WO2023122982A1 - 一种显示装置及其制作方法 - Google Patents

一种显示装置及其制作方法 Download PDF

Info

Publication number
WO2023122982A1
WO2023122982A1 PCT/CN2021/142171 CN2021142171W WO2023122982A1 WO 2023122982 A1 WO2023122982 A1 WO 2023122982A1 CN 2021142171 W CN2021142171 W CN 2021142171W WO 2023122982 A1 WO2023122982 A1 WO 2023122982A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
color conversion
emitting chip
emitting
Prior art date
Application number
PCT/CN2021/142171
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
厦门市芯颖显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市芯颖显示科技有限公司 filed Critical 厦门市芯颖显示科技有限公司
Priority to PCT/CN2021/142171 priority Critical patent/WO2023122982A1/zh
Publication of WO2023122982A1 publication Critical patent/WO2023122982A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present application relates to the field of Micro LED (micro light emitting diode) display technology, and in particular to a display device and a manufacturing method thereof.
  • Micro LED microwave light emitting diode
  • Micro LED chips can achieve ns-level response speed and ultra-high brightness.
  • the pixel pitch of the MicroLED is very small.
  • black barriers in the color conversion substrate above the MicroLEDs for shading, and set color barriers between the black barriers.
  • the conversion layer is converted into three-color light.
  • the absorption rate of the black retaining wall reduces the light efficiency.
  • the black retaining wall is made of organic material, water vapor easily enters the color conversion layer from the black retaining wall, which reduces the reliability of the color conversion layer.
  • Embodiments of the present application provide a display device and a manufacturing method thereof, which are used to solve the problem of reducing light efficiency when black blocking walls are used in the color conversion substrate above the MicroLED to prevent color crossover between pixels, and water vapor is easily blocked from black.
  • the wall enters the color conversion layer, which reduces the reliability of the color conversion layer, and also spreads to the MicroLED area, resulting in a technical problem of shortening the service life.
  • An embodiment of the present application provides a display device, including a driving substrate, a light-emitting component layer, and a color conversion substrate; wherein, the light-emitting component layer includes a plurality of light-emitting chip units disposed on the driving substrate; each of the light-emitting chip units has a top Light-emitting surface; the color conversion substrate includes a second metal layer, a filling layer, and a plurality of condenser lenses, the second metal layer is provided with a first through hole at the position corresponding to the light-emitting surface of the light-emitting chip unit, and the filling layer It is arranged in the first through hole; the condenser lens is respectively arranged in the first through hole and arranged on the side of the filling layer away from the light emitting component layer.
  • the light-emitting chip unit includes three blue MicroLED chips, and the filling layer includes a red light color conversion layer and a green light color conversion layer; two of the three through holes corresponding to one light-emitting chip unit One of the red light color conversion layers and one of the green light color conversion layers are respectively arranged in the through holes.
  • the filling layer also includes a transparent layer; one of the red light color conversion layers and one of the green light color conversion layers are respectively provided in the three first through holes corresponding to one of the light emitting chip units. and one of said transparent layers.
  • the thicknesses of the red light color conversion layer, the green light color conversion layer and the transparent layer disposed in the three first through holes are the same.
  • the color conversion substrate further includes a blue light reflective layer, which is arranged corresponding to the red light color conversion layer and the green light color conversion layer.
  • the blue light reflective layer is disposed on the second metal layer; the blue light reflective layer is provided with a light transmission hole at a position corresponding to the transparent layer.
  • the blue light reflective layer is composed of metal film/transparent dielectric film/metal film three-layer film, or the blue light reflective layer is composed of metal film/transparent dielectric film/metal film/transparent dielectric film/metal film five-layer film .
  • the color conversion substrate also includes a light-shielding layer, which is arranged on the side of the blue light reflective layer away from the driving substrate; the light-shielding layer is provided with a second through hole, and the second through hole is connected to the first through hole.
  • One through hole is provided in one-to-one correspondence.
  • the color conversion substrate further includes a light-shielding layer disposed on the second metal layer; the light-shielding layer is provided with second through holes, and the second through holes correspond to the first through holes one by one. It is provided that the blue light reflective layer is disposed in the second through hole corresponding to the red light color conversion layer and the green light color conversion layer.
  • the light-emitting component layer further includes a first metal layer disposed around the light-emitting chip unit; the first metal layer is disposed correspondingly to the second metal layer, and is sealed and connected to each other.
  • the light-emitting component layer further includes: a flat layer disposed on the driving substrate and filled between the light-emitting chip units; and a transparent electrode layer covering the flat layer and It is electrically connected with the light-emitting chip unit; the first metal layer is set on the transparent electrode layer or the first metal layer and the transparent electrode layer are set on the same layer.
  • the light-emitting component layer further includes: a reflective layer disposed on the side wall of the light-emitting chip unit, or disposed on the side wall of the light-emitting chip unit and the non-reflective layer on the top surface of the light-emitting chip unit. Top out the glossy area.
  • the display device further includes: a cover plate disposed on a side of the color conversion substrate away from the driving substrate.
  • the light-emitting chip unit includes at least one of a red MicroLED chip, a green MicroLED chip, and a blue MicroLED chip;
  • the filling layer includes a filter layer, and the filter layer includes a red filter layer, a green filter layer and at least one of the blue filter layers;
  • the red filter layer corresponds to the red MicroLED chip, the green filter layer corresponds to the green MicroLED chip, and the blue filter layer corresponds to the blue MicroLED chip settings.
  • the present application also provides a method for manufacturing a display device, including the steps of: fabricating a light-emitting component layer on a driving substrate, which is to transfer and bond a plurality of light-emitting chip units on the driving substrate, each of the light-emitting chip units It has a light-emitting surface; a flat layer is made on the driving substrate to fill between the light-emitting chip units; a transparent electrode layer is made on the flat layer, and the transparent electrode layer is connected to the top of the light-emitting chip unit.
  • the light-emitting surface is electrically connected; a first metal layer is made on the transparent electrode layer, and the first metal layer is arranged around the light-emitting chip unit; a second metal layer is made on a carrier substrate, and the second metal layer is etched.
  • the metal layer forms a first through hole at the position corresponding to the light emitting surface of the light-emitting chip unit, the filling layer is arranged in the first through hole; the condenser lenses are respectively arranged in the first through hole and set on the side of the filling layer away from the carrier substrate; attach a transfer substrate to the side of the second metal layer provided with the condenser lens; peel off the carrier substrate, and place the second metal layer
  • the side provided with the filling layer is attached to the light-emitting component layer, the first through hole is set corresponding to the light-emitting chip unit, and the first metal layer is sealed and connected to the light-emitting chip unit by low-temperature welding. second metal layer; peeling off the transfer substrate.
  • the material of the condensing lens includes polar glue
  • the polar glue includes epoxy glue or silicone acrylic glue
  • the material of the filling layer includes non-polar material
  • the polar glue is formed in the first through hole by inkjet printing, and the polar glue is solidified downward by gravity and polar repulsion in a suspended manner to form the condenser lens.
  • the step of peeling off the transfer substrate also includes: sequentially fabricating a blue light reflective layer on one side of the cover plate, and fabricating a light-shielding layer on the blue light reflective layer, attaching the blue light reflective layer to the first the upper surface of the second metal layer.
  • the second metal layer is used in the color conversion substrate to replace the existing black barrier, which can reflect light instead of absorbing light, and increase the light output rate.
  • the second metal layer can prevent water vapor transmitted laterally from entering the filling layer, increasing the reliability of the filling layer.
  • the condenser lens is arranged in the first through hole of the second metal layer, and the outgoing light of the filling layer directly enters the condenser lens. Combining with the limiting effect of the light exit angle of the second metal layer, cross-color between pixels is avoided.
  • the filling layer disposed in the first through hole of the second metal layer includes a red light color conversion layer and a green light color conversion layer, which can reuse reflected light and increase the light extraction rate.
  • a blue light reflective layer corresponding to the red light color conversion layer and the green light color conversion layer is provided, and the blue light reflective layer can reflect non-blue light to the color conversion layer, thereby improving the light conversion rate and utilization rate , improving the luminous brightness of the display device.
  • FIG. 1 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • Fig. 2 is a flow chart of a manufacturing method of a display device provided by an embodiment of the present application
  • Fig. 3 is a schematic structural view of a light-emitting component layer provided by an embodiment of the present application.
  • Fig. 4 is a schematic view of the structure provided by an embodiment of the present application after the transfer substrate is attached;
  • Fig. 5 is a schematic diagram of the structure when the transfer substrate is peeled off according to an embodiment of the present application.
  • Fig. 6 is a schematic structural view when a light-shielding layer and a blue light-reflecting layer are fabricated on one side of the cover provided by an embodiment of the present application;
  • Fig. 7 is a schematic structural diagram of a display device provided by another embodiment of the present application.
  • Fig. 8 is a schematic view of the structure provided by an embodiment of the present application after the transfer substrate is attached;
  • Fig. 9 is a schematic structural view when the transfer substrate is peeled off according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a display device provided by yet another embodiment of the present application.
  • cover plate 4 silicon substrate 11, complementary metal oxide semiconductor layer 12,
  • the second metal layer 31 the filling layer 32, the condenser lens 33,
  • Blue light reflective layer 34 light-shielding layer 35, carrier substrate 36,
  • the red filter layer 32R, the green filter layer 32G, and the blue filter layer 32B are the red filter layer 32R, the green filter layer 32G, and the blue filter layer 32B.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • Embodiments of the present application provide a display device and a manufacturing method of the display device. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
  • Embodiment 1 of the present application provides a display device 100, including a driving substrate 1, a light emitting component layer 2, and a color conversion substrate 3; A plurality of light-emitting chip units 21 and the first metal layer 22 arranged around the light-emitting chip units 21; each of the light-emitting chip units 21 has a light-emitting surface 211; the color conversion substrate 3 includes a second metal layer 31, a filling layer 32 and A plurality of condenser lenses 33, the second metal layer 31 is provided with a first through hole 311 at a position corresponding to the light emitting surface 211 of the light emitting chip unit 21, and the filling layer 32 is provided in the first through hole 311 Middle; the second metal layer 31 is arranged corresponding to the first metal layer 22 and is sealed and connected.
  • the condenser lenses 33 are respectively disposed in the first through holes 311 and disposed on a side of the filling layer 32 away from the light-emitting component layer 2 .
  • the condensing lens 33 is provided in one-to-one correspondence with the first through hole 311
  • the second metal layer 31 is used in the color conversion substrate 3 to replace the existing black barrier, which can reflect light instead of absorbing light, and increase the light extraction rate. Moreover, the second metal layer 31 can block the lateral transmission of water vapor, prevent water vapor from corroding the filling layer 32 , and improve the reliability of the filling layer 32 .
  • the first metal layer 22 and the second metal layer 31 are connected by low temperature welding.
  • the low-temperature welding method realizes the sealed connection without affecting the structure of the substrate, and makes the metal layer seal the light-emitting chip unit 21 and the filling layer 32 to prevent water vapor from entering and increase the service life.
  • the driving substrate 1 includes: a silicon substrate 11 and a complementary metal oxide semiconductor layer (CMOS) 12 disposed on the silicon substrate 11 .
  • the silicon substrate 11 is a carrier
  • the CMOS layer 12 is a circuit layer for driving the light-emitting chip unit 21 , which can effectively control the light-emitting and off of the light-emitting chip unit 21 .
  • the light-emitting component layer 2 further includes a flat layer 23 and a transparent electrode layer 24; the flat layer 23 is provided on the driving substrate 1 and filled between adjacent light-emitting chip units 21;
  • the transparent electrode layer 24 covers the planar layer 23 and is electrically connected to the light-emitting chip unit 21; the first metal layer 22 is disposed on the transparent electrode layer 24 or the first metal layer 22 is connected to the The transparent electrode layer 24 is provided on the same layer.
  • the flat layer 23 is made of an opaque material, which can block the cross-light phenomenon of adjacent light-emitting chip units 21 and reduce the installation distance between the light-emitting chip units 21 .
  • the material of the transparent electrode layer 24 includes indium tin oxide (ITO), which can transmit light, so that the light emitted by the light-emitting chip unit 21 can pass through the transparent electrode layer 24 .
  • ITO indium tin oxide
  • the light-emitting component layer 2 further includes: a reflective layer 25 disposed on the side wall of the light-emitting chip unit 21 , or disposed on the side wall of the light-emitting chip unit 21 And the area on the top surface of the light-emitting chip unit 21 that is not the light-emitting surface 211 , that is, the reflective layer 25 is not disposed in the area where the light-emitting surface 211 is located.
  • the reflective layer 25 can effectively reflect light, so that all the light is emitted from the light-emitting surface 211. On the one hand, it can effectively block the cross-light phenomenon of adjacent light-emitting chip units 21, and reduce the installation distance between the light-emitting chip units 21. On the other hand, it can The light emitted by the light emitting chip unit 21 can be fully utilized.
  • the material of the flat layer 23 may also be a transparent material such as silicon nitride or silicon oxide.
  • the light-emitting chip unit 21 includes three blue-light MicroLED chips B, and the filling layer 32 includes a red light color conversion layer 321 and a green light color conversion layer 322; A red light color conversion layer 321 and a green light color conversion layer 322 are respectively disposed in two first through holes 311 of one through hole 311 , and the filling layer 32 is not disposed in the other first through hole 311 . It can be understood that every three blue MicroLED chips B, one red light color conversion layer 321 and one green light color conversion layer 322 form three colors of red, green and blue light, constituting a pixel unit.
  • the way that the light-emitting chip unit 21 includes three blue MicroLED chips B is convenient for mass production, and the manufacturing process is reduced compared with the structure of three kinds of red, green and blue MicroLED chips in one pixel unit.
  • the metal electrode 26 is set under the blue-light MicroLED chip B, so that the reflective effect of the metal electrode 26 can be used to cover the non-extruded light surface 211 area around the light-emitting chip unit 21 together with the reflective layer 25, so that the light-emitting chip
  • the light emitted by the unit 21 is all emitted from the light emitting surface 211 , which further improves the utilization rate of the light emitted by the light emitting chip unit 21 .
  • the color conversion substrate 3 further includes a blue light reflective layer 34, and the blue light reflective layer 34 corresponds to the red light color conversion layer 321 and the green light color conversion layer 322.
  • the position is set to reflect blue light;
  • the blue light reflective layer 34 is provided with a light-transmitting hole 341 at a position corresponding to the transparent layer 323 to facilitate the passage of blue light.
  • the blue light reflective layer 34 is disposed on the second metal layer 31, which can reduce manufacturing difficulty.
  • the blue light reflective layer 34 can effectively reflect blue light and selectively pass red light and green light, so that the blue light is reflected again into the red light color conversion layer 321 and the green light color conversion layer 322 to excite quantum dots to generate Red light and green light improve light utilization efficiency.
  • the blue light reflective layer 34 is composed of metal film/transparent medium film/metal film three-layer film, or the blue light reflective layer 34 is composed of metal film/transparent medium film/metal film/transparent medium film/metal film Composed of five layers of film; the metal film material is any one of silver, aluminum, copper, and gold, and the transparent layer material is any one of metal oxide, silicon nitride, and silicon oxide.
  • the blue light reflective layer 34 of the five-layer film structure has a higher blue light reflectivity than the blue light reflective layer 34 of the three-layer film structure, and can more effectively reflect blue light to the red light color conversion layer 321 and the green light color conversion layer
  • the quantum dots are excited in 322 to generate red light and green light, which improves the light utilization efficiency.
  • the color conversion substrate 3 further includes a light shielding layer 35 disposed on a side of the blue light reflective layer 34 away from the driving substrate 1 .
  • the light-shielding layer 35 can block the transverse light transmission at the opening position of the first through hole 311 to avoid cross-lighting.
  • the light-shielding layer 35 is provided with a second through hole 351 , and the second through hole 351 is provided in one-to-one correspondence with the first through hole 311 to facilitate light transmission.
  • the display device 100 further includes: a cover plate 4 disposed on a side of the color conversion substrate 3 away from the driving substrate 1 .
  • the cover plate 4 can seal the through-hole structure on the color conversion substrate 3 to prevent water vapor from entering.
  • the present application also provides a method for manufacturing a display device, including the following steps S1-S3:
  • a flat layer 23 is formed on the drive substrate 1 to fill between the light-emitting chip units 21;
  • a transparent electrode layer 24 is formed on the flat layer 23, and the transparent electrode layer 24 is electrically connected to the light-emitting chip unit 21. Connection; making a first metal layer 22 on the transparent electrode layer 24 , and the first metal layer 22 is arranged around the light-emitting chip unit 21 .
  • the driving substrate 1 includes a silicon substrate 11 and a complementary metal oxide semiconductor (CMOS) layer 12 disposed on the silicon substrate 11 .
  • the silicon substrate 11 is a carrier
  • the CMOS layer 12 is a circuit layer for driving the light-emitting chip unit 21 , which can effectively control the light-emitting and off of the light-emitting chip unit 21 .
  • the structure after the light-emitting component layer 2 is fabricated is shown in FIG. 3 .
  • the material of the condensing lens 33 when making the condensing lens 33, includes polar glue, and the polar glue includes epoxy glue or silicone acrylic glue; the material of the filling layer 32 includes non-polar glue.
  • the filling layer 32 includes a red light color conversion layer 321 and a green light color conversion layer 322 formed by mixing quantum dot colloid in a non-polar solvent; the polar glue is formed by inkjet printing on the The condensing lens 33 is formed on the filling layer in the first through hole 311 and cured.
  • a small-sized condenser lens 33 can be self-assembled in the first through hole 311 , and the protrusion angle of the condenser lens 33 relative to the filling layer 32 is relatively large.
  • the light-emitting chip unit 21 includes three blue MicroLED chips B, and the filling layer 32 includes a red light color conversion layer 321 and a green light color conversion layer 322; three first through holes 311 corresponding to one light-emitting chip unit 21 A red light color conversion layer 321 and a green light color conversion layer 322 are respectively provided in two of the first through holes 311 , and no filling layer 32 is provided in the other first through hole 311 .
  • the red light color conversion layer 321 and the green light color conversion layer 322 disposed in the three first through holes 311 have the same thickness. Every three blue MicroLED chips B and one red light color conversion layer 321 and one green light color conversion layer 322 form three colors of red, green and blue light, constituting a pixel unit.
  • a transfer substrate 37 is attached to the side of the second metal layer 31 provided with the condenser lens 33.
  • the structure after the attachment of the transfer substrate 37 is shown in FIG.
  • the condenser lens 33 is located on the filling layer 32 , and the protrusion of the condenser lens 33 is upward to form a convex lens structure.
  • the carrier substrate 36 is peeled off, and the side of the second metal layer 31 provided with the filling layer 32 is attached to the light-emitting component layer 2.
  • the first through hole 311 and the light-emitting chip unit 21 are arranged correspondingly, and the first metal layer 22 and the second metal layer 31 are hermetically connected by low-temperature welding; the transfer substrate 37 is peeled off.
  • FIG. 5 is a schematic diagram of the structure when the transfer substrate 37 is peeled off.
  • the blue light reflective layer 34 is composed of three layers of metal film/transparent dielectric film/metal film, or the blue light reflective layer 34 is composed of five layers of metal film/transparent dielectric film/metal film/transparent dielectric film/metal film.
  • the blue light reflective layer 34 of the five-layer film structure has a higher blue light reflectivity than the blue light reflective layer 34 of the three-layer film structure, and can more effectively reflect blue light to the red light color conversion layer 321 and the green light color conversion layer
  • the quantum dots are excited in 322 to generate red light and green light, which improves the light utilization efficiency.
  • the light-shielding layer 35 is provided with a second through hole 351 , and the second through hole 351 is provided in one-to-one correspondence with the first through hole 311 to facilitate light transmission.
  • FIG. 6 it is a schematic view of the structure when the light-shielding layer 35 and the blue light-reflecting layer 34 are sequentially manufactured on one side of the cover plate 4 .
  • the cover plate 4 is bonded to the color conversion substrate 3
  • the side of the cover plate 4 provided with the light-shielding layer 35 and the blue light reflection layer 34 is bonded to the side of the color conversion substrate 3 away from the driving substrate 1 .
  • FIG. 1 is a schematic diagram of the overall structure of a display device 100 after the cover plate 4 is attached to the color conversion substrate 3 .
  • the color conversion substrate 3 includes a blue light reflective layer 34 and a light shielding layer 35
  • the blue light reflective layer 34 and the light shield layer 35 can be formed together when making the color conversion substrate 3 in step S2, or can be formed when the cover plate is attached.
  • the blue light reflective layer 34 and the light shielding layer 35 are disposed on the side of the cover plate 4 facing the second metal layer 31 of the color conversion substrate 3 .
  • the second metal layer 31 is used in the color conversion substrate 3 to replace the existing black barrier, which can reflect light instead of absorb light, increase the light output rate, and use low-temperature welding to connect the surrounding light through the third metal layer
  • the first metal layer 22 and the second metal layer 31 provided on the chip unit 21 make the metal layer seal the light-emitting chip unit 21 and the filling layer 32 to prevent water vapor from entering and increase the service life.
  • a blue light reflective layer 34 corresponding to the red light color conversion layer 321 and the green light color conversion layer 322 is provided in the first through hole 311, and the blue light reflective layer 34 can reflect blue light to the The red light color conversion layer 321 and the green light color conversion layer 322 improve the light conversion rate and utilization rate.
  • Embodiment 2 of the present application includes all the technical features of Embodiment 1, the difference being that the filling layer 32 in Embodiment 2 not only includes the red light color conversion layer 321 and the green light color conversion layer 322 also includes a transparent layer 323 .
  • the light-emitting chip unit 21 includes three blue-light MicroLED chips B, and the filling layer 32 includes a red light color conversion layer 321, a green light color conversion layer 322 and a transparent layer 323; Of the three first through holes 311 corresponding to the chip unit 21, two of the first through holes 311 are respectively provided with a red light color conversion layer 321 and a green light color conversion layer 322, and the other first through hole 311 is provided with a There is a transparent layer 323 . It can be understood that every three blue MicroLED chips B, a red color conversion layer 321 , a green color conversion layer 322 and a transparent layer 323 form three colors of red, green and blue light, constituting a pixel unit.
  • the way that the light-emitting chip unit 21 includes three blue MicroLED chips B is convenient for mass production, and the manufacturing process is reduced compared with the structure of three kinds of red, green and blue MicroLED chips in one pixel unit.
  • the metal electrode 26 is set under the blue-light MicroLED chip B, so that the reflective effect of the metal electrode 26 can be used to cover the non-extruded light surface 211 area around the light-emitting chip unit 21 together with the reflective layer 25, so that the light-emitting chip
  • the light emitted by the unit 21 is all emitted from the light emitting surface 211 , which further improves the utilization rate of the light emitted by the light emitting chip unit 21 .
  • the red light color conversion layer 321, the green light color conversion layer 322 and the transparent layer 323 disposed in the three first through holes 311 have the same thickness, so that Make the deflection angles of the light passing through the red light color conversion layer 321, the green light color conversion layer 322 and the transparent layer 323 in each of the first through holes 311 during the transmission process the same, avoiding the formation of The color cast between red, green and blue light is caused by the different deflection angles of light.
  • the deflection angles of the light at the first through hole 311 for emitting blue light relative to the first through hole 311 for emitting red light and green light will be different, resulting in red, green and blue
  • the color after the three-color light is mixed is not consistent with the expected chromaticity, resulting in color cast.
  • the present application also provides a method for manufacturing a display device, including the following steps S1-S3:
  • a flat layer 23 is formed on the drive substrate 1 to fill between the light-emitting chip units 21;
  • a transparent electrode layer 24 is formed on the flat layer 23, and the transparent electrode layer 24 is electrically connected to the light-emitting chip unit 21. Connection; making a first metal layer 22 on the transparent electrode layer 24 , and the first metal layer 22 is arranged around the light-emitting chip unit 21 .
  • the driving substrate 1 includes a silicon substrate 11 and a complementary metal oxide semiconductor (CMOS) layer 12 disposed on the silicon substrate 11 .
  • the silicon substrate 11 is a carrier
  • the CMOS layer 12 is a circuit layer for driving the light-emitting chip unit 21 , which can effectively control the light-emitting and off of the light-emitting chip unit 21 .
  • the structure after the light-emitting component layer 2 is fabricated is shown in FIG. 3 .
  • the light-emitting chip unit 21 also includes three blue MicroLED chips B, so step S1 of this embodiment is exactly the same as step S1 of embodiment 1.
  • a first through hole 311 is formed at the position of the surface 211, and the filling layer 32 is arranged in the first through hole 311; the condenser lenses 33 are respectively arranged in the first through hole 311 and are arranged in the filling layer 32 away from the side of the carrier substrate 36 . As shown in FIG.
  • the filling layer 32 includes a red light color conversion layer 321, a green light color conversion layer 322 and a transparent layer 323; two of the three first through holes 311 corresponding to one light emitting chip unit 21 A red light color conversion layer 321 and a green light color conversion layer 322 are respectively disposed in one through hole 311 , and a transparent layer 323 is disposed in the other first through hole 311 . It can be understood that, in one light-emitting chip unit 21, the red light color conversion layer 321, the green light color conversion layer 322 and the transparent layer 323 arranged in the three first through holes 311 Same thickness. Every three blue MicroLED chips B and one red light color conversion layer 321 and one green light color conversion layer 322 form three colors of red, green and blue light, constituting a pixel unit.
  • the material of the condensing lens 33 when making the condensing lens 33, includes polar glue, and the polar glue includes epoxy glue or silicone acrylic glue; the material of the filling layer 32 includes non-polar glue.
  • the filling layer 32 includes a red light color conversion layer 321 and a green light color conversion layer 322 formed by mixing quantum dot colloids in non-polar solvents, and a transparent layer formed by non-polar solvents that do not contain quantum dot colloids.
  • Layer 323 the polar glue is formed on the filling layer 32 in the first through hole 311 by inkjet printing and cured to form the condenser lens 33 .
  • a small-sized condenser lens 33 can be self-assembled in the first through hole 311 , and the protrusion angle of the condenser lens 33 relative to the filling layer 32 is relatively large.
  • a transfer substrate 37 is attached to the side of the second metal layer 31 provided with the condenser lens 33.
  • the structure after the attachment of the transfer substrate 37 is shown in FIG.
  • the condenser lens 33 is located on the filling layer 32 , and the protrusion of the condenser lens 33 is upward to form a convex lens structure.
  • the carrier substrate 36 is peeled off, and then the side of the second metal layer 31 provided with the filling layer 32 is attached to the light-emitting component layer 2, and the first through hole 311 is provided correspondingly to the light-emitting chip unit 21 , and sealingly connect the first metal layer 22 and the second metal layer 31 by low-temperature welding; peel off the transfer substrate 37 .
  • FIG. 9 is a schematic diagram of the structure when the transfer substrate 37 is peeled off.
  • Step S3 of this embodiment is exactly the same as step S3 of Embodiment 1.
  • FIG. 7 is a schematic diagram of the overall structure of the display device 100 after the cover plate 4 is attached to the color conversion substrate 3 .
  • Embodiment 3 of the present application includes most of the technical features in Embodiment 2, the difference is that the light emitting chip unit 21 in Embodiment 3 includes a red MicroLED chip R and a green MicroLED chip G and at least one of the blue MicroLED chips B; the filling layer 32 includes a filter layer (CF), and the filter layer includes a red filter layer 32R, a green filter layer 32G and a blue filter layer of non-polar material At least one of the optical layers 32B. Specifically, the red filter layer 32R is set corresponding to the red MicroLED chip R, the green filter layer 32G is set corresponding to the green MicroLED chip G, and the blue filter layer 32B is set corresponding to the blue MicroLED chip B.
  • the red filter layer 32R is set corresponding to the red MicroLED chip R
  • the green filter layer 32G is set corresponding to the green MicroLED chip G
  • the blue filter layer 32B is set corresponding to the blue MicroLED chip B.
  • Embodiment 3 is different from that in Embodiment 2 in that the light-emitting chip unit 21 is a blue-light MicroLED chip B.
  • the blue-light reflective layer in Embodiment 2 is not provided in Embodiment 3, so that it can also be used in the color conversion substrate 3.
  • the second metal layer 31 replaces the existing black barrier, and can reflect light instead of absorbing light, thereby increasing the light extraction rate.
  • the filling layer 32 is formed in the first through hole 311 of the second metal layer 31, and the filling layer 32 includes a red filter layer 32R, a green filter layer 32G and a blue filter layer 32B, and the second metal layer 31 can be The lateral transmission of water vapor is blocked, and the reliability of the filling layer 32 is improved.
  • first metal layer 22 and the second metal layer 31 surrounding the light-emitting chip unit 21 are connected by a low-temperature soldering method through the third metal layer, so that the metal layer seals the light-emitting chip unit 21 and the filling layer 32, avoiding the entry of water vapor, increasing service life.
  • Embodiment 1 Based on the display device 100 described above, please refer to FIG. 2 in Embodiment 1 for the manufacturing method of the corresponding display device in Embodiment 3.
  • the sequence of steps is the same as that in Embodiment 2, and the difference is only that it is fabricated on the driving substrate 1.
  • the light-emitting chip unit 21 in the light-emitting component layer 2 and the filling layer 32 formed in the first through hole 311 of the second metal layer 31 adopt the structure of the third embodiment.
  • the filter layer includes a red filter layer 32R, a green filter layer 32G and a blue filter layer of non-polar material. At least one of the optical layers 32B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置(100)以及制作方法。显示装置(100)包括驱动基板(1)、发光组件层(2)及色转换基板(3);发光组件层(2)包括设于驱动基板(1)上的多个发光芯片单元(21);色转换基板(3)包括第二金属层(31)、填充层(32)以及多个聚光透镜(33),第二金属层(31)在对应发光芯片单元(21)的顶出光面(211)位置设有第一通孔(311),填充层(32)设于第一通孔(311)中;聚光透镜(33)分别设于第一通孔(311)内并设于填充层(32)背离发光组件层(2)的一侧。

Description

一种显示装置及其制作方法 技术领域
本申请涉及MicroLED(微发光二极管)显示技术领域,具体涉及一种显示装置及其制作方法。
背景技术
目前MicroLED芯片由于采用无机发光二极管技术,可实现ns级别的响应速度和超高亮度。由于三色全彩MicroLED微显示中,MicroLED的像素间距很小,要防止像素之间的串色,就要在MicroLED上方的色转换基板中采用黑色挡墙进行遮光,黑色挡墙之间设置色转换层转换为三色光,一方面黑色挡墙的吸收率导致光效降低,此外由于黑色挡墙为有机材质,水汽容易从黑色挡墙进入色转换层,从而导致色转换层的可靠性降低,而且也会扩散至MicroLED区域,导致缩短使用寿命。此外由于微显示要求亮度较高,光源的出光角小,需要通过透镜实现视角收窄,但由于透镜的设置位置远离色转换层一段距离而造成三色光在此段距离内多角度散射导致在像素之间出现串色。因此如何防止像素之间的串色、提升MicroLED出光率以及增加阻隔水汽效果成为亟需解决的技术问题。
技术问题
本申请实施例提供一种显示装置及其制作方法,用于解决在MicroLED上方的色转换基板中采用黑色挡墙进行遮光防止像素之间的串色时导致光效降低,以及水汽容易从黑色挡墙进入色转换层,从而导致色转换层的可靠性降低,而且也会扩散至MicroLED区域,导致缩短使用寿命的技术问题。
技术解决方案
本申请实施例提供一种显示装置,包括驱动基板、发光组件层及色转换基板;其中,发光组件层包括设于所述驱动基板上的多个发光芯片单元;各所述发光芯片单元具有顶出光面;色转换基板包括第二金属层、填充层以及多个聚光透镜,所述第二金属层在对应所述发光芯片单元的顶出光面位置设有第一通孔,所述填充层设于所述第一通孔中;所述聚光透镜分别设于所述第一通孔内并设于所述填充层背离所述发光组件层的一侧。
进一步的,所述发光芯片单元包括三个蓝光MicroLED芯片,所述填充层包括红光色转换层和绿光色转换层;在一个所述发光芯片单元对应的三个所述通孔的其中两个所述通孔内分别设有一个所述红光色转换层和一个所述绿光色转换层。
进一步的,所述填充层还包括透明层;在一个所述发光芯片单元对应的三个所述第一通孔中分别设有一个所述红光色转换层、一个所述绿光色转换层和一个所述透明层。
进一步的,在一个发光芯片单元中,设于三个所述第一通孔中的所述红光色转换层、所述绿光色转换层和所述透明层的厚度相同。
进一步的,所述色转换基板还包括蓝光反光层,对应所述红光色转换层和所述绿光色转换层设置。
进一步的,所述蓝光反光层设于所述第二金属层上;所述蓝光反光层在对应所述透明层的位置设置透光孔。
进一步的,所述蓝光反光层由金属膜/透明介质膜/金属膜三层膜构成,或者所述蓝光反光层由金属膜/透明介质膜/金属膜/透明介质膜/金属膜五层膜构成。
进一步的,所述色转换基板还包括遮光层,设于所述蓝光反光层背离所述驱动基板的一侧;所述遮光层设有第二通孔,所述第二通孔与所述第一通孔一一对应设置。
进一步的,所述色转换基板还包括遮光层,设于所述第二金属层上;所述遮光层设有第二通孔,所述第二通孔与所述第一通孔一一对应设置,所述蓝光反光层设于对应所述红光色转换层和所述绿光色转换层的所述第二通孔内。
进一步的,所述发光组件层还包括环绕所述发光芯片单元设置的第一金属层;所述第一金属层与所述第二金属层对应设置,且相互密封连接。
进一步的,所述发光组件层还包括:平坦层,设于所述驱动基板上并填充于所述发光芯片单元之间;以及透明电极层,所述透明电极层覆盖于所述平坦层上并与所述发光芯片单元电性连接;所述第一金属层设于所述透明电极层上或者所述第一金属层与所述透明电极层设于同一层。
进一步的,所述发光组件层还包括:反射层,设于所述发光芯片单元的侧壁上,或者设于所述发光芯片单元的侧壁上和所述发光芯片单元的顶面上的非顶出光面区域。
进一步的,所述显示装置还包括:盖板,设于所述色转换基板背离所述驱动基板的一侧。
进一步的,所述发光芯片单元包括红色MicroLED芯片、绿色MicroLED芯片以及蓝色MicroLED芯片至少其中之一;所述填充层包括滤光层,所述滤光层包括红色滤光层、绿色滤光层以及蓝色滤光层至少其中之一;所述红色滤光层对应所述红色MicroLED芯片设置,所述绿色滤光层对应所述绿色MicroLED芯片设置,所述蓝色滤光层对应蓝色MicroLED芯片设置。
本申请还提供一种显示装置的制作方法,包括步骤:在一驱动基板上制作发光组件层,其为将多个发光芯片单元转移并键合在所述驱动基板上,各所述发光芯片单元具有顶出光面;在所述驱动基板上制作一平坦层填充于所述发光芯片单元之间;在所述平坦层上制作一透明电极层,所述透明电极层与所述发光芯片单元的顶出光面电性连接;在所述透明电极层上制作一第一金属层,所述第一金属层环绕所述发光芯片单元设置;在一承载基板上制作第二金属层,蚀刻所述第二金属层在对应所述发光芯片单元的顶出光面位置形成第一通孔,所述填充层设于所述第一通孔中;所述聚光透镜分别设于所述第一通孔内并设于所述填充层背离所述承载基板的一侧;在所述第二金属层设有所述聚光透镜的一侧贴附转移基板;剥离所述承载基板,将所述第二金属层设有所述填充层的一侧贴附于所述发光组件层上,所述第一通孔与所述发光芯片单元对应设置,并通过低温焊接方式密封连接所述第一金属层和所述第二金属层;剥离所述转移基板。
进一步的,在制作所述聚光透镜时,所述聚光透镜的材质包括极型胶水,所述极型胶水包括环氧胶或硅胶丙烯酸胶;所述填充层的材质包括非极型材质;所述极型胶水通过喷墨打印方式形成于所述第一通孔内,并以悬挂方式使得所述极型胶水向下依靠重力以及极性排斥力固化形成所述聚光透镜。
进一步的,在所述剥离所述转移基板步骤之后还包括:在盖板的一侧依次制作蓝光反光层,并在所述蓝光反光层上制作遮光层,将蓝光反光层贴附在所述第二金属层的上表面。
有益效果
本申请实施例在色转换基板中采用第二金属层替换现有的黑色挡墙,能够反射光线而不是吸收光线,增加了出光率,第二金属层可阻挡横向传输的水汽进入填充层,增加了填充层的可靠性。而且设置聚光透镜在第二金属层的第一通孔内,填充层的出射光直接进入聚光透镜,结合第二金属层的出光角度限制作用,避免了像素之间的串色。并且还进一步设置在第二金属层的第一通孔内的填充层包括红光色转换层和绿光色转换层,能够再次利用反射光线,增加了出光率。进一步还设有与所述红光色转换层和所述绿光色转换层对应设置的蓝光反光层,所述蓝光反光层能反射非蓝光光线至色转换层,提升了光转换率和利用率,提升了显示装置的发光亮度。
附图说明
图1是本申请一实施例提供的一种显示装置的结构示意图;
图2是本申请一实施例提供的一种显示装置的制作方法的流程图;
图3是本申请一实施例提供的制作完成发光组件层后的结构示意图;
图4是本申请一实施例提供的贴附完成转移基板后的结构示意图;
图5是本申请一实施例提供的剥离所述转移基板时的结构示意图;
图6是本申请一实施例提供的在所述盖板的一侧制作完成遮光层和蓝光反光层时的结构示意图;
图7是本申请另一实施例提供的一种显示装置的结构示意图;
图8是本申请一实施例提供的贴附完成转移基板后的结构示意图;
图9是本申请一实施例提供的剥离所述转移基板时的结构示意图;
图10是本申请再一实施例提供的一种显示装置的结构示意图。
附图标记说明:
驱动基板1,发光组件层2,色转换基板3,
盖板4,硅基板11,互补金属氧化物半导体层12,
发光芯片单元21,第一金属层22,平坦层23,
透明电极层24,反射层25,金属电极26,
第二金属层31,填充层32,聚光透镜33,
蓝光反光层34,遮光层35,承载基板36,
转移基板37,显示装置100,顶出光面211,
第一通孔311,红光色转换层321,绿光色转换层322,
透明层323,透光孔341,第二通孔351,
红色MicroLED芯片R,绿色MicroLED芯片G,蓝色MicroLED芯片B,
红色滤光层32R,绿色滤光层32G,蓝色滤光层32B。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请实施例提供一种显示装置及显示装置的制作方法。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
实施例1
如图1所示,本申请实施例1中提供一种显示装置100,包括驱动基板1、发光组件层2以及色转换基板3;其中,发光组件层2包括设于所述驱动基板1上的多个发光芯片单元21以及环绕所述发光芯片单元21设置的第一金属层22;各所述发光芯片单元21具有顶出光面211;色转换基板3包括第二金属层31、填充层32以及多个聚光透镜33,所述第二金属层31在对应所述发光芯片单元21的顶出光面211位置设有第一通孔311,所述填充层32设于所述第一通孔311中;第二金属层31与所述第一金属层22对应设置并密封连接。所述聚光透镜33分别设于所述第一通孔311内并设于所述填充层32背离所述发光组件层2的一侧。所述聚光透镜33与所述第一通孔311一一对应设置
本申请实施例在色转换基板3中采用第二金属层31替换现有的黑色挡墙,能够反射光线而不是吸收光线,增加了出光率。并且第二金属层31可阻隔水汽横向传输,避免水汽侵蚀填充层32,提升了填充层32的可靠性。
本实施例中,通过低温焊接方式连接所述第一金属层22和所述第二金属层31。低温焊接方式实现密封连接,不会对基板的结构产生影响,且使得金属层密封发光芯片单元21以及填充层32,避免水汽进入,增加了使用寿命。
如图1所示,本实施例中,所述驱动基板1包括:硅基板11以及设于所述硅基板11上的互补金属氧化物半导体层(CMOS)12。硅基板11为载体,互补金属氧化物半导体层12为驱动发光芯片单元21的电路层,能够有效控制发光芯片单元21的发光和关闭。
本实施例中,所述发光组件层2还包括平坦层23以及透明电极层24;平坦层23设于所述驱动基板1上并填充于相邻的所述发光芯片单元21之间;所述透明电极层24覆盖于所述平坦层23上并与所述发光芯片单元21电性连接;所述第一金属层22设于所述透明电极层24上或者所述第一金属层22与所述透明电极层24设于同一层。其中,所述平坦层23为不透光材质,能够阻隔相邻的发光芯片单元21的串光现象,减少发光芯片单元21之间的设置距离。所述透明电极层24的材质包括氧化铟锡(ITO),其能够透过光线,可使得所述发光芯片单元21发出的光线穿过透明电极层24。
如图1所示,本实施例中,所述发光组件层2还包括:反射层25,设于所述发光芯片单元21的侧壁上,或者设于所述发光芯片单元21的侧壁上和所述发光芯片单元21的顶面上的非顶出光面211区域,亦即所述反射层25不设置在顶出光面211所在区域内。反射层25能够有效反射光线,使得光线都从顶出光面211射出,一方面能够有效阻隔相邻的发光芯片单元21的串光现象,减少发光芯片单元21之间的设置距离,另一方面还能够全部利用所述发光芯片单元21发出的光线。此时由于设置了反射层25,所述平坦层23的材质也可为氮化硅或氧化硅等透明材质。
本实施例中,所述发光芯片单元21包括三个蓝光MicroLED芯片B,所述填充层32包括红光色转换层321、绿光色转换层322;在一个发光芯片单元21对应的三个第一通孔311的其中两个第一通孔311内分别设有一个红光色转换层321和一个绿光色转换层322,另一个第一通孔311内不设置所述填充层32。可理解的是,每三个蓝光MicroLED芯片B以及一个红光色转换层321和一个绿光色转换层322形成了红绿蓝三色光,构成了一个像素单元。所述发光芯片单元21包括三个蓝光MicroLED芯片B的方式便于批量制作,相对于一个像素单元中包含三种红绿蓝三色MicroLED芯片结构减小了制作工序。在蓝光MicroLED芯片B的下方设置金属电极26,这样可利用金属电极26的反光作用,与反射层25共同包覆在所述发光芯片单元21周围的非顶出光面211区域,使得所述发光芯片单元21发出的光线均从顶出光面211射出,进一步提高发光芯片单元21发出的光线的利用率。
如图1所示,本实施例中,所述色转换基板3还包括蓝光反光层34,所述蓝光反光层34对应于所述红光色转换层321和所述绿光色转换层322的位置设置,用于反射蓝光;所述蓝光反光层34在对应所述透明层323的位置设置透光孔341,便于蓝光通过。具体的,所述蓝光反光层34设于所述第二金属层31上,能够减小制作难度。所述蓝光反光层34能有效反射蓝光并选择性地通过红光以及绿光,这样使得蓝光被再次反射进入所述红光色转换层321和所述绿光色转换层322中激发量子点产生红光以及绿光,提升了光利用率。
本实施例中,所述蓝光反光层34由金属膜/透明介质膜/金属膜三层膜构成,或者所述蓝光反光层34由金属膜/透明介质膜/金属膜/透明介质膜/金属膜五层膜构成;其中金属膜材料为银、铝、铜、金中的任意一种,透明层材料为金属氧化物、氮化硅、氧化硅中的任意一种。五层膜结构的蓝光反光层34相对于三层膜结构的蓝光反光层34的蓝光反射率更高,能够更加有效地反射蓝光至所述红光色转换层321和所述绿光色转换层322中激发量子点产生红光以及绿光,提升了光利用率。
如图1所示,本实施例中,所述色转换基板3还包括遮光层35,设于所述蓝光反光层34背离所述驱动基板1的一侧。所述遮光层35能够阻隔在所述第一通孔311开口位置的横向光线传输,避免串光。所述遮光层35设有第二通孔351,所述第二通孔351与所述第一通孔311一一对应设置,便于光线传输。
如图1所示,本实施例中,所述显示装置100还包括:盖板4,设于所述色转换基板3背离所述驱动基板1的一侧。所述盖板4能够密封所述色转换基板3上的通孔结构,避免水汽进入。
基于前文所述的显示装置100,如图2所示,本申请还提供一种显示装置的制作方法,包括以下步骤S1-S3:
S1、在一驱动基板1上制作发光组件层2,其为将多个发光芯片单元21转移并键合在所述驱动基板1上,各所述发光芯片单元21具有顶出光面211;在所述驱动基板1上制作一平坦层23填充于所述发光芯片单元21之间;在所述平坦层23上制作一透明电极层24,所述透明电极层24与所述发光芯片单元21电性连接;在所述透明电极层24上制作一第一金属层22,所述第一金属层22环绕所述发光芯片单元21设置。所述驱动基板1包括硅基板11以及设于所述硅基板11上的互补金属氧化物半导体层(CMOS)12。硅基板11为载体,互补金属氧化物半导体层12为驱动发光芯片单元21的电路层,能够有效控制发光芯片单元21的发光和关闭。制作完成发光组件层2后的结构见图3所示。
S2、贴附第二金属层、填充层及聚光透镜。在一承载基板36上制作第二金属层31,蚀刻所述第二金属层31在对应所述发光芯片单元21的顶出光面211位置形成第一通孔311,所述填充层32设于所述第一通孔311中;所述聚光透镜33分别设于所述第一通孔311内并设于所述填充层32背离所述承载基板36的一侧。
其中,在制作所述聚光透镜33时,所述聚光透镜33的材质包括极型胶水,所述极型胶水包括环氧胶或硅胶丙烯酸胶;所述填充层32的材质包括非极型材质;具体的,所述填充层32包括由量子点胶体混在非极型溶剂中形成的红光色转换层321和绿光色转换层322;所述极型胶水通过喷墨打印方式形成于所述第一通孔311内的填充层上并固化形成所述聚光透镜33。本实施例能够在第一通孔311内自组装方式形成小尺寸的聚光透镜33,且所述聚光透镜33相对于所述填充层32的凸起倾角角度较大。其中所述发光芯片单元21包括三个蓝光MicroLED芯片B,所述填充层32包括红光色转换层321、绿光色转换层322;在一个发光芯片单元21对应的三个第一通孔311的其中两个第一通孔311内分别设有一个红光色转换层321和一个绿光色转换层322,另一个第一通孔311内不设有填充层32。可理解的是,在一个发光芯片单元21中,设于三个所述第一通孔311中的所述红光色转换层321、所述绿光色转换层322的厚度相同。每三个蓝光MicroLED芯片B以及一个红光色转换层321和一个绿光色转换层322形成了红绿蓝三色光,构成了一个像素单元。
在所述第二金属层31设有所述聚光透镜33的一侧贴附转移基板37,贴附完成转移基板37后的结构见图4所示,然后再进行翻转,在翻转后使得所述聚光透镜33位于所述填充层32上,且所述聚光透镜33的凸起向上形成凸透镜结构。然后剥离所述承载基板36,将所述第二金属层31设有所述填充层32的一侧贴附于所述发光组件层2上,所述第一通孔311与所述发光芯片单元21对应设置,并通过低温焊接方式密封连接所述第一金属层22和所述第二金属层31;剥离所述转移基板37。图5为剥离所述转移基板37时的结构示意图。
S3、贴附蓝光反光层、遮光层及盖板。在盖板4的一侧制作遮光层35,并在遮光层35上制作蓝光反光层34上,将蓝光反光层34贴附在所述第二金属层31的上表面;其中,所述蓝光反光层34对应于所述红光色转换层321和所述绿光色转换层322的位置设置,用于反射蓝光,便于蓝光通过。所述蓝光反光层34由金属膜/透明介质膜/金属膜三层膜构成,或者所述蓝光反光层34由金属膜/透明介质膜/金属膜/透明介质膜/金属膜五层膜构成。五层膜结构的蓝光反光层34相对于三层膜结构的蓝光反光层34的蓝光反射率更高,能够更加有效地反射蓝光至所述红光色转换层321和所述绿光色转换层322中激发量子点产生红光以及绿光,提升了光利用率。所述遮光层35设有第二通孔351,所述第二通孔351与所述第一通孔311一一对应设置,便于光线传输。如图6所示,为在所述盖板4的一侧依次制作完成遮光层35和蓝光反光层34时的结构示意图。将盖板4贴合至色转换基板3上,将盖板4设置遮光层35及蓝光反光层34的一侧与所述色转换基板3背离所述驱动基板1一侧贴合。图1为完成盖板4贴合至色转换基板3上后的显示装置100的整体结构示意图。
由于所述色转换基板3包括蓝光反光层34以及遮光层35,所述蓝光反光层34以及所述遮光层35可在步骤S2中制作色转换基板3时一起形成,也可以在贴附盖板4时将所述蓝光反光层34以及所述遮光层35设置在盖板4朝向色转换基板3的第二金属层31一侧。
本申请实施例在色转换基板3中采用第二金属层31替换现有的黑色挡墙,能够反射光线而不是吸收光线,增加了出光率,并且采用低温焊接方式通过第三金属层连接环绕发光芯片单元21设置的第一金属层22和所述第二金属层31,使得金属层密封发光芯片单元21以及填充层32,避免水汽进入,增加了使用寿命。进一步在所述第一通孔311内还设有对应所述红光色转换层321和所述绿光色转换层322设置的蓝光反光层34,所述蓝光反光层34能反射蓝光光线至所述红光色转换层321和所述绿光色转换层322,提升了光转换率和利用率。
实施例2
如图7所示,本申请实施例2包含了实施例1的全部技术特征,其区别在于,在实施例2中的所述填充层32不仅包括红光色转换层321和绿光色转换层322而且还包括透明层323。
具体的,在本实施例中,所述发光芯片单元21包括三个蓝光MicroLED芯片B,所述填充层32包括红光色转换层321、绿光色转换层322和透明层323;在一个发光芯片单元21对应的三个第一通孔311的其中两个第一通孔311内分别设有一个红光色转换层321和一个绿光色转换层322,另一个第一通孔311内设有一个透明层323。可理解的是,每三个蓝光MicroLED芯片B以及一个红光色转换层321、一个绿光色转换层322及一个透明层323形成了红绿蓝三色光,构成了一个像素单元。所述发光芯片单元21包括三个蓝光MicroLED芯片B的方式便于批量制作,相对于一个像素单元中包含三种红绿蓝三色MicroLED芯片结构减小了制作工序。在蓝光MicroLED芯片B的下方设置金属电极26,这样可利用金属电极26的反光作用,与反射层25共同包覆在所述发光芯片单元21周围的非顶出光面211区域,使得所述发光芯片单元21发出的光线均从顶出光面211射出,进一步提高发光芯片单元21发出的光线的利用率。
在一个发光芯片单元21中,设于三个所述第一通孔311中的所述红光色转换层321、所述绿光色转换层322和所述透明层323的厚度相同,这样可使得光线传输过程中经过每一所述第一通孔311中的所述红光色转换层321、所述绿光色转换层322和所述透明层323时的偏折角度相同,避免形成的红绿蓝三色光之间由于光线的偏折角度不同导致的色偏。例如若不设置所述透明层323,则会出现在出射蓝光的第一通孔311位置相对出射红色光和绿色光的第一通孔311位置的光线的偏折角度不同,从而导致红绿蓝三色光混光后的颜色与预期的色度不一致,导致出现色偏。
基于本实施例所述的显示装置100,请参考图2所示,本申请还提供一种显示装置的制作方法,包括以下步骤S1-S3:
S1、在一驱动基板1上制作发光组件层2,其为将多个发光芯片单元21转移并键合在所述驱动基板1上,各所述发光芯片单元21具有顶出光面211;在所述驱动基板1上制作一平坦层23填充于所述发光芯片单元21之间;在所述平坦层23上制作一透明电极层24,所述透明电极层24与所述发光芯片单元21电性连接;在所述透明电极层24上制作一第一金属层22,所述第一金属层22环绕所述发光芯片单元21设置。所述驱动基板1包括硅基板11以及设于所述硅基板11上的互补金属氧化物半导体层(CMOS)12。硅基板11为载体,互补金属氧化物半导体层12为驱动发光芯片单元21的电路层,能够有效控制发光芯片单元21的发光和关闭。
制作完成发光组件层2后的结构见图3所示。其中所述发光芯片单元21同样包括三个蓝光MicroLED芯片B,因此本实施例的步骤S1与实施例1的步骤S1完全相同。
S2、贴附第二金属层、填充层及聚光透镜,其为在一承载基板36上制作第二金属层31,蚀刻所述第二金属层31在对应所述发光芯片单元21的顶出光面211位置形成第一通孔311,所述填充层32设于所述第一通孔311中;所述聚光透镜33分别设于所述第一通孔311内并设于所述填充层32背离所述承载基板36的一侧。如图8所示,所述填充层32包括红光色转换层321、绿光色转换层322和透明层323;在一个发光芯片单元21对应的三个第一通孔311的其中两个第一通孔311内分别设有一个红光色转换层321和一个绿光色转换层322,另一个第一通孔311内设有一个透明层323。可理解的是,在一个发光芯片单元21中,设于三个所述第一通孔311中的所述红光色转换层321、所述绿光色转换层322和所述透明层323的厚度相同。每三个蓝光MicroLED芯片B以及一个红光色转换层321和一个绿光色转换层322形成了红绿蓝三色光,构成了一个像素单元。
其中,在制作所述聚光透镜33时,所述聚光透镜33的材质包括极型胶水,所述极型胶水包括环氧胶或硅胶丙烯酸胶;所述填充层32的材质包括非极型材质;具体的,所述填充层32包括由量子点胶体混在非极型溶剂中形成的红光色转换层321和绿光色转换层322以及不含量子点胶体的非极型溶剂形成的透明层323;所述极型胶水通过喷墨打印方式形成于所述第一通孔311内的填充层32上并固化形成所述聚光透镜33。本实施例能够在第一通孔311内自组装方式形成小尺寸的聚光透镜33,且所述聚光透镜33相对于所述填充层32的凸起倾角角度较大。
在所述第二金属层31设有所述聚光透镜33的一侧贴附转移基板37,贴附完成转移基板37后的结构见图8所示,然后再进行翻转,在翻转后使得所述聚光透镜33位于所述填充层32上,且所述聚光透镜33的凸起向上形成凸透镜结构。剥离承载基板36然后将所述第二金属层31设有所述填充层32的一侧贴附于所述发光组件层2上,所述第一通孔311与所述发光芯片单元21对应设置,并通过低温焊接方式密封连接所述第一金属层22和所述第二金属层31;剥离所述转移基板37。图9为剥离所述转移基板37时的结构示意图。
S3、贴附遮光层、蓝光反光层及盖板。本实施例的步骤S3与实施例1的步骤S3完全相同。
图7为完成盖板4贴合至色转换基板3上后的显示装置100的整体结构示意图。
实施例3
如图10所示,本申请实施例3包含了实施例2中的大部分技术特征,其区别在于,在实施例3中的所述发光芯片单元21中包括红色MicroLED芯片R、绿色MicroLED芯片G以及蓝色MicroLED芯片B至少其中之一;所述填充层32包括滤光层(CF),所述滤光层包括非极型材质的红色滤光层32R、绿色滤光层32G以及蓝色滤光层32B至少其中之一。具体为红色滤光层32R对应红色MicroLED芯片R设置,绿色滤光层32G对应绿色MicroLED芯片G设置,蓝色滤光层32B对应蓝色MicroLED芯片B设置。
实施例3不同于实施例2中的所述发光芯片单元21均是蓝光MicroLED芯片B,同时在实施例3中不设置实施例2中的蓝光反光层,这样同样能够在色转换基板3中采用第二金属层31替换现有的黑色挡墙,能够反射光线而不是吸收光线,增加了出光率。并且在第二金属层31的第一通孔311内形成填充层32,所述填充层32包括红色滤光层32R、绿色滤光层32G以及蓝色滤光层32B,第二金属层31可阻隔水汽横向传输,提升了填充层32的可靠性。并且采用低温焊接方式通过第三金属层连接环绕发光芯片单元21设置的第一金属层22和所述第二金属层31,使得金属层密封发光芯片单元21以及填充层32,避免水汽进入,增加了使用寿命。
基于前文所述的显示装置100,实施例3中对应的显示装置的制作方法请参考实施例1中的图2,其步骤顺序与实施例2相同,其差异仅是在驱动基板1上制作的发光组件层2中的发光芯片单元21以及在所述第二金属层31的第一通孔311内制作的填充层32采用实施例3的结构。
在制作所述色转换基板3时,由于所述填充层32包括滤光层(CF),所述滤光层包括非极型材质的红色滤光层32R、绿色滤光层32G以及蓝色滤光层32B至少其中之一。
以上对本申请实施例所提供的一种显示装置及其制作方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (14)

  1. 一种显示装置,其特征在于,包括:
    驱动基板;
    发光组件层,包括设于所述驱动基板上的多个发光芯片单元;各所述发光芯片单元具有顶出光面;以及
    色转换基板,包括第二金属层、填充层以及多个聚光透镜,所述第二金属层在对应所述发光芯片单元的顶出光面位置设有第一通孔,所述填充层设于所述第一通孔中;所述聚光透镜分别设于所述第一通孔内并设于所述填充层背离所述发光组件层的一侧。
  2. 根据权利要求1所述的显示装置,其特征在于,所述发光芯片单元包括三个蓝光MicroLED芯片,所述填充层包括红光色转换层和绿光色转换层;在一个所述发光芯片单元对应的三个所述通孔的其中两个所述通孔内分别设有一个所述红光色转换层和一个所述绿光色转换层。
  3. 根据权利要求2所述的显示装置,其特征在于,所述填充层还包括透明层;在一个所述发光芯片单元对应的三个所述第一通孔中分别设有一个所述红光色转换层、一个所述绿光色转换层和一个所述透明层。
  4. 根据权利要求3所述的显示装置,其特征在于,在一个所述发光芯片单元中,设于三个所述第一通孔中的所述红光色转换层、所述绿光色转换层和所述透明层的厚度相同。
  5. 根据权利要求2所述的显示装置,其特征在于,所述色转换基板还包括蓝光反光层,所述蓝光反光层对应所述红光色转换层和所述绿光色转换层设置。
  6. 根据权利要求5所述的显示装置,其特征在于,所述蓝光反光层由金属膜/透明介质膜/金属膜三层膜构成,或者所述蓝光反光层由金属膜/透明介质膜/金属膜/透明介质膜/金属膜五层膜构成。
  7. 根据权利要求5所述的显示装置,其特征在于,所述色转换基板还包括遮光层,所述设于所述第二金属层上且设于所述蓝光反光层背离所述驱动基板的一侧;所述遮光层设有第二通孔,所述第二通孔与所述第一通孔一一对应设置。
  8. 根据权利要求1所述的显示装置,其特征在于,所述发光组件层还包括环绕所述发光芯片单元设置的第一金属层;所述第一金属层与所述第二金属层密封连接。
  9. 根据权利要求8所述的显示装置,其特征在于,所述发光组件层还包括:
    平坦层,设于所述驱动基板上并填充于所述发光芯片单元之间;以及
    透明电极层,所述透明电极层覆盖于所述平坦层上并与所述发光芯片单元性连接;所述第一金属层设于所述透明电极层上,或者所述第一金属层与所述透明电极层设于同一层。
  10. 根据权利要求1所述的显示装置,其特征在于,所述发光组件层还包括:
    反射层,设于所述发光芯片单元的侧壁上,或者设于所述发光芯片单元的侧壁上和所述发光芯片单元的顶面上的非顶出光面区域。
  11. 根据权利要求1所述的显示装置,其特征在于,所述发光芯片单元包括红色MicroLED芯片、绿色MicroLED芯片以及蓝色MicroLED芯片;所述填充层包括滤光层,所述滤光层包括红色滤光层、绿色滤光层以及蓝色滤光层;所述红色滤光层对应所述红色MicroLED芯片设置,所述绿色滤光层对应所述绿色MicroLED芯片设置,所述蓝色滤光层对应蓝色MicroLED芯片设置。
  12. 一种显示装置的制作方法,其特征在于,包括步骤:
    在一驱动基板上制作发光组件层,其为将多个发光芯片单元转移并键合在所述驱动基板上,各所述发光芯片单元具有顶出光面;在所述驱动基板上制作一平坦层填充于所述发光芯片单元之间;在所述平坦层上制作一透明电极层,所述透明电极层与所述发光芯片单元的顶出光面电性连接;在所述透明电极层上制作一第一金属层,所述第一金属层环绕所述发光芯片单元设置;
    在一承载基板上制作第二金属层,蚀刻所述第二金属层在对应所述发光芯片单元的顶出光面位置形成第一通孔,所述填充层设于所述第一通孔中;所述聚光透镜分别设于所述第一通孔内并设于所述填充层背离所述承载基板的一侧;在所述第二金属层设有所述聚光透镜的一侧贴附转移基板;剥离所述承载基板,将所述第二金属层设有所述填充层的一侧贴附于所述发光组件层上,所述第一通孔与所述发光芯片单元对应设置,并通过低温焊接方式密封连接所述第一金属层和所述第二金属层;剥离所述转移基板。
  13. 根据权利要求12所述的显示装置的制作方法,其特征在于,在制作所述聚光透镜时,所述聚光透镜的材质包括极型胶水,所述极型胶水包括环氧胶或硅胶丙烯酸胶;所述填充层的材质包括非极型材质;所述极型胶水通过喷墨打印方式形成于所述第一通孔内的填充层上并固化形成所述聚光透镜。
  14. 根据权利要求13所述的显示装置的制作方法,其特征在于,在所述剥离所述转移基板步骤之后还包括:
    在盖板的一侧依次制作遮光层和蓝光反光层,将蓝光反光层贴附在所述第二金属层的上表面。
PCT/CN2021/142171 2021-12-28 2021-12-28 一种显示装置及其制作方法 WO2023122982A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142171 WO2023122982A1 (zh) 2021-12-28 2021-12-28 一种显示装置及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142171 WO2023122982A1 (zh) 2021-12-28 2021-12-28 一种显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2023122982A1 true WO2023122982A1 (zh) 2023-07-06

Family

ID=86996918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142171 WO2023122982A1 (zh) 2021-12-28 2021-12-28 一种显示装置及其制作方法

Country Status (1)

Country Link
WO (1) WO2023122982A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117954555A (zh) * 2024-03-25 2024-04-30 西湖烟山科技(杭州)有限公司 微显示单元和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180238519A1 (en) * 2015-10-20 2018-08-23 Fujifilm Corporation Wavelength conversion laminated film
CN110277053A (zh) * 2019-06-25 2019-09-24 京东方科技集团股份有限公司 一种显示面板及其制作方法、驱动方法、显示装置
CN113257975A (zh) * 2021-05-14 2021-08-13 京东方科技集团股份有限公司 发光芯片模组、其制备方法、阵列基板以及显示面板
CN113421907A (zh) * 2021-06-23 2021-09-21 京东方科技集团股份有限公司 显示面板和显示装置
CN113517265A (zh) * 2021-04-23 2021-10-19 豪威半导体(上海)有限责任公司 MicroLED显示面板及其形成方法
CN113745391A (zh) * 2021-08-26 2021-12-03 厦门天马微电子有限公司 一种显示面板和显示装置
CN215264309U (zh) * 2021-05-20 2021-12-21 广东小天才科技有限公司 显示面板及其显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180238519A1 (en) * 2015-10-20 2018-08-23 Fujifilm Corporation Wavelength conversion laminated film
CN110277053A (zh) * 2019-06-25 2019-09-24 京东方科技集团股份有限公司 一种显示面板及其制作方法、驱动方法、显示装置
CN113517265A (zh) * 2021-04-23 2021-10-19 豪威半导体(上海)有限责任公司 MicroLED显示面板及其形成方法
CN113257975A (zh) * 2021-05-14 2021-08-13 京东方科技集团股份有限公司 发光芯片模组、其制备方法、阵列基板以及显示面板
CN215264309U (zh) * 2021-05-20 2021-12-21 广东小天才科技有限公司 显示面板及其显示装置
CN113421907A (zh) * 2021-06-23 2021-09-21 京东方科技集团股份有限公司 显示面板和显示装置
CN113745391A (zh) * 2021-08-26 2021-12-03 厦门天马微电子有限公司 一种显示面板和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117954555A (zh) * 2024-03-25 2024-04-30 西湖烟山科技(杭州)有限公司 微显示单元和显示装置

Similar Documents

Publication Publication Date Title
US10606393B2 (en) Micro light-emitting diode display device
CN110858599B (zh) 像素阵列封装结构及显示面板
US11233100B2 (en) Integrated display panel including photodiode, manufacturing method thereof and display device
CN113270437A (zh) 背板及其制备方法、显示装置
US12015022B2 (en) Display panel and method for manufacturing the same, display device
JP2020532762A (ja) 表示装置及びその製造方法
WO2020215620A1 (zh) MicroLED显示面板
US20200350471A1 (en) Light source device and light emitting device
CN113725249B (zh) 一种芯片结构、制作方法和显示装置
KR20050066030A (ko) 고출력 발광다이오드 패키지 및 제조방법
CN112885823B (zh) 显示面板及其制备方法、显示装置
WO2021097941A1 (zh) 显示装置及显示装置的制作方法
JP2023530322A (ja) 複数のユニットピクセルを有する発光モジュール、それを製造する方法、およびそれを有するディスプレイ装置
CN116364740A (zh) 一种显示装置及其制作方法
CN113013310A (zh) 显示面板和显示装置
WO2023122982A1 (zh) 一种显示装置及其制作方法
CN113937123A (zh) 显示装置及制作方法
TWM623890U (zh) 具有共用電極的發光二極體裝置及其封裝結構
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
JP2008263083A (ja) 面光源及び液晶表示装置
CN111261620A (zh) 发光器件及其制造方法
CN112713165B (zh) 显示面板及其制作方法、电子设备
CN113540318A (zh) 一种波长转换器件及其制作方法、背光源
WO2023122925A1 (zh) 一种显示装置及其制作方法
CN111261621A (zh) 发光器件及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969361

Country of ref document: EP

Kind code of ref document: A1