WO2019054217A1 - Epoxy resin composition and electronic component device - Google Patents

Epoxy resin composition and electronic component device Download PDF

Info

Publication number
WO2019054217A1
WO2019054217A1 PCT/JP2018/032497 JP2018032497W WO2019054217A1 WO 2019054217 A1 WO2019054217 A1 WO 2019054217A1 JP 2018032497 W JP2018032497 W JP 2018032497W WO 2019054217 A1 WO2019054217 A1 WO 2019054217A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
group
inorganic filler
mass
Prior art date
Application number
PCT/JP2018/032497
Other languages
French (fr)
Japanese (ja)
Inventor
東哲 姜
光昭 襖田
泰典 川端
賢一 山中
静花 柴
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019542000A priority Critical patent/JP7375541B2/en
Priority to CN201880059554.5A priority patent/CN111094450A/en
Priority to MYPI2020001352A priority patent/MY198096A/en
Priority to CN202310717825.4A priority patent/CN116751438A/en
Publication of WO2019054217A1 publication Critical patent/WO2019054217A1/en
Priority to JP2023184277A priority patent/JP2024012392A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the present disclosure relates to an epoxy resin composition and an electronic component device.
  • a compression molding method and the like can be mentioned in addition to a transfer molding method which is usually used (for example, see Patent Document 1).
  • the powdery particulate resin composition is supplied to be opposed to the object to be sealed (such as a substrate provided with an electronic element such as a semiconductor chip) held in a mold, and the object to be sealed is It is the method of resin-sealing by compressing with a granular resin composition.
  • the wire to be incorporated is thinned along with the multifunctionalization of the package, it is an issue to suppress the generation of the wire flow and the like in the transfer molding generally used as a sealing method. On the other hand, it is also desired to suppress the viscosity from the viewpoint of the filling property and the like even by the compression molding method.
  • the amount of heat generation tends to increase with the miniaturization and densification of electronic component devices, and how to dissipate heat is an important issue. Therefore, the heat conductivity is enhanced by mixing an inorganic filler having a high heat conductivity with the sealing material.
  • the viscosity of the sealing material increases as the amount thereof increases, and the flowability may decrease, which may cause problems such as filling failure and wire flow.
  • liquidity of a sealing material is proposed by using a specific phosphorus compound as a hardening accelerator (for example, refer patent document 2).
  • JP 2008-279599 A Japanese Patent Laid-Open No. 9-157497
  • a resin composition which can be used as a sealing material in which an increase in viscosity is suppressed while maintaining thermal conductivity at a higher level. Is desired.
  • the first embodiment of the present disclosure has an object to provide an electronic component device including an epoxy resin composition having a low viscosity and an element sealed by the epoxy resin composition.
  • a second embodiment of the present disclosure is to provide an epoxy resin composition having high thermal conductivity and suppressing an increase in viscosity, and an electronic component device provided with a device sealed therewith. It will be an issue.
  • Embodiments of the present disclosure include the following aspects.
  • ⁇ 2> The epoxy resin composition according to ⁇ 1>, wherein the linear hydrocarbon group has at least one functional group selected from a (meth) acryloyl group, an epoxy group, and an alkoxy group.
  • ⁇ 3> The epoxy resin composition according to ⁇ 1> or ⁇ 2>, wherein the linear hydrocarbon group has a (meth) acryloyl group.
  • ⁇ 4> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the inorganic filler is 30% by volume to 99% by volume.
  • ⁇ 5> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the thermal conductivity of the inorganic filler is 20 W / (m ⁇ K) or more.
  • the inorganic filler having a thermal conductivity of 20 W / (m ⁇ K) or more is at least one selected from the group consisting of alumina, silicon nitride, boron nitride, aluminum nitride, magnesium oxide, and silicon carbide
  • the epoxy resin composition as described in ⁇ 5> containing.
  • ⁇ 7> An electronic component device comprising an element sealed with the epoxy resin composition according to any one of ⁇ 1> to ⁇ 6>.
  • an electronic component device comprising a low viscosity epoxy resin composition and a device sealed with the epoxy resin composition.
  • an epoxy resin composition having high thermal conductivity and suppressing an increase in viscosity, and an electronic component device provided with a device sealed therewith. Ru.
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. .
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the (meth) acryloyl group means at least one of an acryloyl group and a methacryloyl group.
  • the epoxy resin composition according to the first embodiment contains an epoxy resin, a curing agent, an inorganic filler, and a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom. Do.
  • a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom is also referred to as a “specific silane compound”.
  • the epoxy resin composition according to the first embodiment may contain other components as needed.
  • the epoxy resin composition according to the first embodiment contains an epoxy resin.
  • the type of epoxy resin is not particularly limited as long as it has an epoxy group in the molecule.
  • the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcine, catechol, bisphenol A, bisphenol F and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • Novolak type epoxy resin (phenol novolac type epoxy resin) which is obtained by epoxidizing a novolac resin obtained by condensation or cocondensation of a phenolic compound of the type with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde or propionaldehyde under acidic catalyst Epoxy resin, ortho cresol novolac epoxy resin, etc.); condensation of the above-mentioned phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst Is a triphenylmethane type epoxy resin obtained by epoxidizing a triphenylmethane type phenol resin obtained by cocondensation; a novolak obtained by cocondensing the above-mentioned phenol compound and naphthol compound with an aldehyde compound under an acidic catalyst Copolymer-type epoxy resin which is obtained by epoxidizing resin; diphenyl
  • the epoxy equivalent (molecular weight / epoxy group number) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq.
  • the temperature is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and more preferably 50 ° C. to 130 ° C. from the viewpoint of handleability in preparation of the epoxy resin composition.
  • the melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234: 1986.
  • the content of the epoxy resin in the epoxy resin composition is preferably 0.5% by mass to 50% by mass, and preferably 2% by mass to 30% by mass, in view of strength, fluidity, heat resistance, moldability, etc.
  • the content is more preferably 2% by mass to 20% by mass.
  • the epoxy resin composition according to the first embodiment contains a curing agent.
  • the type of curing agent is not particularly limited, and can be selected according to the type of resin, the desired properties of the epoxy resin composition, and the like.
  • a curing agent a phenol curing agent, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent, a blocked isocyanate curing agent and the like can be mentioned.
  • the curing agent is preferably one having a phenolic hydroxyl group in the molecule (phenol curing agent).
  • phenolic curing agents polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenols; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol And at least one phenolic compound selected from the group consisting of phenol compounds such as aminophenol and naphthol compounds such as .alpha.-naphthol, .beta.-naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde
  • phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenols
  • phenol curing agents may be used alone or in combination of two or more.
  • the functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, electrical reliability, etc., 70 g / eq to 1000 g / eq is preferable, and 80 g / eq to 500 g / eq is more preferable.
  • the functional group equivalent of the curing agent is a value measured by a method according to JIS K 0070: 1992.
  • the temperature is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability at the time of production of the epoxy resin composition, it is more preferably 50 ° C. to 130 ° C.
  • the melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
  • the equivalent ratio of the epoxy resin to the curing agent is not particularly limited.
  • the ratio is preferably in the range of 0.5 to 2.0, and more preferably in the range of 0.6 to 1.3. It is more preferable to set in the range of 0.8 to 1.2 from the viewpoint of moldability and reflow resistance.
  • the epoxy resin composition according to the first embodiment contains an inorganic filler.
  • the material of the inorganic filler is not particularly limited. Specifically as the material of the inorganic filler, fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon silicate, silicon nitride, aluminum nitride, boron nitride, magnesium oxide, silicon carbide, beryllia, zirconia And inorganic materials such as zircon, forsterite, steatite, spinel, mullite, titania, talc, clay and mica. You may use the inorganic filler which has a flame-retardant effect.
  • Examples of the inorganic filler having a flame retardant effect include composite metal hydroxides such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like.
  • silica such as fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity.
  • the shape of the inorganic filler is not particularly limited, and is preferably spherical in terms of the filling property and the mold abradability.
  • the inorganic filler may be used alone or in combination of two or more.
  • two or more types of inorganic fillers are used in combination
  • two inorganic fillers having the same average particle size but different components are used.
  • the case where it uses more than a kind and the case where two or more kinds of inorganic fillers from which an average particle diameter and a kind differ differ are mentioned.
  • the content of the inorganic filler in the epoxy resin composition according to the first embodiment is not particularly limited. From the viewpoint of further improving the properties such as the thermal expansion coefficient, thermal conductivity, and elastic modulus of the cured product, the content of the inorganic filler is preferably 30% by volume or more of the entire epoxy resin composition, and 35% by volume The above is more preferable, 40% by volume or more is further preferable, 45% by volume or more is particularly preferable, and 50% by volume or more is extremely preferable.
  • the content of the inorganic filler is preferably 99% by volume or less, preferably 98% by volume or less, of the entire epoxy resin composition, and 97% by volume It is more preferable that
  • the content of the inorganic filler may be 70% by volume to 99% by volume of the entire epoxy resin composition, and 80% by volume to 99% by volume. It may be 83% by volume to 99% by volume, or 85% by volume to 99% by volume.
  • the content of the inorganic filler in the epoxy resin composition is measured as follows. First, the total mass of the cured product (epoxy resin molded product) of the epoxy resin composition is measured, and the epoxy resin molded product is calcined at 400 ° C. for 2 hours and then at 700 ° C. for 3 hours to evaporate the resin component and leave it Measure the mass of the inorganic filler. The volume is calculated from each mass obtained and each specific gravity, and the ratio of the volume of the inorganic filler to the total volume of the epoxy resin molded product is obtained as the content of the inorganic filler.
  • the inorganic filler When the inorganic filler is particulate, its average particle size is not particularly limited.
  • the volume average particle diameter of the whole inorganic filler is preferably 80 ⁇ m or less, may be 50 ⁇ m or less, may be 40 ⁇ m or less, may be 30 ⁇ m or less, or 25 ⁇ m or less. It may be 20 ⁇ m or less, or 15 ⁇ m.
  • the volume average particle diameter of the entire inorganic filler is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and still more preferably 0.3 ⁇ m or more. When the volume average particle diameter of the inorganic filler is 0.1 ⁇ m or more, the increase in the viscosity of the epoxy resin composition tends to be further suppressed.
  • the volume average particle size of the inorganic filler should be measured as the particle size (D50) at which the accumulation from the small diameter side becomes 50% in the volume-based particle size distribution measured by the laser scattering diffraction particle size distribution measuring apparatus. Can.
  • the maximum particle diameter (cut point) of the inorganic filler is controlled from the viewpoint of the improvement of the filling property in the narrow gap when the epoxy resin composition is used for a mold underfill or the like.
  • the maximum particle size of the inorganic filler may be appropriately adjusted, and from the viewpoint of the filling property is preferably 105 ⁇ m or less, more preferably 75 ⁇ m or less, and may be 60 ⁇ m or less, 40 ⁇ m or less May be
  • the maximum particle diameter can be measured by a laser diffraction particle size distribution analyzer (manufactured by Horiba, Ltd., trade name: LA920).
  • the epoxy resin composition according to the first embodiment contains a specific silane compound.
  • the specific silane compound has a structure in which a chain hydrocarbon group having 6 or more carbon atoms (hereinafter, a chain hydrocarbon group having 6 or more carbon atoms is also simply referred to as a chain hydrocarbon group) is bonded to a silicon atom.
  • the chain hydrocarbon group may be branched or may have a substituent.
  • the number of carbon atoms of the chain hydrocarbon group means the number of carbon atoms of branched or substituted carbon atoms.
  • the chain hydrocarbon group may or may not contain unsaturated bonds, and preferably does not contain unsaturated bonds.
  • the specific silane compound is considered to function as a coupling agent of the inorganic filler in the epoxy resin composition.
  • the number of chain hydrocarbon groups bonded to a silicon atom may be 1 to 4, preferably 1 to 3, more preferably 1 or 2, and 1 Is more preferred.
  • the atoms or atom groups other than chain hydrocarbon groups bonded to a silicon atom are not particularly limited, and are independent of each other.
  • one or more alkoxy is preferably bonded in addition to the chain hydrocarbon group, and one chain hydrocarbon group and three alkoxy groups are bonded to a silicon atom. More preferable.
  • the carbon number of the chain hydrocarbon group in the specific silane compound is 6 or more, preferably 7 or more, and more preferably 8 or more, from the viewpoint of suppressing the viscosity.
  • the substituent is not particularly limited.
  • the substituent may be present at the end of the chain hydrocarbon group, or may be present at the side chain of the chain hydrocarbon group.
  • the chain hydrocarbon group preferably has at least one functional group (hereinafter also referred to as a specific functional group) selected from (meth) acryloyl group, epoxy group and alkoxy group, and (meth) acryloyl group and epoxy It is more preferable to have at least one functional group selected from groups, and it is further preferable to have a (meth) acryloyl group.
  • the specific functional group may be present at the end of the chain hydrocarbon group, or may be present at the side chain of the chain hydrocarbon group. From the viewpoint of suppressing the viscosity, the specific functional group is preferably present at the end of the chain hydrocarbon group.
  • the viscosity of the epoxy resin composition tends to further decrease. Although this reason is not necessarily clear, when the chain hydrocarbon group of the specific silane compound has the specific functional group, the compatibility between the specific functional group and the epoxy resin is enhanced, and the dispersibility of the epoxy resin and the inorganic filler is improved. It is presumed that it is to do.
  • the (meth) acryloyl group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group .
  • the chain hydrocarbon group may have a (meth) acryloyloxy group.
  • the chain hydrocarbon group preferably has a methacryloyloxy group.
  • the chain hydrocarbon group has an epoxy group
  • the epoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group.
  • the chain hydrocarbon group may have a glycidyloxy group, an alicyclic epoxy group, and the like.
  • the chain hydrocarbon group preferably has a glycidyloxy group.
  • the alkoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group, and the chain hydrocarbon group Preferably it is directly attached to
  • the alkoxy group is not particularly limited, and may be a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group or the like. Among them, from the viewpoint of easy availability, it is preferable that the chain hydrocarbon group has a methoxy group.
  • the equivalent (molecular weight / number of functional groups) of at least one functional group selected from the (meth) acryloyl group, the epoxy group, and the alkoxy group in the specific silane compound is not particularly limited. From the viewpoint of lowering the viscosity of the epoxy resin composition, it is preferably 200 g / eq to 420 g / eq, more preferably 210 g / eq to 405 g / eq, and 230 g / eq to 390 g / eq. More preferable.
  • silane compounds include hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, octyltriethoxysilane, 6-glycidoxyhexyltrimethoxysilane, 7-glycid Xiheptyl trimethoxysilane, 8-glycidoxyoctyl trimethoxysilane, 6- (meth) acryloxyhexyl trimethoxysilane, 7- (meth) acryloxy heptyl trimethoxysilane, 8- (meth) acryloxyoctyl trimethoxy Silane, decyltrimethoxysilane and the like can be mentioned.
  • 8-glycidoxyoctyltrimethoxysilane and 8-methacryloxyoctyltrimethoxysilane are preferable from the viewpoint of lowering the viscosity of the epoxy resin composition.
  • the specific silane compounds may be used alone or in combination of two or more.
  • the specific silane compounds may be synthesized or those commercially available.
  • Specific silane compounds commercially available include Shin-Etsu Chemical Co., Ltd. KBM-3063 (Hexyltrimethoxysilane), KBE-3063 (Hexyltriethoxysilane), KBE-3083 (Octyltriethoxysilane), KBM-4803 8-glycidoxyoctyltrimethoxysilane), KBM-5803 (8-methacryloxyoctyltrimethoxysilane), KBM-3103C (decyltrimethoxysilane), and the like.
  • the content of the specific silane compound in the epoxy resin composition according to the first embodiment is not particularly limited.
  • the content of the specific silane compound may be 0.01 parts by mass or more, and may be 0.02 parts by mass or more with respect to 100 parts by mass of the inorganic filler. Further, the content of the specific silane compound is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler.
  • the content of the specific silane compound is 0.01 parts by mass or more based on 100 parts by mass of the inorganic filler, a composition having a low viscosity tends to be obtained.
  • the content of the specific silane compound is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
  • the epoxy resin composition according to the first embodiment may further contain another coupling agent in addition to the specific silane compound.
  • Other coupling agents are not particularly limited as long as they are generally used in epoxy resin compositions.
  • Other coupling agents include silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane (except for specific silane compounds), titanium compounds, aluminum chelate compounds, aluminum / zirconium compounds, etc.
  • Known coupling agents may be used alone or in combination of two or more.
  • the total content of the specific silane compound and the other coupling agent is 100 parts by mass of the inorganic filler. It may be 0.01 parts by mass or more, and may be 0.02 parts by mass or more.
  • the total content of the specific silane compound and the other coupling agent is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler.
  • the total content of the specific silane compound and the other coupling agent is 0.01 parts by mass or more with respect to 100 parts by mass of the inorganic filler, a composition having a low viscosity tends to be obtained.
  • the total content of the specific silane compound and the other coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
  • the epoxy resin composition according to the first embodiment contains another coupling agent other than the specific silane compound, the specific silane compound and the other coupling agent from the viewpoint of exhibiting the function of the specific silane compound well.
  • the content of the other coupling agent to the total amount is preferably 90% by mass or less, more preferably 70% by mass or less, and still more preferably 50% by mass or less.
  • the epoxy resin composition according to the first embodiment may contain a curing accelerator.
  • the type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin, the desired properties of the epoxy resin composition, and the like.
  • diazabicycloalkenes such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), etc.
  • Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolac salts of the cyclic amidine compounds or derivatives thereof; Of maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 , 4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1, Compounds having an intramolecular polarization formed by addition of compounds having a ⁇ bond such as quinone compounds such as -benzoquinone and diazophenylmethane; tetraphenyl borate salts of DBU, tetraphen
  • tertiary amine compounds tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, tetra-n-hexyl benzoate
  • Ammonium salt compounds such as ammonium sulfate and tetrapropylammonium hydroxide; triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkyl alkoxyphenyl) phosphine, tris (Dialkylphenyl) phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl)
  • Sphin compounds Sphin compounds; said tertiary phosphine or said phosphine compound and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2, Quinone compounds such as 3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, and compounds having a ⁇ bond such as diazophenylmethane
  • a compound having an internal polarization obtained through the step of dehydrohalogenation tetra-substituted phosphonium such as tetraphenyl phosphonium; tetra-substituted phosphonium having no phenyl group bonded to a boron atom such as tetra-p-tolylborate Tetrasubstituted borates; salts of tetraphenylphosphonium with a phenol compound and the like can be mentioned.
  • the curing accelerator may be used alone or in combination of two or more.
  • the amount is 0.1 parts by mass to 30 parts by mass with respect to 100 parts by mass of the resin component (that is, the total of the resin and the curing agent). It is preferably part, and more preferably 1 part by mass to 15 parts by mass. If the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, it tends to be cured well in a short time. If the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing rate tends to be too fast to obtain a good molded product.
  • the epoxy resin composition according to the first embodiment contains various additives such as an ion exchanger, a mold release agent, a flame retardant, a colorant, and a stress relaxation agent, which are exemplified below, in addition to the components described above. It is also good.
  • the epoxy resin composition according to the first embodiment may contain various additives well known in the art, as needed, in addition to the additives exemplified below.
  • the epoxy resin composition according to the first embodiment may contain an ion exchanger.
  • ion exchange is performed from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device provided with the element to be sealed. It is preferable to contain a body.
  • the ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples thereof include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
  • the ion exchangers may be used alone or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.
  • the content thereof is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions.
  • the amount is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the resin component.
  • the epoxy resin composition according to the first embodiment may contain a release agent from the viewpoint of obtaining good releasability with the mold at the time of molding.
  • the release agent is not particularly limited, and conventionally known ones can be used. Specific examples thereof include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene.
  • the mold release agent may be used alone or in combination of two or more.
  • the amount thereof is preferably 0.01 parts by mass to 10 parts by mass with respect to 100 parts by mass of the resin component, and 0.1 parts by mass to 5 parts The parts by mass are more preferred.
  • the amount of the release agent is 0.01 parts by mass or more based on 100 parts by mass of the resin component, the releasability tends to be sufficiently obtained. If it is 10 parts by mass or less, better adhesion and curability tend to be obtained.
  • the epoxy resin composition according to the first embodiment may contain a flame retardant.
  • the flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specifically, organic or inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, metal hydroxides and the like can be mentioned.
  • the flame retardant may be used alone or in combination of two or more.
  • the amount thereof is not particularly limited as long as it is an amount sufficient to obtain a desired flame retardant effect.
  • the amount is preferably 1 part by mass to 30 parts by mass, and more preferably 2 parts by mass to 20 parts by mass with respect to 100 parts by mass of the resin component.
  • the epoxy resin composition according to the first embodiment may further contain a colorant.
  • colorants include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, red iron oxide and the like.
  • the content of the coloring agent can be appropriately selected according to the purpose and the like.
  • the colorants may be used alone or in combination of two or more.
  • the epoxy resin composition according to the first embodiment may contain a stress relaxation agent such as silicone oil or silicone rubber particles. By containing a stress relaxation agent, warpage of the package and occurrence of package cracks can be further reduced.
  • the stress relieving agent includes known stress relieving agents (flexible agents) generally used.
  • thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic Core particles such as rubber particles such as rubber, urethane rubber and silicone powder, methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer and methyl methacrylate-butyl acrylate copolymer
  • MBS methyl methacrylate-styrene-butadiene copolymer
  • MVS methyl methacrylate-silicone copolymer
  • methyl methacrylate-butyl acrylate copolymer The rubber particle etc. which have a structure are mentioned.
  • the stress relaxation agents may be used alone or in combination of two or more.
  • the epoxy resin composition according to the second embodiment includes an epoxy resin, a curing agent, an inorganic filler having a thermal conductivity of 20 W / (m ⁇ K) or more, and a chain hydrocarbon group having 6 or more carbon atoms. And a silane compound (specific silane compound) having a structure bonded to a silicon atom.
  • the thermal conductivity of the inorganic filler in the present disclosure is the thermal conductivity at room temperature (25 ° C.).
  • the epoxy resin composition according to the second embodiment may contain other components as needed.
  • the epoxy resin composition according to the second embodiment exhibits the above effect is not necessarily clear, but is presumed as follows.
  • a low molecular weight coupling agent such as a silane compound having a propyl group is used in the sealing resin composition to improve the dispersibility of the inorganic filler.
  • a silane compound having a longer chain hydrocarbon group is used, the compatibility of the inorganic filler with the resin is improved, and it is considered that the frictional resistance between the inorganic fillers is reduced.
  • Epoxy resin The epoxy resin composition according to the second embodiment contains an epoxy resin.
  • the details of the epoxy resin are the same as the details of the epoxy resin used in the epoxy resin composition according to the first embodiment.
  • the epoxy resin composition according to the second embodiment contains a curing agent.
  • the details of the curing agent are the same as the details of the curing agent used in the epoxy resin composition according to the first embodiment.
  • the epoxy resin composition according to the second embodiment contains an inorganic filler having a thermal conductivity of 20 W / (m ⁇ K) or more.
  • the material of the inorganic filler is not particularly limited as long as it has the above-described thermal conductivity.
  • an inorganic filler having a thermal conductivity of 20 W / (m ⁇ K) or more is an inorganic filler composed of a material having a thermal conductivity of 20 W / (m ⁇ K) or more at room temperature (25 ° C.).
  • the thermal conductivity of the inorganic filler can be obtained by measuring the thermal conductivity of the material constituting the inorganic filler by the xenon flash (Xe-flash) method or the heat ray method.
  • the thermal conductivity of the inorganic filler is 20 W / (m ⁇ K) or more, and preferably 25 W / (m ⁇ K) or more from the viewpoint of heat radiation when it is a cured product.
  • the upper limit of the thermal conductivity of the inorganic filler is not particularly limited, and may be 500 W / (m ⁇ K) or less, and may be 300 W / (m ⁇ K) or less.
  • the material of the inorganic filler having the thermal conductivity include alumina, silicon nitride, boron nitride, aluminum nitride, magnesium oxide and silicon carbide.
  • alumina is preferable from the viewpoints of sphericity, moisture resistance and the like.
  • the shape of the inorganic filler is not particularly limited, and is preferably spherical in terms of the filling property and the mold abradability.
  • the inorganic filler may be used alone or in combination of two or more.
  • two or more types of inorganic fillers are used in combination
  • two inorganic fillers having the same average particle size but different components are used.
  • the case where it uses more than a kind and the case where two or more kinds of inorganic fillers from which an average particle diameter and a kind differ differ are mentioned.
  • the content of the inorganic filler in the epoxy resin composition according to the second embodiment is not particularly limited. From the viewpoint of further improving the properties such as the thermal expansion coefficient, thermal conductivity, and elastic modulus of the cured product, the content of the inorganic filler is preferably 30% by volume or more of the entire epoxy resin composition, and 35% by volume The above is more preferable, 40% by volume or more is further preferable, 45% by volume or more is particularly preferable, and 50% by volume or more is extremely preferable.
  • the content of the inorganic filler is preferably 99% by volume or less, preferably 98% by volume or less, of the entire epoxy resin composition, and 97% by volume It is more preferable that The content of the inorganic filler in the epoxy resin composition according to the second embodiment is preferably 30% by volume to 99% by volume, more preferably 35% by volume to 99% by volume, and 40% by volume It is more preferably ⁇ 98 volume%, particularly preferably 45 volume% to 97 volume%, and most preferably 50 volume% to 97 volume%.
  • the content of the inorganic filler in the epoxy resin composition is measured as follows. First, the total mass of the cured product (epoxy resin molded product) of the epoxy resin composition is measured, and the epoxy resin molded product is calcined at 400 ° C. for 2 hours and then at 700 ° C. for 3 hours to evaporate the resin component and leave it Measure the mass of the inorganic filler. The volume is calculated from each mass obtained and each specific gravity, and the ratio of the volume of the inorganic filler to the total volume of the epoxy resin molded product is obtained to be the content of the inorganic filler.
  • the inorganic filler When the inorganic filler is particulate, its average particle size is not particularly limited.
  • the volume average particle diameter of the whole inorganic filler is preferably 80 ⁇ m or less, may be 50 ⁇ m or less, may be 40 ⁇ m or less, may be 30 ⁇ m or less, or 25 ⁇ m or less. It may be 20 ⁇ m or less, or 15 ⁇ m.
  • the volume average particle diameter of the entire inorganic filler is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and still more preferably 0.3 ⁇ m or more. When the volume average particle diameter of the inorganic filler is 0.1 ⁇ m or more, the increase in the viscosity of the epoxy resin composition tends to be further suppressed.
  • the volume average particle size of the inorganic filler should be measured as the particle size (D50) at which the accumulation from the small diameter side becomes 50% in the volume-based particle size distribution measured by the laser scattering diffraction particle size distribution measuring apparatus. Can.
  • the maximum particle diameter (cut point) of the inorganic filler is controlled from the viewpoint of the improvement of the filling property in the narrow gap when the epoxy resin composition is used for a mold underfill or the like.
  • the maximum particle size of the inorganic filler may be appropriately adjusted, and from the viewpoint of the filling property is preferably 105 ⁇ m or less, more preferably 75 ⁇ m or less, and may be 60 ⁇ m or less, 40 ⁇ m or less May be
  • the maximum particle diameter can be measured by a laser diffraction particle size distribution analyzer (manufactured by Horiba, Ltd., trade name: LA920).
  • the epoxy resin composition according to the second embodiment contains a specific silane compound.
  • the specific silane compound has a structure in which a chain hydrocarbon group having 6 or more carbon atoms (hereinafter, a chain hydrocarbon group having 6 or more carbon atoms is also simply referred to as a chain hydrocarbon group) is bonded to a silicon atom.
  • the chain hydrocarbon group may be branched or may have a substituent.
  • the number of carbon atoms of the chain hydrocarbon group means the number of carbon atoms of branched or substituted carbon atoms.
  • the chain hydrocarbon group may or may not contain unsaturated bonds, and preferably does not contain unsaturated bonds.
  • the specific silane compound is considered to function as a coupling agent of the inorganic filler in the epoxy resin composition.
  • the atom or atomic group other than the chain hydrocarbon group which is bonded to the silicon atom is not particularly limited, and each of them is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group, an aryl group, an aryloxy group or the like It may be. Among them, one or more alkoxy groups are preferably bonded in addition to a chain hydrocarbon group, and one chain hydrocarbon group and three alkoxy groups are bonded to a silicon atom. Is more preferred.
  • the carbon number of the chain hydrocarbon group in the specific silane compound is 6 or more, preferably 7 or more, and more preferably 8 or more, from the viewpoint of suppressing the viscosity.
  • the substituent is not particularly limited.
  • the substituent may be present at the end of the chain hydrocarbon group, or may be present at the side chain of the chain hydrocarbon group.
  • the chain hydrocarbon group preferably has at least one functional group (hereinafter also referred to as a specific functional group) selected from (meth) acryloyl group, epoxy group and alkoxy group, and (meth) acryloyl group and epoxy It is more preferable to have at least one functional group selected from groups, and it is further preferable to have a (meth) acryloyl group.
  • the specific functional group may be present at the end of the chain hydrocarbon group, or may be present at the side chain of the chain hydrocarbon group. From the viewpoint of suppressing the viscosity, the specific functional group is preferably present at the end of the chain hydrocarbon group.
  • the viscosity of the epoxy resin composition tends to further decrease. Although this reason is not necessarily clear, when the chain hydrocarbon group of the specific silane compound has the specific functional group, the compatibility between the specific functional group and the epoxy resin is enhanced, and the dispersibility of the epoxy resin and the inorganic filler is improved. It is presumed that it is to do.
  • the (meth) acryloyl group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group .
  • the chain hydrocarbon group may have a (meth) acryloyloxy group.
  • the chain hydrocarbon group preferably has a methacryloyloxy group.
  • the chain hydrocarbon group has an epoxy group
  • the epoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group.
  • the chain hydrocarbon group may have a glycidyloxy group, an alicyclic epoxy group, and the like.
  • the chain hydrocarbon group preferably has a glycidyloxy group.
  • the alkoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group, and the chain hydrocarbon group Preferably it is directly attached to
  • the alkoxy group is not particularly limited, and may be a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group or the like. Among them, from the viewpoint of easy availability, it is preferable that the chain hydrocarbon group has a methoxy group.
  • the equivalent (molecular weight / number of functional groups) of at least one functional group selected from the (meth) acryloyl group, the epoxy group, and the alkoxy group in the specific silane compound is not particularly limited. From the viewpoint of lowering the viscosity of the epoxy resin composition, it is preferably 200 g / eq to 420 g / eq, more preferably 210 g / eq to 405 g / eq, and 230 g / eq to 390 g / eq. More preferable.
  • silane compounds include hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, octyltriethoxysilane, 6-glycidoxyhexyltrimethoxysilane, 7-glycid Xiheptyl trimethoxysilane, 8-glycidoxyoctyl trimethoxysilane, 6- (meth) acryloxyhexyl trimethoxysilane, 7- (meth) acryloxy heptyl trimethoxysilane, 8- (meth) acryloxyoctyl trimethoxy Silane, decyltrimethoxysilane and the like can be mentioned.
  • 8-glycidoxyoctyltrimethoxysilane and 8-methacryloxyoctyltrimethoxysilane are preferable from the viewpoint of lowering the viscosity of the epoxy resin composition.
  • the specific silane compounds may be used alone or in combination of two or more.
  • the specific silane compounds may be synthesized or those commercially available.
  • Specific silane compounds commercially available include Shin-Etsu Chemical Co., Ltd. KBM-3063 (Hexyltrimethoxysilane), KBE-3063 (Hexyltriethoxysilane), KBE-3083 (Octyltriethoxysilane), KBM-4803 8-glycidoxyoctyltrimethoxysilane), KBM-5803 (8-methacryloxyoctyltrimethoxysilane), KBM-3103C (decyltrimethoxysilane), and the like.
  • the content of the specific silane compound in the epoxy resin composition according to the second embodiment is not particularly limited.
  • the content of the specific silane compound may be 0.01 parts by mass or more, and may be 0.02 parts by mass or more with respect to 100 parts by mass of the inorganic filler. Further, the content of the specific silane compound is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler.
  • the content of the specific silane compound is 0.01 parts by mass or more based on 100 parts by mass of the inorganic filler, a composition having a low viscosity tends to be obtained.
  • the content of the specific silane compound is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
  • the epoxy resin composition according to the second embodiment may further contain another coupling agent in addition to the specific silane compound.
  • Other coupling agents are not particularly limited as long as they are generally used in epoxy resin compositions.
  • Other coupling agents include silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane (except for specific silane compounds), titanium compounds, aluminum chelate compounds, aluminum / zirconium compounds, etc.
  • Known coupling agents may be used alone or in combination of two or more.
  • the total content of the specific silane compound and the other coupling agent is 100 parts by mass of the inorganic filler. It may be 0.01 parts by mass or more, and may be 0.02 parts by mass or more.
  • the total content of the specific silane compound and the other coupling agent is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler.
  • the total content of the specific silane compound and the other coupling agent is 0.01 parts by mass or more with respect to 100 parts by mass of the inorganic filler, a composition having a low viscosity tends to be obtained.
  • the total content of the specific silane compound and the other coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
  • the epoxy resin composition according to the second embodiment contains another coupling agent other than the specific silane compound, the specific silane compound and the other coupling agent from the viewpoint of exerting the function of the specific silane compound well.
  • the content of the other coupling agent to the total amount is preferably 90% by mass or less, more preferably 70% by mass or less, and still more preferably 50% by mass or less.
  • the epoxy resin composition according to the second embodiment may contain a curing accelerator.
  • the details of the curing accelerator are the same as the details of the curing accelerator used in the epoxy resin composition according to the first embodiment.
  • the epoxy resin composition according to the second embodiment may contain, in addition to the components described above, various additives such as an ion exchanger, a mold release agent, a flame retardant, a colorant, and a stress relaxation agent.
  • various additives such as an ion exchanger, a mold release agent, a flame retardant, a colorant, and a stress relaxation agent.
  • the details of the various additives are the same as the details of the various additives used in the epoxy resin composition according to the first embodiment.
  • the viscosity of the epoxy resin composition is not particularly limited. Since the likelihood of wire flow during molding varies depending on the molding method, the composition of the epoxy resin composition, and the like, it is preferable to adjust the viscosity to a desired viscosity according to the molding method, the composition of the epoxy resin composition, and the like. For example, in the case of molding an epoxy resin composition by a compression molding method, it is preferably 200 Pa ⁇ s or less at 175 ° C., more preferably 150 Pa ⁇ s or less, from the viewpoint of reducing wire flow, and 100 Pa ⁇ s.
  • the following is more preferable, 50 Pa ⁇ s or less is particularly preferable, 16 Pa ⁇ s or less, and 10 Pa ⁇ s or less.
  • the lower limit value of the viscosity is not particularly limited, and may be, for example, 5 Pa ⁇ s or more.
  • it is preferably 200 Pa ⁇ s or less at 175 ° C., more preferably 150 Pa ⁇ s or less, and 100 Pa -It is further preferable that it is s or less, 68 Pa-s or less may be sufficient, and 54 Pa-s or less may be sufficient.
  • the lower limit value of the viscosity is not particularly limited, and may be, for example, 5 Pa ⁇ s or more.
  • the viscosity of the epoxy resin composition can be measured by using a Koka flow tester (manufactured by Shimadzu Corporation).
  • the thermal conductivity of the epoxy resin composition as a cured product is not particularly limited. From the viewpoint of obtaining the desired heat dissipation, it may be 3.0 W / (m ⁇ K) or more, 4.0 W / (m ⁇ K) or more at room temperature (25 ° C.), or 5 .0 W / (m ⁇ K) or more, 6.0 W / (m ⁇ K) or more, 7.0 W / (m ⁇ K) or more, 8.0 W It may be / (m ⁇ K) or more.
  • the upper limit of the thermal conductivity is not particularly limited, and may be 9.0 W / (m ⁇ K).
  • the thermal conductivity of the cured product can be measured by a xenon flash (Xe-flash) method (manufactured by NETZSCH, trade name LFA 467 Hyper Flash device).
  • the method for preparing the epoxy resin composition according to the first embodiment and the second embodiment is not particularly limited.
  • a general method there is a method in which the respective components are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder or the like, cooled, and pulverized. More specifically, there can be mentioned, for example, a method of stirring and mixing the above-mentioned components, kneading with a kneader, roll, extruder or the like which has been heated to 70 ° C. to 140 ° C. in advance, cooling and grinding. .
  • the epoxy resin composition may be solid or liquid at normal temperature and normal pressure (for example, 25 ° C., atmospheric pressure), and is preferably solid.
  • the shape in the case where the epoxy resin composition is solid is not particularly limited, and examples thereof include powder, granules, tablets and the like. It is preferable from the viewpoint of handleability that the dimensions and mass when the epoxy resin composition is in the form of a tablet be such that the dimensions and mass meet the molding conditions of the package.
  • An electronic component device includes a device sealed by the epoxy resin composition according to the first and second embodiments described above.
  • a support member such as a lead frame, a wired tape carrier, a wiring board, glass, a silicon wafer, an organic substrate or the like, an element (an active element such as a semiconductor chip, a transistor, a diode or a thyristor, a capacitor, a resistor)
  • an element part obtained by mounting a passive element such as a coil, etc. is sealed with an epoxy resin composition.
  • the element is fixed on a lead frame, and the terminal portion and the lead portion of the element such as a bonding pad are connected by wire bonding, bumps or the like, and then sealed by transfer molding using an epoxy resin composition.
  • Inlined Package DIP
  • Plastic Leaded Chip Carrier PLCC
  • Quad Flat Package QFP
  • Small Outline Package SOP
  • Small Outline J-lead package SOJ
  • Thin Small Outline Package TSOP
  • General resin-sealed type IC such as TQFP (Thin Quad Flat Package)
  • a TCP (Tape Carrier Package) having a structure sealed with a resin composition; a device connected by wire bonding, flip chip bonding, solder or the like to a wiring formed on a support member is sealed with an epoxy resin composition Chip-on-board (COB) modules, hybrid ICs, multi-chip modules, etc.
  • COB Chip-on-board
  • a BGA All Grid Array
  • CSP Chip Size Package
  • MCP Multi Chip Package
  • an epoxy resin composition can be used suitably also in a printed wiring board.
  • H1 H-4 (trade name) manufactured by Meiwa Kasei Co., Ltd.
  • H2 Harddener 2 (H2)] SN-485 (trade name) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • H3 Harddener 3 (H3)] MEH-8151 SS (trade name) manufactured by Meiwa Chemical Co., Ltd.
  • Table 1 and Table 2 were blended in the amounts shown in the same table (unit: mass parts), thoroughly mixed by a mixer, and then melt-kneaded at 100 ° C. for 2 minutes using a twin-screw kneader. Next, the melt was cooled, and then solidified to obtain a powdery epoxy resin composition by grinding into a powder.
  • the blank indicates that the component is not blended, and "-" indicates that the evaluation has not been performed.
  • the produced epoxy resin composition was evaluated by the various tests shown below. The evaluation results are shown in Tables 1 and 2.
  • molding of the epoxy resin composition as described in Examples A-1 to A-7 and Comparative Examples A-1 to A-3 uses a compression molding machine, and Examples A-8 to A-17 and Comparative Example A are used.
  • a transfer molding machine was used for the molding of -4 to A-5.
  • the molding temperature is 175 ° C. by a transfer molding machine (manual press Y-1 manufactured by TOWA Co., Ltd.)
  • the package was sealed under a molding condition of 120 seconds and post-cured at 175 ° C. for 5 hours to obtain a semiconductor device.
  • This semiconductor device is a ball grid array (BGA) package (resin-encapsulated portion size: 50 mm ⁇ 50 mm ⁇ thickness 0.7 mm), and the chip size is 7.5 mm ⁇ 7.5 mm.
  • BGA ball grid array
  • the wire has a gold wire diameter of 22 ⁇ m and an average gold wire length of 3 mm. Then, using the soft X-ray analyzer, the produced package was observed for the deformed state of the gold wire, and the presence or absence of the deformation was examined.
  • the flip chip bump size is 60 ⁇ m which is a total of 45 ⁇ m of Cu pillars and 15 ⁇ m of solder bumps.
  • a material having a good filling property is A
  • a material having an unfilled portion such as a void is C.
  • the epoxy resin composition of the example containing a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom has a lower viscosity than the comparative example. It was found that the incidence of wire flow was reduced.
  • the epoxy resin composition of the example containing a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom has a filling property when it is used for a mold underfill by a compression molding method. It turned out that it is excellent. Further, in particular, when the carbon number of the chain hydrocarbon group is 8 or more, the heat conductivity of the cured product tends to be excellent.
  • Example according to the second embodiment >> ⁇ Production of Resin Composition> First, each component shown below was prepared.
  • the thermal conductivity of the inorganic fillers 1 to 3 is all 20 W / (m ⁇ K) or more.
  • Table 3 and Table 4 were blended in the amounts shown in the same table (unit: mass parts), sufficiently mixed by a mixer, and then melt-kneaded at 100 ° C. for 2 minutes using a twin-screw kneader. Next, the melt was cooled, and then solidified to obtain a powdery epoxy resin composition by grinding into a powder.
  • the blank indicates that the component is not blended, and "-" indicates that the evaluation has not been performed.
  • the produced epoxy resin composition was evaluated by the various tests shown below. The evaluation results are shown in Tables 3 and 4.
  • a transfer molding machine was used for molding of Examples B-1 to B-10 and Comparative Examples B-1 to B-2.
  • the package is sealed with a transfer molding machine (manual press Y-1 manufactured by TOWA Co., Ltd.) at a molding temperature of 175 ° C. and a molding time of 120 seconds, 175 ° C.
  • the semiconductor device was obtained by post-curing for 5 hours.
  • This semiconductor device is a ball grid array (BGA) package (resin-encapsulated portion size: 50 mm ⁇ 50 mm ⁇ thickness 0.7 mm), and the chip size is 7.5 mm ⁇ 7.5 mm.
  • the wire has a gold wire diameter of 22 ⁇ m and an average gold wire length of 3 mm. Then, using the soft X-ray analyzer, the produced package was observed for the deformed state of the gold wire, and the presence or absence of the deformation was examined.
  • the epoxy resin composition of the examples containing alumina and a silane compound having a structure in which a linear hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom has a low viscosity and a cured product. It was found that the thermal conductivity was excellent when In particular, when the carbon number of the chain hydrocarbon group is 8 or more, the thermal conductivity of the cured product is improved.

Abstract

This epoxy resin composition contains an epoxy resin, a curing agent, an inorganic filler, and a silane compound which has a structure wherein a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom.

Description

エポキシ樹脂組成物、及び電子部品装置Epoxy resin composition and electronic component device
 本開示は、エポキシ樹脂組成物、及び電子部品装置に関する。 The present disclosure relates to an epoxy resin composition and an electronic component device.
 従来から、トランジスタ、IC(Integrated Circuit)等の電子部品装置の素子封止の分野では生産性、コスト等の面から樹脂封止が主流となっている。また近年、電子部品のプリント配線板への高密度実装化が進んでいる。これに伴い、半導体装置は従来のピン挿入型のパッケージから、表面実装型のパッケージが主流になっている。表面実装型のIC、LSI(Large-Scale Integration)等は、実装密度を高くし且つ実装高さを低くするために、薄型且つ小型のパッケージになっており、素子のパッケージに対する占有体積が大きくなり、パッケージの肉厚は非常に薄くなっている。 Conventionally, in the field of element sealing of electronic component devices such as transistors and integrated circuits (ICs), resin sealing has become mainstream in terms of productivity, cost and the like. In recent years, high density mounting of electronic components on printed wiring boards has been advanced. Along with this, the semiconductor device has mainly become a surface mount type package from a conventional pin insertion type package. Surface-mounted ICs, LSIs (Large-Scale Integration), etc. are thin and small packages in order to increase the mounting density and lower the mounting height, and the occupied volume of the device to the package increases. , The thickness of the package is very thin.
 また、素子の多機能化及び大容量化によって、チップ面積の増大及び多ピン化が進み、さらにはパッド(電極)数の増大によって、パッドピッチの縮小化とパッド寸法の縮小化、いわゆる狭パッドピッチ化も進んでいる。また、さらなる小型軽量化に対応すべく、パッケージの形態もQFP(Quad Flat Package)、SOP(Small Outline Package)等から、より多ピン化に対応しやすく、より高密度実装が可能なCSP(Chip Size Package)、BGA(Ball Grid Array)等へ移行しつつある。 Also, with the increase in the number of functions and capacity of elements, chip area increases and pin number increases, and further, the number of pads (electrodes) reduces the pad pitch and pad size, so-called narrow pads. Pitching is also in progress. Also, in order to correspond to further reduction in size and weight, the form of package is also easy to correspond to the increase in the number of pins from QFP (Quad Flat Package), SOP (Small Outline Package), etc. CSP (Chip) We are moving to Size Package), BGA (Ball Grid Array) and so on.
 電子部品装置の樹脂封止の方法としては、通常用いられているトランスファー成形法の他、圧縮成形法等が挙げられる(例えば、特許文献1参照)。圧縮成形法は、金型内に保持された被封止物(半導体チップ等の電子素子が設けられた基板等)に対向させるようにして粉粒状樹脂組成物を供給し、被封止物と粉粒状樹脂組成物とを圧縮することで樹脂封止を行う方法である。 As a resin sealing method of the electronic component device, a compression molding method and the like can be mentioned in addition to a transfer molding method which is usually used (for example, see Patent Document 1). In the compression molding method, the powdery particulate resin composition is supplied to be opposed to the object to be sealed (such as a substrate provided with an electronic element such as a semiconductor chip) held in a mold, and the object to be sealed is It is the method of resin-sealing by compressing with a granular resin composition.
 パッケージの多機能化に伴い、内蔵するワイヤが細線化しているため、封止方法として通常用いられているトランスファー成形においては、ワイヤ流れの発生等を抑えることが課題となっている。一方、圧縮成形法によっても充填性等の観点から、粘度を抑えることが望まれている。 Since the wire to be incorporated is thinned along with the multifunctionalization of the package, it is an issue to suppress the generation of the wire flow and the like in the transfer molding generally used as a sealing method. On the other hand, it is also desired to suppress the viscosity from the viewpoint of the filling property and the like even by the compression molding method.
 また、電子部品装置の小型化及び高密度化に伴って発熱量が増大する傾向にあり、いかに熱を放散させるかが重要な課題となっている。そこで、封止材に熱伝導率の高い無機充填材を混合して熱伝導性を高めることが行われている。 In addition, the amount of heat generation tends to increase with the miniaturization and densification of electronic component devices, and how to dissipate heat is an important issue. Therefore, the heat conductivity is enhanced by mixing an inorganic filler having a high heat conductivity with the sealing material.
 封止材に無機充填材を混合する場合、その量が増加するに従って封止材の粘度が上昇し、流動性が低下して、充填不良、ワイヤ流れ等の問題を生じるおそれがある。そこで、特定のリン化合物を硬化促進剤として用いることで、封止材の流動性を高める方法が提案されている(例えば、特許文献2参照)。 In the case of mixing the inorganic filler with the sealing material, the viscosity of the sealing material increases as the amount thereof increases, and the flowability may decrease, which may cause problems such as filling failure and wire flow. Then, the method of improving the fluidity | liquidity of a sealing material is proposed by using a specific phosphorus compound as a hardening accelerator (for example, refer patent document 2).
特開2008-279599号公報JP 2008-279599 A 特開平9-157497号公報Japanese Patent Laid-Open No. 9-157497
 しかしながら、従来の方法では、封止材として使用される樹脂組成物の粘度の抑制には改善の余地があった。 However, in the conventional method, there is room for improvement in suppression of the viscosity of the resin composition used as a sealing material.
 また、電子部品装置の小型化及び高密度化のいっそうの進展に伴い、より高いレベルで熱伝導性を維持しつつ、粘度の上昇が抑えられた封止材として使用可能な樹脂組成物の提供が望まれている。 Moreover, with the further development of miniaturization and densification of electronic component devices, there is provided a resin composition which can be used as a sealing material in which an increase in viscosity is suppressed while maintaining thermal conductivity at a higher level. Is desired.
 上記事情に鑑み、本開示の第1の実施形態は、低粘度のエポキシ樹脂組成物、及び該エポキシ樹脂組成物によって封止された素子を備える電子部品装置を提供することを課題とする。 In view of the above circumstances, the first embodiment of the present disclosure has an object to provide an electronic component device including an epoxy resin composition having a low viscosity and an element sealed by the epoxy resin composition.
 本開示の第2の実施形態は、高い熱伝導性を有し、粘度の上昇が抑制されたエポキシ樹脂組成物、及びこれを用いて封止された素子を備える電子部品装置を提供することを課題とする。 A second embodiment of the present disclosure is to provide an epoxy resin composition having high thermal conductivity and suppressing an increase in viscosity, and an electronic component device provided with a device sealed therewith. It will be an issue.
 本開示の実施形態には以下の態様が含まれる。
<1> エポキシ樹脂と、硬化剤と、無機充填材と、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物とを含有する、エポキシ樹脂組成物。
<2> 前記鎖状炭化水素基が、(メタ)アクリロイル基、エポキシ基、及びアルコキシ基から選択される少なくとも1つの官能基を有する、<1>に記載のエポキシ樹脂組成物。
<3> 前記鎖状炭化水素基が、(メタ)アクリロイル基を有する、<1>又は<2>に記載のエポキシ樹脂組成物。
<4> 前記無機充填材の含有率が30体積%~99体積%である、<1>~<3>のいずれか1項に記載のエポキシ樹脂組成物。
<5> 前記無機充填材の熱伝導率が20W/(m・K)以上である、<1>~<4>のいずれか1項に記載のエポキシ樹脂組成物。
<6> 熱伝導率が20W/(m・K)以上の前記無機充填材が、アルミナ、窒化ケイ素、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、及び炭化ケイ素からなる群から選択される少なくとも1つを含む、<5>に記載のエポキシ樹脂組成物。
<7> <1>~<6>のいずれか1項に記載のエポキシ樹脂組成物によって封止された素子を備える電子部品装置。
Embodiments of the present disclosure include the following aspects.
The epoxy resin composition containing a <1> epoxy resin, a hardening | curing agent, an inorganic filler, and the silane compound which has a structure which the C6-C6 or more chain | strand-shaped hydrocarbon group couple | bonded with the silicon atom.
<2> The epoxy resin composition according to <1>, wherein the linear hydrocarbon group has at least one functional group selected from a (meth) acryloyl group, an epoxy group, and an alkoxy group.
<3> The epoxy resin composition according to <1> or <2>, wherein the linear hydrocarbon group has a (meth) acryloyl group.
<4> The epoxy resin composition according to any one of <1> to <3>, wherein the content of the inorganic filler is 30% by volume to 99% by volume.
<5> The epoxy resin composition according to any one of <1> to <4>, wherein the thermal conductivity of the inorganic filler is 20 W / (m · K) or more.
<6> The inorganic filler having a thermal conductivity of 20 W / (m · K) or more is at least one selected from the group consisting of alumina, silicon nitride, boron nitride, aluminum nitride, magnesium oxide, and silicon carbide The epoxy resin composition as described in <5> containing.
<7> An electronic component device comprising an element sealed with the epoxy resin composition according to any one of <1> to <6>.
 本開示の第1の実施形態によれば、低粘度のエポキシ樹脂組成物、及びエポキシ樹脂組成物によって封止された素子を備える電子部品装置が提供される。 According to a first embodiment of the present disclosure, there is provided an electronic component device comprising a low viscosity epoxy resin composition and a device sealed with the epoxy resin composition.
 本開示の第2の実施形態によれば、高い熱伝導性を有し、粘度の上昇が抑制されたエポキシ樹脂組成物、及びこれを用いて封止された素子を備える電子部品装置が提供される。 According to a second embodiment of the present disclosure, there is provided an epoxy resin composition having high thermal conductivity and suppressing an increase in viscosity, and an electronic component device provided with a device sealed therewith. Ru.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において、(メタ)アクリロイル基とはアクリロイル基及びメタクリロイル基の少なくとも一方を意味する。
Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
In the present disclosure, a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the (meth) acryloyl group means at least one of an acryloyl group and a methacryloyl group.
<第1の実施形態に係るエポキシ樹脂組成物>
 第1の実施形態に係るエポキシ樹脂組成物は、エポキシ樹脂と、硬化剤と、無機充填材と、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物とを含有する。なお、本開示において、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物を、「特定シラン化合物」ともいう。第1の実施形態に係るエポキシ樹脂組成物は必要に応じてその他の成分を含有してもよい。
<Epoxy resin composition according to the first embodiment>
The epoxy resin composition according to the first embodiment contains an epoxy resin, a curing agent, an inorganic filler, and a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom. Do. In the present disclosure, a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom is also referred to as a “specific silane compound”. The epoxy resin composition according to the first embodiment may contain other components as needed.
 エポキシ樹脂組成物が上記構成を有すると、低粘度のエポキシ樹脂組成物を得ることができる。エポキシ樹脂組成物が上記構成を有すると低粘度となる詳細な理由は必ずしも明らかではないが、以下のように推測される。通常、封止用樹脂組成物には無機充填材の分散性向上のため、プロピル基を有するシラン化合物等の低分子量のカップリング剤が使用される。これに対して、より長鎖の炭化水素基を有するシラン化合物を用いると、無機充填材の樹脂に対する相溶性が向上し、無機充填材同士の摩擦抵抗が低減されると考えられる。この結果、特定シラン化合物を使用せずに低分子量のカップリング剤を使用する場合と比べて、溶融粘度が低下すると推測される。また、低粘度のエポキシ樹脂組成物を用いることで、ワイヤ流れが抑制された素子及びこれを備える電子部品装置が得られると推測される。
 以下、第1の実施形態に係るエポキシ樹脂組成物の各成分について詳述する。
When the epoxy resin composition has the above configuration, a low viscosity epoxy resin composition can be obtained. Although the detailed reason which becomes low viscosity when an epoxy resin composition has the said structure is not necessarily clear, it is guessed as follows. Usually, a low molecular weight coupling agent such as a silane compound having a propyl group is used in the sealing resin composition to improve the dispersibility of the inorganic filler. On the other hand, when a silane compound having a longer chain hydrocarbon group is used, the compatibility of the inorganic filler with the resin is improved, and it is considered that the frictional resistance between the inorganic fillers is reduced. As a result, it is presumed that the melt viscosity is reduced as compared with the case where a low molecular weight coupling agent is used without using a specific silane compound. Moreover, it is speculated that by using a low viscosity epoxy resin composition, an element in which a wire flow is suppressed and an electronic component device including the element can be obtained.
Hereinafter, each component of the epoxy resin composition which concerns on 1st Embodiment is explained in full detail.
(エポキシ樹脂)
 第1の実施形態に係るエポキシ樹脂組成物は、エポキシ樹脂を含有する。エポキシ樹脂は、分子中にエポキシ基を有するものであればその種類は特に制限されない。
 エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはシリコーン樹脂のエポキシ化物、アクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Epoxy resin)
The epoxy resin composition according to the first embodiment contains an epoxy resin. The type of epoxy resin is not particularly limited as long as it has an epoxy group in the molecule.
Specifically, the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcine, catechol, bisphenol A, bisphenol F and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. Novolak type epoxy resin (phenol novolac type epoxy resin) which is obtained by epoxidizing a novolac resin obtained by condensation or cocondensation of a phenolic compound of the type with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde or propionaldehyde under acidic catalyst Epoxy resin, ortho cresol novolac epoxy resin, etc.); condensation of the above-mentioned phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst Is a triphenylmethane type epoxy resin obtained by epoxidizing a triphenylmethane type phenol resin obtained by cocondensation; a novolak obtained by cocondensing the above-mentioned phenol compound and naphthol compound with an aldehyde compound under an acidic catalyst Copolymer-type epoxy resin which is obtained by epoxidizing resin; diphenylmethane-type epoxy resin which is diglycidyl ether such as bisphenol A and bisphenol F; biphenyl-type epoxy resin which is diglycidyl ether of alkyl-substituted or unsubstituted biphenol; stilbene Stilbene type epoxy resin which is a diglycidyl ether of a phenolic compound; sulfur atom-containing epoxy resin which is a diglycidyl ether such as bisphenol S; butanediol, polyethylene glycol, polypropylene Epoxy resins which are glycidyl ethers of alcohols such as glycols; glycidyl ester type epoxy resins which are glycidyl esters of polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; nitrogen such as aniline, diaminodiphenylmethane and isocyanuric acid A glycidyl amine type epoxy resin in which active hydrogen bonded to an atom is substituted with a glycidyl group; a dicyclopentadiene type epoxy resin in which a co-condensed resin of dicyclopentadiene and a phenol compound is epoxidized; Vinylcyclohexene diepoxide that is epoxidized with 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5, Alicyclic epoxy resins such as -spiro (3,4-epoxy) cyclohexane-m-dioxane; paraxylylene modified epoxy resins which are glycidyl ethers of paraxylylene modified phenolic resins; metaxylylene modified epoxy resins which are glycidyl ethers of metaxylylene modified phenolic resins; Terpene-modified epoxy resin which is a glycidyl ether of terpene-modified phenolic resin; dicyclopentadiene-modified epoxy resin which is a glycidyl ether of dicyclopentadiene-modified phenolic resin; cyclopentadiene-modified epoxy resin which is a glycidyl ether of cyclopentadiene-modified phenolic resin; Polycyclic aromatic ring modified epoxy resin which is a glycidyl ether of aromatic ring modified phenolic resin; Glycidyl ether of naphthalene ring containing phenolic resin Naphthalene type epoxy resin which is a terpolymer; halogenated phenol novolac type epoxy resin; hydroquinone type epoxy resin; trimethylolpropane type epoxy resin; linear aliphatic epoxy resin obtained by oxidizing an olefin bond with a peroxy acid such as peracetic acid; An aralkyl type epoxy resin which is obtained by epoxidizing an aralkyl type phenol resin such as a phenol aralkyl resin or a naphthol aralkyl resin; Further, epoxy resin of silicone resin, epoxy resin of acrylic resin, etc. may be mentioned as epoxy resin. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性及び電気的信頼性等の各種特性バランスの観点からは、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 The epoxy equivalent (molecular weight / epoxy group number) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq.
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。 Let the epoxy equivalent of an epoxy resin be a value measured by the method according to JISK7236: 2009.
 エポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、エポキシ樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 When the epoxy resin is solid, its softening point or melting point is not particularly limited. The temperature is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and more preferably 50 ° C. to 130 ° C. from the viewpoint of handleability in preparation of the epoxy resin composition.
 エポキシ樹脂の融点は示差走査熱量測定(DSC)で測定される値とし、エポキシ樹脂の軟化点はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。 The melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234: 1986.
 エポキシ樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましく、2質量%~20質量%であることがさらに好ましい。 The content of the epoxy resin in the epoxy resin composition is preferably 0.5% by mass to 50% by mass, and preferably 2% by mass to 30% by mass, in view of strength, fluidity, heat resistance, moldability, etc. The content is more preferably 2% by mass to 20% by mass.
(硬化剤)
 第1の実施形態に係るエポキシ樹脂組成物は、硬化剤を含有する。硬化剤の種類は特に制限されず、樹脂の種類、エポキシ樹脂組成物の所望の特性等に応じて選択できる。
 硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。耐熱性向上の観点からは、硬化剤は、フェノール性水酸基を分子中に有するもの(フェノール硬化剤)が好ましい。
(Hardening agent)
The epoxy resin composition according to the first embodiment contains a curing agent. The type of curing agent is not particularly limited, and can be selected according to the type of resin, the desired properties of the epoxy resin composition, and the like.
As a curing agent, a phenol curing agent, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent, a blocked isocyanate curing agent and the like can be mentioned. From the viewpoint of improving heat resistance, the curing agent is preferably one having a phenolic hydroxyl group in the molecule (phenol curing agent).
 フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン及び/又はメタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specifically as phenolic curing agents, polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenols; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol And at least one phenolic compound selected from the group consisting of phenol compounds such as aminophenol and naphthol compounds such as .alpha.-naphthol, .beta.-naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde Novolak-type phenol resin obtained by condensation or co-condensation with a compound under acidic catalyst; the above-mentioned phenolic compound, dimethoxy para Aralkyl type phenol resin such as phenolaralkyl resin, naphtholaralkyl resin, etc. synthesized from xylene, bis (methoxymethyl) biphenyl, etc .; paraxylylene and / or metaxylylene modified phenolic resin; melamine modified phenolic resin; terpene modified phenolic resin; Dicyclopentadiene-type phenolic resin and dicyclopentadiene-type naphthol resin synthesized from the compound and dicyclopentadiene by copolymerization; cyclopentadiene-modified phenolic resin; polycyclic aromatic ring-modified phenolic resin; biphenyl-type phenolic resin; Triphenylmethane-type phenol obtained by condensation or co-condensation of a compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst Fats; including these two or more phenolic resin obtained by co-polymerization. These phenol curing agents may be used alone or in combination of two or more.
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。 The functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, electrical reliability, etc., 70 g / eq to 1000 g / eq is preferable, and 80 g / eq to 500 g / eq is more preferable.
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、JIS K 0070:1992に準じた方法により測定される値とする。 The functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is a value measured by a method according to JIS K 0070: 1992.
 硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、エポキシ樹脂組成物の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。 When the curing agent is solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability at the time of production of the epoxy resin composition, it is more preferably 50 ° C. to 130 ° C.
 硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。 The melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
 エポキシ樹脂と硬化剤との当量比、すなわちエポキシ樹脂中のエポキシ基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中のエポキシ基数)は、特に制限されない。それぞれの未反応分を少なく抑える関連からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。 The equivalent ratio of the epoxy resin to the curing agent, that is, the ratio of the number of functional groups in the curing agent to the number of epoxy groups in the epoxy resin (the number of functional groups in the curing agent / the number of epoxy groups in the epoxy resin) is not particularly limited. In order to reduce the amount of each unreacted component, the ratio is preferably in the range of 0.5 to 2.0, and more preferably in the range of 0.6 to 1.3. It is more preferable to set in the range of 0.8 to 1.2 from the viewpoint of moldability and reflow resistance.
(無機充填材)
 第1の実施形態に係るエポキシ樹脂組成物は、無機充填材を含有する。無機充填材の材質は特に制限されない。
 無機充填材の材質として具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化マグネシウム、炭化ケイ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。
 無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。
(Inorganic filler)
The epoxy resin composition according to the first embodiment contains an inorganic filler. The material of the inorganic filler is not particularly limited.
Specifically as the material of the inorganic filler, fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon silicate, silicon nitride, aluminum nitride, boron nitride, magnesium oxide, silicon carbide, beryllia, zirconia And inorganic materials such as zircon, forsterite, steatite, spinel, mullite, titania, talc, clay and mica. You may use the inorganic filler which has a flame-retardant effect. Examples of the inorganic filler having a flame retardant effect include composite metal hydroxides such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like.
Among the inorganic fillers, silica such as fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity.
 無機充填材の形状は特に制限されず、充填性及び金型摩耗性の点からは、球形が好ましい。 The shape of the inorganic filler is not particularly limited, and is preferably spherical in terms of the filling property and the mold abradability.
 無機充填材は1種を単独で用いても2種以上を併用してもよい。なお、「無機充填材を2種以上併用する」とは、例えば、同じ成分で平均粒子径が異なる無機充填材を2種類以上用いる場合、平均粒子径が同じで成分の異なる無機充填材を2種類以上用いる場合並びに平均粒子径及び種類の異なる無機充填材を2種類以上用いる場合が挙げられる。 The inorganic filler may be used alone or in combination of two or more. In addition, when "two or more types of inorganic fillers are used in combination", for example, when two or more types of inorganic fillers having different average particle sizes with the same component are used, two inorganic fillers having the same average particle size but different components are used. The case where it uses more than a kind and the case where two or more kinds of inorganic fillers from which an average particle diameter and a kind differ differ are mentioned.
 第1の実施形態に係るエポキシ樹脂組成物における無機充填材の含有率は、特に制限されない。硬化物の熱膨張係数、熱伝導率、弾性率等の特性をより向上させる観点からは、無機充填材の含有率はエポキシ樹脂組成物全体の30体積%以上であることが好ましく、35体積%以上であることがより好ましく、40体積%以上であることがさらに好ましく、45体積%以上であることが特に好ましく、50体積%以上であることが極めて好ましい。流動性の向上、粘度の低下等の観点からは、無機充填材の含有率はエポキシ樹脂組成物全体の99体積%以下であることが好ましく、98体積%以下であることが好ましく、97体積%以下であることがより好ましい。
 また、例えば、エポキシ樹脂組成物を圧縮成形用に用いる場合には、無機充填材の含有率はエポキシ樹脂組成物全体の70体積%~99体積%としてもよく、80体積%~99体積%としてもよく、83体積%~99体積%としてもよく、85体積%~99体積%としてもよい。
The content of the inorganic filler in the epoxy resin composition according to the first embodiment is not particularly limited. From the viewpoint of further improving the properties such as the thermal expansion coefficient, thermal conductivity, and elastic modulus of the cured product, the content of the inorganic filler is preferably 30% by volume or more of the entire epoxy resin composition, and 35% by volume The above is more preferable, 40% by volume or more is further preferable, 45% by volume or more is particularly preferable, and 50% by volume or more is extremely preferable. From the viewpoint of improving the flowability, decreasing the viscosity, etc., the content of the inorganic filler is preferably 99% by volume or less, preferably 98% by volume or less, of the entire epoxy resin composition, and 97% by volume It is more preferable that
For example, when using an epoxy resin composition for compression molding, the content of the inorganic filler may be 70% by volume to 99% by volume of the entire epoxy resin composition, and 80% by volume to 99% by volume. It may be 83% by volume to 99% by volume, or 85% by volume to 99% by volume.
 エポキシ樹脂組成物中の無機充填材の含有率は、次のようにして測定される。まず、エポキシ樹脂組成物の硬化物(エポキシ樹脂成形物)の総質量を測定し、該エポキシ樹脂成形物を400℃で2時間、次いで700℃で3時間焼成し、樹脂成分を蒸発させ、残存した無機充填材の質量を測定する。得られた各質量及びそれぞれの比重から体積を算出し、エポキシ樹脂成形物の総体積に対する無機充填材の体積の割合を得て、無機充填材の含有率とする。 The content of the inorganic filler in the epoxy resin composition is measured as follows. First, the total mass of the cured product (epoxy resin molded product) of the epoxy resin composition is measured, and the epoxy resin molded product is calcined at 400 ° C. for 2 hours and then at 700 ° C. for 3 hours to evaporate the resin component and leave it Measure the mass of the inorganic filler. The volume is calculated from each mass obtained and each specific gravity, and the ratio of the volume of the inorganic filler to the total volume of the epoxy resin molded product is obtained as the content of the inorganic filler.
 無機充填材が粒子状である場合、その平均粒子径は、特に制限されない。例えば、無機充填材全体の体積平均粒子径は80μm以下であることが好ましく、50μm以下であってもよく、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよく、20μm以下であってもよく、15μmであってもよい。また、無機充填材全体の体積平均粒子径が、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることがさらに好ましい。無機充填材の体積平均粒子径が0.1μm以上であると、エポキシ樹脂組成物の粘度の上昇がより抑制される傾向がある。体積平均粒子径が80μm以下であると、狭い隙間への充填性がより向上する傾向にある。無機充填材の体積平均粒子径は、レーザー散乱回折法粒度分布測定装置により測定された体積基準の粒度分布において、小径側からの累積が50%となるときの粒子径(D50)として測定することができる。 When the inorganic filler is particulate, its average particle size is not particularly limited. For example, the volume average particle diameter of the whole inorganic filler is preferably 80 μm or less, may be 50 μm or less, may be 40 μm or less, may be 30 μm or less, or 25 μm or less. It may be 20 μm or less, or 15 μm. Further, the volume average particle diameter of the entire inorganic filler is preferably 0.1 μm or more, more preferably 0.2 μm or more, and still more preferably 0.3 μm or more. When the volume average particle diameter of the inorganic filler is 0.1 μm or more, the increase in the viscosity of the epoxy resin composition tends to be further suppressed. When the volume average particle diameter is 80 μm or less, the filling property in the narrow gap tends to be further improved. The volume average particle size of the inorganic filler should be measured as the particle size (D50) at which the accumulation from the small diameter side becomes 50% in the volume-based particle size distribution measured by the laser scattering diffraction particle size distribution measuring apparatus. Can.
 無機充填材は、エポキシ樹脂組成物をモールドアンダーフィル用に使用する場合等における、狭い隙間への充填性の向上の観点から、最大粒子径(カットポイント)が制御されていることが好ましい。無機充填材の最大粒子径は適宜調整してよく、充填性の観点からは、105μm以下であることが好ましく、75μm以下であることがより好ましく、60μm以下であってもよく、40μm以下であってもよい。最大粒子径はレーザー回折粒度分布計(株式会社堀場製作所製、商品名:LA920)により測定することができる。 It is preferable that the maximum particle diameter (cut point) of the inorganic filler is controlled from the viewpoint of the improvement of the filling property in the narrow gap when the epoxy resin composition is used for a mold underfill or the like. The maximum particle size of the inorganic filler may be appropriately adjusted, and from the viewpoint of the filling property is preferably 105 μm or less, more preferably 75 μm or less, and may be 60 μm or less, 40 μm or less May be The maximum particle diameter can be measured by a laser diffraction particle size distribution analyzer (manufactured by Horiba, Ltd., trade name: LA920).
(特定シラン化合物)
 第1の実施形態に係るエポキシ樹脂組成物は、特定シラン化合物を含有する。特定シラン化合物は、炭素数6以上の鎖状炭化水素基(以下、炭素数6以上の鎖状炭化水素基を、単に鎖状炭化水素基ともいう)がケイ素原子に結合した構造を有する。鎖状炭化水素基は分岐していてもよく、置換基を有していてもよい。なお、本開示において、鎖状炭化水素基の炭素数とは、分岐又は置換基の炭素を含まない炭素数を意味する。鎖状炭化水素基は、不飽和結合を含んでいても含んでいなくてもよく、不飽和結合を含まないことが好ましい。
 特定シラン化合物は、エポキシ樹脂組成物において、無機充填材のカップリング剤として機能すると考えられる。
(Specific silane compound)
The epoxy resin composition according to the first embodiment contains a specific silane compound. The specific silane compound has a structure in which a chain hydrocarbon group having 6 or more carbon atoms (hereinafter, a chain hydrocarbon group having 6 or more carbon atoms is also simply referred to as a chain hydrocarbon group) is bonded to a silicon atom. The chain hydrocarbon group may be branched or may have a substituent. In the present disclosure, the number of carbon atoms of the chain hydrocarbon group means the number of carbon atoms of branched or substituted carbon atoms. The chain hydrocarbon group may or may not contain unsaturated bonds, and preferably does not contain unsaturated bonds.
The specific silane compound is considered to function as a coupling agent of the inorganic filler in the epoxy resin composition.
 特定シラン化合物における、ケイ素原子に結合する鎖状炭化水素基の数は、1~4であればよく、1~3であることが好ましく、1又は2であることがより好ましく、1であることがさらに好ましい。 In the specific silane compound, the number of chain hydrocarbon groups bonded to a silicon atom may be 1 to 4, preferably 1 to 3, more preferably 1 or 2, and 1 Is more preferred.
 特定シラン化合物中におけるケイ素原子に結合する鎖状炭化水素基の数が1~3である場合、ケイ素原子に結合する、鎖状炭化水素基以外の原子又は原子団は特に制限されず、それぞれ独立に、水素原子、炭素数1~5のアルキル基、アルコキシ基、アリール基、アリールオキシ基等であってもよい。なかでも、鎖状炭化水素基以外に1又は複数のアルコキシが結合していることが好ましく、1個の鎖状炭化水素基と、3個のアルコキシ基とがケイ素原子に結合していることがより好ましい。 When the number of chain hydrocarbon groups bonded to a silicon atom in the specific silane compound is 1 to 3, the atoms or atom groups other than chain hydrocarbon groups bonded to a silicon atom are not particularly limited, and are independent of each other. And a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, an alkoxy group, an aryl group, an aryloxy group and the like. Among them, one or more alkoxy is preferably bonded in addition to the chain hydrocarbon group, and one chain hydrocarbon group and three alkoxy groups are bonded to a silicon atom. More preferable.
 特定シラン化合物の鎖状炭化水素基の炭素数は、6以上であり、粘度を抑える観点から、7以上であることが好ましく、8以上であることがより好ましい。特定シラン化合物の鎖状炭化水素基の炭素数の上限に特に制限はなく、樹脂への分散性、硬化物の物性バランス等の観点から、12以下であることが好ましく、11以下であることがより好ましく、10以下であることがさらに好ましい。 The carbon number of the chain hydrocarbon group in the specific silane compound is 6 or more, preferably 7 or more, and more preferably 8 or more, from the viewpoint of suppressing the viscosity. There is no particular limitation on the upper limit of the carbon number of the chain hydrocarbon group of the specific silane compound, and it is preferably 12 or less and 11 or less from the viewpoint of dispersibility in resin, balance of physical properties of cured product, etc. More preferably, it is 10 or less.
 鎖状炭化水素基が置換基を有する場合、置換基は特に限定されない。置換基は、鎖状炭化水素基の末端に存在していてもよく、鎖状炭化水素基の側鎖に存在していてもよい。 When the chain hydrocarbon group has a substituent, the substituent is not particularly limited. The substituent may be present at the end of the chain hydrocarbon group, or may be present at the side chain of the chain hydrocarbon group.
 鎖状炭化水素基は、(メタ)アクリロイル基、エポキシ基、及びアルコキシ基から選択される少なくとも1つの官能基(以下、特定官能基ともいう)を有することが好ましく、(メタ)アクリロイル基及びエポキシ基から選択される少なくとも1つの官能基を有することがより好ましく、(メタ)アクリロイル基を有することがさらに好ましい。特定官能基は、鎖状炭化水素基の末端に存在していてもよく、鎖状炭化水素基の側鎖に存在していてもよい。粘度を抑える観点からは、特定官能基は鎖状炭化水素基の末端に存在していることが好ましい。
 特定シラン化合物中の鎖状炭化水素基が特定官能基を有すると、エポキシ樹脂組成物の粘度がさらに低下する傾向にある。この理由は必ずしも明らかではないが、特定シラン化合物の鎖状炭化水素基が特定官能基を有すると、特定官能基とエポキシ樹脂との相溶性が高まり、エポキシ樹脂と無機充填材の分散性が向上するためであると推測される。
The chain hydrocarbon group preferably has at least one functional group (hereinafter also referred to as a specific functional group) selected from (meth) acryloyl group, epoxy group and alkoxy group, and (meth) acryloyl group and epoxy It is more preferable to have at least one functional group selected from groups, and it is further preferable to have a (meth) acryloyl group. The specific functional group may be present at the end of the chain hydrocarbon group, or may be present at the side chain of the chain hydrocarbon group. From the viewpoint of suppressing the viscosity, the specific functional group is preferably present at the end of the chain hydrocarbon group.
When the chain hydrocarbon group in the specific silane compound has a specific functional group, the viscosity of the epoxy resin composition tends to further decrease. Although this reason is not necessarily clear, when the chain hydrocarbon group of the specific silane compound has the specific functional group, the compatibility between the specific functional group and the epoxy resin is enhanced, and the dispersibility of the epoxy resin and the inorganic filler is improved. It is presumed that it is to do.
 鎖状炭化水素基が(メタ)アクリロイル基を有する場合、(メタ)アクリロイル基は鎖状炭化水素基に直接結合していてもよく、他の原子又は原子団を介して結合していてもよい。例えば、鎖状炭化水素基は(メタ)アクリロイルオキシ基を有していてもよい。なかでも、鎖状炭化水素基はメタクリロイルオキシ基を有することが好ましい。 When the chain hydrocarbon group has a (meth) acryloyl group, the (meth) acryloyl group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group . For example, the chain hydrocarbon group may have a (meth) acryloyloxy group. Among them, the chain hydrocarbon group preferably has a methacryloyloxy group.
 鎖状炭化水素基がエポキシ基を有する場合、エポキシ基は鎖状炭化水素基に直接結合していてもよく、他の原子又は原子団を介して結合していてもよい。例えば、鎖状炭化水素基はグリシジルオキシ基、脂環式エポキシ基等を有していてもよい。なかでも、鎖状炭化水素基はグリシジルオキシ基を有することが好ましい。 When the chain hydrocarbon group has an epoxy group, the epoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group. For example, the chain hydrocarbon group may have a glycidyloxy group, an alicyclic epoxy group, and the like. Among them, the chain hydrocarbon group preferably has a glycidyloxy group.
 鎖状炭化水素基がアルコキシ基を有する場合、アルコキシ基は鎖状炭化水素基に直接結合していてもよく、他の原子又は原子団を介して結合していてもよく、鎖状炭化水素基に直接結合していることが好ましい。アルコキシ基は特に限定されず、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基等であってよい。なかでも、入手容易性の観点からは、鎖状炭化水素基はメトキシ基を有することが好ましい。 When the chain hydrocarbon group has an alkoxy group, the alkoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group, and the chain hydrocarbon group Preferably it is directly attached to The alkoxy group is not particularly limited, and may be a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group or the like. Among them, from the viewpoint of easy availability, it is preferable that the chain hydrocarbon group has a methoxy group.
 特定シラン化合物における、(メタ)アクリロイル基、エポキシ基、及びアルコキシ基から選択される少なくとも1つの官能基の当量(分子量/官能基数)は特に制限されない。エポキシ樹脂組成物の低粘度化の観点から、200g/eq~420g/eqであることが好ましく、210g/eq~405g/eqであることがより好ましく、230g/eq~390g/eqであることがさらに好ましい。 The equivalent (molecular weight / number of functional groups) of at least one functional group selected from the (meth) acryloyl group, the epoxy group, and the alkoxy group in the specific silane compound is not particularly limited. From the viewpoint of lowering the viscosity of the epoxy resin composition, it is preferably 200 g / eq to 420 g / eq, more preferably 210 g / eq to 405 g / eq, and 230 g / eq to 390 g / eq. More preferable.
 特定シラン化合物としては、ヘキシルトリメトキシシラン、ヘプチルトリメトキシシラン、オクチルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリエトキシシラン、オクチルトリエトキシシラン、6-グリシドキシヘキシルトリメトキシシラン、7-グリシドキシヘプチルトリメトキシシラン、8-グリシドキシオクチルトリメトキシシラン、6-(メタ)アクリロキシヘキシルトリメトキシシラン、7-(メタ)アクリロキシへプチルトリメトキシシラン、8-(メタ)アクリロキシオクチルトリメトキシシラン、デシルトリメトキシシラン等が挙げられる。なかでも、エポキシ樹脂組成物の低粘度化の観点から、8-グリシドキシオクチルトリメトキシシラン、及び8-メタクリロキシオクチルトリメトキシシランが好ましい。特定シラン化合物は1種を単独で用いても、2種以上を組み合わせて用いてもよい。 Specific silane compounds include hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, octyltriethoxysilane, 6-glycidoxyhexyltrimethoxysilane, 7-glycid Xiheptyl trimethoxysilane, 8-glycidoxyoctyl trimethoxysilane, 6- (meth) acryloxyhexyl trimethoxysilane, 7- (meth) acryloxy heptyl trimethoxysilane, 8- (meth) acryloxyoctyl trimethoxy Silane, decyltrimethoxysilane and the like can be mentioned. Among them, 8-glycidoxyoctyltrimethoxysilane and 8-methacryloxyoctyltrimethoxysilane are preferable from the viewpoint of lowering the viscosity of the epoxy resin composition. The specific silane compounds may be used alone or in combination of two or more.
 特定シラン化合物は合成しても、市販されているものを用いてもよい。市販されている特定シラン化合物としては、信越化学工業株式会社製KBM-3063(ヘキシルトリメトキシシラン)、KBE-3063(ヘキシルトリエトキシシラン)、KBE-3083(オクチルトリエトキシシラン)、KBM-4803(8-グリシドキシオクチルトリメトキシシラン)、KBM-5803(8-メタクリロキシオクチルトリメトキシシラン)、KBM-3103C(デシルトリメトキシシラン)等が挙げられる。 The specific silane compounds may be synthesized or those commercially available. Specific silane compounds commercially available include Shin-Etsu Chemical Co., Ltd. KBM-3063 (Hexyltrimethoxysilane), KBE-3063 (Hexyltriethoxysilane), KBE-3083 (Octyltriethoxysilane), KBM-4803 8-glycidoxyoctyltrimethoxysilane), KBM-5803 (8-methacryloxyoctyltrimethoxysilane), KBM-3103C (decyltrimethoxysilane), and the like.
 第1の実施形態に係るエポキシ樹脂組成物中の特定シラン化合物の含有量は特に制限されない。特定シラン化合物の含有量は無機充填材100質量部に対して0.01質量部以上であってもよく、0.02質量部以上であってもよい。また、特定シラン化合物の含有量は無機充填材100質量部に対して5質量部以下であることが好ましく、2.5質量部以下であることがより好ましい。特定シラン化合物の含有量が無機充填材100質量部に対して0.01質量部以上であると、低粘度の組成物が得られる傾向にある。特定シラン化合物の含有量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 The content of the specific silane compound in the epoxy resin composition according to the first embodiment is not particularly limited. The content of the specific silane compound may be 0.01 parts by mass or more, and may be 0.02 parts by mass or more with respect to 100 parts by mass of the inorganic filler. Further, the content of the specific silane compound is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler. When the content of the specific silane compound is 0.01 parts by mass or more based on 100 parts by mass of the inorganic filler, a composition having a low viscosity tends to be obtained. When the content of the specific silane compound is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
(他のカップリング剤)
 第1の実施形態に係るエポキシ樹脂組成物は、特定シラン化合物に加えて、他のカップリング剤をさらに含有してもよい。他のカップリング剤としては、エポキシ樹脂組成物に一般に使用されているものであれば特に制限はない。他のカップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシラン系化合物(特定シラン化合物を除く)、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。他のカップリング剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(Other coupling agent)
The epoxy resin composition according to the first embodiment may further contain another coupling agent in addition to the specific silane compound. Other coupling agents are not particularly limited as long as they are generally used in epoxy resin compositions. Other coupling agents include silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane (except for specific silane compounds), titanium compounds, aluminum chelate compounds, aluminum / zirconium compounds, etc. Known coupling agents. The other coupling agents may be used alone or in combination of two or more.
 第1の実施形態に係るエポキシ樹脂組成物が特定シラン化合物以外の他のカップリング剤を含有する場合、特定シラン化合物及び他のカップリング剤の合計含有量は、無機充填材100質量部に対して0.01質量部以上であってもよく、0.02質量部以上であってもよい。また、特定シラン化合物及び他のカップリング剤の合計含有量は無機充填材100質量部に対して5質量部以下であることが好ましく、2.5質量部以下であることがより好ましい。特定シラン化合物及び他のカップリング剤の合計含有量が無機充填材100質量部に対して0.01質量部以上であると、低粘度の組成物が得られる傾向にある。特定シラン化合物及び他のカップリング剤の合計含有量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the epoxy resin composition according to the first embodiment contains another coupling agent other than the specific silane compound, the total content of the specific silane compound and the other coupling agent is 100 parts by mass of the inorganic filler. It may be 0.01 parts by mass or more, and may be 0.02 parts by mass or more. In addition, the total content of the specific silane compound and the other coupling agent is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler. When the total content of the specific silane compound and the other coupling agent is 0.01 parts by mass or more with respect to 100 parts by mass of the inorganic filler, a composition having a low viscosity tends to be obtained. When the total content of the specific silane compound and the other coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
 第1の実施形態に係るエポキシ樹脂組成物が特定シラン化合物以外の他のカップリング剤を含有する場合、特定シラン化合物の作用を良好に発揮する観点から、特定シラン化合物及び他のカップリング剤の合計量に対する他のカップリング剤の含有率は90質量%以下であることが好ましく、70質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。 When the epoxy resin composition according to the first embodiment contains another coupling agent other than the specific silane compound, the specific silane compound and the other coupling agent from the viewpoint of exhibiting the function of the specific silane compound well. The content of the other coupling agent to the total amount is preferably 90% by mass or less, more preferably 70% by mass or less, and still more preferably 50% by mass or less.
(硬化促進剤)
 第1の実施形態に係るエポキシ樹脂組成物は、硬化促進剤を含有してもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂の種類、エポキシ樹脂組成物の所望の特性等に応じて選択できる。
 硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィン;前記三級ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記三級ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記三級ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-t-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラ-p-トリルボレート等のホウ素原子に結合したフェニル基がないテトラ置換ホスホニウム及びテトラ置換ボレート;テトラフェニルホスホニウムとフェノール化合物との塩などが挙げられる。硬化促進剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Hardening accelerator)
The epoxy resin composition according to the first embodiment may contain a curing accelerator. The type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin, the desired properties of the epoxy resin composition, and the like.
As the curing accelerator, diazabicycloalkenes such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), etc. Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolac salts of the cyclic amidine compounds or derivatives thereof; Of maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 , 4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1, Compounds having an intramolecular polarization formed by addition of compounds having a π bond such as quinone compounds such as -benzoquinone and diazophenylmethane; tetraphenyl borate salts of DBU, tetraphenyl borate salts of DBN, 2-ethyl-4- Cyclic amidinium compounds such as methylimidazole tetraphenylborate salt, N-methylmorpholine tetraphenylborate salt, etc .; pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol etc. Derivatives of the above-mentioned tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, tetra-n-hexyl benzoate Ammonium salt compounds such as ammonium sulfate and tetrapropylammonium hydroxide; triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkyl alkoxyphenyl) phosphine, tris (Dialkylphenyl) phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, Tertiary phosphines such as dialkyl aryl phosphines and alkyl diaryl phosphines; complexes of the above tertiary phosphines with organic borons, etc. Sphin compounds; said tertiary phosphine or said phosphine compound and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2, Quinone compounds such as 3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, and compounds having a π bond such as diazophenylmethane A compound having an intramolecular polarization formed by addition; said tertiary phosphine or said phosphine compound and 4-bromophenol, 3-bromophenol, 2-bromophenol, 4-chlorophenol, 3-chlorophenol, 2-chlorophenol, 4-iodophenol, 3-iodophenol, 2-iodophenol , 4-bromo-2-methylphenol, 4-bromo-3-methylphenol, 4-bromo-2,6-dimethylphenol, 4-bromo-3,5-dimethylphenol, 4-bromo-2,6 Halogenated phenolic compounds such as 4-di-t-butylphenol, 4-chloro-1-naphthol, 1-bromo-2-naphthol, 6-bromo-2-naphthol, 4-bromo-4'-hydroxybiphenyl etc. Later, a compound having an internal polarization obtained through the step of dehydrohalogenation; tetra-substituted phosphonium such as tetraphenyl phosphonium; tetra-substituted phosphonium having no phenyl group bonded to a boron atom such as tetra-p-tolylborate Tetrasubstituted borates; salts of tetraphenylphosphonium with a phenol compound and the like can be mentioned. The curing accelerator may be used alone or in combination of two or more.
 第1の実施形態に係るエポキシ樹脂組成物が硬化促進剤を含有する場合、その量は、樹脂成分(すなわち、樹脂と硬化剤の合計)100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。 When the epoxy resin composition according to the first embodiment contains a curing accelerator, the amount is 0.1 parts by mass to 30 parts by mass with respect to 100 parts by mass of the resin component (that is, the total of the resin and the curing agent). It is preferably part, and more preferably 1 part by mass to 15 parts by mass. If the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, it tends to be cured well in a short time. If the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing rate tends to be too fast to obtain a good molded product.
[各種添加剤]
 第1の実施形態に係るエポキシ樹脂組成物は、上述の成分に加えて、以下に例示するイオン交換体、離型剤、難燃剤、着色剤、応力緩和剤等の各種添加剤を含有してもよい。第1の実施形態に係るエポキシ樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含有してもよい。
[Various additives]
The epoxy resin composition according to the first embodiment contains various additives such as an ion exchanger, a mold release agent, a flame retardant, a colorant, and a stress relaxation agent, which are exemplified below, in addition to the components described above. It is also good. The epoxy resin composition according to the first embodiment may contain various additives well known in the art, as needed, in addition to the additives exemplified below.
(イオン交換体)
 第1の実施形態に係るエポキシ樹脂組成物は、イオン交換体を含有してもよい。特に、第1の実施形態に係るエポキシ樹脂組成物を封止用成形材料として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含有することが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
(Ion exchanger)
The epoxy resin composition according to the first embodiment may contain an ion exchanger. In particular, in the case of using the epoxy resin composition according to the first embodiment as a molding material for sealing, ion exchange is performed from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device provided with the element to be sealed. It is preferable to contain a body. The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples thereof include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. The ion exchangers may be used alone or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.
  Mg(1-X)Al(OH)(COX/2・mHO ……(A)
  (0<X≦0.5、mは正の数)
Mg (1-X) Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O ... (A)
(0 <X ≦ 0.5, m is a positive number)
 第1の実施形態に係るエポキシ樹脂組成物がイオン交換体を含有する場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。 When the epoxy resin composition according to the first embodiment contains an ion exchanger, the content thereof is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions. For example, the amount is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the resin component.
(離型剤)
 第1の実施形態に係るエポキシ樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含有してもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The epoxy resin composition according to the first embodiment may contain a release agent from the viewpoint of obtaining good releasability with the mold at the time of molding. The release agent is not particularly limited, and conventionally known ones can be used. Specific examples thereof include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. The mold release agent may be used alone or in combination of two or more.
 第1の実施形態に係るエポキシ樹脂組成物が離型剤を含有する場合、その量は樹脂成分100質量部に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性及び硬化性が得られる傾向にある。 When the epoxy resin composition according to the first embodiment contains a releasing agent, the amount thereof is preferably 0.01 parts by mass to 10 parts by mass with respect to 100 parts by mass of the resin component, and 0.1 parts by mass to 5 parts The parts by mass are more preferred. When the amount of the release agent is 0.01 parts by mass or more based on 100 parts by mass of the resin component, the releasability tends to be sufficiently obtained. If it is 10 parts by mass or less, better adhesion and curability tend to be obtained.
(難燃剤)
 第1の実施形態に係るエポキシ樹脂組成物は、難燃剤を含有してもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The epoxy resin composition according to the first embodiment may contain a flame retardant. The flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specifically, organic or inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, metal hydroxides and the like can be mentioned. The flame retardant may be used alone or in combination of two or more.
 第1の実施形態に係るエポキシ樹脂組成物が難燃剤を含有する場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。 When the epoxy resin composition according to the first embodiment contains a flame retardant, the amount thereof is not particularly limited as long as it is an amount sufficient to obtain a desired flame retardant effect. For example, the amount is preferably 1 part by mass to 30 parts by mass, and more preferably 2 parts by mass to 20 parts by mass with respect to 100 parts by mass of the resin component.
(着色剤)
 第1の実施形態に係るエポキシ樹脂組成物は、着色剤をさらに含有してもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Colorant)
The epoxy resin composition according to the first embodiment may further contain a colorant. Examples of colorants include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, red iron oxide and the like. The content of the coloring agent can be appropriately selected according to the purpose and the like. The colorants may be used alone or in combination of two or more.
(応力緩和剤)
 第1の実施形態に係るエポキシ樹脂組成物は、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含有してもよい。応力緩和剤を含有することにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。応力緩和剤としては、一般に使用されている公知の応力緩和剤(可とう剤)が挙げられる。具体的には、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Stress relaxation agent)
The epoxy resin composition according to the first embodiment may contain a stress relaxation agent such as silicone oil or silicone rubber particles. By containing a stress relaxation agent, warpage of the package and occurrence of package cracks can be further reduced. The stress relieving agent includes known stress relieving agents (flexible agents) generally used. Specifically, thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic Core particles such as rubber particles such as rubber, urethane rubber and silicone powder, methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer and methyl methacrylate-butyl acrylate copolymer The rubber particle etc. which have a structure are mentioned. The stress relaxation agents may be used alone or in combination of two or more.
<第2の実施形態に係るエポキシ樹脂組成物>
 第2の実施形態に係るエポキシ樹脂組成物は、エポキシ樹脂と、硬化剤と、熱伝導率が20W/(m・K)以上の無機充填材と、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物(特定シラン化合物)とを含有する。なお、本開示における無機充填材の熱伝導率は、室温(25℃)での熱伝導率とする。第2の実施形態に係るエポキシ樹脂組成物は必要に応じてその他の成分を含有してもよい。
<Epoxy resin composition according to the second embodiment>
The epoxy resin composition according to the second embodiment includes an epoxy resin, a curing agent, an inorganic filler having a thermal conductivity of 20 W / (m · K) or more, and a chain hydrocarbon group having 6 or more carbon atoms. And a silane compound (specific silane compound) having a structure bonded to a silicon atom. The thermal conductivity of the inorganic filler in the present disclosure is the thermal conductivity at room temperature (25 ° C.). The epoxy resin composition according to the second embodiment may contain other components as needed.
 上記構成により、高い熱伝導性を有し、粘度の上昇が抑制されたエポキシ樹脂組成物を得ることができる。第2の実施形態に係るエポキシ樹脂組成物が上記効果を奏する詳細な理由は必ずしも明らかではないが、以下のように推測される。
 通常、封止用樹脂組成物には無機充填材の分散性向上のため、プロピル基を有するシラン化合物等の低分子量のカップリング剤が使用される。これに対して、より長鎖の炭化水素基を有するシラン化合物を用いると、無機充填材の樹脂に対する相溶性が向上し、無機充填材同士の摩擦抵抗が低減されると考えられる。この結果、特定シラン化合物を使用せずに低分子量のカップリング剤を使用する場合と比べて、溶融粘度が低下すると推測される。これにより、粘度の上昇を抑えながら高熱伝導性の無機充填材の配合量を増やすことが可能となり、従来と比較して高い熱伝導率を達成できると推測される。
 以下、第2の実施形態に係るエポキシ樹脂組成物の各成分について詳述する。
By the said structure, it has high thermal conductivity and can obtain the epoxy resin composition by which the raise of the viscosity was suppressed. The detailed reason why the epoxy resin composition according to the second embodiment exhibits the above effect is not necessarily clear, but is presumed as follows.
Usually, a low molecular weight coupling agent such as a silane compound having a propyl group is used in the sealing resin composition to improve the dispersibility of the inorganic filler. On the other hand, when a silane compound having a longer chain hydrocarbon group is used, the compatibility of the inorganic filler with the resin is improved, and it is considered that the frictional resistance between the inorganic fillers is reduced. As a result, it is presumed that the melt viscosity is reduced as compared with the case where a low molecular weight coupling agent is used without using a specific silane compound. As a result, it is possible to increase the blending amount of the high thermal conductivity inorganic filler while suppressing the increase in viscosity, and it is presumed that a high thermal conductivity can be achieved as compared with the prior art.
Hereinafter, each component of the epoxy resin composition which concerns on 2nd Embodiment is explained in full detail.
(エポキシ樹脂)
 第2の実施形態に係るエポキシ樹脂組成物は、エポキシ樹脂を含有する。エポキシ樹脂の詳細は、第1の実施形態に係るエポキシ樹脂組成物に用いられるエポキシ樹脂の詳細と同様である。
(Epoxy resin)
The epoxy resin composition according to the second embodiment contains an epoxy resin. The details of the epoxy resin are the same as the details of the epoxy resin used in the epoxy resin composition according to the first embodiment.
(硬化剤)
 第2の実施形態に係るエポキシ樹脂組成物は、硬化剤を含有する。硬化剤の詳細は、第1の実施形態に係るエポキシ樹脂組成物に用いられる硬化剤の詳細と同様である。
(Hardening agent)
The epoxy resin composition according to the second embodiment contains a curing agent. The details of the curing agent are the same as the details of the curing agent used in the epoxy resin composition according to the first embodiment.
(無機充填材)
 第2の実施形態に係るエポキシ樹脂組成物は、熱伝導率が20W/(m・K)以上の無機充填材を含有する。上記熱伝導率を有するものであれば、無機充填材の材質は特に制限されない。
(Inorganic filler)
The epoxy resin composition according to the second embodiment contains an inorganic filler having a thermal conductivity of 20 W / (m · K) or more. The material of the inorganic filler is not particularly limited as long as it has the above-described thermal conductivity.
 本開示において、熱伝導率が20W/(m・K)以上の無機充填材とは、室温(25℃)での熱伝導率が20W/(m・K)以上の材料から構成されてなる無機充填材をいう。無機充填材の熱伝導率は、キセノンフラッシュ(Xe-flash)法又は熱線法によって、無機充填材を構成する材料の熱伝導率を測定することによって得ることができる。 In the present disclosure, an inorganic filler having a thermal conductivity of 20 W / (m · K) or more is an inorganic filler composed of a material having a thermal conductivity of 20 W / (m · K) or more at room temperature (25 ° C.). We say filler. The thermal conductivity of the inorganic filler can be obtained by measuring the thermal conductivity of the material constituting the inorganic filler by the xenon flash (Xe-flash) method or the heat ray method.
 無機充填材の熱伝導率は、20W/(m・K)以上であり、硬化物としたときの放熱性の観点から、25W/(m・K)以上であることが好ましい。無機充填材の熱伝導率の上限は特に制限されず、500W/(m・K)以下であってよく、300W/(m・K)以下であってもよい。     The thermal conductivity of the inorganic filler is 20 W / (m · K) or more, and preferably 25 W / (m · K) or more from the viewpoint of heat radiation when it is a cured product. The upper limit of the thermal conductivity of the inorganic filler is not particularly limited, and may be 500 W / (m · K) or less, and may be 300 W / (m · K) or less.
 上記熱伝導率を有する無機充填材の材質として具体的には、アルミナ、窒化ケイ素、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、炭化ケイ素等が挙げられる。なかでも、真球度の高さ、耐湿性の高さ等の観点から、アルミナが好ましい。 Specific examples of the material of the inorganic filler having the thermal conductivity include alumina, silicon nitride, boron nitride, aluminum nitride, magnesium oxide and silicon carbide. Among them, alumina is preferable from the viewpoints of sphericity, moisture resistance and the like.
 無機充填材の形状は特に制限されず、充填性及び金型摩耗性の点からは、球形が好ましい。 The shape of the inorganic filler is not particularly limited, and is preferably spherical in terms of the filling property and the mold abradability.
 無機充填材は1種を単独で用いても2種以上を併用してもよい。なお、「無機充填材を2種以上併用する」とは、例えば、同じ成分で平均粒子径が異なる無機充填材を2種類以上用いる場合、平均粒子径が同じで成分の異なる無機充填材を2種類以上用いる場合並びに平均粒子径及び種類の異なる無機充填材を2種類以上用いる場合が挙げられる。 The inorganic filler may be used alone or in combination of two or more. In addition, when "two or more types of inorganic fillers are used in combination", for example, when two or more types of inorganic fillers having different average particle sizes with the same component are used, two inorganic fillers having the same average particle size but different components are used. The case where it uses more than a kind and the case where two or more kinds of inorganic fillers from which an average particle diameter and a kind differ differ are mentioned.
 第2の実施形態に係るエポキシ樹脂組成物における無機充填材の含有率は、特に制限されない。硬化物の熱膨張係数、熱伝導率、弾性率等の特性をより向上させる観点からは、無機充填材の含有率はエポキシ樹脂組成物全体の30体積%以上であることが好ましく、35体積%以上であることがより好ましく、40体積%以上であることがさらに好ましく、45体積%以上であることが特に好ましく、50体積%以上であることが極めて好ましい。流動性の向上、粘度の低下等の観点からは、無機充填材の含有率はエポキシ樹脂組成物全体の99体積%以下であることが好ましく、98体積%以下であることが好ましく、97体積%以下であることがより好ましい。
 第2の実施形態に係るエポキシ樹脂組成物における無機充填材の含有率は、30体積%~99体積%であることが好ましく、35体積%~99体積%であることがより好ましく、40体積%~98体積%であることがさらに好ましく、45体積%~97体積%であることが特に好ましく、50体積%~97体積%であることが極めて好ましい。
The content of the inorganic filler in the epoxy resin composition according to the second embodiment is not particularly limited. From the viewpoint of further improving the properties such as the thermal expansion coefficient, thermal conductivity, and elastic modulus of the cured product, the content of the inorganic filler is preferably 30% by volume or more of the entire epoxy resin composition, and 35% by volume The above is more preferable, 40% by volume or more is further preferable, 45% by volume or more is particularly preferable, and 50% by volume or more is extremely preferable. From the viewpoint of improving the flowability, decreasing the viscosity, etc., the content of the inorganic filler is preferably 99% by volume or less, preferably 98% by volume or less, of the entire epoxy resin composition, and 97% by volume It is more preferable that
The content of the inorganic filler in the epoxy resin composition according to the second embodiment is preferably 30% by volume to 99% by volume, more preferably 35% by volume to 99% by volume, and 40% by volume It is more preferably ~ 98 volume%, particularly preferably 45 volume% to 97 volume%, and most preferably 50 volume% to 97 volume%.
 エポキシ樹脂組成物中の無機充填材の含有率は、次のようにして測定される。まず、エポキシ樹脂組成物の硬化物(エポキシ樹脂成形物)の総質量を測定し、該エポキシ樹脂成形物を400℃で2時間、次いで700℃で3時間焼成し、樹脂成分を蒸発させ、残存した無機充填材の質量を測定する。得られた各質量及び、それぞれの比重から体積を算出し、エポキシ樹脂成形物の総体積に対する無機充填材の体積の割合を得て、無機充填材の含有率とする。 The content of the inorganic filler in the epoxy resin composition is measured as follows. First, the total mass of the cured product (epoxy resin molded product) of the epoxy resin composition is measured, and the epoxy resin molded product is calcined at 400 ° C. for 2 hours and then at 700 ° C. for 3 hours to evaporate the resin component and leave it Measure the mass of the inorganic filler. The volume is calculated from each mass obtained and each specific gravity, and the ratio of the volume of the inorganic filler to the total volume of the epoxy resin molded product is obtained to be the content of the inorganic filler.
 無機充填材が粒子状である場合、その平均粒子径は、特に制限されない。例えば、無機充填材全体の体積平均粒子径は80μm以下であることが好ましく、50μm以下であってもよく、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよく、20μm以下であってもよく、15μmであってもよい。また、無機充填材全体の体積平均粒子径が、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることがさらに好ましい。無機充填材の体積平均粒子径が0.1μm以上であると、エポキシ樹脂組成物の粘度の上昇がより抑制される傾向がある。体積平均粒子径が80μm以下であると、狭い隙間への充填性がより向上する傾向にある。無機充填材の体積平均粒子径は、レーザー散乱回折法粒度分布測定装置により測定された体積基準の粒度分布において、小径側からの累積が50%となるときの粒子径(D50)として測定することができる。 When the inorganic filler is particulate, its average particle size is not particularly limited. For example, the volume average particle diameter of the whole inorganic filler is preferably 80 μm or less, may be 50 μm or less, may be 40 μm or less, may be 30 μm or less, or 25 μm or less. It may be 20 μm or less, or 15 μm. Further, the volume average particle diameter of the entire inorganic filler is preferably 0.1 μm or more, more preferably 0.2 μm or more, and still more preferably 0.3 μm or more. When the volume average particle diameter of the inorganic filler is 0.1 μm or more, the increase in the viscosity of the epoxy resin composition tends to be further suppressed. When the volume average particle diameter is 80 μm or less, the filling property in the narrow gap tends to be further improved. The volume average particle size of the inorganic filler should be measured as the particle size (D50) at which the accumulation from the small diameter side becomes 50% in the volume-based particle size distribution measured by the laser scattering diffraction particle size distribution measuring apparatus. Can.
 無機充填材は、エポキシ樹脂組成物をモールドアンダーフィル用に使用する場合等における、狭い隙間への充填性の向上の観点から、最大粒子径(カットポイント)が制御されていることが好ましい。無機充填材の最大粒子径は適宜調整してよく、充填性の観点からは、105μm以下であることが好ましく、75μm以下であることがより好ましく、60μm以下であってもよく、40μm以下であってもよい。最大粒子径はレーザー回折粒度分布計(株式会社堀場製作所製、商品名:LA920)により測定することができる。 It is preferable that the maximum particle diameter (cut point) of the inorganic filler is controlled from the viewpoint of the improvement of the filling property in the narrow gap when the epoxy resin composition is used for a mold underfill or the like. The maximum particle size of the inorganic filler may be appropriately adjusted, and from the viewpoint of the filling property is preferably 105 μm or less, more preferably 75 μm or less, and may be 60 μm or less, 40 μm or less May be The maximum particle diameter can be measured by a laser diffraction particle size distribution analyzer (manufactured by Horiba, Ltd., trade name: LA920).
(特定シラン化合物)
 第2の実施形態に係るエポキシ樹脂組成物は、特定シラン化合物を含有する。特定シラン化合物は、炭素数6以上の鎖状炭化水素基(以下、炭素数6以上の鎖状炭化水素基を、単に鎖状炭化水素基ともいう)がケイ素原子に結合した構造を有する。鎖状炭化水素基は分岐していてもよく、置換基を有していてもよい。なお、本開示において、鎖状炭化水素基の炭素数とは、分岐又は置換基の炭素を含まない炭素数を意味する。鎖状炭化水素基は、不飽和結合を含んでいても含んでいなくてもよく、不飽和結合を含まないことが好ましい。
 特定シラン化合物は、エポキシ樹脂組成物において、無機充填材のカップリング剤として機能すると考えられる。
(Specific silane compound)
The epoxy resin composition according to the second embodiment contains a specific silane compound. The specific silane compound has a structure in which a chain hydrocarbon group having 6 or more carbon atoms (hereinafter, a chain hydrocarbon group having 6 or more carbon atoms is also simply referred to as a chain hydrocarbon group) is bonded to a silicon atom. The chain hydrocarbon group may be branched or may have a substituent. In the present disclosure, the number of carbon atoms of the chain hydrocarbon group means the number of carbon atoms of branched or substituted carbon atoms. The chain hydrocarbon group may or may not contain unsaturated bonds, and preferably does not contain unsaturated bonds.
The specific silane compound is considered to function as a coupling agent of the inorganic filler in the epoxy resin composition.
 ケイ素原子に結合する、鎖状炭化水素基以外の原子又は原子団は特に制限されず、それぞれ独立に、水素原子、炭素数1~5のアルキル基、アルコキシ基、アリール基、アリールオキシ基等であってもよい。なかでも、鎖状炭化水素基以外に1又は複数のアルコキシ基が結合していることが好ましく、1個の鎖状炭化水素基と、3個のアルコキシ基とがケイ素原子に結合していることがより好ましい。 The atom or atomic group other than the chain hydrocarbon group which is bonded to the silicon atom is not particularly limited, and each of them is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group, an aryl group, an aryloxy group or the like It may be. Among them, one or more alkoxy groups are preferably bonded in addition to a chain hydrocarbon group, and one chain hydrocarbon group and three alkoxy groups are bonded to a silicon atom. Is more preferred.
 特定シラン化合物の鎖状炭化水素基の炭素数は、6以上であり、粘度を抑える観点から、7以上であることが好ましく、8以上であることがより好ましい。特定シラン化合物の鎖状炭化水素基の炭素数の上限に特に制限はなく、樹脂への分散性、硬化物の物性バランス等の観点から、12以下であることが好ましく、11以下であることがより好ましく、10以下であることがさらに好ましい。 The carbon number of the chain hydrocarbon group in the specific silane compound is 6 or more, preferably 7 or more, and more preferably 8 or more, from the viewpoint of suppressing the viscosity. There is no particular limitation on the upper limit of the carbon number of the chain hydrocarbon group of the specific silane compound, and it is preferably 12 or less and 11 or less from the viewpoint of dispersibility in resin, balance of physical properties of cured product, etc. More preferably, it is 10 or less.
 鎖状炭化水素基が置換基を有する場合、置換基は特に限定されない。置換基は、鎖状炭化水素基の末端に存在していてもよく、鎖状炭化水素基の側鎖に存在していてもよい。 When the chain hydrocarbon group has a substituent, the substituent is not particularly limited. The substituent may be present at the end of the chain hydrocarbon group, or may be present at the side chain of the chain hydrocarbon group.
 鎖状炭化水素基は、(メタ)アクリロイル基、エポキシ基、及びアルコキシ基から選択される少なくとも1つの官能基(以下、特定官能基ともいう)を有することが好ましく、(メタ)アクリロイル基及びエポキシ基から選択される少なくとも1つの官能基を有することがより好ましく、(メタ)アクリロイル基を有することがさらに好ましい。特定官能基は、鎖状炭化水素基の末端に存在していてもよく、鎖状炭化水素基の側鎖に存在していてもよい。粘度を抑える観点からは、特定官能基は鎖状炭化水素基の末端に存在していることが好ましい。
 特定シラン化合物中の鎖状炭化水素基が特定官能基を有すると、エポキシ樹脂組成物の粘度がさらに低下する傾向にある。この理由は必ずしも明らかではないが、特定シラン化合物の鎖状炭化水素基が特定官能基を有すると、特定官能基とエポキシ樹脂との相溶性が高まり、エポキシ樹脂と無機充填材の分散性が向上するためであると推測される。
The chain hydrocarbon group preferably has at least one functional group (hereinafter also referred to as a specific functional group) selected from (meth) acryloyl group, epoxy group and alkoxy group, and (meth) acryloyl group and epoxy It is more preferable to have at least one functional group selected from groups, and it is further preferable to have a (meth) acryloyl group. The specific functional group may be present at the end of the chain hydrocarbon group, or may be present at the side chain of the chain hydrocarbon group. From the viewpoint of suppressing the viscosity, the specific functional group is preferably present at the end of the chain hydrocarbon group.
When the chain hydrocarbon group in the specific silane compound has a specific functional group, the viscosity of the epoxy resin composition tends to further decrease. Although this reason is not necessarily clear, when the chain hydrocarbon group of the specific silane compound has the specific functional group, the compatibility between the specific functional group and the epoxy resin is enhanced, and the dispersibility of the epoxy resin and the inorganic filler is improved. It is presumed that it is to do.
 鎖状炭化水素基が(メタ)アクリロイル基を有する場合、(メタ)アクリロイル基は鎖状炭化水素基に直接結合していてもよく、他の原子又は原子団を介して結合していてもよい。例えば、鎖状炭化水素基は(メタ)アクリロイルオキシ基を有していてもよい。なかでも、鎖状炭化水素基はメタクリロイルオキシ基を有することが好ましい。 When the chain hydrocarbon group has a (meth) acryloyl group, the (meth) acryloyl group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group . For example, the chain hydrocarbon group may have a (meth) acryloyloxy group. Among them, the chain hydrocarbon group preferably has a methacryloyloxy group.
 鎖状炭化水素基がエポキシ基を有する場合、エポキシ基は鎖状炭化水素基に直接結合していてもよく、他の原子又は原子団を介して結合していてもよい。例えば、鎖状炭化水素基はグリシジルオキシ基、脂環式エポキシ基等を有していてもよい。なかでも、鎖状炭化水素基はグリシジルオキシ基を有することが好ましい。 When the chain hydrocarbon group has an epoxy group, the epoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group. For example, the chain hydrocarbon group may have a glycidyloxy group, an alicyclic epoxy group, and the like. Among them, the chain hydrocarbon group preferably has a glycidyloxy group.
 鎖状炭化水素基がアルコキシ基を有する場合、アルコキシ基は鎖状炭化水素基に直接結合していてもよく、他の原子又は原子団を介して結合していてもよく、鎖状炭化水素基に直接結合していることが好ましい。アルコキシ基は特に限定されず、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基等であってよい。なかでも、入手容易性の観点からは、鎖状炭化水素基はメトキシ基を有することが好ましい。 When the chain hydrocarbon group has an alkoxy group, the alkoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group, and the chain hydrocarbon group Preferably it is directly attached to The alkoxy group is not particularly limited, and may be a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group or the like. Among them, from the viewpoint of easy availability, it is preferable that the chain hydrocarbon group has a methoxy group.
 特定シラン化合物における、(メタ)アクリロイル基、エポキシ基、及びアルコキシ基から選択される少なくとも1つの官能基の当量(分子量/官能基数)は特に制限されない。エポキシ樹脂組成物の低粘度化の観点から、200g/eq~420g/eqであることが好ましく、210g/eq~405g/eqであることがより好ましく、230g/eq~390g/eqであることがさらに好ましい。 The equivalent (molecular weight / number of functional groups) of at least one functional group selected from the (meth) acryloyl group, the epoxy group, and the alkoxy group in the specific silane compound is not particularly limited. From the viewpoint of lowering the viscosity of the epoxy resin composition, it is preferably 200 g / eq to 420 g / eq, more preferably 210 g / eq to 405 g / eq, and 230 g / eq to 390 g / eq. More preferable.
 特定シラン化合物としては、ヘキシルトリメトキシシラン、ヘプチルトリメトキシシラン、オクチルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリエトキシシラン、オクチルトリエトキシシラン、6-グリシドキシヘキシルトリメトキシシラン、7-グリシドキシヘプチルトリメトキシシラン、8-グリシドキシオクチルトリメトキシシラン、6-(メタ)アクリロキシヘキシルトリメトキシシラン、7-(メタ)アクリロキシへプチルトリメトキシシラン、8-(メタ)アクリロキシオクチルトリメトキシシラン、デシルトリメトキシシラン等が挙げられる。なかでも、エポキシ樹脂組成物の低粘度化の観点から、8-グリシドキシオクチルトリメトキシシラン、及び8-メタクリロキシオクチルトリメトキシシランが好ましい。特定シラン化合物は1種を単独で用いても、2種以上を組み合わせて用いてもよい。 Specific silane compounds include hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, octyltriethoxysilane, 6-glycidoxyhexyltrimethoxysilane, 7-glycid Xiheptyl trimethoxysilane, 8-glycidoxyoctyl trimethoxysilane, 6- (meth) acryloxyhexyl trimethoxysilane, 7- (meth) acryloxy heptyl trimethoxysilane, 8- (meth) acryloxyoctyl trimethoxy Silane, decyltrimethoxysilane and the like can be mentioned. Among them, 8-glycidoxyoctyltrimethoxysilane and 8-methacryloxyoctyltrimethoxysilane are preferable from the viewpoint of lowering the viscosity of the epoxy resin composition. The specific silane compounds may be used alone or in combination of two or more.
 特定シラン化合物は合成しても、市販されているものを用いてもよい。市販されている特定シラン化合物としては、信越化学工業株式会社製KBM-3063(ヘキシルトリメトキシシラン)、KBE-3063(ヘキシルトリエトキシシラン)、KBE-3083(オクチルトリエトキシシラン)、KBM-4803(8-グリシドキシオクチルトリメトキシシラン)、KBM-5803(8-メタクリロキシオクチルトリメトキシシラン)、KBM-3103C(デシルトリメトキシシラン)等が挙げられる。 The specific silane compounds may be synthesized or those commercially available. Specific silane compounds commercially available include Shin-Etsu Chemical Co., Ltd. KBM-3063 (Hexyltrimethoxysilane), KBE-3063 (Hexyltriethoxysilane), KBE-3083 (Octyltriethoxysilane), KBM-4803 8-glycidoxyoctyltrimethoxysilane), KBM-5803 (8-methacryloxyoctyltrimethoxysilane), KBM-3103C (decyltrimethoxysilane), and the like.
 第2の実施形態に係るエポキシ樹脂組成物中の特定シラン化合物の含有量は特に制限されない。特定シラン化合物の含有量は無機充填材100質量部に対して0.01質量部以上であってもよく、0.02質量部以上であってもよい。また、特定シラン化合物の含有量は無機充填材100質量部に対して5質量部以下であることが好ましく、2.5質量部以下であることがより好ましい。特定シラン化合物の含有量が無機充填材100質量部に対して0.01質量部以上であると、低粘度の組成物が得られる傾向にある。特定シラン化合物の含有量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 The content of the specific silane compound in the epoxy resin composition according to the second embodiment is not particularly limited. The content of the specific silane compound may be 0.01 parts by mass or more, and may be 0.02 parts by mass or more with respect to 100 parts by mass of the inorganic filler. Further, the content of the specific silane compound is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler. When the content of the specific silane compound is 0.01 parts by mass or more based on 100 parts by mass of the inorganic filler, a composition having a low viscosity tends to be obtained. When the content of the specific silane compound is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
(他のカップリング剤)
 第2の実施形態に係るエポキシ樹脂組成物は、特定シラン化合物に加えて、他のカップリング剤をさらに含有してもよい。他のカップリング剤としては、エポキシ樹脂組成物に一般に使用されているものであれば特に制限はない。他のカップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシラン系化合物(特定シラン化合物を除く)、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。他のカップリング剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(Other coupling agent)
The epoxy resin composition according to the second embodiment may further contain another coupling agent in addition to the specific silane compound. Other coupling agents are not particularly limited as long as they are generally used in epoxy resin compositions. Other coupling agents include silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane (except for specific silane compounds), titanium compounds, aluminum chelate compounds, aluminum / zirconium compounds, etc. Known coupling agents. The other coupling agents may be used alone or in combination of two or more.
 第2の実施形態に係るエポキシ樹脂組成物が特定シラン化合物以外の他のカップリング剤を含有する場合、特定シラン化合物及び他のカップリング剤の合計含有量は、無機充填材100質量部に対して0.01質量部以上であってもよく、0.02質量部以上であってもよい。また、特定シラン化合物及び他のカップリング剤の合計含有量は無機充填材100質量部に対して5質量部以下であることが好ましく、2.5質量部以下であることがより好ましい。特定シラン化合物及び他のカップリング剤の合計含有量が無機充填材100質量部に対して0.01質量部以上であると、低粘度の組成物が得られる傾向にある。特定シラン化合物及び他のカップリング剤の合計含有量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the epoxy resin composition according to the second embodiment contains another coupling agent other than the specific silane compound, the total content of the specific silane compound and the other coupling agent is 100 parts by mass of the inorganic filler. It may be 0.01 parts by mass or more, and may be 0.02 parts by mass or more. In addition, the total content of the specific silane compound and the other coupling agent is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler. When the total content of the specific silane compound and the other coupling agent is 0.01 parts by mass or more with respect to 100 parts by mass of the inorganic filler, a composition having a low viscosity tends to be obtained. When the total content of the specific silane compound and the other coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
 第2の実施形態に係るエポキシ樹脂組成物が特定シラン化合物以外の他のカップリング剤を含有する場合、特定シラン化合物の作用を良好に発揮する観点から、特定シラン化合物及び他のカップリング剤の合計量に対する他のカップリング剤の含有率は90質量%以下であることが好ましく、70質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。 When the epoxy resin composition according to the second embodiment contains another coupling agent other than the specific silane compound, the specific silane compound and the other coupling agent from the viewpoint of exerting the function of the specific silane compound well. The content of the other coupling agent to the total amount is preferably 90% by mass or less, more preferably 70% by mass or less, and still more preferably 50% by mass or less.
(硬化促進剤)
 第2の実施形態に係るエポキシ樹脂組成物は、硬化促進剤を含有してもよい。硬化促進剤の詳細は、第1の実施形態に係るエポキシ樹脂組成物に用いられる硬化促進剤の詳細と同様である。
(Hardening accelerator)
The epoxy resin composition according to the second embodiment may contain a curing accelerator. The details of the curing accelerator are the same as the details of the curing accelerator used in the epoxy resin composition according to the first embodiment.
[各種添加剤]
 第2の実施形態に係るエポキシ樹脂組成物は、上述の成分に加えて、イオン交換体、離型剤、難燃剤、着色剤、応力緩和剤等の各種添加剤を含有してもよい。各種添加剤の詳細は、第1の実施形態に係るエポキシ樹脂組成物に用いられる各種添加剤の詳細と同様である。
[Various additives]
The epoxy resin composition according to the second embodiment may contain, in addition to the components described above, various additives such as an ion exchanger, a mold release agent, a flame retardant, a colorant, and a stress relaxation agent. The details of the various additives are the same as the details of the various additives used in the epoxy resin composition according to the first embodiment.
[エポキシ樹脂組成物の物性]
 以下、本開示の第1の実施形態及び第2の実施形態に係るエポキシ樹脂組成物の物性について説明する。
[Physical Properties of Epoxy Resin Composition]
Hereinafter, physical properties of the epoxy resin composition according to the first embodiment and the second embodiment of the present disclosure will be described.
(エポキシ樹脂組成物の粘度)
 エポキシ樹脂組成物の粘度は、特に制限されない。成形方法、エポキシ樹脂組成物の組成等によって、成形時のワイヤ流れの起こりやすさが異なるため、成形方法、エポキシ樹脂組成物の組成等に応じて所望の粘度となるよう調整することが好ましい。
 例えば、圧縮成形法によりエポキシ樹脂組成物を成形する場合、ワイヤ流れの低減の観点から、175℃で200Pa・s以下であることが好ましく、150Pa・s以下であることがより好ましく、100Pa・s以下であることがさらに好ましく、50Pa・s以下であることが特に好ましく、16Pa・s以下であってもよく、10Pa・s以下であってもよい。粘度の下限値は特に限定されず、例えば、5Pa・s以上であってもよい。
 また、例えば、トランスファー成形法によりエポキシ樹脂組成物を成形する場合、ワイヤ流れの低減の観点から、175℃で200Pa・s以下であることが好ましく、150Pa・s以下であることがより好ましく、100Pa・s以下であることがさらに好ましく、68Pa・s以下であってもよく、54Pa・s以下であってもよい。粘度の下限値は特に限定されず、例えば、5Pa・s以上であってもよい。
 エポキシ樹脂組成物の粘度は、高化式フローテスター(株式会社島津製作所製)によって測定することができる。
(Viscosity of epoxy resin composition)
The viscosity of the epoxy resin composition is not particularly limited. Since the likelihood of wire flow during molding varies depending on the molding method, the composition of the epoxy resin composition, and the like, it is preferable to adjust the viscosity to a desired viscosity according to the molding method, the composition of the epoxy resin composition, and the like.
For example, in the case of molding an epoxy resin composition by a compression molding method, it is preferably 200 Pa · s or less at 175 ° C., more preferably 150 Pa · s or less, from the viewpoint of reducing wire flow, and 100 Pa · s. The following is more preferable, 50 Pa · s or less is particularly preferable, 16 Pa · s or less, and 10 Pa · s or less. The lower limit value of the viscosity is not particularly limited, and may be, for example, 5 Pa · s or more.
In addition, for example, in the case of molding an epoxy resin composition by a transfer molding method, from the viewpoint of reducing wire flow, it is preferably 200 Pa · s or less at 175 ° C., more preferably 150 Pa · s or less, and 100 Pa -It is further preferable that it is s or less, 68 Pa-s or less may be sufficient, and 54 Pa-s or less may be sufficient. The lower limit value of the viscosity is not particularly limited, and may be, for example, 5 Pa · s or more.
The viscosity of the epoxy resin composition can be measured by using a Koka flow tester (manufactured by Shimadzu Corporation).
(硬化物としたときの熱伝導率)
 エポキシ樹脂組成物を硬化物としたときの熱伝導率は、特に制限されない。所望の放熱性を得る観点からは、室温(25℃)で、3.0W/(m・K)以上であってもよく、4.0W/(m・K)以上であってもよく、5.0W/(m・K)以上であってもよく、6.0W/(m・K)以上であってもよく、7.0W/(m・K)以上であってもよく、8.0W/(m・K)以上であってもよい。熱伝導率の上限は特に制限されず、9.0W/(m・K)であってもよい。
 硬化物の熱伝導率は、キセノンフラッシュ(Xe-flash)法(NETZSCH製、商品名LFA467型 Hyper Flash装置)によって測定することができる。
(Thermal conductivity when made into a cured product)
The thermal conductivity of the epoxy resin composition as a cured product is not particularly limited. From the viewpoint of obtaining the desired heat dissipation, it may be 3.0 W / (m · K) or more, 4.0 W / (m · K) or more at room temperature (25 ° C.), or 5 .0 W / (m · K) or more, 6.0 W / (m · K) or more, 7.0 W / (m · K) or more, 8.0 W It may be / (m · K) or more. The upper limit of the thermal conductivity is not particularly limited, and may be 9.0 W / (m · K).
The thermal conductivity of the cured product can be measured by a xenon flash (Xe-flash) method (manufactured by NETZSCH, trade name LFA 467 Hyper Flash device).
[エポキシ樹脂組成物の調製方法]
 第1の実施形態及び第2の実施形態に係るエポキシ樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、各成分をミキサー等によって充分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分を撹拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
[Method of Preparing Epoxy Resin Composition]
The method for preparing the epoxy resin composition according to the first embodiment and the second embodiment is not particularly limited. As a general method, there is a method in which the respective components are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder or the like, cooled, and pulverized. More specifically, there can be mentioned, for example, a method of stirring and mixing the above-mentioned components, kneading with a kneader, roll, extruder or the like which has been heated to 70 ° C. to 140 ° C. in advance, cooling and grinding. .
 エポキシ樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であっても液状であってもよく、固体であることが好ましい。エポキシ樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。エポキシ樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。 The epoxy resin composition may be solid or liquid at normal temperature and normal pressure (for example, 25 ° C., atmospheric pressure), and is preferably solid. The shape in the case where the epoxy resin composition is solid is not particularly limited, and examples thereof include powder, granules, tablets and the like. It is preferable from the viewpoint of handleability that the dimensions and mass when the epoxy resin composition is in the form of a tablet be such that the dimensions and mass meet the molding conditions of the package.
<電子部品装置>
 本開示の一態様である電子部品装置は、上述の第1の実施形態及び第2の実施形態に係るエポキシ樹脂組成物によって封止された素子を備える。
 電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等の支持部材に、素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載して得られた素子部をエポキシ樹脂組成物で封止したものが挙げられる。
 より具体的には、リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等で接続した後、エポキシ樹脂組成物を用いてトランスファー成形等によって封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;テープキャリアにバンプで接続した素子をエポキシ樹脂組成物で封止した構造を有するTCP(Tape Carrier Package);支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した素子を、エポキシ樹脂組成物で封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と支持部材に形成された配線とを接続した後、エポキシ樹脂組成物で素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、プリント配線板においてもエポキシ樹脂組成物を好適に使用することができる。
<Electronic component device>
An electronic component device according to an aspect of the present disclosure includes a device sealed by the epoxy resin composition according to the first and second embodiments described above.
As an electronic component device, a support member such as a lead frame, a wired tape carrier, a wiring board, glass, a silicon wafer, an organic substrate or the like, an element (an active element such as a semiconductor chip, a transistor, a diode or a thyristor, a capacitor, a resistor) , An element part obtained by mounting a passive element such as a coil, etc. is sealed with an epoxy resin composition.
More specifically, the element is fixed on a lead frame, and the terminal portion and the lead portion of the element such as a bonding pad are connected by wire bonding, bumps or the like, and then sealed by transfer molding using an epoxy resin composition. Inlined Package (DIP), Plastic Leaded Chip Carrier (PLCC), Quad Flat Package (QFP), Small Outline Package (SOP), Small Outline J-lead package (SOJ), Thin Small Outline Package (TSOP) ), General resin-sealed type IC such as TQFP (Thin Quad Flat Package); A TCP (Tape Carrier Package) having a structure sealed with a resin composition; a device connected by wire bonding, flip chip bonding, solder or the like to a wiring formed on a support member is sealed with an epoxy resin composition Chip-on-board (COB) modules, hybrid ICs, multi-chip modules, etc. having a structure; elements are mounted on the surface of a support member on which terminals for wiring board connection are formed on the back surface, and the elements and support member are bumped or wire bonded. A BGA (Ball Grid Array), a CSP (Chip Size Package), an MCP (Multi Chip Package), and the like having a structure in which the device is sealed with an epoxy resin composition after connecting with the formed wiring can be mentioned. Moreover, an epoxy resin composition can be used suitably also in a printed wiring board.
 エポキシ樹脂組成物を用いて電子部品装置を封止する方法としては、低圧トランスファー成形法、インジェクション成形法、圧縮成形法等が挙げられる。 As a method of sealing an electronic component apparatus using an epoxy resin composition, a low pressure transfer molding method, an injection molding method, a compression molding method, etc. are mentioned.
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。 Hereinafter, although the said embodiment is concretely described with an Example, the scope of the said embodiment is not limited to these Examples.
≪第1の実施形態に係る実施例≫
<樹脂組成物の作製>
 まず、下記に示す各成分を準備した。
<< Example according to the first embodiment >>
<Production of Resin Composition>
First, each component shown below was prepared.
〔エポキシ樹脂1(E1)〕三菱ケミカル株式会社製 jER YX-4000H(商品名) 
〔エポキシ樹脂2(E2)〕新日鉄住金化学株式会社製 エポトート YSLV-80XY(商品名)
〔エポキシ樹脂3(E3)〕新日鉄住金化学株式会社製 エポトート YSLV-70XY(商品名)   
[Epoxy resin 1 (E1)] Mitsubishi Chemical Corporation jER YX-4000H (trade name)
[Epoxy resin 2 (E2)] Epototo YSLV-80XY (trade name) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
[Epoxy resin 3 (E3)] Epototeto YSLV-70XY (trade name) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
〔硬化剤1(H1)〕明和化成株式会社製 H-4(商品名)
〔硬化剤2(H2)〕新日鉄住金化学株式会社製 SN-485(商品名)
〔硬化剤3(H3)〕明和化成株式会社製 MEH-7851SS(商品名)
[Hardener 1 (H1)] H-4 (trade name) manufactured by Meiwa Kasei Co., Ltd.
[Hardener 2 (H2)] SN-485 (trade name) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
[Hardener 3 (H3)] MEH-8151 SS (trade name) manufactured by Meiwa Chemical Co., Ltd.
〔硬化促進剤1(C1)〕トリ-p-トリルホスフィンと1,4-ベンゾキノンの付加物
〔硬化促進剤2(C2)〕トリフェニルホスフィンと1,4-ベンゾキノンの付加物
[Curing accelerator 1 (C1)] adduct of tri-p-tolyl phosphine and 1,4-benzoquinone [curing accelerator 2 (C2)] adduct of triphenylphosphine and 1,4-benzoquinone
〔無機充填材1(A1)〕平均粒径0.2μmの超微細アルミナ 
〔無機充填材2(A2)〕平均粒径1μm、カットポイント25μmの微細アルミナ 
〔無機充填材3(A3)〕メジアン径20μm、カットポイント35μmのアルミナ
〔無機充填材4(A4)〕メジアン径13μm、カットポイント55μmのアルミナ
〔無機充填材5(A5)〕平均粒径11μm、カットポイント75μmのアルミナ
〔無機充填材6(A6)〕平均粒径3μm、カットポイント10μmのシリカ
〔無機充填材7(A7)〕メジアン径4μm、カットポイント20μmのシリカ
[Inorganic filler 1 (A1)] Ultrafine alumina with an average particle diameter of 0.2 μm
[Inorganic filler 2 (A2)] Fine alumina with an average particle diameter of 1 μm and a cut point of 25 μm
[Inorganic Filler 3 (A3)] Alumina with a median diameter of 20 μm and a cut point of 35 μm [Inorganic Filler 4 (A4)] Alumina with a median diameter of 13 μm and a cut point of 55 μm [Inorganic Filler 5 (A5)] Average particle size of 11 μm, Alumina with a cut point of 75 μm [inorganic filler 6 (A6)] Silica with an average particle size of 3 μm and a cut point of 10 μm [inorganic filler 7 (A7)] with a median diameter of 4 μm and silica with a cut point of 20 μm
〔シラン化合物1〕N-フェニル-3-アミノプロピルトリメトキシシラン;KBM-573(商品名、信越化学工業株式会社製)
〔シラン化合物2〕メチルトリメトキシシラン;KBM-13(商品名、信越化学工業株式会社製)
〔シラン化合物3〕n-プロピルトリメトキシシラン;KBM-3033(商品名、信越化学工業株式会社製)
〔シラン化合物4〕ヘキシルトリメトキシシラン;KBM-3063(商品名、信越化学工業株式会社製)
〔シラン化合物5〕オクチルトリエトキシシラン;KBE-3083(商品名、信越化学工業株式会社製)
〔シラン化合物6〕8-グリシドキシオクチルトリメトキシシラン;KBM-4803(商品名、信越化学工業株式会社製)
〔シラン化合物7〕8-メタクリロキシオクチルトリメトキシシラン;KBM-5803(商品名、信越化学工業株式会社製)
〔シラン化合物8〕デシルトリメトキシシラン;KBM-3103C(商品名、信越化学工業株式会社製)
[Silane Compound 1] N-phenyl-3-aminopropyltrimethoxysilane; KBM-573 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 2] Methyltrimethoxysilane; KBM-13 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 3] n-propyltrimethoxysilane; KBM-3033 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 4] Hexyltrimethoxysilane; KBM-3063 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 5] Octyltriethoxysilane; KBE-3083 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane compound 6] 8-glycidoxyoctyltrimethoxysilane; KBM-4803 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane compound 7] 8-methacryloxyoctyl trimethoxysilane; KBM-5803 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 8] decyltrimethoxysilane; KBM-3103C (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
 表1及び表2に示す各成分を同表に示す量で配合し(単位は質量部)ミキサーに
て充分混合した後、2軸混練機を用い100℃にて2分間溶融混練した。つぎに、この溶融物を冷却した後、固体状になったものを粉末状に粉砕することにより目的とする粉末状エポキシ樹脂組成物を調製した。表中、空欄は成分が配合されていないことを表し、「-」は評価が実施されていないことを表す。
The components shown in Table 1 and Table 2 were blended in the amounts shown in the same table (unit: mass parts), thoroughly mixed by a mixer, and then melt-kneaded at 100 ° C. for 2 minutes using a twin-screw kneader. Next, the melt was cooled, and then solidified to obtain a powdery epoxy resin composition by grinding into a powder. In the table, the blank indicates that the component is not blended, and "-" indicates that the evaluation has not been performed.
 作製されたエポキシ樹脂組成物を、以下に示す各種試験によって評価した。評価結果を表1及び表2に示す。なお、実施例A-1~A-7及び比較例A-1~A-3記載のエポキシ樹脂組成物の成形は、圧縮成形機を用い、実施例A-8~A-17及び比較例A-4~A-5の成形は、トランスファー成形機を用いた。 The produced epoxy resin composition was evaluated by the various tests shown below. The evaluation results are shown in Tables 1 and 2. In addition, molding of the epoxy resin composition as described in Examples A-1 to A-7 and Comparative Examples A-1 to A-3 uses a compression molding machine, and Examples A-8 to A-17 and Comparative Example A are used. For the molding of -4 to A-5, a transfer molding machine was used.
<粘度の評価>
 実施例A-1~A-17及び比較例A-1~A-5に記載のエポキシ樹脂組成物を用いて、175℃における最低溶融粘度を測定した。この結果を下記の表1及び表2に併せて示す。最低溶融粘度は高化式フローテスター(株式会社島津製作所製)を用いて測定した。
<Evaluation of viscosity>
The minimum melt viscosity at 175 ° C. was measured using the epoxy resin compositions described in Examples A-1 to A-17 and Comparative Examples A-1 to A-5. The results are shown in Table 1 and Table 2 below. The minimum melt viscosity was measured using a high-rise flow tester (manufactured by Shimadzu Corporation).
<ワイヤ流れの評価>
実施例A-1~A-7及び比較例A-1~A-3に記載のエポキシ樹脂組成物を用いて圧縮成形機(TOWA社製、PMC-1040S)にて成形温度175℃、成形時間120秒の成形条件でパッケージを封止し、175℃、5時間で後硬化することにより半導体装置を得た。この半導体装置は、ボールグリッドアレイ(BGA)パッケージ(樹脂封止部分サイズ:228mm×67mm×厚み1mm)であり、チップサイズは7.5mm×7.5mmである。また、ワイヤは、金線ワイヤ径が18μm、平均金線ワイヤ長さが5mmである。そして、作製したこのパッケージを軟X線解析装置を用いて、金線ワイヤの変形状態を観察し、変形の有無を調べた。
 また、実施例A-8~A-17及び比較例A-4~A-5記載のエポキシ樹脂組成物を用いてトランスファー成形機(TOWA社製、マニュアルプレスY-1)にて成形温度175℃、成形時間120秒の成形条件でパッケージを封止し、175℃、5時間で後硬化することにより半導体装置を得た。この半導体装置は、ボールグリッドアレイ(BGA)パッケージ(樹脂封止部分サイズ:50mm×50mm×厚み0.7mm)であり、チップサイズは7.5mm×7.5mmである。また、ワイヤは、金線ワイヤ径が22μm、平均金線ワイヤ長さが3mmである。そして、作製したこのパッケージを軟X線解析装置を用いて、金線ワイヤの変形状態を観察し、変形の有無を調べた。
<Evaluation of wire flow>
Using the epoxy resin compositions described in Examples A-1 to A-7 and Comparative Examples A-1 to A-3, molding temperature 175 ° C., molding time by a compression molding machine (PMC-1040S manufactured by TOWA Co., Ltd.) The package was sealed under molding conditions of 120 seconds and post-cured at 175 ° C. for 5 hours to obtain a semiconductor device. This semiconductor device is a ball grid array (BGA) package (resin-encapsulated part size: 228 mm × 67 mm × thickness 1 mm), and the chip size is 7.5 mm × 7.5 mm. In addition, the wire has a gold wire diameter of 18 μm and an average gold wire length of 5 mm. Then, using the soft X-ray analyzer, the produced package was observed for the deformed state of the gold wire, and the presence or absence of the deformation was examined.
Further, using the epoxy resin compositions described in Examples A-8 to A-17 and Comparative Examples A-4 to A-5, the molding temperature is 175 ° C. by a transfer molding machine (manual press Y-1 manufactured by TOWA Co., Ltd.) The package was sealed under a molding condition of 120 seconds and post-cured at 175 ° C. for 5 hours to obtain a semiconductor device. This semiconductor device is a ball grid array (BGA) package (resin-encapsulated portion size: 50 mm × 50 mm × thickness 0.7 mm), and the chip size is 7.5 mm × 7.5 mm. In addition, the wire has a gold wire diameter of 22 μm and an average gold wire length of 3 mm. Then, using the soft X-ray analyzer, the produced package was observed for the deformed state of the gold wire, and the presence or absence of the deformation was examined.
 評価は以下の基準で行った。
AA:ワイヤ流れの発生率が3%未満
A:ワイヤ流れの発生率が3%以上5%未満
B:ワイヤ流れの発生率が5%以上7%未満
C:ワイヤ流れの発生率が7%以上
Evaluation was performed on the basis of the following.
AA: Wire flow generation rate is less than 3% A: Wire flow generation rate is 3% or more and less than 5% B: Wire flow generation rate is 5% or more and less than 7% C: Wire flow generation rate is 7% or more
<モールドアンダーフィル(MUF)充填性の評価>
 実施例A-1~A-7及び比較例A-1~A-3記載のエポキシ樹脂組成物を用い、半導体素子の成形を、圧縮成形機(TOWA社製、PMC-1040S)にて成形温度175℃、上下金型ギャップ2mm、真空保持時間6秒、成形時間120秒間の条件にて行い、フリップチップ充填性の評価を行った。この半導体装置は、ボールグリッドアレイ(BGA)パッケージ(樹脂封止部分サイズ:228mm×67mm×厚み1mm)であり、チップサイズは7.5mm×7.5mmである。フリップチップバンプサイズはCuピラー45μm及びハンダバンプ15μmを合計した60μmである。充填性を評価するために、超音波探査装置を用いて、チップ下ギャップのボイドの有無を調べた。
 充填性が良好なものをAとして、ボイド等の充填されていない部分があるものをCとした。
<Evaluation of mold underfill (MUF) filling property>
Using the epoxy resin compositions described in Examples A-1 to A-7 and Comparative Examples A-1 to A-3, molding of semiconductor devices was carried out using a compression molding machine (PMC-1040S, manufactured by TOWA). The flip chip filling property was evaluated under the conditions of 175 ° C., upper and lower mold gap 2 mm, vacuum holding time 6 seconds, molding time 120 seconds. This semiconductor device is a ball grid array (BGA) package (resin-encapsulated part size: 228 mm × 67 mm × thickness 1 mm), and the chip size is 7.5 mm × 7.5 mm. The flip chip bump size is 60 μm which is a total of 45 μm of Cu pillars and 15 μm of solder bumps. In order to evaluate the filling property, the presence of voids in the gap below the tip was examined using an ultrasonic probe.
A material having a good filling property is A, and a material having an unfilled portion such as a void is C.
<熱伝導率の評価>
 実施例A-1~A-17及び比較例A-1~A-5記載のエポキシ樹脂組成物を、高温真空成形機にて、175℃、600秒、圧力7MPaの条件下で成形し、1mm厚み、10mm四方の上記試験片を、NETZSCH製LFA467型 Hyper Flash装置を用いて室温条件で測定し、キセノンフラッシュ法により算出した値を熱伝導率とした。
<Evaluation of thermal conductivity>
The epoxy resin compositions described in Examples A-1 to A-17 and Comparative Examples A-1 to A-5 were molded with a high temperature vacuum molding machine under conditions of 175 ° C., 600 seconds, pressure 7 MPa, and 1 mm. The thickness of the above test piece of 10 mm square was measured at room temperature using an LFA 467 Hyper Flash device manufactured by NETZSCH, and the value calculated by the xenon flash method was taken as the thermal conductivity.
[規則26に基づく補充 19.09.2018] 
Figure WO-DOC-TABLE-1
[Repletion under rule 26 19.09.2018]
Figure WO-DOC-TABLE-1
[規則26に基づく補充 19.09.2018] 
Figure WO-DOC-TABLE-2
[Repletion under rule 26 19.09.2018]
Figure WO-DOC-TABLE-2
 表1及び表2の結果より、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物を含有する実施例のエポキシ樹脂組成物は、比較例に比べて粘度が低く、ワイヤ流れの発生率が低減していることがわかった。また、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物を含有する実施例のエポキシ樹脂組成物は、圧縮成形法でモールドアンダーフィルに使用する場合の充填性に優れることがわかった。また、特に、鎖状炭化水素基の炭素数が8以上であると、硬化物としたときの熱伝導率にも優れる傾向にあった。 From the results of Tables 1 and 2, the epoxy resin composition of the example containing a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom has a lower viscosity than the comparative example. It was found that the incidence of wire flow was reduced. In addition, the epoxy resin composition of the example containing a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom has a filling property when it is used for a mold underfill by a compression molding method. It turned out that it is excellent. Further, in particular, when the carbon number of the chain hydrocarbon group is 8 or more, the heat conductivity of the cured product tends to be excellent.
≪第2の実施形態に係る実施例≫
<樹脂組成物の作製>
 まず、下記に示す各成分を準備した。なお、無機充填材1~3の熱伝導率はいずれも20W/(m・K)以上である。
<< Example according to the second embodiment >>
<Production of Resin Composition>
First, each component shown below was prepared. The thermal conductivity of the inorganic fillers 1 to 3 is all 20 W / (m · K) or more.
〔エポキシ樹脂1(E1)〕三菱ケミカル株式会社製、jER YX-4000H(商品名)    
〔エポキシ樹脂2(E2)〕新日鉄住金化学株式会社製、エポトート YSLV-80XY(商品名)  
[Epoxy resin 1 (E1)] manufactured by Mitsubishi Chemical Corporation, jER YX-4000H (trade name)
[Epoxy resin 2 (E2)] Epototo YSLV-80XY (trade name) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
〔硬化剤1(H1)〕明和化成株式会社製、H-4(商品名)
〔硬化剤2(H2)〕新日鉄住金化学株式会社製 SN-485(商品名)
[Hardener 1 (H1)] H4 (trade name) manufactured by Meiwa Kasei Co., Ltd.
[Hardener 2 (H2)] SN-485 (trade name) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
〔硬化促進剤1(C1)〕トリ-p-トリルホスフィンと1,4-ベンゾキノンの付加物    [Hardening accelerator 1 (C1)] adduct of tri-p-tolyl phosphine and 1,4-benzoquinone
〔無機充填材1(A1)〕平均粒径0.2μmの超微細アルミナ
〔無機充填材2(A2)〕メジアン径13μm、カットポイント55μmのアルミナ
〔無機充填材3(A3)〕平均粒径11μm、カットポイント75μmのアルミナ
[Inorganic filler 1 (A1)] Ultrafine alumina with an average particle diameter of 0.2 μm [Inorganic filler 2 (A2)] Alumina with a median diameter of 13 μm and a cut point of 55 μm [inorganic filler 3 (A3)] Average particle diameter of 11 μm , 75 μm cut point alumina
〔シラン化合物1〕N-フェニル-3-アミノプロピルトリメトキシシラン;KBM-573(商品名、信越化学工業株式会社製)
〔シラン化合物2〕ヘキシルトリメトキシシラン;KBM-3063(商品名、信越化学工業株式会社製)
〔シラン化合物3〕オクチルトリエトキシシラン;KBE-3083(商品名、信越化学工業株式会社製)
〔シラン化合物4〕8-グリシドキシオクチルトリメトキシシラン;KBM-4803(商品名、信越化学工業株式会社製)
〔シラン化合物5〕8-メタクリロキシオクチルトリメトキシシラン;KBM-5803(商品名、信越化学工業株式会社製)
〔シラン化合物6〕デシルトリメトキシシラン;KBM-3103C(商品名、信越化学工業株式会社製)
[Silane Compound 1] N-phenyl-3-aminopropyltrimethoxysilane; KBM-573 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 2] Hexyltrimethoxysilane; KBM-3063 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 3] Octyltriethoxysilane; KBE-3083 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 4] 8-Glycidoxyoctyltrimethoxysilane; KBM-4803 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane compound 5] 8-methacryloxyoctyl trimethoxysilane; KBM-5803 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Silane Compound 6] decyltrimethoxysilane; KBM-3103C (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
 表3及び表4に示す各成分を同表に示す量で配合し(単位は質量部)、ミキサーにて充分混合した後、2軸混練機を用い100℃にて2分間溶融混練した。つぎに、この溶融物を冷却した後、固体状になったものを粉末状に粉砕することにより目的とする粉末状エポキシ樹脂組成物を調製した。表中、空欄は成分が配合されていないことを表し、「-」は評価が実施されていないことを表す。 The components shown in Table 3 and Table 4 were blended in the amounts shown in the same table (unit: mass parts), sufficiently mixed by a mixer, and then melt-kneaded at 100 ° C. for 2 minutes using a twin-screw kneader. Next, the melt was cooled, and then solidified to obtain a powdery epoxy resin composition by grinding into a powder. In the table, the blank indicates that the component is not blended, and "-" indicates that the evaluation has not been performed.
 作製されたエポキシ樹脂組成物を、以下に示す各種試験によって評価した。評価結果を表3、表4に示す。なお、実施例B-1~B-10及び比較例B-1~B-2の成形は、トランスファー成形機を用いた。 The produced epoxy resin composition was evaluated by the various tests shown below. The evaluation results are shown in Tables 3 and 4. A transfer molding machine was used for molding of Examples B-1 to B-10 and Comparative Examples B-1 to B-2.
<粘度の評価>
 実施例及び比較例のエポキシ樹脂組成物を用いて、175℃における最低溶融粘度を測定した。この結果を下記の表3及び表4に併せて示す。最低溶融粘度は高化式フローテスター(株式会社島津製作所製)を用いて測定した。
<Evaluation of viscosity>
The lowest melt viscosity at 175 ° C. was measured using the epoxy resin compositions of Examples and Comparative Examples. The results are shown in Table 3 and Table 4 below. The minimum melt viscosity was measured using a high-rise flow tester (manufactured by Shimadzu Corporation).
<ワイヤ流れの評価>
 実施例及び比較例のエポキシ樹脂組成物を用いてトランスファー成形機(TOWA社製、マニュアルプレスY-1)にて成形温度175℃、成形時間120秒の成形条件でパッケージを封止し、175℃、5時間で後硬化することにより半導体装置を得た。この半導体装置は、ボールグリッドアレイ(BGA)パッケージ(樹脂封止部分サイズ:50mm×50mm×厚み0.7mm)であり、チップサイズは7.5mm×7.5mmである。また、ワイヤは、金線ワイヤ径が22μm、平均金線ワイヤ長さが3mmである。そして、作製したこのパッケージを軟X線解析装置を用いて、金線ワイヤの変形状態を観察し、変形の有無を調べた。
<Evaluation of wire flow>
Using the epoxy resin compositions of Examples and Comparative Examples, the package is sealed with a transfer molding machine (manual press Y-1 manufactured by TOWA Co., Ltd.) at a molding temperature of 175 ° C. and a molding time of 120 seconds, 175 ° C. The semiconductor device was obtained by post-curing for 5 hours. This semiconductor device is a ball grid array (BGA) package (resin-encapsulated portion size: 50 mm × 50 mm × thickness 0.7 mm), and the chip size is 7.5 mm × 7.5 mm. In addition, the wire has a gold wire diameter of 22 μm and an average gold wire length of 3 mm. Then, using the soft X-ray analyzer, the produced package was observed for the deformed state of the gold wire, and the presence or absence of the deformation was examined.
 評価は以下の基準で行った。
AA:ワイヤ流れの発生率が3%未満
A:ワイヤ流れの発生率が3%以上5%未満
B:ワイヤ流れの発生率が5%以上7%未満
C:ワイヤ流れの発生率が7%以上
Evaluation was performed on the basis of the following.
AA: Wire flow generation rate is less than 3% A: Wire flow generation rate is 3% or more and less than 5% B: Wire flow generation rate is 5% or more and less than 7% C: Wire flow generation rate is 7% or more
<熱伝導率の評価>
 実施例及び比較例のエポキシ樹脂組成物を、高温真空成形機にて、175℃、600秒、圧力7MPaの条件下で成形し、1mm厚み、10mm四方の上記試験片を、NETZSCH製LFA467型 Hyper Flash装置を用いて室温条件で測定し、キセノンフラッシュ法により算出した値を熱伝導率とした。
<Evaluation of thermal conductivity>
The epoxy resin compositions of Examples and Comparative Examples were molded with a high temperature vacuum molding machine under conditions of 175 ° C., 600 seconds, pressure 7 MPa, and the above test pieces of 1 mm thickness and 10 mm square were manufactured by NETZSCH LFA 467 Hyper It measured on room temperature conditions using Flash apparatus, and made the value computed by the xenon flash method heat conductivity.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例の結果より、アルミナと、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物とを含有する実施例のエポキシ樹脂組成物は、粘度が低く、かつ硬化物としたときに熱伝導率に優れることがわかった。特に、鎖状炭化水素基の炭素数が8以上であると、硬化物としたときの熱伝導率が向上していた。 From the results of the examples, the epoxy resin composition of the examples containing alumina and a silane compound having a structure in which a linear hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom has a low viscosity and a cured product. It was found that the thermal conductivity was excellent when In particular, when the carbon number of the chain hydrocarbon group is 8 or more, the thermal conductivity of the cured product is improved.
 日本国特許出願第2017-178299号及び日本国特許出願第2017-178300号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosures of Japanese Patent Application No. 2017-178299 and Japanese Patent Application No. 2017-178300 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards described herein are as specific and individually as individual documents, patent applications, and technical standards are incorporated by reference. Hereby incorporated by reference.

Claims (7)

  1.  エポキシ樹脂と、硬化剤と、無機充填材と、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物とを含有する、エポキシ樹脂組成物。 An epoxy resin composition comprising an epoxy resin, a curing agent, an inorganic filler, and a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom.
  2.  前記鎖状炭化水素基が、(メタ)アクリロイル基、エポキシ基、及びアルコキシ基から選択される少なくとも1つの官能基を有する、請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the chain hydrocarbon group has at least one functional group selected from a (meth) acryloyl group, an epoxy group, and an alkoxy group.
  3.  前記鎖状炭化水素基が、(メタ)アクリロイル基を有する、請求項1又は請求項2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the chain hydrocarbon group has a (meth) acryloyl group.
  4.  前記無機充填材の含有率が30体積%~99体積%である、請求項1~請求項3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the content of the inorganic filler is 30% by volume to 99% by volume.
  5.  前記無機充填材の熱伝導率が20W/(m・K)以上である、請求項1~請求項4のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, wherein the thermal conductivity of the inorganic filler is 20 W / (m · K) or more.
  6.  熱伝導率が20W/(m・K)以上の前記無機充填材が、アルミナ、窒化ケイ素、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、及び炭化ケイ素からなる群から選択される少なくとも1つを含む、請求項5に記載のエポキシ樹脂組成物。 The inorganic filler having a thermal conductivity of 20 W / (m · K) or more includes at least one selected from the group consisting of alumina, silicon nitride, boron nitride, aluminum nitride, magnesium oxide, and silicon carbide. The epoxy resin composition according to Item 5.
  7.  請求項1~請求項6のいずれか1項に記載のエポキシ樹脂組成物によって封止された素子を備える電子部品装置。 An electronic component device comprising an element sealed by the epoxy resin composition according to any one of claims 1 to 6.
PCT/JP2018/032497 2017-09-15 2018-08-31 Epoxy resin composition and electronic component device WO2019054217A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019542000A JP7375541B2 (en) 2017-09-15 2018-08-31 Epoxy resin composition and electronic component equipment
CN201880059554.5A CN111094450A (en) 2017-09-15 2018-08-31 Epoxy resin composition and electronic component device
MYPI2020001352A MY198096A (en) 2017-09-15 2018-08-31 Epoxy resin composition and electronic component device
CN202310717825.4A CN116751438A (en) 2017-09-15 2018-08-31 Epoxy resin composition and electronic component device
JP2023184277A JP2024012392A (en) 2017-09-15 2023-10-26 Epoxy resin composition, and electronic component device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017178300 2017-09-15
JP2017-178300 2017-09-15
JP2017178299 2017-09-15
JP2017-178299 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054217A1 true WO2019054217A1 (en) 2019-03-21

Family

ID=65722750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032497 WO2019054217A1 (en) 2017-09-15 2018-08-31 Epoxy resin composition and electronic component device

Country Status (4)

Country Link
JP (2) JP7375541B2 (en)
CN (2) CN111094450A (en)
MY (1) MY198096A (en)
WO (1) WO2019054217A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080069A1 (en) * 2018-10-16 2020-04-23 日東シンコー株式会社 Resin composition
WO2022050170A1 (en) * 2020-09-03 2022-03-10 昭和電工マテリアルズ株式会社 Compound material, molded body, and cured product of compound material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084939A1 (en) * 2009-01-23 2010-07-29 味の素株式会社 Resin composition
JP2012077172A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Resin composition, resin sheet, and layered structure
JP2015044898A (en) * 2013-08-27 2015-03-12 日立化成株式会社 Semiconductor sealing epoxy resin composition and resin sealing type semiconductor device using the same
JP2016219600A (en) * 2015-05-20 2016-12-22 京セラ株式会社 Die attach paste for semiconductor and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292591A (en) 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Resin composition for optical semiconductor and optical semiconductor device
KR101090654B1 (en) * 2006-10-02 2011-12-07 히다치 가세고교 가부시끼가이샤 Epoxy resin molding material for sealing and electronic component device
US20140128505A1 (en) * 2011-05-13 2014-05-08 Hitachi Chemical Company, Ltd. Epoxy resin molding material for sealing and electronic component device
JP6672630B2 (en) * 2015-08-07 2020-03-25 味の素株式会社 Resin composition
WO2017191801A1 (en) 2016-05-06 2017-11-09 Dic株式会社 Resin composition, molded article, layered body, and adhesive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084939A1 (en) * 2009-01-23 2010-07-29 味の素株式会社 Resin composition
JP2012077172A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Resin composition, resin sheet, and layered structure
JP2015044898A (en) * 2013-08-27 2015-03-12 日立化成株式会社 Semiconductor sealing epoxy resin composition and resin sealing type semiconductor device using the same
JP2016219600A (en) * 2015-05-20 2016-12-22 京セラ株式会社 Die attach paste for semiconductor and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080069A1 (en) * 2018-10-16 2020-04-23 日東シンコー株式会社 Resin composition
WO2022050170A1 (en) * 2020-09-03 2022-03-10 昭和電工マテリアルズ株式会社 Compound material, molded body, and cured product of compound material

Also Published As

Publication number Publication date
JP2024012392A (en) 2024-01-30
MY198096A (en) 2023-07-31
TW201920450A (en) 2019-06-01
CN116751438A (en) 2023-09-15
JP7375541B2 (en) 2023-11-08
CN111094450A (en) 2020-05-01
JPWO2019054217A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP4892164B2 (en) Liquid epoxy resin composition and electronic component device
JP7287281B2 (en) EPOXY RESIN COMPOSITION FOR BALL GRID ARRAY PACKAGE SEALING, EPOXY RESIN CURED MATERIAL, AND ELECTRONIC PARTS DEVICE
WO2019240079A1 (en) Curable resin composition and electronic component device
JP2024012392A (en) Epoxy resin composition, and electronic component device
JP6233441B2 (en) Liquid epoxy resin composition and electronic component device
JP2015193851A (en) Liquid epoxy resin composition and electronic part device
JP2023076548A (en) Epoxy resin composition and electronic component device
JP4792768B2 (en) Epoxy resin composition for sealing and electronic component device
JP2022125150A (en) Resin composition and electronic component device
WO2018181813A1 (en) Epoxy resin composition and electronic component device
WO2018181384A1 (en) Epoxy resin composition, curable resin composition and electronic component device
JP2018104603A (en) Curable resin composition and electronic component device
JP5708666B2 (en) Liquid epoxy resin composition and electronic component device
WO2021049645A1 (en) Encapsulating material for compression molding and electronic part and device
JP2015180760A (en) Liquid epoxy resin composition and electronic part device
TWI839335B (en) Epoxy resin composition for encapsulating electric component device and electric component device
JP2015110803A (en) Liquid epoxy resin composition and electronic part device
WO2020129248A1 (en) Sealing resin composition and electronic component device
WO2020129249A1 (en) Resin composition for sealing and electronic component device
JP5924443B2 (en) Liquid epoxy resin composition and electronic component device
JP5929977B2 (en) Liquid epoxy resin composition and electronic component device
JP7484081B2 (en) Curable resin composition and electronic component device
WO2022149594A1 (en) Method for producing thermosetting resin composition, thermosetting resin composition, and electronic component device
JP2022107373A (en) Method for producing thermosetting resin composition, thermosetting resin composition, and electronic component device
JP5804479B2 (en) Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856171

Country of ref document: EP

Kind code of ref document: A1