WO2023115956A1 - 蛇形管微通道换热器、空调器 - Google Patents

蛇形管微通道换热器、空调器 Download PDF

Info

Publication number
WO2023115956A1
WO2023115956A1 PCT/CN2022/109444 CN2022109444W WO2023115956A1 WO 2023115956 A1 WO2023115956 A1 WO 2023115956A1 CN 2022109444 W CN2022109444 W CN 2022109444W WO 2023115956 A1 WO2023115956 A1 WO 2023115956A1
Authority
WO
WIPO (PCT)
Prior art keywords
serpentine
heat exchanger
refrigerant
tube
pipe
Prior art date
Application number
PCT/CN2022/109444
Other languages
English (en)
French (fr)
Inventor
吴迎文
尹东
杨瑞琦
姜甲元
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023115956A1 publication Critical patent/WO2023115956A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers

Definitions

  • the disclosure belongs to the technical field of heat exchanger manufacturing, and in particular relates to a serpentine tube microchannel heat exchanger and an air conditioner.
  • the micro-channel heat exchanger has the advantages of high efficiency and compactness, light weight, less perfusion, and easy recycling by using all-aluminum materials. At present, it has been used in single-cooling household micro-channel condensers, micro-channel condensers and evaporators for automobiles, and refrigerator condensers.
  • the serpentine tube microchannel heat exchanger is shown in Figure 10.
  • the width direction of the flat tube a (that is, the serpentine tube) is parallel to the axial direction of the header b, and there is a heat dissipation fin c between the flat tubes a.
  • the diameter of the collector pipe is smaller, and parts such as spacers and adapter blocks are reduced, and the cost of the heat exchanger is lower.
  • serpentine tube microchannel heat exchangers are only used in refrigerators.
  • the cooling capacity range is generally 100 watts, and the flow path adopts the form of one in and one out. The flow is large and the pressure drop is large, so it is necessary to design a new form of serpentine flow path.
  • the present disclosure provides a serpentine tube microchannel heat exchanger and an air conditioner, which can overcome the flow rate of the serpentine tube microchannel heat exchanger in the related art where the number of inlet pipes and outlet pipes is equal when applied to large cooling capacity occasions. Big pressure drop big deficiency.
  • the present disclosure provides a serpentine tube microchannel heat exchanger, including a first cooling tube group, a second cooling tube group, a first refrigerant drainage tube, a second refrigerant drainage tube, a third refrigerant drainage tube,
  • the fourth refrigerant drainage pipe wherein the first heat dissipation pipe group includes M first serpentine pipes connected in parallel, the second heat dissipation pipe group includes N second serpentine pipes connected in parallel, and the first refrigerant drainage pipe
  • M first branch pipes on the top, and the M first branch pipes communicate with the first ports of the M first serpentine pipes in one-to-one correspondence, and there are M second branch pipes on the second refrigerant drainage pipe
  • the M second branch pipes communicate with the second ports of the M first serpentine pipes in one-to-one correspondence
  • the third refrigerant drainage pipe has N third branch pipes, and the N third branch pipes
  • the branch pipes communicate with the first ports of the N second serpentine pipes in one-to-one correspondence, the fourth refriger
  • M is greater than N, and when the air conditioner is in cooling mode, the first refrigerant drainage pipe is connected to the exhaust port of the compressor, and the fourth refrigerant drainage pipe is connected to the suction port of the compressor.
  • the air port is connected; when the air conditioner is in the heating mode, the first refrigerant drainage pipe is connected to the suction port of the compressor, and the fourth refrigerant drainage pipe is connected to the exhaust port of the compressor.
  • the throttling component is a spacer with a first throttle hole
  • the second refrigerant drainage pipe and the third refrigerant drainage pipe are integrally formed straight pipes, and the spacer is connected to inside the straight pipe.
  • the straight pipe is on the air inlet side of the serpentine tube microchannel heat exchanger, and the first refrigerant drainage pipe and the fourth refrigerant drainage pipe are located in the serpentine tube microchannel heat exchanger. the air outlet side.
  • the throttling component is an injection tube with a second orifice, one end of the injection tube is a closed end, one end of the injection tube is an open end, the closed end and the first
  • the two throttle holes are located in the second refrigerant drainage pipe, and the opening end is located in the fourth refrigerant drainage pipe.
  • the first refrigerant drainage pipe and the fourth refrigerant drainage pipe are located on the air outlet side of the serpentine tube microchannel heat exchanger, and the second refrigerant drainage pipe and the third refrigerant drainage pipe It is on the air inlet side of the serpentine tube microchannel heat exchanger.
  • the first serpentine tube comprises a first outer serpentine tube at the air inlet side of the serpentine tube microchannel heat exchanger and a first outer serpentine tube at the air inlet side of the serpentine tube microchannel heat exchanger.
  • the first inner serpentine pipe on the air outlet side is formed in series, and the first port of the first outer serpentine pipe communicates with the first port of the first inner serpentine pipe through a first connecting pipe.
  • the second serpentine tube includes a second outer serpentine tube at the air inlet side of the serpentine tube microchannel heat exchanger and a second outer serpentine tube at the air inlet side of the serpentine tube microchannel heat exchanger.
  • the second inner serpentine pipe is formed in series, and the first port of the second outer serpentine pipe communicates with the first port of the second inner serpentine pipe through a second connecting pipe.
  • the present disclosure also provides an air conditioner, including the above serpentine tube microchannel heat exchanger.
  • the first refrigerant drainage pipe and the fourth refrigerant drainage pipe respectively have branch pipes with different numbers, so that the serpentine tube microchannel heat exchanger
  • the heat exchanger can adapt to the flow path conditions of more refrigerant inflow and less outflow under cooling conditions, and less inflow and more outflow under heating conditions, so as to improve the comprehensive performance of cooling and heating of the heat exchanger; at the same time, under refrigeration conditions, the
  • the second radiating pipe group supercools the refrigerant after heat exchange in the first radiating pipe group, and the second serpentine tubes in the second radiating pipe group are connected in parallel, which can solve the problems in the related art.
  • FIG. 1 is a schematic structural view of a serpentine tube microchannel heat exchanger according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of the refrigerant flow direction of the serpentine tube microchannel heat exchanger in Fig. 1 under the cooling condition of the air conditioner;
  • Fig. 3 is a schematic diagram of the refrigerant flow direction of the serpentine tube microchannel heat exchanger in Fig. 1 under the heating condition of the air conditioner;
  • FIG. 4 is a schematic structural view of a serpentine tube microchannel heat exchanger according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a throttling component in an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural view of a serpentine tube microchannel heat exchanger according to another embodiment of the present disclosure.
  • Fig. 7 is another schematic structural view of the throttling component in the embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of the refrigerant flow direction of the serpentine tube microchannel heat exchanger in Fig. 7 under the cooling condition of the air conditioner;
  • Fig. 9 is a schematic diagram of the refrigerant flow direction of the serpentine tube microchannel heat exchanger in Fig. 7 under the heating condition of the air conditioner;
  • Fig. 10 is a schematic structural view of a serpentine tube microchannel heat exchanger with one inlet and one outlet in the related art.
  • a serpentine tube microchannel heat exchanger including a first cooling tube group 1 , a second cooling tube group 2 , and a first refrigerant drainage tube 3 , the second refrigerant drainage pipe 4, the third refrigerant drainage pipe 5, and the fourth refrigerant drainage pipe 6, wherein the first heat dissipation pipe group 1 includes M first serpentine pipes 11 connected in parallel, and the second heat dissipation pipe group 2 includes N second serpentine pipes 21 connected in parallel, the first refrigerant drainage pipe 3 has M first branch pipes 31, and the M first branch pipes 31 are in one-to-one correspondence with the M first branch pipes 31.
  • the first port of the serpentine pipe 11 is connected, and the second refrigerant drainage pipe 4 is provided with M second branch pipes 41, and the M second branch pipes 41 correspond to the M first serpentine pipes respectively.
  • the third refrigerant drainage pipe 5 has N third branch pipes 51, and the N third branch pipes 51 are in one-to-one correspondence with the N second serpentine pipes 21 respectively.
  • One port is connected, and the fourth refrigerant drainage pipe 6 has N fourth branch pipes 61, and the N fourth branch pipes 61 communicate with the second ports of the N second serpentine pipes 21 in one-to-one correspondence.
  • M is not equal to N.
  • first serpentine tube 11 and the second serpentine tube 21 are provided with cooling fins (not shown in the figure) to improve the heat dissipation of the heat exchanger Effect.
  • first refrigerant drainage pipe 3 and the fourth refrigerant drainage pipe 6 respectively have branch pipes with different numbers, so that the serpentine tube microchannel heat exchanger can adapt to the refrigerant flow under refrigeration conditions.
  • a throttling component between the second refrigerant drainage pipe 4 and the third refrigerant drainage pipe 5, and the second refrigerant drainage pipe 4 and the third refrigerant drainage pipe 5 pass through the The throttling parts are communicated so as to be able to throttle and accelerate the passing refrigerant. Specifically, under heating conditions, the liquid refrigerant sequentially introduced by the fourth refrigerant draft pipe 6 and the third refrigerant draft pipe 5 can be accelerated, thereby It is ensured that the refrigerant can reach the end of the second refrigerant drainage pipe 4 , that the refrigerant is fully filled and distributed evenly.
  • the throttling component is a spacer 8 with a first throttle hole 81, and the second refrigerant drainage pipe 4 is integrated with the third refrigerant drainage pipe 5 Formed straight pipe, the spacer 8 is connected in the straight pipe, correspondingly at this time, the straight pipe is on the air inlet side of the serpentine tube microchannel heat exchanger, and the first refrigerant drainage pipe 3 And the fourth refrigerant drainage pipe 6 is located at the air outlet side of the serpentine tube micro-channel heat exchanger.
  • the throttling component is an injection pipe 7 with a second orifice 71, one end of the injection pipe 7 is a closed end, and one end of the injection pipe 7 is an open end, and the closed end and the second throttle hole 71 are located in the second refrigerant draft pipe 4 (that is, the closed end of the injection pipe 7 is embedded in the second refrigerant draft pipe 4 ), the open end is in the fourth refrigerant drainage tube 6, so that the first refrigerant drainage tube 3 and the fourth refrigerant drainage tube 6 can be located at the outlet of the serpentine tube microchannel heat exchanger On the wind side, the second refrigerant drainage pipe 4 and the third refrigerant drainage pipe 5 are located at the air inlet side of the serpentine tube microchannel heat exchanger.
  • the first serpentine tube 11 includes the first outer serpentine tube 111 on the air inlet side of the serpentine tube microchannel heat exchanger and the microchannel located in the serpentine tube for heat exchange.
  • the first inner serpentine pipe 112 on the air outlet side of the device is formed in series, and the first port of the first outer serpentine pipe 111 communicates with the first port of the first inner serpentine pipe 112 through a first connecting pipe 113 , the second port of the first outer serpentine tube 111 communicates with the second refrigerant drainage tube 4, and the second port of the first inner serpentine tube 112 communicates with the first refrigerant drainage tube 3; or , the second serpentine tube 21 comprises a second outer serpentine tube 211 at the air inlet side of the serpentine tube microchannel heat exchanger and a second inner side of the serpentine tube microchannel heat exchanger Serpentine tubes 212 are formed in series, the first port of the second outer serpentine tube 211 communicates with the first port of the second inner serpentine tube 212 through a second connecting tube 21
  • the first radiating pipe group 1 and the second radiating pipe group 2 are respectively composed of an outer serpentine tube and an inner serpentine tube (that is, a double-layer serpentine tube structure).
  • 113 or the second connecting pipe 213 connects the inner and outer serpentine pipes in series.
  • the cooling operation At this time, the flow direction of the refrigerant in the second cooling pipe group 2 and the flow direction of the wind are downstream, and the heat exchange temperature difference is relatively small, which improves the heat exchange effect; between the first refrigerant drainage pipe 3 and the fourth refrigerant drainage pipe 6 When they are located on both sides of the heat exchanger, the flow direction of the refrigerant in the second cooling tube group 2 and the flow direction of the wind are countercurrent during cooling operation, the heat exchange temperature difference is relatively large, and the heat exchange effect is better.
  • an air conditioner including the above serpentine tube micro-channel heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种蛇形管微通道换热器、空调器,其中的蛇形管微通道换热器,包括第一散热管组(1)、第二散热管组(2),其中第一散热管(1)组包括M根并联的第一蛇形管(11),第二散热管组(2)包括N根并联的第二蛇形管(21),第一冷媒引流管(3)通过M根第一支管(31)与M根第一蛇形管(11)的第一端口连通,第二冷媒引流管(4)、第三冷媒引流管(5)分别通过M根第二支管(41)、N根第三支管(51)与M根第一蛇形管(11)的第二端口连通、N根第二蛇形管(21)的第一端口连通,第四冷媒引流管(6)通过N根第四支管(61)与N根第二蛇形管(21)的第二端口连通,M与N不相等。该蛇形管微通道换热器能够适应制冷工况下冷媒多进少出、制热工况下少进多出的流路工况,提高换热器制冷、制热综合性能。

Description

蛇形管微通道换热器、空调器
本公开要求于2021年12月22日提交中国专利局、申请号为202111582471.4、发明名称为“蛇形管微通道换热器、空调器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于换热器制造技术领域,具体涉及一种蛇形管微通道换热器、空调器。
背景技术
微通道换热器具有高效紧凑、重量轻、灌注量少,使用全铝材质易于回收等优点。目前已在单冷型的家用微通道冷凝器以及汽车用微通道冷凝器及蒸发器、冰箱冷凝器使用。
蛇形管微通道换热器如图10所示出,其扁管a(也即蛇形管)宽度方向和集流管b轴向方向平行,扁管a之间具有散热翅片c,相对于传统微通道换热器集流管管径更小,而且减少了隔片、转接块等部件,换热器成本更低。目前蛇形管微通道换热器仅限应用于冰箱场合,冷量范围一般是百瓦级,流路均采用一进一出形式,若应用于大冷量场合如家用空调、商用空调等存在流量大压降大缺陷,因此需要设计一种新的蛇形管流路形式。
发明内容
因此,本公开提供一种蛇形管微通道换热器、空调器,能够克服相关技术进口管与出口管的数量相等的蛇形管微通道换热器在应用于大冷量场合时存在流量大压降大的不足。
为了解决上述问题,本公开提供一种蛇形管微通道换热器,包括第一散热管组、第二散热管组、第一冷媒引流管、第二冷媒引流管、第三冷媒引流管、第四冷媒引流管,其中所述第一散热管组包括M根并联的第一蛇形管,所述第二散热管组包括N根并联的第二蛇形管,所述第一冷媒引流管上具有M根 第一支管,M根所述第一支管分别一一对应地与M根所述第一蛇形管的第一端口连通,所述第二冷媒引流管上具有M根第二支管,M根所述第二支管分别一一对应地与M根所述第一蛇形管的第二端口连通,所述第三冷媒引流管上具有N根第三支管,N根所述第三支管分别一一对应地与N根所述第二蛇形管的第一端口连通,所述第四冷媒引流管上具有N根第四支管,N根所述第四支管分别一一对应地与N根所述第二蛇形管的第二端口连通,M与N不相等。
在一些实施方式中,M大于N,且在空调器处于制冷工况时,所述第一冷媒引流管与压缩机的排气口连接,所述第四冷媒引流管与所述压缩机的吸气口连接;在空调器处于制热工况时,所述第一冷媒引流管与压缩机的吸气口连接,所述第四冷媒引流管与所述压缩机的排气口连接。
在一些实施方式中,所述第二冷媒引流管与所述第三冷媒引流管之间具有节流部件,所述第二冷媒引流管与所述第三冷媒引流管通过所述节流部件连通。
在一些实施方式中,所述节流部件为具有第一节流孔的隔片,所述第二冷媒引流管与所述第三冷媒引流管为一体成型的直管,所述隔片连接于所述直管内。
在一些实施方式中,所述直管处于所述蛇形管微通道换热器的进风侧,所述第一冷媒引流管及第四冷媒引流管处于所述蛇形管微通道换热器的出风侧。
在一些实施方式中,所述节流部件为具有第二节流孔的喷射管,所述喷射管的一端为封闭端,所述喷射管的一端为开口端,所述封闭端以及所述第二节流孔处于所述第二冷媒引流管内,所述开口端处于所述第四冷媒引流管内。
在一些实施方式中,所述第一冷媒引流管及所述第四冷媒引流管处于所述蛇形管微通道换热器的出风侧,所述第二冷媒引流管、第三冷媒引流管处于所述蛇形管微通道换热器的进风侧。
在一些实施方式中,所述第一蛇形管包括由处于所述蛇形管微通道换热器的进风侧的第一外侧蛇形管与处于所述蛇形管微通道换热器的出风侧的第一内侧蛇形管串联形成,所述第一外侧蛇形管的第一端口与所述第一内侧蛇形管的第一端口通过第一连接管连通。
在一些实施方式中,所述第二蛇形管包括由处于所述蛇形管微通道换热器的进风侧的第二外侧蛇形管与处于所述蛇形管微通道换热器的第二内侧蛇形管串联形成,所述第二外侧蛇形管的第一端口与所述第二内侧蛇形管的第一端 口通过第二连接管连通。
本公开还提供一种空调器,包括上述的蛇形管微通道换热器。
本公开提供的一种蛇形管微通道换热器、空调器,所述第一冷媒引流管与所述第四冷媒引流管分别具有不同根数的支管,使所述蛇形管微通道换热器能够适应制冷工况下冷媒多进少出、制热工况下少进多出的流路工况,提高换热器制冷、制热综合性能;同时,在制冷工况下,所述第二散热管组对所述第一散热管组换热后的冷媒实现过冷,而所述第二散热管组中的各个第二蛇形管之间采用并联的方式,能够解决相关技术中采用串联压降大的不足。
附图说明
图1为本公开一种实施例的蛇形管微通道换热器的结构示意图;
图2为图1中的蛇形管微通道换热器处于空调器制冷工况下的冷媒流向示意图;
图3为图1中的蛇形管微通道换热器处于空调器制热工况下的冷媒流向示意图;
图4为本公开另一实施例的蛇形管微通道换热器的结构示意图;
图5为本公开实施例中的节流部件的一种结构示意图;
图6为本公开再一实施例的蛇形管微通道换热器的结构示意图;
图7为本公开实施例中的节流部件的另一种结构示意图;
图8为图7中的蛇形管微通道换热器处于空调器制冷工况下的冷媒流向示意图;
图9为图7中的蛇形管微通道换热器处于空调器制热工况下的冷媒流向示意图;
图10为相关技术中的一进一出的蛇形管微通道换热器的结构示意图。
附图标记表示为:
1、第一散热管组;11、第一蛇形管;111、第一外侧蛇形管;112、第一内侧蛇形管;113、第一连接管;2、第二散热管组;21、第二蛇形管;211、第二外侧蛇形管;212、第二内侧蛇形管;213、第二连接管;3、第一冷媒引流管;31、第一支管;4、第二冷媒引流管;41、第二支管;5、第三冷媒引流管;51、第三支管;6、第四冷媒引流管;61、第四支管;7、喷射管;71、第 二节流孔;8、隔片;81、第一节流孔。
具体实施方式
结合参见图1至图10所示,根据本公开的实施例,提供一种蛇形管微通道换热器,包括第一散热管组1、第二散热管组2、第一冷媒引流管3、第二冷媒引流管4、第三冷媒引流管5、第四冷媒引流管6,其中所述第一散热管组1包括M根并联的第一蛇形管11,所述第二散热管组2包括N根并联的第二蛇形管21,所述第一冷媒引流管3上具有M根第一支管31,M根所述第一支管31分别一一对应地与M根所述第一蛇形管11的第一端口连通,所述第二冷媒引流管4上具有M根第二支管41,M根所述第二支管41分别一一对应地与M根所述第一蛇形管11的第二端口连通,所述第三冷媒引流管5上具有N根第三支管51,N根所述第三支管51分别一一对应地与N根所述第二蛇形管21的第一端口连通,所述第四冷媒引流管6上具有N根第四支管61,N根所述第四支管61分别一一对应地与N根所述第二蛇形管21的第二端口连通,M与N不相等,可以理解的,所述第一蛇形管11及第二蛇形管21上均设置有散热翅片(图中未示出),以提升所述换热器的散热效果。该技术方案中,所述第一冷媒引流管3与所述第四冷媒引流管6分别具有不同根数的支管,使所述蛇形管微通道换热器能够适应制冷工况下冷媒多进少出、制热工况下少进多出的流路工况,提高换热器制冷、制热综合性能,具体的,在空调器处于制冷时换热器的冷媒进口为气相、出口为液相,从平衡换热系数和压降角度来考虑,气相压降大需要的分路数多,液相压降小需要的分路数少以提高换热系数;制热则相反,进口为气液两相,需要的分路数少以提高换热系数,出口为气相需要的分路数多以减小压降;同时,在制冷工况下,所述第二散热管组2对所述第一散热管组1换热后的冷媒实现过冷,而所述第二散热管组2中的各个第二蛇形管21之间采用并联的方式,能够解决相关技术中采用串联压降大的不足。
具体的,M大于N,且在空调器处于制冷工况时,所述第一冷媒引流管3与压缩机的排气口连接,所述第四冷媒引流管6与所述压缩机的吸气口连接;在空调器处于制热工况时,所述第一冷媒引流管3与压缩机的吸气口连接,所述第四冷媒引流管6与所述压缩机的排气口连接,例如图1中的换热器中M=7,N=3,图4及图6中的换热器中M=4,N=3。
在一些实施方式中,所述第二冷媒引流管4与所述第三冷媒引流管5之间具有节流部件,所述第二冷媒引流管4与所述第三冷媒引流管5通过所述节流 部件连通,以能够对通过的冷媒节流加速,具体的,能够在制热工况下,将所述第四冷媒引流管6、第三冷媒引流管5依次引进的液态冷媒加速,从而保证冷媒能够到达所述第二冷媒引流管4的末端,冷媒充分充盈、均匀分流。
作为所述节流部件的一种具体实现方式,所述节流部件为具有第一节流孔81的隔片8,所述第二冷媒引流管4与所述第三冷媒引流管5为一体成型的直管,所述隔片8连接于所述直管内,此时对应的,所述直管处于所述蛇形管微通道换热器的进风侧,所述第一冷媒引流管3及第四冷媒引流管6处于所述蛇形管微通道换热器的出风侧。
作为所述节流部件的另一种具体实现方式,所述节流部件为具有第二节流孔71的喷射管7,所述喷射管7的一端为封闭端,所述喷射管7的一端为开口端,所述封闭端以及所述第二节流孔71处于所述第二冷媒引流管4内(也即所述喷射管7的封闭端内嵌于所述第二冷媒引流管4内),所述开口端处于所述第四冷媒引流管6内,从而能够使所述第一冷媒引流管3及所述第四冷媒引流管6处于所述蛇形管微通道换热器的出风侧,所述第二冷媒引流管4、第三冷媒引流管5处于所述蛇形管微通道换热器的进风侧。
在一些实施方式中,所述第一蛇形管11包括由处于所述蛇形管微通道换热器的进风侧的第一外侧蛇形管111与处于所述蛇形管微通道换热器的出风侧的第一内侧蛇形管112串联形成,所述第一外侧蛇形管111的第一端口与所述第一内侧蛇形管112的第一端口通过第一连接管113连通,所述第一外侧蛇形管111的第二端口与所述第二冷媒引流管4连通,所述第一内侧蛇形管112的第二端口与所述第一冷媒引流管3连通;或者,所述第二蛇形管21包括由处于所述蛇形管微通道换热器的进风侧的第二外侧蛇形管211与处于所述蛇形管微通道换热器的第二内侧蛇形管212串联形成,所述第二外侧蛇形管211的第一端口与所述第二内侧蛇形管212的第一端口通过第二连接管213连通,所述第二外侧蛇形管211的第二端口与所述第三冷媒引流管5、第四冷媒引流管6中的一个连通,所述第二内侧蛇形管212的第二端口与所述第三冷媒引流管5、第四冷媒引流管6中的另一个连通。该技术方案中,所述第一散热管组1与第二散热管组2分别由外侧蛇形管及内侧蛇形管(也即双层蛇形管结构)组成,通过所述第一连接管113或者第二连接管213将内外侧蛇形管串联,在所述第一冷媒引流管3与所述第四冷媒引流管6皆处于换热器的同一侧例如出风侧时,在制冷运行时所述第二散热管组2中的冷媒流向和风的流向为顺流,换热温差相对较小,提升换热效果;在所述第一冷媒引流管3与所述第四冷媒引流 管6分别处于换热器的两侧时,在制冷运行时所述第二散热管组2中的冷媒流向和风的流向为逆流,换热温差相对较大,换热效果更好。
根据本公开的实施例,还提供一种空调器,包括上述的蛇形管微通道换热器。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (10)

  1. 一种蛇形管微通道换热器,包括第一散热管组(1)、第二散热管组(2)、第一冷媒引流管(3)、第二冷媒引流管(4)、第三冷媒引流管(5)、第四冷媒引流管(6),其中所述第一散热管组(1)包括M根并联的第一蛇形管(11),所述第二散热管组(2)包括N根并联的第二蛇形管(21),所述第一冷媒引流管(3)上具有M根第一支管(31),M根所述第一支管(31)分别一一对应地与M根所述第一蛇形管(11)的第一端口连通,所述第二冷媒引流管(4)上具有M根第二支管(41),M根所述第二支管(41)分别一一对应地与M根所述第一蛇形管(11)的第二端口连通,所述第三冷媒引流管(5)上具有N根第三支管(51),N根所述第三支管(51)分别一一对应地与N根所述第二蛇形管(21)的第一端口连通,所述第四冷媒引流管(6)上具有N根第四支管(61),N根所述第四支管(61)分别一一对应地与N根所述第二蛇形管(21)的第二端口连通,M与N不相等。
  2. 根据权利要求1所述的蛇形管微通道换热器,其中,M大于N,且在空调器处于制冷工况时,所述第一冷媒引流管(3)与压缩机的排气口连接,所述第四冷媒引流管(6)与所述压缩机的吸气口连接;在空调器处于制热工况时,所述第一冷媒引流管(3)与压缩机的吸气口连接,所述第四冷媒引流管(6)与所述压缩机的排气口连接。
  3. 根据权利要求1或2所述的蛇形管微通道换热器,其中,所述第二冷媒引流管(4)与所述第三冷媒引流管(5)之间具有节流部件,所述第二冷媒引流管(4)与所述第三冷媒引流管(5)通过所述节流部件连通。
  4. 根据权利要求3所述的蛇形管微通道换热器,其中,所述节流部件为具有第一节流孔(81)的隔片(8),所述第二冷媒引流管(4)与所述第三冷媒引流管(5)为一体成型的直管,所述隔片(8)连接于所述直管内。
  5. 根据权利要求4所述的蛇形管微通道换热器,其中,所述直管处于所述蛇形管微通道换热器的进风侧,所述第一冷媒引流管(3)及第四冷媒引流管(6)处于所述蛇形管微通道换热器的出风侧。
  6. 根据权利要求3所述的蛇形管微通道换热器,其中,所述节流部件为具有第二节流孔(71)的喷射管(7),所述喷射管(7)的一端为封闭端,所述喷射管(7)的一端为开口端,所述封闭端以及所述第二节流孔(71)处于所述第二冷媒引流管(4)内,所述开口端处于所述第四冷媒引流管(6)内。
  7. 根据权利要求6所述的蛇形管微通道换热器,其中,所述第一冷媒引流 管(3)及所述第四冷媒引流管(6)处于所述蛇形管微通道换热器的出风侧,所述第二冷媒引流管(4)、第三冷媒引流管(5)处于所述蛇形管微通道换热器的进风侧。
  8. 根据权利要求1、6、7中任一项所述的蛇形管微通道换热器,其中,所述第一蛇形管(11)包括由处于所述蛇形管微通道换热器的进风侧的第一外侧蛇形管(111)与处于所述蛇形管微通道换热器的出风侧的第一内侧蛇形管(112)串联形成,所述第一外侧蛇形管(111)的第一端口与所述第一内侧蛇形管(112)的第一端口通过第一连接管(113)连通。
  9. 根据权利要求8所述的蛇形管微通道换热器,其中,所述第二蛇形管(21)包括由处于所述蛇形管微通道换热器的进风侧的第二外侧蛇形管(211)与处于所述蛇形管微通道换热器的第二内侧蛇形管(212)串联形成,所述第二外侧蛇形管(211)的第一端口与所述第二内侧蛇形管(212)的第一端口通过第二连接管(213)连通。
  10. 一种空调器,包括权利要求1至9中任一项所述的蛇形管微通道换热器。
PCT/CN2022/109444 2021-12-22 2022-08-01 蛇形管微通道换热器、空调器 WO2023115956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111582471.4A CN114198946A (zh) 2021-12-22 2021-12-22 蛇形管微通道换热器、空调器
CN202111582471.4 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023115956A1 true WO2023115956A1 (zh) 2023-06-29

Family

ID=80656094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109444 WO2023115956A1 (zh) 2021-12-22 2022-08-01 蛇形管微通道换热器、空调器

Country Status (2)

Country Link
CN (1) CN114198946A (zh)
WO (1) WO2023115956A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198946A (zh) * 2021-12-22 2022-03-18 珠海格力电器股份有限公司 蛇形管微通道换热器、空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480330A2 (en) * 1990-10-04 1992-04-15 Nippondenso Co., Ltd. Refrigeration apparatus with modulator
CN106524594A (zh) * 2016-10-13 2017-03-22 杭州三花家电热管理***有限公司 蛇形管式换热器
CN206695440U (zh) * 2017-03-06 2017-12-01 中兴通讯股份有限公司 一种换热器及空调
CN110500812A (zh) * 2019-09-16 2019-11-26 珠海格力电器股份有限公司 微通道换热器和热泵***
CN210951562U (zh) * 2019-11-08 2020-07-07 珠海格力电器股份有限公司 空调室内机、空调器
CN213984039U (zh) * 2020-11-16 2021-08-17 青岛经济技术开发区海尔热水器有限公司 具有集热功能的蒸发器及太空能热水器
US20210262721A1 (en) * 2019-07-22 2021-08-26 Mayekawa Mfg. Co., Ltd. Defrost system
CN114198946A (zh) * 2021-12-22 2022-03-18 珠海格力电器股份有限公司 蛇形管微通道换热器、空调器
CN216592327U (zh) * 2021-12-22 2022-05-24 珠海格力电器股份有限公司 蛇形管微通道换热器、空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480330A2 (en) * 1990-10-04 1992-04-15 Nippondenso Co., Ltd. Refrigeration apparatus with modulator
CN106524594A (zh) * 2016-10-13 2017-03-22 杭州三花家电热管理***有限公司 蛇形管式换热器
CN206695440U (zh) * 2017-03-06 2017-12-01 中兴通讯股份有限公司 一种换热器及空调
US20210262721A1 (en) * 2019-07-22 2021-08-26 Mayekawa Mfg. Co., Ltd. Defrost system
CN110500812A (zh) * 2019-09-16 2019-11-26 珠海格力电器股份有限公司 微通道换热器和热泵***
CN210951562U (zh) * 2019-11-08 2020-07-07 珠海格力电器股份有限公司 空调室内机、空调器
CN213984039U (zh) * 2020-11-16 2021-08-17 青岛经济技术开发区海尔热水器有限公司 具有集热功能的蒸发器及太空能热水器
CN114198946A (zh) * 2021-12-22 2022-03-18 珠海格力电器股份有限公司 蛇形管微通道换热器、空调器
CN216592327U (zh) * 2021-12-22 2022-05-24 珠海格力电器股份有限公司 蛇形管微通道换热器、空调器

Also Published As

Publication number Publication date
CN114198946A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN1171053C (zh) 组合的蒸发器/收集器/吸气管道热交换器
CN100541057C (zh) 平行流型热交换器
WO2016000656A1 (zh) 空调***
WO2022089661A1 (zh) 换热装置和空调器
WO2023115956A1 (zh) 蛇形管微通道换热器、空调器
CN102692101A (zh) 换热器及空调设备
CN108613437A (zh) 换热装置及具有其的空调器
CN105202793A (zh) 一种带涡流管的co2双级压缩制冷***
CN203132097U (zh) 空调器及其热交换***
CN216592327U (zh) 蛇形管微通道换热器、空调器
CN103851835A (zh) 一种高效换热***
WO2021114541A1 (zh) 用于冷水机组的液滴蒸发装置及冷水机组
CN206930020U (zh) 一种新型微通道蒸发器
CN211625782U (zh) 用于冷水机组的液滴蒸发装置及冷水机组
CN202928218U (zh) 一种高效换热***
CN213839126U (zh) 液压油箱恒温装置及液压传动***
CN210070112U (zh) 一种复合式大温差供冷***
CN209672623U (zh) 一种对高温油液进行制冷降温机组
CN202928178U (zh) 一种空调换热***
CN202792723U (zh) 用于冷柜的平行流冷凝器
CN112066598A (zh) 换热器及空调设备
CN201302336Y (zh) 一种新型换热器及安装有该换热器的空调机
CN105444472A (zh) 一种冰箱用冷凝器组件、冰箱制冷***及冰箱
CN219264620U (zh) 一种双排换热装置
CN209588462U (zh) 一种热泵补气增焓用中间经济器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909286

Country of ref document: EP

Kind code of ref document: A1