WO2023163032A1 - Terahertz wave output apparatus and method for outputting terahertz wave - Google Patents

Terahertz wave output apparatus and method for outputting terahertz wave Download PDF

Info

Publication number
WO2023163032A1
WO2023163032A1 PCT/JP2023/006430 JP2023006430W WO2023163032A1 WO 2023163032 A1 WO2023163032 A1 WO 2023163032A1 JP 2023006430 W JP2023006430 W JP 2023006430W WO 2023163032 A1 WO2023163032 A1 WO 2023163032A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
layer
terahertz
output device
intermediate layer
Prior art date
Application number
PCT/JP2023/006430
Other languages
French (fr)
Japanese (ja)
Inventor
誠 中嶋
幹彦 西谷
大陽 松永
ウサラ バリン カトリン ペンダン マグ
バーダッド カニーラ アグルート
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2023163032A1 publication Critical patent/WO2023163032A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Definitions

  • the present disclosure relates to a terahertz wave output device.
  • Terahertz waves are expected to be a next-generation elemental technology, such as for use in the 6th generation mobile communication system (6G).
  • Patent Literature 1 discloses a technique for increasing the intensity by overlapping the irradiation regions of two terahertz waves.
  • Patent Document 1 has the problem that the intensity of terahertz waves cannot be efficiently increased.
  • a terahertz wave output device includes a radiation layer that emits electromagnetic waves in the terahertz band, a reflective layer that is arranged behind the radiation layer and reflects the electromagnetic waves in the terahertz band, the radiation layer and the reflection layer. and an intermediate layer that is positioned between and transmits electromagnetic waves in the terahertz band.
  • a terahertz wave output method causes a radiation layer to radiate a first wave, which is an electromagnetic wave in the terahertz band, in front thereof, and radiates a second wave, which is an electromagnetic wave in the terahertz band, behind the radiation layer. and outputs a terahertz wave obtained by superimposing the reflected light obtained by forwardly reflecting the second wave and the first wave.
  • the intensity of terahertz waves is efficiently increased.
  • FIG. 1 is a perspective view showing a configuration example of a terahertz wave output device of this embodiment
  • FIG. 3 is a schematic diagram showing the action of the terahertz wave output device of the present embodiment
  • 3 is a perspective view showing a configuration example and action of a radiation layer 2.
  • FIG. 1 is a schematic diagram showing a configuration example of a terahertz wave output device according to an embodiment
  • FIG. 4 is a graph showing an example of a first wave from the emissive layer
  • FIG. It is a graph which shows an example of reflected light. It is a graph which shows the case where a 1st wave and a reflected wave are constructive.
  • FIG. 10 is a graph showing terahertz waves output when the first wave and the reflected wave construct each other; 5 is a graph showing the difference in output intensity between the terahertz wave output device according to the present embodiment and a comparative example;
  • 1 is a block diagram showing the configuration of a sensing device using a terahertz wave output device;
  • FIG. 4 is a perspective view showing another configuration example of the terahertz wave output device of the present embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment;
  • FIG. 10 is a graph showing terahertz waves output when the first wave and the reflected wave construct each other;
  • 5 is a graph showing the difference in output intensity between the terahertz wave output device according to the present embodiment and a comparative example;
  • 1 is a block diagram
  • FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment;
  • FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment;
  • FIG. 1 is a perspective view showing a configuration example of the terahertz wave output device of this embodiment.
  • FIG. 2 is a schematic diagram showing the operation of the terahertz wave output device of this embodiment.
  • the terahertz wave output device 20 includes a radiation layer 2 that radiates electromagnetic waves in the terahertz band, a reflection layer 4 that is arranged behind the radiation layer 2 and reflects the electromagnetic waves in the terahertz band, An intermediate layer 3 is located between the emitting layer 2 and the reflecting layer 4 and transmits electromagnetic waves in the terahertz band.
  • a first wave WF which is an electromagnetic wave in the terahertz band
  • a second wave WS which is an electromagnetic wave in the terahertz band
  • the terahertz band is, for example, 0.05 to 50 [THz], and the output terahertz waves WT are electromagnetic waves in this frequency band. Forward means the direction in which the terahertz wave WT is output.
  • the radiation layer 2 may be the radiation section (electromagnetic wave generation section) 2
  • the intermediate layer 3 may be the intermediate section 3
  • the reflection layer 4 may be the reflection section 4 .
  • the radiation layer 2 emits a first wave WF in the terahertz band forward and a second wave WS in the terahertz band backward.
  • a terahertz wave WT generated by superimposing the WR and the first wave WF is output forward.
  • the intensity of the terahertz wave WT (output wave) can be increased. can.
  • FIG. 3 is a perspective view showing a configuration example and action of the radiation layer 2.
  • the radiation layer 2 has a first layer 11 which is a magnetic layer containing a magnetic metal and a second layer 12 which is a nonmagnetic layer containing a nonmagnetic metal. Also called emitter).
  • the first and second layers 11 and 12 are laminated so that the first layer 11 faces the front, but this is not the only option.
  • the first layer 11 may be laminated on the rear side.
  • the magnetic metal contained in the first layer 11 may be a ferromagnetic metal.
  • the first layer 11 may be composed of a single substance or a compound containing at least one of Fe (iron), Co (cobalt), Ni (nickel) and Gd (gadolinium). An example is Fe.
  • the first layer 11 may contain at least one of CoFeB and GdFe.
  • the thickness of the first layer 11 can be 1 to 20 [nm]. An example is 5 [nm].
  • the second layer 12 is at least one of Pt (platinum), Au (gold), Ru (ruthenium), Cu (copper), Ta (tantalum), Pd (lead), W (tungsten), and Al (aluminum). It may be composed of a single substance or a compound containing An example is Pt.
  • Pt platinum
  • Au gold
  • Ru ruthenium
  • Cu copper
  • Ta tantalum
  • Pd lead
  • W tungsten
  • Al aluminum
  • It may be composed of a single substance or a compound containing An example is Pt.
  • the thickness of the second layer 12 can be 1 to 20 [nm]. An example is 5 [nm].
  • the emitting layer 2 which is the STE, receives the excitation light LK and emits electromagnetic waves in the terahertz band.
  • the excitation light LK is, for example, discontinuous wave laser light (infrared pulse laser light) with a wavelength of about 800 nm.
  • FIG. 3 for example, when the emission layer 2 is irradiated with femtosecond pulsed laser light, spin polarization occurs at the interface between the first and second layers 11 and 12, and the first layer 11 and the second layer 12 A spin current Js flowing between the first and second layers 11 and 12 is converted into an actual current Jc flowing in a direction parallel to the interface of the first and second layers 11 and 12 (reverse spin Hall effect).
  • the emitting layer 2 which is STE, has multiple advantages such as high strength, large area, broadband, low cost, and high damage threshold.
  • the reflective layer 4 is a layer that reflects the second wave WS, which is an electromagnetic wave in the terahertz band, and can be made of, for example, a conductor or a dielectric.
  • An example of the conductor is indium tin oxide (ITO) with a thickness of 50 [nm] to 2.0 [ ⁇ m].
  • An example of the sheet resistance is 6 ⁇ /sq.
  • a light transmissive material such as ITO is preferred.
  • ITO indium zinc oxide
  • AgMg alloy light-transmitting metal ultrathin film
  • An insulating material having a large refractive index can be used as the dielectric.
  • the excitation light LK is incident on the emitting layer 2 from the front (described later), the light transmittance of the reflecting layer 4 does not matter.
  • the intermediate layer 3 is a layer that transmits electromagnetic waves in the terahertz band, and can be made of, for example, a dielectric.
  • a dielectric an inorganic insulator such as silicon oxide, silicon nitride, sapphire, etc. or an organic insulator such as resin having a thickness of about 1.0 to 500 [ ⁇ m] can be used.
  • One example is 10 to 100 ⁇ m glass (eg, microsheet glass) or transparent resin.
  • the intermediate layer 3 preferably has a smaller refractive index for electromagnetic waves in the terahertz band than the reflective layer 4 .
  • the intermediate layer 3 is a phase control layer that controls the phases of the second wave WS and the reflected wave WR. is set (detailed later).
  • the intermediate layer 3 may perform phase control to align the phases of the first wave WF and the reflected wave WR (that is, the first wave WF and the reflected wave WR are coherently combined to increase the electromagnetic wave intensity).
  • the intermediate layer 3 has optical transparency. , the optical transparency of the intermediate layer 3 does not matter.
  • the emitting layer 2, intermediate layer 3 and reflective layer 4 are laminated in this order.
  • the intermediate layer 3 may be sandwiched between the substrate on which the emissive layer 2 is deposited and the substrate on which the reflective layer 4 is deposited. Further, the substrate having the emissive layer 2 formed thereon may be disposed on the intermediate layer 3 having the reflective layer 4 formed thereon.
  • the emitting layer 2 may be deposited on one side of the intermediate layer 3 and the reflective layer 4 may be deposited on the other side.
  • FIG. 4 is a schematic diagram showing a configuration example of the terahertz wave output device of this embodiment. 1 and 2, the excitation light LK is irradiated from behind the terahertz wave output device 20, and the excitation light LK transmitted through the reflection layer 4 and the intermediate layer 3 is made incident on the emission layer 2 (second layer 12). but not limited to this. As shown in FIG. 4, the excitation light LK may be irradiated from the front of the terahertz wave output device 20 to directly enter the emission layer 2 (first layer 11).
  • FIG. 5 is a graph showing an example of the first wave from the emissive layer.
  • FIG. 6 is a graph showing an example of assumed reflected light.
  • a 3 [nm] Fe film as the first layer 11 a 3 [nm] Pt film as the second layer 12
  • a 500 [nm] ITO film as the reflective layer 4 a 30 [ ⁇ m] thickness as the intermediate layer 3.
  • sheet glass and the excitation light LK, which is femtosecond pulsed laser light (wavelength: 800 nm), is irradiated to the emitting layer 2 from behind.
  • the first wave WF is a pulse wave.
  • FIG. 1 is a pulse wave.
  • the amplitude of the reflected light WR is about 30% smaller than that of the first wave WF, and the pulse position (time axis) is delayed by 0.32 [picoseconds]. This corresponds to the fact that about 70% of the electromagnetic wave in the terahertz band is transmitted through the radiation layer 2 and the time required to make a round trip through the intermediate layer 3 is 0.32 [picoseconds].
  • the speed at which the terahertz-band electromagnetic wave travels through the intermediate layer 3 is the speed of light c/n (n is the refractive index of the intermediate layer with respect to the terahertz-band electromagnetic wave). It corresponds to the speed of light c ⁇ 0.32 ⁇ 10 ⁇ 12 /n.
  • the first wave WF and the reflected wave WR are coherently
  • the intermediate layer 3 may perform phase control such that the reflected wave WR that has passed through the intermediate layer 3 and the radiation layer 4 and the first wave WF are coherent, and the first wave WF and the reflected wave WR is a pulse wave, the pulse of the first wave WF and the pulse of the reflected wave WR are positively superimposed in front of the radiation layer 2 .
  • the product of the refractive index n of the intermediate layer 3 and the thickness d of the intermediate layer 3 with respect to the second wave WS is 1/4 wavelength ( ⁇ /4) or more of the second wave WS.
  • FIG. 7 is a graph showing a case where the first wave and the reflected wave are constructive.
  • FIG. 8 is a graph showing a terahertz wave output when the first wave and the reflected wave are constructive. 7 and 8, it can be seen that the amplitude AT of the output terahertz wave WT is approximately 1.4 times the amplitude AF of the first wave WF.
  • FIG. 9 is a graph showing the difference in output intensity between the terahertz wave output device according to this embodiment and the comparative example. As can be seen from FIG. 9, according to the terahertz wave output device 20, an output intensity about 2.4 times higher than that of the comparative example (output intensity in the case of only the radiation layer) can be obtained.
  • FIG. 10 is a block diagram showing the configuration of a sensing device using a terahertz wave output device.
  • the sensing device 70 includes the light source 10 of the excitation light LK, the terahertz wave output device 20, the detection device 30, and the imaging device 40 (optical photodiode, CMOS camera, etc.) and a display device 50 for displaying image data from the imaging device 40 .
  • the imaging device 40 optical photodiode, CMOS camera, etc.
  • the target TG is irradiated with the terahertz wave WT from the terahertz wave output device 20, and the terahertz wave transmitted through the target TG is input to the detection device 30, thereby displaying a perspective image of the target TG on the display device 50.
  • the terahertz wave output device 20 and the light source 10 of the excitation light LK can be integrated (as one device).
  • the magnetic field device for applying an external magnetic field to the radiation layer 2 and the terahertz wave output device 20 can be integrated (to form one device).
  • FIG. 11 is a perspective view showing another configuration example of the terahertz wave output device of this embodiment.
  • the radiation layer 2 in FIG. 11 includes a first layer 11 which is a magnetic layer containing a magnetic metal, a second layer 12 which is a nonmagnetic layer containing a nonmagnetic metal, and a third layer 12 which is a nonmagnetic layer containing a nonmagnetic metal.
  • the third layer 13 is located in front of the first layer 11 . That is, the third layer 13, the first layer 11, and the second layer 12 are laminated in this order.
  • the third layer 13 is at least one of Pt (platinum), Au (gold), Ru (ruthenium), Cu (copper), Ta (tantalum), Pd (lead), W (tungsten), and Al (aluminum). It may be composed of a single substance or a compound containing
  • FIG. 12 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment.
  • the terahertz wave output device 20 may be configured by monolithically forming the radiation layer 2, the intermediate layer 3 and the reflection layer 4 on the substrate 6 in this order.
  • the substrate 6 is a glass substrate
  • the emitting layer 2 is STE
  • the intermediate layer 3 is a resin (for example, a coatable transparent resin)
  • the reflective layer 4 is a translucent conductive film (for example, ITO, IZO, etc.) or a high refractive index.
  • An insulating film can be used.
  • FIG. 13 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment.
  • the emitting layer 2 may be formed on one surface of the intermediate layer 3 having a substrate function
  • the reflective layer 4 may be formed on the other surface of the intermediate layer 3 .
  • STE can be used as the emitting layer 2
  • glass or resin e.g., polyimide
  • a translucent conductive film e.g., ITO, IZO, etc.
  • a high refractive index insulating film can be used as the reflective layer 4.
  • FIG. 14 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment.
  • a plano-convex lens 7 having a convex surface 7S and a flat surface 7F may be used as a substrate, and the emitting layer 2, the intermediate layer 3 and the reflective layer 4 may be monolithically formed on the flat surface 7F in this order.
  • An emissive layer 2 (STE) may be provided on the convex surface 7S.
  • FIG. 15 is a cross-sectional view showing another configuration of the radiation layer of this embodiment.
  • Emissive layer 2 is not limited to the STE described above.
  • a photoconductive antenna structure may be used for the radiation layer 2 .
  • the radiation layer 2 of the photoconductive antenna structure is electrically connected to the photoelectric layer (semiconductor layer) 14 formed on the substrate 8, the electrodes D1 and D2 formed on the photoelectric layer 14, and the electrode D1.
  • An antenna A1 in contact with the layer 14 and an antenna A2 electrically connected to the electrode D2 and in contact with the photoelectric layer 14 are provided. emits electromagnetic waves in the terahertz band.
  • the intermediate layer 3 can be provided on the side of the substrate 8 or on the opposite side of the substrate 8 .
  • Substrate 8 may be used as intermediate layer 3 .
  • the radiation layer 2 of the photoconductive antenna structure has the merits of high efficiency and wide band.
  • FIG. 16 is a cross-sectional view showing another configuration of the emitting layer of this embodiment.
  • a nonlinear optical crystal 16 may be used for the emitting layer 2, as shown in FIG.
  • a nonlinear optical crystal 16 such as LiNbO 3 (lithium niobate crystal) receives excitation light LK and emits electromagnetic waves in the terahertz band.
  • the intermediate layer 3 can be provided on one side or the other side of the nonlinear optical crystal 16 .
  • the emitting layer 2 using the nonlinear optical crystal 16 has advantages such as high coherence, high output, and broadband.
  • FIG. 17 is a cross-sectional view showing another configuration of the radiation layer of this embodiment.
  • a resonant tunneling diode (RTD) structure may be used for the emissive layer 2, as shown in FIG.
  • the radiation layer 2 of the RTD structure comprises an insulating layer 17 formed on the substrate 9 and a quantum well semiconductor layer 18 positioned in holes formed in the insulating layer 17.
  • a voltage is applied to the quantum well semiconductor layer 18. By doing so, it emits electromagnetic waves in the terahertz band.
  • a plurality of quantum well semiconductor layers 18 may be formed in an array.
  • the quantum well semiconductor layer 18 can be made of n-InP/n-InGaAs or InGaAs/InAlAs.
  • the intermediate layer 3 can be provided on the substrate 9 side or on the opposite side of the substrate 9 .
  • Substrate 9 may be used as intermediate layer 3 .
  • an RTD structure is used for the emitting layer 2, it is not necessary to irradiate excitation light.
  • the present disclosure includes the following aspects.
  • a terahertz wave output device includes a radiation layer that radiates electromagnetic waves in the terahertz band, a reflective layer that is disposed behind the radiation layer and reflects the electromagnetic waves in the terahertz band, and the radiation layer and the reflective layer. and an intermediate layer positioned therebetween and transmitting electromagnetic waves in the terahertz band.
  • the emitting layer emits a first terahertz wave forward and a second terahertz wave backward, A terahertz wave generated by superimposing a reflected wave generated by reflecting the second wave on the reflecting layer and the first wave is outputted forward.
  • the intermediate layer has insulating properties or has high permeability to terahertz waves.
  • the reflecting layer has a higher refractive index for electromagnetic waves in the terahertz band than the intermediate layer.
  • the product of the refractive index of the intermediate layer and the thickness of the intermediate layer with respect to the second wave is 1/4 wavelength or more of the second wave.
  • the reflected wave is out of phase with the first wave by approximately 0.9 ⁇ to 1.1 ⁇ .
  • the intermediate layer performs phase control such that the reflected wave and the first wave that have passed through the intermediate layer and the radiation layer are coherent. conduct.
  • At least one of the refractive index of the intermediate layer and the thickness of the intermediate layer with respect to the second wave is set according to the terahertz frequency to be output.
  • a terahertz wave output device is the terahertz wave output device according to any one of Aspects 1 to 8, wherein the radiation layer is a first layer that is a magnetic layer containing a magnetic metal, and a non-magnetic layer containing a non-magnetic metal. and a second layer in contact with the first layer, and the emitting layer is irradiated with discontinuous wave laser light.
  • the reflective layer and the intermediate layer have translucency, and the laser light is irradiated to the emitting layer from behind.
  • the reflective layer includes a conductive layer such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the intermediate layer is microsheet glass or microsheet plastic.
  • the first wave and the reflected wave are pulse waves, and the pulse of the first wave and the pulse of the reflected wave are in front of the radiation layer. are superimposed on each other.
  • a first wave which is an electromagnetic wave in the terahertz band
  • a second wave which is an electromagnetic wave in the terahertz band

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

A terahertz wave output apparatus (20) comprises: a radiation layer (2) that radiates electromagnetic waves of a terahertz band; a reflection layer (4) that is disposed behind the radiation layer to reflect the electromagnetic waves of the terahertz band; and an intermediate layer (3) which is positioned between the radiation layer and the reflection layer and is transmissive to the electromagnetic waves of the terahertz band. The terahertz wave output apparatus (20) causes the radiation layer to radiate a first wave (WF), which is an electromagnetic wave of the terahertz band, forwardly of the radiation layer, and to radiate a second wave (WS), which is an electromagnetic wave of the terahertz band, rearwardly of the radiation layer, the terahertz wave output apparatus (20) outputting a terahertz wave (WT) in which a reflection wave (WR) obtained by forward reflection of the second wave is superimposed with the first wave. In the terahertz wave output apparatus, the intensity of the terahertz wave (output wave) can be increased by setting the characteristics of the intermediate layer so that the reflection wave and the first wave are positively superimposed.

Description

テラヘルツ波出力装置およびテラヘルツ波出力方法Terahertz wave output device and terahertz wave output method
 本開示は、テラヘルツ波出力装置に関する。 The present disclosure relates to a terahertz wave output device.
 テラヘルツ波は、例えば第6世代移動通信システム(6G)での利用等、次世代の要素技術として期待されている。特許文献1には、2つのテラヘルツ波の照射領域を重ねることで強度を高める技術が開示されている。 Terahertz waves are expected to be a next-generation elemental technology, such as for use in the 6th generation mobile communication system (6G). Patent Literature 1 discloses a technique for increasing the intensity by overlapping the irradiation regions of two terahertz waves.
日本国公開特許公報「特開2022-889号」公報Japanese Patent Publication "JP 2022-889"
 特許文献1に開示の技術は、テラヘルツ波の強度を効率的に高められないという問題がある。 The technology disclosed in Patent Document 1 has the problem that the intensity of terahertz waves cannot be efficiently increased.
 本開示の一態様に係るテラヘルツ波出力装置は、テラヘルツ帯の電磁波を放射する放射層と、前記放射層の後方に配され、テラヘルツ帯の電磁波を反射する反射層と、前記放射層および反射層の間に位置し、テラヘルツ帯の電磁波を透過させる中間層とを備える。 A terahertz wave output device according to an aspect of the present disclosure includes a radiation layer that emits electromagnetic waves in the terahertz band, a reflective layer that is arranged behind the radiation layer and reflects the electromagnetic waves in the terahertz band, the radiation layer and the reflection layer. and an intermediate layer that is positioned between and transmits electromagnetic waves in the terahertz band.
 本開示の一態様に係るテラヘルツ波出力方法は、放射層からその前方にテラヘルツ帯の電磁波である第1波を放射させるとともに、前記放射層の後方にテラヘルツ帯の電磁波である第2波を放射させ、前記第2波を前方反射させた反射光と前記第1波とを重ね合わせたテラヘルツ波を出力する。 A terahertz wave output method according to an aspect of the present disclosure causes a radiation layer to radiate a first wave, which is an electromagnetic wave in the terahertz band, in front thereof, and radiates a second wave, which is an electromagnetic wave in the terahertz band, behind the radiation layer. and outputs a terahertz wave obtained by superimposing the reflected light obtained by forwardly reflecting the second wave and the first wave.
 本開示の一態様によれば、テラヘルツ波の強度が効率的に高められる。 According to one aspect of the present disclosure, the intensity of terahertz waves is efficiently increased.
本実施形態のテラヘルツ波出力装置の構成例を示す斜視図である。1 is a perspective view showing a configuration example of a terahertz wave output device of this embodiment; FIG. 本実施形態のテラヘルツ波出力装置の作用を示す模式図である。FIG. 3 is a schematic diagram showing the action of the terahertz wave output device of the present embodiment; 放射層2の構成例および作用を示す斜視図である。3 is a perspective view showing a configuration example and action of a radiation layer 2. FIG. 本実施形態のテラヘルツ波出力装置の構成例を示す模式図である。1 is a schematic diagram showing a configuration example of a terahertz wave output device according to an embodiment; FIG. 放射層からの第1波の一例を示すグラフである。FIG. 4 is a graph showing an example of a first wave from the emissive layer; FIG. 反射光の一例を示すグラフである。It is a graph which shows an example of reflected light. 第1波および反射波が強め合う場合を示すグラフである。It is a graph which shows the case where a 1st wave and a reflected wave are constructive. 第1波および反射波が強め合う場合に出力されるテラヘルツ波を示すグラフである。10 is a graph showing terahertz waves output when the first wave and the reflected wave construct each other; 本実施形態に係るテラヘルツ波出力装置と比較例との出力強度の差異を示すグラフである。5 is a graph showing the difference in output intensity between the terahertz wave output device according to the present embodiment and a comparative example; テラヘルツ波出力装置を用いたセンシング装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a sensing device using a terahertz wave output device; FIG. 本実施形態のテラヘルツ波出力装置の別構成例を示す斜視図である。FIG. 4 is a perspective view showing another configuration example of the terahertz wave output device of the present embodiment; 本実施形態のテラヘルツ波出力装置の別構成を示す断面図である。FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment; 本実施形態のテラヘルツ波出力装置の別構成を示す断面図である。FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment; 本実施形態のテラヘルツ波出力装置の別構成を示す断面図である。FIG. 4 is a cross-sectional view showing another configuration of the terahertz wave output device of the present embodiment; 本実施形態の放射層の別構成を示す断面図である。FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment; 本実施形態の放射層の別構成を示す断面図である。FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment; 本実施形態の放射層の別構成を示す断面図である。FIG. 4 is a cross-sectional view showing another configuration of the emitting layer of the embodiment;
 図1は、本実施形態のテラヘルツ波出力装置の構成例を示す斜視図である。図2は、本実施形態のテラヘルツ波出力装置の作用を示す模式図である。図1および図2に示すように、テラヘルツ波出力装置20は、テラヘルツ帯の電磁波を放射する放射層2と、放射層2の後方に配され、テラヘルツ帯の電磁波を反射する反射層4と、放射層2および反射層4の間に位置し、テラヘルツ帯の電磁波を透過させる中間層3とを備える。 FIG. 1 is a perspective view showing a configuration example of the terahertz wave output device of this embodiment. FIG. 2 is a schematic diagram showing the operation of the terahertz wave output device of this embodiment. As shown in FIGS. 1 and 2, the terahertz wave output device 20 includes a radiation layer 2 that radiates electromagnetic waves in the terahertz band, a reflection layer 4 that is arranged behind the radiation layer 2 and reflects the electromagnetic waves in the terahertz band, An intermediate layer 3 is located between the emitting layer 2 and the reflecting layer 4 and transmits electromagnetic waves in the terahertz band.
 本実施形態のテラヘルツ波出力方法は、放射層2からその前方にテラヘルツ帯の電磁波である第1波WFを放射させるとともに、前記放射層の後方にテラヘルツ帯の電磁波である第2波WSを放射させ、第2波を前方反射させた反射光WRと第1波WFとを重ね合わせたテラヘルツ波WTを出力する。 In the terahertz wave output method of the present embodiment, a first wave WF, which is an electromagnetic wave in the terahertz band, is radiated forward from the radiation layer 2, and a second wave WS, which is an electromagnetic wave in the terahertz band, is radiated behind the radiation layer. and outputs a terahertz wave WT obtained by superimposing the reflected light WR, which is the second wave forward-reflected, and the first wave WF.
 テラヘルツ帯とは、例えば、0.05~50〔THz〕であり、出力されるテラヘルツ波WTは、この周波数帯の電磁波である。前方とは、テラヘルツ波WTが出力される向きを意味する。放射層2は放射部(電磁波生成部)2であってもよく、中間層3が中間部3であってもよく、反射層4が反射部4であってもよい。 The terahertz band is, for example, 0.05 to 50 [THz], and the output terahertz waves WT are electromagnetic waves in this frequency band. Forward means the direction in which the terahertz wave WT is output. The radiation layer 2 may be the radiation section (electromagnetic wave generation section) 2 , the intermediate layer 3 may be the intermediate section 3 , and the reflection layer 4 may be the reflection section 4 .
 放射層2は、前方に向けてテラヘルツ帯の第1波WFを放射し、後方に向けてテラヘルツ帯の第2波WSを放射し、第2波WSが反射層4で反射されて生じる反射波WRと、第1波WFとが重ね合わされて生じるテラヘルツ波WTを前方に出力する。テラヘルツ波出力装置20においては、例えば、反射波WRおよび第1波WFがポジティブに重ね合わされるように中間層3の特性を設定することで、テラヘルツ波WT(出力波)の強度を高めることができる。 The radiation layer 2 emits a first wave WF in the terahertz band forward and a second wave WS in the terahertz band backward. A terahertz wave WT generated by superimposing the WR and the first wave WF is output forward. In the terahertz wave output device 20, for example, by setting the characteristics of the intermediate layer 3 so that the reflected wave WR and the first wave WF are positively superimposed, the intensity of the terahertz wave WT (output wave) can be increased. can.
 (放射層)
 図3は、放射層2の構成例および作用を示す斜視図である。図3に示すように、放射層2は、磁性金属を含む磁性層である第1層11と、非磁性金属を含む非磁性層である第2層12とを有し、STE(スピントロニックテラヘルツエミッタ)とも呼ばれる。第1および第2層11・12は、第1層11が前方となるように積層されているが、これに限定されない。第1層11が後方となるように積層されていてもよい。
(emissive layer)
FIG. 3 is a perspective view showing a configuration example and action of the radiation layer 2. As shown in FIG. As shown in FIG. 3, the radiation layer 2 has a first layer 11 which is a magnetic layer containing a magnetic metal and a second layer 12 which is a nonmagnetic layer containing a nonmagnetic metal. Also called emitter). The first and second layers 11 and 12 are laminated so that the first layer 11 faces the front, but this is not the only option. The first layer 11 may be laminated on the rear side.
 第1層11に含まれる磁性金属は強磁性金属であってもよい。第1層11は、Fe(鉄)、Co(コバルト)、Ni(ニッケル)およびGd(ガドリニウム)の少なくとも1つを含む単体あるいは化合物で構成されていてもよい。一例としては、Feである。第1層11が、CoFeBおよびGdFeの少なくとも1つを含んでいてもよい。第1層11の厚みは、1~20〔nm〕とすることができる。一例としては、5〔nm〕である。 The magnetic metal contained in the first layer 11 may be a ferromagnetic metal. The first layer 11 may be composed of a single substance or a compound containing at least one of Fe (iron), Co (cobalt), Ni (nickel) and Gd (gadolinium). An example is Fe. The first layer 11 may contain at least one of CoFeB and GdFe. The thickness of the first layer 11 can be 1 to 20 [nm]. An example is 5 [nm].
 第2層12は、Pt(白金)、Au(金)、Ru(ルテニウム)、Cu(銅)、Ta(タンタル)、Pd(鉛)、W(タングステン)、およびAl(アルミニウム)の少なくとも1つを含む単体あるいは化合物で構成されていてもよい。一例としては、Ptである。第2層12を構成する非磁性金属として、スピン軌道相互作用の大きな金属を用いることができる。第2層12の厚みは、1~20〔nm〕とすることができる。一例としては、5〔nm〕である。 The second layer 12 is at least one of Pt (platinum), Au (gold), Ru (ruthenium), Cu (copper), Ta (tantalum), Pd (lead), W (tungsten), and Al (aluminum). It may be composed of a single substance or a compound containing An example is Pt. As the non-magnetic metal forming the second layer 12, a metal having a large spin-orbit interaction can be used. The thickness of the second layer 12 can be 1 to 20 [nm]. An example is 5 [nm].
 STEである放射層2は、励起光LKを受けてテラヘルツ帯の電磁波を放射する。励起光LKは、例えば、波長800nm程度の非連続発振レーザ光(赤外パルスレーザ光)である。図3のように、例えばフェムト秒パルスレーザ光が放射層2に照射されると、第1および第2層11・12の界面にスピン偏極が発現し、第1層11および第2層12間を流れるスピン流Jsが、第1および第2層11・12の界面と平行な方向に流れる実電流Jcに変換される(逆スピンホール効果)。これにより、実電流Jcに相当するテラヘルツ帯の電磁波が第1および第2層11・12の界面と交差する方向に放射される。第1層11に外部磁場を印加してもよい。STEである放射層2は、高強度、大面積、広帯域、安価、高いダメージ閾値等の複数のメリットをもち合わせている。 The emitting layer 2, which is the STE, receives the excitation light LK and emits electromagnetic waves in the terahertz band. The excitation light LK is, for example, discontinuous wave laser light (infrared pulse laser light) with a wavelength of about 800 nm. As shown in FIG. 3, for example, when the emission layer 2 is irradiated with femtosecond pulsed laser light, spin polarization occurs at the interface between the first and second layers 11 and 12, and the first layer 11 and the second layer 12 A spin current Js flowing between the first and second layers 11 and 12 is converted into an actual current Jc flowing in a direction parallel to the interface of the first and second layers 11 and 12 (reverse spin Hall effect). As a result, a terahertz-band electromagnetic wave corresponding to the actual current Jc is radiated in a direction intersecting the interface between the first and second layers 11 and 12 . An external magnetic field may be applied to the first layer 11 . The emitting layer 2, which is STE, has multiple advantages such as high strength, large area, broadband, low cost, and high damage threshold.
 (反射層)
 反射層4は、テラヘルツ帯の電磁波である第2波WSを反射する層であり、例えば、導電体あるいは誘電体で構成することができる。導電体の一例としては、厚み50〔nm〕~2.0〔μm〕のインジウムスズ酸化物(ITO)である。シート抵抗の一例としては6Ω/sqである。図2のように励起光LKを後方から放射層2に入射させる場合には、ITOのような光透過性材料が好ましい。ITO以外にも、インジウム亜鉛酸化物(IZO)、AgMg合金(光透過性のある金属極薄膜)等を用いてもよい。誘電体としては屈折率の大きな絶縁材を用いることができる。なお、励起光LKを前方から放射層2に入射させる場合(後述)には、反射層4の光透過性は問わない。
(reflective layer)
The reflective layer 4 is a layer that reflects the second wave WS, which is an electromagnetic wave in the terahertz band, and can be made of, for example, a conductor or a dielectric. An example of the conductor is indium tin oxide (ITO) with a thickness of 50 [nm] to 2.0 [μm]. An example of the sheet resistance is 6Ω/sq. When the excitation light LK is incident on the emissive layer 2 from behind as shown in FIG. 2, a light transmissive material such as ITO is preferred. Other than ITO, indium zinc oxide (IZO), AgMg alloy (light-transmitting metal ultrathin film), or the like may be used. An insulating material having a large refractive index can be used as the dielectric. In addition, when the excitation light LK is incident on the emitting layer 2 from the front (described later), the light transmittance of the reflecting layer 4 does not matter.
 (中間層)
 中間層3は、テラヘルツ帯の電磁波を透過させる層であり、例えば、誘電体で構成することができる。誘電体として、厚み1.0~500〔μm〕程度の、酸化珪素、窒化珪素、サファイア等の無機絶縁体あるいは樹脂等の有機絶縁体を用いることができる。一例としては、10~100μmのガラス(例えば、マイクロシートガラス)あるいは透明樹脂である。中間層3は、反射層4と比較して、テラヘルツ帯の電磁波の屈折率を小さくすることが望ましい。中間層3は、第2波WSおよび反射波WRの位相を制御する位相制御層であり、テラヘルツ波WTの所望の(出力すべき)周波数に応じて(テラヘルツ帯の電磁波の)屈折率および厚みの少なくとも一方が設定される(後に詳述)。中間層3が、第1波WFおよび反射波WRの位相を揃える(すなわち、第1波WFおよび反射波WRがコヒーレントに結合され電磁波強度が増強となる)位相制御を行ってもよい。図2のように励起光LKを後方から放射層2に入射させる場合は、中間層3が光透過性を有することが望ましいが、励起光LKを前方から放射層2に入射させる場合(後述)には、中間層3の光透過性は問わない。
(middle layer)
The intermediate layer 3 is a layer that transmits electromagnetic waves in the terahertz band, and can be made of, for example, a dielectric. As the dielectric, an inorganic insulator such as silicon oxide, silicon nitride, sapphire, etc. or an organic insulator such as resin having a thickness of about 1.0 to 500 [μm] can be used. One example is 10 to 100 μm glass (eg, microsheet glass) or transparent resin. The intermediate layer 3 preferably has a smaller refractive index for electromagnetic waves in the terahertz band than the reflective layer 4 . The intermediate layer 3 is a phase control layer that controls the phases of the second wave WS and the reflected wave WR. is set (detailed later). The intermediate layer 3 may perform phase control to align the phases of the first wave WF and the reflected wave WR (that is, the first wave WF and the reflected wave WR are coherently combined to increase the electromagnetic wave intensity). When the excitation light LK is incident on the emitting layer 2 from behind as shown in FIG. 2, it is desirable that the intermediate layer 3 has optical transparency. , the optical transparency of the intermediate layer 3 does not matter.
 放射層2、中間層3および反射層4はこの順に積層される。中間層3は、放射層2が成膜された基板と、反射層4が成膜された基板との間に挟持されていてもよい。また、反射層4が成膜された中間層3の上に、放射層2が成膜された基板を配してもよい。中間層3の一方の面に放射層2を成膜し、他方の面に反射層4を成膜してもよい。 The emitting layer 2, intermediate layer 3 and reflective layer 4 are laminated in this order. The intermediate layer 3 may be sandwiched between the substrate on which the emissive layer 2 is deposited and the substrate on which the reflective layer 4 is deposited. Further, the substrate having the emissive layer 2 formed thereon may be disposed on the intermediate layer 3 having the reflective layer 4 formed thereon. The emitting layer 2 may be deposited on one side of the intermediate layer 3 and the reflective layer 4 may be deposited on the other side.
 図4は、本実施形態のテラヘルツ波出力装置の構成例を示す模式図である。図1および図2では、テラヘルツ波出力装置20の後方から励起光LKを照射し、反射層4および中間層3を透過した励起光LKを放射層2(第2層12)に入射させているが、これに限定されない。図4に示すように、テラヘルツ波出力装置20の前方から励起光LKを照射し、励起光LKを直接放射層2(第1層11)に入射させてもよい。 FIG. 4 is a schematic diagram showing a configuration example of the terahertz wave output device of this embodiment. 1 and 2, the excitation light LK is irradiated from behind the terahertz wave output device 20, and the excitation light LK transmitted through the reflection layer 4 and the intermediate layer 3 is made incident on the emission layer 2 (second layer 12). but not limited to this. As shown in FIG. 4, the excitation light LK may be irradiated from the front of the terahertz wave output device 20 to directly enter the emission layer 2 (first layer 11).
 (第1および第2波の重畳)
 図5は、放射層からの第1波の一例を示すグラフである。図6は、想定される反射光の一例を示すグラフである。ここでは、第1層11として3〔nm〕のFe膜、第2層12として3〔nm〕のPt膜、反射層4として500〔nm〕のITO膜、中間層3として厚み30〔μm〕のシートガラスを用い、フェムト秒パルスレーザ光(波長:800nm)である励起光LKを、後方から放射層2に照射している。図5では、第1波WFはパルス波である。図6では、反射光WRは、第1波WFに対して、振幅が30%程度小さくなり、パルス位置(時間軸)が0.32〔ピコ秒〕遅れるものと想定される。これは、テラヘルツ帯の電磁波が放射層2を約70%透過し、中間層3を往復するのに要する時間が0.32〔ピコ秒〕であることに相当する。
(Superposition of first and second waves)
FIG. 5 is a graph showing an example of the first wave from the emissive layer. FIG. 6 is a graph showing an example of assumed reflected light. Here, a 3 [nm] Fe film as the first layer 11, a 3 [nm] Pt film as the second layer 12, a 500 [nm] ITO film as the reflective layer 4, and a 30 [μm] thickness as the intermediate layer 3. sheet glass, and the excitation light LK, which is femtosecond pulsed laser light (wavelength: 800 nm), is irradiated to the emitting layer 2 from behind. In FIG. 5, the first wave WF is a pulse wave. In FIG. 6, it is assumed that the amplitude of the reflected light WR is about 30% smaller than that of the first wave WF, and the pulse position (time axis) is delayed by 0.32 [picoseconds]. This corresponds to the fact that about 70% of the electromagnetic wave in the terahertz band is transmitted through the radiation layer 2 and the time required to make a round trip through the intermediate layer 3 is 0.32 [picoseconds].
 テラヘルツ帯の電磁波が中間層3を進む速さは、光速c/n(nは、テラヘルツ帯の電磁波に対する中間層の屈折率)であるから、中間層3の厚みをdとすれば、2d=光速c×0.32×10-12/nに対応する。ここで、固定端反射によって第1波WFおよび反射波WRの位相が0.9π~1.1π(例えば、実質的にπ)ずれることを考慮すると、第1波WFおよび反射波WRがコヒーレントに強め合う条件は、第1および第2波WF・WS並びに反射波WRの周波数をf、これらの波長をλ(=光速c/f)、Nを自然数として、2nd=(N+1/2)λとなる。N=0とすれば、f=1.56〔THz〕であるから、この場合のテラヘルツ波出力装置20は、1.56〔THz〕のテラヘルツ波を出力するのに好適である。なお、第1波WFおよび反射波WRが弱め合う条件は、2nd=Nλであるから、N=1とすれば、f=3.13〔THz〕である。テラヘルツ波(出力波)の周波数に応じて中間層3の厚みを設定することで、第1波WFおよび反射波WRをポジティブに重ね合わせることができる。 The speed at which the terahertz-band electromagnetic wave travels through the intermediate layer 3 is the speed of light c/n (n is the refractive index of the intermediate layer with respect to the terahertz-band electromagnetic wave). It corresponds to the speed of light c×0.32×10 −12 /n. Here, considering that the phases of the first wave WF and the reflected wave WR are shifted by 0.9π to 1.1π (for example, substantially π) due to reflection at the fixed end, the first wave WF and the reflected wave WR are coherently The constructive condition is that f is the frequency of the first and second waves WF/WS and the reflected wave WR, λ is the wavelength of these waves (=light speed c/f), and 2nd=(N+1/2)λ, where N is a natural number. Become. If N=0, f=1.56 [THz], so the terahertz wave output device 20 in this case is suitable for outputting 1.56 [THz] terahertz waves. The condition that the first wave WF and the reflected wave WR weaken each other is 2nd=Nλ, so if N=1, then f=3.13 [THz]. By setting the thickness of the intermediate layer 3 according to the frequency of the terahertz wave (output wave), the first wave WF and the reflected wave WR can be positively superimposed.
 このように、中間層3は、中間層3および放射層4を通過した反射波WRと第1波WFとがコヒーレントとなるような位相制御を行ってもよく、第1波WFおよび反射波WRがパルス波である場合は、第1波WFのパルスと反射波WRのパルスとが放射層2の前方でポジティブに重ね合わされる。第2波WSに対する中間層3の屈折率nと中間層3の厚みdとの積は、第2波WSの1/4波長(λ/4)以上となる。 In this manner, the intermediate layer 3 may perform phase control such that the reflected wave WR that has passed through the intermediate layer 3 and the radiation layer 4 and the first wave WF are coherent, and the first wave WF and the reflected wave WR is a pulse wave, the pulse of the first wave WF and the pulse of the reflected wave WR are positively superimposed in front of the radiation layer 2 . The product of the refractive index n of the intermediate layer 3 and the thickness d of the intermediate layer 3 with respect to the second wave WS is 1/4 wavelength (λ/4) or more of the second wave WS.
 (本実施形態の効果)
 図7は、第1波および反射波が強め合う場合を示すグラフである。図8は、第1波および反射波が強め合う場合に出力されるテラヘルツ波を示すグラフである。図7および図8によれば、第1波WFの振幅AFに対して出力されるテラヘルツ波WTの振幅ATが1.4倍程度になっていることがわかる。図9は、本実施形態に係るテラヘルツ波出力装置と比較例との出力強度の差異を示すグラフである。図9から、テラヘルツ波出力装置20によれば、比較例(放射層のみの場合の出力強度)に対して2.4倍程度の出力強度が得られることがわかる。
(Effect of this embodiment)
FIG. 7 is a graph showing a case where the first wave and the reflected wave are constructive. FIG. 8 is a graph showing a terahertz wave output when the first wave and the reflected wave are constructive. 7 and 8, it can be seen that the amplitude AT of the output terahertz wave WT is approximately 1.4 times the amplitude AF of the first wave WF. FIG. 9 is a graph showing the difference in output intensity between the terahertz wave output device according to this embodiment and the comparative example. As can be seen from FIG. 9, according to the terahertz wave output device 20, an output intensity about 2.4 times higher than that of the comparative example (output intensity in the case of only the radiation layer) can be obtained.
 (適用例および変形例)
 図10は、テラヘルツ波出力装置を用いたセンシング装置の構成を示すブロック図である。図10に示すように、センシング装置70は、励起光LKの光源10と、テラヘルツ波出力装置20と、検出装置30と、検出装置30からの光出力を感知する撮像装置40(光フォトダイオード、CMOSカメラ等)と、撮像装置40からの映像データを表示する表示装置50とを含む。センシング装置70では、テラヘルツ波出力装置20からのテラヘルツ波WTをターゲットTGに照射し、ターゲットTGを透過したテラヘルツ波を検出装置30に入力することで、表示装置50にターゲットTGの透視イメージが表示される。テラヘルツ波出力装置20と励起光LKの光源10とを一体化する(1つの装置とする)こともできる。また、放射層2に外部磁場を印加する磁場装置とテラヘルツ波出力装置20とを一体化する(1つの装置とする)こともできる。
(Example of application and modification)
FIG. 10 is a block diagram showing the configuration of a sensing device using a terahertz wave output device. As shown in FIG. 10, the sensing device 70 includes the light source 10 of the excitation light LK, the terahertz wave output device 20, the detection device 30, and the imaging device 40 (optical photodiode, CMOS camera, etc.) and a display device 50 for displaying image data from the imaging device 40 . In the sensing device 70, the target TG is irradiated with the terahertz wave WT from the terahertz wave output device 20, and the terahertz wave transmitted through the target TG is input to the detection device 30, thereby displaying a perspective image of the target TG on the display device 50. be done. The terahertz wave output device 20 and the light source 10 of the excitation light LK can be integrated (as one device). Also, the magnetic field device for applying an external magnetic field to the radiation layer 2 and the terahertz wave output device 20 can be integrated (to form one device).
 図11は、本実施形態のテラヘルツ波出力装置の別構成例を示す斜視図である。図11の放射層2は、磁性金属を含む磁性層である第1層11と、非磁性金属を含む非磁性層である第2層12と、非磁性金属を含む非磁性層である第3層13とを有し、第3層13は、第1層11よりも前方に位置している。すなわち、第3層13、第1層11、第2層12の順に積層されている。こうすれば、第3層13および第1層11の界面と、第2層12および第1層11の界面とでテラヘルツ帯の電磁波が放射されるため、テラヘルツ波出力装置の出力(テラヘルツ波の強度)をより高めることができる。第3層13は、Pt(白金)、Au(金)、Ru(ルテニウム)、Cu(銅)、Ta(タンタル)、Pd(鉛)、W(タングステン)、およびAl(アルミニウム)の少なくとも1つを含む単体あるいは化合物で構成されていてもよい。 FIG. 11 is a perspective view showing another configuration example of the terahertz wave output device of this embodiment. The radiation layer 2 in FIG. 11 includes a first layer 11 which is a magnetic layer containing a magnetic metal, a second layer 12 which is a nonmagnetic layer containing a nonmagnetic metal, and a third layer 12 which is a nonmagnetic layer containing a nonmagnetic metal. The third layer 13 is located in front of the first layer 11 . That is, the third layer 13, the first layer 11, and the second layer 12 are laminated in this order. In this way, terahertz-band electromagnetic waves are radiated from the interface between the third layer 13 and the first layer 11 and the interface between the second layer 12 and the first layer 11, so that the output of the terahertz wave output device (the terahertz wave strength) can be further increased. The third layer 13 is at least one of Pt (platinum), Au (gold), Ru (ruthenium), Cu (copper), Ta (tantalum), Pd (lead), W (tungsten), and Al (aluminum). It may be composed of a single substance or a compound containing
 図12は、本実施形態のテラヘルツ波出力装置の別構成を示す断面図である。図12に示すように、基板6上に、放射層2、中間層3および反射層4をこの順にモノリシックに形成し、テラヘルツ波出力装置20を構成してもよい。例えば、基板6にガラス基板、放射層2としてSTE、中間層3として樹脂(例えば、塗布可能な透明樹脂)、反射層4に透光性導電膜(例えば、ITO、IZO等)あるいは高屈折率絶縁膜を用いることができる。 FIG. 12 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment. As shown in FIG. 12, the terahertz wave output device 20 may be configured by monolithically forming the radiation layer 2, the intermediate layer 3 and the reflection layer 4 on the substrate 6 in this order. For example, the substrate 6 is a glass substrate, the emitting layer 2 is STE, the intermediate layer 3 is a resin (for example, a coatable transparent resin), and the reflective layer 4 is a translucent conductive film (for example, ITO, IZO, etc.) or a high refractive index. An insulating film can be used.
 図13は、本実施形態のテラヘルツ波出力装置の別構成を示す断面図である。図13に示すように、基板機能をもつ中間層3の一方の面に放射層2を形成し、中間層3の他方の面に反射層4を形成してもよい。例えば、放射層2としてSTE、基板を兼ねる中間層3としてガラスあるいは樹脂(例えば、ポリイミド)、反射層4に透光性導電膜(例えば、ITO、IZO等)あるいは高屈折率絶縁膜を用いることができる。 FIG. 13 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment. As shown in FIG. 13, the emitting layer 2 may be formed on one surface of the intermediate layer 3 having a substrate function, and the reflective layer 4 may be formed on the other surface of the intermediate layer 3 . For example, STE can be used as the emitting layer 2, glass or resin (e.g., polyimide) can be used as the intermediate layer 3 which also serves as a substrate, and a translucent conductive film (e.g., ITO, IZO, etc.) or a high refractive index insulating film can be used as the reflective layer 4. can be done.
 図14は、本実施形態のテラヘルツ波出力装置の別構成を示す断面図である。図14に示すように、凸面7Sおよび平面7Fを有する平凸レンズ7を基板とし、平面7F上に、放射層2、中間層3および反射層4をこの順にモノリシックに形成してもよい。こうすれば、平凸レンズ7によって収束されたテラヘルツ波を得ることができる。凸面7S上に放射層2(STE)を設けてもよい。 FIG. 14 is a cross-sectional view showing another configuration of the terahertz wave output device of this embodiment. As shown in FIG. 14, a plano-convex lens 7 having a convex surface 7S and a flat surface 7F may be used as a substrate, and the emitting layer 2, the intermediate layer 3 and the reflective layer 4 may be monolithically formed on the flat surface 7F in this order. In this way, terahertz waves converged by the plano-convex lens 7 can be obtained. An emissive layer 2 (STE) may be provided on the convex surface 7S.
 図15は、本実施形態の放射層の別構成を示す断面図である。放射層2は上述のSTEに限定されない。図15に示すように、放射層2に光伝導アンテナ構造を用いてもよい。光伝導アンテナ構造の放射層2は、基板8上に形成される光電層(半導体層)14と、光電層14上に形成された電極D1・D2と、電極D1と電気的に接続され、光電層14に接するアンテナA1と、電極D2と電気的に接続され、光電層14に接するアンテナA2とを備え、対向するアンテナA1・A2の間隙に励起光LK(例えば、パルスレーザ光)を受けることで、テラヘルツ帯の電磁波を放射する。中間層3は、基板8側あるいは基板8の反対側に設けることができる。基板8を中間層3として用いてもよい。光伝導アンテナ構造の放射層2は、高効率、広帯域といったメリットがある。 FIG. 15 is a cross-sectional view showing another configuration of the radiation layer of this embodiment. Emissive layer 2 is not limited to the STE described above. As shown in FIG. 15, a photoconductive antenna structure may be used for the radiation layer 2 . The radiation layer 2 of the photoconductive antenna structure is electrically connected to the photoelectric layer (semiconductor layer) 14 formed on the substrate 8, the electrodes D1 and D2 formed on the photoelectric layer 14, and the electrode D1. An antenna A1 in contact with the layer 14 and an antenna A2 electrically connected to the electrode D2 and in contact with the photoelectric layer 14 are provided. emits electromagnetic waves in the terahertz band. The intermediate layer 3 can be provided on the side of the substrate 8 or on the opposite side of the substrate 8 . Substrate 8 may be used as intermediate layer 3 . The radiation layer 2 of the photoconductive antenna structure has the merits of high efficiency and wide band.
 図16は、本実施形態の放射層の別構成を示す断面図である。図16に示すように、放射層2に非線形光学結晶16を用いてもよい。LiNbO(ニオブ酸リチウム結晶)等の非線形光学結晶16は、励起光LKを受けてテラヘルツ帯の電磁波を放射する。中間層3は、非線形光学結晶16の一方の側あるいは他方の側に設けることができる。非線形光学結晶16を用いた放射層2は、高コヒーレンス、高出力、広帯域といったメリットがある。 FIG. 16 is a cross-sectional view showing another configuration of the emitting layer of this embodiment. A nonlinear optical crystal 16 may be used for the emitting layer 2, as shown in FIG. A nonlinear optical crystal 16 such as LiNbO 3 (lithium niobate crystal) receives excitation light LK and emits electromagnetic waves in the terahertz band. The intermediate layer 3 can be provided on one side or the other side of the nonlinear optical crystal 16 . The emitting layer 2 using the nonlinear optical crystal 16 has advantages such as high coherence, high output, and broadband.
 図17は、本実施形態の放射層の別構成を示す断面図である。図17に示すように、放射層2に共鳴トンネルダイオード(RTD)構造を用いてもよい。RTD構造の放射層2は、基板9上に形成される絶縁層17と、絶縁層17に形成されたホール内に位置する量子井戸半導体層18とを備え、量子井戸半導体層18に電圧を印可することで、テラヘルツ帯の電磁波を放射する。複数の量子井戸半導体層18をアレイ状に形成してもよい。例えば、InPを含む基板9を用いた場合、量子井戸半導体層18として、n-InP/n-InGaAs,InGaAs/InAlAsを用いることができる。中間層3は、基板9側あるいは基板9の反対側に設けることができる。基板9を中間層3として用いてもよい。放射層2にRTD構造を用いる場合は、励起光を照射しなくてもよい。 FIG. 17 is a cross-sectional view showing another configuration of the radiation layer of this embodiment. A resonant tunneling diode (RTD) structure may be used for the emissive layer 2, as shown in FIG. The radiation layer 2 of the RTD structure comprises an insulating layer 17 formed on the substrate 9 and a quantum well semiconductor layer 18 positioned in holes formed in the insulating layer 17. A voltage is applied to the quantum well semiconductor layer 18. By doing so, it emits electromagnetic waves in the terahertz band. A plurality of quantum well semiconductor layers 18 may be formed in an array. For example, when the substrate 9 containing InP is used, the quantum well semiconductor layer 18 can be made of n-InP/n-InGaAs or InGaAs/InAlAs. The intermediate layer 3 can be provided on the substrate 9 side or on the opposite side of the substrate 9 . Substrate 9 may be used as intermediate layer 3 . When an RTD structure is used for the emitting layer 2, it is not necessary to irradiate excitation light.
 <まとめ>
 以上のように、本開示は以下の態様を包含する。
<Summary>
As described above, the present disclosure includes the following aspects.
 本開示の態様1におけるテラヘルツ波出力装置は、テラヘルツ帯の電磁波を放射する放射層と、前記放射層の後方に配され、テラヘルツ帯の電磁波を反射する反射層と、前記放射層および反射層の間に位置し、テラヘルツ帯の電磁波を透過させる中間層とを備える。 A terahertz wave output device according to aspect 1 of the present disclosure includes a radiation layer that radiates electromagnetic waves in the terahertz band, a reflective layer that is disposed behind the radiation layer and reflects the electromagnetic waves in the terahertz band, and the radiation layer and the reflective layer. and an intermediate layer positioned therebetween and transmitting electromagnetic waves in the terahertz band.
 前記構成によれば、放射層から前方に放射されたテラヘルツ帯の電磁波と、放射層から後方に放射され、反射層で反射されたテラヘルツ帯の電磁波とが重ね合わされたテラヘルツ波を出力することができる。 According to the above configuration, it is possible to output a terahertz wave in which a terahertz-band electromagnetic wave emitted forward from the emitting layer and a terahertz-band electromagnetic wave emitted backward from the emitting layer and reflected by the reflective layer are superimposed. can.
 本開示の態様2におけるテラヘルツ波出力装置は、前記態様1において、前記放射層が、前方に向けてテラヘルツ帯の第1波を放射し、後方に向けてテラヘルツ帯の第2波を放射し、前記第2波が前記反射層で反射されて生じる反射波と、前記第1波とが重ね合わされて生じるテラヘルツ波を前方に出力する。 In the terahertz wave output device according to aspect 2 of the present disclosure, in aspect 1, the emitting layer emits a first terahertz wave forward and a second terahertz wave backward, A terahertz wave generated by superimposing a reflected wave generated by reflecting the second wave on the reflecting layer and the first wave is outputted forward.
 本開示の態様3におけるテラヘルツ波出力装置は、前記態様1または2において、前記中間層が絶縁性を有する、もしくはテラヘルツ波に高い透過性をもつ。 In the terahertz wave output device according to aspect 3 of the present disclosure, in aspect 1 or 2, the intermediate layer has insulating properties or has high permeability to terahertz waves.
 本開示の態様4におけるテラヘルツ波出力装置は、前記態様1から3の何れか一態様において、前記反射層は、前記中間層と比較して、テラヘルツ帯の電磁波の屈折率が大きい。 In the terahertz wave output device according to aspect 4 of the present disclosure, in any one of aspects 1 to 3, the reflecting layer has a higher refractive index for electromagnetic waves in the terahertz band than the intermediate layer.
 本開示の態様5におけるテラヘルツ波出力装置は、前記態様2において、前記第2波に対する前記中間層の屈折率と前記中間層の厚みとの積は、前記第2波の1/4波長以上である。 In the terahertz wave output device according to aspect 5 of the present disclosure, in aspect 2, the product of the refractive index of the intermediate layer and the thickness of the intermediate layer with respect to the second wave is 1/4 wavelength or more of the second wave. be.
 本開示の態様6におけるテラヘルツ波出力装置は、前記態様2において、前記反射波は、前記第1波に対して位相がおよそ0.9π~1.1πずれている。 In the terahertz wave output device according to aspect 6 of the present disclosure, in aspect 2, the reflected wave is out of phase with the first wave by approximately 0.9π to 1.1π.
 本開示の態様7におけるテラヘルツ波出力装置は、前記態様2において、前記中間層は、前記中間層および前記放射層を通過した前記反射波と前記第1波とがコヒーレントとなるような位相制御を行う。 In the terahertz wave output device according to aspect 7 of the present disclosure, in aspect 2, the intermediate layer performs phase control such that the reflected wave and the first wave that have passed through the intermediate layer and the radiation layer are coherent. conduct.
 本開示の態様8におけるテラヘルツ波出力装置は、前記態様2において、前記第2波に対する前記中間層の屈折率および前記中間層の厚みの少なくとも一方が、出力すべきテラヘルツ周波数に応じて設定されている。 In the terahertz wave output device according to aspect 8 of the present disclosure, in aspect 2, at least one of the refractive index of the intermediate layer and the thickness of the intermediate layer with respect to the second wave is set according to the terahertz frequency to be output. there is
 本開示の態様9におけるテラヘルツ波出力装置は、前記態様1から8の何れか一態様において、前記放射層は、磁性金属を含む磁性層である第1層と、非磁性金属を含む非磁性層であり、前記第1層に接する第2層とを含み、前記放射層に、非連続発振のレーザ光が照射される。 A terahertz wave output device according to Aspect 9 of the present disclosure is the terahertz wave output device according to any one of Aspects 1 to 8, wherein the radiation layer is a first layer that is a magnetic layer containing a magnetic metal, and a non-magnetic layer containing a non-magnetic metal. and a second layer in contact with the first layer, and the emitting layer is irradiated with discontinuous wave laser light.
 本開示の態様10におけるテラヘルツ波出力装置は、前記態様9において、前記反射層および前記中間層が透光性を有し、前記レーザ光が後方から前記放射層に照射される。 In the terahertz wave output device according to aspect 10 of the present disclosure, in aspect 9, the reflective layer and the intermediate layer have translucency, and the laser light is irradiated to the emitting layer from behind.
 本開示の態様11におけるテラヘルツ波出力装置は、前記態様10において、前記反射層は、インジウムスズ酸化物(ITO)またはインジウム亜鉛酸化物(IZO)等の導電層を含む。 In the terahertz wave output device according to aspect 11 of the present disclosure, in aspect 10, the reflective layer includes a conductive layer such as indium tin oxide (ITO) or indium zinc oxide (IZO).
 本開示の態様12におけるテラヘルツ波出力装置は、前記態様10または11において、前記中間層は、マイクロシートガラスまたはマイクロシートプラスチックである。 In the terahertz wave output device according to aspect 12 of the present disclosure, in aspect 10 or 11, the intermediate layer is microsheet glass or microsheet plastic.
 本開示の態様13におけるテラヘルツ波出力装置は、前記態様2において、前記第1波および前記反射波はパルス波であり、前記第1波のパルスと前記反射波のパルスとが前記放射層の前方で重ね合わされる。 In the terahertz wave output device according to aspect 13 of the present disclosure, in aspect 2, the first wave and the reflected wave are pulse waves, and the pulse of the first wave and the pulse of the reflected wave are in front of the radiation layer. are superimposed on each other.
 本開示の態様14におけるテラヘルツ波出力方法は、放射層からその前方にテラヘルツ帯の電磁波である第1波を放射させるとともに、前記放射層の後方にテラヘルツ帯の電磁波である第2波を放射させ、前記第2波を前方反射させた反射光と前記第1波とを重ね合わせたテラヘルツ波を出力する。 In the terahertz wave output method according to aspect 14 of the present disclosure, a first wave, which is an electromagnetic wave in the terahertz band, is emitted forward from the emitting layer, and a second wave, which is an electromagnetic wave in the terahertz band, is emitted behind the emitting layer. and outputs a terahertz wave obtained by superimposing the reflected light obtained by forwardly reflecting the second wave and the first wave.
 以上の開示は例示および説明を目的とするものであり、限定を目的とするものではない。これら例示および説明に基づけば、多くの変形形態が当業者にとって自明となるのであるから、これら変形形態も実施形態に含まれることに留意されたい。 The above disclosure is for the purpose of illustration and description, and not for the purpose of limitation. Based on these illustrations and descriptions, it should be noted that many variations will be apparent to those skilled in the art and are therefore included in the embodiments.
 2 放射層
 3 中間層
 4 反射層
 20 テラヘルツ波出力装置
 LK 励起光
 WF 第1波
 WS 第2波
 WT テラヘルツ波(出力波)

 
2 radiation layer 3 intermediate layer 4 reflection layer 20 terahertz wave output device LK excitation light WF first wave WS second wave WT terahertz wave (output wave)

Claims (14)

  1.  テラヘルツ帯の電磁波を放射する放射層と、
     前記放射層の後方に配され、テラヘルツ帯の電磁波を反射する反射層と、
     前記放射層および反射層の間に位置し、テラヘルツ帯の電磁波を透過させる中間層とを備える、テラヘルツ波出力装置。
    a radiation layer that radiates electromagnetic waves in the terahertz band;
    a reflecting layer arranged behind the emitting layer and reflecting electromagnetic waves in the terahertz band;
    A terahertz wave output device, comprising: an intermediate layer positioned between the radiation layer and the reflection layer and transmitting electromagnetic waves in the terahertz band.
  2.  前記放射層は、前方に向けてテラヘルツ帯の第1波を放射し、後方に向けてテラヘルツ帯の第2波を放射し、
     前記第2波が前記反射層で反射されて生じる反射波と、前記第1波とが重ね合わされて生じるテラヘルツ波を前方に出力する、請求項1に記載のテラヘルツ波出力装置。
    The emitting layer emits a first wave in the terahertz band forward and a second wave in the terahertz band backward;
    2. The terahertz wave output device according to claim 1, outputting forward a terahertz wave generated by superimposing a reflected wave generated by reflecting said second wave on said reflecting layer and said first wave.
  3.  前記中間層は絶縁性を有する、請求項1に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 1, wherein the intermediate layer has insulating properties.
  4.  前記反射層は、前記中間層と比較して、テラヘルツ帯の電磁波の屈折率が大きい、請求項1に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 1, wherein the reflective layer has a higher refractive index for electromagnetic waves in the terahertz band than the intermediate layer.
  5.  前記第2波に対する前記中間層の屈折率と前記中間層の厚みとの積は、前記第2波の1/4波長以上である、請求項2に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 2, wherein the product of the refractive index of the intermediate layer and the thickness of the intermediate layer for the second wave is 1/4 wavelength or more of the second wave.
  6.  前記反射波は、前記第1波に対して位相が0.9π~1.1πずれている、請求項2に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 2, wherein the reflected wave is out of phase with the first wave by 0.9π to 1.1π.
  7.  前記中間層は、前記中間層および前記放射層を通過した前記反射波と前記第1波とがコヒーレントとなるような位相制御を行う、請求項2に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 2, wherein the intermediate layer performs phase control such that the reflected wave and the first wave that have passed through the intermediate layer and the radiation layer are coherent.
  8.  前記第2波に対する前記中間層の屈折率および前記中間層の厚みの少なくとも一方が、出力すべきテラヘルツ周波数に応じて設定されている、請求項2に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 2, wherein at least one of the refractive index of the intermediate layer and the thickness of the intermediate layer with respect to the second wave is set according to the terahertz frequency to be output.
  9.  前記放射層は、磁性金属を含む磁性層である第1層と、非磁性金属を含む非磁性層であり、前記第1層に接する第2層とを含み、
     前記放射層に、非連続発振のレーザ光が照射される、請求項1~8のいずれか1項に記載のテラヘルツ波出力装置。
    the radiation layer includes a first layer that is a magnetic layer containing a magnetic metal and a second layer that is a non-magnetic layer containing a non-magnetic metal and is in contact with the first layer,
    The terahertz wave output device according to any one of claims 1 to 8, wherein the emitting layer is irradiated with discontinuous wave laser light.
  10.  前記反射層および前記中間層が透光性を有し、
     前記レーザ光が後方から前記放射層に照射される、請求項9に記載のテラヘルツ波出力装置。
    The reflective layer and the intermediate layer have translucency,
    10. The terahertz wave output device according to claim 9, wherein the emitting layer is irradiated with the laser light from behind.
  11.  前記反射層は、インジウムスズ酸化物(ITO)またはインジウム亜鉛酸化物(IZO)を含む、請求項10に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 10, wherein the reflective layer contains indium tin oxide (ITO) or indium zinc oxide (IZO).
  12.  前記中間層は、マイクロシートガラスまたはマイクロシートプラスチックである、請求項10に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 10, wherein the intermediate layer is microsheet glass or microsheet plastic.
  13.  前記第1波および前記反射波はパルス波であり、前記第1波のパルスと前記反射波のパルスとが前記放射層の前方で重ね合わされる、請求項2に記載のテラヘルツ波出力装置。 The terahertz wave output device according to claim 2, wherein the first wave and the reflected wave are pulse waves, and the pulse of the first wave and the pulse of the reflected wave are superimposed in front of the radiation layer.
  14.  放射層からその前方にテラヘルツ帯の電磁波である第1波を放射させるとともに、前記放射層の後方にテラヘルツ帯の電磁波である第2波を放射させ、前記第2波を前方反射させた反射光と前記第1波とを重ね合わせたテラヘルツ波を出力する、テラヘルツ波出力方法。 A first wave that is an electromagnetic wave in the terahertz band is radiated forward from the radiation layer, a second wave that is an electromagnetic wave in the terahertz band is radiated behind the radiation layer, and the second wave is reflected forward. a terahertz wave output method for outputting a terahertz wave obtained by superimposing the first wave and the first wave.
PCT/JP2023/006430 2022-02-24 2023-02-22 Terahertz wave output apparatus and method for outputting terahertz wave WO2023163032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022027276 2022-02-24
JP2022-027276 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023163032A1 true WO2023163032A1 (en) 2023-08-31

Family

ID=87766030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006430 WO2023163032A1 (en) 2022-02-24 2023-02-22 Terahertz wave output apparatus and method for outputting terahertz wave

Country Status (1)

Country Link
WO (1) WO2023163032A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322733A (en) * 2004-05-07 2005-11-17 Mitsuteru Kimura Terahertz wave generating diode and terahertz wave radiating equipment using it
WO2006030608A1 (en) * 2004-09-13 2006-03-23 Kyushu Institute Of Technology Terahertz electromagnetic wave radiation element and its manufacturing method
JP2009080448A (en) * 2007-09-07 2009-04-16 Kagawa Univ Terahertz light source
JP2009158926A (en) * 2007-12-07 2009-07-16 Canon Inc Electromagnetic-wave generating device, electromagnetic-wave integrated device, and electromagnetic-wave detector
JP2012053450A (en) * 2010-08-05 2012-03-15 Canon Inc Terahertz wave generating element, terahertz wave detecting element, terahertz wave generator, terahertz wave detector, terahertz wave measuring instrument, and terahertz wave tomographic imaging apparatus
WO2012077769A1 (en) * 2010-12-09 2012-06-14 公立大学法人大阪府立大学 Light generation device and light generation method
JP2013030610A (en) * 2011-07-28 2013-02-07 Panasonic Corp Terahertz wave element
JP2015141111A (en) * 2014-01-29 2015-08-03 パイオニア株式会社 Terahertz wave output device, terahertz wave output method, computer program, and recording medium
JP2016536806A (en) * 2013-09-18 2016-11-24 中国科学院蘇州納米技術与納米▲ファン▼生研究所 Terahertz light source chip, light source device, light source unit and manufacturing method thereof
WO2021006105A1 (en) * 2019-07-05 2021-01-14 ローム株式会社 Terahertz device
CN113964627A (en) * 2021-10-19 2022-01-21 中国科学技术大学 Terahertz wave transmitter with adjustable performance
CN115693351A (en) * 2022-10-18 2023-02-03 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) Unidirectional efficient spinning terahertz transmitter and application

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322733A (en) * 2004-05-07 2005-11-17 Mitsuteru Kimura Terahertz wave generating diode and terahertz wave radiating equipment using it
WO2006030608A1 (en) * 2004-09-13 2006-03-23 Kyushu Institute Of Technology Terahertz electromagnetic wave radiation element and its manufacturing method
JP2009080448A (en) * 2007-09-07 2009-04-16 Kagawa Univ Terahertz light source
JP2009158926A (en) * 2007-12-07 2009-07-16 Canon Inc Electromagnetic-wave generating device, electromagnetic-wave integrated device, and electromagnetic-wave detector
JP2012053450A (en) * 2010-08-05 2012-03-15 Canon Inc Terahertz wave generating element, terahertz wave detecting element, terahertz wave generator, terahertz wave detector, terahertz wave measuring instrument, and terahertz wave tomographic imaging apparatus
WO2012077769A1 (en) * 2010-12-09 2012-06-14 公立大学法人大阪府立大学 Light generation device and light generation method
JP2013030610A (en) * 2011-07-28 2013-02-07 Panasonic Corp Terahertz wave element
JP2016536806A (en) * 2013-09-18 2016-11-24 中国科学院蘇州納米技術与納米▲ファン▼生研究所 Terahertz light source chip, light source device, light source unit and manufacturing method thereof
JP2015141111A (en) * 2014-01-29 2015-08-03 パイオニア株式会社 Terahertz wave output device, terahertz wave output method, computer program, and recording medium
WO2021006105A1 (en) * 2019-07-05 2021-01-14 ローム株式会社 Terahertz device
CN113964627A (en) * 2021-10-19 2022-01-21 中国科学技术大学 Terahertz wave transmitter with adjustable performance
CN115693351A (en) * 2022-10-18 2023-02-03 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) Unidirectional efficient spinning terahertz transmitter and application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MATSUNAGA TAIYO; MAG-USARA VALYNN KATRINE; EJIRI KOHEI; TETSUKAWA SHOEI; LIU SHUANG; AGULTO VERDAD C.; NISHITANI SHOJIRO; NISHITAN: "High Intensity Spintronic Terahertz Emitter with ITO and Microsheet Glass Structure", 2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), IEEE, 28 August 2022 (2022-08-28), pages 1 - 2, XP034197312, DOI: 10.1109/IRMMW-THz50927.2022.9895759 *
QIU H. S., KATO K., HIROTA K., SARUKURA N., YOSHIMURA M., NAKAJIMA M.: "Layer thickness dependence of the terahertz emission based on spin current in ferromagnetic heterostructures", OPTICS EXPRESS, vol. 26, no. 12, 11 June 2018 (2018-06-11), pages 15247 - 15254, XP093085815, DOI: 10.1364/OE.26.015247 *
SUIZU K, ET AL.: "SURFACE-EMITTED TETRAHERTZ-WAVE GENERATION BY RIDGED PERIODICALLY POLED LITHIUM NIOBATE AND ENHANCEMENT BY MIXING OF TWO TETRAHERTZ WAVES", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, US, vol. 31, no. 07, 1 April 2006 (2006-04-01), US , pages 957 - 959, XP001242364, ISSN: 0146-9592, DOI: 10.1364/OL.31.000957 *
TAIYO MATSUNAGA, KOHEI EJIRI, SHUANG LIU, TONGEI TETSUKAWA, MAG-USARA V. K. P., AGULTO V. C., SHOJIRO NISHITANI, MIKIHIKO NISHITAN: "25p-D315-7: High-intensity magnetic ultra-thin film terahertz light source using ITO structure", PROCEEDINGS OF THE 69TH JAPAN SOCIETY OF APPLIED PHYSICS (JSAP) SPRING CONFERENCE, MARCH 22-26, 2022, JAPAN SOCIETY OF APPLIED PHYSICS (JSAP), JP, vol. 69, 1 March 2022 (2022-03-01) - 26 March 2022 (2022-03-26), JP, pages 03 - 383, XP009548693 *
TALARA MIEZEL, BULGAREVICH DMITRY S., TACHIOKA CHIYAKA, MAG-USARA VALYNN KATRINE, MULDERA JOSELITO, FURUYA TAKASHI, KITAHARA HIDEA: "Efficient terahertz wave generation of diabolo-shaped Fe/Pt spintronic antennas driven by a 780 nm pump beam", APPLIED PHYSICS EXPRESS, JAPAN SOCIETY OF APPLIED PHYSICS; JP, JP, vol. 14, no. 4, 1 April 2021 (2021-04-01), JP , pages 042008, XP093085813, ISSN: 1882-0778, DOI: 10.35848/1882-0786/abeea0 *

Similar Documents

Publication Publication Date Title
US20110110628A1 (en) Semiconductor light-receiving element, optical communication device, optical interconnect module, and photoelectric conversion method
US8975584B2 (en) Improved-efficiency fibre-coupled terahertz system
US9329339B2 (en) Plasmonic detector and method for manufacturing the same
JP2005509909A (en) Matrix addressable optoelectronic device and its electrode means
EP2526457B1 (en) Laser and method for actively modulating laser radiation
JP7335273B2 (en) Optoelectronic Devices Based on Intrinsic Plasmon-Exciton Polaritons
JP2014165412A (en) Short optical pulse generation device, terahertz wave generation device, camera, imaging apparatus, and measuring device
KR100807912B1 (en) Laser-induced optical wiring apparatus
US20230280633A1 (en) Free-space Beam Steering Systems, Devices, and Methods
US20230221416A1 (en) Distance information acquisition apparatus and electronic apparatus including the same
CN108666409A (en) A kind of structure improving superconducting nano-wire absorption efficiency
US20170351087A1 (en) Photonic Modulator and Switch
WO2023163032A1 (en) Terahertz wave output apparatus and method for outputting terahertz wave
WO2010006440A1 (en) Terahertz photoconductive antennas having transparent conductor electrodes and methods of making same
JPS63269582A (en) Photoelectron semiconductor device employing quantum well
JP4940600B2 (en) Electro-optic element, optical transmission module, electronic device
KR20210095127A (en) Components comprising optically active materials
JPH08204226A (en) Light receiving element
US20240136460A1 (en) Arrangement for an antenna for generating or receiving terahertz radiation, antenna, terahertz system, and method for producing an arrangement for an antenna
US20150168296A1 (en) Short optical pulse generator, terahertz wave generator, camera, imaging apparatus, and measurement apparatus
CN109375419B (en) Backlight module and display device
JP2936880B2 (en) Polarizer and digital modulator using the same
JP2023159018A (en) Optical detection element and receiving device
Mitrofanov et al. Nanostructured photoconductive terahertz detector for near-field microscopy
JP2017079271A (en) Oscillation element and measuring device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760031

Country of ref document: EP

Kind code of ref document: A1