WO2023162414A1 - 非水電解質二次電池用正極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2023162414A1
WO2023162414A1 PCT/JP2022/045844 JP2022045844W WO2023162414A1 WO 2023162414 A1 WO2023162414 A1 WO 2023162414A1 JP 2022045844 W JP2022045844 W JP 2022045844W WO 2023162414 A1 WO2023162414 A1 WO 2023162414A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrolyte secondary
aqueous electrolyte
secondary battery
active material
Prior art date
Application number
PCT/JP2022/045844
Other languages
English (en)
French (fr)
Inventor
晶子 村田
浩史 川田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023162414A1 publication Critical patent/WO2023162414A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for non-aqueous electrolyte secondary batteries and technology of non-aqueous electrolyte secondary batteries.
  • a non-aqueous electrolyte secondary battery that includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and charges and discharges by moving lithium ions or the like between the positive electrode and the negative electrode. Widely used.
  • Patent Documents 1 to 11 propose non-aqueous electrolyte secondary batteries using a lithium-containing composite oxide containing W as a positive electrode active material for non-aqueous electrolyte secondary batteries.
  • An object of the present disclosure is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery capable of suppressing the amount of gas generated during the initial charge and discharge of the battery and reducing the direct current resistance (DCIR) of the battery, and the non-aqueous electrolyte secondary battery.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery comprising a positive electrode active material for
  • a positive electrode active material for a nonaqueous electrolyte secondary battery which is one aspect of the present disclosure, includes a composite oxide containing at least one element selected from Ni, Mn, Co, and Al, W, and Li. , an intermediate layer formed on the composite oxide, wherein the intermediate layer does not contain W and contains at least one element of Ca, P and B; and and a coating layer containing W.
  • a non-aqueous electrolyte secondary battery includes a positive electrode having the positive electrode active material for a non-aqueous electrolyte secondary battery.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery capable of suppressing the amount of gas generated and reducing the DC resistance of the battery during the initial charge and discharge of the battery, and the non-aqueous electrolyte secondary battery It is possible to provide a non-aqueous electrolyte secondary battery comprising a positive electrode active material for
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment
  • FIG. 1 is a schematic cross-sectional view showing an example of a non-aqueous electrolyte secondary battery according to an embodiment.
  • the non-aqueous electrolyte secondary battery 10 shown in FIG. It has insulating plates 18 and 19 arranged and a battery case 15 that accommodates the above members.
  • the battery case 15 is composed of a bottomed cylindrical case body 16 and a sealing member 17 that closes the opening of the case body 16 .
  • the wound electrode body 14 another form of electrode body such as a stacked electrode body in which positive and negative electrodes are alternately stacked via a separator may be applied.
  • Examples of the battery case 15 include cylindrical, rectangular, coin-shaped, button-shaped, and other metal cases, and resin cases formed by laminating resin sheets (so-called laminate type).
  • a non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents include esters, ethers, nitriles, amides, and mixed solvents of two or more thereof.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of the hydrogen atoms of these solvents with halogen atoms such as fluorine.
  • a lithium salt such as LiPF 6 is used as the electrolyte salt.
  • the non-aqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
  • the case body 16 is, for example, a bottomed cylindrical metal container.
  • a gasket 28 is provided between the case body 16 and the sealing member 17 to ensure hermeticity inside the battery.
  • the case main body 16 has an overhanging portion 22 that supports the sealing member 17, for example, a portion of the side surface overhanging inward.
  • the protruding portion 22 is preferably annularly formed along the circumferential direction of the case body 16 and supports the sealing member 17 on the upper surface thereof.
  • the sealing body 17 has a structure in which a filter 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are layered in order from the electrode body 14 side.
  • Each member constituting the sealing member 17 has, for example, a disk shape or a ring shape, and each member except for the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at their central portions, and an insulating member 25 is interposed between their peripheral edge portions.
  • the lower valve body 24 deforms and breaks so as to push the upper valve body 26 upward toward the cap 27, thereby breaking the lower valve body 24 and the upper valve.
  • the current path between bodies 26 is interrupted.
  • the upper valve body 26 is broken and the gas is discharged from the opening of the cap 27 .
  • the positive electrode lead 20 attached to the positive electrode 11 extends through the through hole of the insulating plate 18 toward the sealing member 17, and the negative electrode lead 21 attached to the negative electrode 12 is insulated. It extends to the bottom side of the case body 16 through the outside of the plate 19 .
  • the positive electrode lead 20 is connected to the lower surface of the filter 23, which is the bottom plate of the sealing member 17, by welding or the like, and the cap 27, which is the top plate of the sealing member 17 electrically connected to the filter 23, serves as a positive electrode terminal.
  • the negative lead 21 is connected to the inner surface of the bottom of the case body 16 by welding or the like, and the case body 16 serves as a negative terminal.
  • the positive electrode 11, the negative electrode 12, and the separator 13 are described in detail below.
  • the positive electrode 11 is composed of, for example, a positive electrode current collector such as a metal foil, and a positive electrode mixture layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil
  • a positive electrode mixture layer formed on the positive electrode current collector.
  • a foil of a metal such as aluminum that is stable in the positive electrode potential range, a film having the metal on the surface layer, or the like can be used.
  • the positive electrode mixture layer contains, for example, a positive electrode active material, a binder, a conductive material, and the like.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, etc. is applied onto the positive electrode current collector and dried to form a positive electrode mixture layer on the positive electrode current collector. , obtained by rolling the positive electrode mixture layer.
  • the positive electrode active material includes composite particles having a composite oxide, an intermediate layer formed on the composite oxide, and a coating layer formed on the intermediate layer.
  • the composite oxide contains at least one element selected from Ni, Mn, Co, and Al, W, and Li.
  • the ratio of Ni, Mn, Co, and Al in the composite oxide is, for example, in terms of increasing the capacity of the battery and suppressing deterioration of charge-discharge cycle characteristics, with respect to the total molar amount of metal elements excluding Li, It is preferably 75 mol % or more, more preferably 85 mol % or more.
  • the ratio of W in the composite oxide is, for example, the point that the amount of gas generated during the initial charge and discharge of the battery can be further suppressed, or the DC resistance of the battery can be further reduced. On the other hand, it is preferably 0.01 mol % or more, more preferably 0.05 mol % or more.
  • suitable composite oxides include general formula: Li 1+x Ma (1-z) Mb z W y O 2 (wherein Ma is at least one of Ni, Mn, Co, and Al and Mb is at least one of Ti, Zr, Nb, Ta, Mo, Sb, Bi, Ca, Sr, Mg, Y, Sc and V, and x, y and z are 0 .02 ⁇ x ⁇ 0.07, 0.0005 ⁇ y ⁇ 0.01, 0 ⁇ z ⁇ 0.1).
  • Examples of more suitable composite oxides include general formula: Li 1+x Ni q Mc (1-qz) Mb z W y O 2 (wherein Ma is at least one of Mn, Co, and Al and Mb is at least one of Ti, Zr, Nb, Ta, Mo, Sb, Bi, Ca, Sr, Mg, Y, Sc, V, and x, y, z includes composite oxides represented by 0.02 ⁇ x ⁇ 0.07, 0.7 ⁇ q ⁇ 0.95, 0.0005 ⁇ y ⁇ 0.01, 0 ⁇ z ⁇ 0.1) .
  • the intermediate layer formed on the composite oxide is an intermediate layer that does not contain W and contains at least one element of Ca, P and B.
  • W is contained in the intermediate layer
  • the ratio of the molar amount of Ca, P and B contained in the intermediate layer to the total molar amount of the composite oxide is, for example, a point that further suppresses the amount of gas generated during the initial charge and discharge of the battery or further reduces the direct current resistance of the battery. 0.01 mol % to 1 mol %, and more preferably 0.05 mol % to 0.5 mol %.
  • the thickness of the intermediate layer is preferably in the range of 5 nm to 200 nm.
  • the thickness of the intermediate layer is less than 5 nm, side reactions of the composite oxide under the intermediate layer are likely to occur during charging and discharging. The amount of gas generated or the DC resistance of the battery may increase during the initial charge and discharge. Further, when the thickness of the intermediate layer exceeds 200 nm, the intermediate layer becomes a resistance component, which hinders the charge-discharge reaction of the composite oxide, which may lead to a decrease in battery capacity.
  • the thickness of the intermediate layer can be measured as follows.
  • the positive electrode 11 or the composite particles are embedded in a resin, and cross-sections of the composite particles are exposed by cross-section polisher (CP) processing or the like, and the cross-sections are photographed with a scanning electron microscope (SEM). Then, 30 composite particles are randomly selected from this cross-sectional SEM image. The thickness of the intermediate layer of each of the selected 30 composite particles is measured and the average value is calculated. Then, this average value is used as the thickness of the intermediate layer.
  • CP cross-section polisher
  • SEM scanning electron microscope
  • the coverage of the intermediate layer covering the composite oxide is, for example, preferably 75% or more, more preferably 85% or more.
  • the coverage of the intermediate layer is less than 75%, side reactions of the composite oxide under the intermediate layer are more likely to occur during charging and discharging. As a result, the amount of gas generated or the direct current resistance of the battery may increase during the initial charging and discharging of the battery.
  • the coverage of the intermediate layer formed on the composite oxide is measured by X-ray photoelectron spectroscopy (XPS).
  • the coating layer formed on the intermediate layer is a coating layer containing W.
  • the ratio of the molar amount of W in the coating layer to the total molar amount of the composite oxide is 0.00 in terms of further suppressing the amount of gas generated during the initial charge and discharge of the battery, or in terms of further reducing the direct current resistance of the battery. It is preferably in the range of 05 mol % to 1 mol %, more preferably in the range of 0.05 mol % to 0.5 mol %.
  • the coverage of the coating layer formed on the intermediate layer is, for example, preferably in the range of 10% to 40%, more preferably in the range of 10% to 25%. If the coverage of the coating layer is too high, the coating layer may inhibit the charge-discharge reaction of the composite oxide, leading to a decrease in battery capacity.
  • the coverage of the coating layer is measured by X-ray photoelectron spectroscopy. Specifically, it is calculated from the molar fraction of the element (W) of the coating layer with respect to the total molar amount of the metal elements of the composite oxide and the elements (Ca, P and B) of the intermediate layer.
  • the composition of the composite oxide can be confirmed by Rietveld analysis of the parameters obtained by inductively coupled plasma emission spectroscopy, X-ray photoelectron spectroscopy, and powder X-ray diffraction.
  • Qualitative and quantitative analysis of the intermediate layer and coating layer can be performed by X-ray photoelectron spectroscopy, inductively coupled plasma emission spectroscopy, electron probe macroanalyzer (EPMA), or the like.
  • the analysis by EPMA is, for example, a method of exposing a cross section of the sample to be analyzed and analyzing the cross section by EPMA mapping (cross-section EPMA mapping analysis).
  • a hydroxide or oxide containing at least one element selected from Ni, Mn, Co and Al, a Li compound, and a W compound are mixed, and the mixture is fired to produce Ni, Mn , Co and Al, W, and Li.
  • Hydroxides containing at least one element selected from Ni, Mn, Co and Al are prepared by adding an alkaline solution such as sodium hydroxide while stirring an aqueous solution of Ni salt, Co salt and Al salt. By adding dropwise and adjusting the pH to the alkaline side (eg, 8.5 to 11.5), composite hydroxides containing Ni, Co, Al, etc. are precipitated (coprecipitated).
  • Li compounds are, for example, lithium hydroxide, lithium carbonate, and the like.
  • the W compound is tungsten oxide such as WO3 .
  • the firing temperature of the mixture is, for example, in the range of 500°C to 900°C, and the firing time is in the range of, for example, 1 hour to 20 hours.
  • a compound containing at least one of Ca, P and B is deposited on the surface of the composite oxide obtained above.
  • the coating method may be either a wet method or a dry method, but the wet method is preferable in that the coverage of the intermediate layer can be increased.
  • a solution containing a compound containing at least one element of Ca, P and B is dropped or sprayed onto the composite oxide obtained above.
  • particles are obtained in which an intermediate layer containing at least one of Ca, P and B is formed on the surface of the composite oxide.
  • the composite oxide obtained above is put into a solution containing a compound containing at least one element selected from Ca, P and B, and stirred. After stirring, the solution is filtered to obtain particles in which an intermediate layer containing at least one of Ca, P and B is formed on the surface of the composite oxide.
  • the solution containing the compound containing at least one element of Ca, P and B is preferably an alkaline solution so that the compound can be easily dissolved.
  • Compounds containing Ca are, for example, calcium hydroxide, calcium phosphate, calcium dihydrogen phosphate, hydroxyapatite, calcium carbonate, calcium acetate, and calcium oxide
  • compounds containing P are, for example, phosphoric acid, lithium phosphate, and phosphonic acid.
  • Acids, calcium phosphate, calcium dihydrogen phosphate, hydroxyapatite, and compounds containing B are, for example, boric acid, lithium metaborate, lithium tetraborate.
  • the particles obtained above may be dried by heating under reduced pressure.
  • the heat-drying temperature is, for example, in the range of 100° C. to 300° C.
  • the heat-drying time is, for example, in the range of 1 hour to 5 hours.
  • a W-containing compound is deposited on the intermediate layer of the obtained particles.
  • the deposition method may be a wet method or a dry method. However, if the coverage of the coating layer is high, the battery capacity or the like is affected, so the dry method is preferable in terms of suppressing the coverage of the coating layer.
  • the particles obtained above and a W compound are mixed and dried by heating under reduced pressure.
  • the W compound is tungsten oxide such as WO3 .
  • the heat-drying temperature is, for example, in the range of 100° C. to 300° C.
  • the heat-drying time is, for example, in the range of 1 hour to 5 hours.
  • the composite particles of the present embodiment are obtained in which a coating layer containing W is formed on the surface of the intermediate layer formed on the composite oxide.
  • Examples of the conductive material contained in the positive electrode mixture layer include carbon black, acetylene black, ketjen black, graphene, fibrous carbon such as carbon nanotubes, and carbon materials such as graphite.
  • the binder contained in the positive electrode mixture layer includes fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, polyolefin resins, styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC) or salts thereof, polyacrylic acid (PAA) or salts thereof (PAA-Na, PAA-K, etc., may also be partially neutralized salts), polyethylene oxide (PEO), polyvinyl alcohol (PVA) and the like.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylon
  • the negative electrode 12 includes, for example, a negative electrode current collector such as metal foil, and a negative electrode mixture layer formed on the negative electrode current collector.
  • a negative electrode current collector such as metal foil
  • a negative electrode mixture layer formed on the negative electrode current collector.
  • a foil of a metal such as copper that is stable in the potential range of the negative electrode, a film having the metal on the surface layer, or the like can be used.
  • the negative electrode mixture layer includes, for example, a negative electrode active material, a binder, and the like.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. is applied onto the negative electrode current collector and dried to form a negative electrode mixture layer on the negative electrode current collector. It is obtained by rolling the composite layer.
  • the negative electrode mixture layer may be provided on one side of the negative electrode current collector, or may be provided on both sides of the negative electrode current collector.
  • the negative electrode active material is, for example, a material capable of intercalating and deintercalating lithium ions, and specifically, a carbon material, a metal capable of forming an alloy with lithium, an alloy compound containing such a metal, or the like. is mentioned.
  • a carbon material natural graphite, non-graphitizable carbon, graphites such as artificial graphite, cokes, and the like can be used. Alloy compounds include those containing at least one metal capable of forming an alloy with lithium. Silicon and tin are preferable as elements capable of forming an alloy with lithium, and silicon oxide, tin oxide, etc., in which these are combined with oxygen, can also be used. A mixture of the above carbon material and a compound of silicon or tin can also be used. In addition to the above, lithium titanate and the like can also be used.
  • the same binding material as that of the positive electrode 11 may be used.
  • the negative electrode mixture layer may contain a conductive material.
  • a conductive material similar to that used for the positive electrode 11 may be used.
  • a porous sheet or the like having ion permeability and insulation is used.
  • porous sheets include microporous thin films, woven fabrics, and non-woven fabrics.
  • Suitable materials for the separator 13 include olefin resins such as polyethylene and polypropylene, and cellulose.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • a multilayer separator including a polyethylene layer and a polypropylene layer may be used, and a separator whose surface is coated with a material such as aramid resin or ceramic may be used.
  • Example 1 [Production of composite particles] A composite oxide containing Ni, Mn, Nb, W and Li (general formula: LiNi 0.82 Mn 0.18 Nb 0.0025 W 0.005 O 2 ) is added to water, stirred, and then this solution was suction filtered. After that, a solution (concentration: 0.02 mol/L) in which calcium dihydrogen phosphate was dissolved was added, and filtered again. The obtained filtrate and tungsten oxide were mixed at a molar ratio of 1:0.001, and the mixture was dried under reduced pressure at 180° C. for 2 hours to obtain composite particles.
  • Ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) were mixed in a volume ratio of 20:75:5.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 in the mixed solvent so as to have a concentration of 1.3 mol/L.
  • the positive electrode and the negative electrode were each cut into a predetermined size, an electrode lead was attached thereto, and a wound electrode body was produced by winding the cut piece with a separator interposed therebetween.
  • the electrode assembly was housed in an aluminum laminate film, the above non-aqueous electrolyte was injected, and the assembly was sealed. This was used as the non-aqueous electrolyte secondary battery of Example 1.
  • Example 2 Example 1 except that a solution of borate (B concentration: 0.6 mol/L, pH: 10) was used instead of the solution of calcium dihydrogen phosphate in the preparation of the composite particles.
  • Composite particles were obtained by the same method. As a result of analyzing the obtained composite particles in the same manner as in Example 1, an intermediate layer containing B but not containing W was formed on the composite oxide containing Ni, Mn, Nb, W and Li. It was confirmed that a coating layer containing W was formed thereon.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the composite particles were used as the positive electrode active material.
  • Example 1 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the composite oxide containing Ni, Mn, Nb, W and Li used in Example 1 was used as the positive electrode active material.
  • Example 2 The composite oxide containing Ni, Mn, Nb, W and Li used in Example 1 and tungsten oxide were mixed at a molar ratio of 1:0.001, and the mixture was Composite particles were obtained by drying at 180° C. for 2 hours.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the composite particles were used as a positive electrode active material.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the composite particles were used as a positive electrode active material.
  • Example 4 The filtrate obtained in Example 1 and boric acid were mixed at a molar ratio of 1:0.01, and the mixture was dried under reduced pressure at 180°C for 2 hours to obtain composite particles. got
  • Example 2 As a result of analyzing the obtained composite particles in the same manner as in Example 1, an intermediate layer containing Ca and P but not W was formed on the composite oxide containing Ni, Mn, Nb, W and Li, It was confirmed that a coating layer containing B but not W was formed on the intermediate layer.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the composite particles were used as a positive electrode active material.
  • Example 2 As a result of analyzing the obtained composite particles in the same manner as in Example 1, a coating layer containing B and not containing W was formed on the composite oxide containing Ni, Mn, Nb, Ca, W and Li. I confirmed that there is A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the composite particles were used as a positive electrode active material.
  • Comparative Example 6 The composite oxide used in Comparative Example 5 was added to water, and after stirring, this solution was subjected to suction filtration. After that, a solution in which tungsten oxide was dissolved (W concentration: 0.06 mol/L, pH: 11) was added, and suction filtration was performed again. The obtained filtrate and tungsten oxide were mixed at a molar ratio of 1:0.001, and the mixture was dried under reduced pressure at 180° C. for 2 hours to obtain composite particles.
  • W concentration 0.06 mol/L, pH: 11
  • Example 2 As a result of analyzing the obtained composite particles in the same manner as in Example 1, an intermediate layer containing W was formed on the composite oxide containing Ni, Mn, Nb, Ca, W and Li, and on the intermediate layer , W was formed.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the composite particles were used as a positive electrode active material.
  • the volume of the non-aqueous electrolyte secondary battery of each example and each comparative example was measured by the Archimedes method. Then, under an ambient temperature of 25° C., the non-aqueous electrolyte secondary batteries of each example and each comparative example were charged at a constant current of 0.5 C until the voltage reached 4.2 V, and then charged at 0.05 C. Constant voltage charging was carried out until reaching After that, the battery was discharged at a constant current of 0.5C until the battery voltage reached 2.5V. After charging and discharging, the volume of the non-aqueous electrolyte secondary battery of each example and each comparative example was measured by the Archimedes method.
  • the amount of gas generated during the initial charging/discharging was calculated.
  • the object to be measured in this example, a non-aqueous electrolyte secondary battery
  • a liquid medium eg, distilled water, alcohol, etc.
  • Table 1 shows the amount of gas generated and the DC resistance of the battery during the initial charge and discharge in each example and each comparative example.
  • non-aqueous electrolyte secondary battery 11 positive electrode, 12 negative electrode, 13 separator, 14 electrode body, 15 battery case, 16 case body, 17 sealing body, 18, 19 insulating plate, 20 positive electrode lead, 21 negative electrode lead, 22 overhang , 23 filter, 24 lower valve body, 25 insulating member, 26 upper valve body, 27 cap, 28 gasket.

Abstract

本開示の一態様である非水電解質二次電池用正極活物質は、Ni、Mn、Co、及びAlのうちの少なくともいずれか1種の元素と、Wと、Liとを含む複合酸化物と、前記複合酸化物上に形成された中間層であって、Wを含まず、Ca、P及びBのうちの少なくともいずれか1種の元素を含む中間層と、前記中間層上に形成された被覆層であって、Wを含む被覆層と、を有することを特徴とする。

Description

非水電解質二次電池用正極活物質及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極活物質及び非水電解質二次電池の技術に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極、負極、及び非水電解質を備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。
 例えば、特許文献1~11には、Wを含むリチウム含有複合酸化物を非水電解質二次電池用正極活物質として用いた非水電解質二次電池が提案されている。
特開2017-117766号公報 特開2017-084628号公報 特開2016-207635号公報 特開2014-197556号公報 特開2013-152866号公報 特開2014-183031号公報 特開2017-033641号公報 特開2016-091626号公報 特開2013-161644号公報 特開2012-238581号公報 特開2015-130254号公報
 本開示の目的は、電池の初回充放電時におけるガス発生量の抑制及び電池の直流抵抗(DCIR)の低減が可能な非水電解質二次電池用正極活物質、及び当該非水電解質二次電池用正極活物質を備える非水電解質二次電池を提供することを目的とする。
 本開示の一態様である非水電解質二次電池用正極活物質は、Ni、Mn、Co、及びAlのうちの少なくともいずれか1種の元素と、Wと、Liとを含む複合酸化物と、前記複合酸化物上に形成された中間層であって、Wを含まず、Ca、P及びBのうちの少なくともいずれか1種の元素を含む中間層と、前記中間層上に形成された被覆層であって、Wを含む被覆層と、を有することを特徴とする。
 また、本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用正極活物質を有する正極を備えることを特徴とする。
 本開示の一態様によれば、電池の初回充放電時におけるガス発生量の抑制及び電池の直流抵抗の低減が可能な非水電解質二次電池用正極活物質、及び当該非水電解質二次電池用正極活物質を備える非水電解質二次電池を提供することができる。
実施形態の一例である非水電解質二次電池の断面図である。
 以下、実施形態の一例について詳細に説明する。実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。
 図1は、実施形態に係る非水電解質二次電池の一例を示す模式断面図である。図1に示す非水電解質二次電池10は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の電極体14と、非水電解質と、電極体14の上下にそれぞれ配置された絶縁板18,19と、上記部材を収容する電池ケース15と、を備える。電池ケース15は、有底円筒形状のケース本体16と、ケース本体16の開口部を塞ぐ封口体17とにより構成される。なお、巻回型の電極体14の代わりに、正極及び負極がセパレータを介して交互に積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、電池ケース15としては、円筒形、角形、コイン形、ボタン形等の金属製ケース、樹脂シートをラミネートして形成された樹脂製ケース(所謂ラミネート型)などが例示できる。
 非水電解質は、例えば、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。電解質塩には、例えばLiPF等のリチウム塩が使用される。なお、非水電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
 ケース本体16は、例えば有底円筒形状の金属製容器である。ケース本体16と封口体17との間にはガスケット28が設けられ、電池内部の密閉性が確保される。ケース本体16は、例えば側面部の一部が内側に張出した、封口体17を支持する張り出し部22を有する。張り出し部22は、ケース本体16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極体14側から順に、フィルタ23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。内部短絡等による発熱で非水電解質二次電池10の内圧が上昇すると、例えば下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 図1に示す非水電解質二次電池10では、正極11に取り付けられた正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が絶縁板19の外側を通ってケース本体16の底部側に延びている。正極リード20は封口体17の底板であるフィルタ23の下面に溶接等で接続され、フィルタ23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21はケース本体16の底部内面に溶接等で接続され、ケース本体16が負極端子となる。
 以下、正極11、負極12、セパレータ13について詳述する。
<正極>
 正極11は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極合材層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、例えば、正極活物質、結着材、導電材等を含む。
 正極11は、例えば、正極活物質、結着材、導電材等を含む正極合材スラリーを正極集電体上に塗布・乾燥することによって、正極集電体上に正極合材層を形成し、当該正極合材層を圧延することにより得られる。
 正極活物質は、複合酸化物と、複合酸化物上に形成された中間層と、中間層上に形成された被覆層とを有する複合粒子を含む。
 複合酸化物は、Ni、Mn、Co、及びAlのうちの少なくともいずれか1種の元素と、Wと、Liとを含む。複合酸化物中のNi、Mn、Co、及びAlの割合は、例えば、電池の高容量化や充放電サイクル特性の低下抑制等の点で、Liを除く金属元素の総モル量に対して、75モル%以上であることが好ましく、85モル%以上であることがより好ましい。複合酸化物中のWの割合は、例えば、電池の初回充放電時におけるガス発生量をより抑制できる点又は電池の直流抵抗をより低減できる点等で、Liを除く金属元素の総モル量に対して、0.01モル%以上であることが好ましく、0.05モル%以上であることがより好ましい。
 好適な複合酸化物の例としては、一般式:Li1+xMa(1-z)Mb(式中、Maは、Ni、Mn、Co、及びAlのうちの少なくともいずれか1種であり、Mbは、Ti、Zr、Nb、Ta、Mo、Sb、Bi、Ca、Sr、Mg、Y、Sc、Vのうちの少なくともいずれか1種であり、x、y、zは、0.02<x<0.07、0.0005<y<0.01、0≦z<0.1)で表される複合酸化物が挙げられる。
 より好適な複合酸化物の例としては、一般式:Li1+xNiMc(1-q-z)Mb(式中、Maは、Mn、Co、及びAlのうちの少なくともいずれか1種であり、Mbは、Ti、Zr、Nb、Ta、Mo、Sb、Bi、Ca、Sr、Mg、Y、Sc、Vのうちの少なくともいずれか1種であり、x、y、zは、0.02<x<0.07、0.7<q<0.95、0.0005<y<0.01、0≦z<0.1)で表される複合酸化物が挙げられる。
 複合酸化物上に形成された中間層は、Wを含まず、Ca、P及びBのうちの少なくともいずれか1種の元素を含む中間層である。中間層にWが含まれると、中間層にWが含まれない場合と比較して、電池の初回充放電時におけるガス発生量又は電池の直流抵抗が上昇する。複合酸化物の総モル量に対する中間層に含まれるCa、P及びBのモル量の割合は、例えば、電池の初回充放電時におけるガス発生量をより抑制する点又は電池の直流抵抗をより低減する点等で、0.01モル%~1モル%の範囲が好ましく、0.05モル%~0.5モル%の範囲がより好ましい。
 中間層の厚みは、5nm~200nmの範囲であることが好ましい。中間層の厚みが5nm未満であると、充放電時において、中間層の下にある複合酸化物の副反応が起こり易くなるため、中間層の厚みが5nm以上の場合と比較して、電池の初回充放電時におけるガス発生量又は電池の直流抵抗が上昇する場合がある。また、中間層の厚みが200nmを超えると、中間層が抵抗成分となるため、複合酸化物の充放電反応が阻害されて、電池容量の低下に繋がる場合がある。中間層の厚みは、以下のようにして測定することができる。まず、正極11または複合粒子を樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工などにより、複合粒子断面を露出させ、この断面を走査型電子顕微鏡(SEM)により撮影する。そして、この断面SEM画像から、ランダムに30個の複合粒子を選択する。選択した30個の複合粒子それぞれの中間層の厚みを測定し、平均値を算出する。そして、この平均値を中間層の厚みとする。
 複合酸化物を被覆する中間層の被覆率は、例えば、75%以上であることが好ましく、85%以上であることがより好ましい。中間層の被覆率が75%未満であると、充放電時において、中間層の下にある複合酸化物の副反応が起こり易くなるため、中間層の被覆率が75%以上の場合と比較して、電池の初回充放電時におけるガス発生量又は電池の直流抵抗が上昇する場合がある。複合酸化物上に形成された中間層の被覆率は、X線光電子分光分析(XPS)により測定される。具体的には、複合酸化物の金属元素の総モル量に対する中間層の元素(Ca、P及びB)のモル分率から算出される(Ca、P及びBのモル分率が1であれば、表面被覆率は100%となる)。
 中間層上に形成された被覆層は、Wを含む被覆層である。中間層上にWを含む被覆層が存在することで、Wを含む被覆層が存在しない場合と比較して、電池の初回充放電時におけるガス発生量が抑制され、また、電池の直流抵抗が低減される。複合酸化物の総モル量に対する被覆層のWのモル量の割合は、電池の初回充放電時におけるガス発生量をより抑制する点、又は電池の直流抵抗をより低減する点等で、0.05モル%~1モル%の範囲であることが好ましく、0.05モル%~0.5モル%の範囲であることがより好ましい。
 中間層上に形成された被覆層の被覆率は、例えば、10%~40%の範囲であることが好ましく、10%~25%の範囲であることがより好ましい。被覆層の被覆率が高くなり過ぎると、被覆層により、複合酸化物の充放電反応が阻害され、電池容量の低下に繋がる場合がある。被覆層の被覆率は、X線光電子分光分析により測定される。具体的には、複合酸化物の金属元素及び中間層の元素(Ca、P及びB)の総モル量に対する被覆層の元素(W)のモル分率から算出される。
 複合酸化物の組成の確認は、誘導結合プラズマ発光分析、X線光電子分光分析、及び粉末X線回折により得られたパラメータをリートベルト解析すること等により行うことができる。また、中間層及び被覆層の定性及び定量分析は、X線光電子分光分析、誘導結合プラズマ発光分析、電子プローブマクロアナライザ(EPMA)等により行うことができる。なお、EPMAによる分析は、例えば、分析する試料の断面を露出して、その断面をEPMAマッピングにより分析する方法である(断面EPMAマッピング分析)。
 複合粒子の製造方法の一例について説明する。
 まず、Ni、Mn、Co及びAlのうちの少なくともいずれか1種の元素を含む水酸化物又は酸化物と、Li化合物と、W化合物とを混合し、この混合物を焼成して、Ni、Mn、Co及びAlのうちの少なくともいずれか1種の元素と、Wと、Liとを含む複合酸化物を得る。
 Ni、Mn、Co及びAlのうちの少なくともいずれか1種の元素を含む水酸化物は、例えば、Ni塩、Co塩及びAl塩等の水溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~11.5)に調整することにより、Ni、Co及びAl等を含む複合水酸化物を析出(共沈)させる。Li化合物は、例えば、水酸化リチウム、炭酸リチウム等である。W化合物は、WO等の酸化タングステン等である。
 上記混合物の焼成温度は、例えば、500℃~900℃の範囲であり、焼成時間は、例えば、1時間~20時間の範囲である。
 次に、上記得られた複合酸化物の表面に、Ca、P及びBのうちの少なくともいずれか1種の元素を含む化合物を被着させる。被着方法は、湿式法でも乾式法でもよいが、中間層の被覆率を高めることが出来る点で、湿式法が好ましい。具体的には、上記得られた複合酸化物に、Ca、P及びBのうちの少なくともいずれか1種の元素を含む化合物を含む溶液を滴下又は噴霧する。これにより、複合酸化物の表面に、Ca、P及びBのうちの少なくともいずれか1種の元素を含む中間層が形成された粒子が得られる。或いはCa、P及びBのうちの少なくともいずれか1種の元素を含む化合物を含む溶液中に上記得られた複合酸化物を投入し、撹拌する。撹拌後、溶液をろ過することにより、複合酸化物の表面に、Ca、P及びBのうちの少なくともいずれか1種の元素を含む中間層が形成された粒子が得られる。
 Ca、P及びBのうちの少なくともいずれか1種の元素を含む化合物を含む溶液は、当該化合物が溶解しやすいように、アルカリ溶液とすることが好ましい。Caを含む化合物は、例えば、水酸化カルシウム、リン酸カルシウム、リン酸二水素カルシウム、ヒドロキシアパタイト、炭酸カルシウム、酢酸カルシウム、酸化カルシウムであり、Pを含む化合物は、例えば、リン酸、リン酸リチウム、ホスホン酸、リン酸カルシウム、リン酸二水素カルシウム、ヒドロキシアパタイトであり、Bを含む化合物は、例えば、ホウ酸、メタホウ酸リチウム、四ホウ酸リチウムである。
 中間層を複合酸化物の粒子表面に定着させるために、上記により得られた粒子を、減圧下で、加熱乾燥してもよい。加熱乾燥温度は、例えば100℃~300℃の範囲であり、加熱乾燥時間は、例えば、1時間~5時間の範囲である。
 そして、上記得られた粒子の中間層上に、Wを含む化合物を被着させる。被着方法は、湿式法でも乾式法でもよい。しかし、被覆層の被覆率が高いと電池容量等に影響を与えるため、被覆層の被覆率を抑える点で、乾式法が好ましい。具体的には、上記得られた粒子と、W化合物とを混合し、減圧下で、加熱乾燥する。W化合物は、WO等の酸化タングステン等である。加熱乾燥温度は、例えば100℃~300℃の範囲であり、加熱乾燥時間は、例えば、1時間~5時間の範囲である。以上により、複合酸化物上に形成された中間層表面に、Wを含む被覆層が形成された本実施形態の複合粒子が得られる。
 正極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、グラフェン、カーボンナノチューブ等の繊維状炭素、黒鉛等の炭素材料が例示できる。正極合材層に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)、ポリビニルアルコール(PVA)等が挙げられる。
<負極>
 負極12は、例えば金属箔等の負極集電体と、負極集電体上に形成された負極合材層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、例えば、負極活物質、結着材等を含む。
 負極12は、例えば、負極活物質、結着材等を含む負極合材スラリーを負極集電体上に塗布・乾燥することによって、負極集電体上に負極合材層を形成し、当該負極合材層を圧延することにより得られる。負極合材層は負極集電体の一方の面に設けられていてもよいし、負極集電体の両面に設けられていてもよい。
 負極活物質としては、例えば、リチウムイオンを吸蔵・放出することが可能な材料であり、具体的には、炭素材料、リチウムと合金を形成することが可能な金属またはその金属を含む合金化合物等が挙げられる。炭素材料としては、天然黒鉛、難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等を用いることができる。合金化合物としては、リチウムと合金形成可能な金属を少なくとも1種類含むものが挙げられる。リチウムと合金形成可能な元素としてはケイ素やスズであることが好ましく、これらが酸素と結合した、酸化ケイ素や酸化スズ等も用いることもできる。また、上記炭素材料とケイ素やスズの化合物とを混合したものを用いることができる。上記の他、チタン酸リチウム等も用いることができる。
 結着材は、例えば、正極11と同様のものを使用してよい。また、負極合材層は、導電材を含んでいてもよい。導電材は、正極11と同様のものを使用してよい。
<セパレータ>
 セパレータ13は、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータ13は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
<実施例1>
[複合粒子の作製]
水にNi、Mn、Nb、W及びLiを含む複合酸化物(一般式:LiNi0.82Mn0.18Nb0.00250.005)を投入して、撹拌した後、この溶液を吸引ろ過した。その後、リン酸二水素カルシウムを溶解した溶液(濃度0.02mol/L)を投入し、再度ろ過した。得られたろ過物と、酸化タングステンとを、モル比で1:0.001となるように混合し、この混合物を、減圧下で、180℃2時間乾燥することにより、複合粒子を得た。
 得られた複合粒子をXPS、断面EPMAマッピング分析により分析した結果、Ni、Mn、Nb、W及びLiを含む複合酸化物上には、Ca及びPを含み、Wを含まない中間層が形成され、中間層上には、Wを含む被覆層が形成されていることを確認した。この複合粒子を正極活物質として使用した。
[正極の作製]
 正極活物質98質量部と、導電材であるアセチレンブラック(AB)1質量部と、結着材としてのポリフッ化ビニリデン1質量部とを混合した後、N-メチル-2-ピロリドン(NMP)を適量加えて、正極合材スラリーを調製した。次に、この正極合材スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラを用いて圧延した。このようにして、正極集電体の両面に正極合材層が形成された正極を作製した。
[負極の作製]
 黒鉛98質量部と、カルボキシメチルセルロース(CMC)1質量部と、スチレン-ブタジエンゴム(SBR)1質量部とを混合し、負極合材スラリーを調製した。次に、当該負極合材スラリーを銅箔からなる負極集電体の両面に塗布し、塗膜を乾燥させた後、圧延ローラを用いて圧延した。このようにして、負極集電体の両面に負極合材層が形成された負極を作製した。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを、20:75:5の体積比で混合した。当該混合溶媒に、LiPFを1.3mol/Lの濃度となるように溶解させ、非水電解質を調製した。
[電池の作製]
 上記の正極及び負極を、それぞれ所定の寸法にカットして電極リードを取り付け、セパレータを介して巻回することにより巻回型の電極体を作製した。次に、アルミラミネートフィルムに電極体を収容し、上記の非水電解質を注入し、密閉した。これを実施例1の非水電解質二次電池とした。
<実施例2>
 複合粒子の作製において、リン酸二水素カルシウムを溶解した溶液に代えて、ホウ酸塩を溶解した溶液(B濃度:0.6mol/L、pH:10)を使用したこと以外は、実施例1と同様の方法により複合粒子を得た。得られた複合粒子を実施例1と同様に分析した結果、Ni、Mn、Nb、W及びLiを含む複合酸化物上には、Bを含み、Wを含まない中間層が形成され、中間層上には、Wを含む被覆層が形成されていることを確認した。そして、この複合粒子を正極活物質として使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<比較例1>
 実施例1で使用したNi、Mn、Nb、W及びLiを含む複合酸化物を正極活物質として使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<比較例2>
 実施例1で使用したNi、Mn、Nb、W及びLiを含む複合酸化物と、酸化タングステンとを、モル比で1:0.001となるように混合し、この混合物を、減圧下で、180℃2時間乾燥することにより、複合粒子を得た。
 得られた複合粒子を実施例1と同様に分析した結果、Ni、Mn、Nb、W及びLiを含む複合酸化物上に、Wを含む被覆層が形成されていることを確認した。この複合粒子を正極活物質として使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<比較例3>
 水に、Ni、Mn、Nb、W及びLiを含む複合酸化物(一般式:LiNi0.82Mn0.18Nb0.00250.005)を投入し、撹拌した後、この溶液を吸引ろ過した。その後、リン酸二水素カルシウムを溶解した溶液(濃度0.02mol/L)を投入し、再度ろ過した。得られたろ過物を、減圧下で、180℃2時間乾燥することにより、複合粒子を得た。
 得られた複合粒子を実施例1と同様に分析した結果、Ni、Mn、Nb、W及びLiを含む複合酸化物上には、Ca及びPを含む被覆層が形成されていることを確認した。この複合粒子を正極活物質として使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<比較例4>
 実施例1で得られたろ過物と、ホウ酸とを、モル比で1:0.01となるように混合し、この混合物を、減圧下で、180℃2時間乾燥することにより、複合粒子を得た。
 得られた複合粒子を実施例1と同様に分析した結果、Ni、Mn、Nb、W及びLiを含む複合酸化物上には、Ca及びPを含み、Wを含まない中間層が形成され、中間層上には、Bを含み、Wを含まない被覆層が形成されていることを確認した。この複合粒子を正極活物質として使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<比較例5>
 Ni、Mn、Nb、Ca、W及びLiを含む複合酸化物(一般式:LiNi0.82Mn0.18Nb0.00250.005Ca0.0075)と、ホウ酸とを、モル比で1:0.0025となるように混合し、この混合物を、酸素雰囲気下で、300℃2時間加熱することにより、複合粒子を得た。
 得られた複合粒子を実施例1と同様に分析した結果、Ni、Mn、Nb、Ca、W及びLiを含む複合酸化物上には、Bを含み、Wを含まない被覆層が形成されていることを確認した。この複合粒子を正極活物質として使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<比較例6>
 水に、比較例5で使用した複合酸化物を投入し、撹拌した後、この溶液を吸引ろ過した。その後、酸化タングステンを溶解した溶液(W濃度:0.06mol/L、pH:11)を投入し、再度吸引ろ過した。得られたろ過物と、酸化タングステンとを、モル比で1:0.001となるように混合し、この混合物を、減圧下で、180℃2時間乾燥することにより、複合粒子を得た。
 得られた複合粒子を実施例1と同様に分析した結果、Ni、Mn、Nb、Ca、W及びLiを含む複合酸化物上には、Wを含む中間層が形成され、中間層上には、Wを含む被覆層が形成されていることを確認した。この複合粒子を正極活物質として使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
[初回充放電時におけるガス発生量の測定]
 アルキメデス法にて、各実施例及び各比較例の非水電解質二次電池の体積を測定した。そして、環境温度25℃の下、各実施例及び各比較例の非水電解質二次電池を、0.5Cの定電流で、電圧が4.2Vになるまで定電圧充電した後、0.05Cに到達するまで定電圧充電した。その後、0.5Cの定電流で、電池電圧が2.5Vになるまで定電流放電した。そして、充放電後の各実施例及び各比較例の非水電解質二次電池の体積をアルキメデス法にて測定した。充放電後に測定した非水電解質二次電池の体積から充放電前に測定した非水電解質二次電池の体積を差し引くことで、初回充放電時におけるガス発生量を算出した。なお、アルキメデス法とは、測定対象物(本例では、非水電解質二次電池)を、媒液(例えば、蒸留水やアルコール等)に浸漬し、測定対象物が受ける浮力を測定することにより、該測定対象物の体積を求める方法である。
[電池の直流抵抗の測定]
 環境温度25℃の下、各実施例及び各比較例の二次電池を、0.5Cの定電流で、電圧が4.2Vになるまで定電圧充電した後、0.05Cに到達するまで定電圧充電した。その後、0.5Cの定電流で、電池電圧が2.5Vになるまで定電流放電した。そして、各実施例及び各比較例の二次電池を、0.5Cの定電流で、SOC50%まで充電した。このときの電圧をV0とした。次に、0.5Cの定電流で10秒間放電を行った。このときの電圧をV1とした。そして、以下の式から直流抵抗(DCIR)を求めた。
  DCIR=(V0-V1)/0.5It
 表1に、各実施例及び各比較例における初回充放電時におけるガス発生量及び電池の直流抵抗を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~2の非水電解質二次電池はいずれも、初回充放電時のガス発生量は少なく、また、電池の直流抵抗は低い値を示した。一方、比較例1~6の非水電解質二次電池は、初回充放電時のガス発生量が大きくなるか、或いは、電池の直流抵抗が大きくなるかして、電池の初回充放電時におけるガス発生量の抑制及び電池の直流抵抗の低減の両立を図ることはできなかった。したがって、Wを含む複合酸化物上に、Wを含まず、Ca、P及びBのうちの少なくともいずれか1種の元素を含む中間層を形成し、さらに、中間層上に、Wを含む被覆層を形成した正極活物質を使用することにより、電池の初回充放電時におけるガス発生量の抑制及び電池の直流抵抗の低減が可能となる。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 電池ケース、16 ケース本体、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 張り出し部、23 フィルタ、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット。

Claims (6)

  1.  Ni、Mn、Co、及びAlのうちの少なくともいずれか1種の元素と、Wと、Liとを含む複合酸化物と、
     前記複合酸化物上に形成された中間層であって、Wを含まず、Ca、P及びBのうちの少なくともいずれか1種の元素を含む中間層と、
     前記中間層上に形成された被覆層であって、Wを含む被覆層と、を有する、非水電解質二次電池用正極活物質。
  2.  前記複合酸化物は、一般式:Li1+xMa(1-z)Mb(式中、Maは、Ni、Mn、Co、及びAlのうちの少なくともいずれか1種であり、Mbは、Ti、Zr、Nb、Ta、Mo、Sb、Bi、Ca、Sr、Mg、Y、Sc、Vのうちの少なくともいずれか1種であり、x、y、zは、0.02<x<0.07、0.0005<y<0.01、0≦z<0.1)で表される、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記複合酸化物は、一般式:Li1+xNiMc(1-q-z)Mb(式中、Maは、Mn、Co、及びAlのうちの少なくともいずれか1種であり、Mbは、Ti、Zr、Nb、Ta、Mo、Sb、Bi、Ca、Sr、Mg、Y、Sc、Vのうちの少なくともいずれか1種であり、x、y、zは、0.02<x<0.07、0.7<q<0.95、0.0005<y<0.01、0≦z<0.1)で表される、請求項2に記載の非水電解質二次電池用正極活物質。
  4.  前記複合酸化物の総モル量に対する前記被覆層のWのモル量の割合は、0.05モル%~1モル%の範囲である、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極活物質。
  5.  前記中間層の厚みは5nm~200nmの範囲である、請求項1~4のいずれか1項に記載の非水電解質二次電池用正極活物質。
  6.  請求項1~5のいずれか1項に記載の非水電解質二次電池用正極活物質を有する正極を備える、非水電解質二次電池。
PCT/JP2022/045844 2022-02-28 2022-12-13 非水電解質二次電池用正極活物質及び非水電解質二次電池 WO2023162414A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029605 2022-02-28
JP2022029605 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023162414A1 true WO2023162414A1 (ja) 2023-08-31

Family

ID=87765477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045844 WO2023162414A1 (ja) 2022-02-28 2022-12-13 非水電解質二次電池用正極活物質及び非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2023162414A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895793A (zh) * 2017-10-23 2018-04-10 格林美(无锡)能源材料有限公司 一种钨掺杂硼化物包覆的锂电池正极材料及其制备方法
JP2020064858A (ja) * 2018-10-16 2020-04-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質前駆体、その製造方法、そこから形成されたリチウム二次電池用ニッケル系活物質、及びそれを含む正極を含んだリチウム二次電池
CN111430679A (zh) * 2019-11-27 2020-07-17 蜂巢能源科技有限公司 锂离子电池的正极材料及其制备方法
JP2020129481A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 リチウムイオン二次電池と活物質材料の製造方法
KR20210117987A (ko) * 2020-03-20 2021-09-29 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN113764633A (zh) * 2021-07-21 2021-12-07 广西师范大学 一种表面改性锂离子电池正极材料及其制备方法
CN113903918A (zh) * 2021-09-27 2022-01-07 蜂巢能源科技(马鞍山)有限公司 一种正极材料及其制备方法和锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895793A (zh) * 2017-10-23 2018-04-10 格林美(无锡)能源材料有限公司 一种钨掺杂硼化物包覆的锂电池正极材料及其制备方法
JP2020064858A (ja) * 2018-10-16 2020-04-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質前駆体、その製造方法、そこから形成されたリチウム二次電池用ニッケル系活物質、及びそれを含む正極を含んだリチウム二次電池
JP2020129481A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 リチウムイオン二次電池と活物質材料の製造方法
CN111430679A (zh) * 2019-11-27 2020-07-17 蜂巢能源科技有限公司 锂离子电池的正极材料及其制备方法
KR20210117987A (ko) * 2020-03-20 2021-09-29 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN113764633A (zh) * 2021-07-21 2021-12-07 广西师范大学 一种表面改性锂离子电池正极材料及其制备方法
CN113903918A (zh) * 2021-09-27 2022-01-07 蜂巢能源科技(马鞍山)有限公司 一种正极材料及其制备方法和锂离子电池

Similar Documents

Publication Publication Date Title
US20210104750A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN116547847A (zh) 非水电解质二次电池
US11626586B2 (en) Positive electrode material of lithium secondary battery, and lithium secondary battery using same
US20220166007A1 (en) Non-aqueous electrolyte secondary battery
CN112751019B (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
US20220285678A1 (en) Nonaqueous electrolyte secondary battery
JP7232814B2 (ja) 非水電解質二次電池
CN112640164A (zh) 非水电解质二次电池用负极活性物质、非水电解质二次电池用负极、以及非水电解质二次电池
US20230197948A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7320020B2 (ja) 非水電解液二次電池およびその製造方法
WO2021241078A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023162414A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
US20220271284A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN114206780A (zh) 非水电解质二次电池
CN115461892A (zh) 非水电解质二次电池用正极活性物质、及非水电解质二次电池
JP2016105358A (ja) 正極活物質及びそれを用いたリチウムイオン二次電池
CN112655102A (zh) 二次电池用浆料、二次电池用正极和二次电池
WO2023162993A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7320019B2 (ja) 非水電解液二次電池およびその製造方法
WO2024004578A1 (ja) 非水電解質二次電池
WO2022163531A1 (ja) 非水電解質二次電池用活物質、及び非水電解質二次電池
CN114667616B (zh) 二次电池用的正极活性物质和二次电池
WO2022113796A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2023120413A1 (ja) 二次電池用正極活物質、及び二次電池用正極活物質の製造方法
US20230290941A1 (en) Positive-electrode active material for nonaqueous-electrolyte secondary cell, and nonaqueous-electrolyte secondary cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928931

Country of ref document: EP

Kind code of ref document: A1