WO2023124009A1 - 一种清洁机器人的状态判断方法及装置 - Google Patents

一种清洁机器人的状态判断方法及装置 Download PDF

Info

Publication number
WO2023124009A1
WO2023124009A1 PCT/CN2022/105275 CN2022105275W WO2023124009A1 WO 2023124009 A1 WO2023124009 A1 WO 2023124009A1 CN 2022105275 W CN2022105275 W CN 2022105275W WO 2023124009 A1 WO2023124009 A1 WO 2023124009A1
Authority
WO
WIPO (PCT)
Prior art keywords
cumulative
working mode
state
threshold
change value
Prior art date
Application number
PCT/CN2022/105275
Other languages
English (en)
French (fr)
Inventor
王磊
牛延升
Original Assignee
北京石头创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京石头创新科技有限公司 filed Critical 北京石头创新科技有限公司
Publication of WO2023124009A1 publication Critical patent/WO2023124009A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to household electrical appliances, in particular to a method and device for judging the state of a cleaning robot.
  • cleaning robots With the continuous development of science and technology, the penetration rate of cleaning robots is gradually increasing. Using cleaning robots can quickly remove dust, foreign objects, etc., making people's lives more convenient and comfortable.
  • a gyroscope Gyro is usually installed in the cleaning robot, and the change of the Gyro is used to perceive the change of the angle, and then judge whether the cleaning robot is dragged and shifted, etc., that is, the state of the cleaning robot is judged.
  • the existing cleaning robot state judgment method is to set a fixed threshold value, and then compare the change angle value with the fixed threshold value to obtain the cumulative change value of the angle, and finally determine whether the state of the cleaning robot is based on the cumulative change value. Moving and offset movement and other states. Under this premise, how to accurately judge the current state of the cleaning robot is particularly important.
  • the present application provides a method for judging the state of a cleaning robot, including:
  • the state of the cleaning robot is judged based on the cumulative change value.
  • the present application provides a state judging device for a cleaning robot, including:
  • Angle change value detection module used to detect the angle change value of the cleaning robot in real time
  • the first acquisition module is used to acquire the working mode of the cleaning robot in real time
  • a second acquiring module configured to acquire a target cumulative threshold corresponding to the working mode based on the target working mode
  • An accumulative module configured to filter and accumulate the angle change values detected by the angle change value detection module within a preset time period based on the target accumulation threshold, to obtain an accumulated change value
  • a judging module configured to judge the state of the cleaning robot based on the cumulative change value.
  • the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the steps of any one of the methods for judging the state of the cleaning robot described above are realized.
  • the present application provides an electronic device, including at least a memory and a processor, the memory stores a computer program, and the processor implements any one of the above-mentioned electronic devices when executing the computer program on the memory.
  • the steps of the state judging method of the cleaning robot are not limited to a processor, the memory stores a computer program, and the processor implements any one of the above-mentioned electronic devices when executing the computer program on the memory.
  • FIG. 1 is a flow chart of a method for judging the state of a cleaning robot according to an embodiment of the present application
  • Fig. 2 is a flow chart of a method for judging the state of a cleaning robot according to another embodiment of the present application
  • Fig. 3 is a structural block diagram of a cleaning robot state judging device according to another embodiment of the present application.
  • Mobile platform 100 backward part 110, forward part 111, perception system 120, buffer 122, cliff sensor 123, control system 130, drive system 140, drive wheel assembly 141, steering assembly 142, cleaning module 150, dry Cleaning module 151, side brush 152, assembling part 200, assembling structure 300, assembling bracket 310, rotor 320, motor 330, cover 340, rotor accommodating part 311, motor accommodating part 312, first arc-shaped side wall 3111, second Two arc-shaped side walls 3121, motor rollers 331, conveyor belt 332, first opening 3122, motor housing bottom surface 3124, first support rib 3123, second opening 3112, second support rib 3113, rotor housing bottom surface 3114, circular Top surface 341, bottom ring 342, connecting piece 343, annular shielding piece 350, plug connector 351, first slot 3431, second slot 3432, third slot 3433, convex beam 3511, convex beam 3511, T-shaped protrusion 3512 , limiting groove 3434 , limiting protrusion 3513 .
  • the embodiment of the present application provides a method for judging the state of a cleaning robot, as shown in FIG. 1 , including:
  • Step S101 obtaining the working mode of the cleaning robot in real time
  • the working mode can specifically be the first working mode with a swing state or the second working mode with a non-swinging state, for example, the first working mode can be a rag self-cleaning mode, a vibration wiping mode or the like; the second The working mode can be charging mode, sweeping mode, mopping mode and so on.
  • Step S102 acquiring a target cumulative threshold corresponding to the working mode based on the working mode
  • different working modes correspond to different cumulative thresholds, that is, the first working mode corresponds to the first cumulative threshold, the second working mode corresponds to the second cumulative threshold, and the first cumulative threshold is smaller than the second cumulative threshold.
  • Step S103 based on the target cumulative threshold, filter and accumulate the angle change values detected within a preset time period to obtain a cumulative change value
  • the angle change values greater than or equal to the target cumulative threshold within the preset time period can be accumulated according to the target cumulative threshold, and the angle change values smaller than the target cumulative threshold can be excluded, so as to Accurately obtain the cumulative change value.
  • the first cumulative threshold corresponding to the first working mode is smaller than the second cumulative threshold corresponding to the second working mode, when the cleaning robot is in a slightly shaking/swinging working mode, it can be based on the smaller first cumulative threshold
  • the angle change values detected at each time that are greater than or equal to the first accumulation threshold are accumulated, so as to make the obtained cumulative change value more accurate, and avoid small angle change values from not being accumulated, resulting in errors in the accumulated results , mistakenly believe that the machine has shifted, causing the robot to mistakenly think that it is being dragged, moved or moved by offset.
  • Step S104 judging the state of the cleaning robot based on the cumulative change value.
  • the state of the cleaning robot can be judged based on the cumulative change value, that is, it is judged whether the cleaning robot is shifted, moved, dragged, or the like.
  • the target cumulative threshold is adjusted in real time according to the working mode of the cleaning robot, and then the angle change values that meet the conditions are accumulated based on the target cumulative threshold, so that the accumulated cumulative change
  • the value is more accurate and reliable, which provides a guarantee for the subsequent accurate judgment of the state of the cleaning robot based on the cumulative change value.
  • Another embodiment of the present application provides a method for judging the state of a cleaning robot, as shown in FIG. 2 , including:
  • Step S201 establishing a mapping relationship between working modes and cumulative thresholds based on each working mode and each cumulative threshold;
  • the working modes include: a first working mode with a swing state and a second working mode with a non-swinging state; the cumulative threshold specifically includes the first cumulative threshold corresponding to the first working mode, or the first cumulative threshold corresponding to the second working mode.
  • the angular range of the first cumulative threshold may be 0.0001°-0.003°; the angular range of the second cumulative threshold may be 0.01°-0.3°, of course, the angular range may also be adjusted according to actual needs.
  • Step S202 acquiring the working mode of the cleaning robot in real time
  • Step S203 when the working mode is the first working mode, look up the mapping relationship based on the first working mode, and obtain a first cumulative threshold corresponding to the first working mode, so as to obtain a target cumulative threshold; or , when the working mode is the second working mode, searching for the mapping relationship based on the second working mode to obtain a second cumulative threshold corresponding to the second working mode, so as to obtain a target cumulative threshold;
  • the second cumulative threshold corresponding to the charging mode will be determined, for example, the second cumulative threshold is 0.1° , and then adjust the target cumulative threshold for offset/drift state detection to the second cumulative threshold of 0.1°.
  • the first cumulative threshold 0.001° corresponding to the rag self-cleaning mode can be obtained by looking up the mapping relationship, and then the current target The cumulative threshold is switched from the second cumulative threshold of 0.1° to the first cumulative threshold of 0.001°, and then the angle change value can be accumulated in real time based on the first cumulative threshold of 0.001°.
  • Step S204 comparing the angle change value obtained by real-time detection with the target cumulative threshold value, and obtaining the target angle change value when it is determined that the angle change value is greater than or equal to the target cumulative threshold value; based on each of the target The angle change value is accumulated to obtain the accumulated change value.
  • the angle change values obtained through real-time detection can be screened based on the target cumulative threshold, that is, the angle change values greater than or equal to the target cumulative threshold are screened to obtain the target angle change value. Accumulate the change value of the target angle.
  • the absolute value of the angle change value obtained by real-time detection can be compared with the second cumulative threshold value of 0.1°, and the absolute value of the angle change value
  • the angle change value is accumulated, for example, when the angle change values obtained by real-time detection within a preset time period are -0.45°, +0.002°, -0.6°, +0.45°... ., the angular change values of -0.45°, -0.6° and +0.45°, whose absolute values are greater than the second cumulative threshold, can be accumulated to obtain the cumulative change value of -0.6°.
  • the angle change value can be accumulated in real time based on the first accumulation threshold of 0.001°. °, -0.06°, +0.5°..., you can accumulate the angle change values of -0.04°, +0.5°, -0.06°, +0.5° whose absolute value is greater than the first accumulation threshold, and thus obtain Cumulative change value +0.9°.
  • the rag Since in the self-cleaning mode of the rag, the rag will be scraped by the cleaning component at a high frequency along the alternating left and right directions, which will cause constant changes in the angle change value in a short period of time.
  • the small angle changes "-0.04°” and "-0.06°” generated during the self-cleaning mode of the rag can also be accumulated, so that these small angle changes will not be filtered out , and the cumulative change value is accumulated to 1°, which makes the cumulative change value obtained in the self-cleaning mode of the rag more accurate, and avoids the inaccurate cumulative change value caused by the use of a fixed cumulative threshold, which in turn causes damage to the cleaning robot.
  • the status judgment is not accurate enough.
  • Step S205 comparing the cumulative change value with a preset state threshold; when it is determined that the cumulative change value is greater than the state threshold, it is judged that the state of the cleaning robot is an offset state; When the cumulative change value is less than or equal to the state threshold, it is determined that the state of the cleaning robot is a non-deviation state.
  • the state threshold refers to the cumulative angle critical value used to judge whether the cleaning robot is in an offset state/moved state, for example, it can be set to 0.1°, 0.3°, 0.5°, 1° or 1.5° ° and so on, which can also be adjusted according to actual needs. For example, if the state threshold is set to 0.95°, when the cumulative angle value corresponding to the current moment is detected to be +1°, it can be judged that the cleaning robot is in an offset state. If the cumulative angle value corresponding to the current moment is detected to be +0.9° , it can be judged that the cleaning robot is in a non-offset state.
  • the judgment may also be made in combination with the duration of the accumulated change value. That is, when it is determined that the cumulative change value is greater than the state threshold and the duration reaches a predetermined time, it is determined that the state of the cleaning robot is an offset state; when it is determined that the cumulative change value is less than or equal to the In the case of a state threshold, or in the case that the cumulative change value is greater than the state threshold and the duration has not reached a predetermined time, it is determined that the state of the cleaning robot is a non-deviation state.
  • the state threshold is set to 10°, and when the cumulative angle value corresponding to the current moment is detected to be 11°, the cumulative change value at the next moment can be obtained continuously. If the cumulative change value at the next moment is 12°, That is, if it is still greater than the state threshold, it is determined that the duration reaches the predetermined time, and then the state of the cleaning robot is judged as an offset state; otherwise, when the cumulative change value corresponding to the current moment is detected to be 5° and less than 10°, then the state of the cleaning robot is judged It is in a non-offset state; or, when the cumulative change value corresponding to the current moment is 12° and greater than 10°, but the cumulative change value corresponding to the next moment is 6° and less than 10°, it is still judged to be clean The state of the robot is the non-offset state. In this way, it is possible to prevent misjudgment of an offset state caused by a wrong accumulation or incomplete accumulation data, thereby making the judgment of the state of the cleaning robot more accurate and reliable.
  • the method when it is judged that the state of the cleaning robot is an offset state, the method further includes: outputting prompt information according to a predetermined method to prompt the offset state, wherein the predetermined method It can be a voice prompt method, a text prompt method, a method of remotely sending information to a designated terminal device, etc., such as outputting a predetermined prompt music according to a voice prompt method, or outputting a predetermined prompt text according to a text prompt method, or sending a message to a designated terminal device.
  • the terminal device remotely sends prompt information such as text and pictures, so that the user can know the status of the cleaning robot in a timely manner.
  • the cumulative threshold can be readjusted according to the mode when the working mode is a swinging/shaking mode, for example, in the mop cleaning mode, that is, the cumulative threshold is adjusted to Smaller, so that it can also accumulate the small angle change value caused by the high-frequency left and right shaking of the machine due to being scratched; thus avoiding that when a fixed larger threshold is used, the small angle change value is not accumulated, only
  • the problem that the cumulative change value caused by the accumulated large angle change value exceeds the state threshold prevents the machine from mistakenly thinking that it has shifted/offset, thus solving the problem of inaccurate state judgment of the cleaning robot.
  • FIG. 3 Another embodiment of the present application provides a state judging device for a cleaning robot, as shown in FIG. 3 , including:
  • Angle change value detection module 1 used to detect the angle change value of the cleaning robot in real time
  • the first acquisition module 2 is used to acquire the working mode of the cleaning robot in real time
  • the second acquiring module 3 is configured to acquire a target accumulation threshold corresponding to the working mode based on the target working mode;
  • the accumulation module 4 is configured to filter and accumulate the angle change values detected by the angle change value detection module within a preset time period based on the target accumulation threshold to obtain the cumulative change value;
  • a judging module 5 configured to judge the state of the cleaning robot based on the cumulative change value.
  • the working mode includes any one of the following: a first working mode with a swing state and a second working mode with a non-swing state;
  • the second obtaining module is specifically configured to: obtain the first cumulative threshold corresponding to the first working mode based on the first working mode, so as to obtain the target cumulative threshold; or, obtain the target cumulative threshold based on the second working mode a second cumulative threshold corresponding to the second working mode to obtain the target cumulative threshold; wherein the first cumulative threshold is smaller than the second cumulative threshold.
  • the accumulation module is specifically used to: compare the angle change value obtained by real-time detection with the target accumulation threshold within the preset time period, and determine that the angle change value is greater than Or if it is equal to the target accumulation threshold, obtain a target angle change value; accumulate each of the target angle change values within the preset time length to obtain the cumulative change value.
  • the judging module is specifically used to: compare the cumulative change value with a preset state threshold; if it is determined that the cumulative change value is greater than the state threshold, judge that the state of the cleaning robot is biased. If it is determined that the cumulative change value is less than or equal to the state threshold, it is determined that the state of the cleaning robot is a non-deviation state.
  • the state judging device of the cleaning robot in this embodiment also includes an establishment module, the establishment module is used for: before obtaining the operation mode of the cleaning robot in real time, based on each operation mode and each accumulation threshold, the mapping relationship between the operation mode and the accumulation threshold is established Specifically, the second acquiring module is specifically configured to: search for the mapping relationship based on the working mode, and obtain the target accumulation threshold corresponding to the working mode.
  • the angular range of the first cumulative threshold is 0.0001°-0.003°; the angular range of the second cumulative threshold is 0.01°-0.3°.
  • the device for judging the state of the cleaning robot in this embodiment further includes a prompting module, the prompting module is configured to: output prompting information in a predetermined manner, so as to prompt the deviation state.
  • the present application can be realized by hardware, or by software plus a necessary general hardware platform.
  • the technical solution of the present application can be embodied in the form of software products, which can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.), including several The instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in various implementation scenarios of the present application.
  • each module in the device in the implementation scenario can be distributed among the devices in the implementation scenario according to the description of the implementation scenario, or can be located in one or more devices different from the implementation scenario according to corresponding changes.
  • the modules of the above implementation scenarios can be combined into one module, or can be further split into multiple sub-modules.
  • Another embodiment of the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the following method steps are implemented:
  • Step 1 Obtain the working mode of the cleaning robot in real time
  • Step 2 Obtaining a target cumulative threshold corresponding to the working mode based on the working mode
  • Step 3 Based on the target accumulation threshold, filter and accumulate the angle change values detected within the preset time period to obtain the cumulative change value;
  • Step 4 judging the state of the cleaning robot based on the cumulative change value.
  • the target cumulative threshold is adjusted in real time according to the working mode of the cleaning robot, and then the angle change values that meet the conditions are accumulated based on the target cumulative threshold, so that the accumulated cumulative change value obtained can be more accurate and reliable.
  • the accurate judgment of the state of the cleaning robot based on the cumulative change value provides a guarantee.
  • Another embodiment of the present application provides an electronic device, including at least a memory and a processor, where a computer program is stored on the memory, and the processor implements the following method steps when executing the computer program on the memory:
  • Step 1 Obtain the working mode of the cleaning robot in real time
  • Step 2 Obtaining a target cumulative threshold corresponding to the working mode based on the working mode
  • Step 3 Based on the target accumulation threshold, filter and accumulate the angle change values detected within the preset time period to obtain the cumulative change value;
  • Step 4 judging the state of the cleaning robot based on the cumulative change value.
  • the target cumulative threshold is adjusted in real time according to the working mode of the cleaning robot, and then the angle change values that meet the conditions are accumulated based on the target cumulative threshold, so that the accumulated cumulative change value obtained can be more accurate and reliable.
  • the accurate judgment of the state of the cleaning robot based on the cumulative change value provides a guarantee.
  • the working mode includes any one of the following: a first working mode with a swing state and a second working mode with a non-swinging state;
  • the first cumulative threshold is smaller than the second cumulative threshold.
  • the screening and accumulation of the angle change values detected within a preset time period based on the target accumulation threshold to obtain the cumulative change value specifically includes:
  • the judging the state of the cleaning robot based on the accumulated change value specifically includes:
  • the method before obtaining the working mode of the cleaning robot in real time, the method further includes: establishing a mapping relationship between the working mode and the cumulative threshold based on each working mode and each cumulative threshold;
  • the acquiring the target cumulative threshold corresponding to the working mode based on the working mode specifically includes:
  • the mapping relationship is searched based on the working mode to obtain a target accumulation threshold corresponding to the working mode.
  • the angular range of the first cumulative threshold is 0.0001°-0.003°
  • the angular range of the second cumulative threshold is 0.01°-0.3°.
  • the method when it is judged that the state of the cleaning robot is an offset state, the method further includes: outputting prompt information in a predetermined manner to prompt the offset state.
  • the method and device for judging the state of the cleaning robot in the present application adjust the target cumulative threshold in real time according to the working mode of the cleaning robot, and then accumulate the angle change values that meet the conditions based on the target cumulative threshold, so that the cumulative obtained
  • the cumulative change value is more accurate and reliable, which provides a guarantee for the subsequent accurate judgment of the state of the cleaning robot based on the cumulative change value.

Landscapes

  • Electric Vacuum Cleaner (AREA)

Abstract

一种清洁机器人的状态判断方法及装置,其中方法包括:实时获取清洁机器人的工作模式(S101);基于工作模式获取与工作模式对应的目标累计阈值(S102);基于目标累计阈值对预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值(S103);基于累计变化值判断清洁机器人的状态(S104)。通过实时根据清洁机器人的工作模式来调整目标累计阈值,然后基于目标累计阈值来对符合条件的角度变化值进行累计,由此能够使得累计获得的累计变化值更加精准、可靠,为后续基于累计变化值对清洁机器人的状态进行精准的判断提供了保障。

Description

一种清洁机器人的状态判断方法及装置
相关申请的交叉引用
本申请要求于2021年12月31日递交的中国专利申请202111677232.7的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及生活电器,特别涉及一种清洁机器人的状态判断方法及装置。
背景技术
随着科学技术的不断发展,清洁机器人的普及率逐渐提高。利用清洁机器人可以快速的清除灰尘、异物等,使得人们的生活更加便利、舒适。
由于机器人是基于地图清扫,因此需要感知到自己是否发生拖动、搬动以及偏移移动等。因此在清洁机器人中通常会设置陀螺仪Gyro,利用Gyro的变化来感知角度的变化,进而判断清洁机器人是否发生拖动搬动以及偏移移动等,即判断清洁机器人的状态。
现有的清洁机器人的状态判断方法是设置固定的阈值,然后将变化角度值与该固定阈值进行比较,以此来获得角度的累计变化值,最后基于累计变化值来确定清洁机器人的状态是否为搬动以及偏移移动等状态。在此前提下,如何准确判断清洁机器人当前状态显得尤为重要。
发明内容
根据一个方面,本申请提供一种清洁机器人的状态判断方法,包括:
实时获取清洁机器人的工作模式;
基于所述工作模式获取与所述工作模式对应的目标累计阈值;
基于所述目标累计阈值对预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值;
基于所述累计变化值判断所述清洁机器人的状态。
根据另一方面,本申请提供一种清洁机器人的状态判断装置,包括:
角度变化值检测模块:用于实时对所述清洁机器人的角度变化值进行检测;
第一获取模块,用于实时获取清洁机器人的工作模式;
第二获取模块,用于基于所述目标工作模式获取与所述工作模式对应的目标累计阈值;
累计模块,用于基于所述目标累计阈值对所述角度变化值检测模块在预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值;
判断模块,用于基于所述累计变化值判断所述清洁机器人的状态。
根据另一方面,本申请提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述清洁机器人的状态判断方法的步骤。
根据另一方面,本申请提供一种电子设备,至少包括存储器、处理器,所述存储器上存储有计算机程序,所述处理器在执行所述存储器上的计算机程序时实现上述任一项所述清洁机器人的状态判断方法的步骤。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请实施例一种清洁机器人状态判断方法的流程图;
图2为本申请又一实施例一种清洁机器人状态判断方法的流程图;
图3为本申请另一实施例一种清洁机器人状态判断装置的结构框图。
附图标记说明:
移动平台100、后向部分110、前向部分111、感知***120、缓冲器122、悬崖传感器123、控制***130、驱动***140、驱动轮组件141、转向组件142、清洁模组150、干式清洁模组151、边刷152、装配部200、装配结构300、装配支架310、转子320、马达330、罩盖340、转子容纳部311、马达容纳部312、第一弧形侧壁3111、第二弧形侧壁3121、马达滚轮331、传送带332、第一开口3122、马达容纳部底面3124、第一支撑筋3123、第二开口3112、第二支撑筋3113、转子容纳部底面3114、圆形顶面341、底部圆环342、连接件343、、环形遮挡件350、插接件351、第一插槽3431、第二插槽3432、第三插槽3433、凸梁3511、凸梁3511、T型凸起3512、限位凹槽3434、限位凸起3513。
具体实施方式
此处参考附图描述本申请的各种方案以及特征。
应理解的是,可以对此处申请的实施例做出各种修改。因此,上述说明书不应该视为限制,而仅是作为实施例的范例。本领域的技术人员将想到在本申请的范围和精神内的其他修改。
包含在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且与上面给 出的对本申请的大致描述以及下面给出的对实施例的详细描述一起用于解释本申请的原理。
通过下面参照附图对给定为非限制性实例的实施例的优选形式的描述,本申请的这些和其它特性将会变得显而易见。
还应当理解,尽管已经参照一些具体实例对本申请进行了描述,但本领域技术人员能够确定地实现本申请的很多其它等效形式。
当结合附图时,鉴于以下详细说明,本申请的上述和其他方面、特征和优势将变得更为显而易见。
此后参照附图描述本申请的具体实施例;然而,应当理解,所申请的实施例仅仅是本申请的实例,其可采用多种方式实施。熟知和/或重复的功能和结构并未详细描述以避免不必要或多余的细节使得本申请模糊不清。因此,本文所申请的具体的结构性和功能性细节并非意在限定,而是仅仅作为权利要求的基础和代表性基础用于教导本领域技术人员以实质上任意合适的详细结构多样地使用本申请。
本说明书可使用词组“在一种实施例中”、“在另一个实施例中”、“在又一实施例中”或“在其他实施例中”,其均可指代根据本申请的相同或不同实施例中的一个或多个。
本申请实施例提供一种清洁机器人的状态判断方法,如图1所示,包括:
步骤S101,实时获取清洁机器人的工作模式;
本步骤中工作模式具体可以为带有摆动状态的第一工作模式或者带有非摆动状态的第二工作模式,例如第一工作模式可以为抹布自清洁模式、震动擦地模式等等;第二工作模式可以为充电模式、扫地模式、拖地模式等等。
步骤S102,基于所述工作模式获取与所述工作模式对应的目标累计阈值;
本步骤中,不同的工作模式对应不同的累计阈值,即第一工作模式对应第一累计阈值,第二工作模式对应第二累计阈值,且第一累计阈值小于第二累计阈值。
步骤S103,基于所述目标累计阈值对预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值;
本步骤中当获取到目标累计阈值之后,就可以根据该目标累计阈值对预设时长内大于或等于目标累计阈值的角度变化值进行累计,并排除小于目标累计阈值的角度变化值,以此来准确的获得累计变化值。由于第一工作模式对应的第一累计阈值是小于第二工作模式对应的第二累计阈值,由此当清洁机器人处于微小晃动/摆动的工作模式时,能够基于该较小的第一累计阈值对各时刻检测获得的大于或等于该第一累计阈值的角度变化值进行累计,以此来使获得的累计变化值更加精准,避免较小的角度变化值未被累计,而导致累计的结果出现误差,误认为机器发生移位,导致机器人误以为自己被拖动、搬动或偏移移动。
步骤S104,基于所述累计变化值判断所述清洁机器人的状态。
本步骤中,在获得累计变化值后,就可以基于累计变化值来判断清洁机器人的状态,即判断清洁机器人是否发生偏移或被搬动、拖动等。
本实施例中清洁机器人的状态判断方法,通过实时根据清洁机器人的工作模式来调整目标累计阈值,然后基于目标累计阈值来对符合条件的角度变化值进行累计,由此能够使得累计获得的累计变化值更加精准、可靠,为后续基于累计变化值对清洁机器人的状态进行精准的判断提供了保障。
本申请又一实施例提供一种清洁机器人的状态判断方法,如图2所示,包括:
步骤S201,基于各工作模式以及各累计阈值建立工作模式与累计阈值的映射关系;
本步骤中,工作模式包括:带有摆动状态的第一工作模式以及带有非摆动状态的第二工作模式;累计阈值具体包括与第一工作模式对应的第一累计阈值,或者与第二工作模式对应的第二累计阈值,其中第一累计阈值小于第二累计阈值。也就是说,本步骤中具体是建立第一工作模式与第一累计阈值、第二工作模式与第二累计阈值的映射关系。在具体实施过程中第一累计阈值的角度范围可以为0.0001°~0.003°;所述第二累计阈值的角度范围可以为0.01°~0.3°,当然也可以根据实际需要对角度范围进行调整。
步骤S202,实时获取清洁机器人的工作模式;
步骤S203,在所述工作模式为第一工作模式时,基于所述第一工作模式查找所述映射关系,获得与所述第一工作模式对应的第一累计阈值,以获得目标累计阈值;或者,在所述工作模式为第二工作模式时,基于所述第二工作模式查找所述映射关系,获得与所述第二工作模式对应的第二累计阈值,以获得目标累计阈值;
本步骤在具体实施过程中,例如当获取到清洁机器人处于充电模式/拖地模式等第二工作模式时,则会确定与该充电模式对应的第二累计阈值,例如第二累计阈值为0.1°,然后将用于进行偏移/漂移状态检测的目标累计阈值调整至该第二累计阈值0.1°。
再如,当清洁机器人的工作模式由拖地工作模式切换为抹布自清洁模式时,则可以通过查找映射关系来获得与该抹布自清洁模式对应的第一累计阈值0.001°,然后将当前的目标累计阈值由第二累计阈值0.1°切换至第一累计阈值0.001°,后续就可以基于该第一累计阈值0.001°实时进行角度变化值的累计。
步骤S204,将实时检测获得的角度变化值与所述目标累计阈值进行比较,在确定所述角度变化值大于或等于所述目标累计阈值的情况下,获得目标角度变化值;基于各所述目标角度变化值进行累计,获得所述累计变化值。
本步骤中,在获得目标累计阈值后,就可以基于目标累计阈值来对实时检测获得角度变化值进行筛选,即筛选获得大于或等于目标累计阈值的角度变化值为目标角度变化值,以此来对目标角度变化值进行累计。
本步骤在具体实施过程中,例如当获得到清洁机器人处于充电模式/拖地模式等第二工作模式时,确定与该充电模式对应的第二累计阈值为0.1°之后,即将用于进行偏移/漂 移状态检测的目标累计阈值调整至该第二累计阈值0.1°之后,就可以将实时检测获得的角度变化值的绝对值与该第二累计阈值0.1°进行比较,在角度变化值的绝对值大于或等于该第二累计阈值0.1°时,对角度变化值进行累计,例如当预设时长内实时检测获得的角度变化值为-0.45°、+0.002°、-0.6°、+0.45°...,则可以将-0.45°、-0.6°以及+0.45°这些绝对值大于第二累计阈值的角度变化值进行累计,由此来获得累计变化值-0.6°。
再如,当清洁机器人的工作模式由拖地工作模式切换为抹布自清洁模式时、获得与该抹布自清洁模式对应的第一累计阈值0.001°之后,即将当前的目标累计阈值由第二累计阈值0.1°切换至第一累计阈值0.001°之后,就可以基于该第一累计阈值0.001°实时进行角度变化值的累计,例如在预设时长内实时检测获得的角度变化值为-0.04°,+0.5°,-0.06°,+0.5°...,则可以将-0.04°,+0.5°,-0.06°,+0.5°这些绝对值大于第一累计阈值的角度变化值进行累计,由此来获得累计变化值+0.9°。由于在抹布自清洁模式下,抹布会受到来自清洗组件高频次、沿着左右交替方向的刮擦,因此会造成短时间内角度变化值的不停变化。在此种场景下使用上述方法,就可以将在抹布自清洁模式过程中所产生的微小角度变化“-0.04°”以及“-0.06°”也进行累计,从而不会将这些微小角度变化过滤掉、而将累计变化值累计成1°,进而使得在抹布自清洁模式下累计获得的累计变化值更加的精准,避免由于采用固定的累计阈值所造成的累计变化值不精准,进而造成对清洁机器人的状态判断不够准确的问题。
步骤S205,将所述累计变化值与预设的状态阈值进行比较;在确定所述累计变化值大于所述状态阈值的情况下,判断所述清洁机器人的状态为偏移状态;在确定所述累计变化值小于或等于所述状态阈值的情况下,判断所述清洁机器人的状态为非偏移状态。
本步骤在具体实施过程中,状态阈值是指用于判断清洁机器人是否为偏移状态/被搬动状态的累计角度临界值,例如可以设定为0.1°、0.3°0.5°、1°或1.5°等等,其也可以根据实际需要进行调整。例如设定状态阈值为0.95°,在检测获得当前时刻对应的累计角度值为+1°时,则可以判断清洁机器人为偏移状态,如果检测获得当前时刻对应的累计角度值为+0.9°时,则可以判断清洁机器人为非偏移状态。
本步骤中为了使得对清洁机器人的状态判断更加准确,还可以结合累计变化值的持续时间来进行判断。也就是,在确定所述累计变化值大于所述状态阈值、且持续时间达到预定时间的情况下,判断所述清洁机器人的状态为偏移状态;在确定所述累计变化值小于或等于所述状态阈值的情况下,或者在所述累计变化值大于所述状态阈值、且持续时间未达到预定时间的情况下,判断所述清洁机器人的状态为非偏移状态。例如设定状态阈值为10°,在检测获得当前时刻对应的累计角度值为11°时,则可以继续获取下一时刻的累计变化值,若获取到下一时刻的累计变化值为12°,即仍然大于状态阈值,则确定持续时间达到预定时间,进而判断清洁机器人的状态为偏移状态;反之当检测获得当前时刻对应的累计变化值为5°、小于10°,则判断清洁机器人的状态为非偏移状态;或者,当检测获得当前时刻对应的累计变化值为12°、大于10°,但是获取到下一时刻对应的累计变化 值为6°、小于10°时,则仍然判断清洁机器人的状态为非偏移状态。由此能够防止某一次的误累计、或累计数据不全面而造成偏移状态的误判,从而使得对清洁机器人的状态判断更加准确、可靠。
本实施例在具体实施过程中,在判断所述清洁机器人的状态为偏移状态的情况下,所述方法还包括:按照预定的方式输出提示信息,以进行偏移状态提示,其中预定的方式可以为语音提示方式、文字提示方式、向指定的终端设备远程发送信息的方式等等,例如按照语音提示方法输出预定的提示音乐,或者按照文字提示方式输出预定的提示文字,再或者向指定的终端设备远程发送文字、图片等提示信息,以此来使用户能够及时的知晓清洁机器人的状态。
本实施例中通过实时获取清洁机器人的工作模式,从而能在其工作模式为带有摆动/晃动的模式下,例如在清洗拖布模式下,可以根据该模式重新调整累计阈值,即将累计阈值调整至较小,从而能够对机器因为被剐蹭发生高频次左右晃动所产生的较小角度变化值也进行累计;从而避免采用固定较大的阈值时、较小的角度变化值未被没累计,只累计较大的角度变化值而造成的累计变化值超过状态阈值的问题,避免了机器误认为自己发生了移位/偏移,由此解决了清洁机器人的状态判断不够精准的问题。
本申请另一实施例提供一种清洁机器人的状态判断装置,如图3所示,包括:
角度变化值检测模块1:用于实时对所述清洁机器人的角度变化值进行检测;
第一获取模块2,用于实时获取清洁机器人的工作模式;
第二获取模块3,用于基于所述目标工作模式获取与所述工作模式对应的目标累计阈值;
累计模块4,用于基于所述目标累计阈值对所述角度变化值检测模块在预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值;
判断模块5,用于基于所述累计变化值判断所述清洁机器人的状态。
本实施例在具体实施过程中,所述工作模式包括如下任意一种:带有摆动状态的第一工作模式以及带有非摆动状态的第二工作模式;
所述第二获取模块具体用于:基于所述第一工作模式获取与所述第一工作模式对应的第一累计阈值,以获得所述目标累计阈值;或者,基于所述第二工作模式获取与所述第二工作模式对应的第二累计阈值,以获得所述目标累计阈值;其中,所述第一累计阈值小于所述第二累计阈值。
本实施例在具体实施过程中,所述累计模块具体用于:在所述预设时长内,将实时检测获得的角度变化值与所述目标累计阈值进行比较,在确定所述角度变化值大于或等于所述目标累计阈值的情况下,获得目标角度变化值;对所述预设时长内的各所述目标角度变化值进行累计,获得所述累计变化值。
具体的所述判断模块具体用于:将所述累计变化值与预设的状态阈值进行比较;在确定所述累计变化值大于所述状态阈值的情况下,判断所述清洁机器人的状态为偏移状态;在确定所述累计变化值小于或等于所述状态阈值的的情况下,判断所述清洁机器人的状态为非偏移状态。
本实施例中的清洁机器人的状态判断装置还包括建立模块,所述建立模块用于:在实时获取清洁机器人的工作模式之前,基于各工作模式以及各累计阈值建立工作模式与累计阈值的映射关系;具体的,所述第二获取模块具体用于:基于所述工作模式查找所述映射关系,获得与所述工作模式对应的目标累计阈值。
本实施例在具体实施过程中,所述第一累计阈值的角度范围为0.0001°~0.003°;所述第二累计阈值的角度范围为0.01°~0.3°。
本实施例中的清洁机器人的状态判断装置还包括提示模块,所述提示模块用于:按照预定的方式输出提示信息,以进行偏移状态提示。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本申请可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本申请所必须的。
本领域技术人员可以理解实施场景中的装置中的各个模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
本申请另一实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如下方法步骤:
步骤一、实时获取清洁机器人的工作模式;
步骤二、基于所述工作模式获取与所述工作模式对应的目标累计阈值;
步骤三、基于所述目标累计阈值对预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值;
步骤四、基于所述累计变化值判断所述清洁机器人的状态。
上述方法步骤的具体实施过程可参见上述清洁机器人的状态判断方法的实施例,本实施例在此不再重复赘述。
本申请中通过实时根据清洁机器人的工作模式来调整目标累计阈值,然后基于目标累计阈值来对符合条件的角度变化值进行累计,由此能够使得累计获得的累计变化值更加精 准、可靠,为后续基于累计变化值对清洁机器人的状态进行精准的判断提供了保障。
本申请另一实施例提供一种电子设备,至少包括存储器、处理器,所述存储器上存储有计算机程序,所述处理器在执行所述存储器上的计算机程序时实现如下方法步骤:
步骤一、实时获取清洁机器人的工作模式;
步骤二、基于所述工作模式获取与所述工作模式对应的目标累计阈值;
步骤三、基于所述目标累计阈值对预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值;
步骤四、基于所述累计变化值判断所述清洁机器人的状态。
上述方法步骤的具体实施过程可参见上述任意清洁机器人的状态判断方法的实施例,本实施例在此不再重复赘述。
本申请中通过实时根据清洁机器人的工作模式来调整目标累计阈值,然后基于目标累计阈值来对符合条件的角度变化值进行累计,由此能够使得累计获得的累计变化值更加精准、可靠,为后续基于累计变化值对清洁机器人的状态进行精准的判断提供了保障。
在一些实施例中,所述工作模式包括如下任意一种:带有摆动状态的第一工作模式以及带有非摆动状态的第二工作模式;
基于所述工作模式获取与所述工作模式对应的目标累计阈值,具体包括:
基于所述第一工作模式获取与所述第一工作模式对应的第一累计阈值,以获得所述目标累计阈值;
或者,基于所述第二工作模式获取与所述第二工作模式对应的第二累计阈值,以获得所述目标累计阈值;
其中,所述第一累计阈值小于所述第二累计阈值。
在一些实施例中,所述基于所述目标累计阈值对预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值,具体包括:
在所述预设时长内,将实时检测获得的角度变化值与所述目标累计阈值进行比较,在确定所述角度变化值大于或等于所述目标累计阈值的情况下,获得目标角度变化值;
对所述预设时长内的各所述目标角度变化值进行累计,获得所述累计变化值。
在一些实施例中,所述基于所述累计变化值判断所述清洁机器人的状态,具体包括:
将所述累计变化值与预设的状态阈值进行比较;
在确定所述累计变化值大于所述状态阈值的情况下,判断所述清洁机器人的状态为偏移状态;
在确定所述累计变化值小于或等于所述状态阈值的的情况下,判断所述清洁机器人的状态为非偏移状态。
在一些实施例中,在实时获取清洁机器人的工作模式之前,所述方法还包括:基于各 工作模式以及各累计阈值建立工作模式与累计阈值的映射关系;
所述基于所述工作模式获取与所述工作模式对应的目标累计阈值,具体包括:
基于所述工作模式查找所述映射关系,获得与所述工作模式对应的目标累计阈值。
在一些实施例中,所述第一累计阈值的角度范围为0.0001°~0.003°;
所述第二累计阈值的角度范围为0.01°~0.3°。
在一些实施例中,在判断所述清洁机器人的状态为偏移状态的情况下,所述方法还包括:按照预定的方式输出提示信息,以进行偏移状态提示。
本申请中的清洁机器人的状态判断方法及装置,通过实时根据清洁机器人的工作模式来调整目标累计阈值,然后基于目标累计阈值来对符合条件的角度变化值进行累计,由此能够使得累计获得的累计变化值更加精准、可靠,为后续基于累计变化值对清洁机器人的状态进行精准的判断提供了保障。
以上实施例仅为本申请的示例性实施例,不用于限制本申请,本申请的保护范围由权利要求书限定。本领域技术人员可以在本申请的实质和保护范围内,对本申请做出各种修改或等同替换,这种修改或等同替换也应视为落在本申请的保护范围内。

Claims (10)

  1. 一种清洁机器人的状态判断方法,其中,包括:
    实时获取清洁机器人的工作模式;
    基于所述工作模式获取与所述工作模式对应的目标累计阈值;
    基于所述目标累计阈值对预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值;
    基于所述累计变化值判断所述清洁机器人的状态。
  2. 如权利要求1所述的方法,其中,所述工作模式包括如下任意一种:带有摆动状态的第一工作模式以及带有非摆动状态的第二工作模式;
    基于所述工作模式获取与所述工作模式对应的目标累计阈值,具体包括:
    基于所述第一工作模式获取与所述第一工作模式对应的第一累计阈值,以获得所述目标累计阈值;
    或者,基于所述第二工作模式获取与所述第二工作模式对应的第二累计阈值,以获得所述目标累计阈值;
    其中,所述第一累计阈值小于所述第二累计阈值。
  3. 如权利要求1或2所述的方法,其中,所述基于所述目标累计阈值对预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值,具体包括:
    在所述预设时长内,将实时检测获得的角度变化值与所述目标累计阈值进行比较,在确定所述角度变化值大于或等于所述目标累计阈值的情况下,获得目标角度变化值;
    对所述预设时长内的各所述目标角度变化值进行累计,获得所述累计变化值。
  4. 如权利要求1或2所述的方法,其中,所述基于所述累计变化值判断所述清洁机器人的状态,具体包括:
    将所述累计变化值与预设的状态阈值进行比较;
    在确定所述累计变化值大于所述状态阈值的情况下,判断所述清洁机器人的状态为偏移状态;
    在确定所述累计变化值小于或等于所述状态阈值的的情况下,判断所述清洁机器人的状态为非偏移状态。
  5. 如权利要求1至4中任一项所述的方法,其中,在实时获取清洁机器人的工作模式之前,所述方法还包括:基于各工作模式以及各累计阈值建立工作模式与累计阈值的映射关系;
    所述基于所述工作模式获取与所述工作模式对应的目标累计阈值,具体包括:
    基于所述工作模式查找所述映射关系,获得与所述工作模式对应的目标累计阈值。
  6. 如权利要求2所述的方法,其中,所述第一累计阈值的角度范围为0.0001°~0.003°;
    所述第二累计阈值的角度范围为0.01°~0.3°。
  7. 如权利要求4所述的方法,其中,在判断所述清洁机器人的状态为偏移状态的情况下,所述方法还包括:按照预定的方式输出提示信息,以进行偏移状态提示。
  8. 一种清洁机器人的状态判断装置,其中,包括:
    角度变化值检测模块:用于实时对所述清洁机器人的角度变化值进行检测;
    第一获取模块,用于实时获取清洁机器人的工作模式;
    第二获取模块,用于基于所述目标工作模式获取与所述工作模式对应的目标累计阈值;
    累计模块,用于基于所述目标累计阈值对所述角度变化值检测模块在预设时长内检测到的各角度变化值进行筛选累计,获得累计变化值;
    判断模块,用于基于所述累计变化值判断所述清洁机器人的状态。
  9. 一种存储介质,其中,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述权利要求1-7任一项所述清洁机器人的状态判断方法的步骤。
  10. 一种电子设备,其中,至少包括存储器、处理器,所述存储器上存储有计算机程序,所述处理器在执行所述存储器上的计算机程序时实现上述权利要求1-7任一项所述清洁机器人的状态判断方法的步骤。
PCT/CN2022/105275 2021-12-31 2022-07-12 一种清洁机器人的状态判断方法及装置 WO2023124009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111677232.7A CN114587218B (zh) 2021-12-31 2021-12-31 一种清洁机器人的状态判断方法及装置
CN202111677232.7 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124009A1 true WO2023124009A1 (zh) 2023-07-06

Family

ID=81814314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105275 WO2023124009A1 (zh) 2021-12-31 2022-07-12 一种清洁机器人的状态判断方法及装置

Country Status (2)

Country Link
CN (1) CN114587218B (zh)
WO (1) WO2023124009A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114587218B (zh) * 2021-12-31 2023-07-21 北京石头创新科技有限公司 一种清洁机器人的状态判断方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140129027A1 (en) * 2012-11-02 2014-05-08 Irobot Corporation Simultaneous Localization And Mapping For A Mobile Robot
CN109394095A (zh) * 2018-10-23 2019-03-01 珠海市微半导体有限公司 一种机器人运动地毯偏移的控制方法、芯片及清洁机器人
CN109662658A (zh) * 2016-12-16 2019-04-23 云鲸智能科技(东莞)有限公司 一种清洁机器人
CN109885607A (zh) * 2019-01-11 2019-06-14 中广核工程有限公司 一种工业海量非结构化数据处理方法及***
CN110403539A (zh) * 2019-08-16 2019-11-05 云鲸智能科技(东莞)有限公司 清洁机器人的清洁控制方法、清洁机器人以及存储介质
CN112704444A (zh) * 2020-12-31 2021-04-27 广州科语机器人有限公司 自移动机器人直线行走控制方法、装置及存储介质
WO2021153176A1 (ja) * 2020-01-31 2021-08-05 ソニーグループ株式会社 自律移動装置、自律移動制御方法、並びにプログラム
CN114587218A (zh) * 2021-12-31 2022-06-07 北京石头创新科技有限公司 一种清洁机器人的状态判断方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020620A (en) * 1989-09-28 1991-06-04 Tennant Company Offsetting the course of a laser guided vehicle
JP3076648B2 (ja) * 1992-01-10 2000-08-14 松下電器産業株式会社 自走式掃除機
JP3370200B2 (ja) * 1994-12-09 2003-01-27 日立機電工業株式会社 無人搬送車の走行輪操舵角度決定方法
JP2005141636A (ja) * 2003-11-10 2005-06-02 Matsushita Electric Ind Co Ltd 自律走行装置
JP2009032179A (ja) * 2007-07-30 2009-02-12 Sanyo Electric Co Ltd 移動ロボット及び遠隔操作システム
KR101931362B1 (ko) * 2011-08-22 2018-12-24 삼성전자주식회사 로봇청소기 및 그 제어방법
TW201519842A (zh) * 2013-11-18 2015-06-01 Weistech Technology Co Ltd 具有路線校正功能之移動裝置及其作業步驟
CN105334850A (zh) * 2014-08-07 2016-02-17 苏州宝时得电动工具有限公司 自动移动设备
CN105302140A (zh) * 2015-11-04 2016-02-03 湖南格兰博智能科技有限责任公司 一种清洁机器人的移动路线控制***及控制方法
CN107569181B (zh) * 2016-07-04 2022-02-01 九阳股份有限公司 一种智能清洁机器人及清扫方法
CN106774359A (zh) * 2016-11-23 2017-05-31 河池学院 一种扫地机器人的车体姿态调整方法
CN110286674B (zh) * 2017-04-24 2022-08-16 广州科语机器人有限公司 移动机器人在工作区域内的角度修正方法及移动机器人
CN110522369A (zh) * 2019-09-27 2019-12-03 珠海市一微半导体有限公司 扫地机器人清扫路线编辑处理方法和装置
CN112327837A (zh) * 2020-10-28 2021-02-05 深圳市银星智能科技股份有限公司 机器人行进方法、非易失性计算机可读存储介质及机器人
CN113031635A (zh) * 2021-02-26 2021-06-25 上海高仙自动化科技发展有限公司 一种姿态调整方法、装置、清洁机器人和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140129027A1 (en) * 2012-11-02 2014-05-08 Irobot Corporation Simultaneous Localization And Mapping For A Mobile Robot
CN109662658A (zh) * 2016-12-16 2019-04-23 云鲸智能科技(东莞)有限公司 一种清洁机器人
CN109394095A (zh) * 2018-10-23 2019-03-01 珠海市微半导体有限公司 一种机器人运动地毯偏移的控制方法、芯片及清洁机器人
CN109885607A (zh) * 2019-01-11 2019-06-14 中广核工程有限公司 一种工业海量非结构化数据处理方法及***
CN110403539A (zh) * 2019-08-16 2019-11-05 云鲸智能科技(东莞)有限公司 清洁机器人的清洁控制方法、清洁机器人以及存储介质
WO2021153176A1 (ja) * 2020-01-31 2021-08-05 ソニーグループ株式会社 自律移動装置、自律移動制御方法、並びにプログラム
CN112704444A (zh) * 2020-12-31 2021-04-27 广州科语机器人有限公司 自移动机器人直线行走控制方法、装置及存储介质
CN114587218A (zh) * 2021-12-31 2022-06-07 北京石头创新科技有限公司 一种清洁机器人的状态判断方法及装置

Also Published As

Publication number Publication date
CN114587218B (zh) 2023-07-21
CN114587218A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
US20190179321A1 (en) Obstacle avoidance walking method of self-moving robot
US8947381B2 (en) Display device
WO2023124009A1 (zh) 一种清洁机器人的状态判断方法及装置
US11246464B2 (en) Robot cleaner and method for controlling thereof
GB2559668A (en) Automatic vehicle leak detection
CN109998428A (zh) 用于扫地机器人的清洁方法、***及装置
WO2015197000A1 (zh) 控制移动终端硬件状态的方法及装置
CN105049707A (zh) 防止摄像头堵转的方法和移动终端
CN104144159A (zh) 智能心跳保活方法及智能心跳保活***
US20200220967A1 (en) Method and device for waking up voice recognition function in mobile terminal, and computer readable storage medium
US20170371341A1 (en) Method and apparatus for controlling a robotic cleaning device for intensive cleaning
CN109514042B (zh) 基于pid的焊缝位置跟踪控制方法及装置
RU2656097C1 (ru) Способ и устройство сбора изображений
CN108156635B (zh) 移动终端及wifi接入点检测处理方法、及存储介质
US20220192444A1 (en) Cleaning method, window wiping robot, and storage medium
CN113633221A (zh) 自动清洁设备漏扫区域处理方法、装置和***
CN107003730A (zh) 一种电子设备、拍照方法及拍照装置
CN107786869B (zh) 一种电视设备菜单路径生成方法、装置及存储介质
CN113721769A (zh) 一种投影干扰检测方法、装置、设备及存储介质
CN114217610A (zh) 一种脏污程度检测方法、装置、设备和介质
KR101789776B1 (ko) 주행로봇의 진행각 추정을 위한 바이어스 보정 장치 및 방법
CN113442111B (zh) 机器人及其力矩补偿方法
CN114711676A (zh) 拖布清洗方法、装置、机器人基站及存储介质
KR20220131473A (ko) 전기습윤 및 초음파 방식을 이용하는 카메라의 렌즈 자가 세척 방법 및 장치
CN111835266A (zh) 电机的控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913298

Country of ref document: EP

Kind code of ref document: A1