WO2023131167A1 - 一种抑制并降解irak4的化合物及其药物组合物和药学上的应用 - Google Patents

一种抑制并降解irak4的化合物及其药物组合物和药学上的应用 Download PDF

Info

Publication number
WO2023131167A1
WO2023131167A1 PCT/CN2023/070367 CN2023070367W WO2023131167A1 WO 2023131167 A1 WO2023131167 A1 WO 2023131167A1 CN 2023070367 W CN2023070367 W CN 2023070367W WO 2023131167 A1 WO2023131167 A1 WO 2023131167A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
membered
cycloalkyl
compound
independently selected
Prior art date
Application number
PCT/CN2023/070367
Other languages
English (en)
French (fr)
Inventor
张晨
廖雨亭
赵晨飞
余彦
唐平明
马俊杰
陈孝刚
袁帅
程新帆
叶飞
李瑶
倪佳
严庞科
Original Assignee
海思科医药集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海思科医药集团股份有限公司 filed Critical 海思科医药集团股份有限公司
Publication of WO2023131167A1 publication Critical patent/WO2023131167A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates to a compound of general formula (I) or its stereoisomer, deuterium, solvate, prodrug, metabolite, pharmaceutically acceptable salt or co-crystal, and its intermediate and preparation method, and Use in IRAK4-related diseases such as tumors or autoimmune system diseases.
  • Protein kinases catalyze the phosphorylation of proteins, lipids, sugars, nucleosides, and other cellular metabolites and play key roles in various aspects of eukaryotic cell physiology.
  • protein kinases and lipid kinases are involved in signaling events that control the activation, growth, differentiation and survival of cells in response to extracellular mediators or stimuli such as growth factors, cytokines or chemokines.
  • protein kinases fall into two classes, those that preferentially phosphorylate tyrosine residues and those that preferentially phosphorylate serine and/or threonine residues.
  • Interleukin-1 receptor kinase 4 is a serine/threonine-specific protein kinase, a member of the tyrosine kinase (TLK) family, and a member of interleukin-1, 18, 33 receptors and Toll-like receptors. A key node in the innate immune response in which the body participates.
  • IRAK4 After extracellular signaling molecules bind to interleukin receptors or Toll-like receptors, they are recruited to form MyD88:IRAK4:IRAK1/2 multiprotein complexes, leading to phosphorylation of IRAK1/2, mediating a series of downstream signal transduction, thereby activating p38 and JNK and NF-kB signaling pathways, ultimately leading to the expression of pro-inflammatory cytokines.
  • Clinicopathological studies have shown that individuals with IRAK4 mutations have protective effects against chronic lung disease and inflammatory bowel disease. IRAK4 deficiency itself is not lethal, and individuals survive into adulthood with a reduced risk of infection with age. Therefore, IRAK4 has become an important class of therapeutic targets and has attracted extensive research and development interest.
  • PROTAC proteolysis targeting chimera
  • PROTAC proteolysis targeting chimera
  • E3 ubiquitin ligases This type of compound can be recognized by the proteasome of the cell, causing the degradation of the targeting protein, and can effectively reduce the target protein. protein content in cells.
  • the purpose of the present invention is to provide a compound with novel structure, good drug effect, high bioavailability, safety and capable of inhibiting or degrading IRAK4 for treating diseases related to IRAK4 such as autoimmune disease, inflammatory disease or cancer.
  • the present invention provides a compound or its stereoisomer, deuterium, solvate, prodrug, metabolite, pharmaceutically acceptable salt or co-crystal, wherein the compound is selected from compounds represented by general formula (I),
  • B is selected from
  • B1 and B3 are each independently selected from C6-10 aryl, 5-10 membered heteroaryl or 4-10 membered heterocyclic group, and said heteroaryl or heterocyclic group contains 1 to 4 heteroatoms selected from O, S, N;
  • B1 and B3 are each independently selected from pyrazolyl, oxazolyl, bisoxazolyl, oxadiazolyl, triazolyl, imidazolyl, tetrazolyl, pyrrolyl, thienyl, Thiazolyl, thiadiazolyl, pyridyl, phenyl, pyrazinyl, pyrimidinyl, pyridazinyl, thienopyrazinyl, benzimidazolyl, pyridotriazolyl, pyrimidopyrazolyl, imidazole Pyridazinyl, pyridopyrazolyl, pyrrolopyridazinyl or
  • B1, B3 are selected from
  • R b1 and R b7 are each independently selected from azetidinyl, azetidinyl, phenyl, pyrrolyl, pyridyl, morpholinyl,
  • R b1 and R b7 are each independently selected from
  • R is selected from methyl, ethyl, propyl, isopropyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, azetidinyl, azetidinyl , Azacyclohexyl, Piperazinyl, Morpholinyl, Oxetanyl, Oxolyl, Oxanyl, -CH 2 -Cyclopropyl, -CH 2 -Cyclobutyl, -CH 2 -Cyclopentyl, -CH 2 -Cyclohexyl, -CH 2 -Azetidinyl, -CH 2 -Azetidinyl, -CH 2 -Azacyclohexyl, -CH 2 -Piperazinyl, - CH 2 -morpholinyl, -CH 2 -oxetanyl, -CH 2 -o
  • R b7a is selected from CF 3 , CHF 2 , CH 2 F, CH 2 CN, CH 2 OH, CH 2 OCH 3 , methyl, ethyl, -CH 2 -cyclopropyl, -CH 2 -azetidinyl, -CH 2 -oxetanyl, -O-cyclopropyl, -O-azetidinyl, -O-oxetanyl, -NH-cyclopropyl, -NH-azetidinyl, -NH-oxetanyl,
  • B is selected from
  • L is selected from -Ak1-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-Cy4-Ak5-;
  • L is selected from a bond, -Cyl-, -Cyl-Ak2-, -Cyl-Ak2-Ak3-, -Cyl-Ak2-Ak3-Ak4-Ak5-, -Cyl-Cy2-, -Cyl -Ak2-Cy2-, -Cy1-Cy2-Ak3-, -Cy1-Cy2-Ak3-Cy4-, -Cy1-Ak2-Cy2-Ak3-, -Cy1-Ak2-Cy2-Ak3-Ak4-, -Cy1-Ak2 -Cy2-Cy3-Ak4-, -Cy1-Cy2-Ak3-Ak4-, -Cy1-Cy2-Ak3-Ak4-, -Cy1-Cy2-Ak3-Ak4-, -Cy1-Cy2-Ak3-Ak4-, -Cy
  • RL is selected from H or C 1-6 alkyl
  • RL is selected from H, methyl or ethyl
  • each of Cy1, Cy2, Cy3, and Cy4 is independently selected from a bond, a 4-7 membered heteromonocyclic ring, a 4-10 membered heterocyclic ring, a 5-12 membered heterospirocyclic ring, a 7-10 membered heterocyclic ring, and a 7-10 membered heterocyclic ring.
  • each of Cy1, Cy2, Cy3 and Cy4 is independently selected from one of the following groups: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, aza Cyclobutyl, azacyclopentyl, piperidinyl, morpholinyl, piperazinyl, phenyl, cyclopropylcyclopropyl, cyclopropylcyclobutyl, cyclopropylcyclopentyl, cyclo Propyl cyclohexyl, cyclobutyl cyclobutyl, cyclobutyl cyclopentyl, cyclobutyl cyclohexyl, cyclopentyl cyclopentyl, cyclopentyl cyclohexyl, cyclohexyl cyclohexyl, Cyclopropylspirocyclopropyl, cyclopropylspirocyclobutyl,
  • L is selected from
  • each J is independently selected from
  • J 2 are each independently selected from
  • J 3 are each independently selected from
  • J 4 are each independently selected from
  • each J is independently selected from
  • L is selected from Rd is selected from H or D, and at least one Rd is selected from D, d1 is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, d2 is selected from 0, 1, 2 , 3, 4, 5, 6, 7, 8 or 9;
  • L is selected from the groups shown in Table L-1, wherein the left side of the group is connected to B;
  • L is selected from R L1a are each independently selected from halogen, CN, OH, C 1-4 alkyl, C 1-4 alkoxy, preferably F, Cl, Br, CN, OH, methyl, ethyl, hydroxymethyl, methyl Oxy or ethoxy, m is selected from 0, 1, 2, 3 or 4;
  • L is selected from
  • K is selected from
  • each R k1 is independently selected from H, C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered hetero Cycloalkyl, the alkyl, cycloalkyl and heterocycloalkyl are optionally further replaced by 0 to 4 members selected from H, F, Cl, Br, I, OH, NH 2 , CN, CF 3 , C 1- Substituents of 6 alkyl, C 1-6 alkoxy, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl;
  • each R k1 is independently selected from H, methyl, ethyl, propyl, isopropyl, vinyl, propenyl, allyl, ethynyl, propynyl, propargyl, Cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, azetidinyl, azacyclopentyl, piperidinyl, oxetanyl, oxolyl, oxetyl, said Methyl, ethyl, propyl, isopropyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, azetidinyl, azetidinyl, piperidinyl, oxetanyl, Oxolyl, oxanyl is optionally further replaced by 0 to 4 selected from H, F, Cl, Br, I,
  • R k1 are each independently selected from H, methyl, ethyl, isopropyl, cyclopropyl, oxetanyl, oxetanyl, -CH 2 CF 3 , -CH(CH 3 )CF 3 , - CH(CH 3 )-cyclopropyl, -CH 2 -cyclopropyl , -CH 2 -vinyl, -CH 2 -ethynyl, -CH 2 CH 2 -methoxy, -CD 3 ;
  • the heterocycle contains 1 to 4 heteroatoms selected from O, S, N;
  • R k2 , R k3 are each independently selected from H or F;
  • K is selected from
  • K is selected from
  • 0 to 50 Hs in the compound represented by general formula (I) are optionally replaced by 0 to 50 Ds;
  • 0 to 30 Hs in the compound represented by general formula (I) are optionally replaced by 0 to 30 Ds;
  • 0 to 20 Hs in the compound represented by general formula (I) are optionally replaced by 0 to 20 Ds;
  • 0-20 Hs in L are optionally replaced with 0-20 Ds;
  • 0 to 10 Hs in the compound represented by general formula (I) are optionally replaced by 0 to 10 Ds;
  • 0 to 10 Hs in -L-K are optionally replaced with 0 to 10 Ds;
  • 0-10 Hs in L are optionally replaced with 0-10 Ds;
  • 0-10 Hs in K are optionally replaced with 0-10 Ds;
  • 0 to 20 H in L are optionally replaced by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 D replacements;
  • 0 to 10 Hs in L are optionally replaced by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Ds;
  • 0 to 10 Hs in K are optionally replaced by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Ds;
  • 0 to 10 Hs in -L-K are optionally replaced by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Ds;
  • n is selected from 0, 1, 2, 3 or 4;
  • q is selected from 0, 1, 2, 3 or 4;
  • n1, n2, n6 are each independently selected from 0, 1, 2 or 3;
  • p2, p3 are each independently selected from 0, 1, 2, 3 or 4;
  • p2 or p3 are each independently selected from 0, 1 or 2.
  • L is selected from -Ak1-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-Cy4-Ak5-;
  • R L is selected from H or C 1-6 alkyl
  • B1 and B3 are each independently selected from C 6-10 aryl, 5-10 membered heteroaryl or 4-10 membered heterocyclic group, and the heteroaryl or heterocyclic group contains 1 to 4 members selected from O, S, N heteroatoms;
  • R b21 are each independently selected from H, C 1-6 alkyl, C 1-4 alkoxy, C 3-6 cycloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 4-10
  • n is selected from 0, 1, 2, 3 or 4;
  • R k1 are each independently selected from H, C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered heterocycloalkyl, said alkane Group, cycloalkyl, heterocycloalkyl are optionally further replaced by 0 to 4 selected from H, F, Cl, Br, I, OH, NH 2 , CN, CF 3 , C 1-6 alkyl, C 1- Substituents of 6 alkoxy, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl;;
  • the heterocycle contains 1 to 4 heteroatoms selected from O, S, N;
  • q is selected from 0, 1, 2, 3 or 4;
  • n1, n2, n6 are each independently selected from 0, 1, 2 or 3;
  • p2, p3 are each independently selected from 0, 1, 2, 3 or 4;
  • 0-50 Hs in the compound represented by general formula (I) are replaced by 0-50 Ds.
  • Cy1, Cy2, Cy3 and Cy4 are each independently selected from a bond, a 4-7 membered nitrogen-containing heteromonocyclic ring, a 4-10 membered nitrogen-containing heterocyclic ring, a 5-12 membered nitrogen-containing heterospirocyclic ring, a 7-10 membered nitrogen-containing heterocyclic ring, and a 7-10 membered nitrogen-containing heterocyclic ring.
  • Heterobridged ring 3-7 membered monocycloalkyl, 4-10 membered cycloalkyl, 5-12 membered spirocycloalkyl, 7-10 membered bridged cycloalkyl, 5-10 membered heteroaryl or 6- 10-membered aryl
  • RL is selected from H, methyl or ethyl
  • Cy1, Cy2, Cy3 and Cy4 are each independently selected from one of the following groups that are bonded or substituted or unsubstituted: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, azetidinyl, azacyclic Pentyl, piperidinyl, morpholinyl, piperazinyl, phenyl, cyclopropylcyclopropyl, cyclopropylcyclobutyl, cyclopropylcyclopentyl, cyclopropylcyclohexyl, cyclo Butylcyclobutyl, cyclobutylcyclopentyl, cyclobutylcyclohexyl, cyclopentylcyclopentyl, cyclopentylcyclohexyl, cyclohexylcyclohexyl, cyclopropylspirocyclopropyl , Cyclopropylspirocycl
  • B1 and B3 are independently selected from pyrazolyl, oxazolyl, bisoxazolyl, oxadiazolyl, triazolyl, imidazolyl, tetrazolyl, pyrrolyl, thienyl, thiazolyl, thiadiazolyl , pyridyl, phenyl, pyrazinyl, pyrimidyl, pyridazinyl, thienopyrazinyl, benzimidazolyl, pyridotriazolyl, pyrimidopyrazolyl, imidazopyridazinyl, pyrido Pyrazolyl, pyrrolopyridazinyl or
  • R k1 are each independently selected from H, methyl, ethyl, propyl, isopropyl, vinyl, propenyl, allyl, ethynyl, propynyl, propargyl, cyclopropyl, cyclobutyl , cyclopentyl, cyclohexyl, azetidinyl, azacyclopentyl, piperidinyl, oxetanyl, oxetyl, oxetyl, the methyl, ethyl, propyl base, isopropyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, azetidinyl, azacyclopentyl, piperidinyl, oxetanyl, oxolyl, oxygen Heterocyclohexyl is optionally further replaced by 0 to 4 members selected from H, F, Cl,
  • p2 or p3 are each independently selected from 0, 1 or 2;
  • Cy1, Cy2, Cy3, and Cy4 are each independently selected from one of the following groups that are bonded or substituted or unsubstituted:
  • L is selected from a bond, -Cy1-, -Cy1-Ak2-, -Cy1-Ak2-Ak3-, -Cy1-Ak2-Ak3-Ak4-Ak5-, -Cy1-Cy2-, -Cy1-Ak2-Cy2-, - Cy1-Cy2-Ak3-, -Cy1-Cy2-Ak3-Cy4-, -Cy1-Ak2-Cy2-Ak3-, -Cy1-Ak2-Cy2-Ak3-Ak4-, -Cy1-Ak2-Cy2-Cy3-Ak4- , -Cy1-Cy2-Ak3-Ak4-, -Cy1-Cy2-Ak3-Ak4-, -Cy1-Cy2-Ak3-Ak4-, -Cy1-Cy2-Ak3-Ak4-, -Cy1-C
  • J 1 each independently selected from
  • J 5 are each independently selected from
  • L is selected from
  • R d is selected from H or D, and at least one R d is selected from D;
  • d1 is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • d2 is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9;
  • L is selected from the groups shown in Table L-1, wherein the left side of the group is connected to B;
  • the present invention relates to a compound or its stereoisomer, deuterium, solvate, prodrug, metabolite, pharmaceutically acceptable salt or co-crystal, wherein the compound is selected from one of the following structures in Table P-1 :
  • the present invention relates to a pharmaceutical composition, comprising the above-mentioned compounds of the present invention or their stereoisomers, deuterated products, solvates, prodrugs, metabolites, pharmaceutically acceptable salts or co-crystals, and pharmaceutically acceptable carrier.
  • the present invention relates to the above-mentioned compound of the present invention or its stereoisomer, deuterium, solvate, prodrug, metabolite, pharmaceutically acceptable salt or co-crystal or pharmaceutical composition used in the preparation of therapeutic and IRAK4 activity Or the application in the medicine of expression related diseases.
  • the present invention relates to the above-mentioned compound of the present invention or its stereoisomer, deuterium, solvate, prodrug, metabolite, pharmaceutically acceptable salt or co-crystal or pharmaceutical composition used in the preparation of treatment and inhibition or Applications in drugs that degrade IRAK4-related diseases.
  • the present invention relates to the application of the above-mentioned compounds of the present invention or their stereoisomers, deuteriums, solvates, prodrugs, metabolites, pharmaceutically acceptable salts or co-crystals, and the diseases are selected from autoimmune diseases , inflammatory disease or cancer.
  • the present invention relates to a pharmaceutical composition or pharmaceutical preparation, which comprises a therapeutically effective amount of the compound of the present invention or its stereoisomer, deuterated product, solvate, prodrug, metabolite , a pharmaceutically acceptable salt or co-crystal and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition may be in the form of a unit preparation (the amount of the main drug in the unit preparation is also referred to as "preparation specification").
  • the present invention also provides a method for treating a disease in a mammal, which comprises administering to the mammal a therapeutically effective amount of the compound of the present invention or its stereoisomer, deuterated product, solvate, prodrug, Metabolites, pharmaceutically acceptable salts or co-crystals or pharmaceutical compositions.
  • the mammals of the present invention include humans.
  • Effective amount or “therapeutically effective amount” described in the application refers to the administration of a sufficient amount of the compound disclosed in the application, which will alleviate the disease or condition to be treated (such as autoimmune disease, inflammatory disease, etc.) to some extent. or cancer). In some embodiments, the result is reduction and/or alleviation of signs, symptoms or causes of disease, or any other desired alteration of a biological system.
  • an "effective amount” for therapeutic use is the amount of a composition comprising a compound disclosed herein required to provide a clinically significant reduction in disease symptoms.
  • therapeutically effective amounts include, but are not limited to, 1-1500 mg, 1-1000 mg, 1-900 mg, 1-800 mg, 1-700 mg, 1-600 mg, 2-600 mg, 3-600 mg, 4-600 mg, 5-600 mg, 6 -600mg, 10-600mg, 20-600mg, 25-600mg, 30-600mg, 40-600mg, 50-600mg, 60-600mg, 70-600mg, 75-600mg, 80-600mg, 90-600mg, 100-600mg , 200-600mg, 1-500mg, 2-500mg, 3-500mg, 4-500mg, 5-500mg, 6-500mg, 10-500mg, 20-500mg, 25-500mg, 30-500mg, 40-500mg, 50 -500mg, 60-500mg, 70-500mg, 75-500mg, 80-500mg, 90-500mg, 100-500mg, 125-500mg, 150-500mg, 200-
  • the pharmaceutical composition includes but is not limited to 1-1500mg, 1-1000mg, 20-800mg, 40-800mg, 40-400mg, 25-200mg, 1mg, 5mg, 10mg, 15mg, 20mg, 25mg, 30mg, 35mg, 40mg, 45mg, 50mg, 55mg, 65mg, 70mg, 75mg, 80mg, 85mg, 90mg, 95mg, 100mg, 110mg, 120mg, 125mg, 130mg, 140mg, 150mg, 160mg, 170mg, 180mg, 190mg, 200mg, 210mg, 220mg, 230mg, 240mg, 250mg, 300mg, 320mg, 400mg, 480mg, 500mg, 600mg, 640mg, 840mg, 1000mg of the compound of the present invention or its stereoisomer, deuter
  • a method for treating a disease in a mammal comprising administering to a subject a therapeutically effective amount of the compound of the present invention or its stereoisomer, deuterated product, solvate, prodrug, metabolite, pharmaceutically acceptable salt or co-crystal, the therapeutically effective dose is preferably 1-1500 mg, and the disease is preferably autoimmune disease, inflammatory disease or cancer.
  • a method for treating a disease in a mammal comprises, the compound of the present invention or its stereoisomer, deuterium, solvate, prodrug, metabolite, pharmaceutically acceptable salt or co-crystal with A daily dose of 1-1500 mg/day is administered to the subject, and the daily dose can be a single dose or divided doses.
  • the daily dose includes but is not limited to 10-1500 mg/day, 10-1000 mg/day, 10 -800mg/day, 25-800mg/day, 50-800mg/day, 100-800mg/day, 200-800mg/day, 25-400mg/day, 50-400mg/day, 100-400mg/day, 200-400mg /day, in some embodiments, daily doses include but are not limited to 10mg/day, 20mg/day, 25mg/day, 50mg/day, 80mg/day, 100mg/day, 125mg/day, 150mg/day, 160mg/day , 200mg/day, 300mg/day, 320mg/day, 400mg/day, 480mg/day, 600mg/day, 640mg/day, 800mg/day, 1000mg/day, 1500mg/day.
  • the present invention relates to a kit which may comprise a composition in single or multiple dose form, the kit comprising a compound of the present invention or its stereoisomer, deuterated, solvated, prodrug, metabolite, pharmaceutical acceptable salt or co-crystal, the amount of the compound of the present invention or its stereoisomer, deuterium, solvate, prodrug, metabolite, pharmaceutically acceptable salt or co-crystal is the same as that in the above-mentioned pharmaceutical composition same amount.
  • the carbon, hydrogen, oxygen, sulfur, nitrogen or F, Cl, Br, and I involved in the groups and compounds of the present invention include their isotopes, and the carbon involved in the groups and compounds of the present invention , hydrogen, oxygen, sulfur or nitrogen are optionally further replaced by one or more of their corresponding isotopes, wherein the isotopes of carbon include 12 C, 13 C and 14 C, and the isotopes of hydrogen include protium (H), deuterium (D, Also called heavy hydrogen), tritium (T, also called super heavy hydrogen), oxygen isotopes include 16 O, 17 O and 18 O, sulfur isotopes include 32 S, 33 S, 34 S and 36 S, nitrogen isotopes include 14 N and 15 N, the isotopes of fluorine include 17 F and 19 F, the isotopes of chlorine include 35 Cl and 37 Cl, and the isotopes of bromine include 79 Br and 81 Br.
  • the isotopes of carbon include 12 C, 13 C and 14
  • CN means cyano
  • Halogen means F, Cl, Br or I.
  • Halogen substituted refers to F, Cl, Br or I substitution, including but not limited to 1 to 10 substituents selected from F, Cl, Br or I, 1 to 6 substituents selected from F, Cl, Br Or substituted by a substituent of I, substituted by 1 to 4 substituents selected from F, Cl, Br or I.
  • Halo-substituted is simply referred to as "halo”.
  • Alkyl refers to a substituted or unsubstituted linear or branched saturated aliphatic hydrocarbon group, including but not limited to an alkyl group of 1 to 20 carbon atoms, an alkyl group of 1 to 8 carbon atoms, an alkyl group of 1 to 6 An alkyl group of carbon atoms, an alkyl group of 1 to 4 carbon atoms.
  • Non-limiting examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, neobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl And its various branched chain isomers; Alkyl group appearing in this article, its definition is consistent with this definition. Alkyl groups can be monovalent, divalent, trivalent or tetravalent.
  • Alkylene refers to substituted or unsubstituted linear and branched divalent saturated hydrocarbon groups, including -(CH 2 ) v - (v is an integer from 1 to 10), examples of alkylene include but not Limited to methylene, ethylene, propylene and butylene, etc.
  • Cycloalkyl means a substituted or unsubstituted saturated carbocyclic hydrocarbon group, usually having 3 to 10 carbon atoms, non-limiting examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cyclo Heptyl etc. As used herein, cycloalkyl is as defined above. Cycloalkyl groups can be monovalent, divalent, trivalent or tetravalent.
  • Heterocycloalkyl refers to a substituted or unsubstituted saturated heteroatom-containing cyclic hydrocarbon group, including but not limited to 3 to 10 atoms, 3 to 8 atoms, containing 1 to 3 atoms selected from N, O or
  • the heteroatoms of S, the selectively substituted N and S in the ring of heterocycloalkyl can be oxidized into various oxidation states.
  • the heterocycloalkyl group can be connected to a heteroatom or a carbon atom, the heterocycloalkyl group can be connected to an aromatic ring or a non-aromatic ring, and the heterocycloalkyl group can be connected to a bridged ring or a spiro ring.
  • Non-limiting examples include ring Oxyethyl, aziridyl, oxetanyl, azetidinyl, tetrahydrofuryl, tetrahydro-2H-pyranyl, dioxolanyl, dioxanyl, pyrrolidinyl, Piperidinyl, imidazolidinyl, oxazolidinyl, oxazinyl, morpholinyl, hexahydropyrimidinyl, piperazinyl.
  • Heterocycloalkyl can be monovalent, divalent, trivalent or tetravalent
  • alkenyl means a substituted or unsubstituted straight and branched unsaturated hydrocarbon group having at least 1, usually 1, 2 or 3 carbon-carbon double bonds, the main chain including but not limited to 2 to 10 1, 2 to 6, or 2 to 4 carbon atoms
  • alkenyl examples include but are not limited to vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl , 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-but Alkenyl, 2-methyl-3-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1 -pentenyl, 2-methyl-1-pentenyl, 1-heptenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 1-octen
  • Alkynyl means a substituted or unsubstituted straight and branched unsaturated hydrocarbon group having at least 1, usually 1, 2 or 3 carbon-carbon triple bonds, the backbone comprising 2 to 10 carbon atoms , including but not limited to 2 to 6 carbon atoms in the main chain, 2 to 4 carbon atoms in the main chain, examples of alkynyl include but not limited to ethynyl, propargyl, 1-propynyl, 2 -propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl Base-1-butynyl, 2-methyl-1-butynyl, 2-methyl-3-butynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4- Hexynyl, 5-hexynyl, 1-
  • Alkoxy means a substituted or unsubstituted -O-alkyl group. Non-limiting examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, n-hexyloxy, cyclopropyl Oxygen and Cyclobutoxy.
  • Carbocyclyl or “carbocycle” refers to a substituted or unsubstituted saturated or unsaturated aromatic ring or non-aromatic ring
  • the aromatic ring or non-aromatic ring can be 3 to 8 membered single ring, 4 to 12 membered Bicyclic or 10- to 15-membered tricyclic ring system
  • the carbocyclic group can be connected to an aromatic ring or a non-aromatic ring
  • the aromatic ring or non-aromatic ring is optionally a monocyclic, bridged or spiro ring.
  • Non-limiting examples include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, 1-cyclopentyl-1-enyl, 1-cyclopentyl-2-enyl, 1-cyclopentyl Pentyl-3-enyl, cyclohexyl, 1-cyclohexyl-2-enyl, 1-cyclohexyl-3-enyl, cyclohexenyl, benzene ring, naphthalene ring,
  • a "carbocyclyl” or “carbocycle” can be monovalent, divalent, trivalent or tetravalent.
  • Heterocyclic group refers to a substituted or unsubstituted saturated or unsaturated aromatic ring or non-aromatic ring, the aromatic ring or non-aromatic ring can be 3 to 8 membered single ring, 4 to 12 membered A bicyclic ring or a 10- to 15-membered tricyclic ring system, and contains 1 or more (including but not limited to 2, 3, 4 or 5) heteroatoms selected from N, O or S, and the ring of the heterocyclyl group is selected from sexually substituted N and S can be oxidized into various oxidation states.
  • the heterocyclic group can be connected to a heteroatom or a carbon atom, the heterocyclic group can be connected to an aromatic ring or a non-aromatic ring, and the heterocyclic group can be connected to a bridged ring or a spiro ring.
  • Non-limiting examples include oxirane , aziridyl, oxetanyl, azetidinyl, 1,3-dioxolanyl, 1,4-dioxolanyl, 1,3-dioxanyl, nitrogen Heterocycloheptyl, pyridyl, furyl, thienyl, pyryl, N-alkylpyrrolyl, pyrimidinyl, pyrazinyl, pyridazinyl, imidazolyl, piperidinyl, morpholinyl, thiomorph Linyl, 1,3-dithianyl, dihydrofuranyl, dihydropyranyl, dithiapentanyl, tetrahydrofuranyl, tetrahydropyrrolyl, tetrahydroimidazolyl, tetrahydrothiazolyl, tetrahydropyranyl Base, benzopyridyl, pyr
  • Spiro ring or “spirocyclic group” refers to a polycyclic group that shares one atom (called spiro atom) between substituted or unsubstituted monocyclic rings.
  • Non-limiting examples include:
  • a “spirocycle” or “spirocyclyl” can be monovalent, divalent, trivalent or tetravalent.
  • the number of ring atoms in the double ring system includes but is not limited to 5 to 20, 5 to 14, 5 to 12, and 5 to 10. Non-limiting examples include:
  • Alkyl or “alkyl” may be monovalent, divalent, trivalent or tetravalent.
  • the number of ring atoms includes, but is not limited to, 5 to 20, 5 to 14, 5 to 12 or 5 to 10. Non-limiting examples include Cubane, adamantane.
  • a "bridged ring” or “bridged ring group” may be monovalent, divalent, trivalent or tetravalent.
  • Carbospiro refers to a “spirocycle” whose ring system consists only of carbon atoms.
  • the definitions of “carbospirocycle”, “spirocyclic carbocyclyl”, “spirocarbocyclyl” or “carbospirocyclyl” appearing herein are consistent with spirocycle.
  • Carbocyclic “paracyclic carbocyclyl”, “paracarbocyclyl” or “carbocyclyl” refers to a “carbocyclyl” whose ring system consists only of carbon atoms.
  • the definition of “carbocyclyl”, “paracyclic carbocyclyl”, “paracarbocyclyl” or “carbocyclyl” used herein is consistent with that of paracyclyl.
  • Carbobridged ring refers to a “bridged ring” whose ring system consists only of carbon atoms.
  • the definitions of "carbon bridged ring”, “bridged ring carbocyclyl”, “bridged carbocyclyl” or “carbobridged ring” appearing in this article are consistent with those of bridged ring.
  • Heterocyclic group refers to the “heterocyclic group” or “heterocyclic group” of a monocyclic ring system, and the heterocyclic group, "monocyclic heterocyclic group” appearing herein group” or “heteromonocyclic group”, the definition of which is consistent with that of heterocycle.
  • Heterocyclyl refers to “heterocycles” that contain heteroatoms.
  • the definition of heterocyclic ring, “heterocyclic group”, “heterocyclic heterocyclic group” or “heterocyclic group” used herein is consistent with that of parallel ring.
  • Heterospiro refers to a “spirocycle” that contains heteroatoms.
  • heterospirocycle refers to a “spirocycle” that contains heteroatoms.
  • heterospirocycle refers to a “spirocycle” that contains heteroatoms.
  • heterospirocycle refers to a “spirocycle” that contains heteroatoms.
  • heterospirocycle refers to a “spirocycle” that contains heteroatoms.
  • heterospirocycle refers to a "heterospirocyclyl” that contains heteroatoms.
  • Heterobridged ring refers to a “bridged ring” that contains heteroatoms.
  • the definition of heterobridged ring, “heterobridged ring group”, “bridged ring heterocyclyl group” or “heterobridged ring group” used herein is consistent with bridged ring.
  • Aryl or “aromatic ring” refers to a substituted or unsubstituted aromatic hydrocarbon group with a single ring or a condensed ring, and the number of ring atoms in the aromatic ring includes but is not limited to 6 to 18, 6 to 12 or 6 to 10 carbon atoms.
  • the aryl ring may be fused to a saturated or unsaturated carbocyclic or heterocyclic ring, wherein the ring bonded to the parent structure is an aryl ring, non-limiting examples include benzene, naphthalene, "Aryl” or “aromatic ring” may be monovalent, divalent, trivalent or tetravalent. When divalent, trivalent or tetravalent, the point of attachment is on the aryl ring.
  • heteroaryl examples include, but are not limited to, pyridyl, furyl, thienyl, pyridyl, pyranyl, N-alkylpyrrolyl, pyrimidinyl, pyrazinyl, pyridazinyl, imidazolyl, Benzopyrazole, benzimidazole, benzopyridine, pyrrolopyridine, etc.
  • the heteroaryl ring may be fused to a saturated or unsaturated carbocyclic or heterocyclic ring, wherein the ring bonded to the parent structure is a heteroaryl ring, non-limiting examples include Where heteroaryl appears herein, its definition is consistent with this definition.
  • Heteroaryl groups can be monovalent, divalent, trivalent or tetravalent. When divalent, trivalent or tetravalent, the point of attachment is on the heteroaryl ring.
  • Constant 1 to 4 heteroatoms selected from O, S, N means containing 1, 2, 3 or 4 heteroatoms selected from O, S, N.
  • Substituted by 0 to X substituents means substituted by 0, 1, 2, 3...X substituents, X is selected from any integer between 1 and 10.
  • substituted by 0 to 4 substituents means substituted by 0, 1, 2, 3 or 4 substituents.
  • substituted by 0 to 5 substituents means substituted by 0, 1, 2, 3, 4 or 5 substituents.
  • the heterobridged ring is optionally further substituted by 0 to 4 substituents selected from H or F means that the heterobridged ring is optionally further substituted by 0, 1, 2, 3 or 4 substituents selected from H or F base replaced.
  • X-Y-membered rings (X is selected from integers less than Y and greater than or equal to 3, Y is selected from any integer between 4 and 12) including X, X+1, X+2, X+3, X+4...Y ring of elements.
  • Rings include heterocycles, carbocycles, aryls, aryls, heteroaryls, cycloalkyls, heteromonocycles, heteroheterocycles, heterospirocycles or heterobridged rings.
  • 4--7 membered heteromonocyclic ring refers to 4-membered, 5-membered, 6-membered or 7-membered heteromonocyclic ring
  • 5--10-membered heterocyclic ring refers to 5-, 6-, 7-, and 8-membered heterocyclic rings.
  • 9-membered or 10-membered heterocyclic rings refers to 4-membered, 5-membered, 6-membered or 7-membered heteromonocyclic ring
  • 5--10-membered heterocyclic ring refers to 5-, 6-, 7-, and 8-membered heterocyclic rings.
  • Alkyl optionally substituted by F means that the alkyl group may but not necessarily be substituted by F, and the description includes the case where the alkyl group is substituted by F and the case where the alkyl group is not substituted by F.
  • “Pharmaceutically acceptable salt” or “pharmaceutically acceptable salt thereof” means that the compound of the present invention maintains the biological effectiveness and characteristics of free acid or free base, and the free acid is mixed with a non-toxic inorganic base or Organic base, the salt obtained by reacting the free base with a non-toxic inorganic acid or organic acid.
  • “Pharmaceutical composition” refers to one or more compounds of the present invention, or their stereoisomers, tautomers, deuterated products, solvates, prodrugs, metabolites, pharmaceutically acceptable salts or A mixture of co-crystals and other chemical components, wherein “other chemical components” refer to pharmaceutically acceptable carriers, excipients and/or one or more other therapeutic agents.
  • Preparation specification refers to the weight of the main drug contained in each tube, tablet or other unit preparation.
  • Carrier refers to a material that does not produce significant irritation to an organism and that does not abrogate the biological activity and properties of the administered compound.
  • Prodrug refers to a compound of the present invention that can be transformed into a biologically active compound through in vivo metabolism.
  • the prodrugs of the present invention are prepared by modifying the amino or carboxyl groups of the compounds of the present invention, which modifications can be removed by routine manipulation or in vivo to obtain the parent compound.
  • the prodrugs of the present invention are administered to a mammalian subject, the prodrugs are cleaved to form free amino or carboxyl groups.
  • Co-crystal refers to the crystal formed by the combination of active pharmaceutical ingredient (API) and co-crystal former (CCF) under the action of hydrogen bonding or other non-covalent bonds, wherein the pure state of API and CCF are both solid, and there is a fixed stoichiometric ratio between the components.
  • a co-crystal is a multi-component crystal, including both a binary co-crystal formed between two neutral solids and a multi-element co-crystal formed between a neutral solid and a salt or solvate.
  • Animal is meant to include mammals such as humans, companion animals, zoo animals and domestic animals, preferably humans, horses or dogs.
  • Stepoisomer refers to isomers produced by different arrangements of atoms in a molecule in space, including cis-trans isomers, enantiomers and conformational isomers.
  • Tautomer refers to a functional group isomer produced by a certain atom in a molecule moving rapidly at two positions, such as keto-enol isomerization and amide-imino alcohol isomerization.
  • IC50 is the concentration of drug or inhibitor required to inhibit a given biological process (or some component of the process such as an enzyme, receptor, cell, etc.) by half.
  • the compounds used in the reactions described herein are prepared according to techniques of organic synthesis known to those skilled in the art, starting from commercially available chemicals and/or compounds described in the chemical literature.
  • “Commercially available chemicals” are obtained from formal commercial sources, suppliers include: Titan Technology, Anaiji Chemical, Shanghai Demo, Chengdu Kelon Chemical, Shaoyuan Chemical Technology, Nanjing Yaoshi, WuXi AppTec and Bailingwei Technology, etc. company.
  • NMR nuclear magnetic resonance
  • MS mass spectroscopy
  • HPLC HPLC-based high pressure liquid chromatography
  • the thin-layer chromatography silica gel plate uses Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plate.
  • the specification of the silica gel plate used in thin-layer chromatography (TLC) is 0.15mm-0.20mm, and the specification of thin-layer chromatography separation and purification products is 0.4mm. -0.5mm;
  • Dess-Martin oxidant (1,1,1-triacetoxy)-1,1-dihydro-1,2-phenyliodyl-3(1H)-one (CAS No.: 87413-09-0); TBSOTf: tert-butyldimethylsilyl trifluoromethanesulfonate; rac-BINAP: 1,1'-binaphthyl-2,2'-bisdiphenylphosphine (CAS No.: 98327-87-8); Pd 2 (dba) 3 : Tris(dibenzylideneacetone) dipalladium (CAS No.: 51364-51-3); DMA: N,N-dimethylacetamide; DMF: N,N-dimethylformamide; DCM: dichloromethane; MeOH: methanol; NMI: N-methylimidazole;
  • TCFH N,N,N',N'-Tetramethylchloroformamidine hexafluorophosphate.
  • 2-A hydrochloride (1.8g, 9.4mmol) was added to a 100mL single-necked bottle, acetonitrile (30mL) was added, N,N-diisopropylethylamine (3.6g, 27.9mmol) and 5-chloro Ethyl pyrazolo[1,5-a]pyrimidine-3-carboxylate (2.1g, 9.31mmol) was reacted at 60°C for 12h.
  • Embodiment 1 preparation compound 1 (trans)
  • Dissolve 1I (52mg, 0.11mmol) in hydrogen chloride-dioxane (5mL, 4mol/L), react at room temperature for 1h, concentrate after the reaction, add 5mL of dioxane to the residue to redissolve, add triethylamine ( 0.5mL) was concentrated to obtain 1J crude product.
  • Embodiment 2 preparation compound 2 (trans)
  • 2A (1.6g, 3.43mmol), 10% palladium on carbon (0.9g), 10% palladium hydroxide on carbon (1.2g) were dissolved in 20mL tetrahydrofuran and 20mL methanol, replaced with hydrogen three times, and reacted overnight at 30°C. Cool to room temperature, filter with diatomaceous earth, wash the filter cake three times with methanol, combine the organic phases, dry over anhydrous sodium sulfate, and spin dry under reduced pressure to obtain 2B (650 mg, yield 73%).
  • Embodiment 3 preparation compound 3 (trans)
  • 3B (440 mg, 0.96 mmol) and pyridine (150 mg, 1.9 mmol) were dissolved in anhydrous dichloromethane (10 mL), cooled to 0°C.
  • the 3C crude product (500 mg) was dissolved in anhydrous dichloromethane (4 mL), slowly added dropwise to the system, and reacted at room temperature for 2 h.
  • the reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 3D (600 mg, yield: 89%).
  • 3D (600mg, 0.85mmol) was dissolved in tetrahydrofuran (10mL), cooled to 0°C, TBAF (1M, 1.71mL) was added slowly, and reacted at room temperature for 4h.
  • the reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 3E (372 mg, yield: 74%).
  • Dissolve 2D (100 mg, 0.21 mmol) in dichloromethane (4 mL), add trifluoroacetic acid (4 mL), react at room temperature for 1 h, concentrate under reduced pressure, add 10 mL of dichloromethane to redissolve, add 3 mL of triethylamine to adjust to alkali properties, concentrated under reduced pressure to obtain the compound residue was dissolved in DMA (6mL), added 3F (120mg, 0.20mmol), Molecular sieves (2 g). Stir at room temperature for 30 min, add sodium triacetoxyborohydride (58 mg, 0.27 mmol), and react overnight at room temperature.
  • Embodiment 4 prepare the trifluoroacetate (trans) of compound 4
  • Embodiment 6 preparation compound 6 (trans)
  • the trifluoroacetic acid salt (100mg) of 6g of the above crude product was dissolved in 5mL DMA, sodium bicarbonate (30mg, 0.36mmol) was added, after stirring at room temperature for 15min, 6h (100mg, 0.21mmol), 0.04mL acetic acid and Molecular sieves (2 g), stirred at room temperature for 30 min, added sodium triacetoxyborohydride (76 mg, 0.36 mmol), and reacted at room temperature for 16 h.
  • Embodiment 7 preparation compound 7 (Trans)
  • Compound 7 uses deuteroiodomethane as the starting material, and refers to the synthesis method of Example 6 to obtain Compound 7.
  • Dissolve 7a (6.00g, 24.79mmol) in 30mL of acetone, add potassium hydroxide (2.09g, 37.25mmol) at 0°C, stir at 0°C for 15min, add deuteroiodomethane (3.60g, 24.83mmol) dropwise , 20°C for 16h.
  • Embodiment 8 preparation compound 8 (Trans)
  • Compound 8 uses 8a + iodoisopropane as the starting material, and refers to the synthesis method of Example 6 to obtain compound 8.
  • Embodiment 10 preparation compound 10 (Trans)
  • Compound 10 uses (3S,4R)-3-fluoro-4-hydroxypiperidine-1-carboxylic acid tert-butyl ester (10a) as the starting material, referring to the synthesis method of Example 12, to obtain compound 10 (20.5 mg, yield : 11%).
  • Embodiment 11 preparation compound 11 (Trans)
  • Embodiment 12 preparation compound 12 (Trans)
  • the third step the preparation of the trifluoroacetic acid salt of 12d
  • Embodiment 13 preparation compound 13 (Trans)
  • Embodiment 14 Preparation of trifluoroacetate (Trans) of compound 14
  • the third step the preparation of the trifluoroacetic acid salt of compound 14
  • Embodiment 15 Preparation of trifluoroacetate (Trans) of compound 15
  • Embodiment 16 preparation compound 16 (Trans)
  • the seventh step the preparation of compound 16
  • Embodiment 17 the preparation of compound 17 (Trans)
  • Embodiment 18 Preparation of Compound 18 (Trans)
  • Embodiment 19 Preparation of Compound 19 (Trans)
  • the obtained chiral isomer 2 is subjected to acidic preparation to obtain the trifluoroacetic acid salt of chiral isomer 2.
  • Embodiment 20 the preparation of compound 20 (Trans)
  • Embodiment 21 Preparation of Compound 21 (Trans)
  • Embodiment 22 the preparation of compound 22 (Trans)
  • Embodiment 23 Preparation of Compound 23 (Trans)
  • Embodiment 24 Preparation of Compound 24 (Trans)
  • Embodiment 25 the preparation of compound 25 (Trans)
  • the above crude intermediate 7 (0.12g) was added to 5mL of acetonitrile, the above crude intermediate 5 (0.07g) and TCFH (0.084g, 0.3mmol) were added, NMI (0.08g, 0.97mmol) was added at 0°C, and room temperature Reaction 16h.
  • the reaction system was concentrated under reduced pressure, and the residue was subjected to chiral preparation to obtain chiral isomer 1 (25 mg, two-step yield from compound 5-A: 19%) and chiral isomer 2 of compound 25, respectively. (26.4 mg, two-step yield from compound 5-A: 20%).
  • Embodiment 26 the synthesis of compound 26 (Trans)
  • Embodiment 27 the preparation of compound 27 (Trans)
  • 16e (600 mg, 1.52 mmol), 10b (470 mg, 1.83 mmol), CuI (58 mg, 0.30 mmol), PdCl 2 (PPh 3 ) 2 (110 mg, 0.157 mmol) and TEA (0.77 g, 7.61 mmol) were dissolved in 20 mL In DMF, the nitrogen gas was replaced three times, and the reaction was carried out at 60° C. for 5 h.
  • the second step the preparation of the trifluoroacetic acid salt of 27b
  • Embodiment 28 Preparation of Compound 28 (Trans)
  • Test Example 1 Research on IRAK4 degradation activity in hPBMC cells (24 hours)
  • hPBMC cells are human peripheral blood mononuclear cells. Peripheral venous blood from healthy volunteers was collected, and hPBMC were isolated by Ficoll density gradient centrifugation (Ficoll-PaqueTM PLUS 1.077, GE, Cat.17-1140-02). Culture conditions: RPMI-1640+10% FBS+1% double antibody, cultured at 37°C, 5% CO 2 incubator. Cells were plated in 24-well plates at 1 ⁇ 106 /well. After plating, different concentrations of compounds were added, and cultured at 37° C. in a 5% CO 2 incubator for 24 hours.
  • the cells were collected, lysed on ice for 20 minutes by adding RIPA lysate (beyotime, Cat.P0013B), centrifuged at 12,000 rpm, 4°C for 10 minutes, and the supernatant protein sample was collected, and the BCA kit (Beyotime, Cat.P0009 ) after protein quantification, the protein was diluted to 1 mg/mL.
  • RIPA lysate beyotime, Cat.P0013B
  • BCA kit Beyotime, Cat.P0009
  • the expression of IRAK4 (CST, Cat.4363S) and internal reference cofilin (CST, Cat.5175S) was detected using a fully automatic western blot quantitative analyzer (Proteinsimple).
  • the expression of IRAK4 relative to the internal reference was calculated using compass software.
  • Use formula (1) to calculate the remaining amount IRAK4% relative to vehicle control group IRAK4 protein under different doses use formula (2) to calculate the degradation amount relative to vehicle control group IRAK4 protein under different doses, wherein IRAK4 administration is different doses
  • the DC 50 was calculated by fitting the IRAK4 degradation-drug concentration curve with Graphpad Prism 8 software.
  • IRAK4% IRAK4 administration /IRAK4 vehicle ⁇ 100% Formula 1
  • Table 1 test compound is to the degradative activity of IRAK4 protein in hPBMC cell under 100nM
  • the compound of the present invention has a certain degradative effect on IRAK4 protein in hPBMC cells at 24 hours.
  • Test animals male ICR mice, ⁇ 25g, 6/compound. purchased from Chengdu Dashuo Experimental Animal Co., Ltd.
  • mice On the day of the experiment, 6 ICR mice were randomly divided into groups according to body weight. One day before the administration, fasting without water for 12-14 hours, and giving food 4 hours after the administration.
  • Intravenous administration vehicle 5% DMA+5% Solutol+90% Saline;
  • Oral administration vehicle 5% DMSO+30% PEG400+65% (20% SBE-CD);
  • DMSO dimethylsulfoxide
  • DMA dimethylacetamide
  • Solutol polyethylene glycol-15-hydroxystearate
  • PEG400 polyethylene glycol 400
  • SBE- ⁇ -CD sulfobutyl- ⁇ -cyclodextrin
  • Saline normal saline ;
  • the compound of the present invention has good oral absorption in mice.
  • Test example 3 hERG potassium ion channel action test
  • Cell line Chinese hamster ovary (CHO) cell line stably expressing hERG potassium channel
  • the cells were clamped at -80mV, and the voltage step of the evoked hERG potassium current (I hERG ) was given a 2s depolarization voltage from -80mV to +20mV, and then repolarized to -50mV for 1s. back to -80mV. Give this voltage stimulation every 10s, and start the administration process after confirming that the hERG potassium current is stable (at least 1 minute).
  • Compounds were administered for at least 1 min at each concentration tested, and at least 2 cells (n > 2) were tested at each concentration.
  • Inhibition% represents the inhibitory percentage of the compound on the hERG potassium current
  • I and Io represent the amplitudes of the hERG potassium current after and before the drug addition, respectively.
  • X is the Log value of the detected concentration of the test substance
  • Y is the inhibition percentage at the corresponding concentration
  • Bottom and Top are the minimum and maximum inhibition percentages, respectively.
  • the compound of the present invention has no obvious inhibitory effect on hERG potassium channel.
  • reference compound 1 is as follows, and its synthesis refers to patent WO2020113233A1.
  • Test Example 4 Rat pharmacokinetic test
  • Test animals male SD rats, about 200 g, 6-8 weeks old, 6 rats/compound. purchased from Chengdu Dashuo Experimental Animal Co., Ltd.
  • Intravenous administration vehicle 5% DMA+5% Solutol+90% Saline;
  • Oral administration vehicle 5% DMSO+30% PEG400+65% (20% SBE-CD);
  • DMSO dimethylsulfoxide
  • DMA dimethylacetamide
  • Solutol polyethylene glycol-15-hydroxystearate
  • PEG400 polyethylene glycol 400
  • SBE- ⁇ -CD sulfobutyl- ⁇ -cyclodextrin
  • Saline normal saline ;
  • the compounds of the present invention have good oral absorption in rats.
  • Test animals male Beagle dogs, about 8-11kg, 6/compound. Bought from Beijing Masi Biotechnology Co., Ltd.
  • Test method On the day of the test, 6 Beagle dogs were randomly divided into groups according to body weight. One day before the administration, fasting without water for 14-18 hours, and giving food 4 hours after the administration.
  • Intravenous administration vehicle 10% DMA+5% Solutol+85% Saline;
  • Oral administration vehicle 5% DMSO+30% PEG400+65% (20% SBE-CD);
  • Test animals male cynomolgus monkeys, about 3-5kg, 3-6 years old, 6 animals/compound. purchased from Suzhou Xishan Biotechnology Co., Ltd.
  • Test method On the day of the test, 6 monkeys were randomly divided into groups according to body weight. One day before the administration, fasting without water for 14-18 hours, and giving food 4 hours after the administration.
  • Intravenous administration vehicle 10% DMA+5% Solutol+85% Saline;
  • Oral administration vehicle 5% DMSO+30% PEG400+65% (20% SBE-CD);
  • the compounds of the present invention have good oral absorption in monkeys.
  • liver microsomes including human, monkey, dog, rat and mouse were used as in vitro models to evaluate the metabolic stability of the test substance.
  • the compounds of the present invention have good stability in liver microsomes.
  • the purpose of this study is to use an in vitro test system to evaluate the effect of the test substance on the activity of five isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) of human liver microsomal cytochrome P450 (CYP).
  • CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 human liver microsomal cytochrome P450
  • Specific probe substrates of CYP450 isozymes were incubated with human liver microsomes and different concentrations of test substances, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) was added to start the reaction.
  • NADPH nicotinamide adenine dinucleotide phosphate
  • the assay used a monolayer of Caco-2 cells incubated in triplicate in 96-well Transwell plates.
  • a transport buffer solution (HBSS, 10 mM HEPES, pH 7.4 ⁇ 0.05) containing the compound of the invention (2 ⁇ M) or the control compound digoxin (10 ⁇ M), nadolol (2 ⁇ M), and metoprolol (2 ⁇ M) was added to the apical side or in the dosing port hole on the basal side.
  • Add the transport buffer solution containing DMSO was added to the corresponding receiver well. After incubating at 37 ⁇ 1°C for 2 hours, the cell plate was removed and an appropriate amount of samples were taken from the top and bottom respectively into a new 96-well plate.
  • Acetonitrile containing an internal standard was then added to precipitate the protein.
  • Samples were analyzed using LC MS/MS and the concentrations of compounds of the invention and controls were determined. Concentration data were used to calculate apparent permeability coefficients for transport from the apical to the basal side of the monolayer, and from the basal to the apical side, thereby calculating efflux rates. The integrity of the monolayer after 2 hours of incubation was assessed by the leakage of Fluorescent Yellow.
  • the compound of the present invention has good CaCO2 permeability.
  • Test Example 10 Study on Ikaros degradation activity in hPBMC cells (24 hours)
  • hPBMC cells are human peripheral blood mononuclear cells. Peripheral venous blood from healthy volunteers was collected, and hPBMC were isolated by Ficoll density gradient centrifugation (Ficoll-PaqueTM PLUS 1.077, GE, Cat.17-1140-02). Culture conditions: RPMI-1640+10% FBS+1% double antibody, cultured at 37°C, 5% CO 2 incubator. Cells were plated in 24-well plates at 1 ⁇ 106 /well. After plating, different concentrations of compounds were added, and cultured at 37° C. in a 5% CO 2 incubator for 24 hours.
  • the cells were collected, lysed on ice for 20 minutes by adding RIPA lysate (beyotime, Cat.P0013B), centrifuged at 12,000 rpm, 4°C for 10 minutes, and the supernatant protein sample was collected, and the BCA kit (Beyotime, Cat.P0009 ) after protein quantification, the protein was diluted to 1 mg/mL.
  • RIPA lysate beyotime, Cat.P0013B
  • BCA kit Beyotime, Cat.P0009
  • the expression of Ikaros relative to the internal reference was calculated using compass software.
  • the compound of the present invention has no obvious degradation effect on Ikaros protein in hPBMC cells.
  • Test Example 11 Study on Aiolos Degradation Activity in hPBMC Cells (24 hours)
  • hPBMC cells are human peripheral blood mononuclear cells. Peripheral venous blood from healthy volunteers was collected, and hPBMC were isolated by Ficoll density gradient centrifugation (Ficoll-PaqueTM PLUS 1.077, GE, Cat.17-1140-02). Culture conditions: RPMI-1640+10% FBS+1% double antibody, cultured at 37°C, 5% CO 2 incubator. Cells were plated in 24-well plates at 1 ⁇ 106 /well. After plating, different concentrations of compounds were added, and cultured at 37° C. in a 5% CO 2 incubator for 24 hours.
  • the cells were collected, lysed on ice for 20 minutes by adding RIPA lysate (beyotime, Cat.P0013B), centrifuged at 12,000 rpm, 4°C for 10 minutes, and the supernatant protein sample was collected, and the BCA kit (Beyotime, Cat.P0009 ) after protein quantification, the protein was diluted to 1 mg/mL.
  • RIPA lysate beyotime, Cat.P0013B
  • BCA kit Beyotime, Cat.P0009
  • the expression of Aiolos relative to the internal reference was calculated using compass software.
  • Aiolos residual % Aiolos compound /Aiolos solvent ⁇ 100% Formula (5)
  • the compound of the present invention has no obvious degradation effect on Aiolos protein in hPBMC cells.
  • Test Example 12 Study on IRAK4 Degradation Activity in hPBMC Cells (4 hours)
  • hPBMC cells are human peripheral blood mononuclear cells. Peripheral venous blood from healthy volunteers was collected, and hPBMC were isolated by Ficoll density gradient centrifugation (Ficoll-PaqueTM PLUS 1.077, GE, Cat.17-1140-02). Culture conditions: RPMI-1640+10% FBS+1% double antibody, cultured at 37°C, 5% CO 2 incubator. Cells were plated in 24-well plates at 1 ⁇ 106 /well. After plating, different concentrations of compounds were added and cultured for 4 hours at 37°C in a 5% CO 2 incubator.
  • the cells were collected, lysed on ice for 20 minutes by adding RIPA lysate (beyotime, Cat.P0013B), centrifuged at 12,000 rpm, 4°C for 10 minutes, and the supernatant protein sample was collected, and the BCA kit (Beyotime, Cat.P0009 ) after protein quantification, the protein was diluted to 1 mg/mL.
  • RIPA lysate beyotime, Cat.P0013B
  • BCA kit Beyotime, Cat.P0009
  • the expression of IRAK4 (CST, Cat.4363S) and internal reference cofilin (CST, Cat.5175S) was detected using a fully automatic western blot quantitative analyzer (Proteinsimple).
  • the expression of IRAK4 relative to the internal reference was calculated using compass software.
  • the expression level, IRAK4 vehicle is the expression level of IRAK4 in the vehicle control group.
  • the DC 50 was calculated by fitting the IRAK4 degradation-drug concentration curve with Graphpad Prism 8 software.
  • IRAK4 remaining % IRAK4 compound /IRAK4 vehicle ⁇ 100% formula (7)
  • the compound of the present invention has a certain degradative effect on IRAK4 protein in hPBMC cells at 4 hours.

Abstract

本发明涉及一种通式(I)所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,及其中间体,以及在IRAK4相关疾病如自身免疫性疾病、炎症疾病或癌症中的用途。 B-L-K(I)

Description

一种抑制并降解IRAK4的化合物及其药物组合物和药学上的应用 技术领域
本发明涉及一种通式(I)的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,及其中间体和制备方法,以及在IRAK4相关疾病如肿瘤或自身免疫***疾病中的用途。
背景技术
激酶催化蛋白质、脂类、糖、核苷和其他细胞代谢产物的磷酸化,在真核细胞生理学的各个方面发挥着关键作用。尤其是蛋白激酶和脂类激酶参与控制激活的信号事件,细胞对细胞外介质或刺激如生长因子、细胞因子或趋化因子的反应而生长、分化和存活。一般来说,蛋白质激酶分为两类,一类优先磷酸化酪氨酸残基,另一类优先磷酸化丝氨酸和/或苏氨酸残基。
白细胞介素1受体激酶4(IRAK4)是一种丝氨酸/苏氨酸特异性蛋白激酶,属于类酪氨酸激酶(TLK)家族成员,是白介素-1、18、33受体和Toll样受体参与的先天性免疫应答中的关键节点。细胞外信号分子与白介素受体或Toll样受体结合后,募集形成MyD88:IRAK4:IRAKl/2多蛋白复合体,导致IRAK1/2磷酸化,介导一系列下游信号传导,从而激活p38、JNK和NF-kB信号通路,最终导致前炎症细胞因子的表达。临床病理学研究表明,具有IRAK4突变的个体对慢性肺病、炎症性肠病有防护作用。IRAK4缺陷本身无致死性,个体能够存活至成年,且随年龄増长受感染风险降低。因此,IRAK4成为了一类重要治疗靶点,吸引了广泛的研发兴趣。
PROTAC(proteolysis targeting chimera)分子是一类能够同时结合靶向蛋白和E3泛素连接酶的双功能化合物,此类化合物能够被细胞的蛋白酶体识别,引起靶向蛋白的降解,能够有效地降低靶向蛋白在细胞中的含量。通过在PROTAC分子引入能结合不同靶向蛋白的配体,使PROTAC技术应用于各种疾病的治疗成为可能,该技术近年来同时得到了广泛的关注。
因此,有必要开发新型的IRAK4抑制剂和E3泛素连接酶的PROTAC药物,用于治疗与IRAK4相关的疾病。
发明内容
本发明的目的在于提供一种结构新颖的、药效好、生物利用度高、更安全、能抑制或降解IRAK4的化合物,用于治疗与IRAK4相关疾病如自身免疫性疾病,炎症疾病或癌症。
本发明提供一种化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,化合物选自通式(I)所示的化合物,
B-L-K(I);
在某些实施方案中,B选自
Figure PCTCN2023070367-appb-000001
在某些实施方案中,B1、B3各自独立的选自C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的杂芳基或杂环基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,B1、B3各自独立的选自吡唑基、噁唑基、二噁唑基、噁二唑基、***基、咪唑基、四唑基、吡咯基、噻吩基、噻唑基、噻二唑基、吡啶基、苯基、吡嗪基、嘧啶基、哒嗪基、噻吩并吡嗪基、苯并咪唑基、吡啶并三氮唑基、嘧啶并吡唑基、咪唑并哒嗪基、吡啶并吡唑基、吡咯并哒嗪基或
Figure PCTCN2023070367-appb-000002
在某些实施方案中,B1、B3选自
Figure PCTCN2023070367-appb-000003
在某些实施方案中,R b1、R b7各自独立的选自H、F、Cl、Br、I、=O、OH、NH 2、CN、CF 3、C(=O)OH、CHF 2、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、-(CH 2) n-R b21、-OR b21、-N(R b21) 2、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、杂环基、芳基或杂芳基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、-N(R b21) 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、5-10元杂芳基、4-10元杂环基或R b7a的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,R b1、R b7各自独立的选自H、F、Cl、Br、I、=O、OH、NH 2、CN、CF 3、CHF 2、CH 2F、甲基、乙基、甲氧基、乙氧基、苯基、吡咯基、吡啶基、吗啉基、
Figure PCTCN2023070367-appb-000004
Figure PCTCN2023070367-appb-000005
所述的甲基、乙基、甲氧基、乙氧基、苯基、吡咯基、吡啶基、吗啉基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、NH 2、NHC 1-4烷基、N(C 1-4烷基) 2、NHCH 2C 3-6环烷基、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基或R b7a的取代基所取代;
在某些实施方案中,R b1、R b7各自独立的选自选自氮杂环丁基、氮杂环戊基、哌啶基、哌嗪基、吗啉基、2-氧杂-5-氮杂双环[2.2.1]庚烷基,所述R b1、R b7任选被1至4个选自F、Cl、Br、I、OH、=O、CN、CF 3、NH 2、NHC 1-4烷基、N(C 1-4烷基) 2、NHCH 2C 3-6环烷基、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基或R b7a的取代基所取代,所述杂环基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,R b1、R b7各自独立的选自氮杂环丁基、氮杂环戊基、哌啶基、哌嗪基、吗啉基、2-氧杂-5-氮杂双环[2.2.1]庚烷基,所述R b1、R b7任选被1至4个选自F、Cl、Br、I、OH、=O、CN、CF 3、NH 2、NHC 1-4烷基、N(C 1-4烷基) 2、NHCH 2C 3-6环烷基、卤素取代的C 1-4烷基、氰基取代的C 1-4烷基、-C 1-4亚烷基-OH、C 1-4烷基、C 1-4烷氧基、-CH 2-O-C 1-4烷基、-CH 2-C 3-6环烷基、-O-C 3-6环烷基、-NH-C 3-6环烷基、C 3-6环烷基、-CH 2-4至7元杂环烷基、-O-4至7元杂环烷基、-NH-4至7元杂环烷基、4至7元杂环烷基的取代基所取代,所述杂环基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,R b1、R b7各自独立的选自氮杂环丁基、氮杂环戊基、苯基、吡咯基、吡啶基、吗啉基、
Figure PCTCN2023070367-appb-000006
Figure PCTCN2023070367-appb-000007
在某些实施方案中,R b1、R b7各自独立的选自
Figure PCTCN2023070367-appb-000008
Figure PCTCN2023070367-appb-000009
在某些实施方案中,R b1、R b7任选被1至4个选自F、Cl、Br、I、OH、=O、CN或R b7a的取代基所取代;
在某些实施方案中,R b7a选自C 1-4烷基、-C 3-6环烷基、4-10元杂环基、-C 1-4亚烷基-C 3-6环烷基、-C 1-4亚烷基-4-10元杂环基、-O-C 3-6环烷基、-O-4-10元杂环基、-NH-C 3-6环烷基、-NH-4-10元杂环基、-N(C 1-4烷基)-C 3-6环烷基、-N(C 1-4烷基)-4-10元杂环基,所述R b7a任选被1至4个选自H、F、Cl、Br、I、OH、=O、-N(R b21) 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、4-10元杂环基的取代基所取代,所述杂环基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,R b7a选自甲基、乙基、丙基、异丙基、环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、氮杂环己基、哌嗪基、吗啉基、氧杂环丁基、氧杂环戊基、氧杂环己基、-CH 2-环丙基、-CH 2-环丁基、-CH 2-环戊基、-CH 2-环己基、-CH 2-氮杂环丁基、-CH 2-氮杂环戊基、-CH 2-氮杂环己基、-CH 2-哌嗪基、-CH 2-吗啉基、-CH 2-氧杂环丁基、-CH 2-氧杂环戊基、-CH 2-氧杂环己基、-O-环丙基、-O-环丁基、-O-环戊基、-O-环己基、-O-氮杂环丁基、-O-氮杂环戊基、-O-氮杂环己基、-O-哌嗪基、-O-吗啉基、-O-氧杂环丁基、-O-氧杂环戊基、-O-氧杂环己基、-NH-环丙基、-NH-环丁基、-NH-环戊基、-NH-环己基、-NH-氮杂环丁基、-NH-氮杂环戊基、-NH-氮杂环己基、-NH-哌嗪基、-NH-吗啉基、-NH-氧杂环丁基、-NH-氧杂环戊基、-NH-氧杂环己基,所述R b7a任选被1至4个选自F、Cl、Br、I、OH、=O、CN、CF 3、 C(=O)OH、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、4-10元杂环基的取代基所取代,所述杂环基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,R b7a选自CF 3、CHF 2、CH 2F、CH 2CN、CH 2OH、CH 2OCH 3、甲基、乙基、-CH 2-环丙基、-CH 2-氮杂环丁基、-CH 2-氧杂环丁基、-O-环丙基、-O-氮杂环丁基、-O-氧杂环丁基、-NH-环丙基、-NH-氮杂环丁基、-NH-氧杂环丁基、
Figure PCTCN2023070367-appb-000010
在某些实施方案中,R b2、R b6各自独立的选自H、F、Cl、Br、I、=O、OH、-C(=O)N(R b21) 2、-N(R b21) 2、CN、CF 3、C(=O)OH、CHF 2、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、-(CH 2) n-R b21、-OR b21、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、芳基、杂芳基或杂环基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、5-10元杂芳基或4-10元杂环基的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,R b2、R b6各自独立的选自H、F、Cl、Br、I、=O、CF 3、CHF 2、OH、NH 2、NH(甲基)、NH(乙基)、NH(丙基)、NH(异丙基)、N(甲基) 2、N(乙基) 2、CN、甲基、乙基、甲氧基、乙氧基、丙氧基、异丙基氧基、吗啉基、哌嗪基、吡咯烷基、哌啶基或噁唑烷基,所述的甲基、乙基、甲氧基、乙氧基、丙氧基、异丙基氧基、吗啉基、哌嗪基、吡咯烷基、哌啶基或噁唑烷基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基的取代基所取代;
在某些实施方案中,R b21各自独立的选自H、C 1-6烷基、C 1-4烷氧基、C 3-6环烷基、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、芳基、杂芳基或杂环基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 3-6环烷基、C 1-4烷氧基的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,B选自
Figure PCTCN2023070367-appb-000011
Figure PCTCN2023070367-appb-000012
Figure PCTCN2023070367-appb-000013
Figure PCTCN2023070367-appb-000014
在某些实施方案中,L选自-Ak1-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-Cy4-Ak5-;
在某些实施方案中,L选自键、-Cy1-、-Cy1-Ak2-、-Cy1-Ak2-Ak3-、-Cy1-Ak2-Ak3-Ak4-Ak5-、-Cy1-Cy2-、-Cy1-Ak2-Cy2-、-Cy1-Cy2-Ak3-、-Cy1-Cy2-Ak3-Cy4-、-Cy1-Ak2-Cy2-Ak3-、-Cy1-Ak2-Cy2-Ak3-Ak4-、-Cy1-Ak2-Cy2-Cy3-Ak4-、-Cy1-Cy2-Ak3-Ak4-、-Cy1-Cy2-Ak3-Ak4-Ak5-、-Cy1-Ak2-Cy2-Ak3-Ak4-Ak5-、-Cy1-Ak2-Ak3-Cy3-Ak4-、-Cy1-Ak2-Ak3-Cy3-Ak4-Ak5-、-Cy1-Ak2-Ak3-Ak4-Cy4-Ak5-、-Cy1-Cy2-Cy3-、-Cy1-Ak2-Cy2-Cy3-、-Cy1-Cy2-Cy3-Ak4-、-Cy1-Ak2-Cy2-Cy3-Ak4-、-Cy1-Ak2-Cy2-Ak3-Cy3-、-Cy1-Ak2-Cy2-Cy3-Ak4-Ak5、-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-Ak5-、-Cy1-Cy2-Cy3-Cy4-、-Cy1-Cy2-Ak3-Cy3-Cy4-、-Cy1-Cy2-Cy3-Ak4-Cy4-、-Ak1-Cy1-Ak2-Cy2-、-Ak1-Cy1-Ak2-Cy2-Ak3-、-Ak1-Ak2-Cy2-Ak3-、-Ak1-Ak2-Cy2-、-Ak1-Ak2-Cy2-Cy3-Ak4-、-Ak1-Ak2-Ak3-Cy3-Ak4-、-Ak1-Cy1-Ak2-、-Ak1-Cy1-Cy2-Ak3-Ak4-、-Ak1-Cy1-Cy2-Ak3-、-Ak1-Cy1-Ak2-Ak3-Ak4-、-Ak1-Cy1-、-Ak1-Cy1-Ak2-Ak3-、-Ak1-Ak2-Cy2-Ak3-Ak4-、-Ak1-Cy1-Ak2-Cy2-Ak3-Ak4-、-Cy1-Ak2-Ak3-Cy3-Cy4-Ak5-、-Ak1-Cy1-Ak2-Ak3-Ak4-Ak5-、-Cy1-Ak1-Ak2-Ak3-、-Ak1-Cy1-Cy2-、-Ak1-Ak2-Ak3-Ak4-、-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-;
在某些实施方案中,Ak1、Ak2、Ak3、Ak4和Ak5各自独立的选自-(CH 2) q-、O、-(CH 2) qNR L-、NR LC=O、C=ONR L、C=O、-R LC=CR L-、C≡C或者键;
在某些实施方案中,Ak1、Ak2、Ak3、Ak4、Ak5各自独立地选自O、C≡C、CH 2、CH 2CH 2、CH 2CH 2CH 2、CH 2CH 2CH 2CH 2、CH 2N(CH 3)、CH 2CH 2N(CH 3)、N(CH 3)、NH、C(=O)、C(=O)N(CH 3)、N(CH 3)C(=O)、C(=O)NH或NHC(=O);
在某些实施方案中,R L选自H或C 1-6烷基;
在某些实施方案中,R L选自H、甲基或乙基;
在某些实施方案中,Cy1、Cy2、Cy3、Cy4各自独立的选自键、4-7元杂单环、4-10元杂并环、5-12元杂螺环、7-10元杂桥环、3-7元单环烷基、4-10元并环烷基、5-12元螺环烷基、7-10元桥环烷基、5-10元杂芳基或6-10元芳基,所述芳基、杂芳基、环烷基、杂单环、杂并环、杂 螺环或杂桥环任选进一步被0至4个选自H、F、Cl、Br、I、OH、C(=O)OH、CN、NH 2、=O、C 1-4烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基、或C 1-4烷氧基的取代基所取代,所述的杂芳基、杂单环、杂并环、杂螺环或杂桥环含有1至4个选自O、S、N的杂原子;
在某些实施方案中,Cy1、Cy2、Cy3和Cy4各自独立的选自键、4-7元含氮杂单环、4-10元含氮杂并环、5-12元含氮杂螺环、7-10元含氮杂桥环、3-7元单环烷基、4-10元并环烷基、5-12元螺环烷基、7-10元桥环烷基、5-10元杂芳基或6-10元芳基,所述杂单环、杂并环、杂桥环、杂螺环、环烷基、芳基或杂芳基任选进一步被0至4个选自H、F、Cl、Br、I、OH、C(=O)OH、CN、NH 2、=O、C 1-4烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基、或C 1-4烷氧基的取代基所取代,所述的杂单环、杂并环、杂桥环、杂螺环或杂芳基含有1至4个选自O、S、N的杂原子;
在某些实施方案中,Cy1、Cy2、Cy3和Cy4各自独立的选自键或取代的或者未取代的如下基团之一:环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、吗啉基、哌嗪基、苯基、环丙基并环丙基、环丙基并环丁基、环丙基并环戊基、环丙基并环己基、环丁基并环丁基、环丁基并环戊基、环丁基并环己基、环戊基并环戊基、环戊基并环己基、环己基并环己基、环丙基螺环丙基、环丙基螺环丁基、环丙基螺环戊基、环丙基螺环己基、环丁基螺环丁基、环丁基螺环戊基、环丁基螺环己基、环戊基螺环戊基、环戊基螺环己基、环己基螺环己基、环丙基并氮杂环丁基、环丙基并氮杂环戊基、环丙基并氮杂环己基、环丁基并氮杂环丁基、环丁基并氮杂环戊基、环丁基并氮杂环己基、环戊基并氮杂环丁基、环戊基并氮杂环戊基、环戊基并氮杂环己基、环己基并氮杂环丁基、环己基并氮杂环戊基、环己基并氮杂环己基、氮杂环丁基并氮杂环丁基、氮杂环丁基并氮杂环戊基、氮杂环丁基并氮杂环己基、氮杂环戊基并氮杂环戊基、氮杂环戊基并氮杂环己基、氮杂环己基并氮杂环己基、环丁基螺氮杂环丁基、环丁基螺氮杂环戊基、环丁基螺氮杂环己基、环戊基螺氮杂环丁基、环戊基螺氮杂环戊基、环戊基螺氮杂环己基、环己基螺氮杂环丁基、环己基螺氮杂环戊基、环己基螺氮杂环己基、氮杂环丁基螺氮杂环丁基、氮杂环丁基螺氮杂环戊基、氮杂环丁基螺氮杂环己基、氮杂环戊基螺氮杂环戊基、氮杂环戊基螺氮杂环己基、氮杂环己基螺氮杂环己基、
Figure PCTCN2023070367-appb-000015
Figure PCTCN2023070367-appb-000016
Figure PCTCN2023070367-appb-000017
当被取代时,任选进一步被0至4个选自H、F、Cl、Br、I、 OH、NH 2、C(=O)OH、CN、=O、C 1-4烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基、或C 1-4烷氧基的取代基所取代;
在某些实施方案中,Cy1、Cy2、Cy3、Cy4各自独立的选自键或取代的或者未取代的如下基团之一:
Figure PCTCN2023070367-appb-000018
Figure PCTCN2023070367-appb-000019
Figure PCTCN2023070367-appb-000020
当被取代时,任选进一步被0至4个选自H、F、CF 3、甲基、=O、羟甲基、C(=O)OH、CN或NH 2的取代基所取代;
在某些实施方案中,L选自
Figure PCTCN2023070367-appb-000021
Figure PCTCN2023070367-appb-000022
Figure PCTCN2023070367-appb-000023
在某些实施方案中,J 1各自独立的选自
Figure PCTCN2023070367-appb-000024
在某些实施方案中,J 2各自独立的选自
Figure PCTCN2023070367-appb-000025
Figure PCTCN2023070367-appb-000026
在某些实施方案中,J 3各自独立的选自
Figure PCTCN2023070367-appb-000027
Figure PCTCN2023070367-appb-000028
在某些实施方案中,J 4各自独立的选自
Figure PCTCN2023070367-appb-000029
Figure PCTCN2023070367-appb-000030
在某些实施方案中,J 5各自独立地选自
Figure PCTCN2023070367-appb-000031
在某些实施方案中,L选自
Figure PCTCN2023070367-appb-000032
R d选自H或D,且至少一个R d选自D,d1选自0、1、2、3、4、5、6、7、8、9或10,d2选自0、1、2、3、4、5、6、7、8或9;
在某些实施方案中,L选自表L-1所示的基团,其中基团左侧与B连接;
表L-1 L基团
Figure PCTCN2023070367-appb-000033
Figure PCTCN2023070367-appb-000034
Figure PCTCN2023070367-appb-000035
Figure PCTCN2023070367-appb-000036
Figure PCTCN2023070367-appb-000037
Figure PCTCN2023070367-appb-000038
Figure PCTCN2023070367-appb-000039
Figure PCTCN2023070367-appb-000040
Figure PCTCN2023070367-appb-000041
Figure PCTCN2023070367-appb-000042
Figure PCTCN2023070367-appb-000043
Figure PCTCN2023070367-appb-000044
Figure PCTCN2023070367-appb-000045
Figure PCTCN2023070367-appb-000046
在某些实施方案中,L选自
Figure PCTCN2023070367-appb-000047
R L1a各自独立的选自卤素、CN、OH、C 1-4烷基、C 1-4烷氧基,优选F、Cl、Br、CN、OH、甲基、乙基、羟甲基、甲氧基或乙氧基,m选自0、1、2、3或4;
在某些实施方案中,L选自
Figure PCTCN2023070367-appb-000048
Figure PCTCN2023070367-appb-000049
Figure PCTCN2023070367-appb-000050
在某些实施方案中,K选自
Figure PCTCN2023070367-appb-000051
Figure PCTCN2023070367-appb-000052
在某些实施方案中,R k1各自独立地选自H、C 1-4烷基、C 2-6烯基、C 2-6炔基、C 3-6环烷基、3-6元杂环烷基,所述烷基、环烷基、杂环烷基任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2、CN、CF 3、C 1-6烷基、C 1-6烷氧基、C 2-6烯基、C 2-6炔基、C 3-6环烷基的取代基所取代;
在某些实施方案中,R k1各自独立地选自H、甲基、乙基、丙基、异丙基、乙烯基、丙烯基、烯丙基、乙炔基、丙炔基、炔丙基、环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、氧杂环丁基、氧杂环戊基、氧杂环己基,所述甲基、乙基、丙基、异丙基、环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、氧杂环丁基、氧杂环戊基、氧杂环己基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、C 1-4烷基、C 1-4烷氧基、乙烯基、丙烯基、烯丙基、乙炔基、丙炔基、炔丙基、C 3-6环烷基的取代基所取代;
R k1各自独立地选自H、甲基、乙基、异丙基、环丙基、氧杂环丁基、氧杂环己基、-CH 2CF 3、-CH(CH 3)CF 3、-CH(CH 3)-环丙基、-CH 2-环丙基、-CH 2-乙烯基、-CH 2-乙炔基、-CH 2CH 2-甲氧基、-CD 3
在某些实施方案中,R k2、R k3各自独立地选自H、F、Cl、Br、I、OH、=O、NH 2、CF 3、CN、C(=O)OH、C(=O)NH 2、C 1-4烷基或C 1-4烷氧基,所述烷基或烷氧基任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2的取代基所取代;
或者两个R k3和与二者直接相连的碳原子或环骨架共同形成3-6元碳环或3-7元杂环,所述碳环或杂环任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、C(=O)OH、 C(=O)NH 2、C 1-4烷基或C 1-4烷氧基的取代基所取代,所述杂环含有1至4个选自O、S、N的杂原子;
在某些实施方案中,R k2、R k3各自独立地选自H、F、Cl、Br、I、OH、=O、NH 2、CF 3、CN、C(=O)OH、C(=O)NH 2、甲基、乙基、甲氧基或乙氧基,所述甲基、乙基、甲氧基或乙氧基任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2的取代基所取代;
在某些实施方案中,R k2、R k3各自独立地选自H或F;
在某些实施方案中,K选自
Figure PCTCN2023070367-appb-000053
在某些实施方案中,K选自
Figure PCTCN2023070367-appb-000054
Figure PCTCN2023070367-appb-000055
Figure PCTCN2023070367-appb-000056
Figure PCTCN2023070367-appb-000057
在某些实施方案中,通式(I)所示的化合物中的0~50个H任选被0~50个D替换;
在某些实施方案中,通式(I)所示的化合物中的0~30个H任选被0~30个D替换;
在某些实施方案中,通式(I)所示的化合物中的0~20个H任选被0~20个D替换;
在某些实施方案中,L中的0~20个H任选被0~20个D替换;
在某些实施方案中,通式(I)所示的化合物中的0~10个H任选被0~10个D替换;
在某些实施方案中,-L-K中的0~10个H任选被0~10个D替换;
在某些实施方案中,L中的0~10个H任选被0~10个D替换;
在某些实施方案中,K中的0~10个H任选被0~10个D替换;
在某些实施方案中,L中的0~20个H任选被0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20个D替换;
在某些实施方案中,L中的0~10个H任选被0、1、2、3、4、5、6、7、8、9、10个D替换;
在某些实施方案中,K中的0~10个H任选被0、1、2、3、4、5、6、7、8、9、10个D替换;
在某些实施方案中,-L-K中的0~10个H任选被0、1、2、3、4、5、6、7、8、9、10个D替换;
在某些实施方案中,n选自0、1、2、3或4;
在某些实施方案中,q选自0、1、2、3或4;
在某些实施方案中,n1、n2、n6各自独立的选自0、1、2或3;
在某些实施方案中,p2、p3各自独立地选自0、1、2、3或4;
在某些实施方案中,p2或p3各自独立的选自0、1或2。
作为本发明的第一种实施方案,前述通式(I)所示的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
L选自-Ak1-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-Cy4-Ak5-;
Ak1、Ak2、Ak3、Ak4和Ak5各自独立的选自-(CH 2) q-、O、-(CH 2) qNR L-、NR LC=O、C=ONR L、C=O、-R LC=CR L-、C≡C或者键;
R L选自H或C 1-6烷基;
Cy1、Cy2、Cy3、Cy4各自独立的选自键、4-7元杂单环、4-10元杂并环、5-12元杂螺环、7-10元杂桥环、3-7元单环烷基、4-10元并环烷基、5-12元螺环烷基、7-10元桥环烷基、5-10元杂芳基或6-10元芳基,所述芳基、杂芳基、环烷基、杂单环、杂并环、杂螺环或杂桥环任选进一步被0至4个选自H、F、Cl、Br、I、OH、C(=O)OH、CN、NH 2、=O、C 1-4烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基、或C 1-4烷氧基的取代基所取代,所述的杂芳基、杂单环、杂并环、杂螺环或杂桥环含有1至4个选自O、S、N的杂原子;
B选自
Figure PCTCN2023070367-appb-000058
B1、B3各自独立的选自C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的杂芳基或杂环基含有1至4个选自O、S、N的杂原子;
R b1、R b7各自独立的选自H、F、Cl、Br、I、=O、OH、NH 2、CN、CF 3、C(=O)OH、CHF 2、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、-(CH 2) n-R b21、-OR b21、-N(R b21) 2、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、杂环基、芳基或杂芳基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、-N(R b21) 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、5-10元杂芳基、4-10元杂环基或R b7a的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S、N的杂原子;
R b7a选自C 1-4烷基、-C 3-6环烷基、4-10元杂环基、-C 1-4亚烷基-C 3-6环烷基、-C 1-4亚烷基-4-10元杂环基、-O-C 3-6环烷基、-O-4-10元杂环基、-NH-C 3-6环烷基、-NH-4-10元杂环基、-N(C 1-4烷基)-C 3-6环烷基、-N(C 1-4烷基)-4-10元杂环基,所述R b7a任选被1至4个选自H、F、Cl、Br、I、OH、=O、-N(R b21) 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、4-10元杂环基的取代基所取代,所述杂环基含有1至4个选自O、S、N的杂原子;
R b2、R b6各自独立的选自H、F、Cl、Br、I、=O、OH、-C(=O)N(R b21) 2、-N(R b21) 2、CN、CF 3、C(=O)OH、CHF 2、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、-(CH 2) n-R b21、-OR b21、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、芳基、杂芳基或杂环基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4 烷氧基、C 3-6环烷基、5-10元杂芳基或4-10元杂环基的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S、N的杂原子;
R b21各自独立的选自H、C 1-6烷基、C 1-4烷氧基、C 3-6环烷基、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、芳基、杂芳基或杂环基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 3-6环烷基、C 1-4烷氧基的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S、N的杂原子;
n选自0、1、2、3或4;
K选自
Figure PCTCN2023070367-appb-000059
Figure PCTCN2023070367-appb-000060
R k1各自独立地选自H、C 1-4烷基、C 2-6烯基、C 2-6炔基、C 3-6环烷基、3-6元杂环烷基,所述烷基、环烷基、杂环烷基任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2、CN、CF 3、C 1-6烷基、C 1-6烷氧基、C 2-6烯基、C 2-6炔基、C 3-6环烷基的取代基所取代;;
R k2、R k3各自独立地选自H、F、Cl、Br、I、OH、=O、NH 2、CF 3、CN、C(=O)OH、C(=O)NH 2、C 1-4烷基或C 1-4烷氧基,所述烷基或烷氧基任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2的取代基所取代;
或者两个R k3和与二者直接相连的碳原子或环骨架共同形成3-6元碳环或3-7元杂环,所述碳环或杂环任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、C(=O)OH、C(=O)NH 2、C 1-4烷基或C 1-4烷氧基的取代基所取代,所述杂环含有1至4个选自O、S、N的杂原子;
q选自0、1、2、3或4;
n1、n2、n6各自独立的选自0、1、2或3;
p2、p3各自独立地选自0、1、2、3或4;
任选地,通式(I)所示的化合物中的0~50个H被0~50个D替换。
作为本发明的第二种实施方案,前述通式(I)所示的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
Cy1、Cy2、Cy3和Cy4各自独立的选自键、4-7元含氮杂单环、4-10元含氮杂并环、5-12元含氮杂螺环、7-10元含氮杂桥环、3-7元单环烷基、4-10元并环烷基、5-12元螺环烷基、7-10元桥环烷基、5-10元杂芳基或6-10元芳基,所述杂单环、杂并环、杂桥环、杂螺环、环烷基、芳 基或杂芳基任选进一步被0至4个选自H、F、Cl、Br、I、OH、C(=O)OH、CN、NH 2、=O、C 1-4烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基、或C 1-4烷氧基的取代基所取代,所述的杂单环、杂并环、杂桥环、杂螺环或杂芳基含有1至4个选自O、S、N的杂原子;
其余定义与本发明第一种实施方案相同。
作为本发明的第三种实施方案,前述通式(I)所示的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
R L选自H、甲基或乙基;
Cy1、Cy2、Cy3和Cy4各自独立的选自键或取代的或者未取代的如下基团之一:环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、吗啉基、哌嗪基、苯基、环丙基并环丙基、环丙基并环丁基、环丙基并环戊基、环丙基并环己基、环丁基并环丁基、环丁基并环戊基、环丁基并环己基、环戊基并环戊基、环戊基并环己基、环己基并环己基、环丙基螺环丙基、环丙基螺环丁基、环丙基螺环戊基、环丙基螺环己基、环丁基螺环丁基、环丁基螺环戊基、环丁基螺环己基、环戊基螺环戊基、环戊基螺环己基、环己基螺环己基、环丙基并氮杂环丁基、环丙基并氮杂环戊基、环丙基并氮杂环己基、环丁基并氮杂环丁基、环丁基并氮杂环戊基、环丁基并氮杂环己基、环戊基并氮杂环丁基、环戊基并氮杂环戊基、环戊基并氮杂环己基、环己基并氮杂环丁基、环己基并氮杂环戊基、环己基并氮杂环己基、氮杂环丁基并氮杂环丁基、氮杂环丁基并氮杂环戊基、氮杂环丁基并氮杂环己基、氮杂环戊基并氮杂环戊基、氮杂环戊基并氮杂环己基、氮杂环己基并氮杂环己基、环丁基螺氮杂环丁基、环丁基螺氮杂环戊基、环丁基螺氮杂环己基、环戊基螺氮杂环丁基、环戊基螺氮杂环戊基、环戊基螺氮杂环己基、环己基螺氮杂环丁基、环己基螺氮杂环戊基、环己基螺氮杂环己基、氮杂环丁基螺氮杂环丁基、氮杂环丁基螺氮杂环戊基、氮杂环丁基螺氮杂环己基、氮杂环戊基螺氮杂环戊基、氮杂环戊基螺氮杂环己基、氮杂环己基螺氮杂环己基、
Figure PCTCN2023070367-appb-000061
Figure PCTCN2023070367-appb-000062
Figure PCTCN2023070367-appb-000063
当被取代时,任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2、C(=O)OH、CN、=O、C 1-4烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基、或C 1-4烷氧基的取代基所取代;
B1、B3各自独立的选自吡唑基、噁唑基、二噁唑基、噁二唑基、***基、咪唑基、四唑基、吡咯基、噻吩基、噻唑基、噻二唑基、吡啶基、苯基、吡嗪基、嘧啶基、哒嗪基、噻吩并 吡嗪基、苯并咪唑基、吡啶并三氮唑基、嘧啶并吡唑基、咪唑并哒嗪基、吡啶并吡唑基、吡咯并哒嗪基或
Figure PCTCN2023070367-appb-000064
R b1、R b7各自独立的选自H、F、Cl、Br、I、=O、OH、NH 2、CN、CF 3、CHF 2、CH 2F、甲基、乙基、甲氧基、乙氧基、苯基、吡咯基、吡啶基、吗啉基、
Figure PCTCN2023070367-appb-000065
Figure PCTCN2023070367-appb-000066
Figure PCTCN2023070367-appb-000067
所述的甲基、乙基、甲氧基、乙氧基、苯基、吡咯基、吡啶基、吗啉基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、NH 2、NHC 1-4烷基、N(C 1-4烷基) 2、NHCH 2C 3-6环烷基、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基或R b7a的取代基所取代;
或者R b1、R b7各自独立的选自氮杂环丁基、氮杂环戊基、哌啶基、哌嗪基、吗啉基、2-氧杂-5-氮杂双环[2.2.1]庚烷基,所述R b1、R b7任选被1至4个选自F、Cl、Br、I、OH、=O、CN、CF 3、NH 2、NHC 1-4烷基、N(C 1-4烷基) 2、NHCH 2C 3-6环烷基、卤素取代的C 1-4烷基、氰基取代的C 1-4烷基、-C 1-4亚烷基-OH、C 1-4烷基、C 1-4烷氧基、-CH 2-O-C 1-4烷基、-CH 2-C 3-6环烷基、-O-C 3-6环烷基、-NH-C 3-6环烷基、C 3-6环烷基、-CH 2-4至7元杂环烷基、-O-4至7元杂环烷基、-NH-4至7元杂环烷基、4至7元杂环烷基的取代基所取代,所述杂环基含有1至4个选自O、S、N的杂原子;
R b2、R b6各自独立的选自H、F、Cl、Br、I、=O、CF 3、CHF 2、OH、NH 2、NH(甲基)、NH(乙基)、NH(丙基)、NH(异丙基)、N(甲基) 2、N(乙基) 2、CN、甲基、乙基、甲氧基、乙氧基、丙氧基、异丙基氧基、吗啉基、哌嗪基、吡咯烷基、哌啶基或噁唑烷基,所述的甲基、乙基、甲氧基、乙氧基、丙氧基、异丙基氧基、吗啉基、哌嗪基、吡咯烷基、哌啶基或噁唑烷基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基的取代基所取代;
R k1各自独立地选自H、甲基、乙基、丙基、异丙基、乙烯基、丙烯基、烯丙基、乙炔基、丙炔基、炔丙基、环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、氧杂环丁基、氧杂环戊基、氧杂环己基,所述甲基、乙基、丙基、异丙基、环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、氧杂环丁基、氧杂环戊基、氧杂环己基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、C 1-4烷基、C 1-4烷氧基、乙烯基、丙烯基、烯丙基、乙炔基、丙炔基、炔丙基、C 3-6环烷基的取代基所取代;
R k2、R k3各自独立地选自H、F、Cl、Br、I、OH、=O、NH 2、CF 3、CN、C(=O)OH、C(=O)NH 2、甲基、乙基、甲氧基或乙氧基,所述甲基、乙基、甲氧基或乙氧基任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2的取代基所取代;
p2或p3各自独立的选自0、1或2;
其余定义与本发明第一种或第二种实施方案相同。
作为本发明的第四种实施方案,前述通式(I)所示的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
Cy1、Cy2、Cy3、Cy4各自独立的选自键或取代的或者未取代的如下基团之一:
Figure PCTCN2023070367-appb-000068
Figure PCTCN2023070367-appb-000069
当被取代时,任选进一步被0至4个选自H、F、CF 3、甲基、=O、羟甲基、C(=O)OH、CN或NH 2的取代基所取代;
B选自
Figure PCTCN2023070367-appb-000070
Figure PCTCN2023070367-appb-000071
Figure PCTCN2023070367-appb-000072
Figure PCTCN2023070367-appb-000073
其余定义与本发明第一种、第二种或第三种实施方案相同。
作为本发明的第五种实施方案,前述通式(I)所示的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
L选自键、-Cy1-、-Cy1-Ak2-、-Cy1-Ak2-Ak3-、-Cy1-Ak2-Ak3-Ak4-Ak5-、-Cy1-Cy2-、-Cy1-Ak2-Cy2-、-Cy1-Cy2-Ak3-、-Cy1-Cy2-Ak3-Cy4-、-Cy1-Ak2-Cy2-Ak3-、-Cy1-Ak2-Cy2-Ak3-Ak4-、-Cy1-Ak2-Cy2-Cy3-Ak4-、-Cy1-Cy2-Ak3-Ak4-、-Cy1-Cy2-Ak3-Ak4-Ak5-、-Cy1-Ak2-Cy2-Ak3-Ak4-Ak5-、-Cy1-Ak2-Ak3-Cy3-Ak4-、-Cy1-Ak2-Ak3-Cy3-Ak4-Ak5-、-Cy1-Ak2-Ak3-Ak4-Cy4-Ak5-、-Cy1-Cy2-Cy3-、-Cy1-Ak2-Cy2-Cy3-、-Cy1-Cy2-Cy3-Ak4-、-Cy1-Ak2-Cy2-Cy3-Ak4-、-Cy1-Ak2-Cy2-Ak3-Cy3-、-Cy1-Ak2-Cy2-Cy3-Ak4-Ak5、-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-Ak5-、-Cy1-Cy2-Cy3-Cy4-、-Cy1-Cy2-Ak3-Cy3-Cy4-、-Cy1-Cy2-Cy3-Ak4-Cy4-、-Ak1-Cy1-Ak2-Cy2-、-Ak1-Cy1-Ak2-Cy2-Ak3-、-Ak1-Ak2-Cy2-Ak3-、-Ak1-Ak2-Cy2-、-Ak1-Ak2-Cy2-Cy3-Ak4-、-Ak1-Ak2-Ak3-Cy3-Ak4-、-Ak1-Cy1-Ak2-、-Ak1-Cy1-Cy2-Ak3-Ak4-、-Ak1-Cy1-Cy2-Ak3-、-Ak1-Cy1-Ak2-Ak3-Ak4-、-Ak1-Cy1-、-Ak1-Cy1-Ak2-Ak3-、-Ak1-Ak2-Cy2-Ak3-Ak4-、-Ak1-Cy1-Ak2-Cy2-Ak3-Ak4-、-Cy1-Ak2-Ak3-Cy3-Cy4-Ak5-、-Ak1-Cy1-Ak2-Ak3-Ak4-Ak5-、-Cy1-Ak1-Ak2-Ak3-、-Ak1-Cy1-Cy2-、-Ak1-Ak2-Ak3-Ak4-、-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-;
Ak1、Ak2、Ak3、Ak4、Ak5各自独立地选自O、C≡C、CH 2、CH 2CH 2、CH 2CH 2CH 2、CH 2CH 2CH 2CH 2、CH 2N(CH 3)、CH 2CH 2N(CH 3)、N(CH 3)、NH、C(=O)、C(=O)N(CH 3)、N(CH 3)C(=O)、C(=O)NH或NHC(=O);
其余定义与本发明第一种、第二种、第三种或第四种实施方案相同。
作为本发明的第六种实施方案,前述通式(I)所示的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
L选自
Figure PCTCN2023070367-appb-000074
Figure PCTCN2023070367-appb-000075
Figure PCTCN2023070367-appb-000076
J 1各自独立的选自
Figure PCTCN2023070367-appb-000077
J 2各自独立的选自
Figure PCTCN2023070367-appb-000078
Figure PCTCN2023070367-appb-000079
J 3各自独立的选自
Figure PCTCN2023070367-appb-000080
Figure PCTCN2023070367-appb-000081
J 4各自独立的选自
Figure PCTCN2023070367-appb-000082
Figure PCTCN2023070367-appb-000083
J 5各自独立地选自
Figure PCTCN2023070367-appb-000084
或者,L选自
Figure PCTCN2023070367-appb-000085
R d选自H或D,且至少一个R d选自D;
d1选自0、1、2、3、4、5、6、7、8、9或10;
d2选自0、1、2、3、4、5、6、7、8或9;
其余定义与本发明第一种、第二种、第三种、第四种或第五种实施方案相同。
作为本发明的第七种实施方案,前述通式(I)所示的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
L选自表L-1所示的基团,其中基团左侧与B连接;
其余定义与本发明第一种、第二种、第三种、第四种、第五种或第六种实施方案相同。
作为本发明的第八种实施方案,前述通式(I)所示的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
K选自
Figure PCTCN2023070367-appb-000086
Figure PCTCN2023070367-appb-000087
Figure PCTCN2023070367-appb-000088
Figure PCTCN2023070367-appb-000089
其余定义与本发明第一种、第二种、第三种、第四种、第五种、第六种或第七种实施方案相同。
本发明涉及一种下述化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中该化合物选自如下表P-1结构之一:
表P-1化合物结构表
Figure PCTCN2023070367-appb-000090
Figure PCTCN2023070367-appb-000091
Figure PCTCN2023070367-appb-000092
Figure PCTCN2023070367-appb-000093
Figure PCTCN2023070367-appb-000094
Figure PCTCN2023070367-appb-000095
Figure PCTCN2023070367-appb-000096
Figure PCTCN2023070367-appb-000097
Figure PCTCN2023070367-appb-000098
Figure PCTCN2023070367-appb-000099
Figure PCTCN2023070367-appb-000100
Figure PCTCN2023070367-appb-000101
Figure PCTCN2023070367-appb-000102
Figure PCTCN2023070367-appb-000103
Figure PCTCN2023070367-appb-000104
Figure PCTCN2023070367-appb-000105
Figure PCTCN2023070367-appb-000106
Figure PCTCN2023070367-appb-000107
Figure PCTCN2023070367-appb-000108
Figure PCTCN2023070367-appb-000109
Figure PCTCN2023070367-appb-000110
Figure PCTCN2023070367-appb-000111
Figure PCTCN2023070367-appb-000112
Figure PCTCN2023070367-appb-000113
本发明涉及一种药物组合物,包括本发明上述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,以及药学上可接受的载体。
本发明涉及一种本发明上述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶或者药物组合物在用于制备治疗与IRAK4活性或表达量相关疾病的药物中的应用。
本发明涉及一种本发明上述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶或者药物组合物在用于制备治疗与抑制或降解IRAK4相关疾病的药物中的应用。
本发明涉及的本发明上述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶的应用,所述的疾病选自自身免疫性疾病、炎症疾病或癌症。
本发明涉及一种药物组合物或药物制剂,所述的药物组合物或药物制剂包含治疗有效量的本发明所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶和药用赋型剂。该药物组合物可以为单位制剂形式(单位制剂中主药的量也被称为“制剂规格”)。
本发明还提供一种用于治疗哺乳动物的疾病的方法,其包括向所述哺乳动物给予治疗有效量的本发明所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶或药物组合物。一些实施方案中,本发明中所述哺乳动物包括人。
本申请中所述“有效量”或“治疗有效量”是指给予足够量的本申请公开的化合物,其将在某种程度上缓解所治疗的疾病或病症(例如自身免疫性疾病、炎症疾病或癌症)的一种或多种症状。在一些实施方案中,结果是减少和/或缓和疾病的体征、症状或原因,或生物***的任何其它希望改变。例如,针对治疗用途的“有效量”是提供临床上显著的疾病症状降低所需的包含本申请公开的化合物的组合物的量。治疗有效量的实例包括但不限于1-1500mg、1-1000mg、1-900mg、1-800mg、1-700mg、1-600mg、2-600mg、3-600mg、4-600mg、5-600mg、6-600mg、10-600mg、20-600mg、25-600mg、30-600mg、40-600mg、50-600mg、60-600mg、70-600mg、75-600mg、80-600mg、90-600mg、100-600mg、200-600mg、1-500mg、2-500mg、3-500mg、4-500mg、5-500mg、6-500mg、10-500mg、20-500mg、25-500mg、30-500mg、40-500mg、50-500mg、60-500mg、70-500mg、75-500mg、80-500mg、90-500mg、100-500mg、125-500mg、150-500mg、200-500mg、250-500mg、300-500mg、400-500mg、5-400mg、10-400mg、20-400mg、25-400mg、30-400mg、40-400mg、50-400mg、60-400mg、70-400mg、75-400mg、80-400mg、90-400mg、100-400mg、125-400mg、150-400mg、200-400mg、250-400mg、300-400mg、1-300mg、2-300mg、5-300mg、10-300mg、20-300mg、25-300mg、30-300mg、40-300mg、50-300mg、60-300mg、70-300mg、75-300mg、80-300mg、90-300mg、100-300mg、125-300mg、150-300mg、200-300mg、250-300mg、1-200mg、2-200mg、5-200mg、10-200mg、20-200mg、25-200mg、30-200mg、40-200mg、50-200mg、60-200mg、70-200mg、75-200mg、80-200mg、90-200mg、100-200mg、125-200mg、150-200mg、80-1500mg、80-1000mg、80-800mg;
在一些实施方案中,该药物组合物包括但不限于1-1500mg、1-1000mg、20-800mg、40-800mg、40-400mg、25-200mg、1mg、5mg、10mg、15mg、20mg、25mg、30mg、35mg、40mg、45mg、50mg、55mg、65mg、70mg、75mg、80mg、85mg、90mg、95mg、100mg、110mg、120mg、125mg、130mg、140mg、150mg、160mg、170mg、180mg、190mg、200mg、210mg、220mg、230mg、240mg、250mg、300mg、320mg、400mg、480mg、500mg、600mg、640mg、840mg、1000mg的本发明化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶。
一种用于治疗哺乳动物的疾病的方法,所述方法包括给予受试者治疗有效量的本发明化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,治疗有效量优选1-1500mg,所述的疾病优选自身免疫性疾病、炎症疾病或癌症。
一种用于治疗哺乳动物的疾病的方法所述方法包括,将药物本发明化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶以1-1500mg/天的日剂量给予受试者,所述日剂量可以为单剂量或分剂量,在一些实施方案中,日剂量包括但不限于10-1500mg/天、10-1000mg/天、10-800mg/天、25-800mg/天、50-800mg/天、100-800mg/天、200-800mg/天、25-400mg/天、50-400mg/天、100-400mg/天、200-400mg/天,在一些实施方案中,日剂量包括但不限于10mg/天、20mg/天、25mg/天、50mg/天、80mg/天、100mg/天、125mg/天、150mg/天、160mg/天、200mg/天、300mg/天、320mg/天、400mg/天、480mg/天、600mg/天、640mg/天、800mg/天、1000mg/天、1500mg/天。
本发明涉及一种试剂盒,该试剂盒可以包括单剂量或多剂量形式的组合物,该试剂盒包含本发明化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,本发明化合物的或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶的量与上述药物组合物中其量相同。
本发明中本发明化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶的量在每种情况下以游离碱的形式换算。
除非有相反的陈述,在说明书和权利要求书中使用的术语具有下述含义。
本发明所述基团和化合物中所涉及的碳、氢、氧、硫、氮或F、Cl、Br、I均包括它们的同位素情况,及本发明所述基团和化合物中所涉及的碳、氢、氧、硫或氮任选进一步被一个或多个它们对应的同位素所替代,其中碳的同位素包括 12C、 13C和 14C,氢的同位素包括氕(H)、氘(D,又叫重氢)、氚(T,又叫超重氢),氧的同位素包括 16O、 17O和 18O,硫的同位素包括 32S、 33S、 34S和 36S,氮的同位素包括 14N和 15N,氟的同位素包括 17F和 19F,氯的同位素包括 35Cl和 37Cl,溴的同位素包括 79Br和 81Br。
“CN”是指氰基。
“卤素”是指F、Cl、Br或I。
“卤素取代的”是指F、Cl、Br或I取代,包括但不限于1至10个选自F、Cl、Br或I的取代基所取代,1至6个选自F、Cl、Br或I的取代基所取代,为1至4个选自F、Cl、Br或I的取代基所取代。“卤素取代的”简称为“卤代”。
“烷基”是指取代的或者未取代的直链或支链饱和脂肪族烃基,包括但不限于1至20个碳原子的烷基、1至8个碳原子的烷基、1至6个碳原子的烷基、1至4个碳原子的烷基。非限制性实施例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、新丁基、叔丁基、正戊基、异戊基、新戊基、正己基及其各种支链异构体;本文中出现的烷基,其定义与本定义一致。烷基可以是一价、二价、三价或四价。
“亚烷基”是指取代的或者未取代的直链和支链的二价饱和烃基,包括-(CH 2) v-(v为1至10的整数),亚烷基实施例包括但不限于亚甲基、亚乙基、亚丙基和亚丁基等。
“环烷基”是指取代的或者未取代的饱和的碳环烃基,通常有3至10个碳原子,非限制性实施例包括环丙基、环丁基、环戊基、环己基或环庚基等。本文中出现的环烷基,其定义如上所述。环烷基可以是一价、二价、三价或四价。
“杂环烷基”是指取代的或者未取代的饱和的含有杂原子的环烃基,包括但不限于3至10个原子、3至8个原子,包含1至3个选自N、O或S的杂原子,杂环烷基的环中选择性取代的N、S可被氧化成各种氧化态。杂环烷基可以连接在杂原子或者碳原子上,杂环烷基可以连接在芳香环上或者非芳香环上,杂环烷基可以连接有桥环或者螺环,非限制性实施例包括环氧乙基、氮杂环丙基、氧杂环丁基、氮杂环丁基、四氢呋喃基、四氢-2H-吡喃基、二氧戊环基、二氧六环基、吡咯烷基、哌啶基、咪唑烷基、噁唑烷基、噁嗪烷基、吗啉基、六氢嘧啶基、哌嗪基。杂环烷基可以是一价、二价、三价或四价
“烯基”是指取代的或者未取代的直链和支链的不饱和烃基,其具有至少1个,通常有1、2或3个碳碳双键,主链包括但不限于2至10个、2至6个或2至4个碳原子,烯基实施例包括但不限于乙烯基、烯丙基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-戊烯基、 2-戊烯基、3-戊烯基、4-戊烯基、1-甲基-1-丁烯基、2-甲基-1-丁烯基、2-甲基-3-丁烯基、1-己烯基、2-己烯基、3-己烯基、4-己烯基、5-己烯基、1-甲基-1-戊烯基、2-甲基-1-戊烯基、1-庚烯基、2-庚烯基、3-庚烯基、4-庚烯基、1-辛烯基、3-辛烯基、1-壬烯基、3-壬烯基、1-癸烯基、4-癸烯基、1,3-丁二烯、1,3-戊二烯、1,4-戊二烯和1,4-己二烯等;本文中出现的烯基,其定义与本定义一致。烯基可以是一价、二价、三价或四价。
“炔基”是指取代的或者未取代的直链和支链的不饱和烃基,其具有至少1个,通常有1、2或3个碳碳三键,主链包括2至10个碳原子,包括但不限于在主链上有2至6个碳原子,主链上有2至4个碳原子,炔基实施例包括但不限于乙炔基、炔丙基、1-丙炔基、2-丙炔基、1-丁炔基、2-丁炔基、3-丁炔基、1-戊炔基、2-戊炔基、3-戊炔基、4-戊炔基、1-甲基-1-丁炔基、2-甲基-1-丁炔基、2-甲基-3-丁炔基、1-己炔基、2-己炔基、3-己炔基、4-己炔基、5-己炔基、1-甲基-1-戊炔基、2-甲基-1-戊炔基、1-庚炔基、2-庚炔基、3-庚炔基、4-庚炔基、1-辛炔基、3-辛炔基、1-壬炔基、3-壬炔基、1-癸炔基、4-癸炔基等;炔基可以是一价、二价、三价或四价。
“烷氧基”是指取代的或者未取代的-O-烷基。非限制性实施例包括甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基、正己氧基、环丙氧基和环丁氧基。
“碳环基”或“碳环”是指取代的或未取代的饱和或不饱和的芳香环或者非芳香环,芳香环或者非芳香环可以是3至8元的单环、4至12元双环或者10至15元三环体系,碳环基可以连接在芳香环上或者非芳香环上,芳香环或者非芳香环任选为单环、桥环或者螺环。非限制性实施例包括环丙烷、环丁烷、环戊烷、环己烷、环庚烷、1-环戊基-1-烯基、1-环戊基-2-烯基、1-环戊基-3-烯基、环己基、1-环己基-2-烯基、1-环己基-3-烯基、环己烯基、苯环、萘环、
Figure PCTCN2023070367-appb-000114
“碳环基”或“碳环”可以是一价、二价、三价或四价。
“杂环基”或“杂环”是指取代的或未取代的饱和或不饱和的芳香环或者非芳香环,芳香环或者非芳香环可以是3至8元的单环、4至12元双环或者10至15元三环体系,且包含1个或多个(包括但不限于2、3、4或5个)个选自N、O或S的杂原子,杂环基的环中选择性取代的N、S可被氧化成各种氧化态。杂环基可以连接在杂原子或者碳原子上,杂环基可以连接在芳香环上或者非芳香环上,杂环基可以连接有桥环或者螺环,非限制性实施例包括环氧乙基、氮杂环丙基、氧杂环丁基、氮杂环丁基、1,3-二氧戊环基、1,4-二氧戊环基、1,3-二氧六环基、氮杂环庚基、吡啶基、呋喃基、噻吩基、吡喃基、N-烷基吡咯基、嘧啶基、吡嗪基、哒嗪基、咪唑基、哌啶基、吗啉基、硫代吗啉基、1,3-二噻基、二氢呋喃基、二氢吡喃基、二噻戊环基、四氢呋喃基、四氢吡咯基、四氢咪唑基、四氢噻唑基、四氢吡喃基、苯并吡啶基、吡咯并吡啶基、苯并二氢呋喃基、吡咯基、吡唑基、噻唑基、噁唑基、吡嗪基、吲唑基、苯并噻吩基、苯并呋喃基、苯并吡咯基、苯并咪唑基、苯并噻唑基、苯并噁唑基、苯并吡啶基、苯并嘧啶基、苯并吡嗪基、哌嗪基、氮杂二环[3.2.1]辛烷基、氮杂二环[5.2.0]壬烷基、氧杂三环[5.3.1.1]十二烷基、氮杂金刚烷基、氧杂螺[3.3]庚烷基、
Figure PCTCN2023070367-appb-000115
Figure PCTCN2023070367-appb-000116
Figure PCTCN2023070367-appb-000117
“杂环基”或“杂环”可以是一价、二价、三价或四价。
“螺环”或“螺环基”是指取代的或未取代的单环之间共用一个原子(称螺原子)的多环基团,螺环体系中环原子的个数包括但不限于含有5至20个、6至14个、6至12个、6至10个,其中一个或多个环可以含有0个或多个(包括但不限于1、2、3或4)双键,且任选可以含有0至5个选自N、O或S(=O) n(n为0、1或2)的杂原子。非限制性实施例包括:
Figure PCTCN2023070367-appb-000118
“螺环”或“螺环基”可以是一价、二价、三价或四价。
“并环”或“并环基”是指***中的每个环与体系中的其他环共享毗邻的一对原子的多环基团,其中一个或多个环可以含有0个或多个(包括但不限于1、2、3或4)双键,且可以是取代的或未取代,并环体系中的各个环可以含0至5个杂原子或含有杂原子的基团(包括但不限于选自N、S(=O) n或O,n为0、1或2)。并环体系中环原子的个数包括但不限于5至20个,5至14个,5至12个,5至10个。非限定性实例包括:
Figure PCTCN2023070367-appb-000119
Figure PCTCN2023070367-appb-000120
“并环”或“并环基”可以是一价、二价、三价或四价。
“桥环”或“桥环基”是指取代的或未取代的含有任意两个不直接连接的原子的多环基团,可以含有0个或多个双键,并环体系中的任意环可以含0至5个选自杂原子或含有杂原子的基团(包括但不限于N、S(=O)n或O,其中n为0、1、2)。环原子个数包括但不限于5至20个、5至14个、5至12个或5至10个。非限定性实例包括
Figure PCTCN2023070367-appb-000121
Figure PCTCN2023070367-appb-000122
立方烷、金刚烷。“桥环”或“桥环基”可以是一价、二价、三价或四价。
“碳螺环”、“螺环碳环基”、“螺碳环基”或者“碳螺环基”是指环体系仅有碳原子组成的“螺环”。本文中出现的“碳螺环”、“螺环碳环基”、“螺碳环基”或者“碳螺环基”,其定义与螺环一致。
“碳并环”、“并环碳环基”、“并碳环基”或者“碳并环基”是指环体系仅有碳原子组成的“并环”。本文中出现的“碳并环”、“并环碳环基”、“并碳环基”或者“碳并环基”,其定义与并环一致。
“碳桥环”、“桥环碳环基”、“桥碳环基”或者“碳桥环基”是指环体系仅有碳原子组成的“桥环”。本文中出现的“碳桥环”、“桥环碳环基”、“桥碳环基”或者“碳桥环基”,其定义与桥环一致。
“杂单环”、“单环杂环基”或“杂单环基”是指单环体系的“杂环基”或“杂环”,本文中出现的杂环基、“单环杂环基”或“杂单环基”,其定义与杂环一致。
“杂并环”、“杂并环基”“并环杂环基”或“杂并环基”是指含有杂原子的“并环”。本文中出现的杂并环、“杂并环基”“并环杂环基”或“杂并环基”,其定义与并环一致。
“杂螺环”、“杂螺环基”、“螺环杂环基”或“杂螺环基”是指含有杂原子的“螺环”。本文中出现的杂螺环、“杂螺环基”、“螺环杂环基”或“杂螺环基”,其定义与螺环一致。
“杂桥环”、“杂桥环基”、“桥环杂环基”或“杂桥环基”是指含有杂原子的“桥环”。本文中出现的杂桥环、“杂桥环基”、“桥环杂环基”或“杂桥环基”,其定义与桥环一致。
“芳基”或“芳环”是指取代的或者未取代的具有单环或稠合环的芳香族烃基,芳香环中环原子个数包括但不限于6至18、6至12或6至10个碳原子。芳基环可以稠合于饱和或不饱和的碳环或杂环上,其中与母体结构连接在一起的环为芳基环,非限制性实施例包含苯环、萘环、
Figure PCTCN2023070367-appb-000123
“芳基”或“芳环”可以是一价、二价、三价或四价。当为二价、三价或四价时,连接位点位于芳基环上。
“杂芳基”或“杂芳环”是指取代或未取代的芳香族烃基,且含有1至5个选杂原子或含有杂原子的基团(包括但不限于N、O或S(=O)n,n为0、1、2),杂芳香环中环原子个数包括但不限于5至15、5至10或5至6个。杂芳基的非限制性实施例包括但不限于吡啶基、呋喃基、噻吩基、吡啶基、吡喃基、N-烷基吡咯基、嘧啶基、吡嗪基、哒嗪基、咪唑基、苯并吡唑、苯并咪唑、苯并吡啶、吡咯并吡啶等。所述杂芳基环可以稠合于饱和或不饱和的碳环或杂环上,其中与母 体结构连接在一起的环为杂芳基环,非限制性实施例包含
Figure PCTCN2023070367-appb-000124
Figure PCTCN2023070367-appb-000125
本文中出现的杂芳基,其定义与本定义一致。杂芳基可以是一价、二价、三价或四价。当为二价、三价或四价时,连接位点位于杂芳基环上。
“取代”或“取代的”是指被1个或多个(包括但不限于2、3、4或5个)取代基所取代,取代基包括但不限于H、F、Cl、Br、I、烷基、环烷基、烷氧基、卤代烷基、硫醇、羟基、硝基、巯基、氨基、氰基、异氰基、芳基、杂芳基、杂环基、桥环基、螺环基、并环基、羟基烷基、=O、羰基、醛、羧酸、甲酸酯、-(CH 2) m-C(=O)-R a、-O-(CH 2) m-C(=O)-R a、-(CH 2) m-C(=O)-NR bR c、-(CH 2) mS(=O) nR a、-(CH 2) m-烯基-R a、OR d或-(CH 2) m-炔基-R a(其中m、n为0、1或2)、芳基硫基、硫代羰基、硅烷基或-NR bR c等基团,其中R b与R c独立选自包括H、羟基、氨基、羰基、烷基、烷氧基、环烷基、杂环基、芳基、杂芳基、磺酰基、三氟甲磺酰基,作为选择,R b与R c可形成五或六元环烷基或杂环基,R a与R d各自独立选自芳基、杂芳基、烷基、烷氧基、环烷基、杂环基、羰基、酯基、桥环基、螺环基或并环基。
“含有1至4个选自O、S、N的杂原子”是指含有1、2、3或4个选自O、S、N的杂原子。
“0至X个取代基所取代”是指被0、1、2、3….X个取代基所取代,X选自1至10之间的任意整数。如“0至4个取代基所取代”是指被0、1、2、3或4个取代基所取代。如“0至5个取代基所取代”是指被0、1、2、3、4或5个取代基所取代。如“杂桥环任选进一步被0至4个选自H或F的取代基所取代”是指杂桥环任选进一步被0、1、2、3或4个选自H或F的取代基所取代。
X-Y元的环(X选自小于Y大于等于3的整数,Y选自4至12之间的任意整数)包括了X、X+1、X+2、X+3、X+4….Y元的环。环包括了杂环、碳环、芳环、芳基、杂芳基、环烷基、杂单环、杂并环、杂螺环或杂桥环。如“4-7元杂单环”是指4元、5元、6元或7元的杂单环,“5-10元杂并环”是指5元、6元、7元、8元、9元或10元的杂并环。
“任选”或“任选地”是指随后所描述的事件或环境可以但不必须发生,该说明包括该事件或环境发生或不发生的场合。如:“任选被F取代的烷基”指烷基可以但不必须被F取代,说明包括烷基被F取代的情形和烷基不被F取代的情形。
“药学上可接受的盐”或者“其药学上可接受的盐”是指本发明化合物保持游离酸或者游离碱的生物有效性和特性,且所述的游离酸通过与无毒的无机碱或者有机碱,所述的游离碱通过与无毒的无机酸或者有机酸反应获得的盐。
“药物组合物”是指一种或多种本发明所述化合物、或者其立体异构体、互变异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶和其它化学组分形成的混合物,其中,“其它化学组分”是指药学上可接受的载体、赋形剂和/或一种或多种其它治疗剂。
“制剂规格”是指每一支、片或其他每一个单位制剂中含有主药的重量。
“载体”是指不会对生物体产生明显刺激且不会消除所给予化合物的生物活性和特性的材料。
“前药”是指可经体内代谢转化为具有生物活性的本发明化合物。本发明的前药通过修饰本发明化合物中的氨基或者羧基来制备,该修饰可以通过常规的操作或者在体内被除去,而得到母体化合物。当本发明的前药被施予哺乳动物个体时,前药被割裂形成游离的氨基或者羧基。
“共晶”是指活性药物成分(API)和共晶形成物(CCF)在氢键或其他非共价键的作用下结合而成的晶体,其中API和CCF的纯态在室温下均为固体,并且各组分间存在固定的化学计量比。共晶是一种多组分晶体,既包含两种中性固体之间形成的二元共晶,也包含中性固体与盐或溶剂化物形成的多元共晶。
“动物”是指包括哺乳动物,例如人、陪伴动物、动物园动物和家畜,优选人、马或者犬。
“立体异构体”是指由分子中原子在空间上排列方式不同所产生的异构体,包括顺反异构体、对映异构体和构象异构体。
“互变异构体”是指分子中某一原子在两个位置迅速移动而产生的官能团异构体,如酮式-烯醇式异构和酰胺-亚胺醇式异构等。
“IC 50”是对指定的生物过程(或该过程中的某个组分比如酶、受体、细胞等)抑制一半时所需的药物或者抑制剂的浓度。
具体实施方式
以下结合实施例详细说明本发明的技术方案,但本发明的保护范围包括但是不限于此。
本文所述反应中使用的化合物是根据本领域技术人员已知的有机合成技术制备的,起始于市售化学品和(或)化学文献中所述的化合物。“市售化学品”是从正规商业来源获得的,供应商包括:泰坦科技、安耐吉化学、上海德默、成都科龙化工、韶远化学科技、南京药石、药明康德和百灵威科技等公司。
化合物的结构是通过核磁共振(NMR)或(和)质谱(MS)来确定的。NMR位移(δ)以10 -6(ppm)的单位给出。NMR的测定是用(Bruker Avance III 400和Bruker Avance 300)核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d 6),氘代氯仿(CDCl 3),氘代甲醇(CD 3OD),内标为四甲基硅烷(TMS);
MS的测定用(Agilent 6120B(ESI)和Agilent 6120B(APCI));
HPLC的测定使用Agilent 1260DAD高压液相色谱仪(Zorbax SB-C18 100×4.6mm,3.5μM);
薄层层析硅胶板使用烟台黄海HSGF254或青岛GF254硅胶板,薄层色谱法(TLC)使用的硅胶板采用的规格是0.15mm-0.20mm,薄层层析分离纯化产品采用的规格是0.4mm-0.5mm;
柱层析一般使用烟台黄海硅胶200-300目硅胶为载体。
试剂和溶剂缩写词:
Dess-Martin氧化剂:(1,1,1-三乙酰氧基)-1,1-二氢-1,2-苯碘酰-3(1H)-酮(CAS号:87413-09-0);TBSOTf:叔丁基二甲硅基三氟甲磺酸酯;rac-BINAP:1,1'-联萘-2,2'-双二苯膦(CAS号: 98327-87-8);Pd 2(dba) 3:三(二亚苄基丙酮)二钯(CAS号:51364-51-3);DMA:N,N-二甲基乙酰胺;DMF:N,N-二甲基甲酰胺;DCM:二氯甲烷;MeOH:甲醇;NMI:N-甲基咪唑;
TCFH:N,N,N',N'-四甲基氯甲脒六氟磷酸盐。
中间体1的制备
Figure PCTCN2023070367-appb-000126
第一步:1-B的制备
将1-A(7.5g,32.4mmol)溶于THF(120mL)中,冷却至0℃,氮气氛围下缓慢加入1mol/L硼烷四氢呋喃溶液(60mL,60mmol),室温反应16h。将反应体系冷却至0℃,加入30mL甲醇和醋酸(v/v)=9:1的混合溶液,减压浓缩,加入130mL水和150mL乙酸乙酯,分液,水相用乙酸乙酯萃取(100mL×2),合并有机相,有机相用饱和食盐水洗涤(190mL×2),无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚/乙酸乙酯(v/v)=23:77),得1-B(5.5g,收率:78%)。
LCMS m/z=218.1[M+1] +
第二步:1-C的制备
将1-B(5.5g,25.3mmol)加入到250mL单口瓶中,加入二氯甲烷(80mL),加入三氟乙酸(20mL),室温反应4h。将反应体系减压浓缩,向残留物中加入乙腈(100mL),加入N,N-二异丙基乙胺(9.8g,75.8mmol)和5-氯吡唑并[1,5-a]嘧啶-3-甲酸乙酯(5.3g,23.49mmol),60℃反应12h。将反应体系冷却至室温,减压浓缩,粗品用硅胶色谱柱分离纯化(石油醚:乙酸乙酯(v/v)=41:59),得1-C(4.6g,收率:59%)。
LCMS m/z=307.1[M+1] +
第三步:1-D的制备
将1-C(2.4g,7.8mmol)加入到100mL单口瓶中,加入干燥DMF(30mL),加入碳酸钾(3.2g,23.15mmol),冷却至0℃,加入碘甲烷(2.2g,15.5mmol),室温反应16h。向反应体系中加入水(300mL),用乙酸乙酯萃取(60mL×3),有机相用饱和氯化钠水溶液洗涤(80mL×2),无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离纯化(石油醚:乙酸乙酯(v/v)=22:78),得1-D(1.3g,收率:52%)。
LCMS m/z=321.1[M+1] +
第四步:中间体1的制备
将1-D(1.2g,3.75mmol)加入到100mL单口瓶中,加入甲醇(15mL)、水(5mL)、氢氧化钠(760mg,19mmol),50℃反应16h。将反应体系冷却至室温,用1mol/L盐酸水溶液调pH至 5,用二氯甲烷和甲醇(v/v)=10:1的混合溶剂萃取(60mL×3),有机相用饱和氯化钠水溶液洗涤(80mL×2),无水硫酸钠干燥,减压浓缩,得粗品中间体1(1.0g)。
LCMS m/z=293.1[M+1] +
中间体2的制备
Figure PCTCN2023070367-appb-000127
第一步:2-B的制备
将2-A的盐酸盐(1.8g,9.4mmol)加入到100mL单口瓶中,加入乙腈(30mL),加入N,N-二异丙基乙胺(3.6g,27.9mmol)和5-氯吡唑并[1,5-a]嘧啶-3-甲酸乙酯(2.1g,9.31mmol),60℃反应12h。将反应体系冷却至室温,减压浓缩,粗品用硅胶色谱柱分离纯化(石油醚:乙酸乙酯(v/v)=68:32),得2-B(2.3g,收率:71%)。
LCMS m/z=345.1[M+1] +
第二步:中间体2的制备
将2-B(2.3g,6.68mmol)加入到250mL单口瓶中,加入甲醇(30mL)、水(10mL)和氢氧化钠(1.3g,32.5mmol),50℃反应16h。将反应体系冷却至室温,用1mol/L盐酸水溶液调pH至5,用二氯甲烷和甲醇(v/v)=10:1的混合溶剂萃取(80mL×3),有机相用饱和氯化钠水溶液洗涤(80mL×2),无水硫酸钠干燥,减压浓缩,得粗品中间体2(1.8g)。
LCMS m/z=317.1[M+1] +
中间体3的制备
Figure PCTCN2023070367-appb-000128
第一步:3-A的制备
将1-C(2.3g,7.51mmol)溶于20mL二氯甲烷中,加入三乙胺(2.28g,22.53mmol),冷却至0℃,加入TBSCl(1.70g,11.28mmol),室温反应16h。将反应体系减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚/乙酸乙酯(v/v)=65:35),得3-A(1.4g,收率:44%)。
第二步:中间体3的制备
将3-A(1.4g,3.33mmol)溶于四氢呋喃/水(v/v)=4:1的混合溶剂中,加入一水合氢氧化锂(699mg,16.66mmol),室温反应16h。将反应体系用0.5mol/L盐酸水溶液调pH至5,用二氯甲烷/甲醇(v/v)=10:1的混合溶剂萃取(50mL×3),有机相用饱和食盐水洗涤(30mL×3),无水硫酸钠干燥,减压浓缩,得到粗品中间体3(0.57g)。
中间体4的制备
Figure PCTCN2023070367-appb-000129
第一步:4-B的制备
将4-A(10g,85.4mmol)、5-氯吡唑并[1,5-a]嘧啶-3-甲酸乙酯(10.49g,46.49mmol)和DIPEA(36.04g,278.8mmol)溶于100mL乙腈中,60℃反应12h。将反应体系冷却至室温,减压浓缩,粗品用硅胶色谱柱分离纯化(石油醚:乙酸乙酯(v/v)=2:3),得4-B(10g,收率:70%)。
LCMS m/z=307.1[M+1] +
第二步:4-C的制备
将4-B(6g,19.59mmol)溶于DMF(60mL)中,0℃下加入0.95g 60%NaH,室温搅拌1h后,0℃下加入碘甲烷(4.2g,29.59mmol),室温反应16h。向反应体系中加入水(50mL),用二氯甲烷萃取(100mL×3),有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离纯化(石油醚:乙酸乙酯(v/v)=1:4),得4-C(2g,收率:32%)。
LCMS m/z=321.1[M+1] +
第三步:中间体4的制备
将4-C(2g,6.25mmol)和氢氧化锂(0.47g,19.62mmol)加入到100mL单口瓶中,加入甲醇(10mL)和水(5mL),60℃反应4h。将反应体系冷却至室温,加入到50mL水中,用6mol/L盐酸水溶液调pH至2,用乙酸乙酯萃取(60mL×3),有机相用无水硫酸钠干燥,减压浓缩,得粗品中间体4(2g)。
中间体5的制备
Figure PCTCN2023070367-appb-000130
第一步:5-A的制备
将4-B(4g,13.06mmol)和三乙胺(5.29g,52.28mmol)溶于50mL二氯甲烷中,加入TBSCl(3.94g,26.14mmol),室温反应16h。向反应体系加入50mL水,分液,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚/乙酸乙酯(v/v)=65:35),得5-A(2g,收率:36%)。
第二步:中间体5的制备
将5-A(1.8g,4.28mmol)和氢氧化锂(0.32g,13.36mmol)加入到100mL单口瓶中,加入20mL甲醇和10mL水,60℃反应4h。将反应体系冷却至室温,加入50mL水,用1mol/L盐酸水溶液调pH至2,用乙酸乙酯萃取(50mL×3),有机相用无水硫酸钠干燥,减压浓缩,得粗品中间体5(2g)。
中间体6(trans)的盐酸盐的制备
Figure PCTCN2023070367-appb-000131
第一步:6-B的制备
将粗品10d的三氟乙酸盐(5.57g)溶于40mL DMA中,加入碳酸氢钠(1.49g,17.74mmol),室温搅拌15min后,加入6-A(3.66g,10.66mmol)(合成方法见WO2021158634)、1.2mL醋酸和
Figure PCTCN2023070367-appb-000132
分子筛(5g),室温搅拌2h后,加入三乙酰氧基硼氢化钠(3.77g,17.79mmol),室温反应16h。向反应体系中加入150mL饱和碳酸氢钠水溶液,用100mL二氯甲烷萃取,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/乙酸乙酯(v/v)=1:1),得到6-B(3.1g,收率:40%)。
第二步:中间体6的盐酸盐的合成
将6-B(600mg,0.83mmol)溶于10mL 1,4-二氧六环中,加入10mL 4mol/L盐酸1,4-二氧六环溶液,室温反应2h。将反应体系减压浓缩,得粗品中间体6的盐酸盐(0.65g)。
LCMS m/z=626.3[M+1] +
中间体7(trans)的制备
Figure PCTCN2023070367-appb-000133
第一步:7-B的制备
将粗品11d的三氟乙酸盐(5.0g)溶于60mL DMA中,加入碳酸氢钠(1.68g,20.0mmol),室温搅拌15min后,加入7-A(3.29g,9.58mmol)(合成方法见WO2021158634)、1mL醋酸和
Figure PCTCN2023070367-appb-000134
分子筛(5g),室温搅拌2h后,加入三乙酰氧基硼氢化钠(3.38g,15.95mmol),室温反应16h。向反应体系中加入150mL饱和碳酸氢钠水溶液,用100mL二氯甲烷萃取,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/乙酸乙酯(v/v)=1:1),得到7-B(1.0g,收率:14%)。
第二步:中间体7的制备
将7-B(1.1g,1.52mmol)加入到30mL乙腈中,加入对甲苯磺酸一水合物(0.86g,4.52mmol),室温反应3h。将反应液减压浓缩,加入100mL乙酸乙酯,用饱和碳酸氢钠溶液调pH至9,分离出有机相,无水硫酸钠干燥,减压浓缩,得粗品中间体7(0.9g)。
实施例1:制备化合物1(trans)
Figure PCTCN2023070367-appb-000135
第一步:1A的制备
将2,6-双(苄氧基)-3-溴吡啶(5.0g,13.50mmol)、联硼酸频那醇酯(5.14g,20.24mmol)和醋酸钾(2.65g,27.0mmol)加入到干燥1,4-二氧六环(20mL)中,加入Pd(dppf)Cl 2.DCM(1.10g,1.35mmol),氮气保护100℃反应过夜。冷却至室温,反应液用硅藻土抽滤,乙酸乙酯(50mL×3)萃取,无水硫酸钠干燥,过滤,浓缩,硅胶柱色谱纯化(乙酸乙酯/石油醚(V/V)=1/20)得1A(4g,收率:71%)。
LCMS m/z=418.2[M+H] +
第二步:1C的制备
氮气保护下将1B(1.5g,4.75mmol)(参照专利CN113512025合成所得)、1A(2.97g,7.12mmol)、Pd(dppf)Cl 2.DCM(CAS:95464-05-4)(0.78g,0.96mmol),碳酸铯(3.10g,9.5mmol)加入到1,4-二氧六环(45mL)和水(10mL)中,105℃反应3h,反应结束后冷却至室温,加入水(50mL),乙酸乙酯萃取(30mL×3),无水硫酸钠干燥,过滤,浓缩,硅胶柱色谱纯化(乙酸乙酯/石油醚(V/V)=1/5)得1C(1.06g,收率:46.5%)。
LCMS m/z=480.1[M+H] +
第三步:1D的制备
将1C(700mg,1.46mmol)溶于无水THF(20mL)中,加入四氢铝锂(166mg,4.37mmol),室温反应1h。反应结束加入水(2mL)淬灭反应,硅藻土抽滤,无水硫酸钠干燥,过滤,浓缩,硅胶柱色谱纯化(乙酸乙酯/石油醚(V/V)=1/1),得到1D(580mg,收率:88%)
LCMS m/z=452.2[M+H] +
第四步:1E的制备
将1D(600mg,1.33mmol)溶于THF(30mL)中,加入三乙胺(673mg,6.65mmol),室温搅拌10min,加入TBSOTf(879mg,3.33mmol),室温反应1h。反应结束后浓缩,硅胶柱色谱纯化(乙酸乙酯/石油醚(V/V)=1/5)得1E(630mg,收率:84%)。
1H NMR(400MHz,CDCl 3)δ7.89(d,1H),7.66–7.61(m,1H),7.48–7.42(m,2H),7.41–7.34(m,2H),7.34–7.29(m,3H),7.27–7.21(m,4H),6.96(dd,1H),6.53(d,1H),5.45(s,2H),5.41(s,2H),5.07(s,2H),4.43(s,3H),0.90(s,9H),0.06(s,6H)。
第五步:1F的制备
将1E(630mg,1.11mmol)溶于乙醇(30mL)中,加入钯碳(10%)(1g),氢气置换三次,室温反应过夜,硅藻土抽滤,浓缩,硅胶柱色谱纯化(乙酸乙酯/石油醚(V/V)=1/1)得1F(197mg,收率:46%)。
LCMS m/z=388.2[M+H] +
第六步:1G的制备
将1F(197mg,0.51mmol)溶于THF(5mL)中,加入四丁基氟化铵的THF溶液(2.55mL,1mol/L),室温反应1h,反应结束加入水(20mL),乙酸乙酯(20mL×3)萃取,无水硫酸钠干燥,过滤,浓缩得1G。
LCMS m/z=274.1[M+H] +
第七步:1H的制备
将上一步得到的1G溶于二氯甲烷(5mL)中,加入戴斯-马丁氧化剂(432mg,1.02mmol),室温反应1h。硅藻土抽滤,浓缩,硅胶柱色谱纯化(甲醇/二氯甲烷(V/V)=1/20)得1H(100mg,两步收率:72%)。
LCMS m/z=272.1[M+H] +
第八步:1I的制备
将1H(50mg,0.18mmol),甲基(哌啶-4-基)氨基羧酸叔丁酯(77mg,0.36mmol)和冰醋酸(11mg,0.18mmol)溶于无水二氯乙烷(5mL)中,加入
Figure PCTCN2023070367-appb-000136
分子筛(1g),室温反应2h,加入三乙酰氧基硼氢化钠(76mg,0.36mmol),室温反应过夜,反应结束后,硅藻土抽滤,浓缩,硅胶制备板纯化(甲醇/二氯甲烷(V/V)=1/20)得1I(54mg,收率:64%)。
LCMS m/z=470.3[M+H] +
第九步:1J的制备
将1I(52mg,0.11mmol)溶于氯化氢-二氧六环(5mL,4mol/L)中,室温反应1h,反应结束后浓缩,残余物加入5mL二氧六环复溶,加入三乙胺(0.5mL)浓缩得1J粗品。
第十步:化合物1的制备
将1K(54mg,0.11mmol)(参照专利WO2020113233合成所得),1J粗品和冰醋酸(7mg,0.11mmol)溶于无水DMA(5mL)中,加入
Figure PCTCN2023070367-appb-000137
分子筛(1g),室温反应2h,加入三乙酰氧基硼氢化钠(35mg,0.17mmol),室温反应过夜。过滤,滤液用制备HPLC(仪器:waters 2767制备液相色谱;色谱柱:XBridge@Prep C18(30mm×150mm);流动相组成:流动相A:乙腈,流动相B:水(含0.1%三氟乙酸))纯化,冷冻干燥。将所得固体加入二氯甲烷(10mL)复溶,加入水(5mL)和饱和碳酸氢钠溶液(1mL),分离有机层,无水硫酸钠干燥,过滤,浓缩得化合物1(20mg,收率:22%)。
1H NMR(400MHz,DMSO-d 6)δ10.87(s,1H),9.49(d,1H),8.78(d,1H),8.37(d,1H),8.25(d,1H),7.67–7.60(m,1H),7.25–6.94(m,3H),6.89–6.40(m,1H),5.30–5.02(m,1H),4.83–4.71(m,1H),4.41–4.33(m,1H),4.30(s,3H),4.20–4.04(m,2H),3.86–3.66(m,4H),3.67–3.40(m,3H),3.17(d,2H),2.94–2.83(m,2H),2.70–2.61(m,2H),.2.37–2.28(m,2H),2.21–2.16(m,3H),2.07–1.81(m,8H),1.75–1.56(m,4H),1.41–1.32(m,2H),1.08–0.91(m,2H)。
LCMS m/z=839.4[M+H] +
实施例2:制备化合物2(trans)
Figure PCTCN2023070367-appb-000138
第一步:2A的制备
氮气保护下,向50mL单口瓶瓶中依次加入3-溴-1-甲基-7-硝基-1H-吲唑(3g,11.72mmol)、1A(7.3g,17.5mmol)、二氧六环(80mL)、水(20mL)、Pd(dppf)Cl 2.DCM(1.4g,1.71mmol)和碳酸铯(11.5g,35.3mmol),氮气置换三次100℃反应12h。反应结束后,冷却至室温,将反应液倒入水中,乙酸乙酯萃取三次。合并有机相,无水硫酸钠干燥,减压浓缩,硅胶柱层析纯化,得2A(3.3g,收率60%)。
LCMS m/z=467.1[M+H] +
第二步:2B的制备
将2A(1.6g,3.43mmol)、10%钯碳(0.9g)、10%氢氧化钯/碳(1.2g),溶于20mL四氢呋喃和20mL甲醇中,氢气置换三次,30℃过夜反应。冷却至室温,用硅藻土过滤,滤饼用甲醇洗涤三次,合并有机相,无水硫酸钠干燥,减压旋干,得到2B(650mg,收率73%)。
LCMS m/z=259.2[M+H] +
第三步:2C的制备
将2B(250mg,0.97mmol)、KI(242mg,1.46mmol)、碘(371mg,1.46mmol)溶于乙腈(5mL)中,冷却至0℃。再缓慢加入亚硝酸异戊酯(171mg,1.46mmol),氮气保护下30℃反应8h。加入10mL饱和氯化铵溶液,用二氯甲烷萃取,有机层减压浓缩,残留物用硅胶柱层析纯化得到2C(130mg,收率:36%)。
LCMS m/z=370.0[M+H] +
第四步:2D的制备
将2C(130mg,0.35mmol)、4-(丙-2-炔-1-基氧基)哌啶-1-羧酸叔丁酯(101mg,0.42mmol)、CuI(13mg,0.07mmol)、PdCl 2(PPh 3) 2(25mg,0.036mmol)、三乙胺(1mL)溶于DMF(4mL)中,氮 气置换三次,60℃反应6h。冷却至室温,加入5mL水溶液稀释,用二氯甲烷萃取,有机层减压浓缩,残留物用硅胶柱层析纯化得到2D(91mg,收率:54%)。
LCMS m/z=381.2[M-Boc+H] +
第五步:2E的制备
将2D(91mg,0.19mmol)溶于甲醇(1mL)中,加入4N盐酸的二氧六环溶液(3mL),室温反应1h,减压浓缩,加入5mL二氯甲烷和1mL甲醇复溶,加入2mL三乙胺,减压浓缩后得2E的粗品。
第六步:化合物2的制备
依次将上一步2E的粗品、1K(102mg,0.21mmol)、醋酸(12.6mg,0.21mmol)溶于DMA(5mL)中,加入
Figure PCTCN2023070367-appb-000139
分子筛(2g)。室温搅拌30分钟后加入三乙酰氧基硼氢化钠(57mg,0.27mmol),室温过夜反应。加入20mL饱和碳酸氢钠水溶液和20mL二氯甲烷萃取,有机层减压浓缩,残留物用硅胶柱层析纯化(流动相:DCM/MeOH(V/V)=100/1-20/1)得到化合物2(30mg,两步收率:19%)。
LCMS m/z=850.4[M+H] +
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.56–9.42(m,1H),8.77(d,1H),8.42–8.35(m,1H),8.28–8.22(m,1H),7.78(d,1H),7.51(d,1H),7.27–6.94(m,2H),6.89–6.42(m,1H),5.31–5.03(m,1H),4.82–4.70(m,1H),4.54(s,2H),4.41(dd,1H),4.29(s,3H),4.23–4.11(m,1H),3.87–3.40(m,5H),2.80–2.56(m,4H),2.43–2.31(m,1H),2.27–1.82(m,13H),1.80–1.66(m,2H),1.66–1.41(m,3H),1.14–0.96(m,2H)。
实施例3:制备化合物3(trans)
Figure PCTCN2023070367-appb-000140
第一步:3A的制备
将2-(4-(羟甲基)环己基)-6-吗啉基-5-亚硝异吲哚啉-1-酮(500mg,1.33mmol)(合成步骤参考专利WO2020264499)、三乙胺(540mg,5.34mmol)溶于无水四氢呋喃(10mL)中,冷却至0℃,缓慢滴加TBSOTf(700mg,2.65mmol),氮气保护室温后反应2h。将反应液减压浓缩,残留物用硅胶柱层析纯化得到3A(521mg,收率:80%)。
LCMS m/z=490.2[M+H] +
第二步:3B的制备
将3A(521mg,1.06mmol)溶于乙醇(10mL)和水(2mL)中,升温至80℃,加入氯化铵(280mg,5.23mmol)和铁粉(300mg,5.37mmol)的混合物,80℃搅拌1h,冷却至室温,过滤,滤饼用50mL二氯甲烷洗涤,滤液加入10mL饱和食盐水,分液,有机层用无水硫酸钠干燥,减压浓缩得到3B(440mg)粗品。
LCMS m/z=460.3[M+H] +
第三步:3C的制备
将5-((1R,4R)-2-氧杂-5-氮杂双环[2.2.1]庚烷-5-基)吡唑并[1,5-a]嘧啶-3-羧酸(1.0g,3.84mmol)溶于二氯亚砜(30mL)中,70℃搅拌2h。冷却至室温,减压浓缩得到3C(1.1g)粗品。
第四步:3D的制备
氮气氛围下,将3B(440mg,0.96mmol)和吡啶(150mg,1.9mmol)溶于无水二氯甲烷(10mL)中,冷却至0℃。将3C粗品(500mg)用无水二氯甲烷(4mL)溶解,缓慢滴加到体系中,室温反应2h。将反应液减压浓缩,残留物用硅胶柱层析纯化得到3D(600mg,收率:89%)。
LCMS m/z=702.3[M+H] +
第五步:3E的制备
将3D(600mg,0.85mmol)溶于四氢呋喃(10mL)中,冷却至0℃,缓慢加入TBAF(1M,1.71mL),室温反应4h。将反应液减压浓缩,残留物用硅胶柱层析纯化得到3E(372mg,收率:74%)。
LCMS m/z=588.2[M+H] +
第六步:3F的制备
将3E(370mg,0.63mmol)、Dess-Martin periodinane(530mg,1.25mmol)加入四氢呋喃(10mL)中,室温搅拌1h。将反应液减压浓缩,残留物用硅胶柱层析纯化得到3F(350mg,收率:95%)。
LCMS m/z=586.3[M+H] +
第七步:化合物3的制备
将2D(100mg,0.21mmol)溶于二氯甲烷(4mL)中,加入三氟乙酸(4mL),室温反应1h,减压浓缩,加入10mL二氯甲烷复溶,加入3mL三乙胺调节至碱性,减压浓缩得到化合物残留物溶于DMA(6mL)中,加入3F(120mg,0.20mmol)、
Figure PCTCN2023070367-appb-000141
分子筛(2g)。室温搅拌30min,加入三乙酰氧基硼氢化钠(58mg,0.27mmol),室温过夜反应。加入20mL饱和碳酸氢钠水溶液和20mL二氯甲烷萃取,有机层减压浓缩,残留物用薄层色谱硅胶板纯化(流动相:DCM/MeOH(V/V)=20/1)得到化合物3(93mg,收率:49%)。
LCMS m/z=950.4[M+H] +
实施例4:制备化合物4的三氟乙酸盐(trans)
Figure PCTCN2023070367-appb-000142
将1I(131mg,0.28mmol)溶于氯化氢-二氧六环(5mL,4mol/L)中,室温反应1h。反应结束后浓缩,残余物加入5mL二氧六环复溶,加入三乙胺(0.5mL),真空浓缩。向此浓缩物中加入3F、 冰醋酸(17mg,0.28mmol)、无水DMA(5mL)、分子筛(2g)。室温反应2h后,加入三乙酰氧基硼氢化钠(119mg,0.56mmol),室温反应过夜。过滤,加入饱和碳酸氢钠溶液(30mL)淬灭反应,乙酸乙酯萃取(3×30mL),饱和食盐水洗涤(2×20mL),无水硫酸钠干燥,过滤,浓缩,硅胶制备板纯化(DCM:MeOH=10:1),粗品继续用制备HPLC(仪器:waters 2767制备液相色谱;色谱柱:XBridge@PrepC18(30mm×150mm);流动相组成:流动相A:乙腈,流动相B:水(含0.1%三氟乙酸))纯化,冷冻干燥,得化合物4的三氟乙酸盐(17mg)。
LCMS m/z=470.4[(M+2H)/2] +
实施例6:制备化合物6(trans)
Figure PCTCN2023070367-appb-000143
第一步:6b的制备
将6a(6g,24.79mmol)溶于30mL丙酮中,在0℃下加入氢氧化钾(2.09g,37.25mmol),0℃搅拌15min,逐滴加入碘乙烷(3.87g,24.81mmol),20℃反应16h。将反应体系减压浓缩,加入50mL乙酸乙酯和100mL水,分液,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(乙酸乙酯/石油醚(v/v)=1:20),得到6b(1.40g,收率:21%)。
LCMS m/z=270.0[M+1] +
第二步:6c的制备
氮气保护下向50mL单口瓶中依次加入6b(1.3g,4.81mmol)、1A(3.01g,7.21mmol)、1,4-二氧六环(60mL)、水(20mL)、Pd(dppf)Cl 2.DCM(0.39g,0.48mmol)和碳酸铯(4.70g,14.43mmol),置换氮气三次,100℃反应12h。将反应液冷却至室温,倒入30mL水中,用200mL乙酸乙酯萃取三次,合并有机相,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(乙酸乙酯/石油醚(v/v)=1:5),得6c(1.5g,收率:65%)。
LCMS m/z=481.1[M+1] +
第三步:6d的制备
将6c(1.5g,3.12mmol)、10%钯碳(0.8g)和10%氢氧化钯/碳(1.0g)溶于30mL四氢呋喃和30mL甲醇中,氢气置换三次,氢气球氛围下30℃反应16h。将反应液冷却至室温,垫硅藻土过滤,滤饼用50mL甲醇洗涤三次,合并有机相,无水硫酸钠干燥,减压浓缩,得粗品6d(800mg)。
LCMS m/z=273.2[M+1] +
第四步:6e的制备
将上述粗品6d(400mg)、KI(0.37g,2.23mmol)、CuI(0.406g,2.13mmol)、碘单质(560mg,2.21mmol)溶于乙腈(5mL)中,冷却至0℃,缓慢加入亚硝酸异戊酯(260mg,2.21mmol),氮气保护30℃反应6h。向反应液中加入10mL饱和氯化铵溶液,用50mL二氯甲烷萃取,分液,将有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚/乙酸乙酯(v/v)=2:1-1:1),得6e(200mg,从6c算两步收率:33%)。
LCMS m/z=384.1[M+1] +
第五步:6f的制备
将6e(100mg,0.26mmol)、4-(丙-2-炔-1-基氧基)哌啶-1-甲酸叔丁酯(合成方法见WO2021247899)(75mg,0.313mmol)、CuI(10mg,0.0525mmol)、PdCl 2(PPh 3) 2(26mg,0.037mmol)和三乙胺(0.13g,1.28mmol)溶于DMF(5mL)中,置换氮气三次,60℃反应6h。将反应液冷却至室温,加入5mL水,用50mL二氯甲烷萃取,分液,将有机相减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚/乙酸乙酯(v/v)=2:1-1:1),得6f(90mg,收率:70%)。
第六步:6g的三氟乙酸盐
将6f(90mg,0.18mmol)溶于5mL二氯甲烷中,加入2mL三氟乙酸,室温反应2h。将反应液减压浓缩,得粗品6g的三氟乙酸盐(0.1g)。
LCMS m/z=395.2[M+1] +
第七步:化合物6的制备
将上述粗品6g的三氟乙酸盐(100mg)溶于5mL DMA中,加入碳酸氢钠(30mg,0.36mmol),室温搅拌15min后,加入6h(100mg,0.21mmol)、0.04mL乙酸和
Figure PCTCN2023070367-appb-000144
分子筛(2g),室温搅拌30min后,加入三乙酰氧基硼氢化钠(76mg,0.36mmol),室温反应16h。加入20mL饱和碳酸氢钠水溶液和20mL二氯甲烷,分液,将有机相减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=100:1-20:1),所得粗品再进行手性制备,冻干得到化合物6(78.5mg,收率:43%)。
手性制备方法:
仪器及制备柱:采用Waters 150 SFC制备液相色谱,制备柱型号Chiralpak Column;
流动相体系:sCO 2(超临界CO 2)/异丙醇和乙腈混合溶剂,等梯度洗脱:sCO 2/异丙醇和乙腈混合溶剂=2:3;流速:100mL/min。
目标化合物的手性分析方法:
仪器:SHIMADZU LC-30AD sf;色谱柱:Chiralpak AD-3;规格:50×4.6mm I.D.,3μm;流动相A:sCO 2(超临界CO 2);流动相B:异丙醇和乙腈混合溶剂(含0.05%二乙胺);柱温:35℃;流速:3mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=2:3;目标化合物保留时间:0.875min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.55–9.45(m,1H),8.78(d,1H),8.42–8.34(m,1H),8.29–8.21(m,1H),7.84–7.73(m,1H),7.57–7.46(m,1H),7.30–6.93(m,2H),6.92–6.40(m,1H),5.35–5.00(m,1H),4.84–4.66(m,3H),4.53(s,2H),4.46–4.37(m,1H),4.25–4.08(m,1H), 3.90–3.38(m,5H),2.80–2.56(m,4H),2.45–2.30(m,1H),2.25–1.83(m,13H),1.83–1.65(m,2H),1.64–1.44(m,3H),1.40(t,3H),1.13–0.94(m,2H)。
LCMS m/z=864.3[M+1] +
实施例7:制备化合物7(Trans)
Trans-5-((1R,4R)-2-oxa-5-azabicyclo[2.2.1]heptan-5-yl)-N-(3-(difluoromethyl)-1-(4-((4-((3-(3-(2,6-dioxopiperidin-3-yl)-1-(methyl-d3)-1H-indazol-7-yl)prop-2-yn-1-yl)oxy)piperidin-1-yl)methyl)cyclohexyl)-1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide
Figure PCTCN2023070367-appb-000145
化合物7以氘代碘甲烷为起始原料,参考实施例6的合成方法,得到化合物7。
第一步:7b的制备
将7a(6.00g,24.79mmol)溶于30mL丙酮中,在0℃下加入氢氧化钾(2.09g,37.25mmol),0℃搅拌15min,逐滴加入氘代碘甲烷(3.60g,24.83mmol),20℃反应16h。将反应体系减压浓缩,加入50mL乙酸乙酯和100mL水,分液,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(乙酸乙酯/石油醚(v/v)=1:20),得到7b(4.90g,收率:76%)。
第二步:7c的制备
氮气保护下向50mL单口瓶中依次加入7b(1.5g,5.79mmol)、1A(3.62g,8.67mmol)、1,4-二氧六环(60mL)、水(20mL)、Pd(dppf)Cl 2.DCM(0.47g,0.578mmol)和碳酸铯(5.66g,17.37mmol),置换氮气三次,100℃反应12h。将反应液冷却至室温,将反应液倒入30mL水中,用200mL乙酸乙酯萃取三次,合并有机相,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(乙酸乙酯/石油醚(v/v)=1:10),得7c(1.6g,收率:59%)。
LCMS m/z=470.2[M+1] +
第三步:7d的制备
将7c(1.6g,3.41mmol)、10%钯碳(0.8g)和10%氢氧化钯/碳(1.0g)溶于30mL四氢呋喃和30mL甲醇中,置换氢气三次,氢气球氛围下30℃反应16h。将反应液冷却至室温,加入50mL二氯甲烷搅拌5min,垫硅藻土过滤,滤饼用50mL甲醇洗涤三次,合并有机相,无水硫酸钠干燥,减压浓缩,得粗品7d(850mg)。
LCMS m/z=262.1[M+1] +
第四步:7e的制备
将上述粗品7d(380mg)、KI(0.37g,2.23mmol)、CuI(0.406g,2.13mmol)、碘单质(560mg,2.21mmol)溶于乙腈(5mL)中,冷却至0℃,缓慢加入亚硝酸异戊酯(260mg,2.21mmol),氮气保护30℃反应6h。向反应液中加入10mL饱和氯化铵溶液,用50mL二氯甲烷萃取,分液,将有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚/乙酸乙酯(v/v)=2:1-1:1),得7e(220mg,从7c算两步收率:39%)。
第五步:7f的制备
将7e(100mg,0.27mmol)、4-(丙-2-炔-1-基氧基)哌啶-1-甲酸叔丁酯(78mg,0.326mmol)、CuI(10mg,0.0525mmol)、PdCl 2(PPh 3) 2(20mg,0.0285mmol)和三乙胺(0.14g,1.38mmol)溶于DMF(5mL)中,置换氮气三次,60℃反应6h。将反应液冷却至室温,加入5mL水,用50mL二氯甲烷萃取,分液,将有机相减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚/乙酸乙酯(v/v)=2:1-1:1),得7f(110mg,收率:84%)。
第六步7g的三氟乙酸盐的制备
将7f(110mg,0.23mmol)溶于5mL二氯甲烷中,加入2mL三氟乙酸,室温反应2h。将反应液减压浓缩,得粗品7g的三氟乙酸盐(0.12g)。
第七步:化合物7的制备
将上述粗品7g的三氟乙酸盐(120mg)溶于5mL DMA中,加入碳酸氢钠(37mg,0.44mmol),室温搅拌15min后,加入6h(130mg,0.273mmol)、0.04mL乙酸和
Figure PCTCN2023070367-appb-000146
分子筛(2g),室温搅拌30min后,加入三乙酰氧基硼氢化钠(97mg,0.458mmol),室温反应16h。向反应液中加入20mL饱和碳酸氢钠水溶液和20mL二氯甲烷,分液,将有机相减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=100:1-20:1),所得粗品进行手性制备,冻干得到化合物7(57.1mg,收率:25%)。
手性制备方法:
仪器及制备柱:采用Waters 150 SFC制备液相色谱,制备柱型号Chiralpak Column;
流动相体系:sCO 2(超临界CO 2)/异丙醇和乙腈混合溶剂,等梯度洗脱:sCO 2/异丙醇和乙腈混合溶剂=2:3;流速:100mL/min。
化合物7的手性分析方法:
仪器:SHIMADZU LC-30AD sf;色谱柱:Chiralpak AD-3;规格:50×4.6mm I.D.,3μm;流动相A:sCO 2(超临界CO 2);流动相B:异丙醇和乙腈混合溶剂(含0.05%二乙胺);柱温:35℃;流速:3mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=2:3;化合物7保留时间:0.989min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.56–9.42(m,1H),8.77(d,1H),8.42–8.35(m,1H),8.29–8.22(m,1H),7.78(d,1H),7.51(d,1H),7.29–6.93(m,2H),6.90–6.40(m,1H),5.33–5.02(m,1H),4.84–4.70(m,1H),4.53(s,2H),4.41(dd,1H),4.24–4.10(m,1H),3.97–3.40(m,5H),2.80–2.56(m,4H),2.43–2.31(m,1H),2.27–1.82(m,13H),1.80–1.66(m,2H),1.66–1.41(m,3H),1.14–0.96(m,2H)。
LCMS m/z=853.4[M+1] +
实施例8:制备化合物8(Trans)
Figure PCTCN2023070367-appb-000147
化合物8以8a+碘代异丙烷为起始原料,参考实施例6的合成方法,得到化合物8。
化合物8粗品精制方法:粗品先进行手性制备再进行常规制备,冻干得到化合物8的手性异构体1(6.3mg,收率:4%)和手性异构体2(9.6mg,收率:6%)。
手性制备方法:
仪器及制备柱:采用Waters 150 SFC制备液相色谱,制备柱型号Chiralpak Column;
流动相体系:sCO 2(超临界CO 2)/异丙醇和乙腈混合溶剂,等梯度洗脱:sCO 2/异丙醇和乙腈混合溶剂=65:35;流速:140mL/min。
目标化合物的分析方法:
仪器:SHIMADZU LC-30AD sf;色谱柱:Chiralpak AD-3;规格:50×4.6mm I.D.,3μm;流动相A:sCO 2(超临界CO 2);流动相B:异丙醇和乙腈混合溶剂(含0.05%二乙胺);柱温:35℃;流速:3mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:2;化合物8手性异构体1的保留时间:2.086min。化合物8手性异构体2的保留时间:2.687min。
常规制备方法:
仪器及制备柱:采用SHIMADZU LC-20AP制备液相色谱,制备柱型号是C18 packing material)。制备方法:粗品用乙腈和水溶解,制备成样品液。流动相体系:乙腈/水(含0.225%甲酸)。梯度洗脱方法:乙腈由30%梯度洗脱至60%(洗脱时间15min)。
化合物8手性异构体1的核磁:
1H NMR(400MHz,DMSO-d 6)δ10.88(s,1H),9.56–9.42(m,1H),8.78(d,1H),8.42–8.35(m,1H),8.28–8.22(m,1H),7.78(d,1H),7.51(d,1H),7.27–6.94(m,2H),6.89–6.42(m,1H),5.80–5.63(m,1H),5.33–5.01(m,1H),4.83–4.70(m,1H),4.66–4.48(m,2H),4.42(dd,1H),4.30–4.10(m,1H),3.96–3.40(m,5H),2.80–2.56(m,3H),2.45–1.65(m,17H),1.65–1.41(m,9H),1.15–0.95(m,2H)。
化合物8的手性异构体1的LCMS m/z=878.4[M+1] +
化合物8手性异构体2的核磁:
1H NMR(400MHz,DMSO-d 6)δ10.88(s,1H),9.56–9.42(m,1H),8.77(d,1H),8.42–8.35(m,1H),8.28–8.22(m,1H),7.78(d,1H),7.50(d,1H),7.28–6.94(m,2H),6.89–6.40(m,1H),5.80–5.63(m,1H),5.33–5.01(m,1H),4.83–4.70(m,1H),4.66–4.48(m,2H),4.42(dd,1H),4.30–4.10(m,1H),3.96–3.40(m,5H),2.80–2.56(m,3H),2.45–1.65(m,17H),1.65–1.41(m,9H),1.15–0.95(m,2H)。
化合物8的手性异构体2的LCMS m/z=878.4[M+1] +
实施例10:制备化合物10(Trans)
Figure PCTCN2023070367-appb-000148
化合物10以(3S,4R)-3-氟-4-羟基哌啶-1-甲酸叔丁酯(10a)为起始原料,参考实施例12的合成方法,得到化合物10(20.5mg,收率:11%)。
手性制备方法:
仪器及制备柱:采用Waters 150 SFC制备液相色谱,制备柱型号Chiralpak OD Column;
流动相体系:sCO 2(超临界CO 2)/异丙醇和乙腈混合溶剂(含0.1%氨水),等梯度洗脱:sCO 2/异丙醇和乙腈混合溶剂(含0.1%氨水)=3:7;流速:100mL/min。
目标化合物的分析方法:
仪器:SHIMADZU LC-30AD sf;色谱柱:Chiralpak OD-3;规格:50×4.6mm I.D.,3μm;流动相A:sCO 2(超临界CO 2);流动相B:异丙醇和乙腈混合溶剂(含0.05%二乙胺);柱温:35℃;流速:3mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=2:3;目标化合物保留时间:2.329min。
常规制备方法:
仪器及制备柱:采用SHIMADZU LC-20AP制备液相色谱,制备柱型号是Phenomenex C18。制备方法:粗品用乙腈和水溶解,制备成样品液。流动相体系:乙腈/水(含10mmol/L碳酸氢铵)。梯度洗脱方法:乙腈由50%梯度洗脱至80%(洗脱时间10min)。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.56–9.42(m,1H),8.78(d,1H),8.42–8.35(m,1H),8.28–8.22(m,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.89–6.42(m,1H),5.33–5.01(m,1H),4.95–4.70(m,2H),4.61(s,2H),4.46–4.36(m,1H),4.29(s,3H),4.24–4.10(m,1H),3.88–3.40(m,5H),2.95–2.55(m,4H),2.45–1.65(m,16H),1.65–1.45(m,1H),1.11–0.95(m,2H)。
LCMS m/z=868.3[M+1] +
实施例11:制备化合物11(Trans)
Figure PCTCN2023070367-appb-000149
以11a和3-溴丙-1-炔为起始原料,参考实施例12的合成方法,得到化合物11(25.7mg)。
手性制备方法:
仪器及制备柱:采用Waters 150 SFC制备液相色谱,制备柱型号Chiralpak Column;
流动相体系:sCO 2(超临界CO 2)/异丙醇和乙腈混合溶剂(含0.1%氨水),等梯度洗脱:sCO 2/异丙醇和乙腈混合溶剂(含0.1%氨水)=3:7;流速:100mL/min。
目标化合物的分析方法:
仪器:SHIMADZU LC-30AD sf;色谱柱:Chiralpak OD-3;规格:50×4.6mm I.D.,3μm;流动相A:sCO 2(超临界CO 2);流动相B:异丙醇和乙腈混合溶剂(含0.05%二乙胺);柱温:35℃;流速:3mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=2:3;目标化合物保留时间:2.263min。
常规制备方法:
仪器及制备柱:采用SHIMADZU LC-20AP制备液相色谱,制备柱型号是Phenomenex C18。制备方法:粗品用乙腈和水溶解,制备成样品液。流动相体系:乙腈/水(含10mmol/L碳酸氢铵)。梯度洗脱方法:乙腈由40%梯度洗脱至70%(洗脱时间10min)。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.56–9.42(m,1H),8.78(d,1H),8.42–8.35(m,1H),8.28–8.22(m,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.89–6.42(m,1H),5.33–5.01(m,1H),4.95–4.70(m,2H),4.61(s,2H),4.46–4.36(m,1H),4.29(s,3H),4.24–4.10(m,1H),3.88–3.40(m,5H),2.95–2.55(m,4H),2.45–1.65(m,16H),1.65–1.45(m,1H),1.11–0.95(m,2H)。
LCMS m/z=868.3[M+1] +
实施例12:制备化合物12(Trans)
Figure PCTCN2023070367-appb-000150
第一步:12b的制备
将12a(1.3g,5.93mmol)加入到50mL四氢呋喃中,冷却至0℃,加入0.22g氢化钠,保持在0℃搅拌30min后,加入3-溴丙-1-炔(0.77g,6.48mmol),室温反应12h。向反应体系加入100mL饱和氯化铵溶液,用100mL乙酸乙酯萃取,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚/乙酸乙酯(v/v)=4:1),得12b(1.1g,收率:72%)。
第二步:12c的制备
将12b(0.07g,0.27mmol)和3-(7-碘-1-甲基-1H-吲唑-3-基)哌啶-2,6-二酮(2C)(0.1g,0.27mmol)加入到5mL DMF中,加入1mL三乙胺、CuI(0.02g,0.1mmol)和PdCl 2(PPh 3) 2(0.035g,0.05mmol),氮气置换三次,氮气保护60℃反应4h。将反应液冷却至室温,加入30mL乙酸乙酯,有机相用50mL纯化水洗涤,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离纯化(石油醚/乙酸乙酯(v/v)=2:1-1:1),得12c(0.09g,收率:67%)。
第三步:12d的三氟乙酸盐的制备
将12c(0.09g,0.18mmol)加入到3mL二氯甲烷中,加入1mL三氟乙酸,室温反应2h。将反应液减压浓缩,得到粗品12d的三氟乙酸盐(0.1g)。
LCMS m/z=399.1[M+1] +
第四步:化合物12的制备
向上述粗品12d的三氟乙酸盐(0.1g)中加入2mL三乙胺,加入5mL DMA溶解,加入6h(0.087g,0.18mmol),室温搅拌3h后,加入三乙酰氧基硼氢化钠(0.042g,0.2mmol),室温反应16h。将反应液过滤,将滤液减压浓缩,所得粗品先进行手性制备后再进行常规制备,冻干得到化合物12(22mg,收率:14%)。
手性制备方法:
仪器及制备柱:采用Waters 150 SFC制备液相色谱,制备柱型号Chiralpak Column;
流动相体系:sCO 2(超临界CO 2)/异丙醇和乙腈混合溶剂,等梯度洗脱:sCO 2/异丙醇和乙腈混合溶剂=2:3;流速:100mL/min。
目标化合物的分析方法:
仪器:SHIMADZU LC-30AD sf;色谱柱:Chiralpak AD-3;规格:50×4.6mm I.D.,3μm;流动相A:sCO 2(超临界CO 2);流动相B:异丙醇和乙腈混合溶剂(含0.05%二乙胺);柱温:35℃;流速:3mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=2:3;目标化合物保留时间:1.16min。
常规制备方法:
仪器及制备柱:采用SHIMADZU LC-20AP制备液相色谱,制备柱型号是Phenomenex C18。制备方法:粗品用乙腈和水溶解,制备成样品液。流动相体系:乙腈/水(含0.05%碳酸氢铵)。梯度洗脱方法:乙腈由45%梯度洗脱至75%(洗脱时间15min)。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.56–9.42(m,1H),8.77(d,1H),8.42–8.35(m,1H),8.28–8.22(m,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.89–6.42(m,1H),5.33–5.01(m,1H),4.85–4.70(m,1H),4.63(s,2H),4.59–4.35(m,2H),4.29(s,3H),4.24–4.08(m,1H),3.88–3.40(m,5H),3.10–2.95(m,1H),2.78–2.55(m,3H),2.45–1.37(m,17H),1.11–0.95(m,2H)。
LCMS m/z=434.8[M/2+1] +
实施例13:制备化合物13(Trans)
Figure PCTCN2023070367-appb-000151
以13a+3-溴丙-1-炔为起始原料,参考实施例12的合成方法,得到化合物13(10.6mg)。
手性制备方法:
仪器及制备柱:采用Waters 150 SFC制备液相色谱,制备柱型号Chiralpak AD Column;
流动相体系:sCO 2(超临界CO 2)/异丙醇和乙腈混合溶剂(含0.1%氨水),等梯度洗脱:sCO 2/异丙醇和乙腈混合溶剂(含0.1%氨水)=2:3;流速:100mL/min。
目标化合物的分析方法:
仪器:SHIMADZU LC-30AD sf;色谱柱:Chiralpak AD-3;规格:50×4.6mm I.D.,3μm;流动相A:sCO 2(超临界CO 2);流动相B:异丙醇和乙腈混合溶剂(含0.05%二乙胺);柱温:35℃;流速:3mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=1:1;目标化合物保留时间:2.345min。
常规制备方法:
仪器及制备柱:采用SHIMADZU LC-20AP制备液相色谱,制备柱型号是Phenomenex C18。制备方法:粗品用乙腈和水溶解,制备成样品液。流动相体系:乙腈/水(含10mmol/L碳酸氢铵)。梯度洗脱方法:乙腈由40%梯度洗脱至70%(洗脱时间15min)。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.56–9.42(m,1H),8.78(d,1H),8.42–8.35(m,1H),8.28–8.22(m,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.89–6.42(m,1H),5.33–5.01(m,1H),4.85–4.70(m,1H),4.63(s,2H),4.59–4.35(m,2H),4.29(s,3H),4.24–4.08(m,1H),3.88–3.40(m,5H),3.10–2.95(m,1H),2.78–2.55(m,3H),2.45–1.37(m,17H),1.11–0.95(m,2H)。
LCMS m/z=868.3[M+1] +
实施例14:制备化合物14的三氟乙酸盐(Trans)
Figure PCTCN2023070367-appb-000152
第一步:14b的制备
将14a(1.1g,4.09mmol)、(1R,4R)-2-氧杂-5-氮杂双环[2.2.1]庚烷(0.49g,4.94mmol)、rac-BINAP(0.25g,0.40mmol)、碳酸铯(4.0g,12.3mmol)和Pd 2(dba) 3(0.75g,0.82mmol)溶于30mL二氧六环中,置换氮气三次,100℃反应20h。将反应液冷却到室温,缓慢加入50mL水,用乙酸乙酯萃取(50mL),有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶柱色谱分离提纯(乙酸乙酯/石油醚(v/v)=0:1-7:3),得到14b(0.40g,收率:34%)。
LCMS m/z=288.1[M+1] +
第二步:14c的制备
将14b(400mg,1.39mmol)和一水合氢氧化锂(290mg,6.91mmol)溶于甲醇(10mL)和水(20mL)中,70℃反应20h。将反应液冷却至室温,减压浓缩,加入20mL水,用1mol/L盐酸水溶液调pH至5,用50mL二氯甲烷萃取,有机相用无水硫酸钠干燥,减压浓缩,得到粗品(200mg)。将上述粗品(170mg)、反式-(4-(4-氨基-3-(二氟甲基)-1H-吡唑-1-基)环己基)甲醇(合成方法见WO2021247897)(160mg,0.65mmol)和N-甲基咪唑(190mg,2.31mmol)溶于乙腈(5mL)中,再加入TCFH(270mg,0.96mmol),室温反应20h。将反应液减压浓缩,粗品用硅胶色谱柱分离提纯(甲醇/二氯甲烷(v/v)=0:1-1:9),得到14c(150mg,收率:47%)。
LCMS m/z=487.2[M+1] +
第三步:化合物14的三氟乙酸盐的制备
将14c(200mg,0.41mmol)溶于二氯甲烷(3mL)中,加入Dess-Martin氧化剂(340mg,0.80mmol),室温反应2h。将反应液减压浓缩,粗品用硅胶色谱柱分离提纯(甲醇/二氯甲烷(v/v)=0:1-1:9),得到中间体14A(100mg)。将上述粗品2E(46mg)溶于DMA(3mL)中,加入中间体14A(60mg)和0.1mL乙酸,室温搅拌30min后,加入三乙酰氧基硼氢化钠(31mg,0.146mmol),室温反应16h。向反应液中缓慢加入10mL饱和碳酸氢钠水溶液,用20mL乙酸乙酯萃取两次,合并有机相,有机相用30mL饱和氯化钠水溶液洗涤,无水硫酸钠干燥,减压浓缩,粗品用硅胶柱色谱分离提纯(甲醇/二氯甲烷(v/v)=0:1-1:9),所得粗品再进行常规制备,冻干得到化合物14的三氟乙酸盐(9mg)。
常规制备方法:
仪器及制备柱:采用SHIMADZU LC-20AP制备液相色谱,制备柱型号是Phenomenex C18。制备方法:粗品用乙腈和水溶解,制备成样品液。流动相体系:乙腈/水(含0.1%三氟乙酸)。梯度洗脱方法:乙腈由25%梯度洗脱至40%(洗脱时间16min)。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.34(s,1H),8.58–8.42(m,2H),8.11(s,1H),7.80(d,1H),7.52(d,1H),7.33–6.93(m,3H),6.78–6.66(m,1H),4.82–4.66(m,2H),4.60(s,2H),4.42(dd,1H),4.35–4.27(m,3H),4.27–4.15(m,1H),4.05–3.76(m,2H),3.74–3.65(m,1H),3.65–3.33(m,3H),3.18–2.93(m,5H),2.77–2.57(m,2H),2.45–1.60(m,15H),1.30–1.09(m,2H)。LCMS m/z=849.2[M+1] +
实施例15:制备化合物15的三氟乙酸盐(Trans)
Figure PCTCN2023070367-appb-000153
以15a+(1R,4R)-2-氧杂-5-氮杂双环[2.2.1]庚烷为起始原料,参考实施例14的合成方法,得到化合物15的三氟乙酸盐(10mg)。
精制方法:粗品用硅胶柱色谱分离提纯(甲醇/二氯甲烷(v/v)=0:1-1:9),所得粗品再进行常规制备,再用三氟乙酸调制备液至酸性,冻干得到化合物15的三氟乙酸盐(10mg)。
常规制备方法:
仪器及制备柱:采用SHIMADZU LC-20AP制备液相色谱,制备柱型号是Phenomenex C18。制备方法:粗品用乙腈和水溶解,制备成样品液。流动相体系:乙腈/水(含10mmol/L碳酸氢铵)。梯度洗脱方法:乙腈由30%梯度洗脱至60%(洗脱时间10min)。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.35–9.17(m,2H),8.40(s,1H),8.29(s,1H),7.80(d,1H),7.53(d,1H),7.30–6.93(m,2H),5.33–5.12(m,1H),4.77–4.70(m,1H),4.60(s,2H),4.47–4.37(m,1H),4.35–4.15(m,4H),4.07–3.65(m,5H),3.63–3.32(m,2H),3.15–2.92(m,4H),2.78–2.55(m,2H),2.46–1.65(m,15H),1.28–1.10(m,2H)。LCMS m/z=868.3[M+1] +
实施例16:制备化合物16(Trans)
Figure PCTCN2023070367-appb-000154
第一步:16b的制备
将16a(4.0g,16.53mmol)、环丙基硼酸(4.28g,49.83mmol)、碳酸钠(5.28g,49.82mmol)、Cu(OAc) 2(3.00g,16.52mmol)和2,2'-联吡啶(2.60g,16.65mmol)溶于60mL DCE中,置换氮气三次,氮气保护下80℃反应6h。将反应体系冷却至室温,过滤,将滤液减压浓缩,粗品用硅胶色谱柱分离纯化(石油醚/乙酸乙酯(v/v)=5:1),得16b(1.7g,收率:36%)。
第二步:16c的制备
在氮气保护下,向100mL单口瓶中依次加入16b(1.5g,5.32mmol)、1A(3.33g,7.98mmol)、二氧六环(60mL)、水(20mL)、Pd(dppf)Cl 2·CH 2Cl 2(CAS:95464-05-4)(0.43g,0.53mmol)和碳酸铯(5.20g,15.96mmol),置换氮气三次,氮气保护下100℃反应12h。将反应体系冷却至室温,倒入50mL水中,用乙酸乙酯萃取(100mL×3),合并有机相,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚:乙酸乙酯(v/v)=5:1),得16c(1.8g,收率:69%)。
LCMS m/z=493.1[M+1] +
第三步:16d的制备
将16c(1.7g,3.45mmol)和10%Pd/C(0.8g)溶于30mL四氢呋喃和30mL甲醇中,置换氢气三次,30℃反应16h。将反应体系垫硅藻土过滤,滤饼用甲醇洗涤(30mL×3),将滤液用无水硫酸钠干燥,减压浓缩,得粗品16d(850mg)。
LCMS m/z=285.1[M+1] +
第四步:16e的制备
将上述粗品16d(400mg)、KI(0.35g,2.11mmol)、CuI(0.40g,2.10mmol)、I 2(0.54g,2.13mmol)溶于10mL乙腈中,冷却至0℃,缓慢加入亚硝酸异戊酯(250mg,2.13mmol),氮气保护下30℃反应6h。向反应体系中加入10mL饱和氯化铵水溶液,用50mL二氯甲烷萃取,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离纯化(石油醚:乙酸乙酯(v/v)=2:1-1:1),得16e(220mg,从化合物16c算两步收率:34%)。
LCMS m/z=396.0[M+1] +
第五步:16f的制备
将16e(150mg,0.38mmol)、4-(丙-2-炔-1-基氧基)哌啶-1-甲酸叔丁酯(0.11g,0.46mmol)、CuI(14mg,0.074mmol)、PdCl 2(PPh 3) 2(27mg,0.0385mmol)和TEA(0.19g,1.88mmol)溶于5mL DMF中,置换氮气三次,60℃反应6h。将反应体系冷却至室温,加入5mL水,用30mL二氯甲烷萃取,有机相用无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(石油醚:乙酸乙酯(v/v)=2:1-1:1),得16f(130mg,收率:68%)。
第六步:16g的三氟乙酸盐的制备
将16f(120mg,0.24mmol)溶于5mL二氯甲烷中,加入2mL三氟乙酸,室温反应2h。将反应体系减压浓缩,得粗品16g的三氟乙酸盐(0.13g)。
LCMS m/z=407.2[M+1] +
第七步:化合物16的制备
将粗品16g的三氟乙酸盐(130mg)溶于5mL DMA中,加入碳酸氢钠(40mg,0.48mmol),室温搅拌15min后,加入6h(140mg,0.29mmol)、0.04mL醋酸和
Figure PCTCN2023070367-appb-000155
分子筛(2g),室温搅拌30min后,加入三乙酰氧基硼氢化钠(102mg,0.48mmol),室温反应16h。向反应液中加入20mL饱和碳酸氢钠水溶液和20mL二氯甲烷,分液,将有机相减压浓缩,粗品用硅胶色谱柱分离提纯 (二氯甲烷/甲醇(v/v)=100:1-20:1),所得粗品进行HPLC纯化,得到化合物16(50.4mg,收率:20%)。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.55–9.45(m,1H),8.78(d,1H),8.38(d,1H),8.25(d,1H),7.75(d,1H),7.52(d,1H),7.27–6.92(m,2H),6.90–6.40(m,1H),5.33–5.02(m,1H),4.83–4.70(m,1H),4.51(s,2H),4.43–4.32(m,1H),4.23–4.01(m,2H),3.88–3.40(m,5H),2.78–2.55(m,4H),2.44–1.40(m,19H),1.30–0.94(m,6H)。
LCMS m/z=876.3[M+1] +
实施例17:化合物17的制备(Trans)
Figure PCTCN2023070367-appb-000156
将上述粗品中间体6的盐酸盐(130mg)溶于5mL乙腈中,加入上述粗品中间体2(61mg)和TCFH(67mg,0.24mmol),加入NMI(0.11g,1.34mmol),室温反应16h。将反应体系减压浓缩,向残留物中加入10mL水,过滤,将滤饼用5mL水洗涤,用10mL DCM溶解,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=12:1),所得粗品进行手性制备,分别得到化合物17的手性异构体1(37.5mg,从化合物2-B算两步收率:18%)和手性异构体2(18.4mg,从化合物2-B算两步收率:9%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;
洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:3.368min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.28(s,1H),8.88(d,1H),8.38–8.29(m,2H),7.79(d,1H),7.52(d,1H),7.26–6.90(m,3H),4.94–4.72(m,1H),4.61(s,2H),4.58–4.48(m,1H),4.48–4.34(m,3H),4.29(s,3H),4.24–4.04(m,2H),3.85–3.71(m,2H),3.30–3.22(m,2H),2.95–2.76(m,1H),2.76–2.55(m,3H),2.46–2.26(m,2H),2.24–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.13–0.94(m,2H)。
LCMS m/z=924.4[M+1] +
手性异构体2的保留时间:4.029min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.28(s,1H),8.88(d,1H),8.38–8.29(m,2H),7.79(d,1H),7.52(d,1H),7.26–6.90(m,3H),4.94–4.72(m,1H),4.60(s,2H),4.58–4.48(m,1H),4.48–4.34(m,3H),4.29(s,3H),4.24–4.04(m,2H),3.85–3.71(m,2H),3.30–3.22(m,2H),2.95–2.76(m,1H),2.76–2.55(m,3H),2.46–2.26(m,2H),2.24–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.13–0.94(m,2H)。
LCMS m/z=924.4[M+1] +
实施例18:化合物18的制备(Trans)
Figure PCTCN2023070367-appb-000157
将上述粗品中间体6的盐酸盐(130mg)溶于5mL乙腈中,加入上述粗品中间体1(56mg)和TCFH(67mg,0.24mmol),加入NMI(0.11g,1.34mmol),室温反应16h。将反应体系减压浓缩,向残留物中加入10mL水,过滤,将滤饼用5mL水洗涤,用10mL DCM溶解,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=12:1),所得粗品进行手性制备,分别得到化合物18的手性异构体1(17.8mg,从化合物1-D算两步收率:9%)和手性异构体2(16.2mg,从化合物1-D算两步收率:9%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:仪器:Shimadzu LC-20AB with PDA detector;色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:6.469min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.32(s,1H),8.81(d,1H),8.37(s,1H),8.29(s,1H),7.84–7.73(m,1H),7.56–7.48(m,1H),7.28–6.96(m,2H),6.91(d,1H),4.94–4.71(m,1H),4.60(s,2H),4.46–4.24(m,6H),4.24–4.10(m,1H),4.00–3.91(m,1H),3.87–3.53(m,3H),3.50–3.42(m,2H),3.29(s,3H),3.21–3.07(m,1H),3.06–2.93(m,1H),2.93–2.76(m,1H),2.76–2.55(m,3H),2.45–2.25(m,2H),2.25–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.12–0.95(m,2H)。
LCMS m/z=900.5[M+1] +
手性异构体2的保留时间:7.967min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.32(s,1H),8.81(d,1H),8.37(s,1H),8.29(s,1H),7.84–7.73(m,1H),7.56–7.48(m,1H),7.28–6.96(m,2H),6.91(d,1H),4.94–4.71(m,1H),4.60(s,2H),4.46–4.24(m,6H),4.24–4.10(m,1H),4.00–3.91(m,1H),3.87–3.53(m,3H),3.50–3.42(m,2H),3.29(s,3H),3.21–3.07(m,1H),3.06–2.93(m,1H),2.93–2.76(m,1H),2.76–2.55(m,3H),2.45–2.25(m,2H),2.25–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.12–0.95(m,2H)。
LCMS m/z=900.4[M+1] +
实施例19:化合物19的制备(Trans)
Figure PCTCN2023070367-appb-000158
将上述粗品中间体6的盐酸盐(130mg)溶于5mL乙腈中,加入上述粗品中间体3(53mg)和TCFH(67mg,0.24mmol),加入NMI(0.11g,1.34mmol),室温反应16h。将反应体系减压浓缩,向残留物中加入10mL水,过滤,将滤饼用5mL水洗涤,用10mL DCM溶解,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=12:1),所得粗品进行手性制备,分别得到化合物19的手性异构体1(18.2mg,从化合物3-A算两步收率:7%)和手性异构体2(12.5mg,从化合物3-A算两步收率:5%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:5.313min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.34(s,1H),8.81(d,1H),8.36(s,1H),8.29(s,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.90(d,1H),4.93–4.72(m,2H),4.61(s,2H),4.52–4.10(m,7H),4.03–3.92(m,1H),3.87–3.70(m,1H),3.67–3.46(m,4H),3.20–3.06(m,1H),3.05–2.93(m,1H),2.93–2.76(m,1H),2.75–2.56(m,3H),2.44–2.30(m,2H),2.25–2.10(m,4H),2.09–1.95(m,2H),1.95–1.66(m,6H),1.65–1.50(m,1H),1.12–0.95(m,2H)。
LCMS m/z=886.4[M+1] +
手性异构体2的保留时间:6.457min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.34(s,1H),8.81(d,1H),8.36(s,1H),8.29(s,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.90(d,1H),4.93–4.72(m,2H),4.60(s,2H),4.52–4.10(m,7H),4.03–3.92(m,1H),3.87–3.70(m,1H),3.67–3.46(m,4H),3.20–3.06(m,1H),3.05–2.93(m,1H),2.93–2.76(m,1H),2.75–2.56(m,3H),2.44–2.30(m,2H),2.25–2.10(m,4H),2.09–1.95(m,2H),1.95–1.66(m,6H),1.65–1.50(m,1H),1.12–0.95(m,2H)。
LCMS m/z=886.4[M+1] +
将所得手性异构体2进行酸性制备,得手性异构体2的三氟乙酸盐。
酸性制备方法:
仪器及制备柱:采用Shimadzu LC-20AP制备液相,制备柱型号Welch Xtimate C18;流动相体系:水(含0.1%的三氟乙酸)/乙腈,梯度洗脱:水(含0.1%的三氟乙酸)/乙腈=18:82-48:52;流速:25mL/min。
手性异构体2的三氟乙酸盐的核磁数据:
1H NMR(400MHz,DMSO-d 6)δ10.91(s,1H),9.35(s,1H),8.82(d,1H),8.38(s,1H),8.29(s, 1H),7.81(d,1H),7.53(d,1H),7.27–7.07(m,2H),6.91(d,1H),4.90–4.56(m,3H),4.53–3.82(m,10H),3.65–3.46(m,4H),3.20–3.08(m,2H),3.07–2.90(m,2H),2.76–2.56(m,2H),2.45–1.68(m,14H),1.60–1.46(m,1H),1.34–1.10(m,2H)。
实施例20:化合物20的制备(Trans)
Figure PCTCN2023070367-appb-000159
将上述粗品中间体6的盐酸盐(130mg)溶于5mL乙腈中,加入上述粗品中间体5(53mg)和TCFH(67mg,0.24mmol),加入NMI(0.11g,1.34mmol),室温反应16h。将反应体系减压浓缩,向残留物中加入10mL水,过滤,将滤饼用5mL水洗涤,用10mL DCM溶解,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=12:1),所得粗品进行手性制备,分别得到化合物20的手性异构体1(10.3mg,从化合物5-A算两步收率:4%)和手性异构体2(9.8mg,从化合物5-A算两步收率:4%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:5.229min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.34(s,1H),8.81(d,1H),8.36(s,1H),8.29(s,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.89(d,1H),4.93–4.72(m,2H),4.61(s,2H),4.52–4.10(m,7H),4.03–3.92(m,1H),3.87–3.70(m,1H),3.67–3.46(m,4H),3.20–3.06(m,1H),3.05–2.93(m,1H),2.93–2.76(m,1H),2.75–2.56(m,3H),2.44–2.30(m,2H),2.25–2.10(m,4H),2.09–1.95(m,2H),1.95–1.66(m,6H),1.65–1.50(m,1H),1.12–0.94(m,2H)。
LCMS m/z=886.4[M+1] +
手性异构体2的保留时间:6.378min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.34(s,1H),8.81(d,1H),8.36(s,1H),8.29(s,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.90(d,1H),4.93–4.72(m,2H),4.60(s,2H),4.52–4.10(m,7H),4.03–3.92(m,1H),3.87–3.70(m,1H),3.67–3.46(m,4H),3.20–3.06(m,1H),3.05–2.93(m,1H),2.93–2.76(m,1H),2.75–2.56(m,3H),2.44–2.30(m,2H),2.25–2.10(m,4H),2.09–1.95(m,2H),1.95–1.66(m,6H),1.65–1.50(m,1H),1.12–0.94(m,2H)。
LCMS m/z=886.4[M+1] +
实施例21:化合物21的制备(Trans)
Figure PCTCN2023070367-appb-000160
将上述粗品中间体6的盐酸盐(130mg)溶于5mL乙腈中,加入上述粗品中间体4(56mg)和TCFH(67mg,0.24mmol),加入NMI(0.11g,1.34mmol),室温反应16h。将反应体系减压浓缩,向残留物中加入10mL水,过滤,将滤饼用5mL水洗涤,用10mL DCM溶解,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=12:1),所得粗品进行手性制备,分别得到化合物21的手性异构体1(18.3mg,从化合物4-C算两步收率:5%)和手性异构体2(20.3mg,从化合物4-C算两步收率:6%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:6.563min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.33(s,1H),8.81(d,1H),8.37(s,1H),8.29(s,1H),7.84–7.73(m,1H),7.56–7.48(m,1H),7.28–6.96(m,2H),6.91(d,1H),4.94–4.71(m,1H),4.61(s,2H),4.46–4.24(m,6H),4.24–4.10(m,1H),4.00–3.91(m,1H),3.87–3.53(m,3H),3.50–3.42(m,2H),3.30(s,3H),3.21–3.07(m,1H),3.06–2.93(m,1H),2.93–2.76(m,1H),2.76–2.55(m,3H),2.45–2.25(m,2H),2.25–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.12–0.95(m,2H)。
LCMS m/z=900.4[M+1] +
手性异构体2的保留时间:8.07min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.33(s,1H),8.81(d,1H),8.37(s,1H),8.29(s,1H),7.84–7.73(m,1H),7.56–7.48(m,1H),7.28–6.96(m,2H),6.91(d,1H),4.94–4.71(m,1H),4.61(s,2H),4.46–4.24(m,6H),4.24–4.10(m,1H),4.00–3.91(m,1H),3.87–3.53(m,3H),3.50–3.42(m,2H),3.30(s,3H),3.21–3.07(m,1H),3.06–2.93(m,1H),2.93–2.76(m,1H),2.76–2.55(m,3H),2.45–2.25(m,2H),2.25–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.12–0.95(m,2H)。
LCMS m/z=900.4[M+1] +
实施例22:化合物22的制备(Trans)
Figure PCTCN2023070367-appb-000161
将上述粗品中间体7(0.12g)加入到5mL乙腈中,加入上述粗品中间体2(0.08g)和TCFH(0.084g,0.3mmol),0℃下加入NMI(0.08g,0.97mmol),室温反应16h。将反应体系减压浓缩,将残留物进行手性制备,分别得到化合物22的手性异构体1(21.6mg,收率:8%)和手性异构体2(22.7mg,收率:8%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector;色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;
洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:3.449min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.28(s,1H),8.88(d,1H),8.38–8.29(m,2H),7.78(d,1H),7.52(d,1H),7.26–6.90(m,3H),4.94–4.72(m,1H),4.61(s,2H),4.58–4.48(m,1H),4.48–4.34(m,3H),4.29(s,3H),4.24–4.04(m,2H),3.85–3.71(m,2H),3.30–3.22(m,2H),2.95–2.76(m,1H),2.76–2.55(m,3H),2.46–2.26(m,2H),2.24–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.13–0.94(m,2H)。
LCMS m/z=924.4[M+1] +
手性异构体2的保留时间:4.165min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.28(s,1H),8.88(d,1H),8.38–8.29(m,2H),7.79(d,1H),7.52(d,1H),7.26–6.90(m,3H),4.94–4.72(m,1H),4.61(s,2H),4.58–4.48(m,1H),4.48–4.34(m,3H),4.29(s,3H),4.24–4.04(m,2H),3.85–3.71(m,2H),3.30–3.22(m,2H),2.95–2.76(m,1H),2.76–2.55(m,3H),2.46–2.26(m,2H),2.24–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.13–0.94(m,2H)。
LCMS m/z=924.4[M+1] +
实施例23:化合物23的制备(Trans)
Figure PCTCN2023070367-appb-000162
将上述粗品中间体7(0.12g)加入到5mL乙腈中,加入上述粗品中间体1(0.073g)和TCFH(0.084g,0.3mmol),0℃下加入NMI(0.08g,0.97mmol),室温反应16h。将反应体系减压浓缩,将残留物进行手性制备,分别得到化合物23的手性异构体1(20.5mg,从化合物1-D算两步收率:8%)和手性异构体2(17.8mg,从化合物1-D算两步收率:7%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector;色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:6.645min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.33(s,1H),8.81(d,1H),8.37(s,1H),8.29(s,1H),7.84–7.73(m,1H),7.56–7.48(m,1H),7.28–6.96(m,2H),6.92(d,1H),4.94–4.71(m,1H),4.61(s,2H),4.46–4.24(m,6H),4.24–4.10(m,1H),4.00–3.91(m,1H),3.87–3.53(m,3H),3.50–3.42(m,2H),3.29(s,3H),3.21–3.07(m,1H),3.06–2.93(m,1H),2.93–2.76(m,1H),2.76–2.55(m,3H),2.45–2.25(m,2H),2.25–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.12–0.95(m,2H)。
LCMS m/z=900.5[M+1] +
手性异构体2的保留时间:8.228min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.32(s,1H),8.80(d,1H),8.36(s,1H),8.28(s,1H),7.84–7.73(m,1H),7.56–7.48(m,1H),7.28–6.96(m,2H),6.91(d,1H),4.94–4.71(m,1H),4.60(s,2H),4.46–4.24(m,6H),4.24–4.10(m,1H),4.00–3.91(m,1H),3.87–3.53(m,3H),3.50–3.42(m,2H),3.29(s,3H),3.21–3.07(m,1H),3.06–2.93(m,1H),2.93–2.76(m,1H),2.76–2.55(m,3H),2.45–2.25(m,2H),2.25–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.12–0.95(m,2H)。
LCMS m/z=900.4[M+1] +
实施例24:化合物24的制备(Trans)
Figure PCTCN2023070367-appb-000163
将上述粗品中间体7(0.12g)加入到5mL乙腈中,加入上述粗品中间体3(0.07g)和TCFH(0.084g,0.3mmol),0℃下加入NMI(0.08g,0.97mmol),室温反应16h。将反应体系减压浓缩,将残留物进行手性制备,分别得到化合物24的手性异构体1(30.5mg,从化合物3-A算两步收率:8%)和手性异构体2(28mg,从化合物3-A算两步收率:8%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector;色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:5.434min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.34(s,1H),8.81(d,1H),8.36(s,1H),8.29(s,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.89(d,1H),4.93–4.72(m,2H),4.61(s,2H), 4.52–4.10(m,7H),4.03–3.92(m,1H),3.87–3.70(m,1H),3.67–3.46(m,4H),3.20–3.06(m,1H),3.05–2.93(m,1H),2.93–2.76(m,1H),2.75–2.56(m,3H),2.44–2.30(m,2H),2.25–2.10(m,4H),2.09–1.95(m,2H),1.95–1.66(m,6H),1.65–1.50(m,1H),1.12–0.95(m,2H)。
LCMS m/z=886.4[M+1] +
手性异构体2的保留时间:6.706min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.34(s,1H),8.81(d,1H),8.36(s,1H),8.29(s,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.90(d,1H),4.93–4.72(m,2H),4.61(s,2H),4.52–4.10(m,7H),4.03–3.92(m,1H),3.87–3.70(m,1H),3.67–3.46(m,4H),3.20–3.06(m,1H),3.05–2.93(m,1H),2.93–2.76(m,1H),2.75–2.56(m,3H),2.44–2.30(m,2H),2.25–2.10(m,4H),2.09–1.95(m,2H),1.95–1.66(m,6H),1.65–1.50(m,1H),1.12–0.95(m,2H)。
LCMS m/z=886.4[M+1] +
实施例25:化合物25的制备(Trans)
Figure PCTCN2023070367-appb-000164
将上述粗品中间体7(0.12g)加入到5mL乙腈中,加入上述粗品中间体5(0.07g)和TCFH(0.084g,0.3mmol),0℃下加入NMI(0.08g,0.97mmol),室温反应16h。将反应体系减压浓缩,将残留物进行手性制备,分别得到化合物25的手性异构体1(25mg,从化合物5-A算两步收率:19%)和手性异构体2(26.4mg,从化合物5-A算两步收率:20%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector;色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:5.364min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.34(s,1H),8.81(d,1H),8.36(s,1H),8.28(s,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.90(d,1H),4.93–4.72(m,2H),4.61(s,2H),4.52–4.10(m,7H),4.03–3.92(m,1H),3.87–3.70(m,1H),3.67–3.46(m,4H),3.20–3.06(m,1H),3.05–2.93(m,1H),2.93–2.76(m,1H),2.75–2.56(m,3H),2.44–2.30(m,2H),2.25–2.10(m,4H),2.09–1.95(m,2H),1.95–1.66(m,6H),1.65–1.50(m,1H),1.12–0.94(m,2H)。
LCMS m/z=886.4[M+1] +
手性异构体2的保留时间:6.619min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.34(s,1H),8.81(d,1H),8.36(s,1H),8.29(s,1H),7.79(d,1H),7.52(d,1H),7.27–6.94(m,2H),6.90(d,1H),4.93–4.72(m,2H),4.60(s,2H),4.52–4.10(m,7H),4.03–3.92(m,1H),3.87–3.70(m,1H),3.67–3.46(m,4H),3.20–3.06(m,1H), 3.05–2.93(m,1H),2.93–2.76(m,1H),2.75–2.56(m,3H),2.44–2.30(m,2H),2.25–2.10(m,4H),2.09–1.95(m,2H),1.95–1.66(m,6H),1.65–1.50(m,1H),1.12–0.94(m,2H)。
LCMS m/z=886.4[M+1] +
实施例26:化合物26的合成(Trans)
Figure PCTCN2023070367-appb-000165
将上述粗品中间体7(0.12g)加入到5mL乙腈中,加入上述粗品中间体4(0.073g)和TCFH(0.084g,0.3mmol),0℃下加入NMI(0.08g,0.97mmol),室温反应16h。将反应体系减压浓缩,将残留物进行手性制备,分别得到化合物26的手性异构体1(25.2mg,从化合物4-C算两步收率:12%)和手性异构体2(18.9mg,从化合物4-C算两步收率:9%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector;色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:6.733min。
1H NMR(400MHz,DMSO-d 6)δ10.90(s,1H),9.33(s,1H),8.81(d,1H),8.37(s,1H),8.29(s,1H),7.84–7.73(m,1H),7.56–7.48(m,1H),7.28–6.96(m,2H),6.92(d,1H),4.94–4.71(m,1H),4.61(s,2H),4.46–4.24(m,6H),4.24–4.10(m,1H),4.00–3.91(m,1H),3.87–3.53(m,3H),3.50–3.42(m,2H),3.29(s,3H),3.21–3.07(m,1H),3.06–2.93(m,1H),2.93–2.76(m,1H),2.76–2.55(m,3H),2.45–2.25(m,2H),2.25–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.12–0.95(m,2H)。
LCMS m/z=900.4[M+1] +
手性异构体2的保留时间:8.385min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.32(s,1H),8.81(d,1H),8.37(s,1H),8.29(s,1H),7.84–7.73(m,1H),7.56–7.48(m,1H),7.28–6.96(m,2H),6.91(d,1H),4.94–4.71(m,1H),4.60(s,2H),4.46–4.24(m,6H),4.24–4.10(m,1H),4.00–3.91(m,1H),3.87–3.53(m,3H),3.50–3.42(m,2H),3.30(s,3H),3.21–3.07(m,1H),3.06–2.93(m,1H),2.93–2.76(m,1H),2.76–2.55(m,3H),2.45–2.25(m,2H),2.25–2.10(m,4H),2.10–1.95(m,2H),1.95–1.65(m,6H),1.65–1.49(m,1H),1.12–0.95(m,2H)。
LCMS m/z=900.5[M+1] +
实施例27:化合物27的制备(Trans)
Figure PCTCN2023070367-appb-000166
第一步:27a的制备
将16e(600mg,1.52mmol)、10b(470mg,1.83mmol)、CuI(58mg,0.30mmol)、PdCl 2(PPh 3) 2(110mg,0.157mmol)和TEA(0.77g,7.61mmol)溶于20mL DMF中,置换氮气三次,60℃反应5h。将反应体系冷却至室温,加入80mL水,用100mL乙酸乙酯萃取,有机相用50mL水洗涤,无水硫酸钠干燥,减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/乙酸乙酯(v/v)=1:1),得27a(550mg,收率:69%)。
第二步:27b的三氟乙酸盐的制备
将27a(500mg,0.95mmol)溶于10mL二氯甲烷中,加入4mL三氟乙酸,室温反应2h。将反应体系减压浓缩,得粗品27b的三氟乙酸盐(0.65g)。
LCMS m/z=425.2[M+1] +
第三步:化合物27的合成
将上述粗品27b的三氟乙酸盐(650mg)溶于20mL DMA中,加入碳酸氢钠(160mg,1.90mmol),室温搅拌15min后,加入6h(560mg,1.16mmol)、0.15mL醋酸和
Figure PCTCN2023070367-appb-000167
分子筛(2g),室温搅拌2h后,加入三乙酰氧基硼氢化钠(410mg,1.93mmol),室温反应16h。向反应体系中加入40mL饱和碳酸氢钠水溶液和20mL二氯甲烷,分液,将有机相减压浓缩,粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=100:1-20:1),所得粗品进行手性制备,分别得到化合物27的手性异构体1(270mg,收率:26%)和手性异构体2(200mg,收率:19%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector;色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;
洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:5.139min。
1H NMR(400MHz,DMSO-d 6)δ10.88(s,1H),9.49(d,1H),8.77(d,1H),8.38(d,1H),8.25(d,1H),7.76(d,1H),7.53(d,1H),7.28–6.93(m,2H),6.90–6.40(m,1H),5.35–5.02(m,1H),4.95–4.70(m,2H),4.59(s,2H),4.43–4.32(m,1H),4.24–4.02(m,2H),3.88–3.40(m,5H),2.95–2.54(m,4H),2.45–1.45(m,17H),1.27–0.94(m,6H)。
LCMS m/z=894.5[M+1] +
手性异构体2的保留时间:5.982min。
1H NMR(400MHz,DMSO-d 6)δ10.88(s,1H),9.49(d,1H),8.77(d,1H),8.38(d,1H),8.25(d,1H),7.76(d,1H),7.53(d,1H),7.28–6.93(m,2H),6.90–6.40(m,1H),5.35–5.02(m,1H),4.95–4.70(m,2H),4.59(s,2H),4.43–4.32(m,1H),4.24–4.02(m,2H),3.88–3.40(m,5H),2.95–2.54(m,4H),2.45–1.45(m,17H),1.27–0.94(m,6H)。
LCMS m/z=894.5[M+1] +
实施例28:化合物28的制备(Trans)
Figure PCTCN2023070367-appb-000168
以(3R,4S)-3-氟-4-(丙-2-炔-1-基氧基)哌啶-1-甲酸叔丁酯+16e为起始原料,参考实施例27的合成方法,得到化合物28。
精制方法:粗品用硅胶色谱柱分离提纯(二氯甲烷/甲醇(v/v)=100:1-20:1),所得粗品进行手性制备,分别得到化合物28的手性异构体1(290mg,收率:24%)和手性异构体2(250mg,收率:21%)。
手性制备方法:
仪器及制备柱:采用Shimadzu LC-A HPLC制备液相色谱,制备柱型号Chiralpak IE,250×30mm,10μm;流动相体系:乙腈/甲醇,等梯度洗脱:乙腈/甲醇=1:1;流速:80mL/min。
目标化合物的分析方法:
仪器:Shimadzu LC-20AB with PDA detector;色谱柱:Chiralpak IE-3;规格:150×4.6mm I.D.,3μm;流动相A:乙腈;流动相B:甲醇;柱温:35℃;流速:1mL/min;波长:220nm;
洗脱程序:等梯度洗脱:流动相A:B=3:7;
手性异构体1的保留时间:5.277min。
1H NMR(400MHz,DMSO-d 6)δ10.88(s,1H),9.49(d,1H),8.77(d,1H),8.38(d,1H),8.25(d,1H),7.76(d,1H),7.53(d,1H),7.28–6.93(m,2H),6.90–6.40(m,1H),5.35–5.02(m,1H),4.95–4.70(m,2H),4.59(s,2H),4.43–4.32(m,1H),4.24–4.02(m,2H),3.88–3.40(m,5H),2.95–2.54(m,4H),2.45–1.45(m,17H),1.27–0.94(m,6H)。
LCMS m/z=447.9[M/2+1] +
手性异构体2的保留时间:6.017min。
1H NMR(400MHz,DMSO-d 6)δ10.89(s,1H),9.50(d,1H),8.78(d,1H),8.38(d,1H),8.26(d,1H),7.76(d,1H),7.53(d,1H),7.28–6.93(m,2H),6.90–6.40(m,1H),5.35–5.02(m,1H),4.95–4.70(m,2H),4.59(s,2H),4.43–4.32(m,1H),4.24–4.02(m,2H),3.88–3.40(m,5H),2.95–2.54(m,4H),2.45–1.45(m,17H),1.27–0.94(m,6H)。
LCMS m/z=894.5[M+1] +
生物测试例
测试例1:hPBMC细胞中IRAK4降解活性研究(24小时)
hPBMC细胞是人外周血单个核细胞。取健康志愿者的外周静脉血,应用Ficoll密度梯度离心法(Ficoll-PaqueTM PLUS 1.077,GE,Cat.17-1140-02),分离出hPBMC。培养条件:RPMI-1640+10%FBS+1%双抗,培养于37℃,5%CO 2孵箱中。细胞以1×10 6个/孔铺板于24孔板。铺板后,加入不同浓度化合物,于37℃,5%CO 2孵箱中培养24小时。培养结束后,收集细胞,加入RIPA裂解液(beyotime,Cat.P0013B)于冰上裂解20分钟后,12000rpm,4℃离心10分钟,收集上清蛋白样品,用BCA试剂盒(Beyotime,Cat.P0009)进行蛋白定量后,将蛋白稀释为1mg/mL。使用全自动蛋白质印迹定量分析仪(Proteinsimple)检测IRAK4(CST,Cat.4363S)和内参cofilin(CST,Cat.5175S)的表达。使用compass软件计算IRAK4相对于内参的表达量。使用式(1)计算不同剂量下相对于溶媒对照组IRAK4蛋白的剩余量IRAK4%,用式(2)计算不同剂量下相对于溶媒对照组IRAK4蛋白的降解量,其中IRAK4 给药为不同剂量给药组IRAK4表达量,IRAK4 溶媒为溶媒对照组IRAK4表达量。用Graphpad Prism 8软件拟合IRAK4降解量-药物浓度曲线计算DC 50
IRAK4%=IRAK4 给药/IRAK4 溶媒×100%     式1
IRAK4降解量%=100%-IRAK4%         式2
表1测试化合物在100nM下对hPBMC细胞中IRAK4蛋白的降解活性
化合物编号 IRAK4蛋白剩余量IRAK4%
化合物1 B
化合物2 A
化合物6 A
化合物7 A
化合物8的手性异构体1 B
化合物10 A
化合物11 A
化合物12 B
化合物13 B
化合物15的三氟乙酸盐 B
化合物16 A
注:表1中A≤10%,10%<B≤50%,50%<C
表2测试化合物在hPBMC细胞中对IRAK4蛋白降解的DC 50
化合物编号 DC 50(nM)
化合物19的手性异构体1 <20
化合物19的手性异构体2 <20
化合物20的手性异构体1 <20
化合物20的手性异构体2 <20
化合物23的手性异构体2 <20
化合物24的手性异构体1 <20
化合物25的手性异构体1 <20
化合物25的手性异构体2 <20
结论:本发明的化合物在24h时对hPBMC细胞中IRAK4蛋白具有一定的降解作用。
测试例2:小鼠药代动力学测试
试验动物:雄性ICR小鼠,~25g,6只/化合物。购于成都达硕实验动物有限公司。
试验设计:试验当天,6只ICR小鼠按体重随机分组。给药前1天禁食不禁水12~14h,给药后4h给食。
表2.1给药信息
Figure PCTCN2023070367-appb-000169
静脉给药溶媒:5%DMA+5%Solutol+90%Saline;
灌胃给药溶媒:5%DMSO+30%PEG400+65%(20%SBE-CD);
(DMSO:二甲基亚砜;DMA:二甲基乙酰胺;Solutol:聚乙二醇-15-羟基硬脂酸酯;PEG400:聚乙二醇400;SBE-β-CD:磺丁基-β-环糊精;Saline:生理盐水;)
于给药前及给药后异氟烷麻醉经眼眶取血0.15mL,置于EDTAK2离心管中,5000rpm,4℃离心10min,收集血浆。静脉和灌胃采血时间点为0,5,15,30min,1,2,4,7,24h。分析检测前,所有样品存于-60℃。用LC-MS/MS对样品进行定量分析。
表2.2本发明化合物在小鼠血浆中药代动力学参数
受试化合物 给药方式* AUC 0-t(ng/mL·h)
化合物10 i.g.(10mg/kg) 17480±5264
化合物11 i.g.(10mg/kg) 8748±4649
化合物19的手性异构体1 i.g.(10mg/kg) 13407±4034
化合物19的手性异构体2的三氟乙酸盐 i.g.(10mg/kg) 8304±2852
化合物20的手性异构体2 i.g.(10mg/kg) 3938±1106
对照化合物1 i.g.(10mg/kg) 2322±146
*注:i.g.(灌胃)给予化合物;
结论:本发明化合物在小鼠体内具有良好的口服吸收。
测试例3.hERG钾离子通道作用测试
实验平台:电生理手动膜片钳***
细胞系:稳定表达hERG钾离子通道的中国仓鼠卵巢(CHO)细胞系
实验方法:稳定表达hERG钾通道的CHO(Chinese Hamster Ovary)细胞,在室温下用全细胞膜片钳技术记录hERG钾通道电流。玻璃微电极由玻璃电极毛胚(BF150-86-10,Sutter)经拉 制仪拉制而成,灌注电极内液后的尖端电阻为2-5MΩ左右,将玻璃微电极***放大器探头即可连接至膜片钳放大器。钳制电压和数据记录由pClamp 10软件通过电脑控制和记录,采样频率为10kHz,滤波频率为2kHz。在得到全细胞记录后,细胞钳制在-80mV,诱发hERG钾电流(I hERG)的步阶电压从-80mV给予一个2s的去极化电压到+20mV,再复极化到-50mV,持续1s后回到-80mV。每10s给予此电压刺激,确定hERG钾电流稳定后(至少1分钟)开始给药过程。化合物每个测试浓度至少给予1分钟,每个浓度至少测试2个细胞(n≥2)。
数据处理:数据分析处理采用pClamp 10,GraphPad Prism 5和Excel软件。不同化合物浓度对hERG钾电流(-50mV时诱发的hERG尾电流峰值)的抑制程度用以下公式计算:
Inhibition%=[1–(I/Io)]×100%
其中,Inhibition%代表化合物对hERG钾电流的抑制百分率,I和Io分别表示在加药后和加药前hERG钾电流的幅度。
化合物IC 50使用GraphPad Prism 5软件通过以下方程拟合计算得出:
Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))
其中,X为供试品检测浓度的Log值,Y为对应浓度下抑制百分率,Bottom和Top分别为最小和最大抑制百分率。
表3.受试物对hERG钾通道电流抑制作用的IC 50
化合物 IC 50(μM)
化合物10 >30
化合物11 >30
化合物19的手性异构体1 >20
化合物19的手性异构体2的三氟乙酸盐 >40
化合物12 >30
化合物2 B
化合物20的手性异构体1 >40
化合物20的手性异构体2 >40
化合物23的手性异构体2 >40
化合物24的手性异构体1 >40
化合物25的手性异构体1 >40
化合物25的手性异构体2 >40
对照化合物1 0.6421
注:表3中1<B≤30
结论:本发明化合物对hERG钾通道没有明显的抑制作用。
对照化合物1的结构如下,其合成参照专利WO2020113233A1。
Figure PCTCN2023070367-appb-000170
测试例4:大鼠药代动力学测试
试验动物:雄性SD大鼠,200g左右,6-8周龄,6只/化合物。购于成都达硕实验动物有限公司。
试验设计:试验当天,6只SD大鼠按体重随机分组。给药前1天禁食不禁水12~14h,给药后4h给食。
表4.1给药信息
Figure PCTCN2023070367-appb-000171
静脉给药溶媒:5%DMA+5%Solutol+90%Saline;
灌胃给药溶媒:5%DMSO+30%PEG400+65%(20%SBE-CD);
(DMSO:二甲基亚砜;DMA:二甲基乙酰胺;Solutol:聚乙二醇-15-羟基硬脂酸酯;PEG400:聚乙二醇400;SBE-β-CD:磺丁基-β-环糊精;Saline:生理盐水;)
于给药前及给药后异氟烷麻醉经眼眶取血0.15mL,置于EDTAK2离心管中,6000rpm,4℃离心5min,收集血浆。静脉和灌胃采血时间点为0,5,15,30min,1,2,4,6,8,24h。分析检测前,所有样品存于-60℃。用LC-MS/MS对样品进行定量分析。
结论:本发明化合物在大鼠体内具有良好的口服吸收。
测试例5:比格犬药代动力学测试
试验动物:雄性比格犬,8-11kg左右,6只/化合物。购于北京玛斯生物技术有限公司。
试验方法:试验当天,6只比格犬按体重随机分组。给药前1天禁食不禁水14~18h,给药后4h给食。
表5.1给药信息
Figure PCTCN2023070367-appb-000172
Figure PCTCN2023070367-appb-000173
静脉给药溶媒:10%DMA+5%Solutol+85%Saline;
灌胃给药溶媒:5%DMSO+30%PEG400+65%(20%SBE-CD);
于给药前及给药后通过颈静脉或四肢静脉取血1mL,置于EDTAK2离心管中,5000rpm,4℃离心10min,收集血浆。静脉和灌胃采血时间点为0,5,15,30min,1,2,4,6,8,10,12,24h。分析检测前,所有样品存于-60℃。用LC-MS/MS对样品进行定量分析。
结论:本发明化合物在犬体内具有良好的口服吸收。
测试例6:猴药代动力学测试
试验动物:雄性食蟹猴,3-5kg左右,3-6年龄,6只/化合物。购于苏州西山生物技术有限公司。
试验方法:试验当天,6只猴按体重随机分组。给药前1天禁食不禁水14~18h,给药后4h给食。
表6.1给药信息
Figure PCTCN2023070367-appb-000174
静脉给药溶媒:10%DMA+5%Solutol+85%Saline;
灌胃给药溶媒:5%DMSO+30%PEG400+65%(20%SBE-CD);
于给药前及给药后通过四肢静脉取血1mL,置于EDTAK2离心管中,5000rpm,4℃离心10min,收集血浆。静脉和灌胃采血时间点为0,5,15,30min,1,2,4,6,8,10,12,24h。分析检测前,所有样品存于-60℃。用LC-MS/MS对样品进行定量分析。
结论:本发明化合物在猴体内具有良好的口服吸收。
测试例7:肝微粒体稳定性测试
本实验采用人、猴、犬、大鼠和小鼠五种属肝微粒体作为体外模型来评价受试物的代谢稳定性。
在37℃条件下,1μM的受试物与微粒体蛋白、辅酶NADPH共同孵育,反应至一定时间(5,10,20,30,60min)加入冰冷含内标的乙腈终止反应,采用LC-MS/MS方法检测样品中受试物浓度,以孵育体系中药物剩余率的ln值和孵育时间求得T 1/2,并进一步计算肝微粒体固有清除率CL int(mic)和肝固有清除率CL int(Liver)
结论:本发明化合物具有良好的肝微粒体稳定性。
测试例8:CYP450酶抑制测试
本项研究的目的是应用体外测试体系评价受试物对人肝微粒体细胞色素P450(CYP)的5种同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性的影响。CYP450同工酶的特异性探针底物分别与人肝微粒体以及不同浓度的受试物共同孵育,加入还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)启动反应,在反应结束后,通过处理样品并采用液相色谱-串联质谱联用(LC-MS/MS)法定量检测特异性底物产生的代谢产物,测定CYP酶活性的变化,计算IC 50值,评价受试物对各CYP酶亚型的抑制潜能。
结论:本发明化合物对CYP450酶亚型无明显抑制作用。
测试例9:Caco2渗透性测试
试验使用单层Caco-2细胞,在96孔Transwell板中采用三平行孵育。将含有本发明化合物(2μM)或对照化合物地高辛(10μM)、纳多洛尔(2μM)和美托洛尔(2μM)的转运缓冲溶液(HBSS,10mM HEPES,pH 7.4±0.05)加入顶端侧或基底侧的给药端孔中。对应接收端孔中加入含DMSO的转运缓冲溶液。在37±1℃条件下孵育2小时后,取出细胞板并从顶端和底端各取出适量样品至新的96孔板中。随后加入含内标的乙腈沉淀蛋白。使用LC MS/MS分析样品并测定本发明化合物和对照化合物的浓度。浓度数据用于计算从单层细胞顶端侧向基底侧、以及基底侧向顶端转运的表观渗透系数,从而计算外排率。用荧光黄的渗漏评价孵育2小时后单层细胞的完整性。
结论:本发明化合物具有良好的CaCO 2渗透性。
测试例10:hPBMC细胞中Ikaros降解活性研究(24小时)
hPBMC细胞是人外周血单个核细胞。取健康志愿者的外周静脉血,应用Ficoll密度梯度离心法(Ficoll-PaqueTM PLUS 1.077,GE,Cat.17-1140-02),分离出hPBMC。培养条件:RPMI-1640+10%FBS+1%双抗,培养于37℃,5%CO 2孵箱中。细胞以1×10 6个/孔铺板于24孔板。铺板后,加入不同浓度化合物,于37℃,5%CO 2孵箱中培养24小时。培养结束后,收集细胞,加入RIPA裂解液(beyotime,Cat.P0013B)于冰上裂解20分钟后,12000rpm,4℃离心10分钟,收集上清蛋白样品,用BCA试剂盒(Beyotime,Cat.P0009)进行蛋白定量后,将蛋白稀释为1mg/mL。使用全自动蛋白质印迹定量分析仪(Proteinsimple)检测Ikaros(CST,Cat.#14859S)和内参β-actin(CST,Cat.#4970S)的表达。使用compass软件计算Ikaros相对于内参的表达量。使用式(3)计算不同剂量下相对于溶媒对照组Ikaros蛋白的剩余量,用式(4)计算不同剂量下相对于溶媒对照组Ikaros蛋白的降解量,得出药物对Ikaros蛋白的最大降解率(Dmax)。
Ikaros剩余量%=Ikaros 化合物/Ikaros 溶媒×100%     式(3)
Ikaros降解量%=100%-式(3)       式(4)
结论:本发明的化合物对hPBMC细胞中Ikaros蛋白无明显的降解作用。
测试例11:hPBMC细胞中Aiolos降解活性研究(24小时)
hPBMC细胞是人外周血单个核细胞。取健康志愿者的外周静脉血,应用Ficoll密度梯度离心法(Ficoll-PaqueTM PLUS 1.077,GE,Cat.17-1140-02),分离出hPBMC。培养条件:RPMI-1640+10%FBS+1%双抗,培养于37℃,5%CO 2孵箱中。细胞以1×10 6个/孔铺板于24孔板。铺板后,加入不同浓度化合物,于37℃,5%CO 2孵箱中培养24小时。培养结束后,收集细胞,加入RIPA裂解液(beyotime,Cat.P0013B)于冰上裂解20分钟后,12000rpm,4℃离 心10分钟,收集上清蛋白样品,用BCA试剂盒(Beyotime,Cat.P0009)进行蛋白定量后,将蛋白稀释为1mg/mL。使用全自动蛋白质印迹定量分析仪(Proteinsimple)检测Aiolos(CST,Cat.#15103)和内参β-actin(CST,Cat.5175S)的表达。使用compass软件计算Aiolos相对于内参的表达量。使用式(5)计算不同剂量下相对于溶媒对照组Aiolos蛋白的剩余量,用式(6)计算不同剂量下相对于溶媒对照组Aiolos蛋白的降解量,得出药物对Aiolos蛋白的最大降解率(Dmax)。
Aiolos剩余量%=Aiolos 化合物/Aiolos 溶媒×100%    式(5)
Aiolos降解量%=100%-式(5)      式(6)
结论:本发明的化合物对hPBMC细胞中Aiolos蛋白无明显的降解作用。
测试例12:hPBMC细胞中IRAK4降解活性研究(4小时)
hPBMC细胞是人外周血单个核细胞。取健康志愿者的外周静脉血,应用Ficoll密度梯度离心法(Ficoll-PaqueTM PLUS 1.077,GE,Cat.17-1140-02),分离出hPBMC。培养条件:RPMI-1640+10%FBS+1%双抗,培养于37℃,5%CO 2孵箱中。细胞以1×10 6个/孔铺板于24孔板。铺板后,加入不同浓度化合物,于37℃,5%CO 2孵箱中培养4小时。培养结束后,收集细胞,加入RIPA裂解液(beyotime,Cat.P0013B)于冰上裂解20分钟后,12000rpm,4℃离心10分钟,收集上清蛋白样品,用BCA试剂盒(Beyotime,Cat.P0009)进行蛋白定量后,将蛋白稀释为1mg/mL。使用全自动蛋白质印迹定量分析仪(Proteinsimple)检测IRAK4(CST,Cat.4363S)和内参cofilin(CST,Cat.5175S)的表达。使用compass软件计算IRAK4相对于内参的表达量。使用式(7)计算不同剂量下相对于溶媒对照组IRAK4蛋白的剩余量,用式(8)计算不同剂量下相对于溶媒对照组IRAK4蛋白的降解量,其中IRAK4 化合物为不同剂量给药组IRAK4表达量,IRAK4 溶媒为溶媒对照组IRAK4表达量。用Graphpad Prism 8软件拟合IRAK4降解量-药物浓度曲线计算DC 50
IRAK4剩余量%=IRAK4 化合物/IRAK4 溶媒×100%     式(7)
IRAK4降解量%=100%-式(7)      式(8)
结论:本发明的化合物在4h时对hPBMC细胞中IRAK4蛋白具有一定的降解作用。

Claims (14)

  1. 一种化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,化合物选自通式(I)所示的化合物,
    B-L-K(I);
    L选自-Ak1-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-Cy4-Ak5-;
    Ak1、Ak2、Ak3、Ak4和Ak5各自独立的选自-(CH 2) q-、O、-(CH 2) qNR L-、NR LC=O、C=ONR L、C=O、-R LC=CR L-、C≡C或者键;
    R L选自H或C 1-6烷基;
    Cy1、Cy2、Cy3、Cy4各自独立的选自键、4-7元杂单环、4-10元杂并环、5-12元杂螺环、7-10元杂桥环、3-7元单环烷基、4-10元并环烷基、5-12元螺环烷基、7-10元桥环烷基、5-10元杂芳基或6-10元芳基,所述芳基、杂芳基、环烷基、杂单环、杂并环、杂螺环或杂桥环任选进一步被0至4个选自H、F、Cl、Br、I、OH、C(=O)OH、CN、NH 2、=O、C 1-4烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基或C 1-4烷氧基的取代基所取代,所述的杂芳基、杂单环、杂并环、杂螺环或杂桥环含有1至4个选自O、S或N的杂原子;
    B选自
    Figure PCTCN2023070367-appb-100001
    B1、B3各自独立的选自C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的杂芳基或杂环基含有1至4个选自O、S或N的杂原子;
    R b1、R b7各自独立的选自H、F、Cl、Br、I、=O、OH、NH 2、CN、CF 3、C(=O)OH、CHF 2、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、-(CH 2) n-R b21、-OR b21、-N(R b21) 2、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、杂环基、芳基或杂芳基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、-N(R b21) 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、5-10元杂芳基、4-10元杂环基或R b7a的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S或N的杂原子;
    R b7a选自C 1-4烷基、-C 3-6环烷基、4-10元杂环基、-C 1-4亚烷基-C 3-6环烷基、-C 1-4亚烷基-4-10元杂环基、-O-C 3-6环烷基、-O-4-10元杂环基、-NH-C 3-6环烷基、-NH-4-10元杂环基、-N(C 1-4烷基)-C 3-6环烷基或-N(C 1-4烷基)-4-10元杂环基,所述R b7a任选被1至4个选自H、F、Cl、Br、I、OH、=O、-N(R b21) 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基或4-10元杂环基的取代基所取代,所述杂环基含有1至4个选自O、S或N的杂原子;
    R b2、R b6各自独立的选自H、F、Cl、Br、I、=O、OH、-C(=O)N(R b21) 2、-N(R b21) 2、CN、CF 3、C(=O)OH、CHF 2、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基、-(CH 2) n-R b21、-OR b21、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、芳基、杂芳基或杂环基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 1-4 烷氧基、C 3-6环烷基、5-10元杂芳基或4-10元杂环基的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S或N的杂原子;
    R b21各自独立的选自H、C 1-6烷基、C 1-4烷氧基、C 3-6环烷基、C 6-10芳基、5-10元杂芳基或4-10元杂环基,所述的烷基、烷氧基、环烷基、芳基、杂芳基或杂环基任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、CF 3、C(=O)OH、C 1-4烷基、C 3-6环烷基或C 1-4烷氧基的取代基所取代,所述的杂芳基或杂环基含有1至4个选自O、S或N的杂原子;
    n选自0、1、2、3或4;
    K选自
    Figure PCTCN2023070367-appb-100002
    Figure PCTCN2023070367-appb-100003
    R k1各自独立地选自H、C 1-4烷基、C 2-6烯基、C 2-6炔基、C 3-6环烷基或3-6元杂环烷基,所述烷基、环烷基或杂环烷基任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2、CN、CF 3、C 1-6烷基、C 1-6烷氧基、C 2-6烯基、C 2-6炔基或C 3-6环烷基的取代基所取代;
    R k2、R k3各自独立地选自H、F、Cl、Br、I、OH、=O、NH 2、CF 3、CN、C(=O)OH、C(=O)NH 2、C 1-4烷基或C 1-4烷氧基,所述烷基或烷氧基任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2的取代基所取代;
    或者两个R k3和与二者直接相连的碳原子或环骨架共同形成3-6元碳环或3-7元杂环,所述碳环或杂环任选进一步被0至4个选自H、F、Cl、Br、I、OH、=O、NH 2、CN、C(=O)OH、C(=O)NH 2、C 1-4烷基或C 1-4烷氧基的取代基所取代,所述杂环含有1至4个选自O、S或N的杂原子;
    q选自0、1、2、3或4;
    n1、n2、n6各自独立的选自0、1、2或3;
    p2、p3各自独立地选自0、1、2、3或4;
    任选地,通式(I)所示的化合物中的0~50个H被0~50个D替换。
  2. 根据权利要求1所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
    Cy1、Cy2、Cy3和Cy4各自独立的选自键、4-7元含氮杂单环、4-10元含氮杂并环、5-12元含氮杂螺环、7-10元含氮杂桥环、3-7元单环烷基、4-10元并环烷基、5-12元螺环烷基、7-10元桥环烷基、5-10元杂芳基或6-10元芳基,所述杂单环、杂并环、杂桥环、杂螺环、环烷基、芳基或杂芳基任选进一步被0至4个选自H、F、Cl、Br、I、OH、C(=O)OH、CN、NH 2、=O、C 1-4 烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基或C 1-4烷氧基的取代基所取代,所述的杂单环、杂并环、杂桥环、杂螺环或杂芳基含有1至4个选自O、S或N的杂原子。
  3. 根据权利要求2所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
    R L选自H、甲基或乙基;
    Cy1、Cy2、Cy3和Cy4各自独立的选自键或取代的或者未取代的如下基团之一:环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、吗啉基、哌嗪基、苯基、环丙基并环丙基、环丙基并环丁基、环丙基并环戊基、环丙基并环己基、环丁基并环丁基、环丁基并环戊基、环丁基并环己基、环戊基并环戊基、环戊基并环己基、环己基并环己基、环丙基螺环丙基、环丙基螺环丁基、环丙基螺环戊基、环丙基螺环己基、环丁基螺环丁基、环丁基螺环戊基、环丁基螺环己基、环戊基螺环戊基、环戊基螺环己基、环己基螺环己基、环丙基并氮杂环丁基、环丙基并氮杂环戊基、环丙基并氮杂环己基、环丁基并氮杂环丁基、环丁基并氮杂环戊基、环丁基并氮杂环己基、环戊基并氮杂环丁基、环戊基并氮杂环戊基、环戊基并氮杂环己基、环己基并氮杂环丁基、环己基并氮杂环戊基、环己基并氮杂环己基、氮杂环丁基并氮杂环丁基、氮杂环丁基并氮杂环戊基、氮杂环丁基并氮杂环己基、氮杂环戊基并氮杂环戊基、氮杂环戊基并氮杂环己基、氮杂环己基并氮杂环己基、环丁基螺氮杂环丁基、环丁基螺氮杂环戊基、环丁基螺氮杂环己基、环戊基螺氮杂环丁基、环戊基螺氮杂环戊基、环戊基螺氮杂环己基、环己基螺氮杂环丁基、环己基螺氮杂环戊基、环己基螺氮杂环己基、氮杂环丁基螺氮杂环丁基、氮杂环丁基螺氮杂环戊基、氮杂环丁基螺氮杂环己基、氮杂环戊基螺氮杂环戊基、氮杂环戊基螺氮杂环己基、氮杂环己基螺氮杂环己基、
    Figure PCTCN2023070367-appb-100004
    Figure PCTCN2023070367-appb-100005
    Figure PCTCN2023070367-appb-100006
    当被取代时,任选进一步被0至4个选自H、F、Cl、Br、I、OH、NH 2、C(=O)OH、CN、=O、C 1-4烷基、卤素取代的C 1-4烷基、羟基取代的C 1-4烷基或C 1-4烷氧基的取代基所取代;
    B1、B3各自独立的选自吡唑基、噁唑基、二噁唑基、噁二唑基、***基、咪唑基、四唑基、吡咯基、噻吩基、噻唑基、噻二唑基、吡啶基、苯基、吡嗪基、嘧啶基、哒嗪基、噻吩并 吡嗪基、苯并咪唑基、吡啶并三氮唑基、嘧啶并吡唑基、咪唑并哒嗪基、吡啶并吡唑基、吡咯并哒嗪基或
    Figure PCTCN2023070367-appb-100007
    R b1、R b7各自独立的选自H、F、Cl、Br、I、=O、OH、NH 2、CN、CF 3、CHF 2、CH 2F、甲基、乙基、甲氧基、乙氧基、苯基、吡咯基、吡啶基、吗啉基、
    Figure PCTCN2023070367-appb-100008
    Figure PCTCN2023070367-appb-100009
    Figure PCTCN2023070367-appb-100010
    所述的甲基、乙基、甲氧基、乙氧基、苯基、吡咯基、吡啶基或吗啉基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、NH 2、NHC 1-4烷基、N(C 1-4烷基) 2、NHCH 2C 3-6环烷基、C 1-4烷基、C 1-4烷氧基、C 3-6环烷基或R b7a的取代基所取代;
    或者R b1、R b7各自独立的选自氮杂环丁基、氮杂环戊基、哌啶基、哌嗪基、吗啉基或2-氧杂-5-氮杂双环[2.2.1]庚烷基,所述R b1、R b7任选被1至4个选自F、Cl、Br、I、OH、=O、CN、CF 3、NH 2、NHC 1-4烷基、N(C 1-4烷基) 2、NHCH 2C 3-6环烷基、卤素取代的C 1-4烷基、氰基取代的C 1-4烷基、-C 1-4亚烷基-OH、C 1-4烷基、C 1-4烷氧基、-CH 2-O-C 1-4烷基、-CH 2-C 3-6环烷基、-O-C 3-6环烷基、-NH-C 3-6环烷基、C 3-6环烷基、-CH 2-4至7元杂环烷基、-O-4至7元杂环烷基、-NH-4至7元杂环烷基4至7元杂环烷基的取代基所取代,所述杂环基含有1至4个选自O、S或N的杂原子;
    R b2、R b6各自独立的选自H、F、Cl、Br、I、=O、CF 3、CHF 2、OH、NH 2、NH(甲基)、NH(乙基)、NH(丙基)、NH(异丙基)、N(甲基) 2、N(乙基) 2、CN、甲基、乙基、甲氧基、乙氧基、丙氧基、异丙基氧基、吗啉基、哌嗪基、吡咯烷基、哌啶基或噁唑烷基,所述的甲基、乙基、甲氧基、乙氧基、丙氧基、异丙基氧基、吗啉基、哌嗪基、吡咯烷基、哌啶基或噁唑烷基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、C 1-4烷基、C 1-4烷氧基或C 3-6环烷基的取代基所取代;
    R k1各自独立地选自H、甲基、乙基、丙基、异丙基、乙烯基、丙烯基、烯丙基、乙炔基、丙炔基、炔丙基、环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、氧杂环丁基、氧杂环戊基或氧杂环己基,所述甲基、乙基、丙基、异丙基、环丙基、环丁基、环戊基、环己基、氮杂环丁基、氮杂环戊基、哌啶基、氧杂环丁基、氧杂环戊基或氧杂环己基任选进一步被0至4个选自H、F、Cl、Br、I、OH、CN、CF 3、C 1-4烷基、C 1-4烷氧基、乙烯基、丙烯基、烯丙基、乙炔基、丙炔基、炔丙基或C 3-6环烷基的取代基所取代;
    R k2、R k3各自独立地选自H、F、Cl、Br、I、OH、=O、NH 2、CF 3、CN、C(=O)OH、C(=O)NH 2、甲基、乙基、甲氧基或乙氧基,所述甲基、乙基、甲氧基或乙氧基任选进一步被0至4个选自H、F、Cl、Br、I、OH或NH 2的取代基所取代;
    p2或p3各自独立的选自0、1或2。
  4. 根据权利要求3所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
    Cy1、Cy2、Cy3、Cy4各自独立的选自键或取代的或者未取代的如下基团之一:
    Figure PCTCN2023070367-appb-100011
    Figure PCTCN2023070367-appb-100012
    当被取代时,任选进一步被0至4个选自H、F、CF 3、甲基、=O、羟甲基、C(=O)OH、CN或NH 2的取代基所取代;
    B选自
    Figure PCTCN2023070367-appb-100013
    Figure PCTCN2023070367-appb-100014
    Figure PCTCN2023070367-appb-100015
    Figure PCTCN2023070367-appb-100016
  5. 根据权利要求4所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
    L选自键、-Cy1-、-Cy1-Ak2-、-Cy1-Ak2-Ak3-、-Cy1-Ak2-Ak3-Ak4-Ak5-、-Cy1-Cy2-、-Cy1-Ak2-Cy2-、-Cy1-Cy2-Ak3-、-Cy1-Cy2-Ak3-Cy4-、-Cy1-Ak2-Cy2-Ak3-、-Cy1-Ak2-Cy2-Ak3-Ak4-、-Cy1-Ak2-Cy2-Cy3-Ak4-、-Cy1-Cy2-Ak3-Ak4-、-Cy1-Cy2-Ak3-Ak4-Ak5-、-Cy1-Ak2-Cy2-Ak3-Ak4-Ak5-、-Cy1-Ak2-Ak3-Cy3-Ak4-、-Cy1-Ak2-Ak3-Cy3-Ak4-Ak5-、-Cy1-Ak2-Ak3-Ak4-Cy4-Ak5-、-Cy1-Cy2-Cy3-、-Cy1-Ak2-Cy2-Cy3-、-Cy1-Cy2-Cy3-Ak4-、-Cy1-Ak2-Cy2-Cy3-Ak4-、-Cy1-Ak2-Cy2-Ak3-Cy3-、-Cy1-Ak2-Cy2-Cy3-Ak4-Ak5、-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-Ak5-、-Cy1-Cy2-Cy3-Cy4-、-Cy1-Cy2-Ak3-Cy3-Cy4-、-Cy1-Cy2-Cy3-Ak4-Cy4-、-Ak1-Cy1-Ak2-Cy2-、-Ak1-Cy1-Ak2-Cy2-Ak3-、-Ak1-Ak2-Cy2-Ak3-、-Ak1-Ak2-Cy2-、-Ak1-Ak2-Cy2-Cy3-Ak4-、-Ak1-Ak2-Ak3-Cy3-Ak4-、-Ak1-Cy1-Ak2-、-Ak1-Cy1-Cy2-Ak3-Ak4-、-Ak1-Cy1-Cy2-Ak3-、-Ak1-Cy1-Ak2-Ak3-Ak4-、-Ak1-Cy1-、-Ak1-Cy1-Ak2-Ak3-、-Ak1-Ak2-Cy2-Ak3-Ak4-、-Ak1-Cy1-Ak2-Cy2-Ak3-Ak4-、-Cy1-Ak2-Ak3-Cy3-Cy4-Ak5-、-Ak1-Cy1-Ak2-Ak3-Ak4-Ak5-、-Cy1-Ak1-Ak2-Ak3-、-Ak1-Cy1-Cy2-、-Ak1-Ak2-Ak3-Ak4-或-Cy1-Ak2-Cy2-Ak3-Cy3-Ak4-;
    Ak1、Ak2、Ak3、Ak4、Ak5各自独立地选自O、C≡C、CH 2、CH 2CH 2、CH 2CH 2CH 2、CH 2CH 2CH 2CH 2、CH 2N(CH 3)、CH 2CH 2N(CH 3)、N(CH 3)、NH、C(=O)、C(=O)N(CH 3)、N(CH 3)C(=O)、C(=O)NH或NHC(=O)。
  6. 根据权利要求4所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
    L选自
    Figure PCTCN2023070367-appb-100017
    Figure PCTCN2023070367-appb-100018
    Figure PCTCN2023070367-appb-100019
    Figure PCTCN2023070367-appb-100020
    J 1各自独立的选自
    Figure PCTCN2023070367-appb-100021
    J 2各自独立的选自
    Figure PCTCN2023070367-appb-100022
    Figure PCTCN2023070367-appb-100023
    J 3各自独立的选自
    Figure PCTCN2023070367-appb-100024
    Figure PCTCN2023070367-appb-100025
    J 4各自独立的选自
    Figure PCTCN2023070367-appb-100026
    Figure PCTCN2023070367-appb-100027
    J 5各自独立地选自
    Figure PCTCN2023070367-appb-100028
    或者,L选自
    Figure PCTCN2023070367-appb-100029
    R d选自H或D,且至少一个R d选自D;
    d1选自0、1、2、3、4、5、6、7、8、9或10;
    d2选自0、1、2、3、4、5、6、7、8或9。
  7. 根据权利要求4所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
    L选自表L-1所示的基团,其中基团左侧与B连接。
  8. 根据权利要求5-7所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中,
    K选自
    Figure PCTCN2023070367-appb-100030
    Figure PCTCN2023070367-appb-100031
    Figure PCTCN2023070367-appb-100032
  9. 根据权利要求1所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,其中该化合物选自表P-1结构之一。
  10. 一种药物组合物,包括权利要求1-9任意一项所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶,以及药学上可接受的载体,优选地,所述的药物组合物中含有1~1500mg权利要求1-9任意一项所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶。
  11. 权利要求1-9任意一项所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶或者权利要求10所述的药物组合物在用于制备治疗与IRAK4活性或表达量相关疾病的药物中的应用。
  12. 权利要求1-9任意一项所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶或者权利要求10所述的药物组合物在用于制备治疗与抑制或降解IRAK4相关疾病的药物中的应用。
  13. 根据权利要求12所述的应用,所述的疾病选自自身免疫性疾病、炎症疾病或癌症。
  14. 一种用于治疗哺乳动物的疾病的方法,所述方法包括给予受试者治疗有效量的权利要求1-9任意一项所述的化合物或者其立体异构体、氘代物、溶剂化物、前药、代谢产物、药学上可接受的盐或共晶或者权利要求10所述的药物组合物,治疗有效量优选1-1500mg,所述的疾病优选自身免疫性疾病、炎症疾病或癌症。
PCT/CN2023/070367 2022-01-04 2023-01-04 一种抑制并降解irak4的化合物及其药物组合物和药学上的应用 WO2023131167A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202210000510 2022-01-04
CN202210000510.3 2022-01-04
CN202210078765 2022-01-27
CN202210078765.1 2022-01-27
CN202210389191.X 2022-04-14
CN202210389191 2022-04-14
CN202210501720 2022-05-13
CN202210501720.0 2022-05-13
CN202210962203 2022-08-12
CN202210962203.3 2022-08-12
CN202211567270 2022-12-07
CN202211567270.1 2022-12-07

Publications (1)

Publication Number Publication Date
WO2023131167A1 true WO2023131167A1 (zh) 2023-07-13

Family

ID=87073237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070367 WO2023131167A1 (zh) 2022-01-04 2023-01-04 一种抑制并降解irak4的化合物及其药物组合物和药学上的应用

Country Status (2)

Country Link
TW (1) TW202333670A (zh)
WO (1) WO2023131167A1 (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113233A1 (en) * 2018-11-30 2020-06-04 Kymera Therapeutics, Inc. Irak degraders and uses thereof
CN112105385A (zh) * 2017-12-26 2020-12-18 凯麦拉医疗公司 Irak降解剂和其用途
WO2020264499A1 (en) * 2019-06-28 2020-12-30 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127278A1 (en) * 2019-12-17 2021-06-24 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127561A1 (en) * 2019-12-20 2021-06-24 C4 Therapeutics, Inc. Isoindolinone and indazole compounds for the degradation of egfr
WO2021127586A1 (en) * 2019-12-20 2021-06-24 Calico Life Sciences Llc Protein tyrosine phosphatase degraders and methods of use thereof
WO2021158634A1 (en) * 2020-02-03 2021-08-12 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021170109A1 (en) * 2020-02-26 2021-09-02 Cullgen (Shanghai) , Inc. Tropomyosin receptor kinase (trk) degradation compounds and methods of use
CN113646002A (zh) * 2019-02-27 2021-11-12 上海睿跃生物科技有限公司 环amp反应元件结合蛋白(cbp)和/或300kda腺病毒e1a结合蛋白(p300)降解化合物和使用方法
WO2021247897A1 (en) * 2020-06-03 2021-12-09 Kymera Therapeutics, Inc. Deuterated irak degraders and uses thereof
WO2021247899A1 (en) * 2020-06-03 2021-12-09 Kymera Therapeutics, Inc. Crystalline forms of irak degraders
CN114437035A (zh) * 2020-11-06 2022-05-06 海思科医药集团股份有限公司 一种抑制并降解irak4的化合物及其药物组合物和药学上的应用
WO2022147465A1 (en) * 2020-12-30 2022-07-07 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2022161414A1 (zh) * 2021-01-26 2022-08-04 成都茵创园医药科技有限公司 芳香化合物、含其的药物组合物及其应用
WO2022266258A1 (en) * 2021-06-15 2022-12-22 Arvinas Operations, Inc. Compounds and methods for the targeted degradation of irak-4
CN115772180A (zh) * 2021-09-08 2023-03-10 南京明德新药研发有限公司 戊二酰亚胺类化合物与其应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105385A (zh) * 2017-12-26 2020-12-18 凯麦拉医疗公司 Irak降解剂和其用途
WO2020113233A1 (en) * 2018-11-30 2020-06-04 Kymera Therapeutics, Inc. Irak degraders and uses thereof
CN113646002A (zh) * 2019-02-27 2021-11-12 上海睿跃生物科技有限公司 环amp反应元件结合蛋白(cbp)和/或300kda腺病毒e1a结合蛋白(p300)降解化合物和使用方法
WO2020264499A1 (en) * 2019-06-28 2020-12-30 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127278A1 (en) * 2019-12-17 2021-06-24 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127561A1 (en) * 2019-12-20 2021-06-24 C4 Therapeutics, Inc. Isoindolinone and indazole compounds for the degradation of egfr
WO2021127586A1 (en) * 2019-12-20 2021-06-24 Calico Life Sciences Llc Protein tyrosine phosphatase degraders and methods of use thereof
WO2021158634A1 (en) * 2020-02-03 2021-08-12 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021170109A1 (en) * 2020-02-26 2021-09-02 Cullgen (Shanghai) , Inc. Tropomyosin receptor kinase (trk) degradation compounds and methods of use
WO2021247897A1 (en) * 2020-06-03 2021-12-09 Kymera Therapeutics, Inc. Deuterated irak degraders and uses thereof
WO2021247899A1 (en) * 2020-06-03 2021-12-09 Kymera Therapeutics, Inc. Crystalline forms of irak degraders
CN114437035A (zh) * 2020-11-06 2022-05-06 海思科医药集团股份有限公司 一种抑制并降解irak4的化合物及其药物组合物和药学上的应用
WO2022147465A1 (en) * 2020-12-30 2022-07-07 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2022161414A1 (zh) * 2021-01-26 2022-08-04 成都茵创园医药科技有限公司 芳香化合物、含其的药物组合物及其应用
WO2022266258A1 (en) * 2021-06-15 2022-12-22 Arvinas Operations, Inc. Compounds and methods for the targeted degradation of irak-4
CN115772180A (zh) * 2021-09-08 2023-03-10 南京明德新药研发有限公司 戊二酰亚胺类化合物与其应用

Also Published As

Publication number Publication date
TW202333670A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
TW201833108A (zh) 醯胺類衍生物抑制劑及其製備方法和應用
EP3889150A1 (en) Compound serving as irak inhibitor
WO2020030107A1 (zh) 一种含有酰胺类衍生物的药物组合物及其制备方法和应用
WO2023143424A1 (zh) 一种氮杂并环衍生物及其在医药上的应用
EP3072893B1 (en) Ketone derivatives of imidazoles, pharmaceutical combinations and uses thereof
CN112279848A (zh) 一种泛JAKs抑制剂及其用途
WO2022111526A1 (zh) 一种苯环衍生物及其组合物和药学上的应用
CN108299420B (zh) 作为选择性***受体下调剂的五环类化合物及其应用
WO2023131167A1 (zh) 一种抑制并降解irak4的化合物及其药物组合物和药学上的应用
WO2022078305A1 (zh) 一种杂环衍生物及其在医药上的应用
WO2023143384A1 (zh) 一种抑制或降解hpk1激酶的化合物及其在医药中的用途
WO2023030453A1 (zh) 一种降解Bcl-2家族蛋白的化合物及其在医药上的应用
JP2023509155A (ja) ビフェニル系誘導体阻害剤、その調製方法及び使用
WO2023232133A1 (zh) 一种抑制或降解Bcl6的化合物及其在医药中的应用
WO2023109902A1 (zh) 一种并环杂环衍生物及其在医药上的应用
WO2023246833A1 (zh) 一种五并五元环衍生物的药物组合物及其在医药上的应用
WO2023202687A1 (zh) 一种吡嗪酮衍生物及其在医药上的应用
WO2023151697A1 (zh) 一种mettl3抑制剂及组合物及其在医药上的应用
WO2024012570A1 (zh) 一种含氮杂环衍生物及其组合物和药学上的应用
WO2023109892A1 (zh) 一种抑制或降解brd9的化合物及其组合物和药学上的应用
WO2024051741A1 (zh) 一种抑制Bcl-2或Bcl-xL的化合物及其在医药上的应用
WO2023143370A1 (zh) 一种含氮杂芳环化合物及其组合物和药学上的应用
WO2023208165A1 (zh) 一种含氮杂环衍生物及其组合物和药学上的应用
WO2024032600A1 (zh) 一种杂环衍生物及其组合物和药学上的应用
CN116947877A (zh) 一种苯并咪唑衍生物及其在医药上的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737031

Country of ref document: EP

Kind code of ref document: A1