WO2023109667A1 - 一种稀土改性石墨烯铜基复合材料及其制备方法和应用 - Google Patents

一种稀土改性石墨烯铜基复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023109667A1
WO2023109667A1 PCT/CN2022/137820 CN2022137820W WO2023109667A1 WO 2023109667 A1 WO2023109667 A1 WO 2023109667A1 CN 2022137820 W CN2022137820 W CN 2022137820W WO 2023109667 A1 WO2023109667 A1 WO 2023109667A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
graphene
rare earth
composite material
based composite
Prior art date
Application number
PCT/CN2022/137820
Other languages
English (en)
French (fr)
Inventor
薛冬峰
黄维扬
王鑫
王晓明
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023109667A1 publication Critical patent/WO2023109667A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/13Trolley wires
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention belongs to the field of materials, in particular to the field of modification of graphene copper-based composite materials, in particular to a rare earth modified graphene copper-based composite material and its preparation method and application.
  • High-strength and high-conductivity copper alloy refers to a class of copper alloy materials that have both high strength and high conductivity, and are widely used in fields such as electric power, electronics, automobiles, home appliances, aerospace, military industry, and nuclear energy.
  • the "Thirteenth Five-Year Plan” pointed out: "In terms of new materials, accelerate the research and development of key strategic materials such as high-strength and high-conductivity copper alloys.”
  • more than 80% of domestic high-end high-strength and high-conductivity copper materials rely on imports, which has become a "stuck neck” problem that restricts the development of corresponding fields in my country.
  • Carbon can form different allotropes due to its valence, including one-dimensional carbon nanotubes, two-dimensional graphene, three-dimensional fullerenes, graphite, carbon fibers, diamonds, etc.
  • These carbon nanomaterials, especially carbon nano Tubes and graphene, due to their excellent intrinsic properties, are expected to be used as reinforcements to achieve ultrahigh conductivity of copper-based composites.
  • rare earth elements are called "industrial monosodium glutamate". Rare earth doping can refine the particle size of copper particles, toughen and strengthen, effectively improve the microstructure and structural defects of copper metal materials, and improve the mechanical strength and resistance of copper-based materials. Corrosive etc.
  • Rare earth modified graphene copper matrix composite material is a composite material that improves its mechanical strength and corrosion resistance without reducing its electrical and thermal conductivity by adding graphene and rare earth elements to copper, which can greatly reduce the contact line and locomotive
  • the loss caused by the sliding contact of the pantograph slide plate to transmit the current can be widely used in the field of high-speed electrified railways, and effectively improve my country's key core technology innovation capabilities.
  • Rare earth resources are important strategic resources in my country, and the high-value utilization of rare earth resources is urgent. With the continuous development of my country's high-tech field, the market capacity and added value of rare earth modified copper-based composite materials will also be further expanded.
  • "Nonferrous Metals Industry Development Plan (2016-2020)” pointed out that high-performance copper-based materials are the key basic materials for the development of high-tech fields in my country. In terms of market, my country's high-end integrated circuits, high-speed rail contact network and various high-performance cutting-edge power transmission copper-based composite materials such as high-conductivity copper alloy strips are heavily dependent on imports.
  • Copper-tin material contact wires and copper-magnesium material contact wires are used on high-speed railways above and above; Germany and Spain use copper-silver material contact wires at speeds of 250-300km/h, and copper-magnesium material contact wires at speeds above 300km/h.
  • the invention provides a rare earth modified graphene copper-based composite material and its preparation method and application.
  • the present invention adopts the intelligent creation technology of rare-earth modified graphene copper-based composite materials by machine learning (analog calculation is based on the model of high-strength and high-conductivity rare-earth modified graphene copper-based composite materials).
  • Copper crystal model and fully consider the influence mechanism of different crystal orientations, different exposed crystal planes and crystal defect density on conductivity, so as to realize the accurate prediction of copper crystal model with ultra-high conductivity.
  • combine DFT calculation with machine learning to study the influence mechanism of the introduction of rare earth elements on the conductivity, strength, hardness, wear resistance and corrosion resistance of copper matrix composites, and establish graphene crystallization in copper nanocrystal materials at different scales.
  • the research on the large-scale application of terminal products of graphene copper-based composite materials can be carried out, which can effectively amplify the copper mirror reaction and establish the macro-preparation process route of graphene copper nanocomposites.
  • the heat exchange between the press die and the extrusion wheel environment, as well as the thermomechanical coupling effect during the molding process can reveal the influence of different molding processes on the performance of end-application products, so as to explore the rules of continuous extrusion molding and realize the optimization of continuous extrusion process parameters. Optimized design.
  • the present invention is based on the following ideas to develop a preparation strategy for rare earth modified graphene copper-based composite materials with high strength and high conductivity: (1) first use machine learning to study the effect of rare earth element introduction on the conductivity, strength, hardness, The impact mechanism of wear resistance and corrosion resistance; (2) Construct a uniform and stable graphene-amine salt-copper ion complex system to effectively solve the problem of poor dispersion of graphene in the copper matrix, and achieve Good interfacial recombination between graphene and copper; (3) preparation of rare earth oxide dispersion-strengthened graphene-copper-based composites with dual nanostructures by mechanical alloying and plasma sintering, establishing and perfecting the plasma sintering mechanism of copper-based materials , performance regulation method and mechanism; (4) further reveal the interfacial recombination mechanism of graphene in the crystallization process of copper crystals, and clarify the wettability mechanism, interfacial bonding law, grain size and distribution of the matrix and reinforcement phase in the
  • a preparation method of rare earth modified graphene copper-based composite material comprising the steps of:
  • the graphene copper-based composite material is ball-milled with the rare earth oxide to obtain a mixed powder, and the obtained mixed powder is subjected to discharge plasma sintering to obtain the rare-earth modified graphene copper-based composite material.
  • the mass ratio of graphite to organic amine is 1:1-1:50;
  • the mass ratio of the first alcohol substance to graphite is 10:1-100:1;
  • the first alcoholic substance and the second alcoholic substance are sec-butanol;
  • the organic amine is selected from one or more of methylamine, ethylenediamine, isopropylamine, isobutylamine, cyclopropylamine, sec-butylamine-tert-butylamine, hexylamine, dodecylamine, hexadecylamine and octadecylamine.
  • the graphite is flake graphite.
  • the concentration of the copper salt in the mixture is 0.5 mol/L-50 mol/L;
  • the percentage of the graphene in the rare earth oxide-modified graphene-copper-based composite material is 0.1wt%-3wt%;
  • the molar ratio of the copper salt to the reducing agent is 1:1-1:10;
  • the copper salt is selected from one or more of copper sulfate, copper nitrate, copper acetate, copper chloride, copper isooctanoate and copper tartrate;
  • the reducing agent is selected from one or more of formaldehyde, acetaldehyde, hydrazine hydrate and sodium borohydride;
  • the second alcohol is sec-butanol.
  • the percentage of the rare earth oxide in the graphene copper matrix composite material modified by the rare earth oxide is 0.1 wt%-0.5wt%;
  • the rare earth oxide is selected from one or more of cerium oxide, lanthanum oxide, rhenium oxide, zirconium oxide and aluminum oxide.
  • step (1) the speed of ball milling in step (1) is 100-800 r/min, ball milling time is 1-36 h;
  • the mass ratio of balls to material is 5:1-20:1.
  • the rotational speed of the centrifugal separation in step (1) is 0-2000 r/min, 2000-6000 r/min, 6000-9000 r/min or >9000 r/min.
  • step (2) the stirring speed in step (2) is 200-800 r/min, and the time is 10-100 min;
  • the temperature of the reduction is 25-80° C., and the time is 10-100 min.
  • step (3) the speed of ball milling in step (3) is 100-800 r/min, ball milling time is 1-36 h;
  • the mass ratio of balls to materials during ball milling in step (3) is 10:1;
  • the pressure environment of the spark plasma sintering is 5-50 MPa, the temperature is 673-1073 K, and the time is 1-10 min;
  • it also includes washing and vacuum drying the mixed powder in step (3).
  • the rare earth modified graphene copper-based composite material prepared by the preparation method described in any one of the above.
  • the contact wire for high-speed rail with a speed of 400 km per hour.
  • the present invention provides a preparation method of rare earth modified graphene copper-based composite material, the specific steps include: separating graphite, organic amines and alcohols in different centrifugal intervals, and dispersing the obtained products in The dispersion liquid is obtained in alcohols, and then copper mirror reaction occurs with copper salt and reduced to prepare graphene copper-based composite materials, mixed with rare earth oxides and ball milled to obtain mixed powder, and finally spark plasma sintering is carried out to obtain rare earth modified graphene copper base composite material.
  • the amount of organic amines modified on the graphene surface can be regulated by changing the amount of organic amines added, and the type of organic amines on the surface of graphene can be regulated by changing the chain length of organic amines.
  • the graphene with specific size and layer number can be obtained by adjusting the interval of centrifugation.
  • the reduction reaction rate can be precisely regulated by changing the amount and type of organic amines on the graphene surface, such as increasing the number of organic amines on the graphene surface or increasing the chain of organic amines can effectively reduce the reduction reaction rate.
  • the plasma sintering mechanism, performance regulation method and mechanism of copper-based materials can be established and improved through the process research of plasma sintering to obtain rare earth modified graphene copper-based composite materials.
  • the present invention proposes to prepare a graphene-copper-based composite material by constructing a uniform and stable graphene-amine salt-copper ion system to solve the problem of poor interfacial bonding between graphene and copper; it proposes to use rare earth oxides to disperse
  • the design and preparation of reinforced copper-based composite materials can greatly improve its mechanical strength without significantly reducing its electrical conductivity. It meets the requirements for high-speed rail contact lines with a speed of 400km per hour.
  • the strength is not less than 800 MPa, the conductivity is not less than 110 IACS%, and the elongation
  • the rate is not less than 3.0%, all of which are superior to similar foreign products, and can occupy a clear advantage in the high-speed railway market.
  • the large-scale and stable preparation technology is a pilot line of copper contact wire for high-speed railways, with an annual production capacity of more than 1,000 tons. economic benefits.
  • Figure 1 is a scheme roadmap for the synthesis of rare earth modified graphene copper matrix composites.
  • step (3) the graphene copper-based composite material powder described in step (2) and 0.1 Wt% lanthanum oxide is mixed, and poured into the ball mill tank according to the ratio of ball:material mass ratio of about 10:1, set the speed at 400 r/min, ball mill 2 h, make it fully mixed evenly, and then wash the mixed product several times to remove excess impurities, and dry it in a vacuum oven at 60°C.
  • the dried composite powder was passed through the MPa and 973 Spark plasma sintering at K5 min, molded into a cake shape of ⁇ 20*10 to prepare rare earth-modified graphene-copper matrix composites.
  • step (2) Fully mix the graphene copper-based composite material powder described in step (2) with 0.5wt% cerium oxide, and pour it into the ball mill tank according to the ratio of ball:material mass ratio of about 10:1, and set the speed at 400 r/min, ball mill 2 h, make it fully mixed evenly, and then wash the mixed product several times to remove excess impurities, and dry it in a vacuum oven at 60°C.
  • the dried composite powder was passed through the MPa and 973 Spark plasma sintering at K5 min, molded into a cake shape of ⁇ 20*10 to prepare rare earth-modified graphene-copper matrix composites.
  • the rare earth modified graphene copper-based composite material obtained in the embodiment is prepared as a contact wire, and its performance is tested according to the corresponding national standards, and its inspection items, methods and performance requirements are shown in Table 1:
  • the contact angle between rare earth oxide and copper substrate is less than 60 degrees
  • the grain size is less than 1 micron
  • the material strength is not less than 800 MPa
  • conductivity not less than 110 IACS% the elongation rate is not less than 3.0%
  • the indicators are better than the level of similar foreign products. Its advantages can occupy a clear advantage in the high-speed railway market and have huge economic benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种稀土改性石墨烯铜基复合材料及其制备方法和应用,该制备方法的具体步骤包括:将石墨、有机胺和醇类物质球磨后在不同的离心区间进行分离,将所得产物分散到醇类物质中得到分散液,然后与铜盐发生铜镜反应并还原制备石墨烯铜基复合材料,与稀土氧化物混合球磨得到混合粉末,最后进行放电等离子烧结,即得稀土改性石墨烯铜基复合材料。通过构建均匀稳定的石墨烯‑胺盐‑铜离子体系来制备石墨烯铜基复合材料,解决石墨烯与铜之间界面结合性较差的问题;利用稀土氧化物弥散强化铜基复合材料的设计与制备,在不明显降低导电性的同时可以大大提高其机械强度。

Description

一种稀土改性石墨烯铜基复合材料及其制备方法和应用 技术领域
本发明属于材料领域,具体涉及石墨烯铜基复合材料的改性领域,特别是一种稀土改性石墨烯铜基复合材料及其制备方法和应用。
背景技术
高强高导铜合金是指同时具有高强度和高导电的一类铜合金材料,广泛应用于电力、电子、汽车、家电、航空航天、军工及核能等领域。“十三五”规划中指出:“在新材料方面,加快高强高导铜合金等关键战略材料的研发”。然而国内高端的高强高导铜材80%以上依赖进口,成为制约我国相应领域发展的“卡脖子”问题。因此,研发新型高强高导铜合金契合国家在关键战略材料领域的重大部署,有利于突破国外科技垄断、摆脱进口依赖,提高我国在相关领域的国际竞争力。
近年来,随着铁路电气化的高速发展,铁路运输一再提速,对于电气化铁路用接触线性能要求越来越高。尤其是面向新一代时速400km高铁用铜基材料接触线需要在导电率、机械强度、耐磨耗性能、耐腐蚀性等诸多方面进一步改良。因此,发展高强度高导电的铜基复合材料已成为铜基新材料研究的新热点。在铜基复合材料体系中,增强体的选择是影响电导率最重要的因素。碳因其化合价能形成不同的同素异形体,包括一维的碳纳米管,二维的石墨烯,三维的富勒烯、以及石墨、碳纤维、金刚石等,这些碳纳米材料,尤其是碳纳米管和石墨烯,因其优异的本征性能,有望作为增强体实现铜基复合材料超高导电性能。此外,稀土元素被称为““工业味精”,稀土掺杂可细化铜颗粒粒径、增韧增强,有效改善铜金属材料的显微组织和结构缺陷,提高铜基材料的机械强度和抗腐蚀性等。
我国作为全球最大的装备制造和消费市场,发展新型高端铜基复合材料技术,有利于攻克制约我国高端铜基材料产业发展的关键技术难题。稀土改性石墨烯铜基复合材料是通过在铜中加入石墨烯和稀土元素来提高其机械强度和抗腐蚀性而又不降低其导电导热性的复合材料,能够极大限度降低接触线与机车受电弓滑板滑动接触传输电流产生的损耗,可广泛用于高速电气化铁路领域,切实提高我国关键核心技术创新能力。
稀土资源是我国的重要战略资源,稀土资源的高值化利用具有紧迫性。随着我国高新科技领域不断发展,稀土改性铜基复合材料的市场容量和附加值也将进一步扩大。《有色金属工业发展规划(2016—2020)》指出高性能铜基材料是我国重点发展高新技术领域的关键基础材料。市场方面,我国高端集成电路、高铁接触网路以及大型发电机所需各种高性能尖端输电铜基复合材料如高导电铜合金带材等严重依赖进口。
广东在铜基板材、管材和线材方面已形成初步技术成果和产业化,但是在高端铜基材料研发积累和产业化方面明显不足。国内在铜基材料组分设计与加工制造方面存在卡脖子问题。另外,稀土是我国的战略资源,将高端铜基材料开发与稀土资源优势相结合开发铜基稀土复合材料,既可以促进铜行业结构调整和转型升级,助推铜产业的高端化发展;又可以拉动稀土精深加工发展,尤其是高丰度稀土的综合利用,从而形成铜基新材料产业链与稀土产业链相互融合、良性互动的格局。因此,研究和开发高强度高导电铜基复合材料符合国家当前优先发展高技术产业化政策,具有重大战略意义和价值。
纯铜的导电性能很好,但机械强度较低。长期以来,在铜接触线方面,一直存在高强度和高导电率之间的矛盾。人们在解决高强度和高导电率这对矛盾时,大都是在尽可能少的降低铜导线导电率的前提下,采用固溶强化、变形强化或沉淀强化来提高铜材强度。例如,高速轨道用接触导线一般添加一些高熔点、高硬度、低固溶度的金属,借助合金质点的纤维状排列来提高铜线材的强度和耐磨性。目前,世界各国高速电气化铁路均采用铜合金材料接触线。日本最初在时速210km的新干线上采用纯铜材料,由于耐磨性能差,运行两年左右就要换线,经过研究试验决定采用耐磨性能较好的铜锡材料接触线;法国在时速350km及以上的高速铁路上采用铜锡材料接触线和铜镁材料接触线;德国、西班牙在时速250-300km采用铜银材料接触线,在时速300km以上采用铜镁材料接触线。
虽然我国在高速列车建设方面起步较晚,电力机车接触线制造技术相对落后,但是随着近些年我国高速电气化铁路建设迅猛发展,在高性能铜基接触线方面的研究取得可喜的成绩。自2003年起,我国自主创新的“上引连续挤压冷加工成型技术”应用于铜银合金材料接触线生产,已在电气化铁路中推广15000km以上,可适用于时速250-300km的高速电气化铁路;随后,进一步发展了铜镁合金接触线,其机械强度更高,并且仍保有较高的导电率,可适用于时速350km的高速电气化铁路。上述产品性能大大高于现行的铁道行业标准TB/T2809-2005《电气化铁道用铜及铜合金接触线》,优于国外同类产品水平,为我国高速电气化铁路发展提供了更好地条件。近年来,随着铁路电气化的高速发展,铁路运输一再提速,对于电气化铁路用接触线性能要求越来越高。尤其是面向新一代400km高铁用铜基材料接触线需要在导电率、机械强度、耐磨耗性能、耐腐蚀性等诸多方面进一步改良。因此,发展新型高端铜基复合材料技术逐渐成为铜基新材料研究的新热点。
技术问题
为了发展新型高端铜基复合材料,尤其是发展高强高导的稀土改性石墨烯铜基复合材料,需要关注如何构建均匀稳定的“石墨烯-胺盐-铜离子”络合物体系,获得良好界面结合的石墨烯铜基复合材料,进而弥补因稀土氧化物掺杂导致导电性下降,以及如何实现稀土氧化物弥散强化石墨烯铜基材料界面复合方式,以获得具有高强高导稀土改性石墨烯铜基复合材料等问题。为了解决现有技术的不足,本发明提供了一种稀土改性石墨烯铜基复合材料及其制备方法和应用。
技术解决方案
本发明采用机器学习稀土改性石墨烯铜基复合材料智能创制技术(模拟计算获得基于高强高导稀土改性石墨烯铜基复合材料模型),首先,通过DFT理论计算,构建基于高导电性的铜晶体模型,并充分考虑其不同晶体取向、不同暴露晶面以及晶体缺陷密度等对导电性的影响机制,实现对超高导电性能的铜晶体模型的精准预测。其次,将DFT计算与机器学习相结合,研究稀土元素引入对铜基复合材料导电性、强度、硬度、耐磨性及耐蚀性的影响机制,建立不同尺度下石墨烯在铜纳米晶体材料结晶过程中的界面跨尺度复合机制,进而揭示稀土氧化物和石墨烯引入对铜基复合材料导电性、强度、硬度及耐磨性等影响机理。最后,基于Sabatier原理,利用高通量DFT计算对所设计的模型进行高通量筛选,获得基于高强高导稀土改性石墨烯铜基复合材料模型,为实验室制备高强度高导电的石墨烯铜基复合材料提供理论指导。同时开展石墨烯铜基复合材料的终端产品规模化应用研究,可以将铜镜反应进行有效放大进而建立石墨烯铜纳米复合材料的宏量制备工艺路线,通过充分考虑挤压成型过程中材料与挤压模具、挤压轮环境之间的热交换,以及成型过程中的热力耦合效应,可以揭示不同成型工艺对终端应用产品性能的影响,以探索连续挤压成型规律,实现连续挤压工艺参数的优化设计。
本发明的是基于以下思路发展一种具有高强高导稀土改性石墨烯铜基复合材料的制备策略:(1)先利用机器学***上实现石墨烯与铜之间良好的界面复合;(3)通过机械合金化和等离子烧结法制备具有双纳米结构的稀土氧化物弥散强化石墨烯铜基复合材料,建立并完善铜基材料的等离子烧结机理、性能调控方法及机理;(4)进一步揭示石墨烯在铜晶体结晶过程中界面跨尺度复合机制,阐明基体和增强相在烧结过程中润湿性机理、界面结合规律、晶粒尺寸及分布的演化规律;(5)最后建立双纳米结构铜基复合材料的烧结工艺,突破稀土改性石墨烯铜基复合材料均匀植入工业化制备技术难题,满足时速400km高铁用铜基材料接触线应用指标,助推铜基材料产业的高端化发展。
一种稀土改性石墨烯铜基复合材料的制备方法,包括如下步骤:
(1)将石墨、有机胺和第一醇类物质一起球磨,球磨产物进行离心分离,所得离心产物分散于第二醇类物质中,得到表面修饰有机胺的石墨烯分散液;
(2)将铜盐溶解于第三醇类物质中,得到混合物,加入表面修饰有机胺的石墨烯分散液,搅拌处理,获得石墨烯—有机胺—铜络合物分散液,随后在还原剂作用下还原,形成石墨烯铜基复合材料;
(3)将石墨烯铜基复合材料与稀土氧化物进行球磨,得到混合粉末,将所得混合粉末进行放电等离子烧结,即得稀土改性石墨烯铜基复合材料。
进一步地,所述石墨与有机胺的质量比为1:1-1:50;
进一步地,所述第一醇类物质与石墨质量比为10:1-100:1;
优选地,所述第一醇类物质和第二醇类物质为仲丁醇;
优选地,所述有机胺选自甲胺、乙二胺、异丙胺、异丁胺、环丙胺、仲丁胺叔丁胺、己胺、十二胺、十六胺和十八胺中的一种或几种;
优选地,所述石墨为鳞片石墨。
进一步地,所述铜盐在混合物中的浓度为0.5 mol/L-50 mol/L;
进一步地,所述石墨烯在稀土氧化物改性的石墨烯铜基复合材料的百分比为0.1wt%-3wt%;
进一步地,所述铜盐与还原剂的摩尔比为1:1-1:10;
优选地,所述铜盐选自硫酸铜、硝酸铜、醋酸铜,氯化铜、异辛酸铜和酒石酸铜中的一种或几种;
优选地,所述还原剂选自甲醛、乙醛、水合肼和硼氢化钠中的一种或几种;
优选地,所述第二醇类物质为仲丁醇。
进一步地,所述稀土氧化物在稀土氧化物改性的石墨烯铜基复合材料的百分比为0.1 wt%-0.5wt%;
优选地,所述稀土氧化物选自氧化铈、氧化镧、氧化铼、氧化锆和氧化铝中的一种或几种。
进一步地,步骤(1)中所述球磨的速度为100-800 r/min,球磨时间为1-36 h;
优选地,步骤(1)中球磨时,球与料的质量比为5:1-20:1。
进一步地,步骤(1)中所述离心分离的转速为0-2000 r/min,2000-6000 r/min,6000-9000 r/min或>9000 r/min。
进一步地,步骤(2)中搅拌处理的速度为200-800 r/min,时间为10-100 min;
优选地,所述还原的温度为25-80℃,时间为10-100 min。
进一步地,步骤(3)中所述球磨的速度为100-800 r/min,球磨时间为1-36 h;
优选地,步骤(3)中球磨时球与料的质量比为10:1;
优选地,所述放电等离子烧结的压力环境为5-50 MPa,温度为673-1073 K,时间为1-10 min;
优选地,还包括对步骤(3)中所述混合粉末进行洗涤和真空干燥处理。
以上任一项所述制备方法制备的稀土改性石墨烯铜基复合材料。
一种稀土改性石墨烯铜基复合材料在高铁用接触线中的应用;
优选地,在时速400 km高铁用接触线中的应用。
有益效果
本发明的有益效果为:
(1)本发明提供了一种稀土改性石墨烯铜基复合材料的制备方法,具体步骤包括:将石墨、有机胺和醇类物质球后在不同的离心区间进行分离,将所得产物分散到醇类物质中得到分散液,然后与铜盐发生铜镜反应并还原制备石墨烯铜基复合材料,与稀土氧化物混合球磨得到混合粉末,最后进行放电等离子烧结,即得稀土改性石墨烯铜基复合材料。
在用有机胺修饰石墨烯时,可以通过改变有机胺的添加量来调控石墨烯表面修饰有机胺的量,可以通过改变有机胺的链长来调控石墨烯表面有机胺的种类,可以通过球磨时间来获得改变石墨烯产量,可以通过离心分离区间调整来获得特定尺寸和层数的石墨烯。
在利用铜镜反应并还原制备石墨烯铜基复合材料时,可以通过改变石墨烯表面有机胺的数量和种类来精准调控还原反应速率,例如增加石墨烯表面有机胺的数量或增加有机胺的链长均可以有效降低还原反应速率。
通过对等离子烧结获得稀土改性石墨烯铜基复合材料的工艺研究,可以建立并完善铜基材料的等离子烧结机理、性能调控方法及机理。
(2)本发明提出通过构建均匀稳定的石墨烯-胺盐-铜离子体系来制备石墨烯铜基复合材料,解决石墨烯与铜之间界面结合性较差的问题;提出利用稀土氧化物弥散强化铜基复合材料的设计与制备,在不明显降低导电性的同时可以大大提高其机械强度,满足时速400km高铁接触线用强度不低于800 MPa,导电性不低于110 IACS%,伸长率不低于3.0%的指标,均优于国外同类产品水平,可以在高速铁路市场占据明显优势,在大规模稳定制备技术为高铁用铜接触线中试线,年产能大于1000吨,具有巨大的经济效益。
附图说明
图1为稀土改性石墨烯铜基复合材料合成的方案路线图。
本发明的实施方式
为了更清楚地理解本发明,现参照下列实施例及附图进一步描述本发明。实施例仅用于解释而不以任何方式限制本发明。实施例中,各原始试剂材料均可商购获得,未注明具体条件的实验方法为所属领域熟知的常规方法和常规条件,或按照仪器制造商所建议的条件。
实施例1
(1)称取1 g的鳞片石墨材料和200 mg十二胺,量取10 ml的仲丁醇,将鳞片石墨、十二胺以及仲丁醇放入100 ml的球磨罐中,以400 r/min的转速球磨24 h,将球磨产物分别在不同的离心区间(0—2000 r/min,2000—6000 r/min,6000—9000 r/min,>9000 r/min)进行分离,得到不同离心区间的石墨烯产物,随后将9500 r/min的离心产物进行离心和洗涤,循环3次,将最后的十二胺修饰的石墨烯产物重新分散到仲丁醇中备用,即得到表面修饰十二胺的石墨烯分散液。
(2)利用在石墨烯分散的有机体系中的铜镜反应制备石墨烯铜基复合材料,首先将31.4162 g Cu(CH 3COO) 2•H 2O溶解到50 mL仲丁醇中,形成Cu(CH 3COO) 2•H 2O的有机溶液。随后,加入步骤(1)所述表面修饰十二胺的石墨烯分散液,充分搅拌使石墨烯表面修饰的十二胺与铜离子络合形成高度均匀稳定的石墨烯—有机胺—铜络合物分散液,随后在25 ml乙醛作用下还原,形成石墨烯铜基复合材料。
(3)将步骤(2)所述石墨烯铜基复合材料粉末与0.1 wt%氧化镧分混合,并按照球:料质量比约为10:1的比例倒入球磨罐中,设置转速为400 r/min,球磨2 h,使其充分混合均匀,然后将混合产物进行多次洗涤,去掉多余的杂质,并于60℃真空干燥箱中干燥。将干燥后的复合材料粉末通过在30 MPa和973 K下放电等离子烧结5 min,模制成Φ20*10的饼状,制备稀土改性石墨烯铜基复合材料。
实施例2
(1)称取1g的鳞片石墨材料和200 mg十二胺,量取10 ml的仲丁醇,将鳞片石墨、十二胺以及仲丁醇放入100 ml的球磨罐中,以400 r/min的转速球磨24 h,将球磨产物分别在不同的离心区间(0—2000 r/min,2000—6000 r/min,6000—9000 r/min,>9000 r/min)进行分离,得到不同离心区间的石墨烯产物,随后将8000 r/min不同区间的离心产物进行离心和洗涤,循环3次,将最后的十二胺修饰的石墨烯产物重新分散到仲丁醇中备用,即得到表面修饰十二胺的石墨烯分散液。
(2)利用在石墨烯分散的有机体系中的铜镜反应制备石墨烯铜基复合材料,首先将15.7081 g Cu(CH 3COO) 2•H 2O溶解到10 mL仲丁醇中,形成Cu(CH 3COO) 2•H 2O的有机溶液。随后,加入步骤(1)所述表面修饰十二胺的石墨烯分散液,充分搅拌使石墨烯表面修饰的十二胺与铜离子络合形成高度均匀稳定的石墨烯—有机胺—铜络合物分散液,随后在10 ml甲醛作用下还原,形成石墨烯铜基复合材料。
(2)将步骤(2)所述石墨烯铜基复合材料粉末与0.5wt%的氧化铈充分混合,并按照球:料质量比约为10:1的比例倒入球磨罐中,设置转速为400 r/min,球磨2 h,使其充分混合均匀,然后将混合产物进行多次洗涤,去掉多余的杂质,并于60℃真空干燥箱中干燥。将干燥后的复合材料粉末通过在30 MPa和973 K下放电等离子烧结5 min,模制成Φ20*10的饼状,制备稀土改性石墨烯铜基复合材料。
实验例
将实施例得到的稀土改性石墨烯铜基复合材料制备为接触线,并按照相应的国家标准测试其性能,其检验项目及方法和性能要求如表1所示:
表1 石墨烯铜基材料可靠性指标及应用环境指标
Figure dest_path_image001
检测结果表明:稀土氧化物与铜基体接触角小于60度、晶粒尺寸小于1微米,材料强度不低于800 MPa,导电性不低于110 IACS%,伸长率不低于3.0%,各项指标优于国外同类产品水平,其优势可以在高速铁路市场占据明显优势,具有巨大的经济效益。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种稀土改性石墨烯铜基复合材料的制备方法,其特征在于,包括如下步骤:
    (1)将石墨、有机胺和第一醇类物质一起球磨,球磨产物进行离心分离,所得离心产物分散于第二醇类物质中,得到表面修饰有机胺的石墨烯分散液;
    (2)将铜盐溶解于第三醇类物质中,得到混合物,加入表面修饰有机胺的石墨烯分散液,搅拌处理,获得石墨烯—有机胺—铜络合物分散液,随后在还原剂作用下还原,形成石墨烯铜基复合材料;
    (3)将石墨烯铜基复合材料与稀土氧化物进行球磨,得到混合粉末,将所得混合粉末进行放电等离子烧结,即得稀土改性石墨烯铜基复合材料。
  2. 如权利要求1所述的制备方法,其特征在于,所述石墨与有机胺的质量比为1:1-1:50;
    所述第一醇类物质与石墨质量比为10:1-100:1;
    优选地,所述第一醇类物质和第二醇类物质为仲丁醇;
    优选地,所述有机胺选自甲胺、乙二胺、异丙胺、异丁胺、环丙胺、仲丁胺叔丁胺、己胺、十二胺、十六胺和十八胺中的一种或几种;
    优选地,所述石墨为鳞片石墨。
  3. 如权利要求1所述的制备方法,其特征在于,所述铜盐在混合物中的浓度为0.5 mol/L-50 mol/L;
    所述石墨烯在稀土氧化物改性的石墨烯铜基复合材料的百分比为0.1wt%-3wt%;
    所述铜盐与还原剂的摩尔比为1:1-1:10;
    优选地,所述铜盐选自硫酸铜、硝酸铜、醋酸铜,氯化铜、异辛酸铜和酒石酸铜中的一种或几种;
    优选地,所述还原剂选自甲醛、乙醛、水合肼和硼氢化钠中的一种或几种;
    优选地,所述第二醇类物质为仲丁醇。
  4. 如权利要求1所述的制备方法,其特征在于,所述稀土氧化物在稀土氧化物改性的石墨烯铜基复合材料的百分比为0.1 wt%-0.5wt%;
    优选地,所述稀土氧化物选自氧化铈、氧化镧、氧化铼、氧化锆和氧化铝中的一种或几种。
  5. 如权利要求1所述的制备方法,其特征在于,步骤(1)中所述球磨的速度为100-800 r/min,球磨时间为1-36 h;
    优选地,步骤(1)中球磨时,球与料的质量比为5:1-20:1。
  6. 如权利要求1所述的制备方法,其特征在于,步骤(1)中所述离心分离的转速为0-2000 r/min,2000-6000 r/min,6000-9000 r/min或>9000 r/min。
  7. 如权利要求1所述的制备方法,其特征在于,步骤(2)中搅拌处理的速度为200-800 r/min,时间为10-100 min;
    优选地,所述还原的温度为25-80℃,时间为10-100 min。
  8. 如权利要求1所述的制备方法,其特征在于,步骤(3)中所述球磨的速度为100-800 r/min,球磨时间为1-36 h;
    优选地,步骤(3)中球磨时球与料的质量比为10:1;
    优选地,所述放电等离子烧结的压力环境为5-50 MPa,温度为673-1073 K,时间为1-10 min;
    优选地,还包括对步骤(3)中所述混合粉末进行洗涤和真空干燥处理。
  9. 权利要求1-8任一项所述制备方法制备的稀土改性石墨烯铜基复合材料。
  10. 一种稀土改性石墨烯铜基复合材料在高铁用接触线中的应用;
    优选地,在时速400 km高铁用接触线中的应用。
PCT/CN2022/137820 2021-12-15 2022-12-09 一种稀土改性石墨烯铜基复合材料及其制备方法和应用 WO2023109667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111538654.6 2021-12-15
CN202111538654.6A CN114480899B (zh) 2021-12-15 2021-12-15 一种稀土改性石墨烯铜基复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023109667A1 true WO2023109667A1 (zh) 2023-06-22

Family

ID=81494147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137820 WO2023109667A1 (zh) 2021-12-15 2022-12-09 一种稀土改性石墨烯铜基复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114480899B (zh)
WO (1) WO2023109667A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480899B (zh) * 2021-12-15 2022-12-06 深圳先进技术研究院 一种稀土改性石墨烯铜基复合材料及其制备方法和应用
CN116079014B (zh) * 2023-02-13 2023-07-04 常州罗尼斯特种导体有限责任公司 一种高强高导银铜合金线材及其制备方法
CN116043054B (zh) * 2023-03-22 2023-06-16 厦门凯纳石墨烯技术股份有限公司 一种改性石墨烯复合金属材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436862A (zh) * 2011-09-08 2012-05-02 西北师范大学 石墨烯/纳米铜导电复合材料及其制备
CN103952588A (zh) * 2014-05-08 2014-07-30 江西理工大学 高强高导石墨烯铜基复合材料及其制备方法
KR20150134445A (ko) * 2014-05-21 2015-12-02 인하대학교 산학협력단 그래핀의 개질방법 및 상기 그래핀을 이용한 나노복합재료의 제조방법
EA201501058A1 (ru) * 2015-09-25 2017-03-31 Научно-Исследовательское Учреждение "Институт Ядерных Проблем" Белорусского Государственного Университета (Нии Яп Бгу) Способ получения композиционных наночастиц графен/медь
CN107164020A (zh) * 2017-04-06 2017-09-15 江苏大学 一种石墨烯‑聚多巴胺‑铜纳米复合材料及其制备方法
CN110695372A (zh) * 2019-10-10 2020-01-17 天津大学 一种稀土元素改善铜—石墨烯界面的制备方法
CN114480899A (zh) * 2021-12-15 2022-05-13 深圳先进技术研究院 一种稀土改性石墨烯铜基复合材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP0001984A3 (en) * 2000-05-23 2002-05-28 Kourganov Konstantin Copper-base contact material, contact stud and method for producing contact stud
CN104862512B (zh) * 2015-04-21 2018-03-06 中国科学院宁波材料技术与工程研究所 提高铜基石墨烯复合材料中石墨烯与铜基体结合力的方法
CN107723500B (zh) * 2017-09-29 2019-02-12 江西理工大学 一种石墨烯-氧化铝混杂增强铜基复合材料及其制备方法
CN109881038B (zh) * 2019-03-08 2021-01-01 深圳先进技术研究院 一种导热电磁屏蔽复合材料及其制备方法
CN113061768B (zh) * 2021-03-22 2023-08-25 中南大学 一种弥散强化铜基复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436862A (zh) * 2011-09-08 2012-05-02 西北师范大学 石墨烯/纳米铜导电复合材料及其制备
CN103952588A (zh) * 2014-05-08 2014-07-30 江西理工大学 高强高导石墨烯铜基复合材料及其制备方法
KR20150134445A (ko) * 2014-05-21 2015-12-02 인하대학교 산학협력단 그래핀의 개질방법 및 상기 그래핀을 이용한 나노복합재료의 제조방법
EA201501058A1 (ru) * 2015-09-25 2017-03-31 Научно-Исследовательское Учреждение "Институт Ядерных Проблем" Белорусского Государственного Университета (Нии Яп Бгу) Способ получения композиционных наночастиц графен/медь
CN107164020A (zh) * 2017-04-06 2017-09-15 江苏大学 一种石墨烯‑聚多巴胺‑铜纳米复合材料及其制备方法
CN110695372A (zh) * 2019-10-10 2020-01-17 天津大学 一种稀土元素改善铜—石墨烯界面的制备方法
CN114480899A (zh) * 2021-12-15 2022-05-13 深圳先进技术研究院 一种稀土改性石墨烯铜基复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114480899B (zh) 2022-12-06
CN114480899A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023109667A1 (zh) 一种稀土改性石墨烯铜基复合材料及其制备方法和应用
CN107723500B (zh) 一种石墨烯-氧化铝混杂增强铜基复合材料及其制备方法
Luo et al. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles
CN105525124B (zh) 原位合成三维石墨烯增强铜基复合材料制备方法
WO2022041255A1 (zh) 采用微米陶瓷颗粒制备纳米相增强镍基高温合金的方法
CN110331325B (zh) 一种纳米氧化铝增强铜基复合材料及其制备方法
CN111455208B (zh) 一种纳米改性铝合金材料与其制备方法及其制造的节能环保电力金具
CN103276323A (zh) 高强度耐腐蚀复合热交换管的制备方法
CN114293051B (zh) 一种抗高温软化高强高导铜基复合材料成型件的制备方法
CN106319570B (zh) 碳基铝用阳极表面抗氧化保护剂的制备方法
CN113215432B (zh) 一种适用于3d打印的纳米碳化硅颗粒增强铜基球形金属粉体及其制备方法
CN110697687A (zh) 一种具有核壳结构的A12O3包覆CNTs粉体的制备方法
CN112410597B (zh) 一种纳米wc弥散强化铜的制备方法
CN111979450B (zh) 一种三维结构纳米碳材料增强镍基复合材料的制备方法
CN102504909A (zh) 一种用于石墨润滑剂的石墨材料
Guan et al. Core-shell structure and 3D CNTs networks promote Si@ Cu nanoparticle anodes with enhanced reversible capacity and cyclic performance for Li-ion batteries
CN113637875B (zh) 一种架空导线用高导电率耐腐蚀铝合金单丝及其制备方法
CN105062002A (zh) 三相复合的环氧树脂纳米复合材料及制备方法
CN113388750A (zh) 金属玻璃颗粒增强纳米晶铜合金复合材料及其制备方法
CN113927041B (zh) 石墨烯铜基复合材料及其制备方法与应用
CN112080711A (zh) 一种铝基复合材料锻件及其制备方法
CN111471943A (zh) 一种高导电导热铝基复合材料及其制备方法
Pan et al. Nano-NiOOH prepared by splitting method as super high-speed charge/discharge cathode material for rechargeable alkaline batteries
CN105420557A (zh) 一种高强镁合金及其制备方法
CN109817916A (zh) 一种三维球状导电石墨烯/Co9S8复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906415

Country of ref document: EP

Kind code of ref document: A1