WO2020215620A1 - MicroLED显示面板 - Google Patents

MicroLED显示面板 Download PDF

Info

Publication number
WO2020215620A1
WO2020215620A1 PCT/CN2019/111132 CN2019111132W WO2020215620A1 WO 2020215620 A1 WO2020215620 A1 WO 2020215620A1 CN 2019111132 W CN2019111132 W CN 2019111132W WO 2020215620 A1 WO2020215620 A1 WO 2020215620A1
Authority
WO
WIPO (PCT)
Prior art keywords
microled
layer
substrate
display panel
quantum dot
Prior art date
Application number
PCT/CN2019/111132
Other languages
English (en)
French (fr)
Inventor
李佳育
樊勇
陈书志
柳铭岗
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020215620A1 publication Critical patent/WO2020215620A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a MicroLED display panel.
  • Micro light emitting diode usually refers to the traditional MicroLED chip structure, the size of the MicroLED chip is reduced to a size within 200 microns, and the red, green and blue three-color MicroLED are arranged in accordance with certain rules.
  • Thin Film Transistor (TFT) or Complementary Metal Oxide Semiconductor (Complementary Metal Oxide Semiconductor (COMS) has formed a micro device capable of realizing full-color display.
  • This type of display has independently controlled display pixels, has the characteristics of independent light-emitting control, high brightness, low power consumption, ultra-high resolution and ultra-high color saturation, and MicroLED microdisplay devices can also realize flexible and transparent display due to their self-luminous technical characteristics, and their power consumption is only about 10% of that of liquid crystal panels.
  • the traditional MicroLED chip combined with quantum dot fluorescent material solution adopts the black bank (black bank) on the MicroLED substrate, and then the black bank Quantum dots are placed in the groove formed by the bank, but because the black bank layer is made of organic material, the thicker the thickness, the easier it is to undercut, which affects the shape of the groove, and the quantum dot layer is approximately thinner, and the concentration of quantum dots The more severe the quenching, the lower the light conversion efficiency will be. Therefore, appropriately increasing the thickness of the quantum dot layer, improving the light efficiency, and maintaining the integrity of the groove shape has become a problem that needs to be solved at present.
  • the present disclosure provides a MicroLED display panel, which solves the technical problems that the black bank layer in the existing MicroLED display panel affects the integrity of the groove morphology structure, the concentration of quantum dots is severely quenched, and the light conversion efficiency is low.
  • the embodiments of the present disclosure provide a MicroLED display panel, including:
  • the driving circuit is arranged on the second substrate;
  • a MicroLED chip is disposed between the first substrate and the second substrate, and the MicroLED chip includes a MicroLED epitaxy;
  • the MicroLED quantum dot light-emitting array includes at least one groove, a non-groove area, and a quantum dot layer or scattering particles filled in the groove, wherein the grooves are arranged on the MicroLED epitaxy and arranged in an array ,
  • the shape of the groove is an inverted cone
  • the non-groove area is disposed on the MicroLED epitaxy between two adjacent grooves
  • the quantum dot layer includes a red quantum dot layer and a green quantum dot layer. Quantum dot layer.
  • the scattering particles are replaced with a blue quantum dot layer.
  • the MicroLED epitaxy includes a sapphire substrate, an n-type GaN layer, a multiple quantum well light-emitting layer, and a p-type GaN layer arranged and distributed in sequence.
  • the multiple quantum well light-emitting layer is a blue light-emitting layer or an ultraviolet light-emitting layer.
  • a metal reflective layer and an inert protective layer are sequentially arranged on the sidewall of the groove.
  • the second substrate is a printed circuit board or a thin film transistor glass substrate or a complementary metal oxide semiconductor substrate.
  • a second electrode is provided on the second substrate, and the second electrode is connected to a chip electrode provided on the MicroLED chip.
  • the embodiments of the present disclosure provide a MicroLED display panel, including:
  • the driving circuit is arranged on the second substrate;
  • a MicroLED chip is disposed between the first substrate and the second substrate, and the MicroLED chip includes a MicroLED epitaxy;
  • the MicroLED quantum dot light-emitting array includes at least one groove, a non-groove area, and a quantum dot layer or scattering particles filled in the groove, wherein the grooves are arranged on the MicroLED epitaxy and arranged in an array
  • the non-groove area is disposed on the MicroLED epitaxy between two adjacent grooves, and the quantum dot layer includes a red quantum dot layer and a green quantum dot layer.
  • the scattering particles are replaced with a blue quantum dot layer.
  • the MicroLED epitaxy includes a sapphire substrate, an n-type GaN layer, a multiple quantum well light-emitting layer, and a p-type GaN layer arranged and distributed in sequence.
  • the multiple quantum well light-emitting layer is a blue light-emitting layer or an ultraviolet light-emitting layer.
  • the thickness of the sapphire substrate is greater than 50 um.
  • the depth of the groove is 3-100 um.
  • a metal reflective layer and an inert protective layer are sequentially arranged on the sidewall of the groove.
  • the material of the metal reflective layer is metal such as silver or aluminum.
  • the inert protective layer may be a single-layer or multi-layer composite film such as polyurethane, epoxy resin, parylene and the like.
  • at least one black matrix is disposed on the first substrate, and the black matrix covers the non-groove area of the MicroLED quantum dot light-emitting array.
  • the second substrate is a printed circuit board or a thin film transistor glass substrate or a complementary metal oxide semiconductor substrate.
  • a second electrode is provided on the second substrate, and the second electrode is connected to a chip electrode provided on the MicroLED chip.
  • the MicroLED display panel provided by the present disclosure provides a groove on the sapphire substrate on the MicroLED chip, and then fills the groove with quantum dots, which effectively increases the thickness of the quantum dot layer and improves
  • the light effect can maintain the integrity of the groove morphology structure and the water and oxygen resistance ability of the quantum dots.
  • the groove depth is deeper and the quantum dot layer is thicker, which can effectively absorb the light emitted by the MicroLED, eliminating the color filter layer and saving costs.
  • FIG. 1 is a schematic diagram of the structure of a MicroLED display panel provided in the first embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of a MicroLED display panel provided in the second embodiment of the disclosure.
  • the disclosed embodiments can solve this defect.
  • the MicroLED display panel in the embodiment of the present disclosure is a MicroLED display panel.
  • the MicroLED display panel 1000 provided by the embodiment of the present disclosure includes:
  • the second substrate 12 is arranged opposite to the first substrate 11;
  • the MicroLED chip 10 is disposed between the first substrate 11 and the second substrate 12, and the MicroLED chip 10 includes a MicroLED epitaxy 101;
  • the MicroLED quantum dot light-emitting array 100 includes at least one groove 1011a, a non-groove area 1011b, and a quantum dot layer or scattering particles 19 filled in the groove 1011a, wherein the groove 1011a is disposed in the MicroLED cell
  • the non-groove area 1011b is arranged on the MicroLED epitaxy 101 between two adjacent grooves 1011a, and the quantum dot layer includes a red quantum dot layer 17 and a green Quantum dot layer 18.
  • the MicroLED epitaxy 101 includes a sapphire substrate 1011, an n-type GaN layer 1012, a multiple quantum well light-emitting layer 1013, a p-type GaN layer 1014, and an insulating layer 1015 arranged and distributed in sequence.
  • the multiple quantum well light-emitting layer 1013 is a blue light-emitting layer.
  • a plurality of grooves 1011a may be provided on the sapphire substrate 1011 on the MicroLED epitaxy 101.
  • only one groove may be provided on the MicroLED epitaxy 101.
  • the groove 1011a In order to achieve the luminous effect of multiple colors, each of the grooves 1011a may be filled with the quantum dot layer or the scattering particles 19, and the luminescence wavelength of the filled quantum dot layer may also be the same or different. Wherein, the three adjacent grooves are respectively filled with the red quantum dot layer 17, the green quantum dot layer 18, and the scattering particles 19, and the scattering particles 19 are transparent.
  • the groove 1011a and the red quantum dot layer 17, the green quantum dot layer 18, or the scattering particles 19 disposed in the groove 1011a form an RGB pixel unit. Since the multiple quantum well light-emitting layer 1013 on the MicroLED epitaxy 101 is a blue light-emitting layer, when the blue light emitted by the blue light-emitting layer passes through the red quantum dot layer 17, the red quantum dot layer 17 is excited to emit red light to form red pixels; when the blue light emitted by the blue light emitting layer passes through the green quantum dot layer 18, the green quantum dot layer 18 is excited to emit green light to form green pixels; When the blue light emitted by the blue light emitting layer passes through the scattering particles 19, the transparent particles 19 can directly transmit the blue light emitted by the blue light emitting layer to form blue pixels, thereby forming a composite of red, green and blue. Color image.
  • a metal reflective layer 15 is provided on the sidewall of the groove 1011a.
  • the material can be a metal such as silver or aluminum.
  • the light is reflected by the metal reflective layer 15 and is absorbed by the quantum dot layer or the scattering particles 19 in the groove 1011a again, preventing the light from entering adjacent In the groove 1011a, the color interference between pixels is caused, and the color difference is caused.
  • an inert protective layer (not shown in the figure) can be deposited on the metal reflective layer 15.
  • the inert protective layer can be a single-layer or multi-layer composite film such as polyurethane, epoxy resin, parylene, etc. , To block water and oxygen from the outside, to protect the metal reflective layer 15 and prevent the metal reflective layer 15 from oxidizing.
  • the first substrate 11 may be a glass substrate, and at least one black matrix 13 is provided on the first substrate 11, and the black matrix 13 is located on a side close to the MicroLED quantum dot light emitting array 100 and covers the MicroLED
  • the non-groove area 1011b of the quantum dot light-emitting array 100 prevents light leakage between pixels and can effectively improve the brightness in the dark state, thereby improving the contrast of the MicroLED display panel 1000.
  • the first substrate 11 can also block water and oxygen from entering the quantum dot layer, which can improve the reliability of the quantum dot layer, thereby ensuring the reliability of the MicroLED display panel 1000.
  • a flat layer 14 is provided under the black matrix 13 to flatten the MicroLED quantum dot light-emitting array 100.
  • the second substrate 12 is arranged opposite to the first substrate 11, and a driving circuit is provided on the second substrate 12.
  • the second substrate 12 may be a printed circuit board (Printed Circuit Board, PCB), a TFT glass substrate, or a CMOS substrate.
  • a TFT driving circuit is provided on the second substrate 12;
  • a CMOS driving circuit is provided on the second substrate 12 .
  • a second electrode is provided on the second substrate 12, the second electrode is connected to a chip electrode provided on the MicroLED chip, and the second electrode matches the first electrode.
  • the second electrode includes a second p electrode 121 and a second n electrode 122, the chip electrode includes a chip p electrode 102 and a chip n electrode 103, and the second p electrode 101 is connected to the chip p electrode 121, so The second n electrode 102 is connected to the chip n electrode 122.
  • a connecting layer 16 is provided on the second electrode of the second substrate 12, and the connecting layer 16 may be solder or anisotropic conductive adhesive (Anisotropic Conductive Film, ACF).
  • ACF anisotropic Conductive Film
  • the welding material needs to be selected from materials with a low melting point, and materials such as gold tin alloy, indium, and indium tin oxide can be selected.
  • the second electrode of the second substrate 12 and the chip electrode of the MicroLED chip 10 are connected through the solder layer or the ACF.
  • the multiple quantum well light-emitting layer 1013 emits blue light, excites the red quantum dot layer 17 and the green quantum dot layer 18, and then emits red light and green light respectively.
  • the thickness of the sapphire substrate 1011 is relatively thick, usually greater than 50 um, the depth of the groove 1011a formed by etching on the sapphire substrate 1011 can reach between 3 and 100 um, thereby greatly improving the The thickness of the quantum dot layer can effectively absorb the light emitted by the blue light-emitting layer.
  • the quantum dot layer in the embodiments of the present disclosure is thicker, the color filter layer can be omitted, which can save cost.
  • the shape of the groove 1011a can adopt an inverted cone structure.
  • the thickness of the quantum dot layer is greatly increased, which can not only maintain the integrity of the groove shape, but also Under the condition that the blue light is completely absorbed, the pixel pitch can be reduced, and the resolution of the MicroLED display panel 1000 can be improved.
  • the shape of the groove 1011a is not limited to an inverted cone structure, and other shapes can also be used, and this disclosure should not be limited thereto.
  • the MicroLED display panel 1000' provided by this embodiment is based on the first embodiment, replacing the blue light-emitting layer with an ultraviolet light-emitting layer, and simultaneously The scattering particles 19 are replaced with a blue quantum dot layer 20.
  • the MicroLED display panel 1000' includes:
  • the second substrate 12 is arranged opposite to the first substrate 11;
  • the MicroLED chip 10 is disposed between the first substrate 11 and the second substrate 12, and the MicroLED chip 10 includes a MicroLED epitaxy 101;
  • the MicroLED quantum dot light-emitting array 200 includes a groove 1011a, a non-groove area 1011b, and a quantum dot layer filled in the groove 1011a, wherein the groove 1011a is disposed on the MicroLED epitaxy 101 and forms an array Arrangement, the non-groove region 1011b is disposed on the MicroLED epitaxy 101 between two adjacent grooves 1011a, and the quantum dot layer includes a red quantum dot layer 17, a green quantum dot layer 18, and a blue quantum dot layer. Color quantum dot layer 20.
  • the MicroLED epitaxy 101 includes a sapphire substrate 1011, an n-type GaN layer 1012, a multiple quantum well light-emitting layer 1013, a p-type GaN layer 1014, and an insulating layer 1015 arranged and distributed in sequence.
  • the multiple quantum well light-emitting layer 1013' is an ultraviolet light-emitting layer.
  • a plurality of grooves 1011a can be provided on the sapphire substrate 1011 on the MicroLED epitaxy 101.
  • each of the grooves 1011a can be filled with a quantum dot layer.
  • the emission wavelengths of the quantum dot layers can also be the same or different.
  • three adjacent grooves 1011a are respectively filled with a red quantum dot layer 17, a green quantum dot layer 18, and a blue quantum dot layer 20, and three adjacent grooves 1011a and the same are arranged in the concave
  • the quantum dot layer in the groove 1011a constitutes an RGB pixel unit.
  • the multiple quantum well light-emitting layer 1013' on the MicroLED epitaxy is an ultraviolet light-emitting layer
  • the red quantum dot layer 17 is excited to emit red light to form red pixels
  • the green quantum dot layer 18 is excited to emit green light, A green pixel is formed
  • the blue quantum dot layer 20 can directly transmit the ultraviolet light emitted by the ultraviolet light emitting layer to form
  • the blue pixels form a color image composed of the three primary colors of red, green and blue.
  • the multi-quantum well light-emitting layer 1013' emits ultraviolet light, which excites the red quantum dot layer 17, the green quantum dot layer 18, and the blue quantum dot layer 20, respectively It emits red, green and blue light.
  • the solution of using quantum dots combined with color filters can be achieved.
  • the color gamut since the quantum dot layer in the embodiments of the present disclosure is thicker, the color filter layer can be omitted, which can save cost.
  • the shape of the groove 1011a can adopt an inverted cone structure. With a certain pixel pitch, the thickness of the quantum dot layer is greatly increased, which can not only maintain the integrity of the shape of the groove 1011a, but also Under the condition that the ultraviolet light is completely absorbed, the pixel pitch can be reduced, and the resolution of the MicroLED display panel 1000' can be improved.
  • the shape of the groove 1011a is not limited to an inverted cone structure, and other shapes can also be used, and this disclosure should not be limited thereto.
  • Either the blue light emitting layer in the first embodiment is combined with the red quantum dot layer, the green quantum dot layer and the scattering particles, or the ultraviolet light emitting layer in the second embodiment is combined with the red quantum dot layer, the green quantum dot layer and the blue quantum dot
  • the layer scheme can realize the colorization of the MicroLED display panel.
  • the display panel provided by the present disclosure is provided with grooves on the sapphire substrate on the MicroLED chip, and then the quantum dots are filled in the grooves, which effectively increases the thickness of the quantum dot layer and improves the light efficiency at the same time It can also maintain the integrity of the morphological structure of the groove where the quantum dots are placed and the water and oxygen resistance capabilities.
  • the sapphire is thicker, the groove depth is deeper and the quantum dot layer is thicker, which can effectively absorb the light emitted by the MicroLED, eliminating the color filter layer and saving costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

本揭示提供一种MicroLED显示面板,包括:第一基板、第二基板、驱动电路、MicroLED芯片以及MicroLED量子点发光阵列,通过在MicroLED芯片上设置凹槽,再在凹槽中填充量子点,有效地增加了量子点层的厚度,在提升了光效的同时又可保持凹槽形态结构的完整性,可以有效地吸收MicroLED的发光,省去了彩色滤光片层,节省了成本。

Description

MicroLED显示面板 技术领域
本揭示涉及显示技术领域,尤其涉及一种MicroLED显示面板。
背景技术
微型发光二极管(Micro light emitting diode,MicroLED)通常是指在传统MicroLED芯片结构基础上,将MicroLED芯片尺寸规格缩小到200微米以内的尺寸,将红、绿、蓝三色MicroLED按照一定的规则排列在薄膜晶体管(Thin Film Transistor,TFT)或互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,COMS)上,则形成了能够实现全彩显示的微器件。此种显示器具有独立控制的显示画素,具有独立发光控制、高辉度、低耗电、超高分辨率和超高色彩饱和度等特点,并且 MicroLED微显示器件由于具有自发光的技术特性,还可以实现柔性、透明显示等,而其耗电量仅约为液晶面板的10%。
目前,现有的MicroLED彩色化方案主要有两种,一种是采用RGB三色MicroLED芯片,另一种是通过MicroLED芯片和荧光材料结合的彩色化方案。二者各自具有优缺点,其中,由于量子点尺寸小,可实现色域高,因此MicroLED芯片结合量子点荧光材料的方案为当前重要的研究方向。传统的MicroLED 芯片结合量子点荧光材料方案采用在MicroLED基板上通过设置black bank(黑色堤),再在black bank形成的凹槽中放置量子点,但由于black bank层为有机材料制作而成,厚度越厚,越容易出现底切现象,影响凹槽的形态,且量子点层约薄,量子点的浓度猝灭越严重,将造成光转换效率越低,因此,适当的增加量子点层的厚度,提升光效,又要保持凹槽形态的完整性成为目前需要解决的一个问题。
因此,需提供一种新的MicroLED显示面板,来解决上述技术问题。
技术问题
本揭示提供一种MicroLED显示面板,解决了现有的MicroLED显示面板中black bank层影响凹槽形态结构的完整性,且量子点的浓度猝灭严重、光转换效率低下的技术问题。
技术解决方案
为解决上述问题,本揭示提供的技术方案如下:
本揭示实施例提供一种MicroLED显示面板,包括:
第一基板;
第二基板,与所述第一基板相对;
驱动电路,设置在所述第二基板上;
MicroLED芯片,设置于所述第一基板与所述第二基板之间,所述MicroLED芯片包括MicroLED磊晶;以及
MicroLED量子点发光阵列,包括至少一凹槽、非凹槽区以及填充于所述凹槽内的量子点层或散射颗粒,其中,所述凹槽设置于所述MicroLED磊晶上且呈阵列排列,所述凹槽的形状为倒锥形,所述非凹槽区设置于相邻两个所述凹槽之间的所述MicroLED磊晶上,所述量子点层包括红色量子点层及绿色量子点层。
根据本揭示实施例提供的微型MicroLED显示面板,所述散射颗粒替换为蓝色量子点层。
根据本揭示实施例提供的微型MicroLED显示面板,所述MicroLED磊晶包括依次排列分布的蓝宝石基底、n型GaN层、多量子阱发光层和p型GaN层。
根据本揭示实施例提供的微型MicroLED显示面板,所述多量子阱发光层为蓝光发光层或紫外发光层。
根据本揭示实施例提供的微型MicroLED显示面板,所述凹槽的侧壁上依次设置有金属反射层及惰性保护层。
根据本揭示实施例提供的微型MicroLED显示面板,所述第二基板为印刷电路板或薄膜晶体管玻璃基板或互补金属氧化物半导体基板。
根据本揭示实施例提供的微型MicroLED显示面板,所述第二基板上设置有第二电极,所述第二电极与设置于所述MicroLED芯片上的芯片电极相连。
本揭示实施例提供一种MicroLED显示面板,包括:
第一基板;
第二基板,与所述第一基板相对;
驱动电路,设置在所述第二基板上;
MicroLED芯片,设置于所述第一基板与所述第二基板之间,所述MicroLED芯片包括MicroLED磊晶;以及
MicroLED量子点发光阵列,包括至少一凹槽、非凹槽区以及填充于所述凹槽内的量子点层或散射颗粒,其中,所述凹槽设置于所述MicroLED磊晶上且呈阵列排列,所述非凹槽区设置于相邻两个所述凹槽之间的所述MicroLED磊晶上,所述量子点层包括红色量子点层及绿色量子点层。
根据本揭示实施例提供的微型MicroLED显示面板,所述散射颗粒替换为蓝色量子点层。
根据本揭示实施例提供的MicroLED显示面板,所述MicroLED磊晶包括依次排列分布的蓝宝石基底、n型GaN层、多量子阱发光层和p型GaN层。
根据本揭示实施例提供的MicroLED显示面板,所述多量子阱发光层为蓝光发光层或紫外发光层。
根据本揭示实施例提供的MicroLED显示面板,所述蓝宝石基底的厚度大于50um。
根据本揭示实施例提供的MicroLED显示面板,所述凹槽的深度为3~100um。
根据本揭示实施例提供的MicroLED显示面板,所述凹槽的侧壁上依次设置有金属反射层及惰性保护层。
根据本揭示实施例提供的微型MicroLED显示面板,所述金属反射层的材料为银或铝等金属。
根据本揭示实施例提供的微型MicroLED显示面板,所述惰性保护层可为聚氨酯、环氧树脂、派瑞林等单层或多层复合膜。本揭示实施例提供的MicroLED显示面板,所述第一基板上设置有至少一黑色矩阵,所述黑色矩阵覆盖所述MicroLED量子点发光阵列的所述非凹槽区。
根据本揭示实施例提供的MicroLED显示面板,所述第二基板为印刷电路板或薄膜晶体管玻璃基板或互补金属氧化物半导体基板。
根据本揭示实施例提供的MicroLED显示面板,所述第二基板上设置有第二电极,所述第二电极与设置于所述MicroLED芯片上的芯片电极相连。
有益效果
本揭示的有益效果为:本揭示提供的MicroLED显示面板,通过在MicroLED芯片上的蓝宝石基底上设置凹槽,再在凹槽中填充量子点,有效地增加了量子点层的厚度,在提升了光效的同时又可保持放置量子点的凹槽形态结构的完整性和阻水阻氧能力。此外,由于蓝宝石厚度较厚,因此凹槽深度较深、量子点层厚度较厚,可以有效地吸收MicroLED的发光,省去了彩色滤光片层,节省了成本。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本揭示实施例一提供的一种MicroLED显示面板的结构示意图;
图2为本揭示实施例二提供的一种MicroLED显示面板的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
本揭示针对现有技术的MicroLED显示面板中的black bank层会影响凹槽形态结构的完整性,且量子点的浓度猝灭严重、光转换效率低下的技术问题。本揭示实施例能够解决该缺陷。本揭示实施例中的MicroLED显示面板为MicroLED显示面板。
实施例一
如图1所示,本揭示实施例提供的MicroLED显示面板1000,包括:
第一基板11;
第二基板12,与所述第一基板11相对设置;
MicroLED芯片10,设置于所述第一基板11与所述第二基板12之间,所述MicroLED芯片10包括MicroLED磊晶101;以及
MicroLED量子点发光阵列100,包括至少一凹槽1011a、非凹槽区1011b以及填充于所述凹槽1011a内的量子点层或散射颗粒19,其中,所述凹槽1011a设置于所述MicroLED磊晶101上且呈阵列排列,所述非凹槽区1011b设置于相邻两个所述凹槽1011a之间的所述MicroLED磊晶101上,所述量子点层包括红色量子点层17及绿色量子点层18。
所述MicroLED磊晶101包括依次排列分布的蓝宝石基底1011、n型GaN层1012、多量子阱发光层1013、p型GaN层1014以及绝缘层1015。其中,在本揭示实施例中,所述多量子阱发光层1013为蓝光发光层。
在所述MicroLED磊晶101上的所述蓝宝石基底1011上可设置多个所述凹槽1011a,对于尺寸足够小的所述MicroLED芯片10,在所述MicroLED磊晶101上也可仅设置一个所述凹槽1011a。为实现多种颜色的发光效果,每个所述凹槽1011a中可填充所述量子点层或所述散射颗粒19,填充的所述量子点层的发光波长也可以为相同或不同。其中,相邻三个所述凹槽内分别填充有所述红色量子点层17、所述绿色量子点层18及所述散射颗粒19,所述散射颗粒19为透明的,相邻三个所述凹槽1011a及其设置于所述凹槽1011a内的所述红色量子点层17、所述绿色量子点层18或所述散射颗粒19构成一个RGB像素单元。由于位于所述MicroLED磊晶101上的所述多量子阱发光层1013为蓝光发光层,因此,当所述蓝光发光层发出的蓝光经过所述红色量子点层17时,所述红色量子点层17受到激发而发出红光,形成红色像素;当所述蓝光发光层发出的蓝光经过所述绿色量子点层18时,所述绿色量子点层18受到激发而发出绿光,形成绿色像素;当所述蓝光发光层发出的蓝光经过所述散射颗粒19时,所述透明颗粒19可直接透过所述蓝光发光层发出的蓝光,形成蓝色像素,从而形成红、绿、蓝三基色合成的彩色图像。
为了有效地利用光能,以及防止所述MicroLED量子点发光阵列100中的像素间颜色的相互干扰,在所述凹槽1011a的侧壁上设置有金属反射层15,所述金属反射层15的材料可为银或铝等金属,光线经过所述金属反射层15进行反射,从而再一次被所述凹槽1011a内的所述量子点层或所述散射颗粒19吸收,防止光线进入相邻的所述凹槽1011a内,造成像素间颜色的相互干扰,进而造成色彩差异。同时,还可在所述金属反射层15上沉积一层惰性保护层(图中未示出),所述惰性保护层可为聚氨酯、环氧树脂、派瑞林等单层或多层复合膜,以阻隔外界的水氧,用来保护所述金属反射层15,防止所述金属反射层15氧化。
所述第一基板11可为玻璃基板,在所述第一基板11上设置有至少一个黑色矩阵13,所述黑色矩阵13位于靠近所述MicroLED量子点发光阵列100的一侧且覆盖所述MicroLED量子点发光阵列100的非凹槽区1011b,防止像素间的漏光,可有效地提升暗态下的亮度,从而提升所述MicroLED显示面板1000的对比度。此外,所述第一基板11还可阻挡水、氧进入所述量子点层,可提升所述量子点层可靠性,进而保证所述MicroLED显示面板1000的可靠性。同时,在所述黑色矩阵13下方设置有平坦层14,将所述MicroLED量子点发光阵列100平坦化。
所述第二基板12与所述第一基板11相对设置,在所述第二基板12上设置有驱动电路。所述第二基板12可为印刷电路板( Printed Circuit Board,PCB)或TFT玻璃基板或CMOS基板。当所述第二基板12为TFT玻璃基板时,所述第二基板12上设置有TFT驱动电路;当所述第二基板12为COMS基板时,所述第二基板12上设置有COMS驱动电路。同时,在所述第二基板12上设置有第二电极,所述第二电极与设置于所述MicroLED芯片上的芯片电极相连,所述第二电极与所述第一电极相匹配。所述第二电极包括第二p电极121与第二n电极122,所述芯片电极包括芯片p电极102与芯片n电极103,所述第二p电极101与所述芯片p电极121相连,所述第二n电极102与所述芯片n电极122相连。
其中,在所述第二基板12的所述第二电极上设置有连接层16,所述连接层16可为焊材或异方性导电胶(Anisotropic Conductive Film,ACF)。所述焊材需选用具有低熔点的材料,可选用金锡合金、铟、锡化铟等材料。所述第二基板12的所述第二电极与所述MicroLED芯片10的所述芯片电极通过所述焊层或所述ACF进行相连。通过对所述驱动电路的控制,所述多量子阱发光层1013发出蓝光,激发所述红色量子点层17及所述绿色量子点层18,进而分别发出红光和绿光。
由于所述蓝宝石基底1011的厚度较厚,通常大于50um,因此,在所述蓝宝石基底1011上刻蚀形成的所述凹槽1011a的深度可达到3~100 um之间,从而大大提高了所述量子点层的厚度,可以有效的吸收所述蓝色发光层发出的光线。当所述蓝色发光层发出的光线经所述量子点层吸收之后,所残留的蓝光能量足够少(<3%)时,可以达到采用量子点结合彩色滤光片的方案获得的色域。然而,本揭示实施例中的所述量子点层由于厚度较厚,可省去彩色滤光片层,能够节省成本。此外,所述凹槽1011a的形状可采用倒锥形结构,在像素间距一定的情况下,大大提高了所述量子点层的厚度,不仅能够保持所述凹槽形态的完整性,而且可以在保证蓝光完全吸收的条件下,能够缩小像素间距,提高所述MicroLED显示面板1000的分辨率。但所述凹槽1011a的形状并不仅限于倒锥形结构,也可采用其他形状,本揭示不应以此为限制。
实施例二
如图2所示,本实施例提供的MicroLED显示面板1000',所述MicroLED显示面板1000'是在实施例一的基础上,将所述蓝色发光层替换为紫外光发光层,同时将所述散射颗粒19替换为蓝色量子点层20,具体地,所述MicroLED显示面板1000'包括:
第一基板11;
第二基板12,与所述第一基板11相对设置;
MicroLED芯片10,设置于所述第一基板11与所述第二基板12之间,所述MicroLED芯片10包括MicroLED磊晶101;以及
MicroLED量子点发光阵列200,包括凹槽1011a、非凹槽区1011b以及填充于所述凹槽1011a内的量子点层,其中,所述凹槽1011a设置于所述MicroLED磊晶101上且呈阵列排列,所述非凹槽区1011b设置于相邻两个所述凹槽1011a之间的所述MicroLED磊晶101上,所述量子点层包括红色量子点层17、绿色量子点层18、蓝色量子点层20。
所述MicroLED磊晶101包括依次排列分布的蓝宝石基底1011、n型GaN层1012、多量子阱发光层1013、p型GaN层1014以及绝缘层1015。其中,在本揭示实施例中,所述多量子阱发光层1013'为紫外光发光层。
在所述MicroLED磊晶101上的所述蓝宝石基底1011上可设置多个所述凹槽1011a,为实现多种颜色的发光效果,每个所述凹槽1011a中可填充量子点层,填充的所述量子点层的发光波长也可以为相同或不同。其中,相邻三个所述凹槽1011a内分别填充有红色量子点层17、绿色量子点层18及蓝色量子点层20,相邻三个所述凹槽1011a及其设置于所述凹槽1011a内的所述量子点层构成一个RGB像素单元。由于位于所述MicroLED磊晶上的所述多量子阱发光层1013'为紫外光发光层,因此,当所述紫外光发光层发出的紫外光经过所述红色量子点层17时,所述红色量子点层17受到激发而发出红光,形成红色像素;当所述紫外光发光层发出的紫外光经过所述绿色量子点层18时,所述绿色量子点层18受到激发而发出绿光,形成绿色像素;当所述紫外光发光层发出的紫外光经过所述蓝色量子点层20时,所述蓝色量子点层20可直接透过所述紫外光发光层发出的紫外光,形成蓝色像素,从而形成红、绿、蓝三基色合成的彩色图像。
通过对所述驱动电路的控制,所述多量子阱发光层1013'发出紫外光,激发所述红色量子点层17、所述绿色量子点层18及所述蓝色量子点层20,进而分别发出红光、绿光及蓝光。
当所述多量子阱发光层1013'发出的光线经所述量子点层吸收之后,所残留的紫外光能量足够少(<3%)时,可以达到采用量子点结合彩色滤光片的方案获得的色域。然而,本揭示实施例中的所述量子点层由于厚度较厚,可省去彩色滤光片层,能够节省成本。此外,所述凹槽1011a的形状可采用倒锥形结构,在像素间距一定的情况下,大大提高了所述量子点层的厚度,不仅能够保持所述凹槽1011a形态的完整性,而且可以在保证紫外光完全吸收的条件下,能够缩小像素间距,提高所述MicroLED显示面板1000'的分辨率。但所述凹槽1011a的形状并不仅限于倒锥形结构,也可采用其他形状,本揭示不应以此为限制。
无论是实施例一中的蓝光发光层结合红色量子点层、绿色量子点层及散射颗粒的方案,还是实施例二中紫外光发光层结合红色量子点层、绿色量子点层以及蓝色量子点层的方案,均能实现MicroLED显示面板的彩色化。
有益效果为:本揭示提供的显示面板,通过在MicroLED芯片上的蓝宝石基底上设置凹槽,再在凹槽中填充量子点,有效地增加了量子点层的厚度,在提升了光效的同时又可保持放置量子点的凹槽形态结构的完整性和阻水阻氧能力。此外,由于蓝宝石厚度较厚,因此凹槽深度较深、量子点层厚度较厚,可以有效地吸收MicroLED的发光,省去了彩色滤光片层,节省了成本。
综上所述,虽然本揭示已以优选实施例揭露如上,但上述优选实施例并非用以限制本揭示,本领域的普通技术人员,在不脱离本揭示的精神和范围内,均可作各种更动与润饰,因此本揭示的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种MicroLED显示面板,包括:
    第一基板;
    第二基板,与所述第一基板相对;
    驱动电路,设置在所述第二基板上;
    MicroLED芯片,设置于所述第一基板与所述第二基板之间,所述MicroLED芯片包括MicroLED磊晶;以及
    MicroLED量子点发光阵列,包括至少一凹槽、非凹槽区以及填充于所述凹槽内的量子点层或散射颗粒,其中,所述凹槽设置于所述MicroLED磊晶上且呈阵列排列,所述凹槽的形状为倒锥形,所述非凹槽区设置于相邻两个所述凹槽之间的所述MicroLED磊晶上,所述量子点层包括红色量子点层及绿色量子点层。
  2. 根据权利要求1所述的MicroLED显示面板,其中所述散射颗粒替换为蓝色量子点层。
  3. 根据权利要求1所述的MicroLED显示面板,其中所述MicroLED磊晶包括依次排列分布的蓝宝石基底、n型GaN层、多量子阱发光层和p型GaN层。
  4. 根据权利要求3所述的MicroLED显示面板,其中所述多量子阱发光层为蓝光发光层或紫外发光层。
  5. 根据权利要求1所述的MicroLED显示面板,其中所述凹槽的侧壁上依次设置有金属反射层及惰性保护层。
  6. 根据权利要求1所述的MicroLED显示面板,其中所述第二基板为印刷电路板或薄膜晶体管玻璃基板或互补金属氧化物半导体基板。
  7. 根据权利要求1所述的MicroLED显示面板,其中所述第二基板上设置有第二电极,所述第二电极与设置于所述MicroLED芯片上的芯片电极相连。
  8. 一种MicroLED显示面板,其特征在于,包括:
    第一基板;
    第二基板,与所述第一基板相对;
    驱动电路,设置在所述第二基板上;
    MicroLED芯片,设置于所述第一基板与所述第二基板之间,所述MicroLED芯片包括MicroLED磊晶;以及
    MicroLED量子点发光阵列,包括至少一凹槽、非凹槽区以及填充于所述凹槽内的量子点层或散射颗粒,其中,所述凹槽设置于所述MicroLED磊晶上且呈阵列排列,所述非凹槽区设置于相邻两个所述凹槽之间的所述MicroLED磊晶上,所述量子点层包括红色量子点层及绿色量子点层。
  9. 根据权利要求8所述的MicroLED显示面板,其中所述散射颗粒替换为蓝色量子点层。
  10. 根据权利要求9所述的MicroLED显示面板,其中所述MicroLED磊晶包括依次排列分布的蓝宝石基底、n型GaN层、多量子阱发光层和p型GaN层。
  11. 根据权利要求10所述的MicroLED显示面板,其中所述多量子阱发光层为蓝光发光层或紫外发光层。
  12. 根据权利要求10所述的MicroLED显示面板,其中所述蓝宝石基底的厚度大于50um。
  13. 根据权利要求8所述的MicroLED显示面板,其中所述凹槽的深度为3~100um。
  14. 根据权利要求8所述的MicroLED显示面板,其中所述凹槽的侧壁上依次设置有金属反射层及惰性保护层。
  15. 根据权利要求14所述的MicroLED显示面板,其中所述金属反射层的材料为银或铝等金属。
  16. 根据权利要求14所述的MicroLED显示面板,其中所述惰性保护层可为聚氨酯、环氧树脂、派瑞林等单层或多层复合膜。
  17. 根据权利要求8所述的MicroLED显示面板,其中所述第一基板上设置有至少一黑色矩阵,所述黑色矩阵覆盖所述MicroLED量子点发光阵列的所述非凹槽区。
  18. 根据权利要求17所述的MicroLED显示面板,其中在所述黑色矩阵下方设置有平坦层。
  19. 根据权利要求8所述的MicroLED显示面板,其中所述第二基板为印刷电路板或薄膜晶体管玻璃基板或互补金属氧化物半导体基板。
  20. 根据权利要求8所述的MicroLED显示面板,其中所述第二基板上设置有第二电极,所述第二电极与设置于所述MicroLED芯片上的芯片电极相连。
PCT/CN2019/111132 2019-04-23 2019-10-15 MicroLED显示面板 WO2020215620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910330035.4 2019-04-23
CN201910330035.4A CN109979958A (zh) 2019-04-23 2019-04-23 MicroLED显示面板

Publications (1)

Publication Number Publication Date
WO2020215620A1 true WO2020215620A1 (zh) 2020-10-29

Family

ID=67085941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111132 WO2020215620A1 (zh) 2019-04-23 2019-10-15 MicroLED显示面板

Country Status (2)

Country Link
CN (1) CN109979958A (zh)
WO (1) WO2020215620A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979958A (zh) * 2019-04-23 2019-07-05 深圳市华星光电半导体显示技术有限公司 MicroLED显示面板
CN110350055A (zh) * 2019-07-25 2019-10-18 易美芯光(北京)科技有限公司 一种基于倒装结构的白光Micro LED结构
CN110783324B (zh) * 2019-09-19 2021-03-16 季华实验室 高密度Micro LED夹层结构有源驱动显示单元
CN110610957A (zh) * 2019-09-30 2019-12-24 云谷(固安)科技有限公司 显示面板、显示面板的制备方法和显示装置
CN110676285B (zh) * 2019-10-25 2024-05-17 佛山市国星半导体技术有限公司 一种多合一MicroLED芯片及其制作方法
CN110707121B (zh) * 2019-10-31 2022-02-01 深圳市华星光电半导体显示技术有限公司 显示面板
CN111584471B (zh) * 2020-05-12 2022-08-16 深圳雷曼光电科技股份有限公司 显示屏及其制造方法
CN111564121B (zh) * 2020-06-16 2022-04-12 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制作方法
CN111725251B (zh) * 2020-07-04 2023-04-21 深圳市惠合显示有限公司 高分辨率全彩化MicroLED显示器
CN111864092A (zh) * 2020-07-15 2020-10-30 武汉华星光电半导体显示技术有限公司 显示装置
CN114093986A (zh) * 2020-08-24 2022-02-25 北京芯海视界三维科技有限公司 光学材料填充方法及装置
CN112420901B (zh) * 2020-11-06 2022-02-01 深圳市华星光电半导体显示技术有限公司 微型发光二极管及显示面板
CN112578594A (zh) * 2020-11-27 2021-03-30 北海惠科光电技术有限公司 彩膜基板、显示面板及显示装置
CN112578597A (zh) * 2020-11-27 2021-03-30 北海惠科光电技术有限公司 彩膜基板、显示面板以及显示装置
CN112768590A (zh) * 2020-12-30 2021-05-07 深圳市华星光电半导体显示技术有限公司 一种显示面板的制备方法及显示面板
CN112782944A (zh) * 2021-01-27 2021-05-11 福州大学 一种基于RGBW的Micro-LED光刻工艺
CN113284918B (zh) * 2021-04-29 2024-01-26 无锡唐古半导体有限公司 微显示器件及其制备方法
CN113345921B (zh) * 2021-05-28 2022-09-27 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN114975507B (zh) * 2022-05-26 2023-06-23 重庆惠科金渝光电科技有限公司 阵列基板和显示面板
CN115407555A (zh) * 2022-08-17 2022-11-29 合肥合纵光电科技有限公司 一种柔性量子点直显装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204289509U (zh) * 2014-11-20 2015-04-22 Tcl集团股份有限公司 量子点led封装结构
CN107195653A (zh) * 2016-03-14 2017-09-22 群创光电股份有限公司 显示装置
CN108987425A (zh) * 2018-07-19 2018-12-11 豪威半导体(上海)有限责任公司 微led显示器及其制造方法
WO2019040688A1 (en) * 2017-08-24 2019-02-28 Corning Incorporated HIGH DYNAMIC RANGE MICRO-LED BACKLIGHT SYSTEMS AND METHODS
CN109979958A (zh) * 2019-04-23 2019-07-05 深圳市华星光电半导体显示技术有限公司 MicroLED显示面板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281456B (zh) * 2018-01-19 2020-09-01 福州大学 Micro-LED器件结构及制作方法
CN108987424B (zh) * 2018-07-17 2021-01-19 南方科技大学 一种Micro-LED显示面板及其制造方法
CN109256455B (zh) * 2018-09-19 2020-06-12 福州大学 一种光效提取和无像素干扰的全彩化Micro-LED显示结构及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204289509U (zh) * 2014-11-20 2015-04-22 Tcl集团股份有限公司 量子点led封装结构
CN107195653A (zh) * 2016-03-14 2017-09-22 群创光电股份有限公司 显示装置
WO2019040688A1 (en) * 2017-08-24 2019-02-28 Corning Incorporated HIGH DYNAMIC RANGE MICRO-LED BACKLIGHT SYSTEMS AND METHODS
CN108987425A (zh) * 2018-07-19 2018-12-11 豪威半导体(上海)有限责任公司 微led显示器及其制造方法
CN109979958A (zh) * 2019-04-23 2019-07-05 深圳市华星光电半导体显示技术有限公司 MicroLED显示面板

Also Published As

Publication number Publication date
CN109979958A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020215620A1 (zh) MicroLED显示面板
TWI676851B (zh) 畫素陣列封裝結構及顯示面板
WO2020258864A1 (zh) 色彩转化组件及其制作方法、显示面板
KR102144993B1 (ko) 디스플레이 장치
US11817308B2 (en) Display panel and manufacturing method thereof
US20210359157A1 (en) Display device and method for fabricating same
US20190348440A1 (en) Pixel array substrate and driving method thereof
CN113178529B (zh) 显示面板
US20240032368A1 (en) Oled display panel and display device
WO2020248404A1 (zh) 微型发光二极管及显示面板
US20210191174A1 (en) Display apparatus
WO2020177187A1 (zh) 显示面板及显示模组
US11353741B2 (en) Display module and display device
KR20230023695A (ko) 컬러 필터 및 이를 포함하는 유기 발광 표시 장치
US20240168328A1 (en) Hybrid display device and spliced display device
CN215933606U (zh) 显示面板以及显示装置
CN112349745B (zh) Micro-LED显示面板和Micro-LED显示装置
US10276756B2 (en) LED display panel
US10978509B2 (en) Display panel and manufacturing method thereof
CN107768526B (zh) 量子点电致发光器件
CN112099122A (zh) 滤光膜以及显示器件
WO2020199255A1 (zh) Led器件及显示装置
TWI784681B (zh) 微型發光二極體顯示裝置
TWI784592B (zh) 微型發光二極體顯示裝置
CN213905401U (zh) 显示基板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926116

Country of ref document: EP

Kind code of ref document: A1