7S.
  • FIG. 15 is a cross-sectional view showing another configuration of the radiation layer of this embodiment.
  • Emissive layer 2 is not limited to the STE described above.
  • a photoconductive antenna structure may be used for the radiation layer 2 .
  • the radiation layer 2 of the photoconductive antenna structure is electrically connected to the photoelectric layer (semiconductor layer) 14 formed on the substrate 8, the electrodes D1 and D2 formed on the photoelectric layer 14, and the electrode D1.
  • An antenna A1 in contact with the layer 14 and an antenna A2 electrically connected to the electrode D2 and in contact with the photoelectric layer 14 are provided. emits electromagnetic waves in the terahertz band.
  • the intermediate layer 3 can be provided on the side of the substrate 8 or on the opposite side of the substrate 8 .
  • Substrate 8 may be used as intermediate layer 3 .
  • the radiation layer 2 of the photoconductive antenna structure has the merits of high efficiency and wide band.
  • FIG. 16 is a cross-sectional view showing another configuration of the emitting layer of this embodiment.
  • a nonlinear optical crystal 16 may be used for the emitting layer 2, as shown in FIG.
  • a nonlinear optical crystal 16 such as LiNbO 3 (lithium niobate crystal) receives excitation light LK and emits electromagnetic waves in the terahertz band.
  • the intermediate layer 3 can be provided on one side or the other side of the nonlinear optical crystal 16 .
  • the emitting layer 2 using the nonlinear optical crystal 16 has advantages such as high coherence, high output, and broadband.
  • FIG. 17 is a cross-sectional view showing another configuration of the radiation layer of this embodiment.
  • a resonant tunneling diode (RTD) structure may be used for the emissive layer 2, as shown in FIG.
  • the radiation layer 2 of the RTD structure comprises an insulating layer 17 formed on the substrate 9 and a quantum well semiconductor layer 18 positioned in holes formed in the insulating layer 17.
  • a voltage is applied to the quantum well semiconductor layer 18. By doing so, it emits electromagnetic waves in the terahertz band.
  • a plurality of quantum well semiconductor layers 18 may be formed in an array.
  • the quantum well semiconductor layer 18 can be made of n-InP/n-InGaAs or InGaAs/InAlAs.
  • the intermediate layer 3 can be provided on the substrate 9 side or on the opposite side of the substrate 9 .
  • Substrate 9 may be used as intermediate layer 3 .
  • an RTD structure is used for the emitting layer 2, it is not necessary to irradiate excitation light.
  • the present disclosure includes the following aspects.
  • a terahertz wave output device includes a radiation layer that radiates electromagnetic waves in the terahertz band, a reflective layer that is disposed behind the radiation layer and reflects the electromagnetic waves in the terahertz band, and the radiation layer and the reflective layer. and an intermediate layer positioned therebetween and transmitting electromagnetic waves in the terahertz band.
  • the emitting layer emits a first terahertz wave forward and a second terahertz wave backward, A terahertz wave generated by superimposing a reflected wave generated by reflecting the second wave on the reflecting layer and the first wave is outputted forward.
  • the intermediate layer has insulating properties or has high permeability to terahertz waves.
  • the reflecting layer has a higher refractive index for electromagnetic waves in the terahertz band than the intermediate layer.
  • the product of the refractive index of the intermediate layer and the thickness of the intermediate layer with respect to the second wave is 1/4 wavelength or more of the second wave.
  • the reflected wave is out of phase with the first wave by approximately 0.9 ⁇ to 1.1 ⁇ .
  • the intermediate layer performs phase control such that the reflected wave and the first wave that have passed through the intermediate layer and the radiation layer are coherent. conduct.
  • At least one of the refractive index of the intermediate layer and the thickness of the intermediate layer with respect to the second wave is set according to the terahertz frequency to be output.
  • a terahertz wave output device is the terahertz wave output device according to any one of Aspects 1 to 8, wherein the radiation layer is a first layer that is a magnetic layer containing a magnetic metal, and a non-magnetic layer containing a non-magnetic metal. and a second layer in contact with the first layer, and the emitting layer is irradiated with discontinuous wave laser light.
  • the reflective layer and the intermediate layer have translucency, and the laser light is irradiated to the emitting layer from behind.
  • the reflective layer includes a conductive layer such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the intermediate layer is microsheet glass or microsheet plastic.
  • the first wave and the reflected wave are pulse waves, and the pulse of the first wave and the pulse of the reflected wave are in front of the radiation layer. are superimposed on each other.
  • a first wave which is an electromagnetic wave in the terahertz band
  • a second wave which is an electromagnetic wave in the terahertz band

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

Un appareil d'émission d'ondes térahertz (20) comprend : une couche de rayonnement (2) qui rayonne des ondes électromagnétiques d'une bande térahertz ; une couche de réflexion (4) qui est disposée derrière la couche de rayonnement pour réfléchir les ondes électromagnétiques de la bande térahertz ; et une couche intermédiaire (3) qui est positionnée entre la couche de rayonnement et la couche de réflexion et qui est transmissive aux ondes électromagnétiques de la bande térahertz. L'appareil d'émission d'ondes térahertz (20) amène la couche de rayonnement à rayonner une première onde (WF), qui est une onde électromagnétique de la bande térahertz, vers l'avant de la couche de rayonnement, et à rayonner une seconde onde (WS), qui est une onde électromagnétique de la bande térahertz, vers l'arrière de la couche de rayonnement, l'appareil d'émission d'ondes térahertz (20) émettant une onde térahertz (WT) dans laquelle une onde de réflexion (WR) obtenue par réflexion vers l'avant de la seconde onde est superposée à la première onde. Dans l'appareil d'émission d'ondes térahertz, l'intensité de l'onde térahertz (onde de sortie) peut être augmentée par réglage des caractéristiques de la couche intermédiaire de telle sorte que l'onde de réflexion et la première onde sont superposées positivement.
PCT/JP2023/006430 2022-02-24 2023-02-22 Appareil d'émission d'ondes térahertz et procédé d'émission d'ondes térahertz WO2023163032A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022027276 2022-02-24
JP2022-027276 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023163032A1 true WO2023163032A1 (fr) 2023-08-31

Family

ID=87766030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006430 WO2023163032A1 (fr) 2022-02-24 2023-02-22 Appareil d'émission d'ondes térahertz et procédé d'émission d'ondes térahertz

Country Status (1)

Country Link
WO (1) WO2023163032A1 (fr)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322733A (ja) * 2004-05-07 2005-11-17 Mitsuteru Kimura テラヘルツ波発生ダイオードおよびこれを用いたテラヘルツ波放射装置
WO2006030608A1 (fr) * 2004-09-13 2006-03-23 Kyushu Institute Of Technology Élément de radiation à ondes électromagnétiques en térahertz et procédé de fabrication de celui-ci
JP2009080448A (ja) * 2007-09-07 2009-04-16 Kagawa Univ テラヘルツ光源
JP2009158926A (ja) * 2007-12-07 2009-07-16 Canon Inc 電磁波発生素子、電磁波集積素子、及び電磁波検出装置
JP2012053450A (ja) * 2010-08-05 2012-03-15 Canon Inc テラヘルツ波発生素子、テラヘルツ波検出素子、テラヘルツ波発生装置、テラヘルツ波検出装置、テラヘルツ波測定装置、及びテラヘルツ波トモグラフィックイメージング装置
WO2012077769A1 (fr) * 2010-12-09 2012-06-14 公立大学法人大阪府立大学 Dispositif de génération de lumière et procédé de génération de lumière
JP2013030610A (ja) * 2011-07-28 2013-02-07 Panasonic Corp テラヘルツ波素子
JP2015141111A (ja) * 2014-01-29 2015-08-03 パイオニア株式会社 テラヘルツ波出力装置、テラヘルツ波出力方法、コンピュータプログラム及び記録媒体
JP2016536806A (ja) * 2013-09-18 2016-11-24 中国科学院蘇州納米技術与納米▲ファン▼生研究所 テラヘルツ光源のチップ、光源デバイス、光源ユニット及びその製造方法
WO2021006105A1 (fr) * 2019-07-05 2021-01-14 ローム株式会社 Dispositif térahertz
CN113964627A (zh) * 2021-10-19 2022-01-21 中国科学技术大学 一种性能可调的太赫兹波发射器
CN115693351A (zh) * 2022-10-18 2023-02-03 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种单向高效自旋太赫兹发射器及应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322733A (ja) * 2004-05-07 2005-11-17 Mitsuteru Kimura テラヘルツ波発生ダイオードおよびこれを用いたテラヘルツ波放射装置
WO2006030608A1 (fr) * 2004-09-13 2006-03-23 Kyushu Institute Of Technology Élément de radiation à ondes électromagnétiques en térahertz et procédé de fabrication de celui-ci
JP2009080448A (ja) * 2007-09-07 2009-04-16 Kagawa Univ テラヘルツ光源
JP2009158926A (ja) * 2007-12-07 2009-07-16 Canon Inc 電磁波発生素子、電磁波集積素子、及び電磁波検出装置
JP2012053450A (ja) * 2010-08-05 2012-03-15 Canon Inc テラヘルツ波発生素子、テラヘルツ波検出素子、テラヘルツ波発生装置、テラヘルツ波検出装置、テラヘルツ波測定装置、及びテラヘルツ波トモグラフィックイメージング装置
WO2012077769A1 (fr) * 2010-12-09 2012-06-14 公立大学法人大阪府立大学 Dispositif de génération de lumière et procédé de génération de lumière
JP2013030610A (ja) * 2011-07-28 2013-02-07 Panasonic Corp テラヘルツ波素子
JP2016536806A (ja) * 2013-09-18 2016-11-24 中国科学院蘇州納米技術与納米▲ファン▼生研究所 テラヘルツ光源のチップ、光源デバイス、光源ユニット及びその製造方法
JP2015141111A (ja) * 2014-01-29 2015-08-03 パイオニア株式会社 テラヘルツ波出力装置、テラヘルツ波出力方法、コンピュータプログラム及び記録媒体
WO2021006105A1 (fr) * 2019-07-05 2021-01-14 ローム株式会社 Dispositif térahertz
CN113964627A (zh) * 2021-10-19 2022-01-21 中国科学技术大学 一种性能可调的太赫兹波发射器
CN115693351A (zh) * 2022-10-18 2023-02-03 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种单向高效自旋太赫兹发射器及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MATSUNAGA TAIYO; MAG-USARA VALYNN KATRINE; EJIRI KOHEI; TETSUKAWA SHOEI; LIU SHUANG; AGULTO VERDAD C.; NISHITANI SHOJIRO; NISHITAN: "High Intensity Spintronic Terahertz Emitter with ITO and Microsheet Glass Structure", 2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), IEEE, 28 August 2022 (2022-08-28), pages 1 - 2, XP034197312, DOI: 10.1109/IRMMW-THz50927.2022.9895759 *
QIU H. S., KATO K., HIROTA K., SARUKURA N., YOSHIMURA M., NAKAJIMA M.: "Layer thickness dependence of the terahertz emission based on spin current in ferromagnetic heterostructures", OPTICS EXPRESS, vol. 26, no. 12, 11 June 2018 (2018-06-11), pages 15247 - 15254, XP093085815, DOI: 10.1364/OE.26.015247 *
SUIZU K, ET AL.: "SURFACE-EMITTED TETRAHERTZ-WAVE GENERATION BY RIDGED PERIODICALLY POLED LITHIUM NIOBATE AND ENHANCEMENT BY MIXING OF TWO TETRAHERTZ WAVES", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, US, vol. 31, no. 07, 1 April 2006 (2006-04-01), US , pages 957 - 959, XP001242364, ISSN: 0146-9592, DOI: 10.1364/OL.31.000957 *
TAIYO MATSUNAGA, KOHEI EJIRI, SHUANG LIU, TONGEI TETSUKAWA, MAG-USARA V. K. P., AGULTO V. C., SHOJIRO NISHITANI, MIKIHIKO NISHITAN: "25p-D315-7: High-intensity magnetic ultra-thin film terahertz light source using ITO structure", PROCEEDINGS OF THE 69TH JAPAN SOCIETY OF APPLIED PHYSICS (JSAP) SPRING CONFERENCE, MARCH 22-26, 2022, JAPAN SOCIETY OF APPLIED PHYSICS (JSAP), JP, vol. 69, 1 March 2022 (2022-03-01) - 26 March 2022 (2022-03-26), JP, pages 03 - 383, XP009548693 *
TALARA MIEZEL, BULGAREVICH DMITRY S., TACHIOKA CHIYAKA, MAG-USARA VALYNN KATRINE, MULDERA JOSELITO, FURUYA TAKASHI, KITAHARA HIDEA: "Efficient terahertz wave generation of diabolo-shaped Fe/Pt spintronic antennas driven by a 780 nm pump beam", APPLIED PHYSICS EXPRESS, JAPAN SOCIETY OF APPLIED PHYSICS; JP, JP, vol. 14, no. 4, 1 April 2021 (2021-04-01), JP , pages 042008, XP093085813, ISSN: 1882-0778, DOI: 10.35848/1882-0786/abeea0 *

Similar Documents

Publication Publication Date Title
US20110110628A1 (en) Semiconductor light-receiving element, optical communication device, optical interconnect module, and photoelectric conversion method
US8975584B2 (en) Improved-efficiency fibre-coupled terahertz system
US9329339B2 (en) Plasmonic detector and method for manufacturing the same
JP2005509909A (ja) マトリックス・アドレス指定可能な光電装置と、その電極手段
EP2526457B1 (fr) Laser et procédé de modulation active de rayonnement laser
JP7335273B2 (ja) イントリンシック・プラズモン-励起子ポラリトンに基づく光電子デバイス
JP2014165412A (ja) 短光パルス発生装置、テラヘルツ波発生装置、カメラ、イメージング装置、および計測装置
KR100807912B1 (ko) 레이저 유도식 광학 배선 장치
JP2008071908A (ja) 超伝導光検出素子
US20230280633A1 (en) Free-space Beam Steering Systems, Devices, and Methods
CN109100899A (zh) 光束转向器件、包括其的光学装置及光束转向器件封装
US20230221416A1 (en) Distance information acquisition apparatus and electronic apparatus including the same
CN108666409A (zh) 一种提高超导纳米线吸收效率的结构
US20170351087A1 (en) Photonic Modulator and Switch
WO2023163032A1 (fr) Appareil d'émission d'ondes térahertz et procédé d'émission d'ondes térahertz
WO2010006440A1 (fr) Antennes photoconductrices térahertz à électrodes conductrices transparentes et leurs procédés de fabrication
JPS63269582A (ja) 量子井戸を用いた光電子半導体装置
CN115863937A (zh) 一种光驱动太赫兹开关机构、太赫兹源及生成方法
KR20210095127A (ko) 광학 활성 재료를 포함하는 부품
JPH08204226A (ja) 受光素子
WO2013068516A1 (fr) Photomélangeur pour émission d'onde électromagnétique térahertz comprenant des points quantiques dans une cavité laser
US20240234615A9 (en) Arrangement for an antenna for generating or receiving terahertz radiation, antenna, terahertz system, and method for producing an arrangement for an antenna
US20150168296A1 (en) Short optical pulse generator, terahertz wave generator, camera, imaging apparatus, and measurement apparatus
CN109375419B (zh) 背光模组和显示装置
JP2023159018A (ja) 光検知素子及び受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024503210

Country of ref document: JP