WO2023095704A1 - 核酸検査方法および検査キット - Google Patents

核酸検査方法および検査キット Download PDF

Info

Publication number
WO2023095704A1
WO2023095704A1 PCT/JP2022/042617 JP2022042617W WO2023095704A1 WO 2023095704 A1 WO2023095704 A1 WO 2023095704A1 JP 2022042617 W JP2022042617 W JP 2022042617W WO 2023095704 A1 WO2023095704 A1 WO 2023095704A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
zeolite
extraction
amplification
cartridge
Prior art date
Application number
PCT/JP2022/042617
Other languages
English (en)
French (fr)
Inventor
威史 濱
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023095704A1 publication Critical patent/WO2023095704A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present disclosure relates to nucleic acid testing methods and test kits.
  • a small amount of nucleic acid contained in a specimen collected from a living body is subjected to amplification processing to amplify the base sequence to be tested, and whether or not the nucleic acid containing the base sequence to be tested exists in the specimen.
  • amplification methods include the polymerase chain reaction (PCR) method and the LAMP (Loop-Mediated Isothermal Amplification) method.
  • an extraction step is performed in which the specimen is put into an extraction reagent and the nucleic acid is extracted from the specimen. Since nucleic acids are present in cells, it is necessary to lyse the cells to elute the nucleic acids.
  • the extraction step is a step of lysing cells with an extraction reagent to elute nucleic acids.
  • a purification step is performed to remove contaminants from the nucleic acid extract obtained by extracting the nucleic acid from the specimen.
  • the contaminants include biogenic contaminants contained in the specimen and contaminants such as proteins or polysaccharides eluted together with the nucleic acid during nucleic acid extraction.
  • nucleic acid extract that has undergone the purification step is mixed with an amplification reagent for amplifying the nucleotide sequence to be tested, and an amplification step is performed in which amplification processing is performed by the PCR method, the LAMP method, or the like. After that, by detecting the signal from the probe assigned to the base sequence to be tested, it is checked whether or not the base sequence to be tested is included.
  • nucleic acid is a generic term for DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
  • an extraction reagent containing an anionic surfactant or alkali is used as an extraction reagent, and in the purification step, the nucleic acid extract is brought into contact with zeolite to adsorb the zeolite. It describes the removal of contaminants by action and the use of the LAMP method in the amplification step.
  • a purification step using zeolite is preferred because it is simpler than a method of separating contaminants and nucleic acids using, for example, magnetic particles.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a nucleic acid testing method and a test kit that can realize nucleic acid testing with higher test accuracy than before, without being limited to a specific amplification method. aim.
  • the nucleic acid testing method of the present disclosure is a nucleic acid testing method for testing whether or not a base sequence to be tested exists in a nucleic acid contained in a sample collected from a living body, an extraction step of extracting nucleic acids from a sample; a purification step of removing contaminants in either the sample-containing solution or the nucleic acid extract from which the nucleic acid was extracted, before, during, or after the extraction step; an amplification step of amplifying the base sequence in the nucleic acid extract; After the amplification step, a detection step of detecting the presence or absence of the base sequence,
  • the extraction step is a step of contacting the specimen with an extraction reagent containing a nonionic surfactant
  • the purification step includes an adsorption step of contacting the liquid with a zeolite having a ferrierite, mordenite, L-type or Y-type crystal structure to adsorb contaminants in the liquid to the zeolite.
  • the purification step preferably includes a filtration step of filtering the liquid to remove zeolite from the liquid after the adsorption step.
  • zeolite it is preferable to add zeolite to the extraction reagent in the extraction process to perform the extraction process and the purification process in parallel.
  • a purification step may be performed after the extraction step.
  • the nonionic surfactant preferably contains at least one of polyethylene oxide, glucamine and betaine.
  • the crystal structure of zeolite is preferably ferrierite, L-type, or Y-type.
  • the zeolite cation is preferably Na + , K + , or H + .
  • the zeolite In the nucleic acid testing method of the present disclosure, it is preferable that the zeolite have a pore size larger than 0.7 nm and smaller than 1 nm.
  • the Si/Al ratio of silicon to aluminum in the zeolite is preferably 5 or more and 18 or less.
  • the amplification step is preferably an amplification step by polymerase chain reaction.
  • the test kit of the present disclosure is a test kit used to test whether or not a base sequence to be tested exists in a nucleic acid contained in a specimen collected from a living body,
  • a plurality of storage units including an extraction container that stores an extraction reagent containing a nonionic surfactant and an amplification reagent storage unit that stores an amplification reagent used for nucleic acid amplification, and a plurality of storage units are connected to each other.
  • a test kit for nucleic acid testing comprising A test kit comprising ferrierite, mordenite, zeolite having a crystal structure of either L-type or Y-type in at least one of an extraction container and a cartridge, or in a manner that can be put into the extraction container.
  • the filter for filtering the nucleic acid extract has a finer mesh than zeolite.
  • the filter may be provided inside the cartridge or may be provided separately from the cartridge.
  • the filter may be provided in the path until the liquid in the extraction container is introduced into the cartridge or at the liquid inlet of the cartridge.
  • the cartridge contains a zeolite in one of the plurality of containing parts that is different from the amplification reagent containing part, and a filter is provided in a flow path from the containing part containing the zeolite to the amplification reagent containing part. may be provided.
  • the cartridge includes an inlet into which the liquid is introduced, a detachable cover covering the inlet, and a first container capable of containing the liquid provided at a position facing the inlet.
  • a second storage portion that is an amplification reagent storage portion that stores an amplification reagent, a first channel that connects the first storage portion and the second storage portion, and the first storage via the second flow channel
  • a first cylinder having one end connected to the part and having the other end open to the outside, and a second cylinder having one end connected to the second housing part via a third flow path, a second cylinder with the other end open to the outside; a first plug movably provided within the first cylinder; and a second plug movably provided within the second cylinder, wherein the first plug and A container capable of pressurizing an internal space including a first containing portion, a second containing portion, a first channel, a second channel, and a third channel by pressing the second plug from the outside to move the container.
  • nucleic acid testing can be achieved with higher testing accuracy than ever without being limited to a specific amplification method.
  • FIG. 2 is a plan view of the cartridge 10 shown in FIG. 1; 3A is an end surface cut along line 3A-3A of FIG. 2, FIG. 3B is an end surface cut along line 3B-3B of FIG. 2, and FIG. 3C is an end surface cut along line 3C-3C of FIG. It is a figure showing a schematic structure of inspection device 100 of one embodiment.
  • 5A is a plan view showing the positional relationship between the cartridge 10 and the presser 108 in the inspection device 100, and FIG. 5B is a cross-sectional view taken along the line 5B-5B of FIG. 5A.
  • FIG. 10 is a diagram for explaining an extraction step and a purification step in the nucleic acid test method of Modified Example 1;
  • FIG. 10 is a diagram for explaining the flow of the nucleic acid testing method of Modification 2;
  • FIG. 10 is a plan view of the cartridge 11 of the modified design;
  • the nucleic acid testing method of the present disclosure is a method for testing whether or not a base sequence to be tested exists in nucleic acids contained in a sample collected from a living body. First, an example of a test kit and a test device used in the nucleic acid testing method of one embodiment will be described, and then the nucleic acid testing method of one embodiment will be described.
  • test kit FIG. 1 is a diagram showing a schematic configuration of a test kit 1 used for a nucleic acid test method of one embodiment.
  • the test kit 1 is a test kit used to test whether or not the base sequence to be tested exists in the nucleic acid contained in the specimen collected from the living body. Specifically, it is used to test whether or not a living body is affected by an infectious disease such as influenza or novel coronavirus.
  • the test kit 1 includes a sample collecting tool 2, an extraction container 4 containing an extraction reagent 3, a zeolite 6, a funnel 8 containing a filtration filter 7, and a cartridge 10.
  • a specimen collected from a living body is an individual to be tested, more specifically a biological sample collected from a living body such as an animal including a human being, for example, blood, serum, plasma, cerebrospinal fluid, tears Fluid, sweat, urine, stool, pus, nasal discharge, nasal swab, pharyngeal swab, nasal aspirate, or sputum, as well as organs, tissues, mucous membranes, and skin.
  • the solution containing the specimen may contain the specimen and the solvent, but may be the specimen itself when the specimen is liquid. Alternatively, the liquid transferred to the transport medium may be used as the sample.
  • the specimen collection tool 2 is a tool for collecting a specimen, and in this example, a swab for collecting nasal swab is used.
  • a sample-collecting tool 2 an appropriate sample-collecting tool can be provided according to the above-described sample.
  • the extraction container 4 accommodates the extraction reagent 3 for extracting nucleic acid from the specimen.
  • Nucleic acid is extracted from the sample when the sample is brought into contact with the extraction reagent 3 .
  • nucleic acid extraction is performed by bringing the extraction reagent 3 and the specimen into contact in the extraction container 4 .
  • the extraction reagent 3 containing the extracted nucleic acid is hereinafter referred to as nucleic acid extract 62 (see FIG. 7).
  • the extraction reagent 3 of the present disclosure contains a nonionic surfactant as a surfactant, but does not contain an anionic surfactant.
  • the nonionic surfactant preferably contains at least one of polyethylene oxide, glucamine and betaine.
  • the nonionic surfactant may contain two or more of polyethylene oxide, glucamine and betaine.
  • the concentration of the nonionic surfactant in the extraction reagent is, for example, about 0.1 vol % to 5 vol %, preferably 0.1 vol % to 2 vol %.
  • Zeolite 6 is used to adsorb contaminants.
  • Zeolite 6 is a general term for porous crystalline aluminosilicates, and the general formula is MeO.Al2O3.mSiO2.nH2O .
  • the zeolite 6 used is one having a ferrierite, mordenite, L-type, or Y-type crystal structure. As the crystal structure of zeolite 6, ferrierite, L-type and Y-type are more preferable.
  • the size of the zeolite 6 is, for example, submillimeter order.
  • the cation Me may be a monovalent or divalent cation, such as sodium ion (Na + ), potassium ion (K + ), hydrogen ion (H + ) and ammonium (NH 4 + ). can do.
  • the cation Me is preferably Na + , K + or H + .
  • the pore size of zeolite 6 is generally 0.2 nm to 1 nm, preferably larger than 0.7 nm and smaller than 1 nm.
  • the ratio m of silicon to aluminum in the zeolite 6 is preferably 5 or more and 18 or less.
  • Contaminants include biologically derived contaminants contained in the sample when the sample is collected from the living body, and contaminants such as cell walls generated during nucleic acid extraction.
  • contaminants include proteins secreted in the nasal cavity.
  • Some contaminants inhibit nucleic acid amplification, and zeolite 6 adsorbs at least one contaminant that inhibits nucleic acid amplification.
  • the filtration filter 7 is a filter that separates the zeolite 6 from the solution to which the zeolite 6 has been added, and is a finer filter than the zeolite 6.
  • a filter finer than zeolite 6 means that it has the ability to pass the nucleic acid extract, which will be described later, without allowing zeolite 6 to pass through. means a filter with a small pore size.
  • Materials for the filtration filter 7 include cellulose acetate, nitrocellulose, cellulose mixed ester, polyethersulfone, PTFE (polytetrafluoroethylene), PVDF (poly vinylidene difluoride), nylon, polyamide, polycarbonate, polypropylene, polyvinylidene chloride, and glass fiber. etc.
  • the filtration filter 7 is, for example, a microfiltration membrane with a mesh size (pore diameter) of approximately 50 nm to 10 ⁇ m.
  • Microfiltration membranes include membrane filters that trap tangible substances on the surface, prefilters (for example, filter paper or depth filters) that trap tangible substances inside the filter, and the like, which are appropriately selected depending on the application.
  • the funnel 8 is used to put the nucleic acid extract 62 (see FIG. 7) in the extraction container 4 into the cartridge 10 .
  • the funnel 8 comprises an inlet opening 8a and an outlet opening 8b.
  • the funnel 8 has a shape in which the opening diameter gradually decreases from the injection opening 8a toward the discharge opening 8b.
  • the funnel 8 is attached to the extraction container 4 by fitting the opening 4a of the extraction container 4 and the injection opening 8a.
  • the injection opening 8a of the funnel 8 attached to the extraction container 4 is inserted into the inlet 12 (see FIG. 3) of the cartridge 10. .
  • the filtration filter 7 is provided between the inlet opening 8a and the outlet opening 8b of the funnel 8. Therefore, the nucleic acid extract 62 injected from the injection opening 8a passes through the filtration filter 7 and is discharged from the discharge opening 8b.
  • the filtration filter 7 is provided separately from the cartridge 10 .
  • FIG. 2 is a plan view of the cartridge 10.
  • FIG. 3A of FIG. 3 shows an end surface cut along line 3A-3A of FIG. 2
  • FIG. 3B shows an end surface cut along line 3B-3B of FIG. 2
  • FIG. 3C shows an end surface cut along line 3C-3C of FIG.
  • the cartridge 10 has, for example, a planar size of about a credit card and a thickness of about 1 cm.
  • the cartridge 10 includes a main body member 10A having recesses and holes forming a part of the flow path structure including the flow path and the housing, and a bottom surface of the flow path. It is composed of a bottom member 10B.
  • any known resin-molded plastic material can be used for the main body member 10A without particular limitation, but from the viewpoint of heat resistance and transparency, polycarbonate, polypropylene, cycloolefin, or silicone resin is preferable.
  • the bottom member 10B is made of, for example, a thin plate or film.
  • any known resin-molded plastic material can be used without particular limitation, but from the viewpoint of adhesion to the main body member 10A, the same material as that of the main body member 10A is preferable.
  • the cartridge 10 includes an inlet 12, a lid portion 14, a first accommodating portion 16, a second accommodating portion 18, a first flow path 20, and a first cylinder 31. , a second cylinder 32 , a first plug 33 and a second plug 34 .
  • the cartridge 10 further comprises a second channel 24 and a third channel 26 .
  • the input port 12 is an opening for inputting a nucleic acid extract 62 (see FIG. 7), which is an example of liquid.
  • the lid portion 14 is a lid portion that covers the input port 12 and can be attached to and detached from the opening of the input port 12 .
  • the lid portion 14 is formed so as to be screwed onto the cylindrical portion 15 forming the inlet 12 .
  • the surface provided with the inlet 12 is referred to as the upper surface of the cartridge 10, and the bottom member 10B side is referred to as the lower surface of the cartridge 10.
  • the upper surface of the main body member 10A is the same as the upper surface of the cartridge 10
  • the lower surface of the main body member 10A is the surface in contact with the upper surface of the bottom member 10B
  • the lower surface of the bottom member 10B is the same as the lower surface of the cartridge 10.
  • the first storage part 16 is provided at a position facing the input port 12 and stores the nucleic acid extract 62 dropped from the input port 12 .
  • the shape of the first accommodating portion 16 is not particularly limited, and can be arbitrarily selected from a columnar shape, a conical shape, a frustum shape, and the like.
  • the insertion port 12 is constituted by an opening of a cylindrical portion 15 that penetrates the main body member 10A in the thickness direction and protrudes from the surface of the main body member 10A.
  • a first housing portion 16 is formed by the inner portion of 10A and the bottom member 10B.
  • the second storage section 18 is a storage section that can store a liquid, and functions as a reaction section that allows the nucleic acid extract 62 (see FIG. 7) and the reagent 42 to react.
  • Reagents 42 include amplification reagents for amplifying the base sequence to be tested, probes for detecting the base sequence to be tested, and the like.
  • the second housing portion 18 is formed by a recess provided on the lower surface of the main body member 10A and the bottom member 10B.
  • the reagent 42 is stored in the second storage section 18 in advance.
  • the reagent 42 only needs to be provided between the first storage section 16 and the second storage section 18 and does not necessarily have to be stored in the second storage section 18 .
  • the second container 18 constitutes an amplification reagent container.
  • Amplification reagents include primers, polymerases, substrates such as dNTPs, and salts. Furthermore, additives such as reducing agents, buffers, and the like may be included.
  • the nucleic acid to be amplified is RNA, it may further contain a reverse transcription primer and a reverse transcriptase.
  • the reagent 42 is appropriately selected according to the amplification method and detection method.
  • the reagent 42 may contain an amplification reagent and a fluorescent probe.
  • the form of the reagent to be enclosed is not particularly limited, and either liquid or solid reagent can be used.
  • a powdery reagent prepared by freeze-drying a liquid reagent, or a reagent molded into pellets or granules may be enclosed.
  • the first flow path 20 connects the first housing portion 16 and the second housing portion 18 .
  • the nucleic acid extract 62 put into the first container 16 is sent to the second container 18 through the first channel 20 .
  • the first flow path 20 is formed by a linear recess extending from the first accommodating portion 16 to the second accommodating portion 18 on the lower surface of the main body member 10A and the upper surface of the bottom member 10B.
  • the second flow path 24 and the third flow path 26 are formed by linear recesses formed in the lower surface of the main body member 10A and the upper surface of the bottom member 10B (see FIG. 3).
  • the first cylinder 31 is a first cylinder 31 connected to the first housing portion 16 via the second flow path 24, one end 31b communicates with the second flow path 24, and the other end 31a opens to the outside. It is designed to
  • the second cylinder 32 is a second cylinder 32 connected to the second housing portion 18 via the third flow path 26, one end 32b of which communicates with the third flow path 26, and the other end 32a of which opens to the outside. It is designed to
  • the first cylinder 31 and the second cylinder 32 are tubular portions formed in the surface direction of the main body member 10A, and are formed from the ends of the main body member 10A toward the inner side.
  • the first plug 33 is movably provided within the first cylinder 31 .
  • the second plug 34 is movably provided within the second cylinder 32 .
  • the first plug 33 and the second plug 34 are rubber plugs, for example, and have the function of blocking outside air in the first cylinder 31 and the second cylinder 32, respectively.
  • a first pressing portion of a pressing machine which will be described later, can be inserted into the first cylinder 31 from the other end 31a that opens to the outside. can be pushed to the side.
  • the second cylinder 32 has the other end 32a open to the outside, from which a second pressing portion of a pressing machine, which will be described later, can be inserted. It can be pressed to the inner space side.
  • the internal space is at atmospheric pressure when not pressed by the pressing machine.
  • the first storage section 16, the second storage section 18, the first flow path 20, the second flow path 24 and the third flow path 24 are moved. It is configured to be able to pressurize the internal space including the flow path 26 .
  • the gas in the nucleic acid extraction solution 62 and the reagent 42 may be generated as bubbles and inhibit nucleic acid amplification.
  • the internal space is pressurized to suppress foaming. Inhibition of nucleic acid amplification by foaming can be suppressed. Therefore, the nucleic acid amplification step in the second container 18 can proceed without being hindered, so that the test accuracy can be improved without delaying the amplification time or causing insufficient amplification.
  • the internal space of the cartridge 10 is sealed by the first plug 33 and the second plug .
  • the first plug 33 is arranged on the other end 31a side of the first cylinder 31 that opens to the outside from the center in the longitudinal direction.
  • the second plug 34 is arranged closer to the one end 32b than the longitudinal center of the second cylinder 32 .
  • the first plug 33 is pushed from the outside (arrow P1) in the first cylinder 31 and moved toward the inner space as indicated by the dashed arrow A1, the inner space is increased.
  • the second plug 34 in the second cylinder 32 is interlocked and moved so as to be pushed out from the inner space side to the outside side as indicated by the dashed arrow A2.
  • the movement of the second plug 34 in conjunction with the movement of the first plug 33 adjusts the pressure in the internal space, and the nucleic acid extract 62 stored in the first storage section 16 is transferred to the second storage section 18 .
  • Liquid can be sent (arrow B). Since the second plug 34 can be moved in conjunction with the movement of the first plug 33, the liquid can be delivered with a weak pressure. It should be noted that the movement of the first plug 33 and the second plug 34 may be independently controlled for liquid transfer.
  • FIG. 4 is a diagram showing a schematic configuration of the inspection device 100.
  • the inspection apparatus 100 includes a pressing machine 108 , a first heating section 112 , a second heating section 114 , a detection section 120 and a monitor 130 .
  • the inspection device 100 includes an accommodation portion that accommodates the cartridge 10 in a detachable manner.
  • FIG. 5A is a plan view showing the positional relationship between the cartridge 10 and the presser 108 in the inspection device 100.
  • FIG. 5B is a cross-sectional view taken along line 5B-5B in FIG. 5A, showing the positional relationship between the cartridge 10 and the detector 120 in the inspection device 100. As shown in FIG.
  • the pressing device 108 includes a first pressing portion 102 having a first pressing rod 101, a second pressing portion 104 having a second pressing rod 103, and a pressing portion for controlling the first pressing portion 102 and the second pressing portion 104.
  • a control unit 106 is provided.
  • the first pressing part 102 and the second pressing part 104 can push in and pull out the first pushing rod 101 and the second pushing rod 103 by actuators using stepping motors or solenoids.
  • the actuator may be configured to use power such as air pressure.
  • the first pressing part 102 is arranged at a position where the first pushing rod 101 can be inserted into the first cylinder 31 from the other end 31a opened to the outside of the first cylinder 31 with the cartridge 10 installed.
  • the first plug 33 can be pushed toward the internal space within the first cylinder 31 by the first push rod 101 .
  • the second pressing part 104 is arranged at a position where the second pushing rod 103 can be inserted into the second cylinder 32 from the other end 32a opened to the outside of the second cylinder 32 with the cartridge 10 installed.
  • the second plug 34 can be pushed toward the internal space within the second cylinder 32 by the second push rod 103 .
  • the nucleic acid extract 62 is put into the first containing portion 16 of the cartridge 10, and the internal space is sealed by closing the lid portion 14. In this manner, with the internal space sealed, the first plug 33 is pressed by the first pressing portion 102 and moved toward the internal space, thereby extracting the nucleic acid contained in the first containing portion 18 of the cartridge 10 .
  • the liquid 62 can be sent to the second storage section 18 .
  • the internal space of the cartridge 10 can be pressurized.
  • the first heating section 112 is provided at a position that contacts the bottom surface of the second accommodating section 18 of the cartridge 10 .
  • the first heating section 112 heats the liquid contained in the second containing section 18 .
  • the liquid contained in the second container 18 is a mixture of the nucleic acid extract 62 and the reagent 42 .
  • the first heating unit 112 heats the mixture of the nucleic acid extract 62 and the reagent 42 to promote nucleic acid amplification.
  • the second heating section 114 is provided at a position in contact with the bottom surface of the first accommodating section 16 of the cartridge 10 .
  • the second heating section 114 heats the liquid contained in the first containing section 16 .
  • the liquid contained in the first container 16 is the nucleic acid extract 62 .
  • the second heating unit 114 heats the nucleic acid extract 62 for pretreatment. Note that the testing device 100 does not need to include the second heating unit 114 when heating for pretreatment of the nucleic acid extract 62 is unnecessary.
  • the first heating unit 112 is equipped with a Peltier element or the like and is temperature-controllable, and performs temperature cycles in the amplification process.
  • the second heating section 114 does not require a temperature cycle like the first heating section 112, and is composed of, for example, a heater.
  • a known heating mechanism can be used as the heating mechanism used for each of the first heating unit 112 and the second heating unit 114, and is not particularly limited.
  • the detection unit 120 detects whether or not the nucleic acid extract 62 contains an object to be detected in the second storage unit 18 .
  • the detection unit 120 includes an excitation light source 122 , a wavelength selection filter 123 and a photodetector 124 .
  • the detection section 120 is arranged above the second housing section 18 of the cartridge 10 .
  • the excitation light source 122 irradiates the second accommodation section 18 with the excitation light L ⁇ b>1 of a specific wavelength through the wavelength selection filter 123 .
  • the photodetector 124 detects fluorescence L2 that is excited by the excitation light L1 and generated from the fluorescent probe.
  • the excitation light L1 is selected according to the excitation wavelength of the fluorescent probe.
  • a filter for adjusting the intensity and amount of light, a lens for converging the excitation light L1 and converging the fluorescence L2 originating from the detection probe to the photodetector 124, or an optical system may be included.
  • the excitation light source 122 an LED (light emitting diode), laser, or the like is used.
  • the wavelength selection filter 123 is a filter that transmits only the wavelength corresponding to the excitation wavelength of the probe among the light emitted from the excitation light source 122 .
  • the photodetector 124 for example, a photodiode, a photomultiplier tube, or an imaging device such as a camera is applied.
  • the monitor 130 is, for example, a touch panel display, and starts measurement and displays inspection results by operating the touch panel.
  • nucleic acid test method A nucleic acid test method according to one embodiment of the present disclosure will be described.
  • the nucleic acid testing method of one embodiment includes, as shown in FIG. 6, a sample collection step ST1 for collecting a sample, an extraction step ST2, a purification step ST3, an amplification step ST4, and an inspection step ST5.
  • the specimen collection step ST1 is a process of collecting a specimen from a subject. Note that sample collection may be performed separately from the series of flows. The specimen may be collected by a collector different from the subject, or may be collected by the subject himself/herself.
  • the extraction step ST2 is a step of extracting nucleic acids from the specimen.
  • the specimen 60 is brought into contact with the extraction reagent 3 containing a nonionic surfactant.
  • the purification step ST3 is a step of removing contaminants 66 (see FIG. 7) in either the solution containing the specimen 60 or the nucleic acid extraction solution 62 (see FIG. 6) from which the nucleic acid was extracted. Specifically, either the solution containing the specimen 60 or the nucleic acid extract 62 is brought into contact with the zeolite 6 having any of ferrierite, mordenite, L-type and Y-type crystal structures.
  • the purification step thus includes an adsorption step in which either the solution containing the sample 60 or the nucleic acid extract 62 is brought into contact with the zeolite 6 to adsorb the contaminants 66 to the zeolite.
  • the purification step ST3 is shown as a step after the extraction step ST2 in FIG. 6, it may be performed before, during, or after the extraction step ST2.
  • the amplification step ST4 is a step of amplifying the base sequence to be tested in the nucleic acid extract 62.
  • the inspection step ST5 is a step of inspecting the presence or absence of the base sequence to be inspected after the amplification step ST4.
  • test kit 1 A more specific nucleic acid test method using the test kit 1 and the test device 100 will be described below.
  • the sample collection step ST1, the extraction step ST2 and the purification step ST3 are performed outside the cartridge 10
  • the amplification step ST4 and the test step ST5 are performed using the cartridge 10.
  • a specimen 60 is collected from a living body using the specimen collection tool 2 (collection step ST1). Specifically, a specimen is collected from the nasal cavity, pharynx, oral cavity, or affected area of the subject using the specimen collecting tool 2 . Alternatively, bodily fluids such as nasal cavity, pharynx, oral lavage, saliva, urine or blood are collected as specimens. In this example, a swab is used as the specimen collecting tool 2, and a nasal swab is collected as the specimen 60 by inserting the cotton portion at the tip into the nasal cavity.
  • an extraction step ST2 for extracting the nucleic acid 64 from the specimen 60 is performed.
  • the cotton portion of the specimen collecting tool 2 to which the specimen 60 is attached is immersed in the extraction reagent 3.
  • the extraction reagent 3 containing the nonionic surfactant.
  • a sample 60 is mixed in the extraction reagent 3 . Due to the action of the extraction reagent 3 , the cells in the specimen 60 are lysed and the nucleic acids 64 are eluted into the extraction reagent 3 .
  • a nucleic acid extract 62 is obtained.
  • the nucleic acid extract 62 contains contaminants 66 that inhibit amplification of the nucleic acid 64 .
  • the contaminants 66 include biological contaminants contained in the specimen 60 and contaminants such as cell walls generated during nucleic acid extraction.
  • the purification step ST3 includes an adsorption step ST31 and a filtration step ST32.
  • the zeolite 6 is added to the nucleic acid extract 62 in the extraction container 4, and the adsorption step ST31 is performed to adsorb the contaminants 66 in the nucleic acid extract 62 to the zeolite 6.
  • FIG. in the adsorption step ST31 the zeolite 6 is added to the nucleic acid extract 62, mixed, and allowed to stand for a certain period of time (for example, 10 minutes) to adsorb the contaminants 66 onto the zeolite 6.
  • the filtration step ST32 is performed to filter the nucleic acid extract 62 to remove the zeolite 6 (and the contaminants 66 adsorbed to the zeolite 6) in the nucleic acid extract 62.
  • the injection opening 8a of the funnel 8 is fitted into the opening 4a of the extraction vessel 4.
  • the filtration filter 7 provided in the funnel 8 is placed above the nucleic acid extract 62 .
  • the mesh (that is, the pore size) of the filtration filter 7 is smaller than the zeolite 6 , so the zeolite 6 does not pass through the filtration filter 7 . Therefore, the contaminants 66 adsorbed to the zeolite 6 also cannot pass through the filtration filter 7 .
  • the solution not adsorbed to the zeolite 6 and the nucleic acid 64 smaller than the mesh of the filtration filter 7 pass through the filtration filter 7 and are discharged from the discharge opening 8b.
  • the purified nucleic acid extract 62 discharged from the discharge opening 8b of the funnel 8 is introduced into the cartridge 10 from the inlet 12 of the cartridge 10, which will be described later.
  • the cartridge 10 After the purified nucleic acid extract 62 is put into the cartridge 10, the cartridge 10 is loaded into the inspection device 100, and the amplification process and the inspection process are performed in the inspection device 100.
  • the nucleic acid extract 62 contained in the first container 16 is heated using the second heating unit 114 .
  • the restriction enzyme can be inactivated and the decomposition of the extracted nucleic acid can be suppressed.
  • the heating temperature may be within a temperature range that does not adversely affect the nucleic acid, and is preferably, for example, about 50°C to 95°C.
  • the nucleic acid extract 62 that has undergone heat treatment as a pretreatment in the first container 16 is fed toward the second container 18 .
  • the first pushing rod 101 of the first pressing portion 102 is inserted from the other end 31a of the first cylinder 31 opening to the outside, and the first plug 33 is pressed toward the inner space of the cartridge 10 and moved.
  • the nucleic acid extract 62 contained in the first container 16 can be transferred to the second container 18 .
  • the first plug 33 is pushed in to pressurize the internal space, thereby moving the second plug 34 in the second cylinder 32 toward the outside, thereby adjusting the pressure in the internal space. Liquid can be sent with a weak pressure.
  • the nucleic acid extract 62 is sent from the first container 16 to the second container 18 through the channel 20 .
  • a reagent 42 is provided in the second container 18 , and the nucleic acid extract 62 flows into the second container 18 to dissolve the reagent 42 and mix the nucleic acid extract 62 and the reagent 42 .
  • the second pushing rod 103 of the second pressing portion 104 is inserted from the other end 32a of the second cylinder 32, which opens to the outside. to press the second plug 34 to pressurize the internal space.
  • the first heating unit 112 heats the mixture in the second storage unit 18 to amplify the base sequence to be tested.
  • RT Reverse Transcription
  • PCR method is used as an example.
  • thermo denaturation step a step of dissociating the double-stranded DNA into single-stranded DNA at a high temperature
  • annealing step a step of lowering the temperature to bind the primer to the single-stranded DNA
  • elongation step a step of Using the strand DNA as a template, the step of synthesizing a new double-stranded DNA with a polymerase (elongation step) is repeated.
  • An example of the temperature cycle of the heat denaturation step, annealing step and extension step is a cycle of 94°C for 1 minute, 50 to 60°C for 1 minute, and 72°C for 1 to 5 minutes, which is repeated 20 to 50 times. be done.
  • the annealing step and the elongation step may be performed at one temperature.
  • An example of such a temperature cycle is, for example, a cycle of 98° C. for 1 minute and 60° C. for 1 minute, which is repeated 20 to 50 times.
  • the temperature and time of the temperature cycle in the amplification step are not particularly limited, and are arbitrarily selected depending on the performance of the polymerase and primers.
  • Fluorescence detection is performed for each cycle of the temperature cycle, and the amplification status is monitored in real time. That is, in this example, the amplification step and the detection step are performed in parallel. The result of fluorescence detection is displayed on monitor 130 .
  • the base sequence is amplified in the amplification step, and fluorescence is emitted by irradiating the fluorescent probe labeled with the base sequence to be tested with excitation light. detected.
  • the base sequence to be tested does not exist in the nucleic acid extract 62, no fluorescence is detected even if the excitation light is applied. This makes it possible to determine the presence or absence of the base sequence to be tested.
  • the purification step either the liquid containing the specimen 60 or the nucleic acid extraction liquid 62 from which the nucleic acid is extracted is brought into contact with ferrierite, mordenite, zeolite having any of L-type and Y-type crystal structures. Accordingly, an adsorption step is included in which the contaminants 66 in the liquid are adsorbed to the zeolite 6 .
  • the present inventors used the method described in International Publication No. WO 2009/060847 to perform nucleic acid extraction using an anionic surfactant, and then performed amplification using the PCR method instead of the LAMP method.
  • the general reaction temperature of the LAMP method is about 65°C
  • the PCR method generally includes a step of heating to 90°C or higher. Therefore, in the PCR method, an enzyme with high heat resistance is used as the enzyme contained in the amplification reagent. It is presumed that when an anionic surfactant is used, some functions such as the activity of highly heat-resistant enzymes used in PCR amplification are inhibited, thereby inhibiting nucleic acid amplification.
  • nucleic acid extraction using a nucleic acid extraction solution containing a nonionic surfactant, inhibition of PCR amplification can be suppressed. Amplification can be promoted, and high inspection accuracy can be achieved.
  • the nucleic acid test method of the present embodiment can also be applied to the case of using an amplification method such as the LAMP method that performs amplification processing at a relatively low temperature, and the amplification method is not limited.
  • contaminants 66 in the liquid are adsorbed to the zeolite 6 having a specific crystal structure. Contaminants 66 adsorbed to 6 can be removed from the nucleic acid extract 62 .
  • contaminants that inhibit the amplification of the base sequence to be tested can be removed, so that the amplification of the base sequence to be tested can be promoted in the amplification step, and high test accuracy can be achieved.
  • this nucleic acid testing method includes an extraction step using a nonionic surfactant and a purification step of removing contaminants by adsorbing contaminants to zeolite 6 having a specific crystal structure. Then, the amplification process is carried out using the nucleic acid extract obtained through such extraction process and purification process. Therefore, it is possible to effectively suppress the inhibition of the amplification of the base sequence to be tested in the amplification step, and realize nucleic acid testing with higher test accuracy than ever before without being limited to a specific amplification method.
  • the amplification method is not limited to the PCR method.
  • LAMP method Nucleic Acid Sequence-Based Amplification
  • TRC Transcription Reverse-transcription Concerted reaction
  • RPA Recombinase Polymerase Amplification
  • NEAR Nearing Enzyme Amplification Reaction
  • a known amplification method such as a method, SDA (Strand Displacement Amplification) method, or HDA (Helicase-dependent Amplification) method can be used.
  • Enzymes contained in amplification reagents used in amplification methods include reverse transcriptase, which synthesizes complementary DNA (cDNA) using RNA as a template, and DNA polymerase, which amplifies DNA and cDNA. Selected as appropriate.
  • RNA virus such as a retrovirus
  • reverse transcriptase is used to convert RNA to cDNA before amplification, and then the cDNA is amplified.
  • the RT-PCR method using the PCR method, the RT-LAMP method using the LAMP method, and the like are performed.
  • DNA is extracted from bacteria such as pathogenic microorganisms and amplified, the DNA is amplified without reverse transcription.
  • Reverse transcriptases include AMV (Avian Myeloblastosis Virus) reverse transcriptase and MMLV (Moloney Murine Leukemia Virus) reverse transcriptase.
  • AMV Alfaloney Murine Leukemia Virus
  • MMLV Meloney Murine Leukemia Virus
  • RNase ribonuclease
  • DNA polymerases include thermostable DNA polymerases such as Taq DNA polymerase, Vent DNA polymerase, Deep Vent DNA polymerase, KOD DNA polymerase, TTx DNA polymerase, Tth DNA polymerase, Pfu DNA polymerase, Bsu DNA polymerase, Bst DNA polymerase, E. coli DNA polymerase and the like.
  • an enzyme capable of reverse transcription and amplification with one enzyme may be used, such as TthDNA polymerase or TTxDNA polymerase.
  • enzymes obtained by modifying these enzymes, or enzymes bound to antibodies to suppress activity at room temperature or in the reverse transcription process may be used.
  • the nucleic acid testing method of the present disclosure produces a remarkable effect when using an enzyme with high heat resistance used in the PCR method and the like. Therefore, when the PCR method is used in the amplification step, the amplification of the nucleotide sequence to be tested can be promoted, and the effect of improving the test accuracy is high.
  • the purification step includes a filtration step of filtering the liquid to remove zeolite from the liquid (here, the nucleic acid extract 62) after the adsorption step.
  • Impurities 66 can be easily removed by using filtration as a method for separating zeolite 6 (and contaminants 66) from the liquid.
  • the extraction reagent 3 contains at least one of polyethylene oxide, glucamine and betaine as a nonionic surfactant, a high effect of suppressing amplification inhibition is obtained.
  • the nonionic surfactant when an extraction reagent containing polyethylene oxide is used as the nonionic surfactant, the highest effect of inhibiting amplification is obtained (see Examples shown in Table 1 below).
  • the effect of removing impurities is higher than when zeolite having a crystal structure of mordenite is used (see Table 1 below). see Examples).
  • the adsorption of the contaminants 66 is higher than when HN 4 + is used as the cation. Therefore, the effect of removing the contaminants 66 is high, and the effect of suppressing the inhibition of amplification is high (see Examples shown in Table 1 below).
  • the test kit 1 of the above embodiment includes an extraction container 4 containing an extraction reagent 3 containing a nonionic surfactant, ferrierite, mordenite, zeolite 6 having a crystal structure of either L-type or Y-type, and a cartridge 10.
  • the cartridge 10 includes a plurality of amplification reagent storage portions (here, the second storage portion 18) that store amplification reagents (here, the reagents 42 containing the amplification reagents) used for amplification of the nucleic acids 64. It comprises accommodation portions 16 and 18 and a plurality of channels 20 , 24 and 26 including a channel 20 connecting between the plurality of accommodation portions 16 and 18 .
  • the zeolite 6 is provided in a form that can be put into the extraction container 4.
  • zeolite 6 may be provided in at least one of extraction vessel 4 and cartridge 10 .
  • the test kit 1 of the above embodiment includes the filter 7 that filters the nucleic acid extract 62 and has a finer mesh than the zeolite 6 .
  • the filter 7 filters the nucleic acid extract 62 and has a finer mesh than the zeolite 6 .
  • the filtration filter 7 is provided separately from the cartridge 10, specifically, provided in the funnel 8.
  • the filtration filter 7 is not limited to being provided in the funnel 8 as long as it is provided in the path leading to the introduction of the nucleic acid extract 62, which is the liquid in the extraction vessel 4, into the cartridge 10.
  • the filtration filter 7 may be provided inside the cartridge 10 .
  • the filtration filter 7 may be provided at the input port 12 of the cartridge 10 so that the nucleic acid extract 62 filtered at the input port 12 is supplied to the first container 16 of the cartridge 10 .
  • the test kit 1 can easily put the nucleic acid extract 62 from the extraction container 4 into the cartridge 10. However, the test kit 1 may not have the funnel 8 . If the test kit 1 does not have the funnel 8 , the nucleic acid extract 62 may be sucked from the extraction container 4 using a pipette or the like, and the nucleic acid extract 62 may be introduced into the cartridge 10 through the inlet 12 .
  • the purification process is performed after the extraction process.
  • the purification step may be performed before, during, or after the extraction step.
  • the extraction step and the adsorption step may be performed in parallel (step ST12), and then the filtration step ST13 may be performed.
  • zeolite 6 is added in advance to the extraction reagent 3 in the extraction container 4 .
  • the cotton portion of the specimen collecting tool 2 to which the specimen 60 is attached is immersed in the extraction reagent 3 to which the zeolite 6 is added.
  • the sample 60 is eluted into the extraction reagent 3, and the cells are lysed by the action of the extraction reagent 3, and the nucleic acid 64 is eluted.
  • zeolite 6 is added to the extraction reagent 3 contaminants 66 contained in the sample 60 and contaminants 66 generated when the cells are lysed are adsorbed to the zeolite 6 in parallel with the extraction process.
  • the purified nucleic acid extract 62 is put into the cartridge 10 through the filtration step ST13.
  • step ST12 By performing the extraction step and the adsorption step in parallel in step ST12, the time required for the extraction step and the purification step can be shortened compared to the case where the purification step is performed after the extraction step.
  • the zeolite 6 may be provided in the extraction container 4 in advance in the test kit 1 .
  • the purification step ST22 may be performed before the extraction step ST23 is performed.
  • the adsorption step ST221 and the filtration step ST222 are performed in this order.
  • the specimen 60 collected by the specimen collecting tool 2 is eluted into a solution such as a buffer liquid, and the zeolite 6 is added to the buffer liquid containing the specimen 60.
  • Contaminants 66 contained in the specimen 60 are adsorbed to the zeolite 6 in the buffer solution.
  • the buffer solution after the adsorption step is filtered using the filtration filter 7.
  • an extraction reagent 3 is added to the filtered buffer solution to extract nucleic acids.
  • the contaminants 66 that can be removed by being adsorbed to the zeolite 6 are contaminants of biological origin. Since the extraction step ST23 is not performed, contaminants generated during nucleic acid extraction are not generated in the adsorption step ST22. Therefore, the nucleic acid extract 62 obtained after the extraction step ST23 contains contaminants generated during the nucleic acid extraction, and is subjected to the amplification step while containing such contaminants. However, in the amplification step, the main contaminants 66 that inhibit the amplification of the nucleic acid 64 are biological contaminants, so even if the purification step ST22 is performed before the extraction step ST23, the effect of suppressing the inhibition of amplification can be obtained. be able to.
  • the purification step is preferably performed after or during the extraction step.
  • the contaminants 66 generated in the extraction process can also be removed, so the effect of suppressing amplification inhibition is high.
  • FIG. 10 is a plan view schematically showing a modified cartridge 11.
  • FIG. Components similar to those of the cartridge 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cartridge 11 has a purification chamber 50 in the middle of the first channel 20 that connects the first containing portion 16 and the second containing portion 18 .
  • the first flow path 20 includes a first flow path first portion 20a connecting the first accommodating portion 16 and the purification chamber 50, and a first flow path second portion 20b connecting the purification chamber 50 and the second accommodating portion 18. It consists of
  • the purification chamber 50 is a chamber in which a purification process for removing contaminants 66 from the nucleic acid extract 62 is performed.
  • zeolite 6 is provided in purification chamber 50 . That is, the zeolite 6 is provided inside the cartridge 11 .
  • a filtration filter 7 is provided at the downstream end of the purification chamber 50 connected to the second portion 20b of the first channel.
  • the funnel 8 is equipped with the filtration filter 7 in the test kit 1 shown in FIG. When the cartridge 11 is used, the funnel 8 does not need the filtration filter 7 .
  • the purification step is performed before adding the nucleic acid extract 62 to the cartridge 10, and the purified nucleic acid extract 62 is put into the cartridge 10.
  • the purification process is performed within the cartridge 11.
  • An unpurified nucleic acid extract 62 is put into the cartridge 11, and the nucleic acid extract 62 is sent from the first container 16 to the purification chamber 50 through the first channel first part 20a.
  • the nucleic acid extract 62 is mixed with the zeolite 6 in the purification chamber 50 , and contaminants 66 in the nucleic acid extract 62 are adsorbed to the zeolite 6 .
  • the nucleic acid extract 62 is sent to the second storage section 18 via the filtration filter 7 and the first channel second section 20b.
  • the nucleic acid extract 62 is filtered, the zeolite 6 and the contaminants 66 adsorbed to the zeolite 6 are left in the purification chamber 50, and the purified nucleic acid extract 62 is sent to the second container 18. be.
  • the subsequent amplification and detection steps are the same as when cartridge 10 is used.
  • nucleic acid testing methods including Therefore, it is possible to effectively suppress the inhibition of the amplification of the base sequence to be tested in the amplification step, and realize nucleic acid testing with higher test accuracy than ever before without being limited to a specific amplification method.
  • the cartridge 11 has the purification chamber 50 and the zeolite 6 and the filtration filter 7 inside the cartridge 11 .
  • the cartridge 11 is provided with a purification chamber 50 as one storage portion different from the second storage portion 18 which is an amplification reagent storage portion, and the zeolite 6 is stored in the purification chamber 50 .
  • a filtration filter 7 is provided at the end of the purification chamber 50 , which is in the flow path from the purification chamber 50 to the second storage section 18 .
  • the refining process can be performed within the cartridge 11, so it is possible to reduce the manual work of the user who conducts the test and reduce the burden.
  • the surfactant was a nonionic surfactant.
  • the adsorbent was ferrite, modernite, zeolite having any one of L-type and Y-type structures.
  • the zeolite crystal structure and cation species were varied.
  • Zeolite Examples 8 to 11 in Table 1 are examples in which the concentration of zeolite is different from that of Example 2.
  • Examples 12-18 are examples in which the type of surfactant is changed from that in Example 2
  • Examples 19-21 are examples in which the concentration of the surfactant is changed.
  • Comparative Examples 1-3 shown in Table 2 are examples using an anionic surfactant as the surfactant. Comparative Examples 4 and 5 differ from those of Examples in the structure of the zeolite. Comparative Examples 6-14 are examples using adsorbents other than zeolite. Comparative Examples 6-8 use activated carbon as the adsorbent, and the features of each activated carbon are described in the item number of the activated carbon. Specifically, in Comparative Example 6, activated carbon greener alternative DARCO (registered trademark), 12-20 mesh, granular manufactured by Sigma-Aldrich Co., Ltd. was used, and in Comparative Example 7, activated carbon manufactured by Wako Pure Chemical Industries, Ltd. (powder , neutral), and in Comparative Example 8, activated carbon (powder, alkaline) manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • DARCO registered trademark
  • the pore diameter [ ⁇ 10 ⁇ 1 nm], Si/Al ratio and specific surface area [m 2 /g] of zeolite in Table 1 are all the manufacturer's nominal values. "Undisclosed” in Table 1 means that the manufacturer of each adsorbent has not made it public.
  • a lysozyme aqueous solution having the following composition was prepared.
  • Lysozyme aqueous solution was prepared by weighing lysozyme and deionized distilled water and stirring with a vortex mixer.
  • Deionized distilled water manufactured by Nippon Gene, RNase/DNase free
  • adsorbent dispersion After weighing zeolite and water, an adsorbent dispersion was prepared by stirring with a vortex mixer.
  • the composition of the zeolite dispersion 1, which is the adsorbent dispersion of Example 1, is as follows.
  • the total of zeolite or other adsorbent (activated carbon, styrenic polymer or polymethacrylate) and deionized distilled water was 0.85 g, and the adsorbent concentration [wt /vol%] were each the values shown in Table 1, respectively.
  • zeolite dispersion 1 Zeolite HS-320 (manufactured by Wako Pure Chemical Industries, Ltd.): 0.075 g
  • Deionized distilled water manufactured by Nippon Gene, RNase/DNase free
  • an adsorbent lysozyme mixture was prepared by mixing the lysozyme aqueous solution and the adsorbent dispersion. After the lysozyme aqueous solution was added to the adsorbent dispersion, the mixture was stirred with a vortex mixer to prepare an adsorbent lysozyme mixture.
  • the zeolite dispersion liquid 1 and the lysozyme aqueous solution were mixed in the following weight ratio to prepare the zeolite lysozyme mixed liquid 1.
  • the weight ratio of the adsorbent dispersion to the lysozyme aqueous solution was set to be the same as the weight ratio of the zeolite dispersion to the lysozyme aqueous solution in the zeolite-lysozyme mixed solution 1.
  • the mixed liquid After preparing the mixed liquid of the lysozyme aqueous solution and the adsorbent dispersion liquid as described above, the mixed liquid was allowed to stand at room temperature for 10 minutes. After that, the mixed solution is placed in a Terumo Syringe (registered trademark) lock group (manufactured by Terumo Corporation, volume 2.5 mL) set with a PES (polyethersulphone) syringe filter (manufactured by GVS) having a pore size of 0.45 ⁇ m. Purification was done by addition and manual filtration.
  • a Terumo Syringe registered trademark
  • PES polyethersulphone
  • the lysozyme concentration before and after purification of the adsorbent lysozyme mixed solution was measured. Specifically, the lysozyme concentration D0 in the adsorbent lysozyme mixed solution before adding to the syringe was measured, and the lysozyme concentration D1 in the solution after the adsorbent lysozyme mixed solution was filtered and purified was measured. Then, (D0-D1)/D0 was calculated as the adsorption rate.
  • Adsorption rate of 80% or more Adsorption rate of 50% or more and less than 80%
  • C Adsorption rate of 20% or more and less than 50%
  • D Less than 20% Practically, an adsorptivity of C or more is required.
  • nucleic acid adsorption evaluation by adsorbent Using nucleic acids extracted from influenza viruses, the adsorption of nucleic acids to adsorbents was evaluated by the following procedure.
  • the ratio of nucleic acid copy numbers before and after zeolite purification was calculated by the calibration curve method using a real-time PCR device (CFX96 manufactured by BioRad) and used as the transmittance.
  • a higher transmittance means a lower adsorption rate. It is desirable that the nucleic acid is not adsorbed by the adsorbent and has a high rate of passing through the filter (transmittance) in the filtration step of the purification treatment.
  • an aqueous nucleic acid solution was prepared by diluting AmpliRun Influenza A H1 RNA Control (manufactured by Vircell) to 250 copies/ ⁇ L.
  • the adsorbent and the aqueous nucleic acid solution were weighed so that the concentration of the adsorbent in the aqueous nucleic acid solution was the value shown in Table 1, and the adsorbent was dispersed in the aqueous nucleic acid solution using a vortex mixer. After that, the nucleic acid aqueous solution in which the adsorbent was dispersed was allowed to stand at room temperature for 10 minutes.
  • this solution was added to a Terumo syringe (registered trademark) lock group (manufactured by Terumo Corporation, volume 2.5 mL) set with a PES syringe filter (manufactured by GVS) having a pore size of 0.45 ⁇ m, and manually A purification process was carried out by filtration.
  • a Terumo syringe registered trademark
  • PES syringe filter manufactured by GVS
  • a PCR reaction solution with the following composition was prepared, and the nucleic acid aqueous solution purified by the procedure described above was added to perform RT-PCR.
  • RT-PCR was performed using AmpliRun Influenza A H1 RNA Control (manufactured by Vircell) at the following concentrations to create a standard curve of nucleic acid copy number and Ct value.
  • nucleic acid aqueous solutions with respective concentrations of 1000 Copy/ ⁇ L, 500 Copy/ ⁇ L, 250 Copy/ ⁇ L, 100 Copy/ ⁇ L, 50 Copy/ ⁇ L, 25 Copy/ ⁇ L, 10 Copy/ ⁇ L, and 5 Copy/ ⁇ L were prepared.
  • RT-PCR was performed for each nucleic acid aqueous solution at each concentration, and the Ct value was measured. Based on these results, a calibration curve showing the relationship between Ct value and concentration (ie, nucleic acid copy number) was prepared.
  • primers and probes refer to the type A identification sequence published by the National Institute of Infectious Diseases (sequence disclosed in the influenza diagnosis manual published by the National Institute of Infectious Diseases), MP-39-67For , MP-183-153Rev, MP-96-75ProbeAs were synthesized with the following sequences.
  • RT-PCR The conditions for RT-PCR were as follows. Reverse transcription: 50°C, 2 minutes ⁇ 95°C, 5 minutes PCR: 95°C, 5 seconds ⁇ 56°C, 10 seconds, 50 cycles
  • the purified aqueous nucleic acid solution obtained by purification was used to perform the above RT-PCR and measure the Ct value.
  • the obtained Ct value was compared with the aforementioned calibration curve to determine the nucleic acid copy number C1 for the aqueous nucleic acid solution after purification.
  • the nucleic acid copy number C0 present in the PCR reaction field before purification is 250 copies.
  • the ratio C1/C0 of the nucleic acid copy numbers before and after purification was defined as the transmittance.
  • Nucleic acid adsorption to the adsorbent was evaluated according to the following criteria.
  • Amplification evaluation Prepare a lysozyme as a contaminant present in the nasal cavity, nucleic acid extracted from Influenza as a specimen, and a specimen simulant containing a surfactant, and amplify nucleic acids with a real-time PCR device (BioRad CFX96) according to the following procedure. evaluated the sex.
  • Example 1 Sample simulant liquids containing surfactants shown in Table 1 or Table 2 were prepared for each example and comparative example.
  • the composition of the specimen simulating liquid 1 used in Example 1 is as follows. In the case of Example 1, specimen simulant liquid 1 was prepared by stirring each solution shown below with a vortex mixer. In Examples 2 to 11 and Comparative Examples 4 to 14, the same specimen simulating liquid 1 as in Example 1 was used. In addition, for Examples 12 to 21 and Comparative Examples 1 to 3, the components other than the surfactant are the same as the sample simulating liquid 1, and the surfactant is replaced with the surfactant shown in Table 1. It was prepared so as to have a surfactant concentration [vol%].
  • specimen simulant 1 Nucleic acid: AmpliRun Influenza A H1 RNA Control (1000 Copy/ ⁇ L) 12.0 ⁇ L Lysozyme (1% water dilution) 10.2 ⁇ L Surfactant: Tween 20 (5% water dilution) 24.2 ⁇ L (concentration at purification 0.5 vol%) 195.6 ⁇ L of water
  • Example 1 the adsorbent (zeolite in Example 1) and the specimen simulating solution shown in Table 1 were weighed so as to have the concentration [wt/vol%] shown in Table 1, and stirred with a vortex mixer.
  • 0.0073 g of zeolite was weighed, 96.8 ⁇ L of sample simulant was added, and the mixture was stirred with a vortex mixer.
  • the concentration was 0.0073 g/0.0968 ml ⁇ 7.5 [wt/vol %]. After stirring with a vortex mixer, the mixture was allowed to stand at room temperature for 10 minutes.
  • a specimen simulating solution in which an adsorbent is dispersed is added to a Terumo Syringe (registered trademark) lock group (manufactured by Terumo Corporation, volume 2.5 mL) set with a PES syringe filter (manufactured by GVS) having a pore size of 0.45 ⁇ m. Purification was carried out by manual filtration.
  • a Terumo Syringe registered trademark
  • PES syringe filter manufactured by GVS
  • PCR reaction solution with the following composition was prepared, and RT-PCR was performed using the sample simulant solution that had been purified as described above.
  • primers and probes as in the evaluation of nucleic acid adsorption, refer to the sequence for identifying type A published by the National Institute of Infectious Diseases, MP-39-67For, MP-183-153Rev, MP Primers and probes were synthesized with the following sequences published as -96-75 ProbeAs.
  • RT-PCR The conditions for RT-PCR were as follows. Reverse transcription: 60°C, 1 minute ⁇ 95°C, 1 minute PCR: 50 cycles of 95°C, 1 second ⁇ 60°C, 6 seconds
  • Ct values for amplification curves obtained after RT-PCR were judged according to the following criteria. 4: Ct value of 35 or less 3: Ct value of 35 or more and 37 or less 2: Ct value of 37 or more and 40 or less 1: Greater than 40 The smaller the Ct value, the better, and in practice the Ct value is 40 or less (determination 2 or more). performance is required.
  • Table 1 summarizes the surfactant and adsorbent conditions and the evaluation results for the examples.
  • Table 2 summarizes the surfactant and adsorbent conditions and evaluation results for the comparative examples.
  • Examples 1 to 21 use an extraction reagent containing a nonionic surfactant, and ferrierite, mordenite, zeolite having any of L-type and Y-type crystal structures is an example using In Examples 1 to 21, the adsorbability of contaminants (here, lysozyme) is as high as C or higher, and the nucleic acid permeability is as high as B or higher, that is, the nucleic acid adsorption rate is low, and the nucleic acid amplification is 2 or more. , and a result that satisfies practical performance was obtained.
  • contaminants here, lysozyme
  • Comparative Examples 1 to 3 which used an extraction reagent containing an anionic surfactant, had poor nucleic acid amplification, although good results were obtained in the adsorption evaluation. This is considered to be a result indicating that the anionic surfactant inhibits nucleic acid amplification.
  • Comparative Examples 4 to 14 using an A-type or X-type zeolite or a non-zeolite adsorbent have low adsorption of contaminants.
  • the nucleic acid was adsorbed, resulting in low amplification.
  • H + and Na + as the cationic species have better adsorptive evaluation than NH 4 + .
  • Example 2 and Examples 4 to 7 which differ only in the crystal structure of zeolite, ferrierite, L-type and Y-type have better adsorption of contaminants than mordenite.
  • the concentration of zeolite was at least 0.1 wt/vol% to In the range of 15.0 wt/vol%, the effect of adsorption of contaminants was obtained.
  • the zeolite concentration is preferably 0.5 wt/vol% or more, more preferably 2 wt/vol% or more.
  • Example 2 According to the evaluation results of Example 2 and Examples 12 to 18, which differed only in the type (or product number) of the nonionic surfactant used in the extraction reagent, polyethylene oxide was higher than other nonionic surfactants. The effect of suppressing amplification inhibition is high, which is preferable.
  • Example 2 According to the evaluation results of Example 2 and Examples 19 to 21, in which only the surfactant concentration in the nucleic acid extract (simulated specimen solution in the Examples) is different, the surfactant concentration is 0.5 vol% to 2.0 vol. % range, almost the same effect was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

特定の増幅方法に限定されることなく、従来よりも高い検査精度で核酸検査を実現できる核酸検査方法および検査キットを提供する。 核酸検査方法は、検体から核酸を抽出する抽出工程と、抽出工程の前、途中および後のいずれかの段階で、検体を含む溶液および核酸が抽出された核酸抽出液のいずれかの液体内の夾雑物を除去する精製工程と、核酸抽出液内の塩基配列を増幅する増幅工程と、増幅工程の後に、塩基配列の有無を検出する検出工程とを含む。抽出工程は、上記検体を、ノニオン系界面活性剤を含む抽出用試薬と接触させる工程であり、精製工程は、液体を、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライトと接触させることにより、上記液体内の夾雑物をゼオライトに吸着させる吸着工程を含む。

Description

核酸検査方法および検査キット
 本開示は、核酸検査方法および検査キットに関する。
 遺伝子診断の技術において、生体から採取した検体に含まれる微量な核酸に対して検査対象の塩基配列を増幅する増幅処理を施し、検体中に検査対象の塩基配列を含む核酸が存在するか否かを検査する検査方法が知られている。増幅方法としては、例えば、ポリメラーゼ連鎖反応(Polymerase Chain Reaction:PCR)法、LAMP(Loop-Mediated Isothermal Amplification)法などが挙げられる。
 上記検査方法においては、一例として、まず、採取された検体の中から核酸を抽出するために、検体を抽出用試薬に投入して検体内から核酸を抽出する抽出工程が行われる。核酸は細胞内に存在するため、細胞を溶解して核酸を溶出させる必要がある。抽出工程は、抽出用試薬により細胞を溶解して核酸を溶出させる工程である。その後、検体から核酸が抽出された核酸抽出液から夾雑物を除去する精製工程が行われる。夾雑物には、検体に含まれる生体由来の夾雑物および核酸抽出の際に核酸と共に溶出されるタンパク質あるいは多糖類等の夾雑物が含まれる。このような夾雑物は、核酸の増幅を阻害する要因となるため除去される。精製工程を経た核酸抽出液は、検査対象の塩基配列を増幅させるための増幅用試薬と混合され、PCR法あるいはLAMP法等による増幅処理を施す増幅工程が行われる。その後、検査対象の塩基配列に付与されたプローブからの信号を検出することで、検査対象の塩基配列が含まれているか否かの検査が行われる。ここで、核酸とは、DNA(deoxyribonucleic acid)およびRNA(ribonucleic acid)の総称である。
 国際公開第2009/060847号では、抽出工程において、抽出用試薬として、アニオン系界面活性剤あるいはアルカリを含む抽出用試薬を用いること、精製工程において、核酸抽出液をゼオライトに接触させ、ゼオライトの吸着作用によって夾雑物を除去すること、さらに、増幅工程において、LAMP法を用いることが記載されている。ゼオライトを用いる精製工程は、例えば磁性粒子などを用いて夾雑物と核酸を分離させる方法と比べて、簡便であるため好ましい。
 しかしながら、国際公開第2009/060847号の手法を、LAMP法に代えてPCR法に適用した場合、増幅が不十分である場合があった。増幅が不十分であるため、検体内の核酸が微量である場合の検査精度が低下する場合があった。
 本開示は、上記事情に鑑みてなされたものであって、特定の増幅方法に限定されることなく、従来よりも高い検査精度で核酸検査を実現できる核酸検査方法および検査キットを提供することを目的とする。
 本開示の核酸検査方法は、生体から採取した検体に含まれる核酸の中に、検査対象の塩基配列が存在するか否かを検査する核酸検査方法であって、
 検体から核酸を抽出する抽出工程と、
 抽出工程の前、途中および後のいずれかの段階で、検体を含む溶液および核酸が抽出された核酸抽出液のいずれかの液体内の夾雑物を除去する精製工程と、
 核酸抽出液内の塩基配列を増幅する増幅工程と、
 増幅工程の後に、塩基配列の有無を検出する検出工程とを含み、
 抽出工程は、上記検体を、ノニオン系界面活性剤を含む抽出用試薬と接触させる工程であり、
 精製工程は、液体を、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライトと接触させることにより、上記液体内の夾雑物をゼオライトに吸着させる吸着工程を含む。
 本開示の核酸検査方法においては、精製工程は、吸着工程の後に、液体を濾過して液体内からゼオライトを除去する濾過工程を含むことが好ましい。
 本開示の核酸検査方法においては、抽出工程において、抽出用試薬中にゼオライトを添加することにより、抽出工程と精製工程とを並行して行うことが好ましい。
 本開示の核酸検査方法においては、抽出工程の後に、精製工程を行ってもよい。
 本開示の核酸検査方法においては、ノニオン系界面活性剤が、ポリエチレンオキシド、グルカミンおよびベタインのうちの少なくとも1種を含むことが好ましい。
 本開示の核酸検査方法においては、ゼオライトの結晶構造が、フェリエライト、L型およびY型のうちのいずれかであることが好ましい。
 本開示の核酸検査方法においては、ゼオライトのカチオンがNa、K、およびHのいずれかであることが好ましい。
 本開示の核酸検査方法においては、ゼオライトの細孔径が、0.7nmより大きく、1nmより小さいことが好ましい。
 本開示の核酸検査方法においては、ゼオライトのシリコンとアルミニウムとの比Si/Alが、5以上、18以下であることが好ましい。
 本開示の核酸検査方法においては、増幅工程はポリメラーゼ連鎖反応による増幅工程であることが好ましい。
 本開示の検査キットは、生体から採取した検体に含まれる核酸の中に、検査対象の塩基配列が存在するか否かの検査に用いられる検査キットであって、
 ノニオン系界面活性剤を含む抽出用試薬を収容する抽出容器、および
 核酸の増幅に用いられる増幅用試薬を収容する増幅用試薬収容部を含む複数の収容部と、複数の収容部間を接続する複数の流路とを備えたカートリッジ、
を含む核酸検査用の検査キットであって、
 抽出容器およびカートリッジの少なくとも一方に、あるいは、抽出容器に投入可能な態様で、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライトを備えた、検査キットである。
 本開示の検査キットにおいては、核酸抽出液を濾過するフィルタであって、ゼオライトよりも目の細かいフィルタを備えていることが好ましい。
 フィルタは、カートリッジ内に備えられていてもよいし、カートリッジとは別に備えられていてもよい。
 フィルタは、抽出容器中の液体をカートリッジに投入するまでの経路中またはカートリッジの液体の投入口に備えていてもよい。
 カートリッジが、複数の収容部のうちの増幅用試薬収容部とは異なる1つの収容部にゼオライトを収容し、ゼオライトが収容された収容部から増幅用試薬収容部に至る流路中に、フィルタを備えていてもよい。
 本開示の検査キットにおいては、カートリッジが、液体を投入する投入口と、投入口を覆う着脱可能な蓋部と、投入口に対向する位置に設けられた、液体を収容可能な第1収容部と、増幅用試薬を収容する増幅用試薬収容部である第2収容部と、第1収容部と第2収容部とを接続する第1流路と、第2流路を介して第1収容部に一端が接続された第1シリンダであって、他端が外部に開口した第1シリンダと、第3流路を介して第2収容部に一端が接続された第2シリンダであって、他端が外部に開口した第2シリンダと、第1シリンダ内を移動可能に備えられた第1栓と、第2シリンダ内を移動可能に備えられた第2栓とを備え、第1栓および第2栓を外部から押圧して移動させることにより、第1収容部、第2収容部、第1流路、第2流路および第3流路を含む内部空間を加圧可能な容器であって、第1収容部および第2収容部はいずれも複数の収容部の1つであり、第1流路、第2流路および第3流路は、いずれも複数の流路の1つであってもよい。
 本開示の核酸検査方法および検査キットによれば、特定の増幅方法に限定されることなく、従来よりも高い検査精度で核酸検査を実現できる。
一実施形態の検査キット1の概略構成を示す図である。 図1に示すカートリッジ10の平面図である。 図3Aは図2の3A-3A線切断端面、図3Bは図2の3B-3B線切断端面、図3Cは図2の3C-3C線切断端面である。 一実施形態の検査装置100の概略構成を示す図である。 図5Aは検査装置100におけるカートリッジ10と押圧機108との位置関係を示す平面図であり、図5Bは図5Aの5B-5B線断面図である。 核酸検査方法のフローを説明するための図である。 一実施形態の核酸検査方法における抽出工程および精製工程を説明するための図である。 変更例1の核酸検査方法における抽出工程および精製工程を説明するための図である。 変更例2の核酸検査方法のフローを説明するための図である。 設計変更例のカートリッジ11の平面図である。
 以下、本開示の核酸検査方法および検査キットの実施形態について図面を参照して説明する。本開示の核酸検査方法は、生体から採取した検体に含まれる核酸の中に、検査対象の塩基配列が存在するか否かを検査する方法である。まず、一実施形態の核酸検査方法に使用される検査キットおよび検査装置の一例を説明し、その後、一実施形態の核酸検査方法について説明する。
「検査キット」
 図1は、一実施形態の核酸検査方法に使用される検査キット1の概略構成を示す図である。
 検査キット1は、生体から採取した検体に含まれる核酸の中に、検査対象の塩基配列が存在するか否かの検査に用いられる検査キットである。具体的には、インフルエンザあるいは新型コロナウィルスなどの感染症に生体が罹患しているか否かの検査に用いられる。
 検査キット1は、検体採取具2、抽出用試薬3を収容した抽出容器4、ゼオライト6、濾過フィルタ7を含む漏斗8、およびカートリッジ10を含む。
 生体から採取される検体とは、検査の対象の個体、より具体的には人を含む動物などの生体から採取される生物学的試料であり、例えば、血液、血清、血漿、髄液、涙液、汗、尿、便、膿、鼻汁、鼻腔拭い液、咽頭拭い液、鼻腔吸引液、または喀痰等、さらには臓器、組織、粘膜、および皮膚等である。なお、検体を含む溶液とは、検体と溶媒を含んでもよいが、上記検体が液状である場合には、検体そのものであってもよい。また、輸送培地に移した液を検体として用いてもよい。
 検体採取具2は、検体を採取するための用具であり、本例においては、鼻腔拭い液を採取するためのスワブが用いられる。検体採取具2としては、上記検体に応じ適宜の採取具を備えることができる。
 抽出容器4は、検体から核酸を抽出するための抽出用試薬3を収容する。抽出用試薬3と検体とを接触させると検体から核酸が抽出される。一例として、核酸の抽出は、抽出容器4内において抽出用試薬3と検体とを接触させることにより行われる。抽出された核酸を含む抽出用試薬3を以下において核酸抽出液62と呼ぶ(図7参照)。本開示の抽出用試薬3は、界面活性剤としてノニオン系界面活性剤を含むが、アニオン系界面活性剤を含まない。
 ノニオン系界面活性剤としては、ポリエチレンオキシド、グルカミンおよびベタインのうちの少なくとも1種を含むことが好ましい。なお、ノニオン系界面活性剤は、ポリエチレンオキシド、グルカミンおよびベタインのうちの2種以上を含んでいてもよい。抽出用試薬中におけるノニオン系界面活性剤の濃度は、例えば、0.1vol%~5vol%程度であり、0.1vol%~2vol%が好ましい。
 ゼオライト6は、夾雑物を吸着させるために用いられる。ゼオライト6は、多孔性の結晶性アルミノ珪酸塩の総称であり、一般式は、MeO・Al・mSiO・nHOで表される。Meは1価もしくは2価のカチオン(すなわち、陽イオン)であり、mはシリコンアルミニウム比(すなわち、m=Si/Al)である。本実施形態において、ゼオライト6としては、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するものを用いる。ゼオライト6の結晶構造としては、フェリエライト、L型およびY型がより好ましい。ゼオライト6の大きさは、一例として、サブミリオーダーである。
 ゼオライト6において、カチオンMeは1価もしくは2価のカチオンであればよく、例えば、ナトリウムイオン(Na)、カリウムイオン(K)、水素イオン(H)およびアンモニウム(NH )などとすることができる。カチオンMeとしては、Na、K、およびHのいずれかであることが好ましい。
 ゼオライト6の細孔径は、一般に0.2nm~1nmであるが、0.7nmより大きく、1nmより小さいことが好ましい。
 ゼオライト6のシリコンとアルミニウムとの比mは、5以上、18以下であることが好ましい。
 夾雑物としては、生体から検体を採取する際に検体中に含まれる、生体由来の夾雑物、および、核酸抽出時に生じる細胞壁などの夾雑物等がある。例えば、検体が鼻腔スワブである場合、鼻腔で分泌されるタンパク質等が夾雑物として挙げられる。夾雑物には、核酸増幅を阻害するものがあり、ゼオライト6は、少なくとも一種の核酸増幅を阻害する夾雑物を吸着する。
 濾過フィルタ7は、上記ゼオライト6が添加された溶液からゼオライト6を分離するフィルタであって、ゼオライト6よりも目の細かいフィルタである。ここで、「ゼオライト6よりも目の細かいフィルタ」とは、ゼオライト6を通過させず、後述の核酸抽出液を透過する性能を有することを意味し、具体的には、ゼオライト6の粒形よりも小さい孔径のフィルタを意味する。
 濾過フィルタ7の材質としては、セルロースアセテート、ニトロセルロ-ス、セルロース混合エステル、ポリエーテルスルホン、PTFE(polytetrafluoroethylene)、PVDF(Poly Vinylidene DiFluoride)、ナイロン、ポリアミド、ポリカーボネート、ポリプロピレン、ポリ塩化ビニリデン、およびグラスファイバなどが挙げられる。濾過フィルタ7は、一例として、目の大きさ(孔径)が概ね50nmから10μmの精密濾過膜である。精密濾過膜としては、有形物を表面で捕捉するメンブレンフィルタ、および、有形物をフィルタ内部で捕捉するプレフィルタ(例えば、ろ紙又はデプスフィルタ)等があり、用途に応じて適宜選択される。
 漏斗8は、抽出容器4中の核酸抽出液62(図7参照)をカートリッジ10に投入するために用いられる。漏斗8は、注入開口8aと、排出開口8bとを備える。漏斗8は、注入開口8aから排出開口8bに向かって徐々に開口径が小さくなる形状を有している。漏斗8は、抽出容器4の開口部4aと注入開口8aとを嵌合させて抽出容器4に取り付けられる。そして、抽出容器4中の核酸抽出液62をカートリッジ10に投入する場合に、抽出容器4に取り付けられた漏斗8の注入開口8aが、カートリッジ10の投入口12(図3参照)に挿入される。
 本例において、濾過フィルタ7は、漏斗8の注入開口8aから排出開口8bの間に備えられている。従って、注入開口8aから注入された核酸抽出液62は、濾過フィルタ7を通過して排出開口8bから排出される。このように、本例において、濾過フィルタ7は、カートリッジ10とは別に備えられている。
 カートリッジ10の詳細について説明する。図2は、カートリッジ10の平面図である。図3の図3Aは、図2の3A-3A線切断端面、図3Bは図2の3B-3B線切断端面、図3Cは図2の3C-3C線切断端面をそれぞれ示す。カートリッジ10は、例えば、クレジットカード程度の平面サイズと1cm程度の厚みを有する。
 図1及び図3に示すように、カートリッジ10は、流路および収容部を含む流路構造の一部を構成する凹部および孔部が形成された本体部材10Aと、流路の底面を構成する底部材10Bとから構成されている。
 本体部材10Aは、公知の樹脂成型プラスチック材料であれば、特に制限なく利用できるが、耐熱性および透明性の観点から、ポリカーボネート、ポリプロピレン、シクロオレフィンあるいはシリコーン樹脂が好ましい。
 底部材10Bは、例えば、薄板あるいはフィルムにより形成されている。底部材10Bとしては、公知の樹脂成型プラスチック材料であれば、特に制限なく利用できるが、本体部材10Aとの密着性の観点から、本体部材10Aと同じ材質が好ましい。
 図1~図3に示すように、カートリッジ10は、投入口12と、蓋部14と、第1収容部16と、第2収容部18と、第1流路20と、第1シリンダ31と、第2シリンダ32と、第1栓33と、第2栓34とを備える。また、カートリッジ10は第2流路24および第3流路26をさらに備える。
 投入口12は、液体の一例である核酸抽出液62(図7参照)を投入するための開口である。蓋部14は投入口12を覆い、投入口12の開口に着脱可能な蓋部である。本例においては、蓋部14は投入口12を形成する筒状部15に螺合可能に形成されている。
 なお、以下において、投入口12が設けられている面をカートリッジ10の上面、底部材10B側をカートリッジ10の下面と称する。ここで、本体部材10Aの上面はカートリッジ10の上面と同一であり、本体部材10Aの下面は底部材10Bの上面と接する面であり、底部材10Bの下面はカートリッジ10の下面と同一である。
 第1収容部16は、投入口12に対向する位置に設けられており、投入口12から滴下された核酸抽出液62を収容する。第1収容部16の形状に特に制限はなく、柱状、錐状、錐台状など任意に選択することができる。
 本カートリッジ10においては、本体部材10Aを厚み方向に貫き、本体部材10Aの表面から突出して形成された筒状部15の開口によって、投入口12が構成されており、筒状部15の本体部材10Aの内部側部分と底部材10Bとによって、第1収容部16が形成されている。
 第2収容部18は、液体を収容可能な収容部であり、核酸抽出液62(図7参照)と試薬42とを反応させる反応部として機能する。試薬42としては、検査対象の塩基配列を増幅するための増幅用試薬、および検査対象の塩基配列を検出するためのプローブなどが含まれる。第2収容部18は本体部材10Aの下面に設けられた凹部と、底部材10Bとによって形成されている。
 本例において、試薬42は、予め第2収容部18に収容されている。但し、試薬42は、第1収容部16から第2収容部18までの間に備えられていればよく、必ずしも、第2収容部18に収容されていなくてもよい。本例において、第2収容部18が増幅用試薬収容部を構成する。増幅用試薬としては、プライマー、ポリメラーゼ、dNTPなどの基質および塩などが挙げられる。さらに、還元剤などの添加材やバッファなどを含んでいてもよい。増幅対象の核酸がRNAである場合、逆転写プライマー、逆転写酵素をさらに含んでいてもよい。試薬42は増幅方法および検出方法に応じて適宜選択される。例えば、蛍光法により検査対象の塩基配列の検出を行う場合には、試薬42が増幅用試薬と蛍光プローブを含み得る。封入される試薬形態としては特に制限はなく、液体、固体いずれの試薬も用いられる。例えば、液体試薬を凍結乾燥して作製した粉体状の試薬や、ペレット状や粒状に成型した試薬を封入してもよい。
 第1流路20は、第1収容部16と第2収容部18とを接続する。第1収容部16に投入された核酸抽出液62は第1流路20を通って第2収容部18に送液される。第1流路20は、本体部材10Aの下面に第1収容部16から第2収容部18に延びる線状の凹部と、底部材10Bの上面とによって形成されている。なお、第2流路24および第3流路26も同様に、本体部材10Aの下面に形成された線状の凹部と底部材10Bの上面とによって形成されている(図3参照)。
 第1シリンダ31は、第2流路24を介して第1収容部16に接続された第1シリンダ31であって、一端31bが第2流路24に連通し、他端31aが外部に開口するように設けられている。
 第2シリンダ32は、第3流路26を介して第2収容部18に接続された第2シリンダ32であって、一端32bが第3流路26に連通し、他端32aが外部に開口するように設けられている。
 第1シリンダ31および第2シリンダ32は、本体部材10Aの面方向に形成された筒状部であり、本体部材10Aの端から内部側に向かって形成されている。
 第1栓33は、第1シリンダ31内を移動可能に備えられている。第2栓34は、第2シリンダ32内を移動可能に備えられている。第1栓33および第2栓34は、一例としてゴム栓であり、第1シリンダ31および第2シリンダ32内のそれぞれにおいて、外気を遮断する機能を有する。
 第1シリンダ31は外部に開口する他端31aから、後述する押圧機の第1押圧部が挿入可能となっており、第1押圧部によって、第1栓33を第1シリンダ31内において内部空間側に押圧可能である。同様に、第2シリンダ32は外部に開口する他端32aから、後述する押圧機の第2押圧部が挿入可能となっており、第2押圧部によって、第2栓34を第2シリンダ32において内部空間側に押圧可能である。押圧機によって、押圧していない状態では、内部空間は大気圧となっている。
 カートリッジ10は、第1栓33および第2栓34を外部から押圧して移動させることにより、第1収容部16、第2収容部18、第1流路20、第2流路24および第3流路26を含む内部空間を加圧可能に構成されている。核酸抽出液62および試薬42中の気体が泡となって発生し、核酸増幅を阻害する可能性がある。第2収容部18内において、核酸抽出液62と試薬42とを混合した後に、第2収容部18内の液体を加熱する際に、内部空間を加圧することで、発泡を抑制することができ、発泡により核酸増幅が阻害されるのを抑制することができる。そのため、第2収容部18における核酸増幅工程を阻害されることなく進行させることができるので、増幅時間の遅延を生じたり、増幅不足を生じたりすることなく、検査精度を向上させることができる。
 第1収容部16に核酸抽出液62を収容し、蓋部14により投入口12を閉じた場合、カートリッジ10は、第1栓33および第2栓34によって、内部空間は密閉されている。図2に示すように、送液前の初期状態において、第1栓33は、第1シリンダ31の長さ方向の中心よりも外部に開口する他端31a側に配置されている。他方、第2栓34は、第2シリンダ32の長さ方向の中心よりも一端32b側に配置されている。この状態で、図2に示すように、第1シリンダ31内において第1栓33を外部から押圧(矢印P1)して破線矢印A1で示すように内部空間側に移動させると、内部空間が加圧されることにより、第2シリンダ32内の第2栓34が連動して破線矢印A2で示すように内部空間側から外部側へと押し出されるように移動する。第1栓33の移動に連動して第2栓34が移動することにより内部空間の圧力が調整され、第1収容部16に収容されている核酸抽出液62を、第2収容部18へと送液(矢印B)することができる。第1栓33の移動に連動して第2栓34が移動可能であるので、弱い押圧で送液が可能である。なお、第1栓33、第2栓34の移動を独立に制御して送液してもよい。
「検査装置」
 次に、上記カートリッジ10が装填され、後述する増幅工程および検出工程が実施される、一例の検査装置100について説明する。
 図4は、検査装置100の概略構成を示す図である。本検査装置100は、押圧機108と、第1加熱部112と、第2加熱部114と、検出部120と、モニタ130とを備える。また、検査装置100は、カートリッジ10を着脱可能に収容する収容部を備える。図5Aは、検査装置100におけるカートリッジ10と押圧機108との位置関係を示す平面図である。また、図5Bは、検査装置100におけるカートリッジ10と検出部120との位置関係を示す図5Aの5B-5B線断面図である。
 押圧機108は、第1押込み棒101を備えた第1押圧部102と、第2押込み棒103を備えた第2押圧部104と、第1押圧部102および第2押圧部104を制御する押圧制御ユニット106を備える。第1押圧部102および第2押圧部104は、ステッピングモータあるいはソレノイドなどを用いたアクチュエータで第1押込み棒101および第2押込み棒103を押し込んだり、引き出したりすることができる。アクチュエータは空気圧などの動力を用いた構成でもよい。
 第1押圧部102は、カートリッジ10が設置された状態で第1押込み棒101が第1シリンダ31の外部に開口する他端31aから第1シリンダ31内に挿入可能な位置に配置される。第1押込み棒101によって、第1シリンダ31内で第1栓33を内部空間側に押圧して移動させることができる。
 第2押圧部104は、カートリッジ10が設置された状態で第2押込み棒103が第2シリンダ32の外部に開口する他端32aから第2シリンダ32内に挿入可能な位置に配置される。第2押込み棒103によって、第2シリンダ32内で第2栓34を内部空間側に押圧して移動させることができる。
 カートリッジ10の第1収容部16に核酸抽出液62が投入されて、蓋部14を閉じることによって、内部空間が密閉する。このように、内部空間が密閉された状態で、第1栓33を第1押圧部102によって押圧して内部空間側に移動させることにより、カートリッジ10の第1収容部18に収容された核酸抽出液62を第2収容部18に送液することができる。
 また、第1押圧部102で第1栓33を押圧し、かつ、第2押圧部104で第2栓34を押圧することで、カートリッジ10の内部空間を加圧することができる。
 第1加熱部112は、カートリッジ10の第2収容部18の底面と接触する位置に設けられている。第1加熱部112は、第2収容部18に収容された液体を加熱する。ここで、第2収容部18に収容される液体は、核酸抽出液62と試薬42との混合液である。第1加熱部112は、核酸抽出液62と試薬42との混合液を加熱して、核酸増幅を促進させる。
 第2加熱部114は、カートリッジ10の第1収容部16の底面と接触する位置に設けられている。第2加熱部114は、第1収容部16に収容された液体を加熱する。ここで、第1収容部16に収容される液体は、核酸抽出液62である。第2加熱部114は、前処理のために核酸抽出液62を加熱する。なお、検査装置100は、核酸抽出液62の前処理のための加熱が不要な場合には、第2加熱部114を備えていなくてもよい。
 第1加熱部112は、ペルチェ素子などを備え温調可能とされており、増幅工程における温度サイクルを実施する。他方、第2加熱部114は、第1加熱部112のような温度サイクルは不要であり、例えば、ヒーターから構成される。第1加熱部112および第2加熱部114それぞれに用いられる加熱機構は、公知の加熱機構を用いることができ、特に制限されない。
 検出部120は、第2収容部18において、核酸抽出液62中に検出対象物が含まれているか否かを検出する。検出部120は、励起光源122と、波長選択フィルタ123と、光検出器124とを備える。検出部120は、カートリッジ10の第2収容部18の上方に配置されている。励起光源122は、波長選択フィルタ123を介して、特定の波長の励起光L1を第2収容部18内に照射する。光検出器124は、励起光L1によって励起されて蛍光プローブから生じる蛍光L2を検出する。励起光L1は蛍光プローブの励起波長に応じて選択される。また、必要に応じて、強度や光量を調整するフィルタ、励起光L1を収束したり検出プローブ由来の蛍光L2を光検出器124へ集光するためのレンズ、あるいは光学系などを含んでもよい。
 励起光源122としては、LED(light emitting diode)あるいはレーザなどが用いられる。波長選択フィルタ123は、励起光源122から発せられた光のうちプローブの励起波長に応じた波長のみを透過するフィルタである。光検出器124としては、例えばフォトダイオードあるいは光電子増倍管、またはカメラなどの撮像機器などが適用される。
 モニタ130は、例えばタッチパネルディスプレイであり、タッチパネル操作で測定をスタートさせたり、検査結果を表示したりする。
「核酸検査方法」
 本開示の一実施形態の核酸検査方法を説明する。一実施形態の核酸検査方法は、図6に示すように、検体を採取する検体採取工程ST1と、抽出工程ST2と、精製工程ST3と、増幅工程ST4と、検査工程ST5とを含む。
 検体採取工程ST1は、被検者から検体を採取する工程である。なお、検体採取は、一連のフローとは別途に実施されてもよい。検体は、被検者とは異なる採取者が被検者の検体を採取してもよいし、被検者自身が採取してもよい。
 抽出工程ST2は、検体から核酸を抽出する工程である。ここでは、抽出工程ST2においては、検体60を、ノニオン系界面活性剤を含む抽出用試薬3と接触させる。
 精製工程ST3は、検体60を含む溶液および核酸が抽出された核酸抽出液62(図6参照)のいずれかの液体内の夾雑物66(図7参照)を除去する工程である。詳細には、検体60を含む溶液および核酸抽出液62のいずれかの液体を、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライト6と接触させる。精製工程は、このように、検体60を含む溶液および核酸抽出液62のいずれかの液体をゼオライト6と接触させることにより、夾雑物66をゼオライトに吸着させる吸着工程を含む。精製工程ST3は、図6では抽出工程ST2の後工程として示しているが、抽出工程ST2の前、途中および後のいずれかの段階でなされればよい。
 増幅工程ST4は、核酸抽出液62内において、検査対象の塩基配列を増幅する工程である。
 検査工程ST5は、増幅工程ST4の後に、検査対象の塩基配列の有無を検査する工程である。
 以下に、検査キット1および検査装置100を用いた、より具体的な核酸検査方法を説明する。本検査方法では、検体採取工程ST1、抽出工程ST2および精製工程ST3を、カートリッジ10外部で行い、増幅工程ST4および検査工程ST5を、カートリッジ10を用いて実施する。
 まず、カートリッジ10外部で実施される精製工程ST3までの手順を、図7を参照して説明する。
 検体採取具2を用いて、生体から検体60が採取される(採取工程ST1)。具体的には、被検者の鼻腔、咽頭、口腔内部あるいは患部から検体採取具2を用いて検体が採取される。もしくは、鼻腔、咽頭、口腔内部の洗浄液、唾液、尿あるいは血液などの体液が検体として採取される。本例においては、検体採取具2としてスワブが用いられ、先端の綿部を鼻腔内に挿入することにより鼻拭い液が検体60として採取される。
 次に、検体60から核酸64を抽出する抽出工程ST2が実施される。抽出工程ST2において、検体採取具2の検体60が付着している綿部を抽出用試薬3中に浸漬させる。検体60を抽出用試薬3中に浸漬させることにより、検体60を、ノニオン系界面活性剤を含む抽出用試薬3と接触させる。検体60は抽出用試薬3中に混合される。抽出用試薬3の作用によって、検体60内の細胞が溶解されて核酸64が抽出用試薬3中に溶出される。これにより、核酸抽出液62が得られる。核酸抽出液62中には、核酸64の他、核酸64の増幅を阻害する夾雑物66が含まれている。夾雑物66には、検体60に含まれている生体由来の夾雑物および、核酸抽出時に生じる細胞壁等の夾雑物が含まれる。
 次に、精製工程ST3を実施する。精製工程ST3は、吸着工程ST31と濾過工程ST32を含む。まず、抽出容器4の核酸抽出液62中にゼオライト6を添加し、核酸抽出液62中の夾雑物66をゼオライト6に吸着させる吸着工程ST31を実施する。吸着工程ST31では、核酸抽出液62中にゼオライト6を添加し、混合させた後、一定時間(例えば、10分)静置して、夾雑物66をゼオライト6に吸着させる。
 その後、精製工程ST3において、核酸抽出液62を濾過して核酸抽出液62中のゼオライト6(およびゼオライト6に吸着した夾雑物66)を除去する濾過工程ST32を実施する。抽出容器4の開口部4aに漏斗8の注入開口8aを嵌め合わせる。これによって、漏斗8に備えられている濾過フィルタ7が核酸抽出液62の上方に設置される。抽出容器4の開口部4aに漏斗8を嵌めた状態で、抽出容器4の天地を逆にすることで、核酸抽出液62は、濾過フィルタ7により濾過されて漏斗8の排出開口8bから排出される。既述の通り、濾過フィルタ7の目(すなわち孔径)は、ゼオライト6よりも小さいため、ゼオライト6は濾過フィルタ7を通過しない。したがって、ゼオライト6に吸着した夾雑物66もまた、濾過フィルタ7を通過することができない。ゼオライト6に吸着していない溶液および濾過フィルタ7の目よりも小さい核酸64は濾過フィルタ7を通過して、排出開口8bから排出される。本例では、漏斗8の排出開口8bから排出された精製済みの核酸抽出液62を、後述するカートリッジ10の投入口12からカートリッジ10に投入する。
 カートリッジ10に対して精製済みの核酸抽出液62が投入された後、カートリッジ10は、検査装置100に装填され、検査装置100内において、増幅工程および検査工程が実施される。
(増幅工程)
 第1収容部16に収容された核酸抽出液62を、第2加熱部114を用いて加熱する。加熱により、制限酵素を不活性化して抽出した核酸の分解を抑制することができる。加熱温度としては、核酸に悪影響を及ぼさない温度範囲であればよいが、例えば、50℃から95℃程度が好ましい。
 第1収容部16内において前処理としての加熱処理がなされた核酸抽出液62を、第2収容部18に向けて送液する。第1シリンダ31の外部に開口する他端31aから第1押圧部102の第1押込み棒101を挿入して、第1栓33をカートリッジ10の内部空間側に押圧して移動させる。これによって、第1収容部16に収容されている核酸抽出液62を第2収容部18へと送液することができる。この際、第1栓33が押し込まれて内部空間が加圧されることにより、第2シリンダ32内の第2栓34が外部側に向かって移動することにより内部空間内の圧力が調整され、弱い押圧で送液することができる。
 核酸抽出液62は、第1収容部16から流路20を経て第2収容部18に送液される。第2収容部18には試薬42が備えられており、第2収容部18に核酸抽出液62が流入することで、試薬42が溶解されて、核酸抽出液62と試薬42が混合される。
 第2収容部18に核酸抽出液62と試薬42の混合液が送液された後、第2シリンダ32の外部に開口する他端32aから第2押圧部104の第2押込み棒103を挿入して、第2栓34を押圧して、内部空間を加圧する。この加圧状態で、第1加熱部112により第2収容部18内の混合液を加熱し、検査対象の塩基配列を増幅させる。なお、増幅方法は限定されるものではないが、一例として、RT(Reverse Transcription)-PCR法、あるいはPCR法を用いる。PCR法を用いる場合、二本鎖DNAを高温で一本鎖DNAに解離させる工程(熱変性工程)、その後温度を下げてプライマーを一本鎖DNAに結合させる工程(アニーリング工程)、および一本鎖DNAを鋳型として、ポリメラーゼにより、新たに二本鎖DNAを合成する工程(伸長工程)を繰り返す。熱変性工程、アニーリング工程および伸長工程の温度サイクルの一例として、94℃で1分、50~60℃で1分、72℃で1~5分を1サイクルとして、20~50回繰り返すものが挙げられる。また、アニーリング工程と伸長工程を1つの温度で行ってもよい。このような温度サイクルの一例としては、例えば、98℃で1分、60℃で1分を1サイクルとして、20~50回繰り返すものが挙げられる。増幅工程における温度サイクルの温度、時間は特に制限はなく、ポリメラーゼやプライマーの性能により任意に選択される。
(検出工程)
 上記の温度サイクルの1サイクルごとに蛍光検出を行いリアルタイムに増幅状況をモニタリングする。すなわち、本例においては、増幅工程と検出工程とを並行して実施する。蛍光検出の結果はモニタ130に表示する。
 核酸抽出液62内に検査対象の塩基配列が存在した場合、増幅工程でその塩基配列が増幅され、この検査対象の塩基配列に標識される蛍光プローブに励起光が照射されることにより、蛍光が検出される。他方、核酸抽出液62内に検査対象の塩基配列が存在しない場合には、励起光を照射しても蛍光が検出されない。これによって、検査対象の塩基配列の有無を判定することができる。
 以上の通り、本実施形態の核酸検査方法では、検体60を、ノニオン系界面活性剤を含む抽出用試薬3と接触させる抽出工程と、核酸抽出液62中の夾雑物66を除去する精製工程とを含む。また、精製工程は、検体60を含む液体もしくは核酸が抽出された核酸抽出液62のいずれかの液体を、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライトと接触させることにより、液体内の夾雑物66をゼオライト6に吸着させる吸着工程を含む。
 本発明者は、国際公開第2009/060847号に記載の手法を用い、アニオン系の界面活性剤を用いて核酸抽出を行った後に、LAMP法に代えてPCR法を用いて増幅を行うと、検査対象の塩基配列の増幅が十分に実現できない場合があることを見出した。LAMP法の一般的な反応温度は65℃程度であるのに対し、PCR法では、一般に90℃以上に加熱する工程を含む。そのため、PCR法では、増幅用試薬に含まれる酵素として、高い耐熱性を有する酵素が用いられる。アニオン系の界面活性剤を用いた場合、PCR増幅において用いられる高い耐熱性を有する酵素の活性など何らかの機能が抑制されて核酸増幅が阻害されていると推測される。これに対し、本実施形態のように、ノニオン系の界面活性剤を含む核酸抽出液を用いて核酸抽出を行うことにより、PCR増幅の阻害を抑制することができるので、検査対象の塩基配列の増幅を促進でき、高い検査精度を実現できる。
 なお、PCR増幅に限らず、高い耐熱性を有する酵素を用いた増幅法において、ノニオン系の界面活性剤を用いることにより、同様の効果を得ることが可能である。一方で、本実施形態の核酸検査方法は、LAMP法等の比較的低い温度で増幅処理を行う増幅法を用いる場合にも適応することができ、増幅法は限定されない。
 また、吸着工程において、液体(上記例では、核酸抽出液62)内の夾雑物66を特定の結晶構造を有するゼオライト6に吸着させるので、核酸抽出液62からゼオライト6を除去することにより、ゼオライト6に吸着した夾雑物66を核酸抽出液62から除去することができる。増幅工程における、検査対象の塩基配列の増幅を阻害する夾雑物を除去することができるので、増幅工程において、検査対象の塩基配列の増幅を促進でき、高い検査精度を実現できる。
 このように、本核酸検査方法は、ノニオン系の界面活性剤を用いた抽出工程、および、特定の結晶構造を有するゼオライト6に夾雑物を吸着させて、夾雑物を除去する精製工程を含む。そして、このような抽出工程および精製工程を経て得られた核酸抽出液を用いて、増幅工程が実施される。したがって、増幅工程における検査対象の塩基配列の増幅の阻害を効果的に抑制することができ、特定の増幅方法に限定されることなく、従来よりも高い検査精度で核酸検査を実現できる。
 上記実施形態においては、増幅法としてPCR法を用いる場合について説明したが、増幅法はPCR法に限らない。増幅法としては、PCR法の他、LAMP法、NASBA(Nucleic Acid Sequence-Based Amplification)法、TRC(Transcription Reverse-transcription Concerted reaction)法、RPA(Recombinase Polymerase Amplification)法、NEAR(Nicking Enzyme Amplification Reaction)法、SDA(Strand Displacement Amplification)法あるいはHDA(Helicase-dependent Amplification)法などの公知の増幅法を用いることができる。
 増幅法において用いられる増幅用試薬に含まれる酵素としては、RNAを鋳型として相補的DNA(cDNA)を合成する逆転写酵素とDNAやcDNAを増幅するDNAポリメラーゼがあり、増幅する対象、増幅法により適宜選択される。
 レトロウイルスなどのRNAウイルスを対象として増幅を行う場合は、増幅処理前に逆転写酵素を用いてRNAからcDNAへの変換を行った後にcDNAを増幅する。cDNAの増幅には、PCR法を用いるRT-PCR法や、LAMP法を用いるRT-LAMP法などを行う。一方、病原微生物などの菌からDNAを抽出し増幅を行う場合は、逆転写を行わずDNAを増幅する。
 逆転写酵素としては、AMV(Avian Myeloblastosis Virus)逆転写酵素やMMLV(Moloney Murine Leukemia Virus)逆転写酵素などがあり、逆転写効率の向上や合成されるcDNAの鎖長を伸ばすために変異を導入し、RNase(ribonuclease)H活性を除くこともできる。
 DNAポリメラーゼとしては、TaqDNAポリメラーゼ、VentDNAポリメラーゼ、DeepVentDNAポリメラーゼ、KODDNAポリメラーゼ、TTxDNAポリメラーゼ、TthDNAポリメラーゼ、PfuDNAポリメラーゼなどの耐熱性DNAポリメラーゼや、BsuDNAポリメラーゼ、BstDNAポリメラーゼ、E.coliDNAポリメラーゼなどがある。
 また、TthDNAポリメラーゼやTTxDNAポリメラーゼのように、1つの酵素で逆転写および増幅が可能な酵素を使用してもよい。
 さらに、これらの酵素に改変を施した酵素や、抗体を結合させて室温や逆転写工程における活性を抑えた酵素を使用しても良い。
 既に述べた通り、本開示の核酸検査方法は、PCR法などで用いられる高い耐熱性を有する酵素を用いた場合に、顕著な効果を奏する。従って、増幅工程において、PCR法を用いた場合、検査対象の塩基配列の増幅を促進でき、検査精度の向上効果が高い。
 本実施形態の核酸検査方法においては、精製工程に、吸着工程の後に、液体を濾過して液体(ここでは、核酸抽出液62)内からゼオライトを除去する濾過工程を含む。液体からゼオライト6(および夾雑物66)を分離する方法として、濾過を用いることで、簡便に夾雑物66を除去できる。
 なお、液体内からゼオライト6を分離する方法としては、遠心分離などを用いることも可能である。
 抽出用試薬3が、ノニオン系界面活性剤として、ポリエチレンオキシド、グルカミンおよびベタインのうちの少なくとも1種を含む場合、増幅阻害を抑制する高い効果が得られる。これらのうち、ノニオン系界面活性剤として、ポリエチレンオキシドを含む抽出用試薬を用いた場合、増幅阻害を抑制する最も高い効果が得られる(後記表1に示す実施例参照)。
 ゼオライト6の結晶構造が、フェリエライト、L型およびY型のうちのいずれかである場合、結晶構造がモルデナイトであるゼオライトを用いた場合よりも、夾雑物の除去効果が高い(後記表1に実施例参照)。
 ゼオライト6のカチオンがNa、K、およびHのいずれかである場合、HN をカチオンとして用いた場合より、夾雑物66の吸着性が高い。したがって、夾雑物66の除去効果が高く、増幅阻害を抑制する効果が高い(後記表1に示す実施例参照)。
 ゼオライト6の細孔径が、0.7nmより大きく、1nmより小さい場合、夾雑物66を吸着する高い吸着性が得られる。(後記表示1に示す実施例参照)。
 ゼオライト6のシリコンとアルミニウムの比Si/Alが、5以上、18以下である場合、夾雑物66の吸着性が高い。したがって、夾雑物66の除去効果が高く、増幅阻害を抑制する効果が高い(後記表1に示す実施例参照)
 上記実施形態の検査キット1は、ノニオン系界面活性剤を含む抽出用試薬3を収容する抽出容器4、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライト6、およびカートリッジ10を備えている。そして、カートリッジ10は、核酸64の増幅に用いられる増幅用試薬(ここでは、増幅用試薬を含む試薬42)を収容する増幅用試薬収容部(ここでは、第2収容部18)を含む複数の収容部16、18と、複数の収容部16、18間を接続する流路20を含む複数の流路20、24、26とを備える。本構成の検査キット1を用いれば、本開示の核酸検査方法を容易に実現することができる。
 検査キット1において、ゼオライト6は、抽出容器4に投入可能な態様で備えられている。しかし、ゼオライト6は抽出容器4およびカートリッジ10の少なくとも一方に備えられていてもよい。
 上記実施形態の検査キット1においては、核酸抽出液62を濾過するフィルタであって、ゼオライト6よりも目の細かい濾過フィルタ7を備えている。このような濾過フィルタ7を備えることにより、ゼオライト6に吸着した夾雑物66を核酸抽出液62から効率よく分離することができる。
 検査キット1においては、濾過フィルタ7はカートリッジ10とは別に備えられており、具体的には、漏斗8に備えられている。濾過フィルタ7は、抽出容器4中の液体である核酸抽出液62をカートリッジ10に投入するまでの経路中に備えられていればよく、漏斗8に備えられた態様に限らない。また、濾過フィルタ7はカートリッジ10内に備えられていてもよい。例えば、濾過フィルタ7は、カートリッジ10の投入口12に備えられ、投入口12で濾過された核酸抽出液62がカートリッジ10の第1収容部16に供給されるように構成されていてもよい。
 検査キット1は、漏斗8を備えることにより、核酸抽出液62を、抽出容器4からカートリッジ10へ簡便に投入することができる。しかし、検査キット1は漏斗8を備えていなくてもよい。検査キット1が、漏斗8を備えていない場合、ピペットなどを用いて抽出容器4から核酸抽出液62を吸い取り、核酸抽出液62を投入口12からカートリッジ10に投入してもよい。
 上記実施形態の核酸検査方法においては、図6および図7に示したように、抽出工程の後に精製工程を実施する。しかし、既述の通り、精製工程は、抽出工程の前、途中および後のいずれかの段階で実施すればよい。
 例えば、図8に示すように、採取工程ST11の後、抽出工程および吸着工程を並行して実施し(工程ST12)、その後、濾過工程ST13を実施してもよい。
 この場合、抽出容器4の抽出用試薬3中に予めゼオライト6を添加しておく。ゼオライト6が添加された抽出用試薬3中に、検体採取具2の検体60が付着している綿部を浸漬させる。これにより、検体60が抽出用試薬3中に溶出され、抽出用試薬3の作用によって、細胞が溶解されて核酸64が溶出される。抽出用試薬3にはゼオライト6が添加されているので、抽出工程と並行して、検体60に含まれる夾雑物66および細胞が溶解される際に生じる夾雑物66をゼオライト6に吸着させる。
 その後、濾過工程ST13を経て精製済みの核酸抽出液62をカートリッジ10に投入する。
 工程ST12において、抽出工程と、吸着工程とを並行して実施することにより、抽出工程の後に精製工程を実施する場合と比較して、抽出工程および精製工程に要する時間を短縮することができる。
 なお、このように、抽出工程と吸着工程とを並行して実施する場合には、検査キット1において、ゼオライト6が予め抽出容器4中に備えられていてもよい。
 また、図9に示すように、採取工程ST21の後、抽出工程ST23を実施する前に、精製工程ST22を実施してもよい。
 この場合、精製工程ST22においては、吸着工程ST221および濾過工程ST222がこの順に実施される。
 吸着工程ST221において、検体採取具2で採取された検体60はバッファ液等の溶液中に溶出され、検体60を含むバッファ液中にゼオライト6が添加される。検体60に含まれる夾雑物66はバッファ液中においてゼオライト6に吸着される。
 濾過工程ST222においては、吸着工程後のバッファ液を、濾過フィルタ7を用いて濾過する。
 その後、抽出工程ST23として、濾過されたバッファ液中に抽出用試薬3を添加し、核酸抽出を行う。
 このように、抽出工程ST23の前に精製工程ST22を実施する場合、ゼオライト6に吸着して除去できる夾雑物66は、生体由来の夾雑物である。抽出工程ST23を経ていないため、核酸抽出時に生じる夾雑物は吸着工程ST22の際には発生していない。そのため、抽出工程ST23の後に得られる核酸抽出液62中には、核酸抽出時に生じる夾雑物が含まれ、そのような夾雑物を含む状態で増幅工程に供される。しかしながら、増幅工程において、核酸64の増幅を阻害する主たる夾雑物66は生体由来の夾雑物であるため、抽出工程ST23の前に精製工程ST22を実施しても、増幅阻害を抑制する効果を得ることができる。
 但し、図6~図9に示したように、精製工程は、抽出工程の後、もしくは途中で実施することが好ましい。精製工程において、抽出工程において生じた夾雑物66も除去可能であるので、増幅阻害を抑制する効果が高い。
「カートリッジの変形例」
 図10は、変形例のカートリッジ11を模式的に示す平面図である。図1に示すカートリッジ10と同様の構成要素には同一符号を付して、詳細な説明を省略する。
 カートリッジ11は、第1収容部16と第2収容部18とを接続する第1流路20の途中に精製チャンバ50を備えている。第1流路20は第1収容部16と精製チャンバ50とを接続する第1流路第1部20aと、精製チャンバ50と第2収容部18とを接続する第1流路第2部20bとから構成されている。
 精製チャンバ50は、核酸抽出液62から夾雑物66を除去するための精製工程が実施されるチャンバである。本例において、精製チャンバ50内にゼオライト6が備えられている。すなわち、ゼオライト6は、カートリッジ11内に備えられている。そして、精製チャンバ50の第1流路第2部20bと接続する下流端に濾過フィルタ7が備えられている。
 図1に示した検査キット1において、漏斗8に濾過フィルタ7が備えられているが、本例においては、精製チャンバ50内に濾過フィルタ7が備えられている。本カートリッジ11を用いた場合、漏斗8に濾過フィルタ7は不要である。
 図1に示すカートリッジ10を用いた場合、精製工程は、カートリッジ10に核酸抽出液62を添加する前に実施され、カートリッジ10には、精製済みの核酸抽出液62が投入される。これに対し、本カートリッジ11を備えた検査キットを用いる場合、抽出工程のみがカートリッジ11外で実施され、精製工程、増幅工程および検出工程がカートリッジ11内で実施される。
 精製されていない核酸抽出液62がカートリッジ11に投入され、核酸抽出液62は、第1収容部16から第1流路第1部20aを経て精製チャンバ50に送液される。精製チャンバ50において核酸抽出液62は、ゼオライト6と混合され、核酸抽出液62中に夾雑物66がゼオライト6に吸着される。その後、核酸抽出液62は、濾過フィルタ7および第1流路第2部20bを介して第2収容部18に送液される。濾過フィルタ7において、核酸抽出液62は濾過され、ゼオライト6およびゼオライト6に吸着した夾雑物66は精製チャンバ50内に残され、精製された核酸抽出液62が第2収容部18に送液される。その後の増幅工程および検出工程は、カートリッジ10を用いた場合と同様である。
 変形例のカートリッジ11を用いた場合にも、ノニオン系の界面活性剤を用いた抽出工程、および、特定の結晶構造を有するゼオライト6に夾雑物を吸着させて、夾雑物を除去する精製工程を含む核酸検査方法を実施することができる。したがって、増幅工程における検査対象の塩基配列の増幅の阻害を効果的に抑制することができ、特定の増幅方法に限定されることなく、従来よりも高い検査精度で核酸検査を実現できる。
 既述の通り、カートリッジ11は、精製チャンバ50を備え、カートリッジ11内にゼオライト6および濾過フィルタ7を備えている。具体的には、カートリッジ11は、増幅用試薬収容部である第2収容部18とは異なる1つの収容部として、精製チャンバ50を備え、精製チャンバ50にゼオライト6を収容している。そして、精製チャンバ50から第2収容部18に至る流路中である、精製チャンバ50の端部に濾過フィルタ7を備えている。
 変形例のカートリッジ11によれば、精製工程をカートリッジ11内で実施できるので、検査を実施するユーザの手技による作業を少なくして、負担を軽減することができる。
 以下、本開示の技術のより具体的な実施例および比較例について説明する。
 実施例および比較例では、核酸抽出工程において用いられる核酸抽出用試薬に含まれる界面活性剤、および、精製工程において夾雑物を吸着させる吸着剤の組み合わせを変化させた。表1および表2に示す実施例および比較例について、夾雑物の吸着性、核酸の吸着性、および、PCR増幅を実施した際の増幅率を評価した。
 実施例1~21において、界面活性剤はノニオン系界面活性剤とした。また、実施例1~21において、吸着剤は、フェライト、モデルナイト、L型およびY型のいずれかの構造を有するゼオライトとした。
 実施例1~7においては、ゼオライトの結晶構造、カチオン種を異ならせた。
表1中のゼオライトの実施例8-11は、実施例2に対して、ゼオライトの濃度を異ならせた例である。実施例12-18は、実施例2に対して、界面活性剤の種類を異ならせた例であり、実施例19-21は界面活性剤の濃度を変化させた例である。
 表2に示す比較例1-3は、界面活性剤として、アニオン系界面活性剤を用いた例である。比較例4、5は、ゼオライトの構造が実施例のものと異なる。また、比較例6-14は、ゼオライト以外の吸着剤を用いた例である。比較例6-8は、吸着剤として、活性炭を用いており、活性炭の品番の項には各活性炭の特徴を記載している。具体的には、比較例6においては、シグマアルドリッチ社製の活性炭 greener alternative DARCO(登録商標), 12-20 mesh, granularを用い、比較例7においては、和光純薬社製の活性炭素(粉末,中性)を用い、比較例8において、和光純薬社製の活性炭素(粉末,アルカリ性)を用いた。
 表1中におけるゼオライトの細孔径[×10-1nm]、Si/Al比および比表面積[m/g]は、いずれもメーカーの公称値である。表1中の「非開示」は、各吸着剤のメーカーにおいて公表されていないことを意味する。
「吸着性評価」
(吸着剤による夾雑物の吸着性評価)
 鼻腔内に存在する夾雑物としてリゾチームを用い、吸着剤によるリゾチームの吸着性を評価した。夾雑物としてのリゾチームを含む水溶液について、吸着剤を用いた精製を実施する前後におけるリゾチームの濃度の比を、吸着剤によるリゾチームの吸着率として求めた。
-リゾチーム水溶液の調製-
 まず、下記の組成のリゾチーム水溶液を調製した。リゾチームと脱イオン蒸留水を秤量した後、ボルテックスミキサーで撹拌することによりリゾチーム水溶液を調製した。
--リゾチーム水溶液の組成--
 リゾチーム、卵白由来(和光純薬社製):0.50g
 脱イオン蒸留水
(ニッポンジーン社製、RNase/DNaseフリー):99.5g
-吸着剤分散液調製-
 ゼオライトと水を秤量した後、ボルテックスミキサーで撹拌することにより吸着剤分散液を調製した。実施例1の吸着剤分散液であるゼオライト分散液1の組成は以下の通りである。各実施例および比較例において、ゼオライトもしくはその他の吸着剤(活性炭、スチレン系ポリマーまたはポリメタクリレート)と、脱イオン蒸留水との合計を0.85gとし、後記の混合液における吸着剤の濃度[wt/vol%]がそれぞれ表1に記載の値となるように、それぞれ吸着剤分散液を調製した。
--ゼオライト分散液1の組成--
 ゼオライトHS-320(和光純薬社製):0.075g
 脱イオン蒸留水
(ニッポンジーン社製、RNase/DNaseフリー):0.775g
-吸着剤リゾチーム混合液の調製-
 次いで、リゾチーム水溶液と吸着剤分散液を混合することにより吸着剤リゾチーム混合液を調製した。吸着剤分散液に対して、前述のリゾチーム水溶液を添加した後、ボルテックスミキサーで撹拌することにより吸着剤リゾチーム混合液を調製した。実施例1の場合、下記重量比で、ゼオライト分散液1とリゾチーム水溶液を混合して、ゼオライトリゾチーム混合液1を調製した。その他の各実施例および比較例について、それぞれの吸着剤分散液とリゾチーム水溶液の重量比を、ゼオライトリゾチーム混合液1におけるゼオライト分散液とリゾチーム水溶液の重量比と同等とした。
--ゼオライトリゾチーム混合液1--
  ゼオライト分散液1:0.85g
  リゾチーム水溶液:0.15g
 上記のようにして、リゾチーム水溶液と吸着剤分散液の混合液を作製後、混合液を10分間室温で静置した。その後、孔径0.45μmのPES(polyethersulphone:ポリエーテルサルホン)製シリンジフィルター(GVS社製)をセットしたテルモシリンジ(登録商標)ロック基(テルモ社製、容量2.5mL)内に混合液を添加し、手操作で濾過することにより精製処理を行った。
 Qubit Protein Assays(Thermo Fisher Scientific社製)を用いて吸着剤リゾチーム混合液の精製処理前後のリゾチーム濃度を測定した。具体的には、シリンジに添加する前の吸着剤リゾチーム混合液におけるリゾチーム濃度D0を測定し、吸着剤リゾチーム混合液を濾過して精製処理を行った後の溶液中におけるリゾチーム濃度D1を測定した。そして、(D0-D1)/D0を吸着率として算出した。
 吸着性の判定は以下の基準で実施した。
 A:吸着率が80%以上
 B:吸着率が50%以上80%未満
 C:吸着率が20%以上50%未満
 D:20%未満
 実用上、C以上の吸着性が求められる。
(吸着剤による核酸の吸着性評価)
 インフルエンザウイルスから抽出された核酸を用いて、下記の手順で核酸の吸着剤への吸着性を評価した。
 リアルタイムPCR装置(BioRad社製CFX96)を用いた検量線法によりゼオライト精製前後の核酸のコピー数の比を算出し、透過率とした。透過率が高いほど、吸着率が低いことを意味する。核酸は、吸着剤に吸着されず、精製処理の濾過工程において、フィルタを通過する率(透過率)が高いことが望ましい。
 まず、AmpliRun Influenza A H1 RNA Control(Vircell社製)を250Copy/μLに希釈した核酸水溶液を調製した。
 次いで、核酸水溶液中の吸着剤の濃度が表1に示す吸着剤の濃度の値となるように、吸着剤と核酸水溶液を秤量し、ボルテックスミキサーで核酸水溶液中に吸着剤を分散させた。その後、吸着剤を分散させた核酸水溶液を10分間室温で静置した。さらにその後、この溶液を、孔径0.45μmのPES製シリンジフィルター(GVS社製)をセットしたテルモシリンジ(登録商標)ロック基(テルモ社製、容量2.5mL)内に添加し、手操作で濾過することにより精製処理を行った。
 下記の組成のPCR反応液を調製し、前述の手順で精製した核酸水溶液を添加してRT-PCRを行った。
 また、本評価のため、下記濃度のAmpliRun Influenza A H1 RNA Control(Vircell社製)を用いてRT-PCRを行い、核酸コピー数とCt値の検量線を作成した。具体的には、1000Copy/μL、500Copy/μL、250Copy/μL、100Copy/μL、50Copy/μL、25Copy/μL、10Copy/μL、5Copy/μLのそれぞれの濃度の核酸水溶液を調製した。各濃度の核酸水溶液について、それぞれRT-PCRを実施し、Ct値を測定した。この結果に基づいて、Ct値と、濃度(すなわち、核酸コピー数)の関係を示す検量線を作成した。
-PCR反応液の組成-
  One Step PrimeScript RT-qPCR Mix(2×)(タカラバイオ社製)
                            10μL
  10μM フォワードプライマー          1.2μL
  10μM リバースプライマー           1.2μL
  5μM  プローブ                0.4μL
  核酸水溶液                    1.0μL
  脱イオン蒸留水
(ニッポンジーン社製、RNase/DNaseフリー)  6.2μL
―――――――――――――――――――――――――――――――
  Total                     20μL
 プライマーおよびプローブとしては、国立感染研究所から公開されているA型同定用の配列(国立感染研究所が公開しているインフルエンザ診断マニュアルに開示されている配列)を参照し、MP-39-67For、MP-183-153Rev、MP-96-75ProbeAsとして公開された以下の配列を有するプライマーとプローブを合成した。
・フォワードプライマー:CCMAGGTCGAAACGTAYGTTCTCTCTATC(配列番号1)
・リバースプライマー:TGACAGRATYGGTCTTGTCTTTAGCCAYTCCA(配列番号2)
・プローブ:ATYTCGGCTTTGAGGGGGCCTG(配列番号3)
 上記プローブ配列(配列番号3)の5’末端側にFAM(5'-Fluorescein CE-Phosphoramidite)を、3’末端側にMGB(Minor Groove Binder)とクエンチャーとしてNFQ(Non Fluorescent Quencher)を結合させたものプローブとして使用した。
 RT-PCRの条件は以下の通りとした。
 逆転写:50℃、2分⇒95℃、5分
 PCR:95℃、5秒⇔56℃、10秒、を50サイクル
 250Copyの核酸を含む核酸水溶液に吸着剤を添加した後、精製して得られた精製後の核酸水溶液を用いて、上記RT-PCRを実施し、Ct値を測定した。得られたCt値を前述の検量線に照らし合わせて、精製後の核酸水溶液についての核酸コピー数C1を求めた。精製前のPCR反応場に存在する核酸コピー数C0は250Copyである。精製前後の核酸コピー数の比C1/C0を透過率とした。
 吸着剤への核酸吸着性を、以下の基準で評価した。
 A:透過率が70%以上
 B:透過率が20%以上70%未満
 C:透過率が20%未満、もしくは増幅せず精製後の核酸でCt値が算出されない。
 実用上、B以上の性能が求められる。
「増幅性評価」
 鼻腔内に存在する夾雑物としてリゾチーム、検体としてInfluenzaから抽出された核酸、および界面活性剤を含む検体模擬液を調製し、下記の手順でリアルタイムPCR装置(BioRad社製CFX96)にて核酸の増幅性を評価した。
-検体模擬液の調製-
 各実施例および比較例について、それぞれ表1あるいは表2に示す界面活性剤を含む検体模擬液を調製した。実施例1に用いた検体模擬液1の組成は以下の通りである。実施例1の場合、下記に示す各溶液をボルテックスミキサーで撹拌することにより検体模擬液1を調製した。実施例2~11および比較例4~14は、実施例1と同じ検体模擬液1を用いた。なお、実施例12~21および比較例1~3については、界面活性剤以外の成分は検体模擬液1と共通とし、界面活性剤をそれぞれ表1に示す界面活性剤に置き換え、表1に示す界面活性剤濃度[vol%]となるように調製した。
--検体模擬液1の組成--
 核酸:AmpliRun Influenza A H1 RNA Control(1000Copy/μL)
                       12.0μL
 リゾチーム(1%水希釈液)         10.2μL
 界面活性剤:Tween20(5%水希釈液) 24.2μL
 (精製時の濃度0.5vol%)
 水                    195.6μL
 次いで、表1に記載の吸着剤(実施例1では、ゼオライト)および検体模擬液を表1に記載の濃度[wt/vol%]となるように秤量し、ボルテックスミキサーで攪拌した。実施例1の場合、ゼオライトを0.0073g秤量し、検体模擬液を96.8μL添加して、ボルテックスミキサーで撹拌した。実施例1では、0.0073g/0.0968ml≒7.5[wt/vol%]の濃度とした。ボルテックスミキサーで撹拌した後、10分間室温で静置した。その後、孔径0.45μmのPES製シリンジフィルター(GVS社製)をセットしたテルモシリンジ(登録商標)ロック基(テルモ社製、容量2.5mL)内に吸着剤が分散された検体模擬液を添加し、手操作にて濾過することにより精製処理を行った。
 次いで、下記の組成のPCR反応液を調製し、前述の精製処理を行った検体模擬液を用いてRT-PCRを行った。
--PCR反応液の組成--
 One Step PrimeScript RT-qPCR Mix(2×)
 (タカラバイオ社製)          10μL
  10μM フォワードプライマー   1.2μL
  10μM リバースプライマー    1.2μL
  5μM  プローブ         0.4μL
  検体模擬液             7.2μL
―――――――――――――――――――――――――
  Total              20μL
 プライマーおよびプローブとしては、核酸の吸着性の評価の場合と同様に、国立感染研究所から公開されているA型同定用の配列を参照し、MP-39-67For、MP-183-153Rev、MP-96-75ProbeAsとして公開された以下の配列を有するプライマーとプローブを合成した。
・フォワードプライマー:CCMAGGTCGAAACGTAYGTTCTCTCTATC(配列番号1)
・リバースプライマー:TGACAGRATYGGTCTTGTCTTTAGCCAYTCCA(配列番号2)
・プローブ:ATYTCGGCTTTGAGGGGGCCTG(配列番号3)
 上記プローブ配列(配列番号3)の5’末端側にFAM(5'-Fluorescein CE-Phosphoramidite)を、3’末端側にMGB(Minor Groove Binder)とクエンチャーとしてNFQ(Non Fluorescent Quencher)を結合させたものをプローブとして使用した。
 RT-PCRの条件は以下の通りとした。
 逆転写:60℃、1分⇒95℃、1分
 PCR :95℃、1秒⇔60℃、6秒を50サイクル
 RT-PCR後に得られた増幅曲線に対するCt値に対して以下の基準で判定した。
 4:Ct値35以下
 3:Ct値35より大きく37以下
 2:Ct値37より大きく40以下
 1:40より大きい
 Ct値は小さいほど好ましく、実用上Ct値としては40以下(判定2以上)の性能が求められる。
 表1に実施例についての界面活性剤、吸着剤の条件および評価結果を纏めて示す。また、表2に比較例についての界面活性剤、吸着剤の条件および評価結果を纏めて示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 表1および表2に示す通り、実施例1~21は、ノニオン系界面活性剤を含む抽出用試薬を用い、かつ、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライトを用いた例である。実施例1~21は、夾雑物(ここではリゾチーム)の吸着性がC以上と高く、核酸の透過率がB以上と高く、すなわち核酸の吸着率が低く、かつ、核酸の増幅性が2以上と高く、実用上の性能を満たす結果が得られた。
 アニオン系界面活性剤を含む抽出用試薬を用いた比較例1~3は、吸着評価では、良好な結果が得られたにも拘わらず、核酸の増幅性が低かった。これは、アニオン系界面活性剤が核酸の増幅を阻害していることを示す結果と考えられる。
 ノニオン系界面活性剤を含む抽出用試薬を用いているが、A型あるいはX型のゼオライト、もしくはゼオライトではない吸着剤を用いた比較例4~14は、いずれも夾雑物の吸着性が低い、あるいは核酸を吸着してしまい、結果として、増幅性が低かった。
 ゼオライトのカチオン種のみを変更した実施例1~3の評価結果によれば、カチオン種としては、H、Naが、NH よりも吸着性評価が良好である。
 ゼオライトの結晶構造のみが異なる実施例2、および実施例4~7の評価結果によれば、フェリエライト、L型およびY型がモルデナイトよりも夾雑物の吸着性が良好である。
 核酸抽出液(実施例における模擬検体液)中に添加したゼオライトの濃度のみが異なる実施例2、および実施例8~11の評価結果によれば、少なくともゼオライトの濃度が0.1wt/vol%~15.0wt/vol%の範囲で、夾雑物の吸着性の効果が得られた。吸着性の観点から、ゼオライトの濃度は、0.5wt/vol%以上が好ましく、2wt/vol%以上がより好ましい。
 抽出用試薬に用いられるノニオン系界面活性剤の種類(もしくは品番)のみが異なる実施例2、および実施例12~18の評価結果によれば、ポリエチレンオキシドが、他のノニオン系界面活性剤よりも増幅性阻害抑制の効果が高く、好ましい。
 核酸抽出液(実施例における模擬検体液)中の界面活性剤濃度のみが異なる実施例2、および実施例19~21の評価結果によれば、界面活性剤濃度が0.5vol%~2.0vol%の範囲で、ほぼ同等の効果が得られた。
 2021年11月25日に出願された日本国特許出願2021-191592号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (16)

  1.  生体から採取した検体に含まれる核酸の中に、検査対象の塩基配列が存在するか否かを検査する核酸検査方法であって、
     前記検体から前記核酸を抽出する抽出工程と、
     前記抽出工程の前、途中および後のいずれかの段階で、前記検体を含む溶液および前記核酸が抽出された核酸抽出液のいずれかの液体内の夾雑物を除去する精製工程と、
     前記核酸抽出液内の前記塩基配列を増幅する増幅工程と、
     前記増幅工程の後に、前記塩基配列の有無を検出する検出工程とを含み、
     前記抽出工程は、前記検体を、ノニオン系界面活性剤を含む抽出用試薬と接触させる工程であり、
     前記精製工程は、前記液体を、フェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライトと接触させることにより、前記液体内の夾雑物を前記ゼオライトに吸着させる吸着工程を含む、核酸検査方法。
  2.  前記精製工程は、前記吸着工程の後に、前記液体を濾過して前記液体内から前記ゼオライトを除去する濾過工程を含む、請求項1に記載の核酸検査方法。
  3.  前記抽出工程において、前記抽出用試薬中に前記ゼオライトを添加することにより、前記抽出工程と前記精製工程とを並行して行う、請求項1または2に記載の核酸検査方法。
  4.  前記抽出工程の後に、前記精製工程を行う、請求項1または2に記載の核酸検査方法。
  5.  前記ノニオン系界面活性剤が、ポリエチレンオキシド、グルカミンおよびベタインのうちの少なくとも1種を含む、請求項1から4のいずれか1項に記載の核酸検査方法。
  6.  前記ゼオライトの結晶構造が、フェリエライト、L型およびY型のうちのいずれかである、請求項1から5のいずれか1項に記載の核酸検査方法。
  7.  前記ゼオライトのカチオンがNa、K、およびHのいずれかである、請求項1から6のいずれか1項に記載の核酸検査方法。
  8.  前記ゼオライトの細孔径が、0.7nmより大きく、1nmより小さい、請求項1から5のいずれか1項に記載の核酸検査方法。
  9.  前記ゼオライトのシリコンとアルミニウムとの比Si/Alが、5以上、18以下である、請求項1から8のいずれか1項に記載の核酸検査方法。
  10.  前記増幅工程はポリメラーゼ連鎖反応による増幅工程である、請求項1から9のいずれか1項に記載の核酸検査方法。
  11.  生体から採取した検体に含まれる核酸の中に、検査対象の塩基配列が存在するか否かの検査に用いられる検査キットであって、
     ノニオン系界面活性剤を含む抽出用試薬を収容する抽出容器、および
     前記核酸の増幅に用いられる増幅用試薬を収容する増幅用試薬収容部を含む複数の収容部と、前記複数の収容部間を接続する複数の流路とを備えたカートリッジ、
    を含む核酸検査用の検査キットであって、
     前記抽出容器および前記カートリッジの少なくとも一方に、あるいは、前記抽出容器に投入可能な態様でフェリエライト、モルデナイト、L型およびY型のいずれかの結晶構造を有するゼオライトを備えた、検査キット。
  12.  核酸抽出液を濾過するフィルタであって、前記ゼオライトよりも目の細かいフィルタを備えた、請求項11に記載の検査キット。
  13.  前記フィルタは、前記カートリッジ内もしくは前記カートリッジとは別に備えられている、請求項12に記載の検査キット。
  14.  前記フィルタは、前記抽出容器中の液体を前記カートリッジに投入するまでの経路中または前記カートリッジの前記液体の投入口に備えられている、請求項13に記載の検査キット。
  15.  前記カートリッジが、前記複数の収容部のうちの前記増幅用試薬収容部とは異なる1つの収容部に前記ゼオライトを収容し、前記ゼオライトが収容された前記収容部から前記増幅用試薬収容部に至る流路中に、前記フィルタを備えた、請求項13に記載の検査キット。
  16.  前記カートリッジが、
     液体を投入する投入口と、
     前記投入口を覆う着脱可能な蓋部と、
     前記投入口に対向する位置に設けられた、液体を収容可能な第1収容部と、
     前記増幅用試薬を収容する前記増幅用試薬収容部である第2収容部と、
     前記第1収容部と前記第2収容部とを接続する第1流路と、
     第2流路を介して前記第1収容部に一端が接続された第1シリンダであって、他端が外部に開口した第1シリンダと、
     第3流路を介して前記第2収容部に一端が接続された第2シリンダであって、他端が外部に開口した第2シリンダと、
     前記第1シリンダ内を移動可能に備えられた第1栓と、
     前記第2シリンダ内を移動可能に備えられた第2栓とを備え、
     前記第1栓および前記第2栓を外部から押圧して移動させることにより、前記第1収容部、前記第2収容部、前記第1流路、前記第2流路および前記第3流路を含む内部空間を加圧可能な容器であって、
     前記第1収容部および前記第2収容部はいずれも前記複数の収容部の1つであり、
     前記第1流路、前記第2流路および前記第3流路は、いずれも前記複数の流路の1つである、請求項11から15のいずれか1項に記載の検査キット。
PCT/JP2022/042617 2021-11-25 2022-11-16 核酸検査方法および検査キット WO2023095704A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021191592 2021-11-25
JP2021-191592 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023095704A1 true WO2023095704A1 (ja) 2023-06-01

Family

ID=86539642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042617 WO2023095704A1 (ja) 2021-11-25 2022-11-16 核酸検査方法および検査キット

Country Status (1)

Country Link
WO (1) WO2023095704A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117969228A (zh) * 2024-04-02 2024-05-03 成都翼泰生物科技有限公司 一种菌液稀释液、制备方法、参考品、试剂盒及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117997A (ja) * 2005-09-30 2007-05-17 Toray Ind Inc 膜ろ過システム、膜ろ過方法
JP2007135504A (ja) * 2005-11-21 2007-06-07 Konica Minolta Medical & Graphic Inc 増幅部位にビーズを保持する核酸検査用マイクロリアクタ
JP2009082105A (ja) * 2007-10-02 2009-04-23 Shimane Pref Gov 塩化セシウムおよび臭化エチジウム含有溶液から核酸を単離する方法
WO2009060847A1 (ja) 2007-11-05 2009-05-14 Eiken Kagaku Kabushiki Kaisha 核酸増幅用サンプルの調製方法及び調製キット
JP2013021959A (ja) * 2011-07-20 2013-02-04 Sony Corp 核酸抽出方法及び核酸抽出用カートリッジ
WO2013038604A1 (ja) * 2011-09-13 2013-03-21 ソニー株式会社 核酸精製方法、核酸抽出方法、及び核酸精製用キット
JP2014030392A (ja) * 2012-08-03 2014-02-20 Ngk Insulators Ltd 標的核酸の検出方法、検出キット
JP2017192341A (ja) * 2016-04-20 2017-10-26 知明 久慈 遺伝子解析用前処理キット、核酸分析用チップ、遺伝子解析システム
JP2021191592A (ja) 2015-12-01 2021-12-16 東洋製罐グループホールディングス株式会社 絞り缶の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117997A (ja) * 2005-09-30 2007-05-17 Toray Ind Inc 膜ろ過システム、膜ろ過方法
JP2007135504A (ja) * 2005-11-21 2007-06-07 Konica Minolta Medical & Graphic Inc 増幅部位にビーズを保持する核酸検査用マイクロリアクタ
JP2009082105A (ja) * 2007-10-02 2009-04-23 Shimane Pref Gov 塩化セシウムおよび臭化エチジウム含有溶液から核酸を単離する方法
WO2009060847A1 (ja) 2007-11-05 2009-05-14 Eiken Kagaku Kabushiki Kaisha 核酸増幅用サンプルの調製方法及び調製キット
JP2013021959A (ja) * 2011-07-20 2013-02-04 Sony Corp 核酸抽出方法及び核酸抽出用カートリッジ
WO2013038604A1 (ja) * 2011-09-13 2013-03-21 ソニー株式会社 核酸精製方法、核酸抽出方法、及び核酸精製用キット
JP2014030392A (ja) * 2012-08-03 2014-02-20 Ngk Insulators Ltd 標的核酸の検出方法、検出キット
JP2021191592A (ja) 2015-12-01 2021-12-16 東洋製罐グループホールディングス株式会社 絞り缶の製造方法
JP2017192341A (ja) * 2016-04-20 2017-10-26 知明 久慈 遺伝子解析用前処理キット、核酸分析用チップ、遺伝子解析システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAHIRO SEKIKAWA, YU KAWASAKI: "Suppression of PCR Inhibitors Using Nonionic Surfactant for Detecting Cryptosporidium parvum DNA", JOURNAL OF JAPAN SOCIETY ON WATER ENVIRONMENT, vol. 31, no. 9, 1 January 2008 (2008-01-01), pages 565 - 568, XP093068326, ISSN: 0916-8958, DOI: 10.2965/jswe.31.565 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117969228A (zh) * 2024-04-02 2024-05-03 成都翼泰生物科技有限公司 一种菌液稀释液、制备方法、参考品、试剂盒及其应用
CN117969228B (zh) * 2024-04-02 2024-05-28 成都翼泰生物科技有限公司 一种菌液稀释液、制备方法、参考品、试剂盒及其应用

Similar Documents

Publication Publication Date Title
JP6669699B2 (ja) 連続的な増幅反応のための方法および装置
US8771955B2 (en) Device and method for extraction and analysis of nucleic acids from biological samples
JP3580801B2 (ja) 核酸の分離精製方法
JP5086250B2 (ja) 自動医療診断用のカートリッジ、システム及び方法
KR101786506B1 (ko) 핵산 정제
US7759112B2 (en) Apparatus, system, and method for purifying nucleic acids
CN107338189B (zh) 用于集成的样品制备、反应和检测的设备与方法
US7682818B2 (en) Apparatus for separating and purifying nucleic acid and method for separating and purifying nucleic acid
WO2023095704A1 (ja) 核酸検査方法および検査キット
WO2010039802A2 (en) Methods and compositions for isolating nucleic acid
KR20210122273A (ko) 생물학적 샘플로부터 성분을 선택적으로 추출하기 위한 방법 및 장치
US20160186167A1 (en) Method and Device for Processing a Sample of Biological Material Containing Target Cells and Companion Cells in Order to Extract Nucleic Acids of the Target Cells
WO2023044363A1 (en) Multiplex devices and methods for pathogen detection
JP2022033527A (ja) Rnaろ過器及びrnaろ過方法
JP4130143B2 (ja) 核酸の分離精製装置
JP4102149B2 (ja) 核酸の分離精製装置
JP2004180637A (ja) 核酸の分離精製装置
JP2004113043A (ja) 核酸の分離精製装置
WO2023189118A1 (ja) 検査容器及び核酸検査方法
JP7334363B2 (ja) 検査容器、検査装置及び核酸検査方法
JP3819001B2 (ja) 核酸の分離精製方法
US20220049321A1 (en) Method, system and apparatus for blood processing unit
WO2024053191A1 (ja) 検査容器及び核酸検査方法
US20050227261A1 (en) Method for sequencing-by-synthesis
Juang et al. Oil Immersed Lossless Total Analysis System (OIL-TAS): Integrated RNA Extraction and Detection for SARS-CoV-2 Testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563649

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022898488

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022898488

Country of ref document: EP

Effective date: 20240524