WO2020004236A1 - ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法 - Google Patents

ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法 Download PDF

Info

Publication number
WO2020004236A1
WO2020004236A1 PCT/JP2019/024592 JP2019024592W WO2020004236A1 WO 2020004236 A1 WO2020004236 A1 WO 2020004236A1 JP 2019024592 W JP2019024592 W JP 2019024592W WO 2020004236 A1 WO2020004236 A1 WO 2020004236A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid dianhydride
mol
polyimide
polyimide resin
dianhydride
Prior art date
Application number
PCT/JP2019/024592
Other languages
English (en)
French (fr)
Inventor
考広 安本
冬 張
裕之 後
康孝 近藤
紘平 小川
正広 宮本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020527466A priority Critical patent/JP7323522B2/ja
Priority to CN201980043681.0A priority patent/CN112334511B/zh
Publication of WO2020004236A1 publication Critical patent/WO2020004236A1/ja
Priority to US17/135,809 priority patent/US20210115192A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a polyimide resin and a method for producing the same, a polyimide solution, and a polyimide film and a method for producing the same.
  • Patent Literature 1 describes that a polyimide using an ester group-containing monomer has both excellent transparency and heat resistance and is soluble in a wide range of solvents.
  • Polyimide that can be used in such an organic solvent can be formed into a film by applying a solution of a polyimide resin in an organic solvent (polyimide solution) onto a substrate and then drying the solvent.
  • a polyimide film that is transparent and less colored can be obtained by a method using a polyimide solution, a solvent is more likely to remain in the polyimide film than in the thermal imidization method, which may cause a decrease in mechanical strength.
  • heating is performed at a high temperature for a long time to remove the residual solvent, the polyimide film is colored and the transparency is reduced.
  • Patent Document 2 discloses a polyimide using a predetermined alicyclic monomer.Since it is soluble in a low boiling point solvent such as dichloromethane, it is possible to produce a polyimide film having a small residual solvent amount. Has been described.
  • the thickness of the polyimide film using the polyimide resin of Patent Document 1 is as thick as 40 ⁇ m or more, the yellowness is high and the transparency is insufficient.
  • Polyimide (and polyamic acid as a precursor thereof) using an alicyclic monomer as described in Patent Document 2 tends to have a low degree of polymerization.
  • a polyimide film using a polyimide resin having a low polymerization degree (low molecular weight) may have insufficient mechanical strength such as elastic modulus and tensile strength.
  • the present invention aims to provide a polyimide resin and a polyimide film which are dissolved in a low boiling point solvent such as dichloromethane and which are excellent in transparency and mechanical strength.
  • the polyimide resin according to one embodiment of the present invention has an acid dianhydride-derived structure and a diamine-derived structure, and as an acid dianhydride, an acid dianhydride represented by the general formula (1) and a fluorine-containing aromatic compound. And dialkyl anhydrides and fluoroalkyl-substituted benzidines as diamines.
  • n is an integer of 1 or more
  • R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a perfluoroalkyl group having 1 to 20 carbon atoms. It is.
  • the amount of the acid dianhydride represented by the general formula (1) is preferably 10 to 65 mol% based on 100 mol% of the total acid dianhydride.
  • the amount of the fluorine-containing aromatic dianhydride is preferably from 30 to 80 mol% based on 100 mol% of the total amount of the acid dianhydride.
  • the amount of the fluoroalkyl-substituted benzidine is preferably 40 to 100 mol% based on 100 mol% of the total amount of the diamine.
  • Specific examples of the acid dianhydride represented by the general formula (1) include a compound represented by the formula (2) and a compound represented by the formula (3).
  • fluorine-containing aromatic dianhydride examples include 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanoic dianhydride.
  • fluoroalkyl-substituted benzidine examples include 2,2'-bis (trifluoromethyl) benzidine.
  • the polyimide may contain an acid dianhydride component or a diamine component other than the above.
  • the acid dianhydride other than the above include 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride.
  • examples of other diamines include 3,3'-diaminodiphenyl sulfone.
  • the polyimide may contain an acid dianhydride having a biphenyl structure as an acid dianhydride component.
  • the polyimide according to one embodiment includes an acid dianhydride having a biphenyl structure in an amount of 10 mol% or more based on 100 mol% of the total amount of the acid dianhydride, and an acid dianhydride having a biphenyl structure, represented by the general formula (1).
  • Acid dianhydride and a fluorine-containing aromatic acid dianhydride in total of 80 mol% or more.
  • acid dianhydride having a biphenyl structure examples include a compound represented by the above general formula (2) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
  • the arrangement of the monomer components (the structure derived from the acid dianhydride and the structure derived from the diamine) in the polyimide may be random or block.
  • the polyimide may include in the molecular structure a block in which repeating units in which the acid dianhydride represented by the general formula (1) and the fluoroalkyl-substituted benzidine are bonded are continuous.
  • a block structure can be formed by reacting an acid dianhydride represented by the general formula (1) with a fluoroalkyl-substituted benzidine in a solution.
  • a polyimide film is prepared by dissolving a polyimide resin in a solvent to prepare a polyimide solution, applying the polyimide solution on a substrate, and removing the solvent.
  • a solvent for dissolving the polyimide a low boiling point solvent such as dichloromethane is preferable.
  • the thickness of the polyimide film may be 40 ⁇ m or more.
  • the yellowness of the polyimide film may be 2.5 or less, the tensile modulus may be 3.5 GPa or more, and the pencil hardness may be H or more.
  • the polyimide resin of the present invention is soluble in a solvent having a low boiling point such as dichloromethane, and does not require heating at a high temperature to reduce the residual solvent, so that a highly transparent polyimide film can be obtained. Since the polyimide film of the present invention has high mechanical strength and high transparency even when the film thickness is large, it can be used as a substrate material for a display or a cover window material.
  • Polyimide resin Polyimide is generally obtained by dehydrating and cyclizing a polyamic acid obtained by reacting a tetracarboxylic dianhydride (hereinafter sometimes simply referred to as “acid dianhydride”) with a diamine. That is, the polyimide has a structure derived from an acid dianhydride and a structure derived from a diamine.
  • the polyimide resin of the present invention contains an ester group-containing acid dianhydride (bistrimellitic anhydride) and a fluorine-containing aromatic acid dianhydride as an acid dianhydride component, and a fluoroalkyl-substituted benzidine as a diamine component. Including.
  • the polyimide of the present invention includes, as the acid dianhydride, an ester group-containing acid dianhydride (bistrimellitic anhydride) represented by the following general formula (1) and a fluorine-containing aromatic acid dianhydride.
  • n is an integer of 1 or more
  • R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a perfluoroalkyl having 1 to 20 carbon atoms. Group.
  • the content of the acid dianhydride represented by the general formula (1) is 10 to 65 mol%, preferably 15 to 60 mol%, and more preferably 20 to 50 mol%, of the total amount of the acid dianhydride component of 100 mol%. More preferred.
  • the content of the acid dianhydride represented by the general formula (1) is 10 mol% or more, the pencil hardness and the elastic modulus of the polyimide film tend to increase, and the acid dianhydride represented by the general formula (1) tends to increase.
  • the content of the anhydride is 65 mol% or less, the transparency of the polyimide film tends to be high.
  • the content of the acid dianhydride represented by the general formula (1) is 65 mol% or less, a significant increase in viscosity or gelation occurs during a polymerization reaction of a polyamic acid or an imidization reaction in a solution. Can be suppressed.
  • the acid dianhydride represented by the general formula (1) is an ester of trimellitic anhydride and an aromatic diol (bis trimellitic anhydride).
  • aromatic diol is a hydroquinone
  • aromatic diol is a biphenol
  • the substituents R 1 to R 4 in the general formula (1) are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a perfluoroalkyl group having 1 to 20 carbon atoms.
  • the substituents R 1 to R 4 bonded to each benzene ring may be the same or different.
  • Specific examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, cyclobutyl, n-pentyl, isopentyl, neopentyl, and cyclopentyl.
  • Specific examples of the perfluoroalkyl group include a trifluoromethyl group.
  • n is preferably 1 or 2
  • R 1 to R 4 are preferably each independently a hydrogen atom, a methyl group or a trifluoromethyl group.
  • TAHMBP represented by the formula (2) has a biphenyl skeleton having high rigidity, and a bond between two benzene rings of biphenyl is twisted due to steric hindrance of a methyl group, so that ⁇ -conjugated planarity is increased. Since the wavelength decreases, the absorption edge wavelength shifts to a short wavelength, and coloring of the polyimide can be reduced.
  • the content of the fluorine-containing aromatic dianhydride in the total amount of the acid dianhydride component of 100 mol% is 30 to 80 mol%, preferably 35 to 75 mol%, and more preferably 45 to 75 mol%. If the content of the fluorine-containing aromatic dianhydride is 30 mol% or more, the transparency of the polyimide film tends to increase, and if it is 80 mol% or less, the pencil hardness and the elastic modulus of the polyimide film tend to increase. is there.
  • fluorine-containing aromatic dianhydride examples include 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanoic dianhydride, 2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis ⁇ 4- [4- (1,2-dicarboxy) ) Phenoxy] phenyl ⁇ -1,1,1,3,3,3-hexafluoropropane dianhydride and the like.
  • 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanoic acid dianhydride (hereinafter referred to as “6FDA”) is preferred.
  • An acid dihydrate component other than the above may be used in combination as long as the solubility in a low boiling point solvent such as dichloromethane is not impaired, and properties such as transparency and mechanical strength are not impaired.
  • acid dianhydrides other than those described above include ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3 4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,1′-bicyclohexane-3,3 ′, 4,4′tetracarboxylic acid-3 4: 3 ′, 4′-dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, 2,2
  • the acid dianhydride in addition to the acid dianhydride represented by the general formula (1) and the fluorine-containing aromatic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • BPDA a product having both high elastic modulus and transparency
  • a polyimide having both high elastic modulus and transparency can be obtained while maintaining solubility in a low boiling point solvent such as dichloromethane.
  • the content of the acid dianhydride other than the acid dianhydride represented by the general formula (1) and the fluorine-containing aromatic acid dianhydride is preferably 50 mol% or less.
  • the total content of the acid dianhydride represented by the general formula (1) and the fluorine-containing aromatic acid dianhydride is preferably 50 mol% or more. , 70 mol% or more is more preferable.
  • the polyimide of the present invention contains a fluoroalkyl-substituted benzidine as a diamine component.
  • the content of the fluoroalkyl-substituted benzidine is 40 to 100 mol%, preferably 50 mol% or more, and more preferably 60 mol% or more, based on the total amount of the diamine components of 100 mol%.
  • the pencil hardness and the elastic modulus of the polyimide film tend to be high.
  • fluoroalkyl-substituted benzidines examples include 2,2'-dimethylbenzidine, 2-fluorobenzidine, 3-fluorobenzidine, 2,3-difluorobenzidine, 2,5-difluorobenzidine, 2,6-difluorobenzidine, 3,5-trifluorobenzidine, 2,3,6-trifluorobenzidine, 2,3,5,6-tetrafluorobenzidine, 2,2′-difluorobenzidine, 3,3′-difluorobenzidine, 2,3 ′ -Difluorobenzidine, 2,2 ', 3-trifluorobenzidine, 2,3,3'-trifluorobenzidine, 2,2', 5-trifluorobenzidine, 2,2 ', 6-trifluorobenzidine, 2, 3 ′, 5-trifluorobenzidine, 2,3 ′, 6, -trifluorobenzidine, 2,2 ′, 3 3′-tetrafluorobenzidine, 2,2 ′, 5,5′-te
  • fluoroalkyl-substituted benzidine having a fluoroalkyl group at the 2-position of biphenyl is preferred, and 2,2'-bis (trifluoromethyl) benzidine (hereinafter referred to as "TFMB”) is particularly preferred.
  • Diamines other than those described above may be used in combination as long as they do not impair the solubility in low-boiling solvents such as dichloromethane and do not impair properties such as transparency and mechanical strength.
  • diamines other than fluoroalkyl-substituted benzidine include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulf
  • 3,3′-diaminodiphenyl sulfone (hereinafter referred to as “3,3′-DDS”) as a diamine in addition to fluoroalkyl-substituted benzidine, the solubility and transparency of the polyimide resin in a solvent can be improved. May be improved.
  • the content of 3,3'-DDS based on 100 mol% of the total amount of the diamine is preferably 5 mol% or more, more preferably 10 mol% or more.
  • the content of 3,3'-DDS may be 15 mol% or more, 20 mol% or more, or 25 mol% or more.
  • the content of 3,3′-DDS with respect to 100 mol% of the total amount of the diamine is preferably 50 mol% or less, more preferably 40 mol% or less, and still more preferably 35 mol% or less.
  • the polyimide resin of the present invention contains, as an acid dianhydride component, an acid dianhydride represented by the general formula (1) and a fluorine-containing aromatic acid dianhydride, and as a diamine, a fluoroalkyl-substituted diamine.
  • a fluoroalkyl-substituted diamine Contains benzidine.
  • the acid dianhydride represented by the general formula (1) TAHMBP represented by the formula (2) and / or TMHQ represented by the formula (3) are preferable, and as the fluorine-containing aromatic acid dianhydride, 6FDA is preferred, and TFMB is preferred as the fluoroalkyl-substituted benzidine.
  • the polyimide may further contain BPDA as an acid dianhydride component, and may further contain 3,3′-DDS as a diamine component.
  • the amount of the acid dianhydride represented by the general formula (1) is preferably from 15 to 65 mol%, and the sum of TAHMBP and TMHQ is preferably from 15 to 65 mol%. preferable.
  • the amount of the acid dianhydride represented by the general formula (1) is more preferably 20 to 65 mol%, and further preferably the sum of TAHMBP and TMHQ is 20 to 65 mol%.
  • the amount of 6FDA is preferably 30 to 80 mol%, more preferably 35 to 60 mol%.
  • BPDA may be contained as an acid dianhydride component in an amount of 10 to 40 mol%.
  • the amount of TFMB is preferably 40 to 100 mol%, more preferably 60 to 80 mol%. It may contain 60 mol% or less of 3,3′-DDS based on 100 mol% of the total amount of the diamine component, and the content of 3,3′-DDS is preferably 20 to 40 mol%.
  • the polyimide resin contains an acid dianhydride component having a biphenyl structure.
  • the acid dianhydride component has a biphenyl structure, the UV resistance of the polyimide film is enhanced, and a decrease in transparency (increase in yellowness YI) due to UV irradiation tends to be suppressed.
  • an ultraviolet absorber In order to suppress the photodeterioration of the transparent resin, it is common to add an ultraviolet absorber. However, increasing the amount of the ultraviolet absorber added to increase the ultraviolet resistance of the transparent polyimide film may lead to an increase in yellowness due to coloring of the film and a decrease in heat resistance.
  • an acid dianhydride having a biphenyl structure As the acid dianhydride component of the polyimide, when no ultraviolet absorber is used, or even when the amount of the ultraviolet absorber added is small, the polyimide film has sufficient ultraviolet resistance. Since it is possible to suppress coloring caused by the ultraviolet absorber, it is possible to achieve both excellent transparency and ultraviolet resistance.
  • the content of the acid dianhydride having a biphenyl structure is preferably 10 mol% or more, more preferably 15 mol% or more, based on 100 mol% of the total amount of the acid dianhydride component. 20 mol% or more is more preferable.
  • the total content of the acid dianhydride and the fluorine-containing aromatic acid dianhydride is preferably 80 mol% or more, more preferably 85 mol% or more, and 90 mol%, based on 100 mol% of the total acid dianhydride component.
  • the above is more preferable, and the content is more preferably 95 mol% or more.
  • TAHMBP is an acid dianhydride represented by the general formula (1) and corresponds to an acid dianhydride having a biphenyl structure.
  • the content of TFMB is preferably 40 to 100 mol%, more preferably 50 to 90 mol%, still more preferably 60 to 80 mol%, based on 100 mol% of the diamine component;
  • the content of 3′-DDS is 60 mol% based on 100 mol% of the diamine component.
  • an acid dianhydride in which n is other than 2 in the general formula (1) such as TMHQ (that is, a compound having no biphenyl structure) may be used in combination.
  • TMHQ that is, a compound having no biphenyl structure
  • BPDA acid dianhydride having a biphenyl structure
  • TAHMBP acid dianhydride represented by the general formula (1)
  • polyimide contains BPDA as an acid dianhydride component having a biphenyl structure, contains TMHQ as an acid dianhydride component represented by the general formula (1), and contains 6FDA as a fluorine-containing aromatic acid dianhydride. You may go out.
  • the content of BPDA is preferably 10 to 50 mol%, more preferably 15 to 45 mol%, based on 100 mol% of the total amount of the acid dianhydride component.
  • the content of TMHQ is preferably from 10 to 65 mol%, more preferably from 15 to 60 mol%, even more preferably from 20 to 50 mol%, based on 100 mol% of the total amount of the acid dianhydride component.
  • the content of 6FDA is preferably 30 to 80 mol%, more preferably 35 to 70 mol%, and still more preferably 40 to 60 mol%, based on 100 mol% of the total amount of the acid dianhydride component; 40 to 100 mol% is preferable with respect to 100 mol% of the component, and 50 to 90 mol% ol% is more preferable, and 60 to 80 mol% is more preferable; the content of 3,3′-DDS is preferably 60 mol% or less, more preferably 10 to 50 mol%, and more preferably 20 to 40 mol based on 100 mol% of the diamine component. % Is more preferred.
  • the method for producing the polyimide resin is not particularly limited, but a method of preparing a polyamic acid as a polyimide precursor by reacting a diamine with an acid dianhydride in a solvent and imidizing the polyamic acid by dehydration cyclization is preferable.
  • a polyimide solution can be obtained by adding an imidization catalyst and a dehydrating agent to a polyamic acid solution and dehydrating and cyclizing the polyamic acid.
  • a polyimide solution is mixed with a polyimide poor solvent to precipitate a polyimide resin, which is then subjected to solid-liquid separation to obtain a polyimide resin.
  • the polyamic acid solution is obtained by reacting the acid dianhydride with the diamine in the solvent.
  • a diamine and an acid dianhydride as raw materials and an organic solvent capable of dissolving the polyamic acid as a polymerization product can be used without any particular limitation.
  • organic solvent used for the polymerization of polyamic acid include urea solvents such as methyl urea and N, N-dimethylethyl urea; sulfone solvents such as dimethyl sulfoxide, diphenyl sulfone and tetramethyl sulfone; N, N-dimethyl Amide solvents such as acetamide, N, N-dimethylformamide, N, N'-diethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, hexamethylphosphoric triamide; alkyl halide solvents such as chloroform and dichloromethane Aromatic hydrocarbon solvents such as benzene and toluene, and ether solvents such as tetrahydrofuran, 1,3-dioxolan, 1,4-dioxane, dimethyl ether, diethyl ether and p-cresol methyl ether.
  • urea solvents such
  • N, N-dimethylacetamide, N, N-dimethylformamide or N-methylpyrrolidone is preferably used because of its excellent polymerization reactivity and polyamic acid solubility.
  • the solid content concentration of the polyamic acid solution (the charged concentration of the diamine and the acid dianhydride in the reaction solution) is usually about 5 to 40% by weight, preferably 10 to 30% by weight.
  • the acid dianhydride and the diamine are preferably used in equimolar amounts (95: 105 to 105: 95). When either component is excessive, the molecular weights of the polyamic acid and the polyimide do not become sufficiently large, and the mechanical strength of the polyimide film may decrease.
  • the reaction temperature is not particularly limited, but is preferably from 0 ° C to 80 ° C, more preferably from 20 ° C to 45 ° C.
  • the temperature is 80 ° C. or lower, a decrease in the degree of polymerization due to ring opening of the acid dianhydride component can be suppressed.
  • the order of adding the diamine and the acid dianhydride to the organic solvent (reaction system) in the polymerization of the polyamic acid is not particularly limited.
  • a diamine may be dissolved in an organic solvent or dispersed in a slurry to form a diamine solution, and an acid dianhydride may be added to the diamine solution.
  • a diamine may be added to a solution of an acid dianhydride in an organic polar solvent.
  • Plural kinds of acid dianhydrides and diamines may be added at once, or may be added in plural times.
  • the diamine and the acid dianhydride may be added in a solid state, or may be added in a state of being dissolved in an organic solvent or dispersed in a slurry state.
  • Formation of block structure By adjusting the order of addition of the monomers, various physical properties of the obtained polyimide can be controlled. For example, by reacting a specific acid dianhydride and a diamine first among a plurality of acid dianhydrides and diamines, a structural unit (repeating unit) in which a specific acid dianhydride and a diamine are bonded is continuous. A segment (block structure) is formed. After forming the block structure, the diamine and the remainder of the acid dianhydride are added to further proceed the reaction, whereby a polyamic acid having a block structure in the molecule is obtained. By imidizing this polyamic acid, a polyimide containing, in the molecular structure, a block in which a structural unit in which a specific diamine and a specific acid dianhydride are bonded together is obtained.
  • an acid dianhydride represented by the general formula (1) for example, by reacting an acid dianhydride represented by the general formula (1) with a fluoroalkyl-substituted benzidine in an organic solvent, the acid dianhydride represented by the general formula (1) and the fluoroalkyl-substituted benzidine are reacted with each other.
  • Polyimide containing this block structure similar to polyimide where the sequence of monomers is random, shows excellent solubility in low boiling solvents such as dichloromethane, and, compared to the case where the sequence of monomers is random, the polyimide film Mechanical strength (especially elastic modulus) tends to increase.
  • TAHMBP as the acid dianhydride particle component
  • TFMB as the diamine component
  • the number of continuous structural units (repeating units) in the block is preferably 5 or more, more preferably 7 or more.
  • the continuous number of repeating units of the block can be adjusted, for example, by the molar ratio of the charged amounts of the acid dianhydride and the diamine. As the charged amounts of the acid dianhydride and the diamine are closer to 1: 1 in molar ratio, the number of repeating units tends to increase.
  • the charged amount of the diamine at the time of block formation is preferably 0.75 to 1.25 times the molar amount of the charged amount of the acid dianhydride. 0.8 to 1.2 times is more preferable, and 0.85 to 1.15 times is more preferable.
  • the depolymerization can be suppressed by setting the charged amount of the diamine larger than the charged amount of the acid dianhydride to form a block having an amine at the terminal.
  • the charged amount of the diamine at the time of block formation is 1.01 to less than the charged amount of the acid dianhydride. It is preferably 1.25 times, more preferably 1.03 to 1.2 times, and still more preferably 1.05 to 1.15 times.
  • the remaining acid dianhydride and diamine may be added simultaneously or sequentially.
  • An oligomer (solution) obtained by reacting the remaining acid dianhydride with the diamine may be added to the prepolymer solution.
  • an acid dianhydride having low solubility in a solvent for polymerization is reacted with a diamine to prepare an acid anhydride-terminated oligomer (solution), and a solution of an amine-terminated prepolymer and a solution of an acid-terminated oligomer are prepared. May be mixed and reacted.
  • acid dianhydrides have lower solubility in polymerization solvents than diamines, and include bis (trimellitic anhydride) esters represented by the general formula (1), fluorine-containing aromatic acid dianhydrides such as 6FDA, BPDA, etc. Is not sufficiently soluble in a polymerization solvent such as DMF. If a low-soluble acid dianhydride is added to the prepolymer solution, it may take a long time for the acid dianhydride to dissolve and react. Also, if the insoluble acid dianhydride remains in the reaction system, the molecular weight is not sufficiently increased, the mechanical strength of the polyimide is inferior, or unexpected viscosity change due to the insoluble acid dianhydride may occur. May occur.
  • An acid anhydride-terminated oligomer solution is prepared by reacting a low-solubility acid dianhydride with a diamine in advance, and the oligomer solution is mixed with an amine-terminated prepolymer and reacted to form a reaction system. It can be uniform. By using the oligomer solution, the reaction time can be reduced as compared with the case where an acid dianhydride is added to the reaction system. In addition, the use of the oligomer solution can suppress a decrease in molecular weight and an unexpected change in viscosity due to an insoluble acid dianhydride.
  • a method of preparing a polyamic acid solution by mixing a solution of an amine-terminated prepolymer and a solution of an acid-terminated oligomer includes: (1) reacting a diamine with an acid dianhydride to prepare an amine-terminated polyamic acid (prepolymer) (2) reacting a diamine with an acid dianhydride to synthesize an acid anhydride-terminated polyamic acid (oligomer); and (3) reacting the amine-terminated prepolymer obtained in step (1).
  • the total amount of the acid dianhydride (the sum of the charged amount of the acid dianhydride in the step (1) and the charged amount of the acid dianhydride in the step (2)) is the total amount of the diamine (the diamine in the step (1)).
  • the molar ratio is preferably 0.95 to 1.05 times the charged amount and the total amount of the diamine charged in the step (2).
  • the amount of the acid dianhydride to be charged in the step (2) is preferably 0.001 to 0.25 times the molar amount of the total amount of the acid dianhydride.
  • Step (1) In the preparation of the prepolymer, an amine-terminated polyamic acid (prepolymer) is obtained by setting the charged amount of the diamine to be larger than the charged amount of the acid dianhydride.
  • the amount of the acid dianhydride used in the preparation of the prepolymer is preferably 0.9 to 0.99 times, more preferably 0.93 to 0.98 times the molar amount of the diamine.
  • the acid dianhydride and the diamine may be added to the solvent at once, or may be added in multiple portions. As described above, the specific acid dianhydride and the diamine may be reacted first to form a block in which predetermined structural units are continuous, and then the remaining acid dianhydride and the diamine may be added.
  • Step (2) In the preparation of the oligomer, a polyamic acid (oligomer) having an acid anhydride terminal is obtained by reacting an excess amount of an acid dianhydride with a diamine.
  • the amount of the acid dianhydride used in the preparation of the oligomer is preferably 1.1 times or more, more preferably 1.3 times or more, and even more preferably 1.5 times or more, in terms of the molar amount of the diamine.
  • the charge amount of the acid dianhydride may be at least twice the charge amount of the diamine, but if the molar ratio exceeds twice, unreacted acid dianhydride tends to remain. Therefore, the charged amount of the acid dianhydride in the preparation of the oligomer is preferably 2.1 times or less, more preferably 2 times or less in terms of a molar ratio with respect to the charged amount of the diamine.
  • step (3) the reaction between the prepolymer and the oligomer proceeds by mixing the solution of the amine-terminated prepolymer and the solution of the acid-terminated oligomer.
  • the amount of the acid dianhydride used for the preparation of the oligomer (step (2)) is based on the total amount of the acid dianhydride (the sum of the acid dianhydride used for preparing the prepolymer and the acid dianhydride used for preparing the oligomer).
  • the molar ratio is preferably 0.001 to 0.25 times, more preferably 0.003 to 0.2 times, and still more preferably 0.005 to 0.18 times.
  • the amount of the acid dianhydride used for the preparation of the oligomer is 0.008 times or more, 0.01 times or more, 0.015 times or more, or 0.02 times or more, based on the total amount of the acid dianhydrides. And may be 0.15 times or less, 0.12 times or less, 0.1 times or less, or 0.08 times or less.
  • Polyimide is obtained by dehydration cyclization of polyamic acid.
  • a chemical imidization method in which a dehydrating agent and an imidization catalyst are added to a polyamic acid solution is suitable.
  • the polyamic acid solution may be heated.
  • a tertiary amine is used as the imidation catalyst.
  • the tertiary amine is preferably a heterocyclic tertiary amine.
  • Specific examples of the heterocyclic tertiary amine include pyridine, picoline, quinoline, isoquinoline and the like.
  • carboxylic anhydride is used, and specific examples thereof include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride.
  • the amount of the imidation catalyst to be added is preferably 0.5 to 5.0 times, more preferably 0.7 to 2.5 times, and more preferably 0.8 to 2.0 times the molar equivalent of the amide group of the polyamic acid.
  • a 0 molar equivalent is more preferred.
  • the amount of the dehydrating agent to be added is preferably 0.5 to 10.0 times the molar equivalent of the amide group of the polyamic acid, more preferably 0.7 to 5.0 times the molar equivalent, and 0.8 to 3.0 times. Double molar equivalents are more preferred.
  • the polyimide solution obtained by imidizing the polyamic acid can be used as it is as a dope for film formation, but it is preferable to temporarily precipitate the polyimide resin as a solid.
  • impurities and residual monomer components generated during the polymerization of the polyamic acid, a dehydrating agent, an imidization catalyst, and the like can be washed and removed. Therefore, a polyimide film having excellent transparency and mechanical properties can be obtained.
  • the poor solvent is a poor solvent for the polyimide resin and is preferably miscible with the solvent in which the polyimide resin is dissolved, and examples thereof include water and alcohols.
  • alcohols include methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, triethylene glycol, 2-butyl alcohol, 2-hexyl alcohol, cyclopentyl alcohol, cyclohexyl alcohol, phenol, t-butyl alcohol, and the like.
  • Alcohols such as isopropyl alcohol, 2-butyl alcohol, 2-pentyl alcohol, phenol, cyclopentyl alcohol, cyclohexyl alcohol, and t-butyl alcohol are preferable, and isopropyl alcohol is particularly preferable, since ring opening of the polyimide hardly occurs.
  • Polyimide film A polyimide solution in which a polyimide resin is dissolved in an organic solvent (a dope for film formation) is applied on a substrate, and the solvent is dried and removed, whereby a polyimide film can be produced.
  • the organic solvent for dissolving the polyimide resin is not particularly limited as long as it is soluble in the above-mentioned polyimide resin. Solvents are easily removed by drying, and low-boiling solvents such as dichloromethane, methyl acetate, tetrahydrofuran, acetone, and 1,3-dioxolan are preferred, since dichloromethane can reduce the amount of residual solvent in the polyimide film, and dichloromethane is particularly preferred. preferable. As described above, by setting the composition ratio of the acid dianhydride component and the diamine component within a predetermined range, a polyimide having high solubility even in a low boiling point solvent such as dichloromethane can be obtained.
  • the solid content concentration of the polyimide solution may be appropriately set according to the molecular weight of the polyimide, the thickness of the film, the film-forming environment, and the like.
  • the solid concentration is preferably 5 to 30% by weight, more preferably 8 to 20% by weight.
  • the polyimide solution may contain resin components and additives other than polyimide.
  • the additives include an ultraviolet absorber, a crosslinking agent, a dye, a surfactant, a leveling agent, a plasticizer, and fine particles.
  • the polyimide resin contains an acid dianhydride having a biphenyl structure as an acid dianhydride component, it has excellent light resistance (ultraviolet durability) even when no ultraviolet absorber is used.
  • a polyimide film is obtained.
  • the content of the polyimide resin based on 100 parts by weight of the solid content of the polyimide solution (film-forming dope) is preferably 60 parts by weight or more, more preferably 70 parts by weight or more, and further preferably 80 parts by weight or more.
  • a known method can be used as a method of applying the polyimide solution to the base material, and for example, it can be applied by a bar coater or a comma coater.
  • a substrate on which the polyimide solution is applied a glass substrate, a metal substrate such as SUS, a metal drum, a metal belt, a plastic film, or the like can be used. From the viewpoint of improving productivity, it is preferable to use an endless support such as a metal drum or a metal belt, or a long plastic film as the support, and to produce the film by roll-to-roll.
  • a material that does not dissolve in the solvent for the film-forming dope may be appropriately selected.
  • the plastic material polyethylene terephthalate, polycarbonate, polyacrylate, polyethylene naphthalate, or the like is used.
  • the heating temperature is not particularly limited, but is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower, from the viewpoint of suppressing coloring.
  • the heating temperature may be increased stepwise.
  • the impression of the solvent may be made under reduced pressure. Since the above polyimide resin is soluble in a low boiling point solvent such as dichloromethane, the residual solvent can be easily reduced even by heating at 200 ° C. or lower.
  • the residual solvent amount of the polyimide film (the mass of the solvent contained in the film with respect to the mass of the film) is preferably 1.5% or less, more preferably 1.0% or less. When the amount of the residual solvent is in this range, the mechanical strength of the polyimide film tends to be improved.
  • the thickness of the polyimide film is not particularly limited, and may be appropriately set according to the application.
  • the thickness of the polyimide film is, for example, about 5 to 100 ⁇ m.
  • the thickness of the polyimide film is preferably 30 ⁇ m or more, more preferably 35 ⁇ m or more, and even more preferably 40 ⁇ m or more.
  • the polyimide film of the present invention has excellent transparency even when the film thickness is as thick as 40 ⁇ m or more. From the viewpoint of maintaining excellent transparency, the thickness of the polyimide film is preferably equal to or less than 90 ⁇ m, and more preferably equal to or less than 85 ⁇ m.
  • the yellowness (YI) of the polyimide film is preferably 3.0 or less, more preferably 2.5 or less.
  • the film can be suitably used as a film for a display or the like without coloring the film yellow.
  • the total light transmittance of the polyimide film is preferably 80% or more, more preferably 85% or more.
  • the light transmittance of the polyimide film at a wavelength of 400 nm is preferably 40% or more.
  • the tensile modulus of the polyimide film is preferably 3.0 GPa or more, more preferably 3.5 GPa or more.
  • the pencil hardness of the polyimide film is preferably HB or more, and more preferably F or more, from the viewpoint of preventing the film from being damaged due to the contact with the roll during the roll-to-roll conveyance or the contact between the films during the winding.
  • the pencil hardness of the polyimide film is preferably H or more.
  • the polyimide film of the present invention has low yellowness, high transparency, and is suitably used as a display material. Further, since the surface hardness is high, it can be applied to a surface member such as a cover window of a display.
  • the difference ( ⁇ YI) in yellowness of the polyimide film before and after ultraviolet irradiation is preferably 10 or less, more preferably 5 or less.
  • the polyimide film of the present invention is suitably used as a display material because of its low yellowness and high transparency.
  • a polyimide film having high mechanical strength can be applied to a surface member such as a cover window of a display.
  • the polyimide film of the present invention may be provided with an antistatic layer, an easily adhesive layer, a hard coat layer, an antireflection layer, and the like on the surface.
  • dichloromethane solubility After adding 2 g of polyimide resin to 8 g of dichloromethane and stirring at room temperature for 12 hours, the presence or absence of undissolved matter was visually checked. Those with no residual were soluble in dichloromethane (DCM), those with no resin dissolved, those in a gel state, and those with residual dissolved were insoluble in DCM.
  • Total light transmittance and haze It was measured by a method described in JIS K7361-1 and JIS K7136 using a haze meter “HZ-V3” manufactured by Suga Test Instruments.
  • Amount of residual solvent Using about 8.9 g of 1,3-dioxolane as a solvent, about 0.1 g of a polyimide film and about 1 g of diethylene glycol butyl methyl ether (DEGBME) as an internal standard substance were dissolved to prepare a measurement sample. The solution was measured using a gas chromatograph (GC, manufactured by Shimadzu Corporation), and the amount of residual solvent (dichloromethane, methyl ethyl ketone, etc.) contained in the polyimide film was determined from the GC peak area and the prepared concentration.
  • GC gas chromatograph
  • TMHQ p-phenylene bis (trimellitic acid monoester anhydride)
  • TAHMBP bis (1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid) 2,2 ′, 3,3 ′, 5,5′-hexamethylbiphenyl-4,4′-diyl 6FDA: 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanoic dianhydride
  • BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic acid
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • 3′-DDS 3,3′-diaminodiphenyl sulfone
  • Example 1 (Preparation of polyamic acid solution)
  • TFMB a separable flask
  • 6.897 g (11.2 mmol) of TAHMBP and 5.059 g (11.4 mmol) of 6FDA were added, and the mixture was stirred for 12 hours.
  • a polyamic acid solution having a solid concentration of 18% and a viscosity of 244 poise at 23 ° C. was added. Obtained.
  • the polyimide resin was dissolved in dichloromethane (hereinafter referred to as “DCM”) to obtain a polyimide solution having a solid content of 10% by weight.
  • DCM dichloromethane
  • Example 2 and 3 The thickness of the polyimide film was changed as shown in Table 1 by changing the coating thickness of the polyimide solution on the glass plate. Otherwise, the procedure of Example 1 was followed to prepare a polyimide film.
  • Examples 4 to 15, Comparative Examples 1 to 3 A polyamic acid was prepared in the same manner as in Example 1, except that the types and the charged amounts (molar ratios) of the acid dianhydride and the diamine were changed as shown in Tables 1 and 2. Using the obtained polyamic acid, imidation, isolation of a polyimide resin, preparation of a polyimide solution, and production of a polyimide film were performed.
  • Example 4 A polyamic acid solution was prepared in the same manner as in Example 1, except that the types and the charged amounts (molar ratios) of the acid dianhydride and the diamine were changed as shown in Table 2. Using the obtained polyamic acid, imidation and isolation of a polyimide resin were performed. Since the obtained polyimide resin was insoluble in DCM, the polyimide resin was dissolved in methyl ethyl ketone (MEK) to prepare a polyimide solution having a solid content of 10%. Using this polyimide solution, a polyimide film was produced in the same manner as in Example 1.
  • MEK methyl ethyl ketone
  • Example 5 A polyamic acid solution (solids concentration 18%, viscosity at 23 ° C.) in the same manner as in Example 1 except that the types of the acid dianhydride and the diamine and the charged amounts (molar ratios) were changed as shown in Table 2. Was 568 poise). DMF was added to the obtained polyamic acid solution to dilute it, an imidization catalyst and a dehydrating agent were added, and the mixture was stirred at 80 ° C. for 4 hours, and then cooled to room temperature to be solidified. After adding 420 g of IPA thereto, suction filtration was performed using a Kiriyama funnel.
  • the obtained solid was washed three times with 400 g of IPA, and then dried in a vacuum oven set at 120 ° C. for 8 hours to obtain a polyimide resin. Since this polyimide resin did not dissolve in DCM, it was not formed into a film.
  • Tables 1 and 2 show the compositions (molar ratios of the charged amounts of the acid dianhydride and the diamine in the polymerization of polyamic acid), the solubility in DCM, and the evaluation results of the polyimide films of the above Examples and Comparative Examples. It is shown in FIG.
  • Example 5 and Example 6 From the comparison between Example 5 and Example 6, and the comparison between Example 9 and Example 12, Examples 6 and 9 in which a part of 6FDA was replaced with BPDA were replaced with Examples 5 and 9. It can be seen that the tensile modulus is improved.
  • Comparative Example 7 in which the entire amount of TAHMBP in Example 1 was replaced with BPDA, the polyimide resin did not show solubility in dichloromethane. Therefore, as the acid dianhydride, a bis (trimellitic anhydride) ester such as TAHMBP was used. It can be seen that the solubility of the polyimide resin tends to be improved.
  • the polyimide resin of Comparative Example 5 having a small content of # 6FDA also did not show solubility in dichloromethane.
  • Comparative Example 3 in which only 6FDA was used as the acid dianhydride, the polyimide resin exhibited solubility in dichloromethane and a highly transparent polyimide film was obtained, but the mechanical strength was insufficient.
  • the polyimide films of Examples using dichloromethane (boiling point: 40 ° C.) as a solvent for the film-forming dope were all residual solvents. The amount was 1.0% or less.
  • the polyimide film of Comparative Example 4 using methyl ethyl ketone (boiling point: 80 ° C.) as the organic solvent for the film-forming dope the residual solvent amount of the film produced under the same drying conditions as in the example was as high as 4.4%. In order to reduce the amount of the residual solvent, drying for a longer time was required, and the productivity of the film was not sufficient.
  • Example 1 had low yellowness even at a thickness of about 80 ⁇ m, and exhibited excellent transparency.
  • the yellowness of the polyimide film of Comparative Example 1 using only TAHMBP as the acid dianhydride was 3.1, and even in Comparative Example 2 in which the thickness was reduced to about 50 ⁇ m, the yellowness exceeded 2.5.
  • I was In Comparative Examples 1 and 2, the TAHMBP content is large, and the influence of the intramolecular and / or intermolecular charge transfer of the polyimide is considered to be the cause of the coloring.
  • the polyimide containing the fluoroalkyl-substituted benzidine as the diamine has a solubility in dichloromethane. It can be seen that the film is much higher, the amount of the residual solvent can be easily reduced, and a film having high mechanical strength and high transparency can be formed.
  • Example 1 The polyimide resin prepared in Example 1, Example 11, Example 12, or Example 15 was dissolved in dichloromethane to prepare a polyimide solution having a solid content concentration of 17%, and a polyimide film having a thickness of about 50 ⁇ m was prepared. A 10% portion of each of both ends in the width direction of the obtained polyimide film is cut off, and a region (150 mm) of 80% of a center portion in the width direction is cut in a width direction using a continuous thickness gauge “TOF5R” manufactured by Yamabun Electric. The thickness variation was measured.
  • TOF5R continuous thickness gauge
  • the thickness of the film using the polyimide resin of Example 1 was 48 ⁇ 0.8 ⁇ m, the thickness of the film using the polyimide resin of Example 11 was 4 ⁇ 0.9 ⁇ m, and the thickness of the film using the polyimide resin of Example 12.
  • the thickness of the film using the polyimide resin of Example 15 was 40 ⁇ 1.0 ⁇ m, and the thickness variation was within ⁇ 1.0 ⁇ m in each case.
  • Comparative Example 8 100 parts by weight of the polyimide resin prepared in Comparative Example 3 was dissolved in 900 parts by weight of dichloromethane to prepare a polyimide solution having a solid content of 10% by weight. To this solution, 2.5 parts by weight of "Tinuvin 1600" manufactured by BASF was added as an ultraviolet absorber. Using this solution, a polyimide film was produced in the same manner as in Comparative Example 3.
  • Table 3 shows the composition of the polyimide resin, the amount of the ultraviolet absorber added, and the evaluation results of Comparative Example 8 along with the evaluation results of Examples 1, 6, 7, 10, 11, 12, 15, and Comparative Example 3. .
  • the polyimide film of Example 10 using only TMHQ and TFMB as the diacid dianhydride component has a ⁇ YI of more than 20, and does not have sufficient light resistance. From the comparison of Examples 11, 12, and 15 in which a part of TMHQ was replaced with BPDA which is an acid dianhydride containing a biphenyl structure, it can be seen that as the content of BPDA increases, ⁇ YI decreases and light resistance improves. I understand.
  • Example 1 using only TAHMBP and TFMB as the acid dianhydride component exhibited a small ⁇ YI and excellent light resistance despite not containing BPDA as the acid dianhydride component. This is considered to be because TAHMBP has a biphenyl structure.
  • the polyimide film of Example 7 using TAHMBP and TMHQ together had a larger ⁇ YI than Example 1, but showed sufficiently excellent light resistance as compared with Example 10. In Example 6 in which part of TAHMBP in Example 1 was replaced with BPDA, ⁇ YI was smaller than in Example 1, and further excellent light resistance was exhibited.
  • Example 16 A separable flask was charged with 5.7 g (17.9 mmol) of TFMB and 103 g of DMF, and stirred under a nitrogen atmosphere to obtain a diamine solution. Thereto, 10.1 g (16.3 mmol) of TAHMBP was added and stirred for 10 hours.
  • the charged amount of the diamine (TFMB) is about 1.10 mole times the charged amount of the acid dianhydride (TAHMBP), and the average value of the continuous number of the repeating units in which TFMB and TAHMBP are bonded is about 11 It becomes.
  • Example 17 A separable flask was charged with 7.6 g (23.9 mmol) of TFMB and 103 g of DMF, and stirred under a nitrogen atmosphere to obtain a diamine solution. Thereto, 9.6 g (21.7 mmol) of 6FDA was added, and the mixture was stirred for 10 hours. Further, 2.1 g (6.5 mmol) of TAHFMB, 3.2 g (13.2 mmol) of 3,3′-DDS, and 13.4 g (21.6 mmol) of TAHMBP were added and stirred for 5 hours to obtain a polyamic acid solution.
  • imidation, isolation of a polyimide resin, preparation of a polyimide solution, and production of a polyimide film were performed in the same manner as in Example 1.
  • Example 18 2.223 g (6.95 mmol) of TFMB and 72.3 g of DMF were charged into a separable flask, and stirred under a nitrogen atmosphere to obtain a diamine solution. 3.777 g (6.11 mmol) of TAHMBP was added thereto, and the mixture was stirred for 10 hours.
  • the charged amount of the diamine (TFMB) is about 1.13 mole times the charged amount of the acid dianhydride (TAHMBP), and the average value of the continuous number of the repeating units in which TFMB and TAHMBP are bonded is about 9 It becomes.
  • Example 16 in which TAHMBP and TFMB were first reacted to form a block structure, the tensile modulus of the polyimide film was higher than that in Example 1 (random structure) in which all monomers were charged and reacted. Had improved. It can be seen from the comparison between Example 6 (random structure) and Example 18 (block structure) that there is a similar tendency. On the other hand, in Example 17 in which 6FDA and TFMB were first reacted to form a block structure, the tensile modulus and pencil hardness of the polyimide film were lower than in Example 1.
  • a polyimide film having higher mechanical strength can be obtained by reacting a monomer component having high rigidity first to form a block structure.
  • Example 20 In a separable flask, 48.884 g (152.7 mmol) of TFMB, 16.250 g (65.4 mmol) of 3,3′-DDS, and 584.1 g of DMF were charged, and the mixture was stirred under a nitrogen atmosphere to remove the diamine solution. Obtained. Thereto, 48.452 g (109.1 mmol) of 6FDA, 16.05 g (54.5 mmol) of BPDA, and 22.995 g (50.2 mmol) of TMHQ were added, and the mixture was stirred for 12 hours. Thereafter, when 0.501 g (1.10 mmol) of TMHQ was added and stirred, it took 10 hours for the TMHQ to dissolve and the increase in viscosity to be saturated.
  • Example 19 Using the polyamic acid solution obtained in Example 19 and the polyamic acid solution obtained in Example 20, in the same manner as in Example 1, imidation, isolation of a polyimide resin, preparation of a polyimide solution, and a polyimide film was prepared.
  • imidation, isolation of a polyimide resin, preparation of a polyimide solution, and a polyimide film was prepared.
  • high transparency and excellent mechanical strength were exhibited as in Example 1, and a clear difference was observed in the characteristics of the polyimide film between Example 19 and Example 20. Did not.
  • Example 20 it took 10 hours from the addition of the TMHQ powder to the completion of the reaction (saturation of the increase in viscosity), whereas in Example 19, the reaction was completed by mixing the prepolymer and the oligomer. Time to two hours. From these results, by preparing an oligomer solution by pre-reacting the acid dianhydride with the diamine and adding the oligomer solution to the polymerization system, the time required for preparing the polyamic acid can be reduced, and the production efficiency can be reduced. It can be seen that it can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

ポリイミド樹脂は、酸二無水物由来構造とジアミン由来構造とを有し、酸二無水物として、一般式(1)で表される酸二無水物およびフッ素含有芳香族酸二無水物を含み、ジアミンとしてフルオロアルキル置換ベンジジンを含む。一般式(1)において、nは1以上の整数であり、R~Rはそれぞれ独立に水素原子、炭素原子数1~20のアルキル基、または炭素原子数1~20のパーフルオロアルキル基である。酸二無水物全量100mol%に対して、一般式(1)で表される酸二無水物の量は、10~65mol%が好ましく、フッ素含有芳香族酸二無水物の量は、30~80mol%が好ましい。

Description

ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法
 本発明は、ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法に関する。
 近年、エレクトロニクスデバイスの急速な進歩に伴い、デバイスの薄型化や軽量化、さらにはフレキシブル化が要求されている。特に、高い耐熱性や、高温での寸法安定性、高機械強度が求められる用途では、基板やカバーウィンドウ等に用いられているガラスの代替材料としてポリイミドフィルムの適用が検討されている。
 一般的なポリイミドは、黄色または褐色に着色しており、有機溶媒に対する溶解性を示さない。有機溶媒に不溶のポリイミドのフィルム化には、ポリイミド前駆体であるポリアミド酸溶液を基材上に塗布し、加熱により溶媒を除去すると共に、ポリアミド酸を脱水環化してイミド化する方法(熱イミド化)が採用されている。
 脂環式構造の導入、屈曲構造の導入、フッ素置換基の導入等により、ポリイミドに可視光の透明性および可溶性を付与できることが知られている。例えば、特許文献1には、エステル基含有モノマーを用いたポリイミドが、優れた透明性と耐熱性を併せ持ち、かつ幅広い溶剤に可溶である旨が記載されている。
 このような有機溶媒に可能のポリイミドは、ポリイミド樹脂を有機溶剤に溶解した溶液(ポリイミド溶液)を基材上に塗布した後、溶媒を乾燥させる方法によりフィルム化が可能である。ポリイミド溶液を用いる方法により、透明で着色の少ないポリイミドフィルムが得られるが、熱イミド化法に比べてポリイミドフィルムに溶媒が残存しやすく、機械強度低下の原因となり得る。一方、残存溶媒を除去するために高温・長時間の加熱を行うと、ポリイミドフィルムが着色し、透明性が低下する。
 特許文献2には、所定の脂環式モノマーを用いたポリイミドが開示されており、ジクロロメタン等の低沸点溶媒に可溶であることから、残存溶媒量の少ないポリイミドフィルムを作製可能であることが記載されている。
WO2014/046180号国際公開パンフレット 特開2016-132686号公報
 本発明者らの検討によれば、特許文献1のポリイミド樹脂を用いたポリイミドフィルムは、厚みが40μm以上と厚い場合は、黄色度が高く透明性が不十分であった。特許文献2に記載されているような脂環式モノマーを用いたポリイミド(およびその前駆体としてのポリアミド酸)は、重合度が低くなりやすい。低重合度(低分子量)のポリイミド樹脂を用いたポリイミドフィルムは、弾性率や引張強度等の機械強度が不十分となる場合がある。
 本発明は、ジクロロメタン等の低沸点溶媒に溶解し、かつ透明性および機械強度に優れるポリイミド樹脂およびポリイミドフィルムの提供を目的とする。
 本発明の一実施形態にかかるポリイミド樹脂は、酸二無水物由来構造とジアミン由来構造とを有し、酸二無水物として、一般式(1)で表される酸二無水物およびフッ素含有芳香族酸二無水物を含み、ジアミンとしてフルオロアルキル置換ベンジジンを含む。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)において、nは1以上の整数であり、R~Rはそれぞれ独立に水素原子、炭素原子数1~20のアルキル基、または炭素原子数1~20のパーフルオロアルキル基である。
 一般式(1)で表される酸二無水物の量は、酸二無水物全量100mol%に対して、10~65mol%が好ましい。フッ素含有芳香族酸二無水物の量は、酸二無水物全量100mol%に対して、30~80mol%が好ましい。フルオロアルキル置換ベンジジンの量は、ジアミン全量100mol%に対して、40~100mol%が好ましい。
 一般式(1)で表される酸二無水物の具体例として、式(2)で表される化合物、および式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 フッ素含有芳香族酸二無水物の具体例として、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物が挙げられる。フルオロアルキル置換ベンジジンの具体例として、2,2’-ビス(トリフルオロメチル)ベンジジンが挙げられる。
 ポリイミドは、上記以外の酸二無水物成分やジアミン成分を含んでいてもよい。上記以外の酸二無水物の例として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が挙げられる。上記以外のジアミンの例として、3,3’-ジアミノジフェニルスルホンが挙げられる。
 ポリイミドは、酸二無水物成分として、ビフェニル構造を有する酸二無水物を含んでいてもよい。一実施形態のポリイミドは、酸二無水物全量100mol%に対して、ビフェニル構造を有する酸二無水物を10mol%以上含み、かつ、ビフェニル構造を有する酸二無水物、一般式(1)で表される酸二無水物、およびフッ素含有芳香族酸二無水物を合計80mol%以上含む。
 ビフェニル構造を有する酸二無水物の具体例として、上記の一般式(2)で表される化合物および3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が挙げられる。
 ポリイミドにおけるモノマー成分(酸二無水物由来構造およびジアミン由来構造)の並びは、ランダムでもよくブロックでもよい。例えば、ポリイミドは、一般式(1)で表される酸二無水物とフルオロアルキル置換ベンジジンとが結合した繰り返し単位が連続しているブロックを分子構造内に含んでいてもよい。例えば、一般式(1)で表される酸二無水物とフルオロアルキル置換ベンジジンとを溶液中で反応させることにより、ブロック構造を形成できる。
 ポリイミド樹脂を溶媒に溶解してポリイミド溶液を調製し、ポリイミド溶液を基材上に塗布し、溶媒を除去することにより、ポリイミドフィルムが得られる。ポリイミドを溶解する溶媒としては、ジクロロメタン等の低沸点溶媒が好ましい。
 ポリイミドフィルムの厚みは40μm以上であってもよい。ポリイミドフィルムの黄色度は2.5以下であってもよく、引張弾性率は3.5GPa以上であってもよく、鉛筆硬度はH以上であってもよい。
 本発明のポリイミド樹脂は、ジクロロメタン等の低沸点溶媒に可溶であり、残存溶媒の低減に高温での加熱を必要としないため、透明性の高いポリイミドフィルムが得られる。本発明のポリイミドフィルムは、機械強度が高く、膜厚が大きい場合であっても透明性が高いため、ディスプレイ用の基板材料や、カバーウィンドウ材料等として使用できる。
[ポリイミド樹脂]
 ポリイミドは、一般に、テトラカルボン酸二無水物(以下、単に「酸二無水物」と記載する場合がある)とジアミンとの反応により得られるポリアミド酸を脱水環化することにより得られる。すなわち、ポリイミドは酸二無水物由来構造とジアミン由来構造とを有する。本発明のポリイミド樹脂は、酸二無水物成分として、エステル基含有酸二無水物(ビス無水トリメリット酸エステル)およびフッ素含有芳香族酸二無水物を含み、ジアミン成分として、フルオロアルキル置換ベンジジンを含む。
<酸二無水物>
 本発明のポリイミドは、酸二無水物として、下記一般式(1)で表されるエステル基含有酸二無水物(ビス無水トリメリット酸エステル)、およびフッ素含有芳香族酸二無水物を含む。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)において、nは1以上の整数であり、R~Rはそれぞれ独立に、水素原子、炭素原子数1~20のアルキル基、または炭素原子数1~20のパーフルオロアルキル基である。
(エステル基含有酸二無水物)
 酸二無水物成分の全量100mol%のうち、上記一般式(1)で表される酸二無水物の含有量は、10~65mol%であり、15~60mol%が好ましく、20~50mol%がより好ましい。一般式(1)で表される酸二無水物の含有量が10mol%以上であれば、ポリイミドフィルムの鉛筆硬度や弾性率が高くなる傾向があり、一般式(1)で表される酸二無水物の含有量が65mol%以下であれば、ポリイミドフィルムの透明性が高くなる傾向がある。また、一般式(1)で表される酸二無水物の含有量が65mol%以下であれば、ポリアミド酸の重合反応や溶液でのイミド化反応の際に、著しい増粘やゲル化等を抑制できる。
 一般式(1)で表される酸二無水物は、無水トリメリット酸と芳香族ジオールとのエステルで(ビス無水トリメリット酸エステル)ある。芳香族ジオールがヒドロキノン類である場合、一般式(1)においてn=1であるビス無水トリメリット酸エステルが得られる。芳香族ジオールがビフェノール類である場合、一般式(1)においてn=2であるビス無水トリメリット酸エステルが得られる。
 一般式(1)における置換基R~Rは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、または炭素数1~20のパーフルオロアルキル基である。nが2以上の場合、それぞれのベンゼン環に結合している置換基R~Rは、同一でもよく、異なっていてもよい。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。パーフルオロアルキル基の具体例としては、トリフルオロメチル基等が挙げられる。
 一般式(1)において、nは1または2が好ましく、R~Rは、それぞれ独立に、水素原子、メチル基またはトリフルオロメチル基であることが好ましい。一般式(1)においてn=2である酸二無水物の好ましい例としては、下記の式(2)で表されるビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’-ジイル(以下「TAHMBP」と記載)が挙げられる。一般式(1)においてn=1である酸二無水物の好ましい例としては、下記の式(3)で表されるp-フェニレンビス(トリメリット酸モノエステル酸無水物)(以下「TMHQ」と記載)が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 酸二無水物として、これらのビス無水トリメリット酸エステルを含むポリイミドは、ジクロロメタン等の低沸点ハロゲン化アルキルに対して高い溶解性を示し、かつ、ポリイミドフィルムが高い透明性および機械強度を示す傾向がある。式(2)で表されるTAHMBPは、剛直性の高いビフェニル骨格を有しており、かつ、メチル基の立体障害によってビフェニルの2つのベンゼン環の間の結合がねじれてπ共役の平面性が低下するため、吸収端波長が短波長シフトして、ポリイミドの着色を低減できる。
(フッ素含有芳香族酸二無水物)
 酸二無水物成分の全量100mol%のうち、フッ素含有芳香族酸二無水物の含有量は、30~80mol%であり、35~75mol%が好ましく、45~75mol%がより好ましい。フッ素含有芳香族酸二無水物の含有量が30mol%以上であれば、ポリイミドフィルムの透明度が高くなる傾向があり、80mol%以下であれば、ポリイミドフィルムの鉛筆硬度や弾性率が高くなる傾向がある。
 フッ素含有芳香族酸二無水物の例としては、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物等が挙げられる。中でも2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物(以下「6FDA」と記載)が好ましい。
(他の酸二無水物)
 ジクロロメタン等の低沸点溶媒への溶解性を損なわず、かつ透明性や機械強度等の特性を損なわない範囲で、上記以外の酸二水物成分を併用してもよい。上記以外の酸二無水物の例としては、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,1’‐ビシクロヘキサン‐3,3’,4,4’テトラカルボン酸‐3,4:3’,4’‐二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、1,3-ビス[(3,4-ジカルボキシ)ベンゾイル]ベンゼン二無水物、1,4-ビス[(3,4-ジカルボキシ)ベンゾイル]ベンゼン二無水物、2,2-ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、2,2-ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、4,4’-ビス[4-(1,2-ジカルボキシ)フェノキシ]ビフェニル二無水物、4,4’-ビス[3-(1,2-ジカルボキシ)フェノキシ]ビフェニル二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}スルホン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}スルホン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}スルフィド二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}スルフィド二無水物、2,2-ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}-1,1,1,3,3,3-プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
 例えば、酸二無水物として、一般式(1)で表される酸二無水物およびフッ素含有芳香族酸二無水物に加えて、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下「BPDA」と記載)を用いることにより、ジクロロメタン等の低沸点溶媒への溶解性を保ちつつ、高弾性率と透明性を併せ持つポリイミドが得られる。酸二無水物成分の全量100mol%のうち、一般式(1)で表される酸二無水物およびフッ素含有芳香族酸二無水物以外の酸二無水物の含有量は、50mol%以下が好ましく、30mol%以下がより好ましい。換言すれば、酸二無水物成分の全量100mol%のうち、一般式(1)で表される酸二無水物およびフッ素含有芳香族酸二無水物の含有量の合計は、50mol%以上が好ましく、70mol%以上がより好ましい。
<ジアミン>
(フルオロアルキル置換ベンジジン)
 本発明のポリイミドは、ジアミン成分として、フルオロアルキル置換ベンジジンを含む。ジアミン成分の全量100mol%のうち、フルオロアルキル置換ベンジジンの含有量は、40~100mol%であり、50mol%以上が好ましく、60mol%以上がより好ましい。フルオロアルキル置換ベンジジンの含有量が40mol%以上であれば、ポリイミドフィルムの鉛筆硬度や弾性率が高くなる傾向がある。
 フルオロアルキル置換ベンジジンの例としては、2,2’-ジメチルベンジジン、2-フルオロベンジジン、3-フルオロベンジジン、2,3-ジフルオロベンジジン、2,5-ジフルオロベンジジン、2、6-ジフルオロベンジジン、2,3,5-トリフルオロベンジジン、2,3,6-トリフルオロベンジジン、2,3,5,6-テトラフルオロベンジジン、2,2’-ジフルオロベンジジン、3,3’-ジフルオロベンジジン、2,3’-ジフルオロベンジジン、2,2’,3-トリフルオロベンジジン、2,3,3’-トリフルオロベンジジン、2,2’,5-トリフルオロベンジジン、2,2’,6-トリフルオロベンジジン、2,3’,5-トリフルオロベンジジン、2,3’,6,-トリフルオロベンジジン、2,2’,3,3’-テトラフルオロベンジジン、2,2’,5,5’-テトラフルオロベンジジン、2,2’,6,6’-テトラフルオロベンジジン、2,2’,3,3’,6,6’-ヘキサフルオロベンジジン、2,2’,3,3’,5,5’、6,6’-オクタフルオロベンジジン、2-(トリフルオロメチル)ベンジジン、3-(トリフルオロメチル)ベンジジン、2,3-ビス(トリフルオロメチル)ベンジジン、2,5-ビス(トリフルオロメチル)ベンジジン、2、6-ビス(トリフルオロメチル)ベンジジン、2,3,5-トリス(トリフルオロメチル)ベンジジン、2,3,6-トリス(トリフルオロメチル)ベンジジン、2,3,5,6-テトラキス(トリフルオロメチル)ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,3’-ビス(トリフルオロメチル)ベンジジン、2,2’,3-ビス(トリフルオロメチル)ベンジジン、2,3,3’-トリス(トリフルオロメチル)ベンジジン、2,2’,5-トリス(トリフルオロメチル)ベンジジン、2,2’,6-トリス(トリフルオロメチル)ベンジジン、2,3’,5-トリス(トリフルオロメチル)ベンジジン、2,3’,6,-トリス(トリフルオロメチル)ベンジジン、2,2’,3,3’-テトラキス(トリフルオロメチル)ベンジジン、2,2’,5,5’-テトラキス(トリフルオロメチル)ベンジジン、2,2’,6,6’-テトラキス(トリフルオロメチル)ベンジジン等が挙げられる。
 中でも、ビフェニルの2位にフルオロアルキル基を有するフルオロアルキル置換ベンジジンが好ましく、2,2’-ビス(トリフルオロメチル)ベンジジン(以下「TFMB」と記載)が特に好ましい。ビフェニルの2位および2’位にフルオロアルキル基を有することにより、フルオロアルキル基の電子求引性によるπ電子密度の低下に加えて、フルオロアルキル基の立体障害によって、ビフェニルの2つのベンゼン環の間の結合がねじれてπ共役の平面性が低下するため、吸収端波長が短波長シフトして、ポリイミドの着色を低減できる。
(他のジアミン)
 ジクロロメタン等の低沸点溶媒への溶解性を損なわず、かつ透明性や機械強度等の特性を損なわない範囲で、上記以外のジアミンを併用してもよい。フルオロアルキル置換ベンジジン以外のジアミンの例としては、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノブチル)ポリジメチルシロキサン、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル、ビス(2-アミノメトキシ)エチル]エーテル、ビス[2-(2-アミノエトキシ)エチル]エーテル、ビス[2-(3-アミノプロトキシ)エチル]エーテル、1,2-ビス(アミノメトキシ)エタン、1,2-ビス(2-アミノエトキシ)エタン、1,2-ビス[2-(アミノメトキシ)エトキシ]エタン、1,2-ビス[2-(2-アミノエトキシ)エトキシ]エタン、エチレングリコールビス(3-アミノプロピル)エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、トリエチレングリコールビス(3-アミノプロピル)エーテル、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,2-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、trans-1,4-ジアミノシクロヘキサン、1,2-ジ(2-アミノエチル)シクロヘキサン、1,3-ジ(2-アミノエチル)シクロヘキサン、1,4-ジ(2-アミノエチル)シクロヘキサン、ビス(4-アミノシクロへキシル)メタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、1,4-ジアミノ-2-フルオロベンゼン、1,4-ジアミノ-2,3-ジフルオロベンゼン、1,4-ジアミノ-2,5-ジフルオロベンゼン、1、4-ジアミノ-2,6-ジフルオロベンゼン、1,4-ジアミノ-2,3,5-トリフルオロベンゼン、1、4-ジアミノ、2,3,5,6-テトラフルオロベンゼン、1,4-ジアミノ-2-(トリフルオロメチル)ヘンゼン、1,4-ジアミノ-2,3-ビス(トリフルオロメチル)ベンゼン、1,4-ジアミノ-2,5-ビス(トリフルオロメチル)ベンゼン、1、4-ジアミノ-2,6-ビス(トリフルオロメチル)ベンゼン、1,4-ジアミノ-2,3,5-トリス(トリフルオロメチル)ベンゼン、1、4-ジアミノ、2,3,5,6-テトラキス(トリフルオロメチル)ベンゼンが挙げられる。
 例えば、ジアミンとして、フルオロアルキル置換ベンジジンに加えて、3,3’-ジアミノジフェニルスルホン(以下「3,3’-DDS」と記載)を用いることにより、ポリイミド樹脂の溶媒への溶解性や透明性が向上する場合がある。ジアミン全量100mol%に対する3,3’-DDSの含有量は、5mol%以上が好ましく、10mol%以上がより好ましい。3,3’-DDSの含有量は、15mol%以上、20mol%以上または25mol%以上であってもよい。ポリイミド樹脂の機械強度の観点から、ジアミン全量100mol%に対する3,3’-DDSの含有量は、50mol%以下が好ましく、40mol%以下がより好ましく、35mol%以下がさらに好ましい。
<ポリイミドの組成>
 上記のように、本発明のポリイミド樹脂は、酸二無水物成分として、一般式(1)で表される酸二無水物およびフッ素含有芳香族酸二無水物を含み、ジアミンとして、フルオロアルキル置換ベンジジンを含む。一般式(1)で表される酸二無水物としては、式(2)で表されるTAHMBPおよび/または式(3)で表されるTMHQが好ましく、フッ素含有芳香族酸二無水物としては6FDAが好ましく、フルオロアルキル置換ベンジジンとしてはTFMBが好ましい。ポリイミドは、酸二無水物成分として、さらにBPDAを含んでいてもよく、ジアミン成分としてさらに3,3’-DDSを含んでいてもよい。
 酸二無水物成分の全量100mol%のうち、一般式(1)で表される酸二無水物の量は、15~65mol%が好ましく、TAHMBPとTMHQの合計が15~65mol%であることが好ましい。一般式(1)で表される酸二無水物の量は、20~65mol%がより好ましく、TAHMBPとTMHQの合計が20~65mol%であることがさらに好ましい。酸二無水物成分の全量100mol%のうち、6FDAの量は30~80mol%が好ましく、35~60mol%がより好ましい。さらに、酸二無水物成分として、BPDAを10~40mol%含んでいてもよい。
 ジアミン成分全量100mol%のうち、TFMBの量は40~100mol%が好ましく、60~80mol%がより好ましい。ジアミン成分の全量100mol%に対して60mol%以下の3,3’-DDSを含んでいてもよく、3,3’-DDSの含有量は20~40mol%が好ましい。
 本発明の一形態において、ポリイミド樹脂は、ビフェニル構造を有する酸二無水物成分を含む。酸二無水物成分がビフェニル構造を有することにより、ポリイミドフィルムの耐紫外線特性が高められ、紫外線照射に伴う透明性の低下(黄色度YIの増加)が抑制される傾向がある。
 透明樹脂の光劣化を抑制するために、紫外線吸収剤を添加することが一般的に行われている。しかし、透明ポリイミドフィルムの耐紫外線性を高めるために紫外線吸収剤の添加量を多くすると、フィルムの着色による黄色度の増加や、耐熱性の低下に繋がる場合がある。ポリイミドの酸二無水物成分としてビフェニル構造を有する酸二無水物を用いることにより、紫外線吸収剤を用いない場合、または紫外線吸収剤の添加量が少ない場合でも、ポリイミドフィルムが十分な耐紫外線性を有し、紫外線吸収剤に起因する着色を抑制できるため、優れた透明性と耐紫外線性とを両立できる。
 ポリイミドフィルムの耐紫外線性を向上する観点から、ビフェニル構造を有する酸二無水物の含有量は、酸二無水物成分全量100mol%に対して、10mol%以上が好ましく、15mol%以上がより好ましく、20mol%以上がさらに好ましい。透明性と耐紫外線性とを両立し、さらに、優れた機械強度、およびジクロロメタン等の低沸点溶媒に対する溶解性を持たせる観点から、ビフェニル構造を有する酸二無水物、一般式(1)で表される酸二無水物、およびフッ素含有芳香族酸二無水物の含有量の合計は、酸二無水物成分全量100mol%に対して、80mol%以上が好ましく、85mol%以上がより好ましく、90mol%以上がさらに好ましく、95mol%以上がさらに好ましい。
 ビフェニル構造を有する酸二無水物としては、例えば、TAHMBP等の一般式(1)においてn=2である化合物が挙げられる。TAHMBPは、一般式(1)で表される酸二無水物であり、かつビフェニル構造を有する酸二無水物に該当する。
 ビフェニル構造を有する酸二無水物として、一般式(1)においてn=2である化合物を含むポリイミドは、TAHMBPの含有量が、酸二無水物成分の全量100mol%に対して、15~65mol%が好ましく、20~65mol%がより好ましく、30~60mol%がさらに好ましく;6FDAの含有量が、酸二無水物成分の全量100mol%に対して、30~80mol%が好ましく、30~70mol%がより好ましく、35~60mol%がさらに好ましく;TFMBの含有量が、ジアミン成分100mol%に対して、40~100mol%が好ましく、50~90mol%がより好ましく、60~80mol%がさらに好ましく;3,3’-DDSの含有量が、ジアミン成分100mol%に対して、60mol%以下が好ましく、10~50mol%がより好ましく、20~40mol%がさらに好ましい。
 さらに、TMHQ等の一般式(1)においてnが2以外である酸二無水物(すなわち、ビフェニル構造を有さない化合物)を併用してもよい。また、ビフェニル構造を有する酸二無水物として、TAHMBP等の一般式(1)で表される酸二無水物に加えて、BPDA等を併用してもよい。
 ビフェニル構造を有する酸二無水物として、一般式(1)で表される酸二無水物以外の化合物を用いてもよい。例えば、ポリイミドは、ビフェニル構造を有する酸二無水物成分としてBPDAを含み、一般式(1)で表される酸二無水物成分としてTMHQを含み、フッ素含有芳香族酸二無水物として6FDAを含んでいてもよい。
 酸二無水物成分として、BPDA、TMHQおよび6FDAを含むポリイミドは、BPDAの含有量が、酸二無水物成分の全量100mol%に対して、10~50mol%が好ましく、15~45mol%がより好ましく、20~40mol%がさらに好ましく;TMHQの含有量が、酸二無水物成分の全量100mol%に対して、10~65mol%が好ましく、15~60mol%がより好ましく、20~50mol%がさらに好ましく;6FDAの含有量が、酸二無水物成分の全量100mol%に対して、30~80mol%が好ましく、35~70mol%がより好ましく、40~60mol%がさらに好ましく;TFMBの含有量が、ジアミン成分100mol%に対して、40~100mol%が好ましく、50~90mol%がより好ましく、60~80mol%がさらに好ましく;3,3’-DDSの含有量が、ジアミン成分100mol%に対して、60mol%以下が好ましく、10~50mol%がより好ましく、20~40mol%がさらに好ましい。
 上記の酸二無水物およびジアミンの組合せを用い、それぞれの酸二無水物成分およびジアミン成分の量を上記範囲とすることにより、ジクロロメタン等の低沸点溶媒への溶解性が高く、残存溶媒量の低減が容易であり、かつ、透明性および機械強度に優れるポリイミドが得られる。
[ポリイミド樹脂の製造方法]
 ポリイミド樹脂の製造方法は特に限定されないが、溶媒中でジアミンと酸二無水物とを反応させてポリイミド前駆体であるポリアミド酸を調製し、ポリアミド酸の脱水環化によりイミド化する方法が好ましい。例えば、ポリアミド酸溶液にイミド化触媒および脱水剤を添加して、ポリアミド酸を脱水閉環することによりポリイミド溶液が得られる。ポリイミド溶液とポリイミドの貧溶媒とを混合して、ポリイミド樹脂を析出させ、固液分離することによりポリイミド樹脂が得られる。
<ポリアミド酸の調製>
 溶媒中で酸二無水物とジアミンとを反応させることにより、ポリアミド酸溶液が得られる。ポリアミド酸の重合には、原料としてのジアミンおよび酸二無水物、ならびに重合生成物であるポリアミド酸を溶解可能な有機溶媒を特に限定なく使用できる。ポリアミド酸の重合に用いる有機溶媒の具体例としては、メチル尿素、N,N-ジメチルエチルウレア等のウレア系溶媒;ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルホン等のスルホン系溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N’-ジエチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;クロロホルム、ジクロロメタン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。これらの溶媒は、単独で用いてもよく、2種以上を適宜組み合わせて用いてもよい。これらの中でも、重合反応性およびポリアミド酸の溶解性に優れることから、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、またはN-メチルピロリドンが好ましく用いられる。
 有機溶媒中にジアミンおよび酸二無水物を溶解させることにより、ポリアミド酸の重合が進行する。ポリアミド酸溶液の固形分濃度(反応溶液におけるジアミンおよび酸二無水物の仕込み濃度)は、通常5~40重量%程度であり、10~30重量%が好ましい。酸二無水物とジアミンは等モル量(95:105~105:95)使用することが好ましい。どちらかの成分が過剰になると、ポリアミド酸およびポリイミドの分子量が十分に大きくならず、ポリイミドフィルムの機械強度が低下する場合がある。
 反応温度は特に限定されないが、0℃以上80℃以下が好ましく、20℃以上45℃以下がより好ましい。0℃以上とすることで反応速度の低下を抑制でき、比較的短時間で重合反応を実施できる。また80℃以下とすることにより、酸二無水物成分の開環による重合度の低下等を抑制できる。
 ポリアミド酸の重合における有機溶媒(反応系)へのジアミンおよび酸二無水物の添加順序は特に限定されない。例えば、ジアミンを有機溶媒中に溶解またはスラリー状に分散させて、ジアミン溶液とし、酸二無水物をジアミン溶液中に添加すればよい。酸二無水物を有機極性溶媒に溶解した溶液にジアミンを添加してもよい。複数種の酸二無水物およびジアミンは、一度に添加してもよく、複数回に分けて添加してもよい。ジアミンおよび酸二無水物は、固体の状態で添加してもよく、有機溶媒に溶解、またはスラリー状に分散させた状態で添加してもよい。
(ブロック構造の形成)
 モノマーの添加順序を調整することにより、得られるポリイミドの諸物性を制御することもできる。例えば、複数種の酸二無水物およびジアミンのうち、特定の酸二無水物とジアミンを先に反応させることにより、特定の酸二無水物とジアミンとが結合した構造単位(繰り返し単位)が連続しているセグメント(ブロック構造)が形成される。ブロック構造を形成後に、ジアミンおよび酸二無水物の残部を添加してさらに反応を進めることにより、分子内にブロック構造を含むポリアミド酸が得られる。このポリアミド酸をイミド化することにより、特定のジアミンと特定の酸二無水物とが結合した構造単位が連続しているブロックを分子構造内に含むポリイミドが得られる。
 例えば、有機溶媒中で、一般式(1)で表される酸二無水物とフルオロアルキル置換ベンジジンを反応させることにより、一般式(1)で表される酸二無水物とフルオロアルキル置換ベンジジンとが結合した構造単位が連続しているブロックを形成できる。このブロック構造を含むポリイミドは、モノマーの並びがランダムであるポリイミドと同様、ジクロロメタン等の低沸点溶媒に対する優れた溶解性を示し、かつ、モノマーの並びがランダムである場合に比べて、ポリイミドフィルムの機械強度(特に弾性率)が高くなる傾向がある。
 特に、一般式(1)においてn=2である化合物(例えばTAHMBP)とTFMB等のフルオロアルキル置換ベンジジンとが結合した構造単位が連続しているブロックを有するポリイミドは、機械強度が高くなる傾向がある。これは、酸二無水粒成分としてのTAHMBPおよびジアミン成分としてのTFMBがいずれもビフェニル構造を含有しており、これらが結合したブロックが剛直性の高いハードセグメントとして作用するためであると考えられる。
 ブロックにおける構造単位(繰り返し単位)の連続数は、5以上が好ましく、7以上がより好ましい。ブロックの繰り返し単位の連続数は、例えば、酸二無水物とジアミンの仕込み量のモル比により調整できる。酸二無水物とジアミンの仕込み量がモル比で1:1に近いほど、繰り返し単位の連続数が大きくなる傾向がある。繰り返し単位の連続数を十分に大きくするためには、ブロック形成時のジアミンの仕込み量は、酸二無水物の仕込み量に対して、モル比で0.75~1.25倍が好ましく、0.8~1.2倍がより好ましく、0.85~1.15倍がさらに好ましい。
 ブロック鎖の末端に酸無水物基が存在すると、解重合が生じやすく、繰り返し単位の連続数が減少したり、ランダム体に変化する場合がある。ジアミンの仕込み量を酸二無水物の仕込み量よりも多くして、末端にアミンを有するブロックを形成することにより、解重合を抑制できる。ブロックにおける繰り返し単位の連続数を大きくするとともに、ブロックの解重合を抑制する観点から、ブロック形成時のジアミンの仕込み量は、酸二無水物の仕込み量に対して、モル比で1.01~1.25倍が好ましく、1.03~1.2倍がより好ましく、1.05~1.15倍がさらに好ましい。
(プレポリマーとオリゴマーの反応によるポリアミド酸の調製)
 ポリアミド酸の重合において、モノマーの添加順序を調整することにより、モノマーの並び(シーケンス)を制御できることに加えて、分子量の制御や、反応性および溶液粘度の調整も可能である。例えば、酸二無水物およびジアミンのいずれか一方を過剰量として反応させてプレポリマーを形成し、酸二無水物とジアミンが実質的に等モルとなるように残部のモノマーを添加して後重合を行うことにより、分子量を所定範囲に制御できる。プレポリマー形成時の酸二無水物とジアミンの仕込み量が等モルに近いほど分子量が大きくなり、仕込み量の差が大きいほど分子量が小さくなる傾向がある。
 プレポリマーを形成後の後重合において、残部の酸二無水物およびジアミンは、同時に添加してもよく、順次添加してもよい。残部の酸二無水物とジアミンとを反応させたオリゴマー(溶液)をプレポリマーの溶液に添加してもよい。例えば、重合用の溶媒に対する溶解性が低い酸二無水物をジアミンと反応させて酸無水物末端のオリゴマー(溶液)を調製しておき、アミン末端のプレポリマーの溶液と酸末端のオリゴマーの溶液とを混合して反応させてもよい。
 一般に、酸二無水物はジアミンに比べて重合用溶媒に対する溶解性が低く、一般式(1)で表されるビス無水トリメリット酸エステル、6FDA等のフッ素含有芳香族酸二無水物、BPDA等の酸二無水物は、DMF等の重合溶媒に対する溶解性が十分とは言い難い。プレポリマーの溶液に、溶解性の低い酸二無水物を添加すると、酸二無水物が溶解して反応するまでに長時間を要する場合がある。また、反応系に不溶の酸二無水物が残存していると、分子量が十分に上昇しないためにポリイミドの機械強度が劣る場合や、不溶の酸二無水物に起因する予期せぬ粘度変化を生じる場合がある。
 溶解性の低い酸二無水物を予めジアミンと反応させて酸無水物末端のオリゴマーの溶液を調製しておき、このオリゴマー溶液をアミン末端のプレポリマーと混合して反応させることにより、反応系を均一とすることが可能である。オリゴマー溶液を用いることにより、反応系に酸二無水物を添加する場合に比べて、反応時間を短縮できる。また、オリゴマー溶液を用いることにより、不溶の酸二無水物に起因する分子量の低下や予期せぬ粘度変化を抑制できる。
 アミン末端のプレポリマーの溶液と酸末端のオリゴマーの溶液とを混合してポリアミド酸溶液を調製する方法は、(1)ジアミンと酸二無水物を反応させてアミン末端のポリアミド酸(プレポリマー)を合成する工程;(2)ジアミンと酸二無水物を反応させて酸無水物末端のポリアミド酸(オリゴマー)を合成する工程;および(3)工程(1)で得られたアミン末端プレポリマーの溶液と、工程(2)で得られた酸無水物末端のオリゴマーの溶液とを混合して、プレポリマーとオリゴマーとを反応させる工程、を有する。
 酸二無水物の合計量(工程(1)における酸二無水物の仕込み量と工程(2)における酸二無水物の仕込み量の合計)は、ジアミンの合計量(工程(1)におけるジアミンの仕込み量と工程(2)におけるジアミンの仕込み量の合計)に対して、モル比で0.95~1.05倍が好ましい。工程(2)における酸二無水物の仕込み量は、酸二無水物の合計量に対して、モル比で0.001~0.25倍が好ましい。
 工程(1):プレポリマーの調製においては、ジアミンの仕込み量を酸二無水物の仕込み量よりも多くすることにより、アミン末端のポリアミド酸(プレポリマー)が得られる。プレポリマーの調製における酸二無水物の仕込み量は、ジアミンの仕込み量に対して、モル比で0.9~0.99倍が好ましく、0.93~0.98倍がより好ましい。プレポリマーの調製において、酸二無水物およびジアミンは、溶媒中に一度に添加してもよく、複数回に分けて添加してもよい。上記のように、特定の酸二無水物とジアミンを先に反応させて所定の構造単位が連続しているブロックを形成した後、残部の酸二無水物およびジアミンを添加してもよい。
 工程(2):オリゴマーの調製においては、ジアミンに対して過剰量の酸二無水物を反応させることにより、酸無水物末端のポリアミド酸(オリゴマー)が得られる。オリゴマーの調製における酸二無水物の仕込み量は、ジアミンの仕込み量に対して、モル比で1.1倍以上が好ましく、1.3倍以上がより好ましく、1.5倍以上がさらに好ましい。酸二無水物の仕込み量は、ジアミンの仕込み量に対して2倍以上であってもよいが、モル比が2倍を超えると未反応の酸二無水物が残存しやすい。そのため、オリゴマーの調製における酸二無水物の仕込み量は、ジアミンの仕込み量に対して、モル比で2.1倍以下が好ましく、2倍以下がより好ましい。
 工程(3)において、アミン末端のプレポリマーの溶液と酸無水物末端のオリゴマーの溶液とを混合することにより、プレポリマーとオリゴマーとの反応が進む。
 オリゴマーの調製(工程(2))に用いる酸二無水物の量は、酸二無水物の全量(プレポリマーの調製に用いる酸二無水物とオリゴマーの調製に用いる酸二無水物の合計)に対して、モル比で、0.001~0.25倍が好ましく、0.003~0.2倍がより好ましく、0.005~0.18倍がさらに好ましい。オリゴマーの調製に用いる酸二無水物の量は、酸二無水物の全量に対して、モル比で、0.008倍以上、0.01倍以上、0.015倍以上または0.02倍以上であってもよく、0.15倍以下、0.12倍以下、0.1倍以下または0.08倍以下であってもよい。
<イミド化>
 ポリアミド酸の脱水環化によりポリイミドが得られる。溶液でのイミド化には、ポリアミド酸溶液に脱水剤およびイミド化触媒等を添加する化学イミド化法が適している。イミド化の進行を促進するために、ポリアミド酸溶液を加熱してもよい。
 イミド化触媒としては、第三アミンが用いられる。第三級アミンとしては複素環式の第三級アミンが好ましい。複素環式の第三級アミンの具体例としては、ピリジン、ピコリン、キノリン、イソキノリン等が挙げられる。脱水剤としてはカルボン酸無水物が用いられ、具体的には無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等が挙げられる。イミド化触媒の添加量は、ポリアミド酸のアミド基に対して、0.5~5.0倍モル当量が好ましく、0.7~2.5倍モル当量がより好ましく、0.8~2.0倍モル当量がさらに好ましい。脱水剤の添加量は、ポリアミド酸のアミド基に対して、0.5~10.0倍モル当量が好ましく、0.7~5.0倍モル当量がより好ましく、0.8~3.0倍モル当量がさらに好ましい。
<ポリイミド樹脂の析出>
 ポリアミド酸のイミド化により得られたポリイミド溶液は、そのまま製膜用ドープとして用いることもできるが、一旦、ポリイミド樹脂を固形物として析出させることが好ましい。ポリイミド樹脂を固形物として析出させることにより、ポリアミド酸の重合時に発生した不純物や残存モノマー成分、ならびに脱水剤およびイミド化触媒等を、洗浄・除去できる。そのため、透明性や機械特性に優れたポリイミドフィルムが得られる。
 ポリイミド溶液と貧溶媒とを混合することにより、ポリイミド樹脂が析出する。貧溶媒は、ポリイミド樹脂の貧溶媒であって、ポリイミド樹脂を溶解している溶媒と混和するものが好ましく、水、アルコール類等が挙げられる。アルコール類としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコール、トリエチレングリコール、2-ブチルアルコール、2-ヘキシルアルコール、シクロペンチルアルコール、シクロヘキシルアルコール、フェノール、t-ブチルアルコール等が挙げられる。ポリイミドの開環等が生じ難いことから、イソプロピルアルコール、2-ブチルアルコール、2-ペンチルアルコール、フェノール、シクロペンチルアルコール、シクロヘキシルアルコール、t-ブチルアルコール等のアルコールが好ましく、イソプロピルアルコールが特に好ましい。
[ポリイミドフィルム]
 ポリイミド樹脂を有機溶媒に溶解したポリイミド溶液(製膜用ドープ)を、基材上に塗布し、溶媒を乾燥除去させることによりポリイミドフィルムを製造できる。
 ポリイミド樹脂を溶解させる有機溶媒としては、上記のポリイミド樹脂を溶解可溶なものであれば特に限定されない。溶媒の乾燥除去が容易であり、ポリイミドフィルムの残存溶媒量を低減可能であることから、ジクロロメタン、酢酸メチル、テトラヒドロフラン、アセトン、および1,3-ジオキソラン等の低沸点溶媒が好ましく、中でもジクロロメタンが特に好ましい。前述のように、酸二無水物成分およびジアミン成分の組成比を所定範囲とすることにより、ジクロロメタン等の低沸点溶媒に対しても高い溶解性を示すポリイミドが得られる。
 ポリイミド溶液の固形分濃度は、ポリイミドの分子量、フィルムの厚みや製膜環境等に応じて適宜設定すればよい。固形分濃度は、5~30重量%が好ましく、8~20重量%がより好ましい。
 ポリイミド溶液は、ポリイミド以外の樹脂成分や添加剤を含んでいてもよい。添加剤としては、紫外線吸収剤、架橋剤、染料、界面活性剤、レベリング剤、可塑剤、微粒子等が挙げられる。前述のように、ポリイミド樹脂が酸二無水物成分としてビフェニル構造を有する酸二無水物を含む場合は、紫外線吸収剤を用いない場合であっても、優れた耐光性(紫外線耐久性)を有するポリイミドフィルムが得られる。ポリイミド溶液(製膜ドープ)の固形分100重量部に対するポリイミド樹脂の含有量は、60重量部以上が好ましく、70重量部以上がより好ましく、80重量部以上がさらに好ましい。
 ポリイミド溶液を基材に塗布する方法としては、公知の方法を用いることができ、例えば、バーコーターやコンマコーターにより塗布することができる。ポリイミド溶液を塗布する基材としては、ガラス基板、SUS等の金属基板、金属ドラム、金属ベルト、プラスチックフィルム等を使用できる。生産性向上の観点から、支持体として、金属ドラム、金属ベルト等の無端支持体、または長尺プラスチックフィルム等を用い、ロールトゥーロールによりフィルムを製造することが好ましい。プラスチックフィルムを支持体として使用する場合、製膜ドープの溶媒に溶解しない材料を適宜選択すればよく、プラスチック材料としては、ポリエチレンテレフタレート、ポリカーボネート、ポリアクリレート、ポリエチレンナフタレート等が用いられる。
 溶媒の乾燥時には加熱を行うことが好ましい。加熱温度は、特に限定されないが、着色を抑制する観点から、200℃以下が好ましく、180℃以下がより好ましい。溶媒の乾燥時には、段階的に加熱温度を上昇させてもよい。減圧下で溶媒の感想を行ってもよい。上記のポリイミド樹脂は、ジクロロメタン等の低沸点溶媒に可溶であるため、200℃以下の加熱でも残存溶媒を容易に低減可能である。
 ポリイミドフィルムの残存溶媒量(フィルムの質量に対するフィルムに含まれる溶媒の質量)は、1.5%以下が好ましく、1.0%以下がより好ましい。残存溶媒量がこの範囲であれば、ポリイミドフィルムの機械強度が向上する傾向がある。
 ポリイミドフィルムの厚みは特に限定されず、用途に応じて適宜設定すればよい。ポリイミドフィルムの厚みは、例えば5~100μm程度である。ディスプレイのカバーウィンドウ材料等の耐衝撃性が要求される用途においては、ポリイミドフィルムの厚みは、30μm以上が好ましく、35μm以上がより好ましく、40μm以上がさらに好ましい。本発明のポリイミドフィルムは、膜厚が40μm以上と厚い場合であっても優れた透明性を有する。優れた透明性を維持する観点から、ポリイミドフィルムの厚みは、90μm以下が好ましく、85μm以下がより好ましい。
[ポリイミドフィルムの特性]
 ポリイミドフィルムの黄色度(YI)は、3.0以下が好ましく2.5以下がより好ましい。黄色度が3.0以下の場合、フィルムが黄色に着色することなく、ディスプレイ用等のフィルムとして好適に使用できる。
 ポリイミドフィルムの全光線透過率は、80%以上が好ましく、85%以上がより好ましい。またポリイミドフィルムの波長400nmにおける光透過率は、40%以上が好ましい。
 ポリイミドフィルムの引張弾性率は、3.0GPa以上が好ましく、3.5GPa以上がより好ましい。ロールトゥーロール搬送時のロールとの接触や、巻取時のフィルム同士の接触によるフィルムの傷付きを防止する観点から、ポリイミドフィルムの鉛筆硬度はHB以上が好ましく、F以上がより好ましい。ポリイミドフィルムがディスプレイのカバーウィンドウ等に用いられる場合は、外部からの接触に対する耐擦傷性が求められるため、ポリイミドフィルムの鉛筆硬度はH以上が好ましい。
 本発明のポリイミドフィルムは、黄色度が小さく、透明性が高くディスプレイ材料として好適に用いられる。さらに、表面硬度が高いため、ディスプレイのカバーウィンドウ等の表面部材への適用が可能である。ポリイミドフィルムの紫外線照射前後の黄色度の差(ΔYI)は、10以下が好ましく、5以下がより好ましい。
[ポリイミドフィルムの用途]
 本発明のポリイミドフィルムは、黄色度が小さく、透明性が高いことから、ディスプレイ材料として好適に用いられる。特に、機械的強度が高いポリイミドフィルムは、ディスプレイのカバーウィンドウ等の表面部材への適用が可能である。本発明のポリイミドフィルムは、実用に際して、表面に帯電防止層、易接着層、ハードコート層、反射防止層等を設けてもよい。
 以下、実施例および比較例に基づき、本発明について具体的に説明する。なお、本発明は下記実施例に限定されるものではない。
(ジクロロメタン溶解性)
 8gのジクロロメタンに2gのポリイミド樹脂を添加して、室温で12時間撹拌した後、溶け残りの有無を目視にて確認した。溶け残りが無かったものをジクロロメタン(DCM)可溶、樹脂が溶解していなかったもの、ゲル状となっていたもの、および溶け残りがみられたものをDCM不溶とした。
(引張弾性率)
 測定には島津製作所製の「AUTOGRAPH AGS-X」を用いて、次の条件で測定した。サンプル測定範囲;幅10mm、つかみ具間距離100mm、引張速度;20.0mm/min、測定温度;23℃。サンプルは23℃/55%RHで1日静置して調湿したものを用いた。
(黄色度)
 3cm角サイズのサンプルを用い、スガ試験機製の分光測色計「SC-P」により黄色度(YI)を測定した。
(鉛筆硬度)
 JIS K-5600-5-4「鉛筆引っかき試験」により、フィルムの鉛筆硬度を測定した。
(400nmにおける透過率)
 日本分光社製の紫外可視分光光度計「V-560」を用いて、フィルムの300~800nmにおける光透過率を測定し、400nmの波長における光透過率を読み取った。
(全光線透過率およびヘイズ)
 スガ試験機製のヘイズメーター「HZ-V3」を用いて、JIS K7361-1およびJIS K7136に記載の方法により測定した。
(残存溶媒量)
 1,3-ジオキソラン約8.9gを溶媒として、ポリイミドフィルム約0.1gと内部標準物質としてのジエチレングリコールブチルメチルエーテル(DEGBME)約1gを溶解させ、測定用試料を調製した。この溶液を、ガスクロマトグラフ装置(GC,島津製作所社製)を用いて測定し、GCピーク面積と調製濃度からポリイミドフィルム中に含まれる残存溶媒量(ジクロロメタン、メチルエチルケトン等)を求めた。
 実施例、比較例、および参考例における各モノマーの略称は下記のとおりである。
  TMHQ:p-フェニレンビス(トリメリット酸モノエステル酸無水物)
  TAHMBP:ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’-ジイル
  6FDA:2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物
  BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
  CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
  TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
  3,3’-DDS:3,3’-ジアミノジフェニルスルホン
[実施例1]
(ポリアミド酸溶液の調製)
 セパラブルフラスコに、TFMBを5.106g(15.9mmol)、3,3’-DDSを1.697g(6.83mmol)、N,N-ジメチルホルムアミド(以下、「DMF」と記載)を72.3g投入し、窒素雰囲気下で攪拌してジアミン溶液を得た。そこに、TAHMBPを6.897g(11.2mmol)、6FDAを5.059g(11.4mmol)加え、12時間攪拌し、固形分濃度18%、23℃での粘度が244ポイズのポリアミド酸溶液を得た。
(イミド化、ポリイミド樹脂の単離、およびポリイミド溶液の調製)
 上記のポリアミド酸溶液に、DMF28.9g、およびイミド化触媒としてピリジン5.405gを添加し完全に分散させた後、無水酢酸6.976gを添加し、80℃で4時間攪拌した。室温まで冷却した溶液を攪拌しながら、85gの2-プロピルアルコール(以下「IPA」と記載)と15gのDMFを混合した溶液を2~3滴/秒の速度で滴下し、ポリイミドを析出させた。さらにIPA300gを添加し、30分程度撹拌後、桐山ロートを使用して吸引ろ過を行った。得られた固体を100gのIPAで洗浄した。洗浄作業を6回繰り返した後、120℃に設定した真空オーブンで8時間乾燥させて、ポリイミド樹脂を得た。
(ポリイミドフィルムの作製)
 ポリイミド樹脂をジクロロメタン(以下「DCM」と記載)に溶解し、固形分濃度10重量%のポリイミド溶液を得た。バーコーターを用いて、ポリイミド溶液を無アルカリガラス板に塗布し、40℃で60分、80℃で30分、150℃で30分、170℃で30分間、大気雰囲気下で加熱して溶媒を除去して、厚み78μmのポリイミドフィルムを得た。
[実施例2,3]
 ガラス板上へのポリイミド溶液の塗布厚みを変更することにより、ポリイミドフィルムの厚みを表1に示すように変更した。それ以外は実施例1と同様にしてポリイミドフィルムを作製した。
[実施例4~15、比較例1~3]
 酸二無水物およびジアミンの種類および仕込み量(モル比)を表1、表2に示すように変更したこと以外は、実施例1と同様にしてポリアミド酸を調製した。得られたポリアミド酸を用いて、イミド化、ポリイミド樹脂の単離、ポリイミド溶液の調製およびポリイミドフィルムの作製を行った。
[比較例4]
 酸二無水物およびジアミンの種類および仕込み量(モル比)を表2に示すように変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を調製した。得られたポリアミド酸を用いて、イミド化、およびポリイミド樹脂の単離を行った。得られたポリイミド樹脂はDCMに不溶であったため、ポリイミド樹脂をメチルエチルケトン(MEK)に溶解し、固形分濃度10%のポリイミド溶液を調製した。このポリイミド溶液を用い、実施例1と同様にして、ポリイミドフィルムを作製した。
[比較例5]
 酸二無水物およびジアミンの種類および仕込み量(モル比)を表2に示すように変更したこと以外は、実施例1と同様にしてポリアミド酸溶液(固形分濃度18%、23℃での粘度が568ポイズ)を調製した。得られたポリアミド酸溶液にDMFを添加して希釈し、イミド化触媒および脱水剤を添加し、80℃で4時間攪拌した後、室温まで冷却したところ固化した。そこに、420gのIPAを加えた後、桐山ロートを使用して吸引ろ過を行った。得られた固体を400gのIPAで3回洗浄した後、120℃に設定した真空オーブンで8時間乾燥させて、ポリイミド樹脂を得た。このポリイミド樹脂はDCMに溶解しなかったため、フィルム化は行わなかった。
[比較例6,7]
 酸二無水物およびジアミンの種類および仕込み量(モル比)を表2に示すように変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を調製した。得られたポリアミド酸溶液を用いて、イミド化触媒および脱水剤を添加してイミド化を行ったところ、比較例5と同様、室温まで冷却すると溶液が固化した。比較例5と同様に、洗浄を行いポリイミド樹脂を得たが、比較例6,7のいずれも、得られたポリイミド樹脂はDCMに不溶であったため、フィルム化は行わなかった。
 上記の実施例および比較例のポリイミド樹脂の組成(ポリアミド酸の重合における酸二無水物およびジアミンの仕込み量のモル比)、DCMへの溶解性、およびポリイミドフィルムの評価結果を、表1および表2に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 
 表1に示される通り、ポリイミドを構成する酸二無水物成分およびジアミン成分の構成比率が適切な範囲において、ジクロロメタンに対する溶解性(およびそれに伴う低残存溶媒量)と、透明性および機械強度等の特性を、バランスよく発揮可能であることが分かる。
 酸二無水物としてTAHMBPおよび6FDAを用い、これらの比率を変更した実施例1,4,5を比較すると、TAHMBPの比率が大きく6FDAの比率が小さい実施例1,4が、実施例5よりも高い鉛筆硬度を示すことが分かる
 実施例5と実施例6との対比、および実施例9と実施例12との対比から、6FDAの一部をBPDAに置き換えた実施例6および実施例9は、実施例5および実施例9に比べて引張弾性率が向上していることが分かる。実施例1のTAHMBPの全量をBPDAに置き換えた比較例7では、ポリイミド樹脂がジクロロメタンに対する溶解性を示さなかったことから、酸二無水物として、TAHMBP等のビス無水トリメリット酸エステルを用いることにより、ポリイミド樹脂の溶解性が向上する傾向があることが分かる。
 6FDAの含有量が小さい比較例5のポリイミド樹脂も、ジクロロメタンに対する溶解性を示さなかった。一方、酸二無水物として6FDAのみを用いた比較例3では、ポリイミド樹脂がジクロロメタンに対する溶解性を示し、かつ透明性の高いポリイミドフィルムが得られたが、機械強度が不充分であった。
 製膜用ドープの溶媒としてジクロロメタン(沸点:40℃)を用いた実施例のポリイミドフィルム(残存溶媒量の測定を行わなかった実施例10,11,14,15を除く)は、いずれも残存溶媒量が1.0%以下となっていた。一方、製膜用ドープの有機溶媒としてメチルエチルケトン(沸点:80℃)を用いた比較例4のポリイミドフィルムは、実施例と同一の乾燥条件で作製したフィルムの残存溶媒量が4.4%と高く、残存溶媒量を低減するためにはより長時間の乾燥を要し、フィルムの生産性が十分といえるものではなかった。
 実施例1のポリイミドフィルムは、約80μmの厚みでも黄色度が低く、優れた透明性を示した。一方、酸二無水物としてTAHMBPのみを用いた比較例1のポリイミドフィルムの黄色度は3.1であり、厚みを約50μmまで減少させた比較例2においても、黄色度は2.5を上回っていた。比較例1,2では、TAHMBP含有量が多く、ポリイミドの分子内および/または分子間電荷移動の影響が強いことが、着色の原因であると考えられる。
 以上の結果から、酸二無水物成分として、ビス無水トリメリット酸エステルおよびフッ素含有芳香族酸二無水物を所定の比率で含み、ジアミンとしてフルオロアルキル置換ベンジジンを含むポリイミドは、ジクロロメタンへの溶解性多高く、残存溶媒量の低減が容易であり、かつ、機械強度、および透明性の高いフィルムを形成可能であることが分かる。
<フィルムの厚みバラツキの評価>
 実施例1、実施例11、実施例12および実施例15で作製したポリイミド樹脂をジクロロメタンに溶解させて固形分濃度17%のポリイミド溶液を調製し、厚み約50μmのポリイミドフィルムを作製した。得られたポリイミドフィルムの幅方向の両端それぞれの10%の部分を切り落とし、幅方向の中央部分の80%の領域(150mm)について、山文電気の連続厚み計「TOF5R」を用いて幅方向の厚みバラツキを測定した。実施例1のポリイミド樹脂を用いたフィルムの厚みは48±0.8μm、実施例11のポリイミド樹脂を用いたフィルムの厚みは4±0.9μm、実施例12のポリイミド樹脂を用いたフィルムの厚みは49±0.9μm、実施例15のポリイミド樹脂を用いたフィルムの厚みは40±1.0μmであり、いずれも厚みバラツキが±1.0μm以内であった。
[比較例8]
 比較例3で作製したポリイミド樹脂100重量部を、900重量部のジクロロメタンに溶解して固形分濃度10重量%のポリイミド溶液を調製した。この溶液に紫外線吸収剤として、BASF製「Tinuvin 1600」を2.5重量部添加した。この溶液を用いて、比較例3と同様にして、ポリイミドフィルムを作製した。
<耐紫外線性の評価>
 analytik jena製のUVランプ「UVM-57」を用いて、23℃の雰囲気下で、フィルムに波長400nm以下の紫外線(強度:5.3mW/cm)を72時間照射した。紫外線照射後のフィルムの黄色度(YI)を測定し、照射前後でのフィルムの黄色度の変化(ΔYI)を算出した。実施例1,6,7,10,11,12,15、および比較例3についても、同様の評価を実施した。
<耐熱性の評価>
 フィルムを250℃のオーブンに30分間投入した後取り出し、加熱後のフィルムの黄色度(加熱後YI)を測定した。実施例1,6,7,12、および比較例3についても、同様の評価を実施した。
 比較例8のポリイミド樹脂の組成、紫外線吸収剤の添加量、および評価結果を、実施例1,6,7,10,11,12,15、および比較例3の評価結果とともに、表3に示す。
Figure JPOXMLDOC01-appb-T000014
 比較例3と比較例8との対比から、紫外線吸収剤を含むポリイミドフィルムは、紫外線吸収剤を含まない場合に比べてUV照射後のΔYIが小さく、耐光性が高いことが分かる。しかし、紫外線吸収剤を含む比較例8のポリイミドフィルムは、250℃で加熱すると、フィルムの黄色度が上昇していた。これは、加熱によって、紫外線吸収剤が熱分解し、着色が大きくなるためであり、結果としてポリイミド樹脂の特長である高耐熱性が損なわれている。
 酸二無水物成分としてTMHQとTFMBのみを用いた実施例10のポリイミドフィルムは、ΔYIが20を超えており、耐光性質は十分とはいえない。TMHQの一部を、ビフェニル構造含有酸二無水物であるBPDAに置き換えた実施例11,12,15の対比から、BPDAの含有量の増加に伴ってΔYIが小さくなり、耐光性が向上することが分かる。
 酸二無水物成分としてTAHMBPとTFMBのみを用いた実施例1のポリイミドフィルムは、酸二無水物成分としてBPDAを含んでいないにも関わらず、ΔYIが小さく、優れた耐光性を示した。これは、TAHMBPがビフェニル構造を有するためであると考えられる。TAHMBPとTMHQを併用した実施例7のポリイミドフィルムは、実施例1に比べるとΔYIが大きくなっていたが、実施例10と比較すると十分に優れた耐光性を示した。実施例1のTAHMBPの一部をBPDAに置き換えた実施例6では、実施例1よりもΔYIが小さくなっており、さらに優れた耐光性を示した。
 これらの結果から、ビフェニル構造を有する酸二無水物を用いることにより、耐光性(耐紫外線性)が高められ、紫外線吸収剤を用いない場合であっても、優れた耐光性を有するポリイミドフィルムが得られることが分かる。
[実施例16]
 セパラブルフラスコに、TFMBを5.7g(17.9mmol)、DMFを103g投入し、窒素雰囲気下で攪拌してジアミン溶液を得た。そこに、TAHMBPを10.1g(16.3mmol)加え、10時間撹拌した。ジアミン(TFMB)の仕込み量は、酸二無水物(TAHMBP)の仕込み量の約1.10モル倍であり、TFMBとTAHMBPが結合した繰り返し単位の連続数の平均値は、計算上、約11となる。TFMBとTAHMBPとの反応によりブロック構造を有するポリアミド酸を調製した後、TFMBを1.6g(4.9mmol)、3,3’-DDSを2.4g(9.8mmol)、6FDAを7.2g(16.2mmol)加えて5時間撹拌し、ポリアミド酸溶液を得た。得られたポリアミド酸溶液を用いて、実施例1と同様にして、イミド化、ポリイミド樹脂の単離、ポリイミド溶液の調製およびポリイミドフィルムの作製を行った。
[実施例17]
 セパラブルフラスコに、TFMBを7.6g(23.9mmol)、DMFを103g投入し、窒素雰囲気下で攪拌してジアミン溶液を得た。そこに、6FDAを9.6g(21.7mmol)加え、10時間撹拌した。さらにTAHFMBを2.1g(6.5mmol)、3,3’-DDSを3.2g(13.2mmol)、TAHMBPを13.4g(21.6mmol)加えて5時間撹拌し、ポリアミド酸溶液を得た。得られたポリアミド酸溶液を用いて、実施例1と同様にして、イミド化、ポリイミド樹脂の単離、ポリイミド溶液の調製およびポリイミドフィルムの作製を行った。
[実施例18]
 セパラブルフラスコに、TFMBを2.223g(6.95mmol)、DMFを72.3g投入し、窒素雰囲気下で攪拌してジアミン溶液を得た。そこに、TAHMBPを3.777g(6.11mmol)加え、10時間撹拌した。ジアミン(TFMB)の仕込み量は、酸二無水物(TAHMBP)の仕込み量の約1.13モル倍であり、TFMBとTAHMBPが結合した繰り返し単位の連続数の平均値は、計算上、約9となる。さらにTFMBを3.435g(10.8mmol)、3,3’-DDSを1.880g(7.57mmol)、6FDAを5.606g(12.6mmol)、BPDAを1.856g(6.31mmol)加えて5時間撹拌し、ポリアミド酸溶液を得た。得られたポリアミド酸溶液を用いて、実施例1と同様にして、イミド化、ポリイミド樹脂の単離、ポリイミド溶液の調製およびポリイミドフィルムの作製を行った。
 実施例16~18のポリイミドフィルムの機械強度(引張弾性率および鉛筆硬度)を評価した。実施例1および実施例6の評価結果とともに、表4に示す。なお、表4では、先に添加した酸二無水物およびジアミン(ブロック構造の形成に用いたモノマー)に下線を付している。
Figure JPOXMLDOC01-appb-T000015
 TAHMBPとTFMBとを最初に反応させてブロック構造を形成した実施例16では、全てのモノマーを投入して反応を行った実施例1(ランダム構造)のポリイミドに比べて、ポリイミドフィルムの引張弾性率が向上していた。実施例6(ランダム構造)と実施例18(ブロック構造)との対比からも、同様の傾向があることが分かる。一方、6FDAとTFMBとを最初に反応させてブロック構造を形成した実施例17では、実施例1に比べて、ポリイミドフィルムの引張弾性率および鉛筆硬度が低下していた。
 これらの結果から、剛直性の高いモノマー成分を先に反応させてブロック構造を形成することにより、より機械強度の高いポリイミドフィルムが得られることが分かる。
[実施例19]
(プレポリマー溶液の調製)
 セパラブルフラスコにTFMBを11.057g(34.5mmol)、3,3’-DDSを3.785g(15.2mmol)、DMFを132g投入し、窒素雰囲気下で攪拌してジアミン溶液を得た。そこに、6FDAを11.279g(25.4mmol)、BPDAを3.785g(12.7mmol)、TMHQを4.892g(10.7mmol)加え、12時間攪拌した。
(オリゴマー溶液の調製)
 別のフラスコに、TFMBを0.1133g(0.354mmol)、TMHQを0.3275g(0.714mmol)、およびDMFを2.02g投入し、1時間撹拌して均一溶液とした。
 プレポリマー溶液にオリゴマー溶液を添加して撹拌すると、プレポリマーとオリゴマーとの反応が進行し、分子量の上昇に伴って溶液の粘度が上昇した、粘度の上昇が飽和するまで2時間を要した。
[実施例20]
 セパラブルフラスコに、TFMBを48.884g(152.7mmol)、3,3’-DDSを16.250g(65.4mmol)、DMFを584.1g投入し、窒素雰囲気下で攪拌してジアミン溶液を得た。そこに、6FDA48.452g(109.1mmol)、BPDAを16.05g(54.5mmol)、TMHQを22.995g(50.2mmol)加え、12時間攪拌した。その後、TMHQを0.501g(1.10mmol)加えて撹拌したところ、TMHQが溶解し、粘度の上昇が飽和するまでに10時間を要した。
 実施例19で得られたポリアミド酸溶液、および実施例20で得られたポリアミド酸溶液を用いて、実施例1と同様にして、イミド化、ポリイミド樹脂の単離、ポリイミド溶液の調製およびポリイミドフィルムの作製を行った。得られたポリイミドフィルムの特性を評価したところ、実施例1と同様に、高い透明性と優れた機械強度を示し、実施例19と実施例20で、ポリイミドフィルムの特性に明確な差はみられなかった。
 実施例20では、TMHQの粉体を添加してから反応の完了(粘度上昇の飽和)までに10時間を要したのに対して、実施例19ではプレポリマーとオリゴマーとの混合から反応の完了までの時間が2時間に短縮されていた。これらの結果から、酸二無水物とジアミンとを予め反応させてオリゴマー溶液を調製し、オリゴマー溶液を重合系に添加することにより、ポリアミド酸の調製に要する時間を短縮可能であり、生産効率を向上できることが分かる。

 

Claims (24)

  1.  酸二無水物由来構造とジアミン由来構造とを有するポリイミド樹脂であって、
     前記酸二無水物として、酸二無水物全量100mol%に対して、一般式(1)で表される酸二無水物を10mol%以上65mol%以下、およびフッ素含有芳香族酸二無水物を30mol%以上80mol%以下含み、
     前記ジアミンとして、ジアミン全量100mol%に対して、フルオロアルキル置換ベンジジンを40mol%以上100mol%以下含む、ポリイミド樹脂:
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)において、nは1以上の整数であり、R~Rはそれぞれ独立に水素原子、炭素原子数1~20のアルキル基、または炭素原子数1~20のパーフルオロアルキル基である。
  2.  前記一般式(1)で表される酸二無水物として、式(2)で表される酸二無水物を含む、請求項1に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000002
  3.  前記一般式(1)で表される酸二無水物として、式(3)で表される酸二無水物を含む、請求項1に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000003
  4.  前記酸二無水物として、酸二無水物全量100mol%に対して、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を10mol%以上40mol%以下含む、請求項1~3のいずれか1項に記載のポリイミド樹脂。
  5.  前記酸二無水物として、ビフェニル構造を有する酸二無水物を含む、請求項1に記載のポリイミド樹脂。
  6.  前記酸二無水物として、酸二無水物全量100mol%に対して、ビフェニル構造を有する酸二無水物を10mol%以上含み、かつ、ビフェニル構造を有する酸二無水物、一般式(1)で表される酸二無水物、およびフッ素含有芳香族酸二無水物を合計80mol%以上含む、請求項5に記載のポリイミド樹脂。
  7.  前記酸二無水物として、一般式(1)においてn=2である酸二無水物を含む、請求項5または6に記載のポリイミド樹脂。
  8.  前記一般式(1)においてn=2である酸二無水物として、式(2)で表される酸二無水物を含む、請求項7に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000004
  9.  前記酸二無水物として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、および一般式(1)においてn=1である酸二無水物を含む、請求項5または6に記載のポリイミド樹脂。
  10.  前記一般式(1)においてn=1である酸二無水物として、式(3)で表される酸二無水物を含む、請求項9に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000005
  11.  前記酸二無水物として、酸二無水物全量100mol%に対して、フッ素含有芳香族酸二無水物を40mol%以上80mol%以下含む、請求項1~10のいずれか1項に記載のポリイミド樹脂。
  12.  前記フッ素含有芳香族酸二無水物が、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物である請求項1~11のいずれかに記載のポリイミド樹脂。
  13.  前記フルオロアルキル置換ベンジジンが2,2’-ビス(トリフルオロメチル)ベンジジンである請求項1~12のいずれかに記載のポリイミド樹脂。
  14.  前記ジアミンとして、ジアミン全量100mol%に対して20~50mol%の3,3’-ジアミノジフェニルスルホンを含む、請求項1~13のいずれかに記載のポリイミド樹脂。
  15.  一般式(1)で表される酸二無水物とフルオロアルキル置換ベンジジンとが結合した繰り返し単位が連続しているブロックを分子構造内に含む、請求項1~14のいずれか1項に記載のポリイミド樹脂。
  16.  請求項1~15のいずれか1項に記載のポリイミド樹脂の製造方法であって、
     溶媒中で前記ジアミンと前記酸二無水物とを反応させてポリアミド酸溶液を調製し、
     前記ポリアミド酸溶液に脱水剤およびイミド化触媒を添加して、ポリアミド酸をイミド化することにより、ポリイミド溶液を得て、
     前記ポリイミド溶液と、ポリイミドの貧溶媒とを混合して、ポリイミド樹脂を析出させる、ポリイミド樹脂の製造方法。
  17.  前記ポリアミド酸溶液の調製において、
     溶液中で、一般式(1)で表される酸二無水物とフルオロアルキル置換ベンジジンとを反応させて、一般式(1)で表される酸二無水物とフルオロアルキル置換ベンジジンとが結合した繰り返し単位が連続しているブロックを形成する、請求項16に記載のポリイミド樹脂の製造方法。
  18.  請求項1~15のいずれか1項に記載のポリイミド樹脂を含むポリイミドフィルム。
  19.  膜厚が40μm以上である、請求項18に記載のポリイミドフィルム。
  20.  黄色度が2.5以下である、請求項18または19に記載のポリイミドフィルム。
  21.  引張弾性率が3.5GPa以上である、請求項18~20のいずれか1項に記載のポリイミドフィルム。
  22.  鉛筆硬度がH以上である請求項18~21のいずれかに記載のポリイミドフィルム。
  23.  請求項1~15のいずれか1項に記載のポリイミド樹脂を溶媒中に溶解したポリイミド溶液を基材上に塗布し、前記溶媒を除去する、ポリイミドフィルムの製造方法。
  24.  前記溶媒がジクロロメタンである、請求項23に記載のポリイミドフィルムの製造方法。

     
PCT/JP2019/024592 2018-06-28 2019-06-20 ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法 WO2020004236A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020527466A JP7323522B2 (ja) 2018-06-28 2019-06-20 ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法
CN201980043681.0A CN112334511B (zh) 2018-06-28 2019-06-20 聚酰亚胺树脂及其制造方法、以及聚酰亚胺薄膜及其制造方法
US17/135,809 US20210115192A1 (en) 2018-06-28 2020-12-28 Polyimide resin, production method for polyimide resin, polyimide film, and production method for polyimide film

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018123319 2018-06-28
JP2018-123319 2018-06-28
JP2018161709 2018-08-30
JP2018-161709 2018-08-30
JP2018161708 2018-08-30
JP2018-161708 2018-08-30
JP2018228269 2018-12-05
JP2018-228270 2018-12-05
JP2018-228269 2018-12-05
JP2018228270 2018-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/135,809 Continuation US20210115192A1 (en) 2018-06-28 2020-12-28 Polyimide resin, production method for polyimide resin, polyimide film, and production method for polyimide film

Publications (1)

Publication Number Publication Date
WO2020004236A1 true WO2020004236A1 (ja) 2020-01-02

Family

ID=68986876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024592 WO2020004236A1 (ja) 2018-06-28 2019-06-20 ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法

Country Status (5)

Country Link
US (1) US20210115192A1 (ja)
JP (1) JP7323522B2 (ja)
CN (1) CN112334511B (ja)
TW (1) TWI818041B (ja)
WO (1) WO2020004236A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164772A (ja) * 2019-03-31 2020-10-08 株式会社カネカ ポリイミドフィルムおよびその製造方法
WO2020255864A1 (ja) * 2019-06-17 2020-12-24 大日本印刷株式会社 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2021075396A1 (ja) * 2019-10-15 2021-04-22 住友化学株式会社 ポリイミド系樹脂
WO2021075395A1 (ja) * 2019-10-15 2021-04-22 住友化学株式会社 光学フィルム
WO2022085735A1 (ja) * 2020-10-22 2022-04-28 株式会社カネカ ハードコートフィルムおよびその製造方法、ならびに画像表示装置
WO2022124195A1 (ja) * 2020-12-08 2022-06-16 株式会社カネカ ポリイミド樹脂、ポリイミドフィルムおよびその製造方法
WO2022176919A1 (ja) * 2021-02-17 2022-08-25 株式会社カネカ ポリイミドフィルムおよびその製造方法、ハードコートフィルム、ならびに画像表示装置
KR20240046505A (ko) 2021-08-24 2024-04-09 가부시키가이샤 가네카 수지 조성물, 성형체 및 필름

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308004B (zh) * 2021-06-04 2022-03-04 西南科技大学 共价交联型多氟磺化聚酰亚胺质子交换膜的制备及应用
CN114395127B (zh) * 2021-12-29 2023-08-22 山东华夏神舟新材料有限公司 用于含氟气体分离的聚酰亚胺树脂及其制备方法
CN117384406A (zh) * 2023-12-08 2024-01-12 苏州尊尔光电科技有限公司 高粘结性的透明聚酰亚胺薄膜、制备方法及用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182757A (ja) * 2002-11-29 2004-07-02 Kanegafuchi Chem Ind Co Ltd ポリイミド樹脂及び該ポリイミド樹脂の製造方法
WO2008091011A1 (ja) * 2007-01-26 2008-07-31 Honshu Chemical Industry Co., Ltd. 新規なエステル基含有テトラカルボン酸二無水物類、それから誘導される新規なポリエステルイミド前駆体及びポリエステルイミド
WO2014046180A1 (ja) * 2012-09-19 2014-03-27 本州化学工業株式会社 ポリイミド及びその成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005118686A1 (ja) * 2004-06-01 2008-04-03 株式会社カネカ 可溶性ポリイミド及びこれを使用した光学補償部材
WO2011086627A1 (ja) * 2010-01-15 2011-07-21 株式会社カネカ ポリイミドフィルム及びその製造方法
WO2015122032A1 (ja) * 2014-02-14 2015-08-20 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182757A (ja) * 2002-11-29 2004-07-02 Kanegafuchi Chem Ind Co Ltd ポリイミド樹脂及び該ポリイミド樹脂の製造方法
WO2008091011A1 (ja) * 2007-01-26 2008-07-31 Honshu Chemical Industry Co., Ltd. 新規なエステル基含有テトラカルボン酸二無水物類、それから誘導される新規なポリエステルイミド前駆体及びポリエステルイミド
WO2014046180A1 (ja) * 2012-09-19 2014-03-27 本州化学工業株式会社 ポリイミド及びその成形体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164772A (ja) * 2019-03-31 2020-10-08 株式会社カネカ ポリイミドフィルムおよびその製造方法
JP7246999B2 (ja) 2019-03-31 2023-03-28 株式会社カネカ ポリイミドフィルムおよびその製造方法
WO2020255864A1 (ja) * 2019-06-17 2020-12-24 大日本印刷株式会社 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2021075396A1 (ja) * 2019-10-15 2021-04-22 住友化学株式会社 ポリイミド系樹脂
WO2021075395A1 (ja) * 2019-10-15 2021-04-22 住友化学株式会社 光学フィルム
WO2022085735A1 (ja) * 2020-10-22 2022-04-28 株式会社カネカ ハードコートフィルムおよびその製造方法、ならびに画像表示装置
WO2022124195A1 (ja) * 2020-12-08 2022-06-16 株式会社カネカ ポリイミド樹脂、ポリイミドフィルムおよびその製造方法
WO2022176919A1 (ja) * 2021-02-17 2022-08-25 株式会社カネカ ポリイミドフィルムおよびその製造方法、ハードコートフィルム、ならびに画像表示装置
KR20240046505A (ko) 2021-08-24 2024-04-09 가부시키가이샤 가네카 수지 조성물, 성형체 및 필름

Also Published As

Publication number Publication date
JP7323522B2 (ja) 2023-08-08
CN112334511A (zh) 2021-02-05
TWI818041B (zh) 2023-10-11
TW202000740A (zh) 2020-01-01
US20210115192A1 (en) 2021-04-22
JPWO2020004236A1 (ja) 2021-08-02
CN112334511B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
JP7323522B2 (ja) ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法
US8466252B2 (en) Optical film, optical film manufacturing method, transparent substrate, image display device, and solar cell
JP6627510B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP2017186473A (ja) フィルム
JP5909391B2 (ja) ポリイミド溶液およびその溶液から得られるポリイミド膜
JP2021101002A (ja) ポリイミドフィルムおよびその製造方法
EP3348598B1 (en) Polyimide-based block copolymers and polyimide-based film comprising the same
JP2020189918A (ja) ポリイミド樹脂、ポリイミド溶液およびポリイミドフィルムの製造方法
WO2020246466A1 (ja) ポリイミド樹脂およびその製造方法、ならびにポリイミドフィルムおよびその製造方法
WO2019073972A1 (ja) ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法
JP7356895B2 (ja) 透明ポリイミド樹脂を含む光学フィルム並びにその製造方法
WO2020262295A1 (ja) 透明ポリイミドフィルムおよびその製造方法
WO2019073970A1 (ja) ポリイミド樹脂組成物、ポリイミドフィルムおよびその製造方法
JP7359662B2 (ja) ポリイミド樹脂、ポリイミド溶液、ポリイミドフィルム
CN117940515A (zh) 树脂组合物、成形体及薄膜
KR20200092628A (ko) 폴리아미드계 (공)중합체의 제조방법, 및 이를 이용한 폴리아미드계 (공)중합 수지 조성물, 고분자 필름
WO2021040004A1 (ja) ポリイミドフィルムおよびその製造方法、ならびにポリイミド樹脂組成物
JP2021024930A (ja) ポリアミド酸溶液の製造方法、ポリイミド樹脂の製造方法、およびポリイミドフィルムの製造方法
WO2022124195A1 (ja) ポリイミド樹脂、ポリイミドフィルムおよびその製造方法
JPWO2019073628A1 (ja) ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法
WO2023085325A1 (ja) 樹脂組成物、成形体およびフィルム
JP7246999B2 (ja) ポリイミドフィルムおよびその製造方法
JP2022163253A (ja) 光学フィルム
JP2023182123A (ja) 樹脂組成物およびフィルム
TW202319452A (zh) 聚醯胺醯亞胺前驅物及其應用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824708

Country of ref document: EP

Kind code of ref document: A1