WO2023149435A1 - 樹脂組成物、成形体およびフィルム - Google Patents

樹脂組成物、成形体およびフィルム Download PDF

Info

Publication number
WO2023149435A1
WO2023149435A1 PCT/JP2023/003097 JP2023003097W WO2023149435A1 WO 2023149435 A1 WO2023149435 A1 WO 2023149435A1 JP 2023003097 W JP2023003097 W JP 2023003097W WO 2023149435 A1 WO2023149435 A1 WO 2023149435A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
bis
dianhydride
film
resin
Prior art date
Application number
PCT/JP2023/003097
Other languages
English (en)
French (fr)
Inventor
文康 石黒
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023149435A1 publication Critical patent/WO2023149435A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to resin compositions and molded articles such as films.
  • transparent polyimide Because transparent polyimide has transparency and high heat resistance, it is used for display substrates and cover films.
  • a normal polyimide film is obtained by coating a polyamic acid solution, which is a polyimide precursor, on a support in the form of a film, and subjecting it to a high temperature treatment to remove the solvent and perform thermal imidization at the same time.
  • the heating temperature for thermal imidization is high (for example, 300 ° C. or higher), and coloring (increase in yellowness) due to heating is likely to occur, making it difficult to apply to applications requiring high transparency such as cover films for displays. Have difficulty.
  • Patent Document 1 discloses that polyimides containing bis-trimellitic anhydride esters as tetracarboxylic dianhydride components are soluble in low-boiling solvents such as methylene chloride and have excellent transparency and mechanical strength. is described.
  • an object of the present invention is to provide a transparent film having high heat resistance and excellent transparency and light resistance, and a resin composition used for producing the same.
  • the present inventors have found that polyimides having a specific chemical structure and acetylcellulose-based resins show compatibility, and by using a resin composition in which these are mixed, a highly transparent film can be produced without impairing the excellent heat resistance of polyimides. We have found that it is possible, and have solved the above problems.
  • One aspect of the present invention relates to a film and a resin composition containing a polyimide resin and an acetylcellulose resin.
  • the resin composition may contain a polyimide resin and an acetylcellulose resin in a weight ratio ranging from 98:2 to 2:98.
  • the polyimide contains an alicyclic tetracarboxylic dianhydride as the tetracarboxylic dianhydride component, an alicyclic tetracarboxylic dianhydride as the tetracarboxylic dianhydride component, and a fluoroalkyl-substituted benzidine as the diamine component. including.
  • the amount of the alicyclic tetracarboxylic dianhydride relative to the total amount of the tetracarboxylic dianhydride component of the polyimide is preferably 10 to 100 mol%.
  • the alicyclic tetracarboxylic dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4 ,5-cyclohexanetetracarboxylic dianhydride and 1,1′-bicyclohexane-3,3′,4,4′tetracarboxylic acid-3,4:3′,4′-dianhydride are preferred.
  • the amount of the fluoroalkyl-substituted benzidine with respect to the total amount of the diamine component of the polyimide is preferably 50 mol% or more.
  • perfluoroalkyl-substituted benzidine such as 2,2'-bis(trifluoromethyl)benzidine is preferred.
  • the degree of acetyl substitution of the acetylcellulose-based resin may be 2.4 or more.
  • the film of one embodiment of the present invention has a thickness of 5 ⁇ m or more and 300 ⁇ m or less, a total light transmittance of 85% or more, a haze of 10% or less, a yellowness of 5.0 or less, and a 1% weight loss temperature of 275 ° C. That's it.
  • the polyimide resin and acetylcellulose resin contained in the resin composition show compatibility, a transparent film with a small haze can be obtained.
  • the polyimide resin and the acetylcellulose resin show compatibility, coloring can be reduced while maintaining the excellent heat resistance of the polyimide, and a transparent film suitable for the cover film of a display can be produced.
  • One embodiment of the present invention is a compatible resin composition containing a polyimide resin and an acetylcellulose resin.
  • Polyimide is obtained by dehydrating and cyclodehydrating polyamic acid obtained by addition polymerization of tetracarboxylic dianhydride (hereinafter sometimes referred to as "acid dianhydride”) and diamine. That is, polyimide is a polycondensation product of tetracarboxylic dianhydride and diamine, and has an acid dianhydride-derived structure (acid dianhydride component) and a diamine-derived structure (diamine component).
  • the polyimide used in the present embodiment is soluble in an organic solvent, and it is particularly preferred that the polyimide is soluble in an organic solvent (methylene chloride, etc.) capable of dissolving the acetylcellulose resin.
  • organic solvent methylene chloride, etc.
  • the polyimide used in this embodiment contains an alicyclic tetracarboxylic dianhydride as an acid dianhydride component.
  • the alicyclic structure of the acid dianhydride component tends to improve the compatibility between the polyimide resin and the acetylcellulose resin.
  • the alicyclic tetracarboxylic dianhydride should just have at least one alicyclic structure, and may have both an alicyclic ring and an aromatic ring in one molecule.
  • the alicyclic ring may be polycyclic and may have a spiro structure.
  • the alicyclic tetracarboxylic dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,3-dimethyl cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4, 5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, meso-butane-1,2,3,4-tetracarboxylic dianhydride, 1,1′- Bicyclohexane-3,3',4,4'tetracarboxylic acid-3,4:3',4'-dianhydride, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2′′-
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride CBDA
  • 1,2,3,4- Cyclopentanetetracarboxylic dianhydride CPDA
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride H-PMDA
  • 1,1'-bicyclohexane-3,3',4,4' Tetracarboxylic acid-3,4:3′,4′-dianhydride H-PMDA or CBDA is preferred, with H-PMDA or CBDA being particularly preferred.
  • the content of the alicyclic tetracarboxylic dianhydride relative to the total amount of 100 mol% of the acid dianhydride component is preferably 10 mol% or more, and 20 mol%.
  • the above is more preferable, and 30 mol% or more is more preferable, and it may be 35 mol% or more, 40 mol% or more, 45 mol% or more, 50 mol% or more, 55 mol% or more, or 60 mol% or more.
  • Polyimides with a large proportion of alicyclic tetracarboxylic dianhydride in the acid dianhydride component tend to absorb less light in the short wavelength to ultraviolet region of visible light, have excellent transparency, and have excellent light resistance.
  • the polyimide resin exhibits high solubility in organic solvents even when the proportion of the alicyclic tetracarboxylic dianhydride is large. , tend to be excellent in compatibility with acetyl cellulose resins.
  • the polyimide may contain an acid dianhydride other than the alicyclic tetracarboxylic dianhydride as the acid dianhydride component.
  • an acid dianhydride other than the alicyclic tetracarboxylic dianhydride as the acid dianhydride component.
  • fluorine-containing aromatic tetracarboxylic acids are used as acid dianhydride components. It may contain one or more selected from the group consisting of acid dianhydrides, bis(trimellitic anhydride) esters and diphthalic anhydrides having an ether bond.
  • Fluorine-containing aromatic tetracarboxylic dianhydrides include 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2 -Bis ⁇ 4-[4-(1,2-dicarboxy)phenoxy]phenyl ⁇ -1,1,1,3,3,3-hexafluoropropane dianhydride and the like.
  • a bis(trimellitic anhydride) ester is represented by the following general formula (1).
  • X in general formula (1) is an arbitrary divalent organic group, and a carboxy group and a carbon atom of X are bonded at both ends of X.
  • the carbon atoms attached to the carboxy group may form a ring structure.
  • Specific examples of the divalent organic group X include the following (A) to (K).
  • R 1 in formula (A) is a fluorine atom, an alkyl group having 1 to 20 carbon atoms, or a fluoroalkyl group having 1 to 20 carbon atoms, and m is an integer of 0 to 4.
  • the group represented by formula (A) is a group obtained by removing two hydroxyl groups from a hydroquinone derivative which may have a substituent on the benzene ring.
  • Hydroquinones having a substituent on the benzene ring include tert-butylhydroquinone, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone and the like.
  • the bis(trimellitic anhydride) ester is p-phenylene bis( trimellitate anhydride) (abbreviation: TAHQ).
  • R 2 in formula (B) is a fluorine atom, an alkyl group having 1 to 20 carbon atoms, or a fluoroalkyl group having 1 to 20 carbon atoms, and n is an integer of 0-4.
  • the group represented by formula (B) is a group obtained by removing two hydroxyl groups from biphenol which may have a substituent on the benzene ring.
  • Biphenol derivatives having a substituent on the benzene ring include 2,2′-dimethylbiphenyl-4,4′-diol, 3,3′-dimethylbiphenyl-4,4′-diol, 3,3′,5, 5'-tetramethylbiphenyl-4,4'-diol, 2,2',3,3',5,5'-hexamethylbiphenyl-4,4'-diol and the like.
  • the group represented by formula (C) is a group obtained by removing two hydroxyl groups from 4,4'-isopropylidenediphenol (bisphenol A).
  • the group represented by formula (D) is a group obtained by removing two hydroxyl groups from resorcinol.
  • p in formula (E) is an integer from 1 to 10.
  • the group represented by formula (E) is a straight-chain diol having 1 to 10 carbon atoms from which two hydroxyl groups have been removed. Examples of linear diols having 1 to 10 carbon atoms include ethylene glycol and 1,4-butanediol.
  • the group represented by formula (F) is a group obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol.
  • R 3 in formula (G) is a fluorine atom, an alkyl group having 1 to 20 carbon atoms, or a fluoroalkyl group having 1 to 20 carbon atoms, and q is an integer of 0-4.
  • the group represented by formula (G) is a group obtained by removing two hydroxyl groups from bisphenolfluorene which may have a substituent on the benzene ring having a phenolic hydroxyl group. Examples of the bisphenol fluorene derivative having a substituent on the benzene ring having a phenolic hydroxyl group include biscresol fluorene.
  • the bis(trimellitic anhydride) ester is preferably an aromatic ester.
  • X is preferably (A), (B), (C), (D), (G), (H), or (I).
  • (A) to (D) are preferred, and (B) a group having a biphenyl skeleton is particularly preferred.
  • X is a group represented by the general formula (B)
  • X is 2,2',3,3' represented by the following formula (B1) , 5,5′-hexamethylbiphenyl-4,4′-diyl.
  • the acid dianhydride in which X in the general formula (1) is a group represented by the formula (B1) is bis(1,3-dioxo-1,3-dihydroisobenzofuran represented by the following formula (3) -5-carboxylic acid)-2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diyl (abbreviation: TAHMBP).
  • Diphthalic anhydrides having an ether bond include 3,4'-oxydiphthalic anhydride, 4,4'-oxydiphthalic anhydride, and 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride. things, etc. 4'-(4,4'-Isopropylidenediphenoxy)diphthalic anhydride (BPADA) is particularly preferable from the viewpoint of solubility of the polyimide resin and compatibility with the acetylcellulose resin.
  • BPADA 4,4'-(4,4'-Isopropylidenediphenoxy)diphthalic anhydride
  • the total content of tetracarboxylic dianhydride, bis(trimellitic anhydride) ester and diphthalic anhydride having an ether bond is preferably 50 mol% or more, more preferably 60 mol% or more, and 65 mol% or more. is more preferable, and may be 70 mol% or more, 75 mol% or more, 80 mol% or more, 85 mol% or more, 90 mol% or more, or 95 mol% or more.
  • Polyimide contains acid dianhydride components other than alicyclic tetracarboxylic dianhydride, fluorine-containing aromatic tetracarboxylic dianhydride, bis(trimellitic anhydride) ester and diphthalic anhydride having an ether bond. It may contain an acid dianhydride.
  • acid dianhydrides other than the above include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, and 2,2′.
  • the polyimide used in this embodiment contains a fluoroalkyl-substituted benzidine as a diamine-derived structure. Having a fluoroalkyl-substituted benzidine in the diamine-derived structure tends to achieve both the solubility and transparency of the polyimide resin.
  • fluoroalkyl-substituted benzidines examples include 2-(trifluoromethyl)benzidine, 3-(trifluoromethyl)benzidine, 2,3-bis(trifluoromethyl)benzidine, 2,5-bis(trifluoromethyl)benzidine , 2,6-bis(trifluoromethyl)benzidine, 2,3,5-tris(trifluoromethyl)benzidine, 2,3,6-tris(trifluoromethyl)benzidine, 2,3,5,6-tetrakis (trifluoromethyl)benzidine, 2,2′-bis(trifluoromethyl)benzidine, 3,3′-bis(trifluoromethyl)benzidine, 2,3′-bis(trifluoromethyl)benzidine, 2,2′ , 3-bis (trifluoromethyl) benzidine, 2,3,3'-tris (trifluoromethyl) benzidine, 2,2',5-tris (trifluoromethyl) benzidine, 2,2',6-tris ( trifluoromethyl)benzidine, 2,
  • fluoroalkyl-substituted benzidine having a fluoroalkyl group at the 2-position of biphenyl is preferred, and 2,2'-bis(trifluoromethyl)benzidine (hereinafter referred to as "TFMB”) is particularly preferred.
  • TFMB 2,2'-bis(trifluoromethyl)benzidine
  • the content of the fluoroalkyl-substituted benzidine relative to 100 mol% of the total amount of the diamine component is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, 80 mol% or more, 85 mol% or more, or 90 mol% or more. It may be mol% or more.
  • a high content of fluoroalkyl-substituted benzidine tends to suppress coloration of the film and increase heat resistance.
  • the polyimide may contain a diamine other than fluoroalkyl-substituted benzidine as a diamine component.
  • diamines other than fluoroalkyl-substituted benzidine include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether.
  • diaminodiphenylsulfone as the diamine in addition to the fluoroalkyl-substituted benzidine
  • solubility and transparency of the polyimide resin in solvents may be improved.
  • diaminodiphenylsulfones 3,3'-diaminodiphenylsulfone (3,3'-DDS) and 4,4'-diaminodiphenylsulfone (4,4'-DDS) are preferred. 3,3'-DDS and 4,4'-DDS may be used in combination.
  • the content of diaminodiphenylsulfone relative to 100 mol% of the total amount of diamine may be 1 to 40 mol%, 3 to 30 mol%, or 5 to 25 mol%.
  • a polyamic acid is obtained as a polyimide precursor by reacting an acid dianhydride and a diamine, and a polyimide is obtained by cyclodehydration (imidization) of the polyamic acid.
  • a polyimide is obtained by cyclodehydration (imidization) of the polyamic acid.
  • the composition of the polyimide that is, the types and ratios of the acid dianhydride and the diamine
  • the polyimide has transparency and solubility in organic solvents, as well as compatibility with the acetyl cellulose resin. indicates
  • the method for preparing polyamic acid is not particularly limited, and any known method can be applied.
  • acid dianhydride and diamine are dissolved in approximately equimolar amounts (molar ratio of 95:100 to 105:100) in an organic solvent and stirred to obtain a polyamic acid solution.
  • concentration of the polyamic acid solution is usually 5-35% by weight, preferably 10-30% by weight. When the concentration is within this range, the polyamic acid obtained by polymerization has an appropriate molecular weight and the polyamic acid solution has an appropriate viscosity.
  • a method of adding an acid dianhydride to a diamine is preferable in order to suppress the ring opening of the acid dianhydride.
  • they may be added at once or may be added in multiple batches.
  • Various physical properties of the polyimide can also be controlled by adjusting the addition order of the monomers.
  • the organic solvent used for polyamic acid polymerization is not particularly limited as long as it does not react with diamines and acid dianhydrides and can dissolve polyamic acid.
  • organic solvents include urea-based solvents such as methylurea and N,N-dimethylethylurea; sulfoxide or sulfone-based solvents such as dimethylsulfoxide, diphenylsulfone, and tetramethylsulfone; N,N-dimethylacetamide (DMAc); N-dimethylformamide (DMF), N,N'-diethylacetamide, N-methyl-2-pyrrolidone (NMP), ⁇ -butyrolactone, amide solvents such as hexamethylphosphoric triamide, halogenation such as chloroform and methylene chloride Examples include alkyl solvents, aromatic hydrocarbon solvents such as benzene and toluene, and ether solvents such as tetrahydrofuran, 1,
  • Polyimide is obtained by dehydration cyclization of polyamic acid.
  • a method for preparing a polyimide from a polyamic acid solution there is a method in which a dehydrating agent, an imidization catalyst, etc. are added to the polyamic acid solution and imidization proceeds in the solution.
  • the polyamic acid solution may be heated to accelerate imidization.
  • the polyimide resin is precipitated as a solid matter.
  • a solvent suitable for film formation such as a low boiling point solvent, can be applied when preparing a solution for producing a film.
  • the molecular weight of the polyimide (polyethylene oxide equivalent weight average molecular weight measured by gel filtration chromatography (GPC)) is preferably 10,000 to 300,000, more preferably 20,000 to 250,000, and 40,000 to 200,000 is more preferred. If the molecular weight is too small, the strength of the film may be insufficient. If the molecular weight is too large, the compatibility with the cellulose acetate resin may be poor.
  • the polyimide is preferably soluble in low boiling point solvents such as ketone solvents and halogenated alkyl solvents. That polyimide exhibits solubility in a solvent means that it dissolves at a concentration of 5% by weight or more. In one embodiment, the polyimide exhibits solubility in methylene chloride. Since methylene chloride has a low boiling point and the residual solvent can be easily removed during film production, the use of a polyimide resin soluble in methylene chloride is expected to improve film productivity.
  • polyimide preferably has low reactivity.
  • the acid value of polyimide is preferably 0.4 mmol/g or less, more preferably 0.3 mmol/g or less, and even more preferably 0.2 mmol/g or less.
  • the acid value of the polyimide may be 0.1 mmol/g or less, 0.05 mmol/g or less, or 0.03 mmol/g or less.
  • the polyimide preferably has a high imidization rate. A low acid value tends to increase the stability of the polyimide and improve the compatibility with the acetylcellulose resin.
  • acetylcellulose-based resin diacetylcellulose or triacetylcellulose having an acetyl group substitution degree of 2.0 to 3.0 is preferable.
  • the degree of acetyl substitution of acetylcellulose is preferably 2.4 or more, and may be 2.5 or more, 2.6 or more, 2.7 or more, or 2.8 or more. good.
  • the acetylcellulose-based resin may have a substituent other than the acetyl group as long as the degree of substitution of the acetyl group is within the above range.
  • substituents other than the acetyl group include acyl groups such as propionyl group and butyryl group, and alkoxy groups such as methoxy group and ethoxy group.
  • the glass transition temperature of the acetylcellulose resin is preferably 150°C or higher, and may be 160°C or higher or 170°C or higher.
  • a resin composition is prepared by mixing the polyimide resin and the acetylcellulose resin. Since the polyimide resin and the acetylcellulose-based resin can exhibit compatibility at any ratio, the ratio of the polyimide resin and the acetylcellulose-based resin in the resin composition is not particularly limited.
  • the mixing ratio (weight ratio) of the polyimide resin and the acetylcellulose resin may be 98:2-2:98, 95:5-10:90, or 90:10-15:85. There is a tendency that the higher the proportion of the polyimide resin, the better the heat resistance.
  • the ratio of the acetylcellulose resin to the total of the polyimide and the acetylcellulose resin is preferably 10% by weight or more, more preferably 15% by weight. % or more, 20 wt % or more, 25 wt % or more, 30 wt % or more, 35 wt % or more, 40 wt % or more, 45 wt % or more, or 50 wt % or more.
  • the resin composition may be a mixed solution containing a polyimide resin and an acetylcellulose resin.
  • the method of mixing the resins is not particularly limited, and the resins may be mixed in a solid state or mixed in a liquid to form a mixed solution.
  • a polyimide resin solution and an acetylcellulose-based resin solution may be separately prepared and mixed to prepare a mixed solution of a polyimide resin and an acetylcellulose-based resin.
  • the solvent for the solution containing the polyimide resin and the acetylcellulose resin is not particularly limited as long as it exhibits solubility in both the polyimide resin and the acetylcellulose resin.
  • solvents include amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone; ether solvents such as 1,4-dioxane and dioxolane; methylene chloride and chloroform. and halogenated alkyl solvents such as 1,1,2,2-tetrachloroethane.
  • halogenated alkyl solvents are preferable because they have excellent solubility in both polyimide resins and acetylcellulose resins, have a low boiling point, and are easy to remove residual solvents during film production.
  • the resin composition may be blended with organic or inorganic low-molecular-weight compounds, high-molecular-weight compounds (eg, epoxy resin), and the like.
  • the resin composition may contain flame retardants, ultraviolet absorbers, cross-linking agents, dyes, pigments, surfactants, leveling agents, plasticizers, fine particles, sensitizers and the like.
  • the fine particles include organic fine particles such as polystyrene and polytetrafluoroethylene, inorganic fine particles such as colloidal silica, carbon, and layered silicate, and the like, and may have a porous or hollow structure.
  • Fiber reinforcements include carbon fibers, glass fibers, aramid fibers, and the like.
  • Molding methods include melt methods such as injection molding, transfer molding, press molding, blow molding, inflation molding, calender molding, and melt extrusion molding.
  • a resin composition containing polyimide and an acetylcellulose resin tends to have a lower melt viscosity than polyimide alone, and is excellent in moldability in injection molding, transfer molding, press molding, melt extrusion molding, and the like.
  • the molded body is a film.
  • the film forming method may be either a melt method or a solution method, but the solution method is preferred from the viewpoint of producing a film excellent in transparency and uniformity.
  • a film is obtained by coating a support with a solution containing the polyimide resin and the acetylcellulose resin and removing the solvent by drying.
  • a method for applying the resin solution onto the support a known method using a bar coater, a comma coater, or the like can be applied.
  • a glass substrate, a metal substrate such as SUS, a metal drum, a metal belt, a plastic film, or the like can be used. From the viewpoint of improving productivity, it is preferable to use an endless support such as a metal drum, a metal belt, or a long plastic film as the support and to produce the film by roll-to-roll.
  • a plastic film is used as the support, a material that does not dissolve in the solvent of the film-forming dope may be appropriately selected.
  • the heating temperature is not particularly limited as long as the solvent can be removed and the coloration of the resulting film can be suppressed.
  • the heating temperature may be increased stepwise.
  • the resin film may be peeled off from the support and dried after drying has progressed to some extent. Heating under reduced pressure may be used to facilitate solvent removal.
  • Acetylcellulose-based films may have low toughness, but the use of a compatible system of polyimide and acetylcellulose-based resin may improve the strength of the film.
  • the film may be stretched in one direction or in multiple directions for the purpose of improving the mechanical strength of the film. When the film is stretched, the polymer chains are oriented in the stretching direction, so that the strength of the film in the in-plane direction is improved, and the occurrence of cracks and splits in the film tends to be suppressed.
  • the thickness of the film is not particularly limited, and may be set appropriately according to the application.
  • the thickness of the film is, for example, 5-300 ⁇ m. From the viewpoint of achieving both self-supporting property and flexibility and making a highly transparent film, the thickness of the film is preferably 10 ⁇ m to 100 ⁇ m, and may be 30 ⁇ m to 90 ⁇ m, 40 ⁇ m to 85 ⁇ m, or 50 ⁇ m to 80 ⁇ m. .
  • the thickness of the film used as a cover film for displays is preferably 10 ⁇ m or more. When the film is stretched, the thickness after stretching is preferably within the above range.
  • the haze of the film is preferably 10% or less, more preferably 5% or less, even more preferably 4% or less, and may be 3.5% or less, 3% or less, 2% or less, or 1% or less.
  • the resin composition obtained by mixing polyimide and acetylcellulose resin preferably has a haze of 10% or less when a film having a thickness of 10 ⁇ m is produced.
  • the total light transmittance (TT) of the film is preferably 85% or higher, more preferably 87% or higher, even more preferably 89% or higher, particularly preferably 90% or higher, and may be 91% or higher.
  • the resin composition obtained by mixing polyimide and acetylcellulose resin preferably has a TT of 85% or more when a film having a thickness of 10 ⁇ m is produced.
  • the transmittance of the film at 400 nm is preferably 50% or higher, more preferably 70% or higher, even more preferably 80% or higher, particularly preferably 85% or higher, and may be 90% or higher.
  • the yellowness index (YI) of the film is preferably 5.0 or less, and may be 2.0 or less or 1.0 or less.
  • YI yellowness index
  • the resin composition obtained by mixing polyimide and acetylcellulose resin preferably has a YI of 5.0 or less when a film having a thickness of 10 ⁇ m is produced.
  • the film has a small increase in yellowness ⁇ YI in a light resistance test.
  • the increase in yellowness ⁇ YI of the film after a light resistance test in which the film is irradiated with ultraviolet light at an irradiance of 530 W/m 2 and a black panel temperature of 63° C. with a cumulative irradiation amount of 40.0 MJ/m 2 is preferably 6.0 or less. It is more preferably 5.0 or less, and may be 4.0 or less, 3.0 or less, 2.0 or less, 1.5 or less, or 1.0 or less.
  • the yellowness index YI of the film after the light resistance test is preferably 8.0 or less, more preferably 7.0 or less, 6.0 or less, 5.0 or less, 4.0 or less, 3.0 or less, 2.0 or less. It may be 0 or less or 1.0 or less.
  • the YI of the film tends to be smaller than in the case of polyimide resin alone, and ⁇ YI also tends to be smaller. Also, the larger the ratio of the alicyclic acid dianhydride in the acid dianhydride component of the polyimide, the smaller the YI of the film and the smaller the ⁇ YI.
  • the 1% weight loss temperature (Td1) of the film is preferably 275°C or higher, more preferably 280°C or higher, even more preferably 290°C or higher, and may be 300°C or higher.
  • the 5% weight loss temperature (Td5) of the film is preferably 320°C or higher, more preferably 330°C or higher, even more preferably 340°C or higher, and may be 345°C or higher.
  • a film formed from a resin composition containing polyimide and an acetylcellulose resin is less colored and highly transparent, so it is suitable for use as a display material.
  • films with high mechanical strength can be applied to surface members such as display cover windows.
  • the film of the present invention may be provided with an antistatic layer, an easy-adhesion layer, a hard coat layer, an antireflection layer, and the like on the surface.
  • IPA 2-propyl alcohol
  • ⁇ Light resistance> Using a fade meter M6T manufactured by Suga Test Instruments Co., Ltd., a light resistance test was performed by irradiating until the cumulative irradiation dose reached 40.0 MJ/m 2 under the conditions of an irradiance of 530 W/m 2 and a black panel temperature of 63°C. The YI of the film before and after the light resistance test was measured, and the YI increment ⁇ YI after the weather resistance test was transferred to three types.
  • a 1% weight loss temperature (Td1) and a 5% weight loss temperature (Td5) were measured using a simultaneous differential thermal thermogravimetry device (“STA7200” manufactured by Hitachi High-Tech Science). The measurement was performed by weighing 10 mg of the film and increasing the temperature from 30° C. to 400° C. at 10° C./min. Taking the weight at 200° C. as 100%, the temperature at which the weight first fell below 99% was Td1, and the temperature at which the weight first fell below 95% was Td5.
  • Table 1 shows the compositions of the resins of Examples 1 to 3, Comparative Example 1 and Reference Example 4 (the composition of the polyimide and the mixing ratio with the triacetyl cellulose resin) and the evaluation results of the films.
  • the polyimide film of Reference Example 1 which was produced using only the same polyimide resin as that used in Example 1, had a total light transmittance (TT) of 91.7%, whereas the polyimide resin and triacetyl
  • the film of Example 1 which was produced using the composition containing the cellulose resin at a weight ratio of 50:50, had a TT of 92.0% and was excellent in transparency.
  • the polyimide film of Reference Example 1 had a yellowness increase ⁇ YI of 1.4 after the weather resistance test, while the film of Example 1 had a ⁇ YI of 0.4. It can be seen that the film of No. 1 is excellent in light resistance in addition to transparency.
  • the TT of the polyimide film of Reference Example 2 was 91.5%, while the TT of the film of Example 2 was 91.7%.
  • the TT of the polyimide film of Reference Example 3 was 90.7%, while the TT of the film of Example 3 was 91.2%.
  • the ⁇ YI of the polyimide film of Reference Example 2 was 3.6%, while the ⁇ YI of the film of Example 2 was 1.7.
  • the ⁇ YI of the polyimide film of Reference Example 3 was 12.3%, while the ⁇ YI of the film of Example 3 was 5.6. From these results, it can be seen that in Examples 2 and 3 as well, the compatible resin composition of polyimide and acetylcellulose-based resin has superior light resistance to polyimide alone.
  • the films of Examples 1 to 3 had higher Td1 and Td5 than the triacetyl cellulose film of Reference Example 4, and had excellent heat resistance.
  • Comparative Example 1 in which a polyimide containing no alicyclic tetracarboxylic dianhydride was used as the tetracarboxylic dianhydride component, the compatibility between the polyimide and triacetyl cellulose was low, resulting in a significant increase in haze.
  • a polyimide containing an alicyclic tetracarboxylic dianhydride as a tetracarboxylic dianhydride component exhibits compatibility with an acetylcellulose resin, and by using a resin composition in which these are mixed, It can be seen that a film having high transparency and excellent light resistance and heat resistance can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

樹脂組成物は、ポリイミドとアクリル系樹脂を含み、ポリイミドは、テトラカルボン酸二無水物成分として脂環式テトラカルボン酸二無水物を含み、ジアミン成分としてフルオロアルキル置換ベンジジンを含む。ポリイミドのテトラカルボン酸二無水物成分全量に対する脂環式テトラカルボン酸二無水物の量は、10~100モル%であってもよい。アセチルセルロース系樹脂のアセチル置換度は、2.4以上であってもよい。樹脂組成物は、ポリイミドとアセチルセルロース系樹脂を、98:2~2:98の範囲の重量比で含むものでもよい。

Description

樹脂組成物、成形体およびフィルム
 本発明は、樹脂組成物、およびフィルム等の成形体に関する。
 透明ポリイミドは、透明性と高い耐熱性を有することから、ディスプレイ用基板やカバーフィルム等に用いられている。通常のポリイミドフィルムは、ポリイミド前駆体であるポリアミド酸溶液を支持体上に膜状に塗布し、高温処理して、溶媒除去と同時に熱イミド化を行うことにより得られる。しかしながら、熱イミド化のための加熱温度は高く(例えば300℃以上)、加熱による着色(黄色度の上昇)が生じやすく、ディスプレイ用カバーフィルム等の高い透明性が要求される用途への適用が困難である。
 高い透明性を有するポリイミドフィルムの製造方法として、有機溶媒に可溶であり、フィルム化後の高温でのイミド化を必要としないポリイミド樹脂を用いる方法が提案されている。例えば、特許文献1には、テトラカルボン酸二無水物成分としてビス無水トリメリット酸エステル類を含むポリイミドが、塩化メチレン等の低沸点溶媒に可溶であり、かつ透明性および機械強度に優れることが記載されている。
国際公開第2020/004236号
 透明ポリイミドは、汎用の透明樹脂に比べて耐熱性に優れるものの、ディスプレイ用カバーフィルム等に用いる場合には、より高い透明性が要求されている。特許文献1の透明ポリイミドは、イミド化工程での着色は生じないものの、汎用樹脂に比べると黄色度が高い。また、特許文献1の透明ポリイミドは紫外線に曝されると黄変し、黄色度が高くなるとの課題がある。かかる課題に鑑み、本発明は、耐熱性が高く、かつ透明性および耐光性に優れる透明フィルム、およびその作製に用いられる樹脂組成物の提供を目的とする。
 本発明者らは、特定の化学構造を有するポリイミドとアセチルセルロース系列樹脂が相溶性を示し、これらを混合した樹脂組成物により、ポリイミドの優れた耐熱性を損なうことなく透明性の高いフィルムを作製可能であることを見出し、上記課題を解決するに至った。
 本発明の一態様は、ポリイミド樹脂とアセチルセルロース系樹脂とを含むフィルムおよび樹脂組成物に関する。樹脂組成物は、ポリイミド樹脂とアセチルセルロース系樹脂とを、98:2~2:98の範囲の重量比で含むものであってもよい。
 ポリイミドは、テトラカルボン酸二無水物成分として脂環式テトラカルボン酸二無水物を含み、テトラカルボン酸二無水物成分として脂環式テトラカルボン酸二無水物を含み、ジアミン成分としてフルオロアルキル置換ベンジジンを含む。
 ポリイミドのテトラカルボン酸二無水物成分全量に対する脂環式テトラカルボン酸二無水物の量は、10~100モル%が好ましい。脂環式テトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、および1,1’-ビシクロヘキサン-3,3’,4,4’テトラカルボン酸-3,4:3’,4’-二無水物等が好ましい。
 前記ポリイミドのジアミン成分全量に対するフルオロアルキル置換ベンジジンの量は、50モル%以上が好ましい。フルオロアルキル置換ベンジジンとしては、2,2’-ビス(トリフルオロメチル)ベンジジン等のパーフルオロアルキル置換ベンジジンが好ましい。
 アセチルセルロース系樹脂のアセチル置換度は、2.4以上であってもよい。
 本発明の一実施形態のフィルムは、厚みが5μm以上300μm以下であり、全光線透過率が85%以上、ヘイズが10%以下、黄色度が5.0以下、1%重量減少温度が275℃以上である。
 樹脂組成物に含まれるポリイミド樹脂とアセチルセルロース系樹脂が相溶性を示すため、ヘイズが小さい透明フィルムが得られる。また、ポリイミド樹脂とアセチルセルロース系樹脂が相溶性を示すため、ポリイミドの優れた耐熱性を保持したまま、着色を低減可能であり、ディスプレイのカバーフィルム等に適した透明フィルムを作製できる。
[樹脂組成物]
 本発明の一実施形態は、ポリイミド樹脂とアセチルセルロース系樹脂とを含む相溶系の樹脂組成物である。
<ポリイミド>
 ポリイミドは、テトラカルボン酸二無水物(以下、「酸二無水物」と記載する場合がある)とジアミンとの付加重合により得られるポリアミド酸を脱水環化することにより得られる。すなわち、ポリイミドは、テトラカルボン酸二無水物とジアミンとの重縮合物であり、酸二無水物由来構造(酸二無水物成分)とジアミン由来構造(ジアミン成分)とを有する。
 本実施形態で用いるポリイミドは、有機溶媒に可溶であり、特に、アセチルセルロース樹脂を溶解可能である有機溶媒(塩化メチレン等)に対してポリイミドが可溶であることが好ましい。
(酸二無水物)
 本実施形態で用いるポリイミドは、酸二無水物成分として、脂環式テトラカルボン酸二無水物を含む。酸二無水物成分が脂環構造を有することにより、ポリイミド樹脂とアセチルセルロース系樹脂との相溶性が向上する傾向がある。脂環式テトラカルボン酸二無水物は、少なくとも1つの脂環構造を有していればよく、1分子中に脂環と芳香環の両方を有していてもよい。脂環は多環でもよく、スピロ構造を有していてもよい。
 脂環式テトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,3-ジメチルシクロブタン-1,2,3,4-テトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、メソ-ブタン-1,2,3,4-テトラカルボン酸二無水物、1,1’-ビシクロヘキサン-3,3’,4,4’テトラカルボン酸-3,4:3’,4’-二無水物、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2”-ノルボルナン-5,5”,6,6”-テトラカルボン酸二無水物、2,2’-ビノルボルナン-5,5’,6,6’テトラカルボン酸二無水物、3-(カルボキシメチル)-1,2,4-シクロペンタントリカルボン酸1,4:2,3-二無水物、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、シクロヘキサン-1,4-ジイルビス(メチレン)ビス(1,3-ジオキソ-1,3-ジハイドロイソベンゾフラン-5-カルボキシレート)、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、5,5’-[シクロヘキシリデンビス(4,1-フェニレンオキシ)]ビス-1,3-イソベンゾフランジオン、5-イソベンゾフランカルボン酸,1,3-ジハイドロ-1,3-ジオキソ-,5,5’-[1,4-シクロヘキサンジイルビス(メチレン)]エステル、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸2,3:5,6-二無水物、デカハイドロ-1,4,5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸二無水物、トリシクロ[6.4.0.0(2,7)]ドデカン-1,8:2,7-テトラカルボン酸二無水物、オクタヒドロ-1H,3H,8H,10H-ビフェニレノ[4a,4b-c:8a,8b-c’]ジフラン-1,3,8,10-テトロン、エチレングリコールビス(水素化トリメリット酸無水物)エステル、デカハイドロ[2]ベンゾピラノ[6,5,4,-def][2]ベンゾピラン-1,3、6,8-テトロン、等が挙げられる。
 脂環式テトラカルボン酸二無水物の中でも、ポリイミドの透明性および機械強度の観点から、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、1,2,3,4-シクロペンタンテトラカルボン酸二無水物(CPDA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)または1,1’-ビシクロヘキサン-3,3’,4,4’テトラカルボン酸-3,4:3’,4’-二無水物(H-BPDA)が好ましいく、中でもH-PMDAまたはCBDAが特に好ましい。
 ポリイミド樹脂とアセチルセルロース系樹脂との相溶性を高める観点から、酸二無水物成分全量100モル%に対する脂環式テトラカルボン酸二無水物の含有量は、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がさらに好ましく、35モル%以上、40モル%以上、45モル%以上、50モル%以上、55モル%以上または60モル%以上であってもよい。
 酸二無水物成分における脂環式テトラカルボン酸二無水物の割合が大きいポリイミドは、可視光短波長から紫外領域の光の吸収が少なく、透明性に優れるとともに、耐光性にも優れる傾向がある。特に、脂環式テトラカルボン酸二無水物としてH-PMDAを用いる場合は、脂環式テトラカルボン酸二無水物の割合が大きい場合でも、ポリイミド樹脂が有機溶媒に対して高い溶解性を示すとともに、アセチルセルロース系樹脂との相溶性に優れる傾向がある。
 ポリイミドは、酸二無水物成分として、脂環式テトラカルボン酸二無水物以外の酸二無水物を含んでいてもよい。例えば、ポリイミド樹脂の有機溶媒に対する溶解性やアセチルセルロース系樹脂との相溶性向上の観点から、酸二無水物成分として、脂環式テトラカルボン酸二無水物に加えて、フッ素含有芳香族テトラカルボン酸二無水物、ビス(無水トリメリット酸)エステルおよびエーテル結合を有するジフタル酸無水物からなる群から選択される1種以上を含有していてもよい。
 フッ素含有芳香族テトラカルボン酸二無水物としては、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物等が挙げられる。
 ビス(無水トリメリット酸)エステルは、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)におけるXは、任意の2価の有機基であり、Xの両端において、カルボキシ基とXの炭素原子が結合している。カルボキシ基に結合する炭素原子は、環構造を形成していてもよい。2価の有機基Xの具体例としては、下記(A)~(K)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(A)におけるRは、フッ素原子、炭素原子数1~20のアルキル基、または炭素原子数1~20のフルオロアルキル基であり、mは0~4の整数である。式(A)で表される基は、ベンゼン環上に置換基を有していてもよいヒドロキノン誘導体から2つの水酸基を除いた基である。ベンゼン環上に置換基を有するヒドロキノンとしては、tert-ブチルヒドロキノン、2,5-ジ-tert-ブチルヒドロキノン、2,5-ジ-tert-アミルヒドロキノン等が挙げられる。一般式(1)において、Xが(A)でありm=0である(すなわち、ベンゼン環上に置換基を有さない)場合、ビス(無水トリメリット酸)エステルは、p-フェニレンビス(トリメリテート無水物)(略称:TAHQ)である。
 式(B)におけるRは、フッ素原子、炭素原子数1~20のアルキル基、または炭素原子数1~20のフルオロアルキル基であり、nは0~4の整数である。式(B)で表される基は、ベンゼン環上に置換基を有していてもよいビフェノールから2つの水酸基を除いた基である。ベンゼン環上に置換基を有するビフェノール誘導体としては、2,2’-ジメチルビフェニル-4,4’-ジオール、3,3’-ジメチルビフェニル-4,4’-ジオール、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジオール、2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’-ジオール等が挙げられる。
 式(C)で表される基は、4,4’-イソプロピリデンジフェノール(ビスフェノールA)から2つの水酸基を除いた基である。式(D)で表される基は、レゾルシノールから2つの水酸基を除いた基である。
 式(E)におけるpは1~10の整数である。式(E)で表される基は、炭素数1~10の直鎖のジオールから2つの水酸基を除いた基である。炭素数1~10の直鎖のジオールとしては、エチレングリコール、1,4-ブタンジオール等が挙げられる。
 式(F)で表される基は、1,4-シクロヘキサンジメタノールから2つの水酸基を除いた基である。
 式(G)におけるRは、フッ素原子、炭素原子数1~20のアルキル基、または炭素原子数1~20のフルオロアルキル基であり、qは0~4の整数である。式(G)で表される基は、フェノール性水酸基を有するベンゼン環上に置換基を有していてもよいビスフェノールフルオレンから2つの水酸基を除いた基である。フェノール性水酸基を有するベンゼン環上に置換基を有するビスフェノールフルオレン誘導体としては、ビスクレゾールフルオレン等が挙げられる。
 ビス(無水トリメリット酸)エステルは芳香族エステルであることが好ましい。Xとしては、上記(A)~(K)の中では、(A)(B)(C)(D)(G)(H)(I)が好ましい。中でも、(A)~(D)が好ましく、(B)のビフェニル骨格を有する基が特に好ましい。Xが一般式(B)で表される基である場合、ポリイミドの有機溶媒への溶解性の観点から、Xは、下記の式(B1)で表される2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’-ジイルであること好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)においてXが式(B1)で表される基である酸二無水物は、下記の式(3)で表されるビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)-2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’-ジイル(略称:TAHMBP)である。
Figure JPOXMLDOC01-appb-C000004
 エーテル結合を有するジフタル酸無水物としては、3,4’-オキシジフタル酸無水物、4,4’-オキシジフタル酸無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、等が挙げられる。ポリイミド樹脂の溶解性およびアセチルセルロース系樹脂との相溶性の観点からは、4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(BPADA)が特に好ましい。
 有機溶媒への溶解性、およびアセチルセルロース系樹脂との相溶性を兼ね備えたポリイミド樹脂を得る観点から、酸二無水物成分全量100モル%に対する脂環式テトラカルボン酸二無水物、フッ素含有芳香族テトラカルボン酸二無水物、ビス(無水トリメリット酸)エステルおよびエーテル結合を有するジフタル酸無水物の含有量の合計は、50モル%以上が好ましく、60モル%以上がより好ましく、65モル%以上がさらに好ましく、70モル%以上、75モル%以上、80モル%以上、85モル%以上、90モル%以上または95モル%以上であってもよい。
 ポリイミドは、酸二無水物成分として、脂環式テトラカルボン酸二無水物、フッ素含有芳香族テトラカルボン酸二無水物、ビス(無水トリメリット酸)エステルおよびエーテル結合を有するジフタル酸無水物以外の酸二無水物を含んでいてもよい。上記以外の酸二無水物の例としては、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、9,9―ビス(3,4-ジカルボキシフェニル)フルオレン二無水物)、1,3-ビス[(3,4-ジカルボキシ)ベンゾイル]ベンゼン二無水物、1,4-ビス[(3,4-ジカルボキシ)ベンゾイル]ベンゼン二無水物、2,2-ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、2,2-ビス{4-[4-(3,4-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、2,2-ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、4,4’-ビス[4-(1,2-ジカルボキシ)フェノキシ]ビフェニル二無水物、4,4’-ビス[3-(1,2-ジカルボキシ)フェノキシ]ビフェニル二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}スルホン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}スルホン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}スルフィド二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}スルフィド二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、ビス(1,3-ジヒドロ-1,3-ジオキソ-5-イソベンゾフランカルボン酸)-1,4-フェニレンエステルが挙げられる。
(ジアミン)
 本実施形態で用いるポリイミドは、ジアミン由来の構造として、フルオロアルキル置換ベンジジンを含む。ジアミン由来の構造がフルオロアルキル置換ベンジジンを有することにより、ポリイミド樹脂の溶解性と透明性とを両立する傾向がある。
 フルオロアルキル置換ベンジジンの例としては、2-(トリフルオロメチル)ベンジジン、3-(トリフルオロメチル)ベンジジン、2,3-ビス(トリフルオロメチル)ベンジジン、2,5-ビス(トリフルオロメチル)ベンジジン、2、6-ビス(トリフルオロメチル)ベンジジン、2,3,5-トリス(トリフルオロメチル)ベンジジン、2,3,6-トリス(トリフルオロメチル)ベンジジン、2,3,5,6-テトラキス(トリフルオロメチル)ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,3’-ビス(トリフルオロメチル)ベンジジン、2,2’,3-ビス(トリフルオロメチル)ベンジジン、2,3,3’-トリス(トリフルオロメチル)ベンジジン、2,2’,5-トリス(トリフルオロメチル)ベンジジン、2,2’,6-トリス(トリフルオロメチル)ベンジジン、2,3’,5-トリス(トリフルオロメチル)ベンジジン、2,3’,6,-トリス(トリフルオロメチル)ベンジジン、2,2’,3,3’-テトラキス(トリフルオロメチル)ベンジジン、2,2’,5,5’-テトラキス(トリフルオロメチル)ベンジジン、2,2’,6,6’-テトラキス(トリフルオロメチル)ベンジジン等が挙げられる。
 中でも、ビフェニルの2位にフルオロアルキル基を有するフルオロアルキル置換ベンジジンが好ましく、2,2’-ビス(トリフルオロメチル)ベンジジン(以下「TFMB」と記載)が特に好ましい。ビフェニルの2位および2’位にフルオロアルキル基を有することにより、フルオロアルキル基の電子求引性によるπ電子密度の低下に加えて、フルオロアルキル基の立体障害によって、ビフェニルの2つのベンゼン環の間の結合がねじれてπ共役の平面性が低下するため、吸収端波長が短波長シフトして、ポリイミドの着色を低減できる。
 ジアミン成分全量100モル%に対するフルオロアルキル置換ベンジジンの含有量は、50モル%以上が好ましく、60モル%以上がより好ましく、70モル%以上がさらに好ましく、80モル%以上、85モル%以上または90モル%以上であってもよい。フルオロアルキル置換ベンジジンの含有量が大きいことにより、フィルムの着色が抑制されるとともに、耐熱性が高くなる傾向がある。
 ポリイミドは、ジアミン成分として、フルオロアルキル置換ベンジジン以外のジアミンを含んでいてもよい。フルオロアルキル置換ベンジジン以外のジアミンの例としては、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、9,9-ビス(4-アミノフェニル)フルオレン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノブチル)ポリジメチルシロキサン、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル、ビス(2-アミノメトキシ)エチル]エーテル、ビス[2-(2-アミノエトキシ)エチル]エーテル、ビス[2-(3-アミノプロトキシ)エチル]エーテル、1,2-ビス(アミノメトキシ)エタン、1,2-ビス(2-アミノエトキシ)エタン、1,2-ビス[2-(アミノメトキシ)エトキシ]エタン、1,2-ビス[2-(2-アミノエトキシ)エトキシ]エタン、エチレングリコールビス(3-アミノプロピル)エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、トリエチレングリコールビス(3-アミノプロピル)エーテル、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,2-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、trans-1,4-ジアミノシクロヘキサン、1,2-ジ(2-アミノエチル)シクロヘキサン、1,3-ジ(2-アミノエチル)シクロヘキサン、1,4-ジ(2-アミノエチル)シクロヘキサン、ビス(4-アミノシクロへキシル)メタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、1,4-ジアミノ-2-フルオロベンゼン、1,4-ジアミノ-2,3-ジフルオロベンゼン、1,4-ジアミノ-2,5-ジフルオロベンゼン、1、4-ジアミノ-2,6-ジフルオロベンゼン、1,4-ジアミノ-2,3,5-トリフルオロベンゼン、1、4-ジアミノ、2,3,5,6-テトラフルオロベンゼン、1,4-ジアミノ-2-(トリフルオロメチル)ヘンゼン、1,4-ジアミノ-2,3-ビス(トリフルオロメチル)ベンゼン、1,4-ジアミノ-2,5-ビス(トリフルオロメチル)ベンゼン、1、4-ジアミノ-2,6-ビス(トリフルオロメチル)ベンゼン、1,4-ジアミノ-2,3,5-トリス(トリフルオロメチル)ベンゼン、1、4-ジアミノ、2,3,5,6-テトラキス(トリフルオロメチル)ベンゼン、2,2’-ジメチルベンジジン、2-フルオロベンジジン、3-フルオロベンジジン、2,3-ジフルオロベンジジン、2,5-ジフルオロベンジジン、2、6-ジフルオロベンジジン、2,3,5-トリフルオロベンジジン、2,3,6-トリフルオロベンジジン、2,3,5,6-テトラフルオロベンジジン、2,2’-ジフルオロベンジジン、3,3’-ジフルオロベンジジン、2,3’-ジフルオロベンジジン、2,2’,3-トリフルオロベンジジン、2,3,3’-トリフルオロベンジジン、2,2’,5-トリフルオロベンジジン、2,2’,6-トリフルオロベンジジン、2,3’,5-トリフルオロベンジジン、2,3’,6,-トリフルオロベンジジン、2,2’,3,3’-テトラフルオロベンジジン、2,2’,5,5’-テトラフルオロベンジジン、2,2’,6,6’-テトラフルオロベンジジン、2,2’,3,3’,6,6’-ヘキサフルオロベンジジン、2,2’,3,3’,5,5’、6,6’-オクタフルオロベンジジンが挙げられる。
 例えば、ジアミンとして、フルオロアルキル置換ベンジジンに加えて、ジアミノジフェニルスルホンを用いることにより、ポリイミド樹脂の溶媒への溶解性や透明性が向上する場合がある。ジアミノジフェニルスルホンの中でも、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)および4,4’-ジアミノジフェニルスルホン(4,4’-DDS)が好ましい。3,3’-DDSと4,4’-DDSを併用してもよい。
 ジアミン全量100モル%に対するジアミノジフェニルスホンの含有量は、1~40モル%、3~30モル%または5~25モル%であってもよい。
(ポリイミドの調製)
 酸二無水物とジアミンとの反応によりポリイミド前駆体としてのポリアミド酸が得られ、ポリアミド酸の脱水環化(イミド化)によりポリイミドが得られる。上記の様に、ポリイミドの組成、すなわち酸二無水物およびジアミンの種類および比率を調整することにより、ポリイミドは、透明性および有機溶媒への溶解性を有するとともに、アセチルセルロース系樹脂との相溶性を示す。
 ポリアミド酸の調製方法は特に限定されず、公知のあらゆる方法を適用できる。例えば、酸二無水物とジアミンとを、略等モル量(95:100~105:100のモル比)で有機溶媒中に溶解させ、攪拌することにより、ポリアミド酸溶液が得られる。ポリアミド酸溶液の濃度は、通常5~35重量%であり、好ましくは10~30重量%である。この範囲の濃度である場合に、重合により得られるポリアミド酸が適切な分子量を有するとともに、ポリアミド酸溶液が適切な粘度を有する。
 ポリアミド酸の重合に際しては、酸二無水物の開環を抑制するため、ジアミンに酸二無水物を加える方法が好ましい。複数種のジアミンや複数種の酸二無水物を添加する場合は、一度に添加してもよく、複数回に分けて添加してもよい。モノマーの添加順序を調整することにより、ポリイミドの諸物性を制御することもできる。
 ポリアミド酸の重合に使用する有機溶媒は、ジアミンおよび酸二無水物と反応せず、ポリアミド酸を溶解させ得る溶媒であれば、特に限定されない。有機溶媒としては、メチル尿素、N,N-ジメチルエチルウレア等のウレア系溶媒、ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルフォン等のスルホキシドあるいはスルホン系溶媒、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)、N,N’-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、γ-ブチロラクトン、ヘキサメチルリン酸トリアミド等のアミド系溶媒、クロロホルム、塩化メチレン等のハロゲン化アルキル系溶媒、ベンゼン、トルエン等の芳香族炭化水素系溶媒、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。通常これらの溶媒を単独でまたは必要に応じて2種以上を適宜組み合わせて用いる。ポリアミド酸の溶解性および重合反応性の観点から、DMAc、DMF、NMP等が好ましく用いられる。
 ポリアミド酸の脱水環化によりポリイミドが得られる。ポリアミド酸溶液からポリイミドを調製する方法として、ポリアミド酸溶液に脱水剤、イミド化触媒等を添加し、溶液中でイミド化を進行させる方法が挙げられる。イミド化の進行を促進するため、ポリアミド酸溶液を加熱してもよい。ポリアミド酸のイミド化により生成したポリイミドが含まれる溶液と貧溶媒とを混合することにより、ポリイミド樹脂が固形物として析出する。ポリイミド樹脂を固形物として単離することにより、ポリアミド酸の合成時に発生した不純物や、残存脱水剤およびイミド化触媒等を、貧溶媒により洗浄・除去可能であり、ポリイミドの着色や黄色度の上昇等を防止できる。また、ポリイミド樹脂を固形物として単離することにより、フィルムを作製するための溶液を調製する際に、低沸点溶媒等のフィルム化に適した溶媒を適用できる。
 ポリイミドの分子量(ゲルろ過クロマトグラフィー(GPC)で測定されるポリエチレンオキシド換算の重量平均分子量)は、10,000~300,000が好ましく、20,000~250,000がより好ましく、40,000~200,000がさらに好ましい。分子量が過度に小さい場合、フィルムの強度が不足する場合がある。分子量が過度に大きい場合、アセチルセルロース系樹脂との相溶性に劣る場合がある。
 ポリイミドは、ケトン系溶媒やハロゲン化アルキル系溶媒等の低沸点溶媒に可溶であるものが好ましい。ポリイミドが溶媒に溶解性を示すとは、5重量%以上の濃度で溶解することを意味する。一実施形態において、ポリイミドは塩化メチレンに対する溶解性を示す。塩化メチレンは、低沸点でありフィルム作製時の残存溶媒の除去が容易であることから、塩化メチレンに可溶のポリイミド樹脂を用いることにより、フィルムの生産性向上が期待できる。
 樹脂組成物およびフィルムの熱安定性および光安定性の観点から、ポリイミドは反応性が低いことが好ましい。ポリイミドの酸価は、0.4mmol/g以下が好ましく、0.3mmol/g以下がより好ましく、0.2mmol/g以下がさらに好ましい。ポリイミドの酸価は、0.1mmol/g以下、0.05mmol/g以下または0.03mmol/g以下であってもよい。酸価を小さくする観点から、ポリイミドはイミド化率が高いことが好ましい。酸価が小さいことにより、ポリイミドの安定性が高められるとともに、アセチルセルロース系樹脂との相溶性が向上する傾向がある。
<アセチルセルロース系樹脂>
 アセチルセルロース系樹脂としては、アセチル基の置換度が2.0~3.0であるジアセチルセルロースまたはトリアセチルセルロースが好ましい。ポリイミドとの相溶性および耐熱性の観点から、アセチルセルロースのアセチル置換度は、2.4以上が好ましく、2.5以上、2.6以上、2.7以上または2.8以上であってもよい。
 アセチルセルロース系樹脂は、アセチル基の置換度が上記範囲であれば、アセチル基以外の置換基を有していてもよい。アセチル基以外の置換基としては、プロピオニル基、ブチリル基等のアシル基、メトキシ基、エトキシ基等のアルコキシ基が挙げられる。
 フィルムの耐熱性の観点から、アセチルセルロース系樹脂のガラス転移温度は150℃以上が好ましく、160℃以上または170℃以上であってもよい。
<樹脂組成物の調製>
 上記のポリイミド樹脂とアセチルセルロース系樹脂とを混合して、樹脂組成物を調製する。上記のポリイミド樹脂とアセチルセルロース系樹脂は、任意の比率で相溶性を示し得るため、樹脂組成物におけるポリイミド樹脂とアセチルセルロース系樹脂との比率は特に限定されない。ポリイミド樹脂とアセチルセルロース系樹脂の混合比(重量比)は、98:2~2:98、95:5~10:90、または90:10~15:85であってもよい。ポリイミド樹脂の比率が高いほど、耐熱性に優れる傾向がある。アセチルセルロース系樹脂の比率が高いほど、フィルムの着色が少なく透明性が高く、かつ耐光性に優れる傾向がある。ポリイミドとアセチルセルロース系樹脂との混合による透明性向上の効果を十分に発揮するためには、ポリイミドとアセチルセルロース系樹脂の合計に対するアセチルセルロース系樹脂の比率は、10重量%以上が好ましく、15重量%以上、20重量%以上、25重量%以上、30重量%以上、35重量%以上、40重量%以上、45重量%以上または50重量%以上であってもよい。
 樹脂組成物は、ポリイミド樹脂とアセチルセルロース系樹脂とを含む混合溶液であってもよい。樹脂の混合方法は特に限定されず、固体の状態で混合してもよく、液体中で混合して混合溶液としてもよい。ポリイミド樹脂溶液およびアセチルセルロース系樹脂溶液を個別に調製し、両者を混合してポリイミド樹脂とアセチルセルロース系樹脂との混合溶液を調製してもよい。
 ポリイミド樹脂およびアセチルセルロース系樹脂を含む溶液の溶媒としては、ポリイミド樹脂およびアセチルセルロース系樹脂の両方に対する溶解性を示すものであれば特に限定されない。溶媒の例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;1,4-ジオキサン、ジオキソラン等のエーテル系溶媒;塩化メチレン、クロロホルム、1,1,2,2-テトラクロロエタン等のハロゲン化アルキル系溶媒が挙げられる。中でも、ポリイミド樹脂およびアセチルセルロース系樹脂の両方に対する溶解性に優れ、かつ低沸点でありフィルム作製時の残存溶媒の除去が容易であることから、ハロゲン化アルキル系溶媒が好ましい。
 フィルムの加工性向上や各種機能の付与等を目的として、樹脂組成物(溶液)に、有機または無機の低分子化合物、高分子化合物(例えばエポキシ樹脂)等を配合してもよい。樹脂組成物は、難燃剤、紫外線吸収剤、架橋剤、染料、顔料、界面活性剤、レベリング剤、可塑剤、微粒子、増感剤等を含んでいてもよい。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等の有機微粒子、コロイダルシリカ、カーボン、層状珪酸塩等の無機微粒子等が含まれ、多孔質や中空構造であってもよい。繊維強化材には、炭素繊維、ガラス繊維、アラミド繊維等が含まれる。
[成形体およびフィルム]
 上記の組成物は、各種の成形体の形成に使用できる。成形法としては、射出成形、トランスファー成形、プレス成形、ブロー成形、インフレーション成形、カレンダー成形、溶融押出成形等の溶融法が挙げられる。ポリイミドとアセチルセルロース系樹脂を含む樹脂組成物は、ポリイミド単体に比べて溶融粘度が小さい傾向があり、射出成形、トランスファー成形、プレス成形、溶融押出成形等の成形性に優れている。
 一実施形態において、成形体はフィルムである。フィルムの成形方法は、溶融法および溶液法のいずれでもよいが、透明性および均一性に優れるフィルムを作製する観点からは溶液法が好ましい。溶液法では、上記のポリイミド樹脂およびアセチルセルロース系樹脂を含む溶液を、支持体上に塗布し、溶媒を乾燥除去することにより、フィルムが得られる。
 樹脂溶液を支持体上に塗布する方法としては、バーコーターやコンマコーター等を用いた公知の方法を適用できる。支持体としては、ガラス基板、SUS等の金属基板、金属ドラム、金属ベルト、プラスチックフィルム等を使用できる。生産性向上の観点から、支持体として、金属ドラム、金属ベルト等の無端支持体、または長尺プラスチックフィルム等を用い、ロールトゥーロールによりフィルムを製造することが好ましい。プラスチックフィルムを支持体として使用する場合、製膜ドープの溶媒に溶解しない材料を適宜選択すればよい。
 溶媒の乾燥時には加熱を行うことが好ましい。加熱温度は溶媒が除去でき、かつ得られるフィルムの着色を抑制できる温度であれば特に制限されず、室温~250℃程度で適宜に設定され、50℃~220℃が好ましい。加熱温度は段階的に上昇させてもよい。溶媒の除去効率を高めるために、ある程度乾燥が進んだ後に、支持体から樹脂膜を剥離して乾燥を行ってもよい。溶媒の除去を促進するために、減圧下で加熱を行ってもよい。
 アセチルセルロース系フィルムは、靭性が低い場合があるが、ポリイミドとアセチルセルロース系樹脂との相溶系を採用することによりフィルムの強度が向上する場合がある。フィルムの機械強度向上等を目的として、一方向または複数の方向に延伸を行ってもよい。フィルムを延伸するとポリマー鎖が延伸方向に配向するため、フィルムの面内方向の強度が向上し、フィルムの割れやクラックの発生が抑制される傾向がある。
 フィルムの厚みは特に限定されず、用途に応じて適宜設定すればよい。フィルムの厚みは、例えば5~300μmである。自己支持性と可撓性とを両立し、かつ透明性の高いフィルムとする観点から、フィルムの厚みは10μm~100μmが好ましく、30μm~90μm、40μm~85μm、または50μm~80μmであってもよい。ディスプレイのカバーフィルム用途としてのフィルムの厚みは、10μm以上が好ましい。フィルムを延伸する場合は、延伸後の厚みが上記範囲であることが好ましい。
 フィルムのヘイズは10%以下が好ましく、5%以下がより好ましく、4%以下がさらに好ましく、3.5%以下、3%以下、2%以下または1%以下であってもよい。フィルムのヘイズは低いほど好ましい。上記の様に、ポリイミドとアセチルセルロース系樹脂が相溶性を示すため、ヘイズが低く、透明性の高いフィルムが得られる。ポリイミドとアセチルセルロース系樹脂を混合した樹脂組成物は、厚み10μmのフィルムを作製した際のヘイズが10%以下であることが好ましい。
 フィルムの全光線透過率(TT)は、85%以上が好ましく、87%以上がより好ましく、89%以上がさらに好ましく、90%以上が特に好ましく、91%以上であってもよい。フィルムのTTは高いほど好ましい。上記の様に、ポリイミドとアセチルセルロース系樹脂が相溶性を示すため、TTが高く、透明性の高いフィルムが得られる。ポリイミドとアセチルセルロース系樹脂を混合した樹脂組成物は、厚み10μmのフィルムを作製した際のTTが85%以上であることが好ましい。また、フィルムの400nmにおける透過率は、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、85%以上が特に好ましく、90%以上であってもよい。
 フィルムの黄色度(YI)は、5.0以下が好ましく、2.0以下または1.0以下であってもよい。上記のように、ポリイミド樹脂とアセチルセルロース系樹脂とを混合することにより、ポリイミド樹脂を単独で用いる場合に比べて、着色が少なく、YIの小さいフィルムが得られる。ポリイミドとアセチルセルロース系樹脂を混合した樹脂組成物は、厚み10μmのフィルムを作製した際のYIが5.0以下であることが好ましい。
 フィルムは耐光試験による黄色度の増加量ΔYIが小さいことが好ましい。放射照度530W/m、ブラックパネル温度63℃の条件で積算照射量40.0MJ/mの紫外線を照射する耐光試験後のフィルムの黄色度の増加量ΔYIは、6.0以下が好ましく、5.0以下がより好ましく、4.0以下、3.0以下、2.0以下、1.5以下または1.0以下であってもよい。上記の耐光試験後のフィルムの黄色度YIは、8.0以下が好ましく、7.0以下がより好ましく、6.0以下、5.0以下、4.0以下、3.0以下、2.0以下または1.0以下であってもよい。
 ポリイミド樹脂とセルロースアセテート系樹脂の相溶系では、ポリイミド樹脂単独の場合に比べて、フィルムのYIが小さくなる傾向があり、さらに、ΔYIも小さくなる傾向がある。また、ポリイミドの酸二無水物成分における脂環式酸二無水物の割合が大きいほど、フィルムのYIが小さく、かつΔYIが小さくなる傾向がある。
 耐熱性の観点から、フィルムの1%重量減少温度(Td1)は275℃以上が好ましく、280℃以上がより好ましく、290℃以上がさらに好ましく、300℃以上であってもよい。また、フィルムの5%重量減少温度(Td5)は320℃以上が好ましく、330℃以上がより好ましく、340℃以上がさらに好ましく、345℃以上であってもよい。ポリイミド樹脂とアセチルセルロース系樹脂との相溶系では、ポリイミドの優れた耐熱性を大きく損なうことなく、Td1およびTd5が高く、かつ透明性および耐候性に優れるフィルムが得られる。
 ポリイミドとアセチルセルロース系樹脂を含む樹脂組成物により形成されるフィルムは、着色が少なく、透明性が高いことから、ディスプレイ材料として好適に用いられる。特に、機械的強度が高いフィルムは、ディスプレイのカバーウインドウ等の表面部材への適用が可能である。本発明のフィルムは、実用に際して、表面に帯電防止層、易接着層、ハードコート層、反射防止層等を設けてもよい。
 以下、実施例を示して本発明の実施形態についてさらに具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
[ポリイミド樹脂の製造例]
 セパラブルフラスコにジメチルホルムアミドを投入し、窒素雰囲気下で撹拌した。そこに、表1に示す比率(モル%)で、ジアミンおよび酸二無水物を投入し、窒素雰囲気下にて5~10時間撹拌して反応させ、固形分濃度18重量%のポリアミド酸溶液を得た。
 ポリアミド酸溶液100gに、イミド化触媒としてピリジン5.5gを添加し、完全に分散させた後、無水酢酸8gを添加し、90℃で3時間攪拌した。室温まで冷却した後、溶液を攪拌しながら、2-プロピルアルコール(以下、IPAと記載)100gを、2~3滴/秒の速度で投入し、ポリイミドを析出させた。さらにIPA150gを添加し、約30分撹拌後、桐山ロートを使用して吸引ろ過を行った。得られた固体をIPAで洗浄した後、120℃に設定した真空オーブンで12時間乾燥させて、ポリイミド樹脂を得た。
[フィルム作製例]
<実施例1~3、比較例1>
 塩化メチレンに、上記の製造例で得られたポリイミド(PI)と市販のトリアセチルセルロース樹脂(富士フィルム和光純薬製 三酢酸セルロース、置換度2.9)を、表1に示す比率で混合し、樹脂分11重量%の塩化メチレン溶液を調製した。この溶液を無アルカリガラス板上に塗布し、60℃で15分、90℃で15分、120℃で15分、150℃で15分、180℃で15分、200℃で15分、大気雰囲気下で加熱乾燥し、厚み約10μmのフィルムを作製した。
<参考例1~4>
 参考例1~3では、上記の実施例1~3で用いたポリイミド樹脂の塩化メチレン溶液を調製し、上記と同様の条件で厚み約10μmのフィルムを作製した。参考例4では、トリアセチルセルロース樹脂の塩化メチレン溶液を調製し、上記と同様の条件で厚み約10μmのフィルムを作製した。
[評価]
<ヘイズおよび全光線透過率>
 フィルムを3cm角に切り出し、スガ試験機製のヘイズメーター「HZ-V3」により、JIS K7136およびJIS K7361-1に従って、ヘイズおよび全光線透過率(TT)を測定した。
<黄色度>
 フィルムを3cm角に切り出し、スガ試験機製の分光測色計「SC-P」により、JIS K7373に従って黄色度(YI)を測定した。
<耐光性>
 スガ試験機製フェードメーターM6Tを用いて、放射照度530W/m、ブラックパネル温度63℃の条件で積算照射量が40.0MJ/mとなるまで照射して耐光試験を実施した。耐光試験前後のフィルムのYIを測定し、耐候試験後のYIの増加量ΔYIを三種移した。
<耐熱性>
 示差熱熱重量同時測定装置(日立ハイテクサイエンス製「STA7200」)により、1%重量減少温度(Td1)および5%重量減少温度(Td5)を測定した。測定は、フィルムを10mg秤量し、30℃から400℃まで10℃/minにて昇温して行った。200℃での重量を100%として、重量が99%を初めて切った時の温度をTd1、重量が初めて95%を切った時の温度をTd5とした。
[評価結果]
 実施例1~3、比較例1および参考例4の樹脂の組成(ポリイミドの組成、およびトリアセチルセルロース樹脂との混合比)、ならびにフィルムの評価結果を表1に示す。
 表1において、化合物は以下の略称により記載している。
<酸二無水物>
  HPMDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物
  CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
  TAHMBP:ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)-2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’ジイル
<ジアミン>
  TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
  m-Tol:2,2’-ジメチルベンジジン
Figure JPOXMLDOC01-appb-T000005
 実施例1で用いたものと同一のポリイミド樹脂のみを用いて作製した参考例1のポリイミドフィルムは全光線透過率(TT)が91.7%であったのに対して、ポリイミド樹脂とトリアセチルセルロース樹脂を50:50の重量比で配合した組成物を用いて作製した実施例1のフィルムはTTが92.0%であり、透明性に優れていた。また、参考例1のポリイミドフィルムフィルムは耐候試験後のフィルムの黄色度の増加量ΔYIが1.4であったのに対して、実施例1のフィルムのΔYIは0.4であり、実施例1のフィルムは透明性に加えて耐光性にも優れていることが分かる。
 参考例2のポリイミドフィルムのTTは91.5%であったのに対して、実施例2のフィルムのTTは91.7%であった。参考例3のポリイミドフィルムのTTは90.7%であったのに対して、実施例3のフィルムのTTは91.2%であった。これらの結果から、実施例2,3においても、ポリイミドとアセチルセルロース系樹脂との相溶系の樹脂組成物が、ポリイミド単独に比べて優れた透明性を有していることが分かる。
 参考例2のポリイミドフィルムのΔYIは3.6%であったのに対して、実施例2のフィルムのΔYIは1.7であった。参考例3のポリイミドフィルムのΔYIは12.3%であったのに対して、実施例3のフィルムのΔYIは5.6であった。これらの結果から、実施例2,3においても、ポリイミドとアセチルセルロース系樹脂との相溶系の樹脂組成物が、ポリイミド単独に比べて優れた耐光性を有していることが分かる。
 また、実施例1~3のフィルムは、参考例4のトリアセチルセルロースフィルムに比べてTd1およびTd5が高く、耐熱性に優れていた。
 テトラカルボン酸二無水物成分として脂環式テトラカルボン酸二無水物を含まないポリイミドを用いた比較例1では、ポリイミドとトリアセチルセルロースの相溶性が低く、ヘイズが大幅に上昇していた。
 以上の結果から、テトラカルボン酸二無水物成分として脂環式テトラカルボン酸二無水物を含むポリイミドは、アセチルセルロース系樹脂との相溶性を示し、これらを混合した樹脂組成物を用いることにより、透明性が高く、かつ耐光性および耐熱性に優れるフィルムが得られることが分かる。

 

Claims (10)

  1.  ポリイミドとアセチルセルロース系樹脂を含み、
     前記ポリイミドが、テトラカルボン酸二無水物成分として、脂環式テトラカルボン酸二無水物を含有し、ジアミン成分としてフルオロアルキル置換ベンジジンを含む、
     樹脂組成物。
  2.  前記脂環式テトラカルボン酸二無水物が、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、および1,1’-ビシクロヘキサン-3,3’,4,4’テトラカルボン酸-3,4:3’,4’-二無水物からなる群から選択される1種以上である、請求項1に記載の樹脂組成物。
  3.  前記ポリイミドのテトラカルボン酸二無水物成分全量に対する脂環式テトラカルボン酸二無水物の量が、10モル%以上である、請求項1または2に記載の樹脂組成物。
  4.  前記フルオロアルキル置換ベンジジンが2,2’-ビス(トリフルオロメチル)ベンジジンである、請求項1または2に記載の樹脂組成物。
  5.  前記ポリイミドのジアミン成分全量に対するフルオロアルキル置換ベンジジンの量が、50モル%以上である、請求項1または2に記載の樹脂組成物。
  6.  前記アセチルセルロース系樹脂のアセチル置換度が2.4以上である、請求項1または2に記載の樹脂組成物。
  7.   前記ポリイミドと前記アセチルセルロース系樹脂を、98:2~2:98の範囲の重量比で含む、請求項1または2に記載の樹脂組成物。
  8.  請求項1または2に記載の樹脂組成物を含む成形体。
  9.  請求項1または2に記載の樹脂組成物を含むフィルム。
  10.  厚みが5μm以上300μm以下であり、全光線透過率が85%以上、ヘイズが10%以下、黄色度が5.0以下、1%重量減少温度が275℃以上である、請求項9に記載のフィルム。

     
PCT/JP2023/003097 2022-02-03 2023-01-31 樹脂組成物、成形体およびフィルム WO2023149435A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-015846 2022-02-03
JP2022015846 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149435A1 true WO2023149435A1 (ja) 2023-08-10

Family

ID=87552493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003097 WO2023149435A1 (ja) 2022-02-03 2023-01-31 樹脂組成物、成形体およびフィルム

Country Status (1)

Country Link
WO (1) WO2023149435A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015629A (ja) * 2003-06-26 2005-01-20 Mitsubishi Gas Chem Co Inc 溶媒可溶性ポリイミドの製造方法
JP2008045054A (ja) * 2006-08-18 2008-02-28 New Japan Chem Co Ltd 脂環系ポリイミド共重合体及びその製造方法
WO2012133143A1 (ja) * 2011-03-31 2012-10-04 三井化学株式会社 ポリイミド系樹脂微粒子の複合体膜およびその用途
JP2018028694A (ja) * 2012-12-12 2018-02-22 日産化学工業株式会社 組成物及び樹脂皮膜
WO2018225825A1 (ja) * 2017-06-08 2018-12-13 日産化学株式会社 フレキシブルデバイス用基板の製造方法
JP2019023249A (ja) * 2015-12-11 2019-02-14 コニカミノルタ株式会社 ポリイミドフィルム、フレキシブルプリント基板、led照明装置及びフレキシブルディスプレイ用前面部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015629A (ja) * 2003-06-26 2005-01-20 Mitsubishi Gas Chem Co Inc 溶媒可溶性ポリイミドの製造方法
JP2008045054A (ja) * 2006-08-18 2008-02-28 New Japan Chem Co Ltd 脂環系ポリイミド共重合体及びその製造方法
WO2012133143A1 (ja) * 2011-03-31 2012-10-04 三井化学株式会社 ポリイミド系樹脂微粒子の複合体膜およびその用途
JP2018028694A (ja) * 2012-12-12 2018-02-22 日産化学工業株式会社 組成物及び樹脂皮膜
JP2019023249A (ja) * 2015-12-11 2019-02-14 コニカミノルタ株式会社 ポリイミドフィルム、フレキシブルプリント基板、led照明装置及びフレキシブルディスプレイ用前面部材
WO2018225825A1 (ja) * 2017-06-08 2018-12-13 日産化学株式会社 フレキシブルデバイス用基板の製造方法

Similar Documents

Publication Publication Date Title
US10745519B2 (en) Polyimide resin, polyimide solution, film, and method for producing same
JP6921758B2 (ja) ポリアミド酸、ポリイミド、ポリアミド酸溶液、ポリイミド積層体、フレキシブルデバイス基板、及びそれらの製造方法
KR102009067B1 (ko) 폴리아미드산, 폴리이미드, 폴리아미드산 용액 및 폴리이미드의 이용
WO2020004236A1 (ja) ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法
JP2019506478A (ja) 接着力が向上したポリアミック酸組成物及びこれを含むポリイミドフィルム
JP2016204569A (ja) ポリアミック酸溶液組成物およびポリイミドフィルム
WO2021132279A1 (ja) 樹脂組成物およびフィルム
JP2013028688A (ja) 製膜性が改善されたポリイミド樹脂及び光学フィルム
JP2017137443A (ja) ポリイミド、ポリイミド溶液、ポリイミドフィルムおよびポリイミドフィルムを含有するプラスチック基板材料
JPWO2019073972A1 (ja) ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法
JP2021101002A (ja) ポリイミドフィルムおよびその製造方法
US20240199878A1 (en) Resin composition, formed article and film
JP7356895B2 (ja) 透明ポリイミド樹脂を含む光学フィルム並びにその製造方法
WO2020246466A1 (ja) ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法
WO2020262295A1 (ja) 透明ポリイミドフィルムおよびその製造方法
WO2023149435A1 (ja) 樹脂組成物、成形体およびフィルム
KR20200092628A (ko) 폴리아미드계 (공)중합체의 제조방법, 및 이를 이용한 폴리아미드계 (공)중합 수지 조성물, 고분자 필름
WO2023100806A1 (ja) フィルムおよびその製造方法、ならびに画像表示装置
WO2023085325A1 (ja) 樹脂組成物、成形体およびフィルム
WO2023132310A1 (ja) 樹脂組成物、成形体およびフィルム
JP7510414B2 (ja) ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法
WO2022124195A1 (ja) ポリイミド樹脂、ポリイミドフィルムおよびその製造方法
JP2023086071A (ja) 樹脂組成物およびフィルム
JPWO2019073628A1 (ja) ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法
JP2022163253A (ja) 光学フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578568

Country of ref document: JP

Kind code of ref document: A