WO2023074851A1 - 局部加圧装置、成形機及び成形方法 - Google Patents

局部加圧装置、成形機及び成形方法 Download PDF

Info

Publication number
WO2023074851A1
WO2023074851A1 PCT/JP2022/040393 JP2022040393W WO2023074851A1 WO 2023074851 A1 WO2023074851 A1 WO 2023074851A1 JP 2022040393 W JP2022040393 W JP 2022040393W WO 2023074851 A1 WO2023074851 A1 WO 2023074851A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressurizing
cylinder
mold
injection
Prior art date
Application number
PCT/JP2022/040393
Other languages
English (en)
French (fr)
Inventor
浩 吉田
眞 辻
三郎 野田
Original Assignee
芝浦機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦機械株式会社 filed Critical 芝浦機械株式会社
Priority to CN202280072675.XA priority Critical patent/CN118176072A/zh
Publication of WO2023074851A1 publication Critical patent/WO2023074851A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • B22D17/04Plunger machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/57Exerting after-pressure on the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Definitions

  • the present disclosure relates to a local pressurization device that locally pressurizes a molding material inside a mold, a molding machine that includes the local pressurization device, and a molding method that performs local pressurization.
  • the molding machine is, for example, a die casting machine for molding metal or an injection molding machine for molding resin.
  • the pressure pin When filling the inside of the mold with the molding material, the pressure pin waits at the retraction limit of its stroke (drive limit on the side opposite to the inside of the mold).
  • the maximum possible value of the advance distance can be set as the stroke of the pressurizing pin. That is, the stroke of the pressure pin can be utilized to the maximum.
  • the usage of the pressure pin affects the quality of the molding material. For example, if the pressing pin starts advancing too early, plastic flow of the molding material will not occur, and a sufficient pressurizing effect will not be obtained. Further, if the timing of starting the advance is delayed, the pressing pin cannot be pushed to a sufficient depth due to the solidification of the molding material, and a sufficient pressing effect cannot be obtained. Therefore, there is a need for a local pressurizing device, a molding machine, and a molding method that can suitably use a pressurizing member (pressurizing pin).
  • a local pressurizing device includes a pressurizing member whose front end is exposed inside a mold, and a drive unit that applies forward force to the pressurizing member.
  • the pressure member is positioned at an initial position forward of the retraction limit when the molding material reaches the position of the pressure member, and is pushed by the molding material to retract from the initial position.
  • a molding machine includes the local pressure device, a mold clamping device that opens and closes the mold, and an injection device that injects the molding material into the mold. ing.
  • a molding method includes an injection step of injecting a molding material into the interior of a mold; and a local pressurization step of pressurizing the The pressure member is positioned at an initial position forward of the retraction limit when the molding material reaches the position of the pressure member, and is pushed by the molding material to retract from the initial position.
  • the pressing member can be suitably used by utilizing the retraction of the pressing member.
  • the retraction of the pressure member can absorb the surge pressure generated when the mold is filled with the molding material.
  • arrival of the molding material to the pressure member can be detected based on the retreat of the pressure member, and the timing of starting the advance of the pressure member can be suitably determined.
  • FIG. 1(a) is a schematic diagram showing the operation of the local pressurizing device for explaining the main point of the local pressurizing device according to the embodiment, and FIG. 1(b) is a partially enlarged view of FIG. 1(a).
  • FIG. 2(a) is a schematic diagram showing the continuation of the operation of FIG. 1(a), and FIG. 2(b) is a partially enlarged view of FIG. 2(a).
  • 3(a) is a schematic diagram showing the continuation of the operation of FIG. 2(a), and FIG. 3(b) is a partially enlarged view of FIG. 3(a).
  • BRIEF DESCRIPTION OF THE DRAWINGS The side view which shows the structure of the principal part of the die-casting machine which concerns on 1st Embodiment.
  • FIG. 1(a) is a schematic diagram showing the operation of the local pressurizing device for explaining the main point of the local pressurizing device according to the embodiment
  • FIG. 1(b) is a partially enlarged view of FIG. 1
  • FIG. 5 is a schematic diagram showing the configuration of a pressurizing device of the die casting machine of FIG. 4;
  • FIG. 6 is a circuit diagram showing the configuration of a hydraulic device included in the pressurizing device of FIG. 5;
  • FIG. 5 is a diagram for explaining the operation of the die casting machine in FIG. 4;
  • FIG. 8 is a flowchart showing the procedure of processing executed by the control device to implement the operation of FIG. 7;
  • FIG. 9(a) and 9(b) are cross-sectional views showing the configuration of a pressurizing device according to a second embodiment;
  • FIG. Sectional drawing which shows the structure of the pressurization apparatus which concerns on 3rd Embodiment.
  • Sectional drawing which shows the structure of the pressurization apparatus which concerns on 4th Embodiment.
  • the schematic diagram which shows the structure of the die-casting machine which concerns on 5th Embodiment.
  • FIG. 5 is a cross-sectional view showing another example of the position of the pressing member;
  • FIGS. 1(a) to 3(b) are schematic diagrams showing an overview of the operations of a local pressure device 2 (hereinafter sometimes simply referred to as “pressure device 2”) and an injection device 9 according to the embodiment. is. Note that the distinction between the components of the pressurizing device 2 and the components of the injection device 9 may not necessarily be clear. Also, a combination of both may be regarded as an injection device.
  • FIGS. 1(a), 2(a) and 3(a) schematically show the pressure device 2 and the injection device 9, and during the molding cycle (more specifically during the injection cycle) The states at different points in time are shown.
  • FIG. 1(b) is an enlarged view of region Ib in FIG. 1(a).
  • FIG. 2(b) is an enlarged view of region IIb in FIG. 2(a).
  • FIG. 3(b) is an enlarged view of region IIIb in FIG. 3(a).
  • FIGS. 1(a) and 1(b) show a state in which an injection process is performed to inject a molding material (for example, a molten metal 109 that is a metal in a molten state) into the mold 101.
  • a molding material for example, a molten metal 109 that is a metal in a molten state
  • plunger 21 advances toward mold 101 as indicated by arrow a1 to push molten metal 109 in sleeve 19 into mold 101 (space 107).
  • the pressurizing member 41 (pressurizing pin) of the pressurizing device 2 waited at the retraction limit (driving limit on the side opposite to the space 107) before the plunger 21 started advancing (before injection started). .
  • it waits at a position (for example, the forward limit) forward of the backward limit (on the space 107 side).
  • Figures 2(a) and 2(b) show the state after Figures 1(a) and 1(b). As the injection process proceeds, substantially the entire space 107 is filled with the molten metal 109 . Figures 2(a) and 2(b) show such a situation. In addition, in the description of the embodiment, it is sometimes said that the filling is completed when such a state is reached. When the filling is completed, the plunger 21 pushes the molten metal 109 that has lost its escape, and the pressure of the molten metal 109 rises. At this time, a so-called surge pressure accompanied by a temporary and rapid pressure rise may occur.
  • the molten metal 109 reaches the position of the pressure member 41 . Then, the pressure member 41 is pushed back by the molten metal 109 as indicated by arrows a2 (FIG. 2(a)) and arrows a3 (FIG. 2(b)).
  • the pressing member 41 may be retracted immediately after the molten metal 109 arrives, or may be retracted when the molten metal 109 substantially fills the space 107 and the pressure increases as described above. Also, the pressure member 41 may or may not reach the retraction limit (example shown).
  • Figures 3(a) and 3(b) show the state after Figures 2(a) and 2(b).
  • the pressure member 41 advances as indicated by arrow a4 (FIG. 3(a)) and arrow a5 (FIG. 3(b)).
  • the molten metal 109 is locally pressurized. This pressurization reduces the probability of, for example, shrinkage cavities (cavities due to solidification shrinkage of the molten metal).
  • the plunger 21 may, for example, move forward to contribute to raising the pressure of the molten metal 109, or may simply remain at the position at the time of completion of filling.
  • the pressurizing member 41 is positioned at the initial position (for example, the forward limit) ahead of the retraction limit when the molten metal 109 reaches the position of the pressurizing member 41. ing. Then, it is pushed by the molten metal 109 and retreats from the initial position. Accordingly, various effects can be obtained.
  • the surge pressure is absorbed by retreating the pressure member 41 .
  • Absorbing the surge pressure reduces the probability of burrs (portions formed by the molten metal 109 protruding outside the space 107) being generated. That is, the pressurizing member 41 can be effectively used not only as a member for local pressurization but also as a member for absorbing surge pressure.
  • the timing of starting the forward movement of the pressure member 41 can be appropriately determined based on the detection of the backward movement of the pressure member 41 . In more detail, for example, it is as follows.
  • the pressure member 41 advances based on an increase in the driving force of a driving portion (for example, a hydraulic cylinder) that drives the plunger 21 (in other words, an increase in the pressure that the plunger 21 receives from the molten metal 109).
  • a driving portion for example, a hydraulic cylinder
  • An aspect of determining the timing of the start is exemplified.
  • the increase in pressure of the molten metal 109 at the position of the plunger 21 does not necessarily coincide with the arrival of the molten metal 109 at the position of the pressure member 41 and/or the increase in pressure. .
  • the timing for starting the forward movement of the pressing member 41 is not necessarily appropriate for the state of the molten metal 109 at the position of the pressing member 41 .
  • arrival of the molten metal 109 and/or pressure increase can be detected at the position of the pressure member 41, so such inconvenience does not occur.
  • a sensor for example, a pressure sensor, a temperature sensor, or an energization sensor
  • a sensor for example, a pressure sensor, a temperature sensor, or an energization sensor
  • the same inconvenience as in the comparative example above occurs.
  • a sensor is provided at a position exposed to the space 107 or in the vicinity thereof so as to be able to come into contact with the molten metal 109 . Therefore, durability against the pressure and heat of the molten metal 109 is required.
  • the sensor 43 (FIG.
  • the sensor 43 for detecting the retreating of the pressing member 41 may not be exposed in the space 107, and as will be described later, the sensor 43 is located behind the pressing member 41. It can also be placed in position. Therefore, the durability required for the sensor 43 can be lowered. Furthermore, in a mode in which the sensor 43 is a position sensor, unlike the sensor according to the comparative example, it can be used for feedback control when the pressing member 41 is advanced.
  • FIG. 4 is a side view (partially including a cross-sectional view) showing the configuration of the main part of the die-casting machine DC with a die according to the first embodiment.
  • the left side of FIG. 4 may be referred to as the front, and the right side of FIG. 4 may be referred to as the rear.
  • the die-casting machine DC with die has a die (die 101) and the die-casting machine 1 holding the die 101.
  • the die casting machine 1 is configured as an apparatus for manufacturing a product (molded product, die cast product) made of the solidified molding material by injecting (filling) the molten molding material into the interior (space 107) of the mold 101. ing.
  • the molding material is, for example, metal such as aluminum.
  • Metal in a molten state is sometimes referred to as molten metal, as described above.
  • a molding material in a solid-liquid coexistence state (semi-solidified or semi-molten state) may be injected into the space 107 instead of the molten molding material.
  • the mold 101 has, for example, a fixed mold 103 and a movable mold 105 facing the fixed mold 103 .
  • a main portion of the space 107 is configured between the fixed mold 103 and the movable mold 105 .
  • the fixed mold 103 is a mold that does not move.
  • the movable mold 105 is a mold that moves in a direction opposite to the fixed mold 103 (mold opening/closing direction).
  • the mold opening/closing direction is, for example, the horizontal direction.
  • the cross section of the fixed mold 103 or the movable mold 105 is indicated by one type of hatching for convenience. However, these molds may be directly carved or nested.
  • the stationary mold 103 and/or the moving mold 105 may include a die base.
  • the die casting machine 1 has a machine body 3 that performs mechanical operations and a control device 5 that controls the machine body 3 .
  • the machine main body 3 includes, for example, a mold clamping device 7 for opening/closing and clamping the mold 101, an injection device 9 for injecting molten metal into a space 107, and a fixed mold 103 or a fixed mold 103 or a fixed mold 103 for producing a product formed by solidifying the molten metal. It has an extrusion device (not shown) that extrudes from the moving die 105 .
  • a pressure device 2A (see later-described FIG. 5), which is a specific example of the pressure device 2 described above, is included in the mold die casting machine DC. At least part of the pressurizing device 2A (for example, the pressurizing member 41 and its driving portion) may be considered as a component attached to the mold 101 or as a component of the die casting machine 1 . When attention is paid to each part (for example, the pressure device 2A) of the mold die casting machine DC, the control device 5 may be regarded as a component of each part.
  • the configuration and operation of the components other than the pressurizing device 2A may be known or novel, in other words, various modes. good. Note that descriptions of configurations and operations that may be known configurations and operations will be omitted as appropriate.
  • the mold clamping device 7 includes, for example, a base 11, a fixed die plate 13 fixed on the base 11, a movable die plate 15 movable on the base 11 in the mold opening/closing direction, and a die plate inserted through these die plates. and a plurality of (for example, four) tie bars 17 .
  • the fixed die plate 13 and the movable die plate 15 face each other in the mold opening/closing direction.
  • the stationary die plate 13 holds the stationary die 103 on the surface facing the movable die plate 15 .
  • the movable die plate 15 holds the movable die 105 on the surface facing the fixed die plate 13 .
  • the mold 101 is opened and closed by moving the movable die plate 15 in the mold opening/closing direction. In addition, when the tie bars 17 are extended while the mold is closed, a mold clamping force corresponding to the amount of extension is applied to the mold 101 .
  • the injection device 9 is positioned behind the fixed die plate 13 (opposite to the movable die plate 15).
  • the injection device 9 has a sleeve 19 communicating with the space 107 , a plunger 21 for pushing out the molten metal in the sleeve 19 to the space 107 , and a drive section 23 for driving the plunger 21 .
  • the sleeve 19 and the plunger 21 can be regarded as consumables, only the driving part 23 may be regarded as the injection device.
  • the sleeve 19 is provided so as to be inserted through the fixed die plate 13 .
  • the sleeve 19 may not be inserted through the fixed die 103 (example in FIG. 4), or may be inserted through it (example in FIG. 1A).
  • the sleeve 19 is a generally cylindrical member and is arranged to extend in the horizontal direction (front-rear direction).
  • a supply port 19a through which molten metal is supplied is opened in the upper surface of the sleeve 19 .
  • the plunger 21 has a plunger tip 21a that slides on the sleeve 19 and a plunger rod 21b fixed to the plunger tip 21a.
  • the plunger rod 21 b extends in the front-rear direction, and its rear end is connected to the driving portion 23 by a coupling 25 .
  • Fig. 4 shows the state before the start of injection.
  • the plunger tip 21a is positioned (at least partially) inside the sleeve 19 behind the supply port 19a.
  • molten metal is poured into the supply port 19a by a hot water supply device or the like (not shown).
  • the plunger tip 21 a slides (advances) toward the space 107 by the driving force of the driving portion 23 . Thereby, the molten metal is injected into the space 107 .
  • the drive unit 23 may be, for example, hydraulic (hydraulic), electric, or hybrid (combination of hydraulic and electric).
  • a hydraulic drive unit 23 is illustrated. That is, the drive unit 23 has a hydraulic cylinder (injection cylinder 27 ) connected to the plunger 21 and a hydraulic device (not shown) for supplying hydraulic fluid to the injection cylinder 27 .
  • the configuration of the injection cylinder 27 is arbitrary.
  • the injection cylinder 27 may be of a single barrel type (example of FIG. 1(a)) or a boosting type (see FIG. 12 described later).
  • the single-barrel injection cylinder 27 (FIG. 1(a)) includes a cylinder member 31, a piston 33 slidable inside the cylinder member 31, and a piston rod 37 extending forward (toward the plunger 21) from the piston 33. ,have.
  • the cylinder member 31 is immovable.
  • the interior of the cylinder member 31 is partitioned by the piston 33 into a rod-side chamber 31r on the side of the piston rod 37 and a head-side chamber 31h on the opposite side.
  • the piston rod 37 extends outside the cylinder member 31 and has its front end connected to the rear end of the plunger 21 by a coupling 25 .
  • the piston 33 moves forward by supplying the hydraulic fluid to the head-side chamber 31h.
  • the plunger 21, which is connected to the piston 33 via the piston rod 37 and the coupling 25, advances.
  • the molten metal inside the sleeve 19 is injected into the space 107 .
  • the control device 5 may include, for example, a computer (not shown).
  • the computer may include, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an external storage device (not shown).
  • Various functional units that perform various calculations (including control) are constructed by the CPU executing programs stored in the ROM and/or the external storage device.
  • the control device 5 may include a logic circuit that executes a certain operation, may include a power supply circuit, or may be conceptualized including a driver.
  • the control device 5 may be integrated in one place in terms of hardware, or may be distributed in a plurality of places.
  • the shaped die casting machine DC may have various sensors. Then, the control device 5 may control each section based on the detection values of various sensors.
  • a position sensor that detects the position of the plunger 21 and/or a sensor that detects the driving force of the driving section 23 may be provided.
  • a position sensor may be regarded as a velocity sensor, since velocity is obtained by differentiation of position.
  • a sensor for detecting the driving force of the drive unit 23 for example, in a mode in which the drive unit 23 has an injection cylinder 27, a pressure sensor for detecting the pressure in the head side chamber 31h (and, if necessary, a pressure sensor for detecting the pressure in the rod side chamber 31r). pressure sensor to detect) may be used.
  • a sensor that detects the position of the plunger 21 is used, for example, to control the injection speed (in other words, the speed of the plunger 21).
  • a sensor that detects the driving force of the drive unit 23 is used to control the injection pressure (in other words, the pressure that the plunger 21 applies to the molding material).
  • the casting pressure may be realized by pressure control by the pressurizing device 2, and control of the injection pressure is not essential.
  • FIG. 5 is a schematic diagram showing the configuration of the pressurizing device 2A.
  • the pressurizing device 2A has a pressurizing member 41 that pressurizes the molten metal and a sensor 43 that detects the retreat of the pressurizing member 41.
  • the pressurizing device 2A also has a drive section 45A that is a specific example of the drive section 45 (FIG. 1A) that drives the pressurizing member 41. As shown in FIG.
  • the drive unit 45A may be of a suitable configuration such as a hydraulic type or an electric type.
  • the drive unit 45A is of hydraulic type as an example.
  • the hydraulic drive unit 45A has a hydraulic cylinder (pressurizing cylinder 47) and a hydraulic device 49 that supplies hydraulic fluid to the pressurizing cylinder 47 and the like.
  • the shape of the pressing member 41 may be roughly pin-shaped with the advancing/retreating direction as the longitudinal direction (example shown), or may not be pin-shaped.
  • An example of the latter is a block-like shape having a diameter larger than the length of the pressure member 41 in the advancing/retreating direction.
  • the cross-sectional shape of the pressing member 41 perpendicular to the advancing/retreating direction may be circular (the example shown in the drawing), or may be a shape other than circular.
  • the dimensions of the pressure member 41 are also arbitrary.
  • the pressure member 41 on the tip side may be tapered such that the diameter decreases toward the tip side. In this case, it is facilitated to pull out the pressure member 41 from the solidified molding material.
  • the tapered range may be set appropriately. In the illustrated example, the entire portion of the pressure member 41 positioned within the space 107 is tapered when the pressure member 41 is positioned at the forward limit.
  • the pressure member 41 may have a non-tapered shape (for example, a shape with a constant diameter).
  • the dimensions of the pressure member 41 are arbitrary.
  • d be the diameter of the front end of the pressure member 41 (e.g., equivalent circle diameter based on the area that applies pressure to the molten metal in the forward direction; the same applies to the plunger 21)
  • D be the diameter of the front end of the plunger 21.
  • d/D may be 0.2 or more and 0.5 or less. Of course, it may be outside this range.
  • the pressure member 41 may be arranged on the fixed mold 103 (example shown in the figure) or may be arranged on the movable mold 105 . In the description of the present embodiment, for the sake of convenience, the description may be made on the premise that the pressure member 41 is arranged on the fixed mold 103 .
  • part or all of the pressurizing member 41 may slide (may come into contact with) the mold (the fixed mold 103 or the movable mold 105) in the advancing and retreating directions.
  • the pressure member 41 may be positioned outside the mold at the rear end side portion (the portion connected to the driving portion 45A), or may be positioned entirely inside the mold. As an example of the latter, there is a mode in which the rear end side portion of the pressing member 41 is positioned in a space formed by a die base (not shown).
  • the advancing/retreating direction of the pressure member 41 may be an appropriate direction.
  • the forward/backward direction may be the mold opening/closing direction (horizontal direction in FIG. 4), or may be a direction intersecting (perpendicularly or inclined to) the mold opening/closing direction.
  • the forward/backward direction is the mold opening/closing direction, for example, the operation of peeling off the molded product from the mold in which the pressure member 41 is arranged (mold opening operation may be performed, and/or extrusion operation may be performed). ), the pressure member 41 can be pulled out from the molded product.
  • the arrangement position of the pressure member 41 with respect to the space 107 may be set appropriately.
  • the space 107 includes a product portion 107a having a shape corresponding to the shape of the product, and a runner 107e for guiding molten metal from the sleeve 19 to the product portion 107a. and an overflow 107b into which surplus molten metal flows.
  • the pressurizing member 41 may pressurize the molten metal positioned in any of these spaces.
  • the pressurizing member 41 is arranged to pressurize the molten metal that has flowed into the overflow 107b.
  • the overflow 107b is normally connected to the outer periphery of the product portion 107a (especially at a position away from the sleeve 19) when viewed in the mold opening/closing direction. Therefore, the pressurizing member 41 for pressurizing the molten metal in the overflow 107b can apply pressure to the outer peripheral molten metal in the product portion 107a to which the plunger 21 is less likely to apply pressure. As a result, for example, the molten metal in the product portion 107a tends to be evenly pressurized. As a result, when molding a large-sized product, it is possible to reduce the need to increase the pressure applied to the molten metal by the plunger 21 . From another point of view, the need for increasing the size of the die casting machine 1 can be reduced.
  • the fixed mold 103 (the mold in which the pressure member 41 is arranged) has a concave portion 107c on the surface on the side of the movable mold 105, into which the front end portion of the pressure member 41 is taken in and out.
  • the concave portion 107c may have, for example, a larger diameter than the distal end portion of the pressure member 41, or may have an inverse tapered shape with a larger diameter toward the moving die 105 side.
  • the recessed portion 107 c secures a volume in the space 107 for taking the pressure member 41 into and out of the space 107 .
  • the inverse tapered shape facilitates removal of the solidified molding material from the stationary mold 103 .
  • the fixed mold 103 may not have such a recess 107c, or may be formed with a recess 107c that is not inversely tapered.
  • the advance limit and retraction limit of the pressure member 41 may be defined by providing the die 101 or the like with a member or portion (stopper) with which the pressure member 41 abuts when the pressure member 41 advances or retreats. Alternatively, it may be defined by the driving limit of the driving portion 45 that drives the pressure member 41 . Examples of the latter drive limit include, for example, the forward movement limit and the backward movement limit of the piston 55 (described later) in the pressure cylinder 47 with respect to the cylinder member 53 (described later). In addition, in the description of the embodiment, illustration of a member that defines the forward limit and the backward limit is appropriately omitted.
  • the number of pressure members 41 may be set as appropriate, and may be one or two or more. However, in the description of the embodiment, basically only one pressing member 41 is illustrated in order to avoid complicating the drawing.
  • the pressure cylinder 47 includes, for example, a cylinder member 53, a piston 55 slidable inside the cylinder member 53, and a piston rod 57 extending from the piston 55 to the outside of the cylinder member 53. have.
  • the cylinder member 53 is, for example, a substantially cylindrical member.
  • the internal cross-sectional shape of the cylinder member 53 is, for example, circular.
  • the outer shape (outer shape) of the cylinder member 53 may be an appropriate shape such as a rectangular parallelepiped shape.
  • the piston 55 is, for example, a substantially cylindrical member, and can slide inside the cylinder member 53 in the axial direction.
  • the space inside the cylinder member 53 is partitioned by the piston 55 into a rod side chamber 53r on the side of the piston rod 57 and a head side chamber 53h on the opposite side.
  • the piston rod 57 is, for example, a substantially cylindrical member.
  • the diameter of the piston rod 57 is smaller than the diameter of the piston 55 . The difference may be set appropriately.
  • the pressurizing cylinder 47 is arranged, for example, coaxially with the pressurizing member 41 on the opposite side of the pressurizing member 41 from the space 107 (on the right side in FIG. 5), and the piston rod 57 side faces the pressurizing member 41. ing.
  • the cylinder member 53 is immovable with respect to the fixed mold 103 (the mold in which the pressure member 41 is arranged).
  • the cylinder member 53 is fixed to the fixed die 103 and/or the fixed die plate 13 with bolts or the like.
  • the tip of the piston rod 57 is connected to the rear end of the pressurizing member 41 by an appropriate coupling (reference numeral omitted).
  • the cylinder member 53 may be fixed to the pressure member 41 and the piston rod 57 may be immovable with respect to the fixed die 103 .
  • the direction of the pressurizing cylinder 47 may be opposite to the above description. That is, there are three possible combinations of which of the cylinder member 53 and the piston rod 57 should be fixed, and which direction the piston rod 57 should extend.
  • the cylinder chamber to which hydraulic fluid is supplied when advancing the pressurizing member 41 toward the space 107 may be the rod-side chamber 53r.
  • the description of the present embodiment may be made on the assumption that the piston rod 57 is oriented toward the pressurizing member 41 and the cylinder member 53 is stationary.
  • the number of pressurizing members 41 driven by one pressurizing cylinder 47 may be one (illustrated example), or may be two or more. In the latter case, for example, a plate-like member perpendicular to the piston rod 57 is fixed to the tip of the piston rod 57, and a plurality of pressure members 41 are fixed in parallel to this plate-like member, as can be inferred from a known extrusion device. You can In the description of the present embodiment, basically, the illustrated aspect (the aspect in which one pressurizing cylinder 47 drives one pressurizing member 41) is taken as an example.
  • the movement of the piston 55 (retraction of the pressurizing member 41 from the space 107 by the drive section) due to the supply of hydraulic fluid to the rod side chamber 53r is not necessarily performed. you can therefore, the rod side chamber 53r may or may not be filled with hydraulic fluid. In the latter case, for example, the rod-side chamber 53r may be open to the atmosphere. In this case, a small amount of oil as hydraulic fluid may be placed in the rod side chamber 53r for purposes such as lubrication. Further, when the rod side chamber 53r is filled with hydraulic fluid, the rod side chamber 53r may be supplied with only the shortage of the hydraulic fluid from the tank or the driving source (for example, pump) when the volume of the rod side chamber 53r expands. .
  • the driving source for example, pump
  • the piston 55 extends from the cylinder member 53 to the side opposite to the head-side chamber 53h (from another point of view, the diameter of the piston 55 is the same as the diameter of the piston rod 57), and the rod-side chamber 53r may be configured without However, in the description of the present embodiment, for the sake of convenience, the illustrated aspect (the aspect in which the pressurizing cylinder 47 has the rod-side chamber 53r) may be assumed.
  • the sensor 43 detects the retraction of the pressing member 41 as described above.
  • the specific configuration of the sensor 43 may take various forms. Some examples are given below.
  • the sensor 43 may be, for example, a limit switch that is turned ON (or OFF) when the pressure member 41 has retreated from its initial position (for example, the limit of forward movement) to a predetermined position.
  • the limit switches may be contact type or non-contact type.
  • the senor 43 may be, for example, a position sensor that detects the position of the pressing member 41 (in another point of view, the amount of retreat).
  • a position sensor may include, for example, a linear encoder.
  • FIG. 6 a pressure sensor 71H (see later-described FIG. 6) that detects the pressure in the head-side chamber 53h may be used as the sensor 43.
  • the detection of retraction may be detection of the presence or absence of retraction (for example, by a limit switch) or detection of the amount of retraction (for example, by a position sensor). may Also, the above specific examples may be used in combination.
  • the configuration of the sensor 43 and the amount of retraction when the sensor 43 detects retraction may be the same or different between the plurality of pressure members 41 (or the plurality of drive units 45). good too.
  • the position of the sensor 43 may be any position as long as the retraction of the pressure member 41 can be detected.
  • the limit switch or position sensor described above may directly detect the retraction of the pressure member 41 (see FIG. 1(b)), or the retraction of another member connected to the pressure member 41 (see FIG. 1(b)). movement) may be detected (FIG. 5).
  • a detected portion 44 is provided that is fixed to the piston 55 and extends rearward from the cylinder member 53 (opposite to the pressure member 41). Then, the sensor 43 detects the retraction of the detected portion 44 .
  • the detected portion 44 may be positioned inside the mold 101 or outside the mold 101 .
  • the hydraulic device 49 shown in FIG. 5 has, for example, a low pressure circuit 59L and a high pressure circuit 59H as hydraulic circuits for supplying hydraulic fluid to the pressurizing cylinder 47 and the like.
  • the hydraulic circuit 59 may be used without distinguishing between the two (reference numerals are shown in FIG. 6).
  • the low pressure circuit 59L can apply to the pressurizing cylinder 47 a hydraulic pressure lower than the hydraulic pressure supplied to the pressurizing cylinder 47 by the high pressure circuit 59H.
  • the configurations of the low-voltage circuit 59L and the high-voltage circuit 59H may be the same or completely different. A part of the low-voltage circuit 59L and the high-voltage circuit 59H may be shared. In the following, an embodiment in which the configurations of the low-voltage circuit 59L and the high-voltage circuit 59H are the same except for the difference in pressure (and specific design items resulting from the difference in pressure) will be taken as an example.
  • FIG. 6 is a circuit diagram showing the configuration of a specific example of the hydraulic device 49. As shown in FIG.
  • the hydraulic circuit 59 shown in this diagram may be regarded as either a low-voltage circuit 59L or a high-voltage circuit 59H. Components other than the hydraulic circuit 59 may be shared by the low-voltage circuit 59L and the high-voltage circuit 59H.
  • the hydraulic circuit 59 has, for example, the following components.
  • An accumulator 61 as a hydraulic pressure source that supplies hydraulic fluid to the pressurizing cylinder 47 .
  • a control valve 63 that controls the flow of hydraulic fluid between the accumulator 61 and the pressurizing cylinder 47 .
  • a check valve 75 that controls the flow of hydraulic fluid for accumulating pressure in the accumulator 61 .
  • the hydraulic device 49 has, for example, the following components.
  • a back pressure relief cylinder 65 for reducing the back pressure of the pressurizing cylinder 47 .
  • a pump 67 as a hydraulic pressure source for accumulating pressure in the accumulator 61 .
  • a tank 69 that stores the hydraulic fluid.
  • pressure sensors 71R and 71H for detecting the pressure of the pressurizing cylinder 47;
  • a flow rate sensor 73 that detects the flow rate of hydraulic fluid discharged from the pressure cylinder 47 .
  • Various valves (77A, 77R and 77H) that control the flow of hydraulic fluid in hydraulic system 49. Note that these configurations may be regarded as constituent elements of the hydraulic circuit 59 .
  • the accumulator 61 may be composed of an appropriate type of accumulator such as weight type, spring type, gas pressure type (including pneumatic type), cylinder type, and bladder type.
  • the accumulator 61 is a gas pressure type, cylinder type, or bladder type accumulator, and pressure is accumulated by compressing gas (for example, air or nitrogen) held in the accumulator 61 .
  • the pressure of the accumulator 61 of the low-pressure circuit 59L (pressure fluctuation due to the release of the working fluid can be ignored here) is made lower than the pressure of the accumulator 61 of the high-pressure circuit 59H.
  • the low-pressure circuit 59L can supply a pressure lower than the pressure supplied by the high-pressure circuit 59H to the pressurizing cylinder 47 (for example, the head-side chamber 53h).
  • a specific value of the pressure of the accumulator 61 may be set appropriately.
  • the pressure of the accumulator 61 included in the high-pressure circuit 59H may be 13 MPa or more and 14 MPa or less.
  • the control valve 63 is, for example, configured to permit and prohibit communication between at least the accumulator 61 and the head-side chamber 53h.
  • hydraulic fluid is supplied from the accumulator 61 to the head-side chamber 53h, and the pressure member 41 advances.
  • the accumulator 61 of the low-voltage circuit 59L is connected to the head-side chamber 53h, the pressure is absorbed by the accumulator 61 when the pressurizing member 41 retreats due to surge pressure. It should be noted that absorption of the surge pressure (at least part of it) may be achieved by compressing the hydraulic fluid instead of using the accumulator 61 of the low pressure circuit 59L.
  • control valve 63 of the low-pressure circuit 59L and the control valve 63 of the high-pressure circuit 59H cooperate to selectively connect one of the accumulator 61 of the low-pressure circuit 59L and the accumulator 61 of the high-pressure circuit 59H to the head-side chamber 53h.
  • the control valves 63 for both circuits may be understood as a switching valve that selectively connects the low-pressure circuit 59L and the high-pressure circuit 59H to the head-side chamber 53h as a whole. It should be noted that such a switching valve may be configured by a valve having one valve body, unlike the illustrated example.
  • control valve 63 for permitting and prohibiting connection between the accumulator 61 and the head-side chamber 53h may be made as appropriate.
  • the control valve 63 is configured to function as a 4-port 3-position switching valve. At the first position, the accumulator 61 (or pump 67) and the head side chamber 53h are connected, and the tank 69 and the rod side chamber 53r are connected. At the second position, contrary to the above, the accumulator 61 and the rod-side chamber 53r are connected, and the tank 69 and the head-side chamber 53h are connected. In the third position, any of the above connections are prohibited.
  • the hydraulic fluid can be supplied from the accumulator 61 to the head-side chamber 53h to advance the pressure member 41. At this time, the hydraulic fluid discharged from the rod-side chamber 53r is discharged to the tank 69.
  • the control valve 63 By setting the control valve 63 to the second position, for example, the pressurizing member 41 can be retracted, contrary to the above. Further, by setting the control valve 63 to the third position, for example, the pressurizing member 41 can be stopped.
  • control valve 63 is configured to function as a flow control valve capable of controlling the flow rate of the hydraulic fluid.
  • This flow control valve is, for example, a pressure-compensated flow control valve that can keep the flow constant even if the pressure fluctuates.
  • the flow control valve is, for example, a servo valve that is used in a servomechanism and can steplessly (continuously, to an arbitrary value) modulate the flow rate according to an input signal.
  • the control valve 63 as a flow rate control valve functions, for example, as a component of a meter-in circuit and/or a meter-out circuit when hydraulic fluid is supplied from the accumulator 61 to the head-side chamber 53h.
  • the forward speed of the pressure member 41 can be controlled, and local pressure can be applied according to the state of solidification.
  • control valve 63 that functions as a switching valve and/or a flow control valve as described above is also arbitrary.
  • the control valve 63 is configured to have a main valve 63a and a pilot valve 63b.
  • the main valve 63a communicates with the accumulator 61, the tank 69, the head-side chamber 53h and the rod-side chamber 53r, and controls the flow of the hydraulic fluid at the three positions described above.
  • the pilot valve 63b is driven by an electromagnetic drive system, introduces a pilot pressure to the main valve 63a, and controls the main valve 63a.
  • the control valve 63 may have various configurations other than the illustrated example.
  • the control valve 63 may be a direct acting valve or a pilot type check valve.
  • the rod-side chamber 53r does not necessarily need to be supplied with hydraulic fluid, so a flow path and a valve for connecting the rod-side chamber 53r to the accumulator 61 (or the pump 67) and the tank 69 are not provided. good too.
  • the check valve 75 permits and prohibits the supply of hydraulic fluid from the pump 67 to the hydraulic circuit 59 .
  • the accumulator 61 of the low voltage circuit 59L and the accumulator 61 of the high voltage circuit 59H can be selectively filled with hydraulic fluid.
  • the valve having such a function may have a structure other than the check valve, or may be one valve shared by the low-pressure circuit 59L and the high-pressure circuit 59H.
  • the check valve 75 is oriented to allow the hydraulic fluid to flow from the pump 67 to the accumulator 61 and to prohibit the flow in the opposite direction. Both flows are prohibited.
  • the back pressure elimination cylinder 65 is connected in the middle of the flow path that connects the control valve 63 (from another point of view, the rod side chamber 53 r ) and the tank 69 .
  • the hydraulic fluid flows from the rod-side chamber 53 r to the tank 69 , part of it flows into the back pressure elimination cylinder 65 .
  • an increase in pressure (back pressure) in the rod-side chamber 53r when the piston 55 (pressurizing member 41) moves forward is reduced.
  • the advancing speed of the pressure member 41 (from another point of view, the responsiveness of the pressure member 41) is improved.
  • the configuration of the back pressure elimination cylinder 65 may be made as appropriate.
  • the back pressure relief cylinder 65 may consist of an accumulator.
  • the above description of the accumulator 61 may be applied to the back pressure removal cylinder 65 as long as there is no contradiction.
  • the capacity and pressure of the back pressure elimination cylinder 65 may be set appropriately.
  • the pressure of the back pressure elimination cylinder 65 may be set relatively low. As a result, the hydraulic fluid can be quickly accommodated.
  • the pressure when the piston 65a of the back pressure elimination cylinder 65 is positioned at the drive limit on the hydraulic fluid discharging side (lower side in FIG. 6) is It is lower than the pressure of the accumulator 61 of the low pressure circuit 59L.
  • the pressure when the piston 65a is at the drive limit on the side of discharging the hydraulic fluid is higher than the tank pressure, for example.
  • the piston 65a moves to the drive limit on the side of discharging the hydraulic fluid.
  • the hydraulic fluid in the back pressure elimination cylinder 65 is discharged to the tank 69 .
  • the configurations of the pump 67 and the tank 69 may be various configurations, for example, may be known configurations.
  • the pump 67 and/or the tank 69 may be shared by a hydraulic device other than the hydraulic device 49 of the pressurizing device 2A (for example, the hydraulic device of the injection device 9).
  • the pump 67 may be driven as needed, or may be driven all the time (the valves required in this case are not shown).
  • the pump 67 contributes to pressure accumulation in the accumulator 61, for example.
  • the pump 67 may, for example, apply hydraulic fluid to the rod-side chamber 53r instead of the accumulator 61 when the piston 55 of the pressurizing cylinder 47 is retracted (a valve required in this case is not shown). ).
  • the pump 67 may cooperate with the accumulator 61 to supply the working fluid to the head side chamber 53h.
  • the tank 69 is, for example, open to the atmosphere. Therefore, the pressure in the flow path and the like connected to the tank 69 is basically the atmospheric pressure.
  • the tank 69 contributes to, for example, recovery of the hydraulic fluid discharged from the pressurizing cylinder 47 (the rod-side chamber 53r or the head-side chamber 53h), as described above.
  • the pressure sensor 71R detects the pressure in the rod side chamber 53r.
  • the pressure sensor 71H detects the pressure in the head-side chamber 53h. For example, based on the detected pressure in the rod-side chamber 53r and the detected pressure in the head-side chamber 53h, the control device 5 can identify the driving force generated by the pressure cylinder 47. can identify the pressure applied to It is also possible to identify the driving force applied to the pressure member 41 in the forward direction by the pressure cylinder 47 based only on the pressure in the head-side chamber 53h, and the pressure sensor 71R may be omitted.
  • the specific configuration of the pressure sensors 71R and 71H may be various configurations, for example, may be a known configuration.
  • the flow rate sensor 73 detects the flow rate of the hydraulic fluid discharged from the rod-side chamber 53r. Thereby, for example, the advance distance of the pressing member 41 can be detected. Such a sensor is particularly useful, for example, in a mode in which the sensor 43 that detects retraction of the pressing member 41 is not a position sensor. Note that the flow rate sensor 73 may not be provided. A specific configuration of the flow rate sensor 73 may be various configurations, and may be a known configuration, for example.
  • valves 77A, 77R and 77H are used, for example, during maintenance of the pressurizing device 2A. These valves may, for example, consist of cocks that are manually opened and closed. Note that these valves may not be provided.
  • the valve 77A is provided in a channel connecting the rod-side chamber 53r and the head-side chamber 53h. Valve 77A is closed when a molding cycle is being performed. During maintenance, the valve 77A is opened to circulate the hydraulic fluid. As a result, air is removed from the pressurizing cylinder 47 . As a result, the operation of the pressure cylinder 47 is stabilized.
  • the valve 77R is positioned between the rod-side chamber 53r and the pressure sensor 71R.
  • the valve 77H is positioned between the head-side chamber 53h and the pressure sensor 71H. Valves 77R and 77H are open during the molding cycle.
  • a check valve may be provided that allows the hydraulic fluid to flow from the tank 69 to the rod-side chamber 53r, prohibits the flow in the opposite direction, and allows both flows by introducing pilot pressure.
  • the hydraulic fluid is supplied from the low pressure circuit 59L to the head side chamber 53h to move the pressurizing member 41 to the initial position. Then, before the pressurizing member 41 reaches the forward movement limit, the introduction of the pilot pressure is stopped, and the discharge of the hydraulic fluid from the rod side chamber 53r is prohibited. Thereby, the pressure member 41 can be stopped at an arbitrary position.
  • an arbitrary position forward of the retraction limit can be set as the initial position, and forward force can be applied to the pressure member 41 at the initial position.
  • hydraulic fluid is supplied from the tank 69 to the rod side chamber 53r through the check valve. Thereafter, when the hydraulic fluid is supplied from the high-pressure circuit 59H to the head side chamber 53h for local pressurization, the pilot pressure is again introduced to allow the hydraulic fluid to be discharged from the rod side chamber 53r.
  • a combination of components enclosed by a chain double-dashed line for example, the pressure cylinder 47, the pressure sensors 71H and 71R, and the control valve 63
  • the hydraulic system 49 may have multiple units 60 . That is, two or more pressurizing cylinders 47 (in another respect, two or more pressurizing members 41) may be controllable independently of each other. As already mentioned, one pressurizing cylinder 47 may drive one pressurizing member 41 or may drive two or more pressurizing members 41 . Also, two or more pressure members 41 may be driven by drive units 45 having different configurations (for example, one having a pressure cylinder 47 and one not having a pressure cylinder 47).
  • FIG. 7 is a diagram for explaining operations related to injection and local pressurization.
  • the pressurizing device 2A is expressed as if it were a component of the injection device 9, or as if the local pressurization is a part of the injection process. Sometimes.
  • the horizontal axis indicates time t, with later points on the right side.
  • the left vertical axis indicates the speed V, and the higher the speed, the higher the speed.
  • the vertical axis on the right indicates the pressure P, and the higher the pressure, the higher the pressure.
  • a line LV indicates the change over time of the injection speed (the speed of the plunger 21).
  • a line LP indicates the change over time of the injection pressure. The injection pressure is assumed to be the pressure applied by the plunger 21 to the molten metal.
  • a line LC indicates the change in casting pressure over time.
  • the casting pressure is, for example, the pressure of the molten metal in the product portion 107a of the mold 101 after completion of filling, and is distinguished from the injection pressure in the description of this embodiment. In the following description, the casting pressure may indicate only the final pressure (final pressure) after the increase. Strictly speaking, the pressure of the molten metal within the product portion 107a varies depending on the position within the product portion 107a.
  • the casting pressure shown here is, for example, taken to be a representative value of the actual pressure in the product portion 107a, or is a target value of the casting pressure set without considering such strictness. It may be taken as
  • a line LB indicates a burr blowing limit curve.
  • the burr blowing limit curve is a curve showing the change over time of the upper limit of the pressure of the molding material (molten metal) at which burrs do not blow.
  • the control device 5 may calculate the combination of time and pressure indicated by the curve based on a calculation formula, or may refer to time-series data to specify the combination.
  • a method for calculating the burr blowing limit curve is known, and may be calculated, for example, by the calculation formula described in JP-A-2019-13933.
  • a line LS indicates the change over time of the pressure that the driving portion 45A drives the pressurizing member 41 toward the space 107 in terms of the pressure that the pressurizing member 41 (its front end) can apply to the molten metal. .
  • Line LS is also shown before pressurization is performed (for example, before molten metal reaches pressurizing member 41) because it is "appliable pressure”.
  • the pressure indicated by line LS is the pressure that pressurizing member 41 actually applies to the melt.
  • the pressurizing member 41 pressurizes the molten metal in a portion other than the product portion 107a or the outer peripheral portion of the product portion 107a. Therefore, the pressure indicated by the line LS does not match the representative value of the pressure of the product portion 107a or the casting pressure (line LC) which is the target value of the representative value.
  • the speed and pressure indicated by lines LV, LP, LC and/or LS may be taken to indicate target values, or may indicate actual values (e.g. actual values detected by sensors). It may be assumed that there is The target value may be set by user input or by calculation of controller 5 .
  • the die casting machine 1 performs, for example, low-speed injection (time points t0 to t1), high-speed injection (time points t1 to t2), and pressure increase and pressure holding (time points t2 and after) in sequence. That is, the die casting machine 1 advances the plunger 21 at a relatively low speed (velocity V L ) in the initial stage of injection, as indicated by the line LV, in order to prevent air from being entrained in the molten metal. Performs low speed injection. Next, the die casting machine 1 performs a high-speed injection that advances the plunger 21 at a relatively high speed (velocity V H ) from the viewpoint of filling the molten metal without delaying the solidification of the molten metal, as indicated by the line LV.
  • V L relatively low speed
  • V H relatively high speed
  • the die casting machine 1 increases the pressure to raise the molten metal in the product portion 107a from the viewpoint of eliminating sink marks in the molded product, as indicated by the line LC. Thereafter, as indicated by the line LC, the die casting machine 1 performs pressure holding to maintain the final pressure obtained by the pressure increase.
  • the casting pressure (line LC) is realized mainly by the injection pressure (line LP) applied by the plunger 21 to the molten metal.
  • the ratio of the pressure (line LS) applied to the molten metal by the pressurizing member 41 to the casting pressure is large. Specifically, it is as follows.
  • the injection pressure is relatively low during low-speed injection. After that, when high-speed injection starts (time t1), the injection pressure also rises. Furthermore, when the filling of the molten metal is almost completed (time t2), the molten metal has nowhere to go, so the injection pressure rises sharply and reaches pressure P1. In the example shown, the pressure P1 is lower than the casting pressure.
  • the injection device 9 operates to increase the pressure so that the injection pressure reaches a casting pressure higher than the pressure P1.
  • operations include an operation of switching an accumulator that supplies hydraulic fluid to the head-side chamber 53h to a pressure-increasing accumulator, and an operation of supplying hydraulic fluid behind a pressure-increasing piston (see FIG. 12, which will be described later). be done.
  • the injection device 9 does not operate to increase the pressure as described above. Instead, local pressurization is performed by the pressurizing device 2A, thereby realizing the casting pressure. Specifically, in the illustrated example, when the injection pressure reaches pressure P1 (time t2), the high-pressure circuit 59H starts driving the pressurizing cylinder 47, thereby starting local pressurization. At this time, the pressure P2 related to local pressurization is, for example, higher than the casting pressure (target value) and lower than the burr blowing limit curve.
  • the pressure P2 may be set to be higher than the plastic deformation resistance.
  • the value of the plastic deformation resistance for example, the yield point at the temperature of the molding material when the melting is completed (the former when the upper yield point and the lower yield point appear) may be used.
  • the pressure P2 may be set by the user so as to be higher than the plastic deformation resistance, or may be set higher than the plastic deformation resistance by the control device 5 having information on the plastic deformation resistance. In the latter case, the control device 5 may acquire information on the plastic deformation resistance itself or information specifying the plastic deformation resistance through user input.
  • the magnitude of the pressure P2 compared to the pressure P1 is arbitrary.
  • the pressure P2 may be 1.1 times or more and 2.0 times or less of the pressure P1.
  • the pressure P2 may be 1.5 times or more and 4.0 times or less the pressure P1.
  • the ratio between the two may be outside the above range.
  • the pressure indicated by the line LS is smaller than the pressure P1 (the maximum value of the injection pressure from another point of view) which is the injection pressure at the completion of filling.
  • the driving force (hereinafter sometimes referred to as the initial force) that positions the pressure member 41 to the initial position (for example, the forward limit) is the pressure P1 applied to the pressure member 41 from the front. It is smaller than the force applied to the pressure member 41 when assumed.
  • the initial force is generated by supplying hydraulic fluid from the low pressure circuit 59L to the head side chamber 53h. The initial force may be applied to the pressure member 41 at an appropriate timing, and in the illustrated example, the initial force is applied from the start of injection (time t0).
  • FIG. 8 is a flowchart showing an example of the procedure of processing executed by the control device 5 to realize the above operation.
  • the control device 5 performs initial settings related to various molding conditions based on the user's input operation and the like.
  • Conditions set in this initial setting include, for example, the injection speed (line LV), the injection pressure (line LP), the casting pressure (line LC), and the pressure applied to the molten metal by the pressure member 41 shown in FIG. (line LS) at an appropriate point in time.
  • This value may include, for example, pressures P1 and P2.
  • a value necessary for calculating the burr blowing limit curve may also be set.
  • step ST2 the control device 5 determines whether or not the conditions for starting injection have been met.
  • the start condition may be, for example, that the mold clamping of the fixed mold 103 and the movable mold 105 is completed and information indicating that the molten metal has been supplied to the sleeve 19 is obtained. Then, the control device 5 waits until the start condition is satisfied (repeating step ST2), and when determining that the start condition is satisfied, proceeds to steps ST3 and ST6.
  • Steps ST3 to ST5 show the procedure of processing related to injection by the injection device 9.
  • steps ST6 to ST10 show the procedure of processing related to local pressurization by the pressurizing device 2A. These processes are performed, for example, at least partially in parallel.
  • the control device 5 controls the drive section 23 of the injection device 9 to move the plunger 21 forward.
  • the control device 5 controls the hydraulic device (not shown) of the injection device 9 so that the hydraulic fluid is supplied to the head-side chamber 31h of the injection cylinder 27 . Thereby, low-speed injection and high-speed injection are performed.
  • step ST4 the control device 5 determines whether or not the injection pressure has reached the pressure P1, which is the target value at the time of completion of filling. When the determination is negative, the control device 5 waits (continues high-speed injection), and when the determination is positive, the process proceeds to step ST5.
  • step ST5 the control device 5 stops advancing the plunger 21.
  • the control device 5 stops supplying the hydraulic fluid to the head-side chamber 31h. Also, at this time, discharge of the hydraulic fluid from the head-side chamber 31h may be prohibited so that the pressure from the molten metal does not cause the plunger 21 to retreat.
  • the control device 5 controls the hydraulic device 49 so as to move the pressure member 41 (pressure pin) to the initial position (for example, the forward limit). That is, the control valve 63 of the low pressure circuit 59L is controlled so that the hydraulic fluid is supplied from the accumulator 61 of the low pressure circuit 59L to the head side chamber 53h of the pressure cylinder 47. Note that this step may be performed at any timing as long as it is performed before the molten metal reaches the position of the pressure member 41 . For example, it may be performed before step ST2.
  • step ST7 the control device 5 determines whether or not the pressure member 41 is pushed back by the molten metal based on the signal from the sensor 43. When the determination is negative, the control device 5 waits (repeats step ST7), and when the determination is positive, the process proceeds to step ST8. Note that when the sensor 43 is not a limit switch that detects the presence or absence of backward movement, but a position sensor or pressure sensor that continuously detects a physical quantity related to backward movement, step ST7 is , whether or not the detected amount (for example, the amount of retraction in the case of a position sensor) exceeds a predetermined threshold.
  • the control device 5 controls the hydraulic device 49 to advance the pressure member 41. That is, the control device 5 controls the control valve 63 of the low-pressure circuit 59L and the high-pressure circuit 59H so that the hydraulic fluid is supplied from the accumulator 61 of the high-pressure circuit 59H to the head-side chamber 53h instead of the accumulator 61 of the low-pressure circuit 59L. Control valve 63 . Thereby, local pressurization (pressure increase from another point of view) is performed.
  • step ST9 the control device 5 determines whether or not the pressure applied to the molten metal by the pressurizing member 41 has reached the target pressure P2. When the determination is negative, the control device 5 waits (continues the forward movement of the pressing member 41), and when the determination is positive, the process proceeds to step ST10.
  • the control device 5 stops advancing the pressure member 41.
  • the control device 5 stops supplying the hydraulic fluid to the head-side chamber 53h.
  • pressure holding is performed.
  • discharge of the hydraulic fluid from the head-side chamber 53h may be prohibited so that the pressure member 41 does not retreat from the molten metal due to the pressure.
  • the head-side chamber 53h may be replenished with the hydraulic fluid in an amount corresponding to the leakage of the hydraulic fluid.
  • the control device 5 ends the holding pressure.
  • the control device 5 connects the head side chamber 53h to the tank 69 or the accumulator 61 of the low pressure circuit 59L. Further, the control device 5 performs control related to mold opening, retraction of the plunger 21, and the like. After that, the control device 5 may return to step ST2 and repeat the injection cycle (molding cycle) until a predetermined termination condition is satisfied.
  • step ST4 may be a precondition for executing step ST7.
  • the control device 5 starts advancing the pressure member 41 on the condition that the pressure applied to the molten metal by the plunger 21 reaches a predetermined pressure (pressure P1 in the example of FIG. 8).
  • the drive unit 45A may be controlled immediately. The effect will be described in the summary of the first embodiment described later.
  • steps ST7 to S10 may be performed independently for each pressurizing cylinder 47 .
  • the plurality of pressurizing members 41 arranged at different positions can be controlled at appropriate timings.
  • the pressure P2 which is the target pressure for local pressurization, may be set by the user, or may be set by the control device 5 based on the target value of the casting pressure or the like. In the former case, if the input pressure P2 is smaller than the target value of the casting pressure or the plastic deformation resistance and/or exceeds the burr blowing limit curve, the control device 5 will The user may be warned, or such input of pressure P2 may be invalidated. In addition, when the control device 5 sets the pressure P2, the control device 5 sets the pressure P2 to be equal to or higher than the target value of the casting pressure or to be equal to or higher than the plastic deformation resistance and/or to be equal to or lower than the burr blowing limit curve. , the pressure P2 may be set.
  • the local pressure device 2A includes the pressure member 41 whose front end is exposed inside (the space 107) of the mold (the mold 101), and the pressure member 41 that extends forward. and a drive unit 45A for applying force.
  • the pressure member 41 is positioned at an initial position (for example, forward limit) ahead of the retraction limit when the molding material (for example, molten metal) reaches the position of the pressure member 41, and is pushed by the molten metal to the initial position. retreat from an initial position (for example, forward limit) ahead of the retraction limit when the molding material (for example, molten metal) reaches the position of the pressure member 41, and is pushed by the molten metal to the initial position. retreat from
  • the molding machine according to the first embodiment includes the pressure device 2A, the mold clamping device 7 for opening and closing the mold 101 and clamping the mold, and an injection device 9 for injecting the molten metal into the space 107 .
  • the molding method according to the first embodiment has an injection step (see step ST3) and a local pressure step (see step ST8).
  • the injection step injects the molten metal into the space 107 .
  • the pressurizing member 41 whose front end is exposed in the space 107 is advanced to pressurize the molten metal in the space 107 .
  • the pressing member 41 is positioned at an initial position forward of the retraction limit, and is pushed by the molten metal to retract from the initial position.
  • the surge pressure can be absorbed by retreating the pressure member 41 to reduce the probability of burr generation, and the advance timing of the pressure member 41 can be optimized to reduce the probability of shrinkage cavity generation.
  • the drive unit 45A may position the pressure member 41 at the initial position while applying an initial forward force to the pressure member 41.
  • the initial force is the force applied to the pressure member 41 when it is assumed that the injection plunger (plunger 21) applies the maximum pressure (pressure P1) during the injection process to the molding material from the front to the pressure member 41. may also be made smaller.
  • the molten metal causes the pressing member 41 to retreat against the initial force. In the process, the energy possessed by the molten metal is consumed. Therefore, the surge pressure is effectively absorbed.
  • the pressurizing device 2A controls the sensor 43 that detects the retreat of the pressurizing member 41, and the drive unit 45A to start advancing the pressurizing member 41 at the timing based on the detection of the retreat of the pressurizing member 41 by the sensor 43. and a controller 5 that
  • the effect of optimizing the advance timing of the pressure member 41 described above can be obtained.
  • the timing based on the detection of the retraction of the pressing member 41 is not limited to the timing immediately after the detection, unlike the example of FIG.
  • the controller 5 controls the drive unit 45A to start advancing the pressure member 41 on the condition that the pressure applied to the molding material by the plunger 21 reaches a predetermined pressure (the pressure P1 in the example of FIG. 8). may be controlled (see the arrow from step ST4 to step ST7 in FIG. 8).
  • the probability that the pressing member 41 will start moving forward when the filling of the molten metal is not completed is reduced.
  • the amount of retraction to the position where the limit switch is turned on may be reduced, or the amount of retraction (threshold value) used when the controller 5 determines that the pressure member 41 has retreated based on the detection value of the position sensor may be decreased.
  • the pressure increase amount (threshold value) when the control device 5 determines that the pressure member 41 has retreated based on the detection value of the pressure sensor 71H can be reduced. This improvement in sensitivity is effective, for example, when it is difficult to transmit the injection pressure to the position of the pressure member 41 due to progress of solidification of the molten metal.
  • the pressurizing member 41 may apply a pressure equal to or greater than at least one of the casting pressure set by the control device 5 and the plastic deformation resistance of the molding material to the molding material.
  • the pressure of the molding material tends to have an appropriate magnitude not only locally but also as a whole.
  • the quality of the product can be improved when the pressure is increased by local pressurization instead of by the injection pressure.
  • the pressure member 41 may apply a pressure below the burr limit curve specified by the control device 5 to the molding material.
  • the probability of burrs occurring around the pressurizing member 41 is reduced.
  • the quality can be improved by applying local pressure to the molten metal as high as possible while reducing the probability of burrs being generated.
  • the drive unit 45 may have a hydraulic cylinder (pressure cylinder 47), an accumulator 61, a back pressure removal cylinder 65, and a servo valve (control valve 63).
  • the pressure cylinder 47 is connected to the pressure member 41 .
  • the accumulator 61 is connected to a first cylinder chamber (head-side chamber 53h) of the pressure cylinder 47 to which hydraulic fluid is supplied when the pressure member 41 advances.
  • the back pressure elimination cylinder 65 is connected to a second cylinder chamber (rod-side chamber 53r) of the pressurizing cylinder 47, from which hydraulic fluid is discharged when the pressurizing member 41 advances.
  • the control valve 63 controls the flow from the accumulator 61 to the head side chamber 53h.
  • the head-side chamber 53h high pressure can be applied to the head-side chamber 53h and the back pressure of the rod-side chamber 53r can be quickly removed, so the responsiveness of the pressure member 41 is improved.
  • the sensor 43 can appropriately detect the arrival of the molten metal, and the pressure member 41 can be advanced at an appropriate timing.
  • the flow rate can be controlled by the control valve 63 as a servo valve, the possibility of the pressure member 41 moving forward excessively by using the accumulator 61 and the back pressure elimination cylinder 65 is reduced.
  • d/D When the diameter of the front end of the pressure member 41 is d and the diameter of the front end of the plunger 21 is D, d/D may be 0.2 or more and 0.5 or less.
  • the pressure applied to the molten metal by the pressurizing member 41 is relatively It is possible to increase the size and reduce the load on the drive unit 45A. Further, for example, when d/D is 0.2 or more, a relatively large volume for pressing the molding material is ensured, and the effect of local pressurization can be improved.
  • FIG. 9(a) and 9(b) are sectional views showing the configuration of a pressure device 2B according to the second embodiment.
  • FIG. 9(a) corresponds to FIG. 1(b), in which the molten metal has not reached the position of the pressure member 41 and the pressure member 41 is located at the initial position (advance limit). is shown.
  • FIG. 9(b) corresponds to FIG. 2(b) and shows a state in which the molten metal reaches the position of the pressure member 41 and the pressure member 41 retreats.
  • an elastic member 45B is used as the driving portion 45.
  • the pressurizing member 41 Before the molten metal reaches the pressurizing member, the pressurizing member 41 is pushed forward (toward the space 107) by the restoring force of the elastic member 45B and is positioned at the forward limit. Note that when the pressure member 41 is positioned at the forward limit, the elastic member 45B may be in a state in which a restoring force is generated (a state in which deformation remains), or generally does not generate a restoring force. state.
  • the pressure member 41 retreats. As the pressure member 41 retreats, the elastic member 45B increases its restoring force. Then, the pressure member 41 stops at a position where the force received from the molten metal and the restoring force of the elastic member 45B are balanced (here, the effects of frictional force and the like are ignored). Note that, unlike the above, the pressure member 41 may be stopped by coming into contact with a stopper (not shown) that defines its retraction limit.
  • the elastic member 45B may be made as appropriate.
  • the elastic member 45B is composed of a coiled spring, the front end of which contacts the pressure member 41, and the rear end of which contacts the fixed mold 103 (or a member fixed to the fixed mold 103). ing. Then, the elastic member 45B generates a restoring force by compressive deformation.
  • Another specific example of the elastic member 45B is one or more leaf springs (for example, laminated disk springs) (the same applies to other embodiments described later). It should be noted that the pressure device 2B does not have a driving portion such as the pressure cylinder 47 that actively generates a driving force.
  • the pressurizing device 2B includes a pressurizing member 41 whose front end is exposed to the interior (space 107) of the mold (the mold 101), and a driving force that applies forward force to the pressurizing member 41. section (elastic member 45B).
  • the pressure member 41 is positioned at an initial position (advance limit) forward of the retraction limit, and is pushed by the melt 109 to reach the advance limit. retreat from
  • surge pressure can be absorbed.
  • the elastic member 45B absorbs the surge pressure, so that the pressurizing member 41 can apply a higher pressure to the molten metal than the pressure of the molten metal after the surge pressure subsides. Thereby, the effect of local pressurization can be obtained.
  • the drive section (45) may include an elastic member 45B that imparts forward restoring force to the pressure member 41. As shown in FIG.
  • the surge pressure can be sufficiently absorbed by the elastic deformation of the elastic member 45B, compared to the mode of absorbing the surge pressure by compressing the fluid (this mode is also included in the technology according to the present disclosure). Also, since the need to use fluid is reduced, members such as seals can be omitted. Furthermore, the absorption of surge pressure is used to locally pressurize the molten metal after the surge pressure subsides, so energy can be saved.
  • FIG. 10 is a cross-sectional view showing the configuration of a pressure device 2C according to the third embodiment, and corresponds to FIG. 1(b). This figure shows a state in which the molten metal has not reached the position of the pressure member 41 and the pressure member 41 is located at the initial position (advance limit).
  • the driving portion 45C of the pressurizing device 2C is a combination of the pressurizing cylinder 47 of the first embodiment and the elastic member 45B of the second embodiment.
  • the elastic member 45B and the pressurizing cylinder 47 are provided so as to apply force to the pressurizing member 41 in parallel. It should be noted that “parallel” here refers to the application of force, not to the positional relationship.
  • the pressurizing cylinder 47 has a piston rod 57 connected to the pressurizing member 41 as in the first embodiment.
  • the elastic member 45B is composed of a coil spring and arranged concentrically with respect to the piston rod 57 .
  • the elastic member 45B has its front end in contact with the pressure member 41 and its rear end in contact with the fixed mold 103 (or a member fixed to the fixed mold 103), and exerts a restoring force by compressive deformation. occur.
  • the drive section 45C has a hydraulic device that supplies hydraulic fluid to the pressurizing cylinder 47 and the like. This hydraulic system is obtained by removing the low pressure circuit 59L from the hydraulic system 49 shown in FIGS. This is because the elastic member 45B takes the place of the low-voltage circuit 59L, as described below.
  • the hydraulic device When injection is being performed (time points t0 to t2 in FIG. 7), the hydraulic device connects the rod-side chamber 53r and the head-side chamber 53h to the tank 69, for example. Therefore, the pressure member 41 is pushed forward by the restoring force of the elastic member 45B and positioned at the forward limit (initial position). When the molten metal reaches the position of the pressure member 41, the pressure member 41 retreats with deformation of the elastic member 45B, as in the second embodiment. At this time, the surge pressure may be absorbed. Further, when the pressure member 41 retreats, the pressure member 41 starts to advance by the high pressure circuit 59H and the pressure cylinder 47, and local pressure is applied (step ST7 in FIG. 8), as in the first embodiment. to ST10).
  • the hydraulic fluid is discharged from the rod side chamber 53r by a pilot type check valve or the like. may be prohibited, and the pressure member 41 may be stopped before the pressure member 41 reaches the forward limit. That is, the initial position may be a position other than the forward movement limit.
  • the local pressure device 2C includes the pressure member 41 whose front end is exposed inside (the space 107) of the mold (the mold 101), and the pressure member 41 that extends forward. and a drive unit 45C that applies force.
  • the pressure member 41 is positioned at an initial position (for example, forward limit) ahead of the retraction limit when the molding material (for example, molten metal) reaches the position of the pressure member 41, and is pushed by the molten metal to the initial position. retreat from an initial position (for example, forward limit) ahead of the retraction limit when the molding material (for example, molten metal) reaches the position of the pressure member 41, and is pushed by the molten metal to the initial position. retreat from
  • the drive unit 45C includes a hydraulic cylinder (pressurization cylinder 47) that applies a driving force to the pressure member 41 and a forward restoring force to the pressure member 41. and an elastic member 45B.
  • the pressurizing cylinder 47 and the elastic member 45B may be provided so as to apply force to the pressurizing member 41 in parallel.
  • FIG. 11 is a cross-sectional view showing the configuration of a pressure device 2D according to the fourth embodiment, and corresponds to FIG. 1(b). This figure shows a state in which the molten metal has not reached the position of the pressure member 41 and the pressure member 41 is located at the initial position.
  • the driving portion 45D of the pressurizing device 2D is a combination of the pressurizing cylinder 47 of the first embodiment and the elastic member 45B of the second embodiment, similar to the third embodiment.
  • the elastic member 45B pushes the pressure member 41 forward to move the pressure member 41 to the initial position ( For example, forward limit).
  • the elastic member 45B and the pressurizing cylinder 47 are provided parallel to each other so as to apply force to the pressurizing member 41.
  • the pressure cylinders 47 are provided so as to be able to apply force to the pressure member 41 in series with each other.
  • the pressurizing cylinder 47 has a piston rod 57 connected to the pressurizing member 41 as in the first embodiment.
  • the elastic member 45B is composed of a coil spring, and has a front end in contact with the rear end of the cylinder member 53 and a rear end in contact with the fixed mold 103 (or a member fixed to the fixed mold 103). Then, the elastic member 45B generates a restoring force by compressive deformation.
  • the drive section 45D has a hydraulic device that supplies hydraulic fluid to the pressurizing cylinder 47 and the like. Similar to the third embodiment, this hydraulic system is obtained by removing the low pressure circuit 59L from the hydraulic system 49 shown in FIGS.
  • the hydraulic device positions the piston 55 at an appropriate position (for example, the retraction limit) with respect to the cylinder member 53.
  • the inflow and outflow of the hydraulic fluid may be prohibited from the rod-side chamber 53r and the head-side chamber 53h.
  • the pressure member 41 is pushed forward together with the pressure cylinder 47 by the restoring force of the elastic member 45B and is positioned at the forward limit.
  • the pressure member 41 retreats together with the pressure cylinder 47 along with deformation of the elastic member 45B. At this time, the surge pressure may be absorbed.
  • the pressure member 41 when the pressure member 41 retreats, as in the first embodiment, the pressure member 41 starts to advance by the high pressure circuit 59H and the pressure cylinder 47, and local pressure is applied (steps ST7 to ST10 are performed. reference).
  • a stopper may be provided to define the retraction limit of the cylinder member 53 with respect to the fixed die 103 .
  • FIG. 11 shows, for example, the state where the pressure member 41 is located at the initial position.
  • the pressure cylinder 47 can further advance the pressure member 41 from the initial position. Therefore, FIG. 11 shows an example of an initial position of the pressing member 41 that is not the forward limit.
  • the pressure member 41 may be controlled to move forward from the initial position, or such control may not be performed.
  • the pressing member 41 when the pressing member 41 is at the illustrated position, the pressing member 41 (or a member fixed to the pressing member 41) is attached to the fixed mold 103 (or fixed to the fixed mold 103).
  • the illustrated position may be the limit of forward movement by abutting on a stopper provided on the member).
  • the local pressure device 2D includes the pressure member 41 whose front end is exposed inside (the space 107) of the mold (the mold 101), and the pressure member 41 that extends forward. and a driving portion 45D for applying force.
  • the pressure member 41 is positioned at an initial position (for example, forward limit) ahead of the retraction limit when the molding material (for example, molten metal) reaches the position of the pressure member 41, and is pushed by the molten metal to the initial position. retreat from an initial position (for example, forward limit) ahead of the retraction limit when the molding material (for example, molten metal) reaches the position of the pressure member 41, and is pushed by the molten metal to the initial position. retreat from
  • the drive unit 45D includes a hydraulic cylinder (pressurization cylinder 47) that imparts a driving force to the pressurizing member 41, and a forward restoring force to the pressurizing member 41. and an elastic member 45B.
  • the pressurizing cylinder 47 and the elastic member 45B may be provided so as to apply force to the pressurizing member 41 in series with each other.
  • the elastic member 45B allows the pressing member 41 to be positioned at the initial position, so the low-voltage circuit 59L of the first embodiment becomes unnecessary. As a result, the hydraulic system is simplified.
  • FIG. 12 is a schematic diagram showing the configuration of a die-casting machine DCE according to the fifth embodiment.
  • the pressurizing device 2E (driving unit 45E) according to the present embodiment is configured to drive the pressurizing member 41 by the pressurizing cylinder 47, as in the first embodiment.
  • this embodiment differs from the first embodiment in the manner in which the hydraulic fluid is supplied to the pressurizing cylinder 47 .
  • the head-side chamber 53h of the pressurizing cylinder 47 and the head-side chamber 31h of the injection cylinder 27E are communicated by the communication passage 83, and the pressure is applied to the head-side chamber 31h.
  • a pressure equivalent to the pressure is supplied to the head-side chamber 53h.
  • it is as follows.
  • the driving portion 23E that drives the plunger 21 has an injection cylinder 27E.
  • the drive unit 23E is configured to increase the pressure by applying a higher pressure to the head-side chamber 31h than the pressure applied to the head-side chamber 31h until the narrowly defined injection process (time points t0 to t2 in FIG. 7). It is said that Examples of such a drive unit 23E include a mode having a pressure boosting injection cylinder (example shown) and a mode having an accumulator used only for pressure boosting among injection and pressure boosting.
  • the drive unit 23E may be of a hybrid type that uses both an injection cylinder and an electric motor. In the following, the illustrated example (increase-pressure injection cylinder 27E) will be described as an example.
  • the injection cylinder 27E has a cylinder member 31E, a piston 33 and a piston rod 37, like the injection cylinder 27 shown in FIG. 1(a).
  • the cylinder member 31E has a small-diameter cylinder portion 31x and a large-diameter cylinder portion 31y leading to the rear thereof (on the right side in FIG. 12) and having a larger diameter than the small-diameter cylinder portion 31x. It corresponds to the cylinder member 31 in FIG.
  • the injection cylinder 27E has a booster piston 35 behind the piston 33. As shown in FIG.
  • the pressure-increasing piston 35 has a small-diameter portion 35x that slides on the small-diameter cylinder portion 31x, and a large-diameter portion 35y that slides on the large-diameter cylinder portion 31y.
  • the large-diameter portion 35y divides the large-diameter cylinder portion 31y into a front chamber 31a and a rear chamber 31b.
  • the pressure-increasing piston 35 has a front (head-side chamber 31h) pressure-receiving area smaller than a rear (rear-side chamber 31b) pressure-receiving area. Therefore, the pressure-increasing piston 35 can apply a higher pressure to the head-side chamber 31h than to the rear-side chamber 31b in a state in which the front-side chamber 31a is depressurized.
  • the ratio of the area of the pressurizing cylinder 47 where the pressure member 41 receives pressure from the front to the area where the piston 55 receives pressure from the head-side chamber 53h is the area of the injection cylinder 27E where the piston 33 receives pressure from the head-side chamber 31h. to the ratio of the area where the plunger 21 receives pressure from the front. Therefore, for example, when the same pressure is applied to the head-side chamber 53h and the head-side chamber 31h, the pressure member 41 and the plunger 21 can apply the same pressure to the molten metal.
  • the pressure-increasing injection cylinder includes, for example, a configuration in which a cylinder member on which the piston 33 slides and a cylinder member on which the pressure-increasing piston 35 slides are separated.
  • the area of the pressure-increasing piston 35 that receives pressure from the head-side chamber 31h should be smaller than the area that receives pressure from the opposite side.
  • the hydraulic device 49E does not have, for example, the low pressure circuit 59L and the high pressure circuit 59H (in other words, the accumulator 61 dedicated to the pressure device 2E).
  • the pressurizing device 2E does not have the sensor 43 for detecting the retraction of the pressurizing member 41, for example.
  • the control device 5 opens the valve 81A to supply hydraulic fluid from the accumulator 79 to the head-side chamber 31h of the injection cylinder 27E. Switching of the injection speed is realized by a meter-out circuit (illustrated example; reference numerals omitted) and/or a meter-in circuit.
  • the head-side chamber 53h of the pressure cylinder 47 communicates with the head-side chamber 31h at an appropriate time (for example, at the start of injection) before the completion of filling of the molten metal. Therefore, the pressure of the accumulator 79 is also applied to the head-side chamber 53h. As a result, the pressure member 41 is pushed forward and positioned at the initial position (for example, the forward limit).
  • the pressurizing member 41 can apply a pressure equivalent to that of the plunger 21 to the molten metal. Therefore, for example, when a surge pressure occurs, the pressure member 41 retreats.
  • the control device 5 opens the valve 81B to supply hydraulic fluid from the accumulator 79 to the rear side chamber 31b of the injection cylinder 27E.
  • the boosting piston 35 applies a higher pressure to the head-side chamber 31h than the pressure of the rear-side chamber 31b.
  • the valve 81A is self-closing or closed by the controller 5.
  • FIG. As a result, the pressure applied to the molten metal by the plunger 21 is increased, and the pressure is increased (from time t2 in FIG. 7).
  • the injection pressure (line LP) rises to approach the casting pressure (line LC).
  • the pressurizing member 41 can perform local pressurization in the same manner as the plunger 21 increases the pressure.
  • the communication passage 83 may be appropriately provided with various valves or pressure relief cylinders (both reference numerals are omitted) so that the above operations can be suitably performed.
  • the pressure of the molten metal differs between the position of the plunger 21 and the position of the pressure member 41, so the magnitude and/or timing of the pressure applied to the molten metal by both differ from each other.
  • the dimensions may be appropriately set, or the valve in the communication passage 83 may be controlled.
  • the local pressure device 2E includes the pressure member 41 whose front end is exposed inside (the space 107) of the mold (the mold 101), and the pressure member 41 that extends forward. and a drive unit 45E that applies force.
  • the pressure member 41 is positioned at an initial position (for example, forward limit) ahead of the retraction limit when the molding material (for example, molten metal) reaches the position of the pressure member 41, and is pushed by the molten metal to the initial position. retreat from an initial position (for example, forward limit) ahead of the retraction limit when the molding material (for example, molten metal) reaches the position of the pressure member 41, and is pushed by the molten metal to the initial position. retreat from
  • surge pressure can be absorbed.
  • the driving part 45E may have a hydraulic cylinder (pressurizing cylinder 47) connected to the pressurizing member 41.
  • At least one (both in the illustrated example) of the driving force for the pressure can be obtained by supplying hydraulic fluid from an accumulator 79 for injection.
  • the start timing of the local pressurization can follow the start timing of the pressure increase. As a result, the timing of local pressurization is optimized.
  • the pressurizing cylinder 47 is supplied with hydraulic fluid from the low-pressure circuit 59L in a state of being cut off from the injection cylinder 27E and positioned at the initial position.
  • the increased pressure of the head-side chamber 31h may be supplied.
  • the pressurizing cylinder 47 is supplied with hydraulic fluid from the accumulator 79 that supplies the hydraulic fluid to the head-side chamber 31h and is positioned at the initial position. may be supplied.
  • FIG. 13 is a diagram showing an example of the position of the pressing member 41 that is different from the examples illustrated so far.
  • the pressurizing member 41 may pressurize the molten metal in any portion of the space 107 (product portion 107a, overflow 107b, runner 107e, etc.). In the example of FIG. 13, the pressurizing member 41 is arranged to pressurize the molten metal on the runner 107e.
  • the runner 107e is provided so that its flow direction intersects (for example, perpendicularly to) the sleeve 19 .
  • the flow direction of the runner 107e is the vertical direction.
  • a sleeve 19 communicates with the lower side surface of the runner 107e.
  • An upper portion of the runner 107e communicates with the product portion 107a through a gate (reference numeral omitted).
  • the pressurizing member 41 is arranged, for example, on the opposite side of the runner 107e from the product portion 107a, and is provided movably in the flow direction of the runner 107e.
  • the position of the pressure member 41 shown in FIG. 13 is, for example, the initial position before the molten metal reaches the pressure member 41 .
  • the initial position may or may not be the limit of forward movement of the pressure member 41 .
  • the pressure member 41 may or may not be able to penetrate into the runner 107e.
  • the pressurizing member 41 may be provided so as to be able to advance and retreat in a direction different from the flow direction of the runner 107e.
  • the pressurizing member 41 that pressurizes the runner 107e may be combined with any of the drive units 45 of various embodiments.
  • the driving section 45 the driving section 45D (FIG. 11) of the fourth embodiment may be used. 11
  • the cylinder member 53 is positioned at the limit of forward movement relative to the mold 101
  • the piston 55 is at a position behind the limit of forward movement relative to the cylinder member 53 (for example, the limit of retraction). It may be the position when In local pressurization, the pressurizing member 41 may move upward from the illustrated position.
  • the mold 101 is an example of a mold.
  • Molded die casting machine DC or DCE or die casting machine 1 is each an example of a molding machine.
  • the molten metal 109 is an example of molding material.
  • Plunger 21 is an example of an injection plunger.
  • the pressure cylinder 47 is an example of a hydraulic cylinder.
  • the head-side chamber 53h is an example of a first cylinder chamber.
  • the rod-side chamber 53r is an example of a second cylinder chamber.
  • the control valve 63 is an example of a servo valve.
  • the molding machine is not limited to a die casting machine.
  • the molding machine may be another metal molding machine, an injection molding machine that molds resin, or a molding machine that molds a material obtained by mixing wood flour with thermoplastic resin or the like. There may be.
  • the molding machine is not limited to horizontal clamping and horizontal injection, and may be, for example, vertical clamping and vertical injection, vertical clamping and horizontal injection, or horizontal clamping and vertical injection.
  • Die casting machines are not limited to cold chamber machines, and may be hot chamber machines, for example.
  • the hydraulic fluid is not limited to oil, and may be water, for example.
  • Injection is not limited to including low-speed injection and high-speed injection, and may be, for example, low-speed laminar flow filling.
  • the pressurizing member for local pressurization may also serve as an extrusion pin for extruding the molded product formed by solidifying the molding material from the mold.
  • the driving section may be of an electric type.
  • a linear motor including a voice coil motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

局部加圧装置2は、金型101の空間107に前端が露出している加圧部材41と、加圧部材41に前方への力を付与する駆動部45と、を有している。加圧部材41は、溶湯が加圧部材41の位置に到達するときに後退限よりも前方の初期位置に位置しており、溶湯に押されて初期位置から後退する。

Description

局部加圧装置、成形機及び成形方法
 本開示は、型の内部の成形材料を局部的に加圧する局部加圧装置、当該局部加圧装置を含む成形機、局部加圧を行う成形方法に関する。成形機は、例えば、金属を成形するダイカストマシン、又は樹脂を成形する射出成形機である。
 ダイカスト法等の成形方法において、いわゆる局部加圧を行う技術が知られている(例えば下記特許文献1~4)。この技術においては、型の内部(型によって構成された空間。以下、同様。)に成形材料が充填された後、型に挿通された加圧ピンによって成形材料を押圧する。これにより、例えば、成形材料の凝固収縮に起因するひけ巣が低減される。
 型の内部に成形材料を充填するとき、加圧ピンは、そのストロークの後退限(型の内部とは反対側の駆動限)にて待機する。これにより、充填後、加圧ピンを前進させて成形材料を加圧するとき、その前進距離が取り得る最大値を加圧ピンのストロークとすることができる。すなわち、加圧ピンのストロークを最大限利用できる。
特開2008-142758号公報 特開2016-87638号公報 特開2005-334977号公報 特開平4-94854号公報
 加圧ピンの使用態様は、成形材料の品質に影響を及ぼす。例えば、加圧ピンの前進開始のタイミングが早過ぎれば、成形材料の塑性流動が生じず、十分な加圧効果が得られない。また、前進開始のタイミングが遅ければ、成形材料の凝固によって加圧ピンが十分な深さまで押し込まれず、やはり十分な加圧効果が得られない。従って、好適に加圧部材(加圧ピン)を使用できる局部加圧装置、成形機及び成形方法が待たれる。
 本開示の一態様に係る局部加圧装置は、型の内部に前端が露出している加圧部材と、前記加圧部材に前方への力を付与する駆動部と、を有している。前記加圧部材は、成形材料が前記加圧部材の位置に到達するときに後退限よりも前方の初期位置に位置しており、前記成形材料に押されて前記初期位置から後退する。
 本開示の一態様に係る成形機は、上記局部加圧装置と、前記型の開閉及び型締めを行う型締装置と、前記型の内部に前記成形材料を射出する射出装置と、を有している。
 本開示の一態様に係る成形方法は、型の内部に成形材料を射出する射出ステップと、前記型の内部に前端が露出している加圧部材を前進させて前記型の内部の前記成形材料を加圧する局部加圧ステップと、を有している。前記加圧部材は、前記成形材料が前記加圧部材の位置に到達するときに後退限よりも前方の初期位置に位置しており、前記成形材料に押されて前記初期位置から後退する。
 上記の構成又は手順によれば、加圧部材の後退を利用して加圧部材を好適に使用できる。例えば、加圧部材の後退によって、成形材料が型の内部に充填されるときに生じるサージ圧を吸収できる。また、例えば、加圧部材の後退に基づいて成形材料の加圧部材への到達を検出し、加圧部材の前進開始のタイミングを好適に決定できる。
図1(a)は実施形態に係る局部加圧装置の要点を説明するために局部加圧装置の動作を示す模式図、図1(b)は図1(a)の一部拡大図。 図2(a)は図1(a)の動作の続きを示す模式図、図2(b)は図2(a)の一部拡大図。 図3(a)は図2(a)の動作の続きを示す模式図、図3(b)は図3(a)の一部拡大図。 第1実施形態に係るダイカストマシンの要部の構成を示す側面図。 図4のダイカストマシンの加圧装置の構成を示す模式図。 図5の加圧装置が有する液圧装置の構成を示す回路図。 図4のダイカストマシンの動作を説明するための図。 図7の動作を実現するために制御装置が実行する処理の手順を示すフローチャート。 図9(a)及び図9(b)は第2実施形態に係る加圧装置の構成を示す断面図。 第3実施形態に係る加圧装置の構成を示す断面図。 第4実施形態に係る加圧装置の構成を示す断面図。 第5実施形態に係るダイカストマシンの構成を示す模式図。 加圧部材の位置の他の例を示す断面図。
 以下、図面を参照して、本開示に係る複数の実施形態について説明する。なお、複数の実施形態のうち相対的に後に説明される実施形態については、基本的に、先に説明された実施形態との相違点についてのみ述べる。特に言及が無い事項については、先に説明された実施形態と同様とされたり、先に説明された実施形態から類推されたりしてよい。また、複数の実施形態において互いに対応する構成については、相違点があっても、便宜上、互いに同一の符号を付すことがある。
 以下では、まず、本開示の実施形態に係る局部加圧装置の要点について説明する。その後、より具体化した第1~第5実施形態等について述べる。
<実施形態に係る局部加圧装置の要点>
 図1(a)~図3(b)は、実施形態に係る局部加圧装置2(以下、単に「加圧装置2」ということがある。)及び射出装置9の動作の概要を示す模式図である。なお、加圧装置2の構成要素及び射出装置9の構成要素の区別は必ずしも明確でなくてよい。また、両者の組み合わせを射出装置として捉えてもよい。
 図1(a)、図2(a)及び図3(a)は、加圧装置2及び射出装置9を模式的に示しており、また、成形サイクル中(より詳細には射出サイクル中)の互いに異なる時点の状態を示している。図1(b)は、図1(a)の領域Ibの拡大図である。図2(b)は、図2(a)の領域IIbの拡大図である。図3(b)は、図3(a)の領域IIIbの拡大図である。
 図1(a)及び図1(b)は、成形材料(例えば溶融状態の金属である溶湯109)を金型101の内部に射出する射出工程が行われている状態を示している。射出工程においては、矢印a1で示すように、プランジャ21(射出プランジャ)が金型101に向かって前進することによって、スリーブ19内の溶湯109を金型101の内部(空間107)に押し出す。
 従来においては、加圧装置2の加圧部材41(加圧ピン)は、プランジャ21の前進開始前(射出開始前)において、後退限(空間107とは反対側の駆動限)にて待機した。一方、本実施形態では、後退限よりも前方(空間107側)の位置(例えば前進限)にて待機している。
 図2(a)及び図2(b)は、図1(a)及び図1(b)の後の状態を示している。射出工程が進むと、溶湯109が空間107の概ね全体に充填される。図2(a)及び図2(b)は、そのような状態を示している。なお、実施形態の説明では、このような状態に至ったことを充填が完了したということがある。充填が完了すると、逃げ場を失った溶湯109をプランジャ21が押すことによって溶湯109の圧力は上昇する。このとき一時的かつ急激な圧力上昇を伴う、いわゆるサージ圧が生じることもある。
 射出開始から充填完了までの過程においては、溶湯109が加圧部材41の位置に到達する。そして、加圧部材41は、矢印a2(図2(a))及び矢印a3(図2(b))によって示すように、溶湯109に押されて後退する。加圧部材41の後退は、溶湯109の到達直後に生じてもよいし、上記のように溶湯109が概ね空間107に充填されて圧力が上昇するときに後退してもよい。また、加圧部材41は、後退限に到達してもよいし(図示の例)、到達しなくてもよい。
 図3(a)及び図3(b)は、図2(a)及び図2(b)の後の状態を示している。充填が完了すると、矢印a4(図3(a))及び矢印a5(図3(b))によって示すように、加圧部材41が前進する。これにより、溶湯109が局部的に加圧される。この加圧によって、例えば、ひけ巣(溶湯の凝固収縮に伴う空洞)が発生する蓋然性が低減される。なお、プランジャ21は、充填完了後、例えば、前進して溶湯109の昇圧に寄与してもよいし、単に充填完了時の位置に留まるだけであってもよい。
 以上のとおり、実施形態に係る加圧装置2では、加圧部材41は、溶湯109が加圧部材41の位置に到達するときに後退限よりも前方の初期位置(例えば前進限)に位置している。そして、溶湯109に押されて上記初期位置から後退する。これにより、種々の効果を得ることができる。
 例えば、加圧部材41の後退によってサージ圧が吸収される。サージ圧の吸収によって、バリ(溶湯109が空間107の外部へはみ出して形成される部分)が発生する蓋然性が低減される。すなわち、加圧部材41を局部加圧のための部材としてだけではなく、サージ圧を吸収するための部材として有効利用できる。
 また、例えば、加圧部材41の後退を検出することによって、溶湯の到達及び/又は充填完了を検出することができる。従って、加圧部材41の後退の検出に基づいて、加圧部材41の前進開始のタイミングを適切に決定することができる。より詳細には、例えば、以下のとおりである。
 上記実施形態に対する比較例としては、プランジャ21を駆動する駆動部(例えば油圧シリンダ)の駆動力の上昇(換言すればプランジャ21が溶湯109から受ける圧力の上昇)に基づいて加圧部材41の前進開始のタイミングを決定する態様が挙げられる。ただし、射出中に溶湯109の凝固が進むことなどから、プランジャ21の位置における溶湯109の圧力の上昇と、加圧部材41の位置における溶湯109の到達及び/又は圧力の上昇とは必ずしも一致しない。その結果、加圧部材41の前進開始のタイミングは、加圧部材41の位置における溶湯109の状態に対して必ずしも適切なものとはならない。一方、本実施形態では、加圧部材41の位置において、溶湯109の到達及び/又は圧力上昇を検出できるから、そのような不都合が生じない。
 また、他の比較例としては、金型101の適宜な位置に溶湯109の到達を検出するセンサ(例えば圧力センサ、温度センサ又は通電センサ)を設ける態様が挙げられる。しかし、センサの取り付け位置によっては、上記の比較例と同様の不都合が生じる。また、このようなセンサは、溶湯109に接触可能に空間107に露出する位置又はその近傍に設けられる。従って、溶湯109の圧力及び熱に対する耐久性が要求される。しかし、加圧部材41の後退を検出するセンサ43(図1(b))は、空間107に露出していなくてもよく、また、後述するように、加圧部材41よりも後方に離れた位置に配置することもできる。従って、センサ43に要求される耐久性を下げることができる。さらに、センサ43が位置センサである態様においては、比較例に係るセンサとは異なり、加圧部材41を前進させるときにフィードバック制御に利用することができる。
<第1実施形態>
(ダイカストマシンの全体構成)
 図4は、第1実施形態に係る型付ダイカストマシンDCの要部の構成を示す側面図(一部に断面図を含む)である。図4を参照して行う説明において、便宜上、図4の左側を前方といい、図4の右側を後方ということがある。
 型付ダイカストマシンDCは、型(金型101)と、金型101を保持しているダイカストマシン1とを有している。ダイカストマシン1は、金型101の内部(空間107)に溶融状態の成形材料を射出(充填)することによって、凝固した成形材料からなる製品(成形品、ダイカスト品)を製造する装置として構成されている。
 成形材料は、例えば、アルミニウム等の金属である。溶融状態の金属は、既述のように、溶湯と呼ばれることがある。なお、溶融状態の成形材料に代えて、固液共存状態(半凝固状態又は半溶融状態)の成形材料が空間107に射出されてもよい。
 金型101は、例えば、固定型103と、固定型103と対向する移動型105とを有している。空間107の主たる部分は、固定型103と移動型105との間に構成される。固定型103は、移動しない型である。移動型105は、固定型103との対向方向(型開閉方向)に移動する型である。型開閉方向は、例えば、水平方向である。図4等では、便宜上、固定型103又は移動型105の断面が1種類のハッチングで示されている。ただし、これらの型は、直彫り式のものであってもよいし、入れ子式のものであってもよい。また、固定型103及び/又は移動型105は、ダイベースを含んでいてよい。
 ダイカストマシン1は、機械的動作を行うマシン本体3と、マシン本体3の制御を行う制御装置5とを有している。マシン本体3は、例えば、金型101の型開閉及び型締めを行う型締装置7と、空間107に溶湯を射出する射出装置9と、溶湯が凝固して構成された製品を固定型103又は移動型105から押し出す不図示の押出装置とを有している。
 既述の加圧装置2の具体例としての加圧装置2A(後述する図5参照)は、型付ダイカストマシンDCに含まれている。加圧装置2Aの少なくとも一部(例えば加圧部材41及びその駆動部)は、金型101に付属する構成要素として捉えられてもよいし、ダイカストマシン1の構成要素として捉えられてもよい。制御装置5は、型付ダイカストマシンDCの各部(例えば加圧装置2A)に着目したときは、当該各部の構成要素として捉えられてもよい。
 型付ダイカストマシンDCにおいて、加圧装置2A以外の構成要素の構成及び動作は、公知のものであってもよいし、新規なものであってもよく、換言すれば、種々の態様とされてよい。なお、公知の構成及び動作とされて構わない構成及び動作については、適宜に説明を省略する。
 以下におけるダイカストマシン1の説明では、概ね、下記の順に説明を行う。
 ・型締装置7
 ・射出装置9
 ・制御装置5
 ・ダイカストマシンのその他の構成
 ・加圧装置2A
 ・射出及び局部加圧に係る動作
 ・第1実施形態のまとめ
(型締装置)
 型締装置7は、例えば、ベース11と、ベース11上に固定されている固定ダイプレート13と、ベース11上において型開閉方向に移動可能な移動ダイプレート15と、これらのダイプレートに挿通されている複数(例えば4本)のタイバー17と、を有している。固定ダイプレート13と移動ダイプレート15とは型開閉方向において互いに対向している。固定ダイプレート13は、移動ダイプレート15に対向する面に固定型103を保持する。移動ダイプレート15は、固定ダイプレート13に対向する面に移動型105を保持する。移動ダイプレート15の型開閉方向における移動によって、金型101の開閉がなされる。また、型閉じがなされた状態でタイバー17が伸長されることによって、その伸長量に応じた型締力が金型101に付与される。
(射出装置)
 射出装置9は、固定ダイプレート13の背後(移動ダイプレート15とは反対側)に位置している。射出装置9は、空間107に通じるスリーブ19と、スリーブ19内の溶湯を空間107へ押し出すプランジャ21と、プランジャ21を駆動する駆動部23とを有している。なお、スリーブ19及びプランジャ21は、消耗品として捉えられることができるから、駆動部23のみを射出装置として捉えてもよい。
 スリーブ19は、固定ダイプレート13に挿通されるように設けられている。なお、スリーブ19は、固定型103に挿通されていなくてもよいし(図4の例)、挿通されていてもよい(図1(a)の例)。スリーブ19は、概略、円筒状の部材であり、水平方向(前後方向)に延びるように配置されている。スリーブ19の上面には、溶湯が供給される供給口19aが開口している。
 プランジャ21は、スリーブ19を摺動するプランジャチップ21aと、プランジャチップ21aに固定されたプランジャロッド21bとを有している。プランジャロッド21bは、前後方向に延びており、その後端は、カップリング25によって駆動部23と連結されている。
 図4では、射出開始前の状態が示されている。このとき、プランジャチップ21aは、供給口19aよりも後方にてスリーブ19内に(少なくとも一部が)位置している。この状態で、不図示の給湯装置等によって溶湯が供給口19aに注がれる。次に、駆動部23の駆動力によってプランジャチップ21aが空間107に向かって摺動する(前進する)。これにより、溶湯は空間107内に射出される。
 駆動部23は、例えば、液圧式(油圧式)、電動式又はハイブリッド式(液圧式と電動式との組み合わせ)とされてよい。図1(a)では、液圧式の駆動部23が例示されている。すなわち、駆動部23は、プランジャ21に連結される液圧シリンダ(射出シリンダ27)と、射出シリンダ27への作動液の供給等を行う液圧装置(不図示)を有している。
 射出シリンダ27の構成は任意である。例えば、射出シリンダ27は、単胴式(図1(a)の例)又は増圧式(後述する図12参照)とされてよい。単胴式の射出シリンダ27(図1(a))は、シリンダ部材31と、シリンダ部材31の内部を摺動可能なピストン33と、ピストン33から前方(プランジャ21側)へ延びるピストンロッド37と、を有している。
 シリンダ部材31は、不動とされている。シリンダ部材31の内部は、ピストン33によって、ピストンロッド37側のロッド側室31rと、その反対側のヘッド側室31hに区画されている。ピストンロッド37は、シリンダ部材31の外部へ延び出ており、その前端がカップリング25によってプランジャ21の後端と連結されている。
 ヘッド側室31hへ作動液が供給されることによって、ピストン33は前進する。これにより、ピストンロッド37及びカップリング25を介してピストン33に連結されているプランジャ21が前進する。ひいては、スリーブ19内の溶湯が空間107に射出される。
(制御装置)
 制御装置5は、例えば、特に図示しないが、コンピュータを含んで構成されてよい。コンピュータは、例えば、特に図示しないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)及び外部記憶装置を含んで構成されてよい。CPUがROM及び/又は外部記憶装置に記憶されているプログラムを実行することによって、種々の演算(制御を含む)を行う種々の機能部が構築される。また、制御装置5は、一定の動作を実行する論理回路を含んでいてもよいし、電源回路を含んでいてもよいし、ドライバを含んで概念されてもよい。制御装置5は、ハードウェア的に1カ所に纏められていてもよいし、複数個所に分散されていてもよい。
(ダイカストマシンのその他の構成)
 型付ダイカストマシンDCは、種々のセンサを有してよい。そして、制御装置5は、種々のセンサの検出値に基づいて、各部を制御してよい。
 上記のようなセンサの例を挙げる。例えば、特に図示しないが、プランジャ21の位置を検出する位置センサ、及び/又は駆動部23の駆動力を検出するセンサが設けられてよい。位置の微分によって速度が得られるから、位置センサは速度センサと捉えられてもよい。駆動部23の駆動力を検出するセンサとしては、例えば、駆動部23が射出シリンダ27を有する態様においては、ヘッド側室31hの圧力を検出する圧力センサ(及び必要に応じてロッド側室31rの圧力を検出する圧力センサ)が用いられてよい。
 プランジャ21の位置を検出するセンサは、例えば、射出速度(換言すればプランジャ21の速度)の制御に利用される。駆動部23の駆動力を検出するセンサは、射出圧力(換言すればプランジャ21が成形材料に付与する圧力)の制御に利用される。ただし、後述するように、本実施形態においては、加圧装置2による圧力制御によって鋳造圧力が実現されてよく、射出圧力の制御は必須ではない。
(加圧装置)
 図5は、加圧装置2Aの構成を示す模式図である。
 加圧装置2Aは、図1(a)を参照して述べたように、溶湯を加圧する加圧部材41と、加圧部材41の後退を検出するセンサ43とを有している。また、加圧装置2Aは、加圧部材41を駆動する駆動部45(図1(a))の具体例である駆動部45Aを有している。
 駆動部45Aは、液圧式又は電動式等の適宜な構成とされてよい。第1実施形態では、駆動部45Aとして、液圧式のものを例に取る。液圧式の駆動部45Aは、液圧シリンダ(加圧シリンダ47)と、加圧シリンダ47への作動液の供給等を行う液圧装置49とを有している。
 以下における加圧装置2Aの説明では、概ね、下記の順に説明を行う。
 ・加圧部材41
 ・加圧シリンダ47
 ・センサ43
 ・液圧装置49
(加圧部材)
 加圧部材41の形状は、概略、進退方向を長手方向とするピン状であってもよいし(図示の例)、ピン状でなくてもよい。後者の例としては、加圧部材41の進退方向における長さよりも径が大きいブロック状の形状を挙げることができる。また、加圧部材41の進退方向に直交する断面の形状は、円形であってもよいし(図示の例)、円形以外の形状であってもよい。加圧部材41の寸法も任意である。
 図1(b)に示すように、加圧部材41は、先端側(空間107側)の少なくとも一部が、先端側ほど径が小さくなるテーパ状とされてよい。この場合、凝固した成形材料から加圧部材41を引き抜くことが容易化される。テーパ状とされる範囲は適宜に設定されてよい。図示の例では、加圧部材41が前進限に位置しているときに、加圧部材41のうち空間107内に位置する部分の全体がテーパ状とされている。なお、もちろん、加圧部材41は、先細りしない形状(例えば径が一定の形状)とされても構わない。
 加圧部材41の寸法は任意である。例えば、加圧部材41の前端の径(例えば溶湯に前進方向への圧力を付与する面積に基づく円相当径。プランジャ21についても同様。)をdとし、プランジャ21の前端の径をDとしたとき、d/Dは、0.2以上0.5以下とされてよい。もちろん、この範囲外であってもよい。
 加圧部材41は、固定型103に配置されてもよいし(図示の例)、移動型105に配置されてもよい。本実施形態の説明では、便宜上、加圧部材41が固定型103に配置される態様を前提として説明を行うことがある。
 加圧部材41は、例えば、その一部又は全部が型(固定型103又は移動型105)に対して進退方向に摺動してよい(当接してよい)。加圧部材41は、後端側の部分(駆動部45Aに連結される部分)が型の外部に位置していてもよいし、その全体が型の内部に位置していてもよい。後者の例としては、加圧部材41の後端側部分が不図示のダイベースによって構成された空間に位置している態様を挙げることができる。
 加圧部材41の進退方向は、適宜な方向とされてよい。例えば、進退方向は、型開閉方向(図4の左右方向)であってもよいし、型開閉方向に交差(直交又は傾斜)する方向であってもよい。ただし、進退方向が型開閉方向であれば、例えば、加圧部材41が配置されている型から成形品を引き剥がす動作(型開動作であってもよいし、及び/又は押出動作であってもよい。)に伴って加圧部材41を成形品から引き抜くことが可能である。
 加圧部材41の空間107に対する配置位置は適宜に設定されてよい。例えば、空間107は、図1(a)及び図1(b)に示すように、製品形状に対応する形状を有している製品部107aと、スリーブ19から製品部107aへ溶湯を導くランナー107eと、余剰な溶湯が流れ込むオーバーフロー107bとを有している。加圧部材41は、これらのいずれの空間に位置する溶湯を加圧してもよい。
 図1(a)の例では、加圧部材41は、オーバーフロー107bに流れ込んだ溶湯を加圧するように配置されている。オーバーフロー107bは、通常、型開閉方向に見て、製品部107aの外周(特にスリーブ19から離れた位置)に接続されている。従って、オーバーフロー107bの溶湯を加圧する加圧部材41は、製品部107a内の溶湯のうちプランジャ21によって圧力を付与しにくい外周側の溶湯に圧力を付与できる。その結果、例えば、製品部107a内の溶湯は、その全体に均等に圧力が付与されやすくなる。ひいては、大型の製品を成形する場合において、プランジャ21によって溶湯に付与する圧力を高くする必要性を低減できる。別の観点では、ダイカストマシン1の大型化の必要性を低減できる。
 なお、図1(b)に示すように、固定型103(加圧部材41が配置される型)は、移動型105側の面に、加圧部材41の先端側部分が出し入れされる凹部107cを有してよい。この凹部107cは、例えば、加圧部材41の先端側部分よりも径が大きくされてよく、また、例えば、移動型105側ほど径が大きくなる逆テーパ状とされてよい。凹部107cによって、加圧部材41を空間107内に出し入れするための容積が空間107に確保される。また、逆テーパ状であることによって、凝固した成形材料が固定型103から抜けやすくなる。もちろん、固定型103は、そのような凹部107cを有さなくてもよいし、逆テーパ状でない凹部107cが形成されてもよい。
 加圧部材41の前進限及び後退限は、加圧部材41が前進又は後退するときに加圧部材41が当接する部材又は部位(ストッパ)が金型101等に設けられることによって規定されてもよいし、加圧部材41を駆動する駆動部45の駆動限によって規定されてもよい。後者の駆動限の例としては、例えば、加圧シリンダ47におけるピストン55(後述)のシリンダ部材53(後述)に対する前進限及び後退限が挙げられる。なお、実施形態の説明では、前進限及び後退限を規定する部材の図示は適宜に省略されている。
 加圧部材41の数は、適宜に設定されてよく、1つであってもよいし、2以上であってもよい。ただし、実施形態の説明では、図が複雑化することを避けるために、基本的に1つの加圧部材41のみを図示する。
(加圧シリンダ)
 図5に示すように、加圧シリンダ47は、例えば、シリンダ部材53と、シリンダ部材53の内部を摺動可能なピストン55と、ピストン55からシリンダ部材53の外部へ延びるピストンロッド57と、を有している。
 シリンダ部材53は、例えば、概略、筒状の部材である。シリンダ部材53の内部の横断面の形状は、例えば、円形である。シリンダ部材53の外形(外側の形状)は、直方体状等の適宜な形状とされてよい。ピストン55は、例えば、概略、円柱状の部材であり、シリンダ部材53の内部を軸方向において摺動可能である。シリンダ部材53の内部の空間は、ピストン55によって、ピストンロッド57側のロッド側室53rと、その反対側のヘッド側室53hに区画されている。ピストンロッド57は、例えば、概略、円柱状の部材である。ピストンロッド57の径は、ピストン55の径よりも小さい。その差は、適宜に設定されてよい。
 加圧シリンダ47は、例えば、加圧部材41の空間107とは反対側(図5の右側)に加圧部材41に同軸的に配置され、また、ピストンロッド57側を加圧部材41に向けている。シリンダ部材53は、固定型103(加圧部材41が配置されている型)に対して不動とされる。例えば、シリンダ部材53は、固定型103及び/又は固定ダイプレート13に対してボルトなどによって固定される。ピストンロッド57の先端は、加圧部材41の後端と適宜なカップリング(符号省略)によって連結される。従って、例えば、加圧シリンダ47においては、ヘッド側室53hに作動液が供給されると、ピストン55がロッド側室53r側へ移動する。ひいては、ピストンロッド57を介してピストン55に連結されている加圧部材41が空間107に向かって前進する。
 上記の説明とは逆に、シリンダ部材53を加圧部材41に固定し、ピストンロッド57を固定型103に対して不動としてもよい。また、加圧シリンダ47の向きは、上記の説明とは逆であってもよい。すなわち、シリンダ部材53及びピストンロッド57のいずれを不動とするか、及びピストンロッド57が延び出る方向をいずれの方向に向けるか、の組み合わせに関しては、図示以外に3通り可能である。上記に関連して、加圧部材41を空間107の側へ前進させるときに作動液が供給されるシリンダ室は、ロッド側室53rであってもよい。なお、本実施形態の説明では、便宜上、図示の態様(ピストンロッド57が加圧部材41に向けられる向きで、かつシリンダ部材53が不動な態様)を前提として説明を行うことがある。
 1つの加圧シリンダ47が駆動する加圧部材41の数は、1つであってもよいし(図示の例)、2以上であってもよい。後者の場合、例えば、公知の押出装置から類推できるように、ピストンロッド57に直交する板状部材をピストンロッド57の先端に固定し、この板状部材に複数の加圧部材41を並列に固定してよい。なお、本実施形態の説明では、基本的に、図示の態様(1つの加圧シリンダ47が1つの加圧部材41を駆動する態様)を例に取る。
 後述する説明から理解されるように、本実施形態において、ロッド側室53rへの作動液の供給によるピストン55の移動(駆動部による加圧部材41の空間107からの退避)は、必ずしも行われなくてよい。従って、ロッド側室53rは、作動液が満たされていてもよいし、満たされていなくてもよい。後者の場合、例えば、ロッド側室53rは、大気開放されていてよい。この場合、作動液としての油が潤滑等の目的でロッド側室53rに少量配置されていても構わない。また、ロッド側室53rに作動液が満たされている場合、ロッド側室53rは、その容積が拡張するときにタンク又は駆動源(例えばポンプ)から作動液の不足分が供給されるだけであってよい。
 さらに、加圧シリンダ47は、ピストン55がシリンダ部材53からヘッド側室53hとは反対側へ延び出て(別の観点ではピストン55の径がピストンロッド57の径と同じであり)、ロッド側室53rを有さない構成とされてもよい。ただし、本実施形態の説明では、便宜上、図示の態様(加圧シリンダ47がロッド側室53rを有している態様)を前提として説明を行うことがある。
(加圧部材の後退を検出するセンサ)
 センサ43は、既述のように、加圧部材41の後退を検出する。センサ43の具体的な構成は、種々の態様とされてよい。以下にいくつかの例を挙げる。
 センサ43は、例えば、加圧部材41が初期位置(例えば前進限)から所定の位置まで後退したときにON(又はOFF)されるリミットスイッチとされてよい。リミットスイッチは、接触式のものであってもよいし、非接触式のものであってもよい。
 また、センサ43は、例えば、加圧部材41の位置(別の観点では後退量)を検出する位置センサとされてよい。位置センサとしては、例えば、リニアエンコーダを挙げることができる。
 加圧シリンダ47の運用の態様によっては、加圧部材41が後退すると、ヘッド側室53hの圧力が上昇する。従って、ヘッド側室53hの圧力を検出する圧力センサ71H(後述する図6参照)がセンサ43として利用されてもよい。
 なお、上記の具体例から理解されるように、後退の検出は、後退の有無の検出(例えばリミットスイッチによるもの)であってもよいし、後退量の検出(例えば位置センサによるもの)であってもよい。また、上記の具体例は、組み合わされて用いられても構わない。センサ43の構成、及びセンサ43が後退を検出するときの後退量等は、複数の加圧部材41(又は複数の駆動部45)同士で、互いに同一であってもよいし、互いに異なっていてもよい。
 センサ43の位置は、加圧部材41の後退を検出できる限り、任意の位置とされてよい。例えば、上記のリミットスイッチ又は位置センサは、加圧部材41の後退を直接的に検出してもよいし(図1(b)参照)、加圧部材41に連結された他の部材の後退(移動)を検出してもよい(図5)。図5の例では、ピストン55に固定されてシリンダ部材53から後方(加圧部材41とは反対側)に延び出る被検出部44が設けられている。そして、センサ43は、被検出部44の後退を検出する。加圧シリンダ47の説明から理解されるように、被検出部44は、金型101の内部に位置していてもよいし、金型101の外部に位置していてもよい。
(加圧装置に係る液圧装置)
 図5に示す液圧装置49は、例えば、加圧シリンダ47に作動液の供給等を行うための液圧回路として、低圧回路59L及び高圧回路59Hを有している。なお、以下では、両者を区別せずに、液圧回路59ということがある(符号は図6)。低圧回路59Lは、高圧回路59Hが加圧シリンダ47に供給する液圧よりも低い液圧を加圧シリンダ47に付与可能となっている。
 局部加圧前に加圧部材41を初期位置(例えば前進限)に位置させるときは(図1(a)及び図1(b))、低圧回路59Lからヘッド側室53hへ作動液を供給する。溶湯109の圧力が加圧部材41に付与されるときは(図2(a)及び図2(b))、低圧回路59Lからの液圧に抗して加圧部材41が後退する。加圧部材41を前進させて局部加圧を行うときは(図3(a)及び図3(b))、高圧回路59Hからヘッド側室53hに作動液を供給する。
 低圧回路59L及び高圧回路59Hの構成は、同様の構成とされてもよいし、全く異なる構成とされてもよい。また、低圧回路59L及び高圧回路59Hは、一部が共用されてもよい。以下では、低圧回路59L及び高圧回路59Hの構成が、その圧力の相違(及び圧力の相違に起因する具体的な設計事項)を除いては、互いに同様である態様を例に取る。
 図6は、液圧装置49の具体例の構成を示す回路図である。
 この図に示される液圧回路59は、低圧回路59L及び高圧回路59Hのいずれの回路として捉えられてもよい。また、液圧回路59以外の構成要素は、低圧回路59L及び高圧回路59Hに共用されてよい。
 液圧回路59は、例えば、以下の構成要素を有している。加圧シリンダ47に作動液を供給する液圧源としてのアキュムレータ61。アキュムレータ61と加圧シリンダ47との間の作動液の流れを制御する制御弁63。アキュムレータ61を蓄圧するための作動液の流れを制御するチェック弁75。
 また、液圧装置49は、液圧回路59の他、例えば、以下の構成要素を有している。加圧シリンダ47の背圧を低減するための背圧除去シリンダ65。アキュムレータ61を蓄圧する液圧源としてのポンプ67。作動液を貯留するタンク69。加圧シリンダ47の圧力を検出する圧力センサ71R及び71H。加圧シリンダ47から排出される作動液の流量を検出する流量センサ73。液圧装置49における作動液の流れを制御する各種のバルブ(77A、77R及び77H)。なお、これらの構成は、液圧回路59の構成要素として捉えられても構わない。
 以下における液圧装置49の説明では、概ね、下記の順に説明を行う。
 ・アキュムレータ61
 ・制御弁63
 ・チェック弁75
 ・背圧除去シリンダ65
 ・ポンプ67及びタンク69
 ・圧力センサ71R及び71H並びに流量センサ73
 ・各種のバルブ(77A、77R及び77H)
 ・2つ以上の加圧シリンダ47が設けられている場合の液圧装置49の構成
(アキュムレータ)
 アキュムレータ61は、重量式、ばね式、気体圧式(空気圧式含む)、シリンダ式、ブラダ式などの適宜な形式のアキュムレータにより構成されてよい。例えば、アキュムレータ61は、気体圧式、シリンダ式又はブラダ式のアキュムレータであり、アキュムレータ61内に保持されている気体(例えば空気若しくは窒素)が圧縮されることにより蓄圧される。
 低圧回路59Lが有するアキュムレータ61の圧力(作動液の放出による圧力変動はここでは無視できるものとする。)は、高圧回路59Hが有するアキュムレータ61の圧力よりも低くされる。これにより、低圧回路59Lは、高圧回路59Hが供給する圧力よりも低い圧力を加圧シリンダ47(例えばヘッド側室53h)に供給可能となっている。アキュムレータ61の圧力の具体的な値は適宜に設定されてよい。例えば、高圧回路59Hが有するアキュムレータ61の圧力は、13MPa以上14MPa以下とされてよい。
(制御弁)
 制御弁63は、例えば、少なくとも、アキュムレータ61とヘッド側室53hとの間の連通を許容及び禁止可能な構成とされている。アキュムレータ61とヘッド側室53hとが接続されることにより、例えば、アキュムレータ61からヘッド側室53hへ作動液が供給され、加圧部材41が前進する。また、低圧回路59Lのアキュムレータ61がヘッド側室53hに接続されている場合においては、例えば、サージ圧によって加圧部材41が後退したときに、その圧力がアキュムレータ61によって吸収される。なお、サージ圧(その少なくとも一部)の吸収は、低圧回路59Lのアキュムレータ61によらずに、作動液の圧縮によって実現されてもよい。
 また、例えば、低圧回路59Lの制御弁63及び高圧回路59Hの制御弁63の協働によって、低圧回路59Lのアキュムレータ61及び高圧回路59Hのアキュムレータ61の一方を選択的にヘッド側室53hに接続することができる。従って、両回路の制御弁63は全体として、低圧回路59L及び高圧回路59Hを選択的にヘッド側室53hに接続する切換弁として捉えられてもよい。なお、このような切換弁は、図示の例とは異なり、1つの弁体を有する弁によって構成されていても構わない。
 制御弁63において、アキュムレータ61とヘッド側室53hとの間の接続を許容及び禁止するための具体的な構成は、適宜なものとされてよい。図示の例では、制御弁63は、4ポート3位置の切換弁として機能するように構成されている。そして、第1の位置では、アキュムレータ61(又はポンプ67)とヘッド側室53hとが接続され、タンク69とロッド側室53rとが接続される。第2の位置では、上記とは逆に、アキュムレータ61とロッド側室53rとが接続され、タンク69とヘッド側室53hとが接続される。第3の位置では、上記のいずれの接続も禁止される。
 制御弁63を第1の位置にすることによって、例えば、アキュムレータ61からヘッド側室53hに作動液を供給して加圧部材41を前進させることができる。このとき、ロッド側室53rから排出される作動液はタンク69に排出される。制御弁63を第2の位置にすることによって、例えば、上記とは逆に、加圧部材41を後退させることができる。また、制御弁63が第3の位置にすることによって、例えば、加圧部材41を停止させることができる。
 また、図示の例では、制御弁63は、作動液の流量を制御可能な流量制御弁として機能するように構成されている。この流量制御弁は、例えば、圧力変動があっても流量を一定に保つことができる圧力補償付流量調整弁である。また、流量制御弁は、例えば、サーボ機構の中で使用され、入力信号に応じて流量を無段階に(連続的に、任意の値に)変調できるサーボバルブである。
 流量制御弁としての制御弁63は、例えば、アキュムレータ61からヘッド側室53hへ作動液が供給されるときにメータイン回路及び/又はメータアウト回路の構成要素として機能する。これにより、加圧部材41の前進速度を制御し、凝固状態に応じた局部加圧を行うことができる。
 上記のような切換弁及び/又は流量制御弁として機能する制御弁63の具体的な構成も任意である。図示の例では、制御弁63は、メインバルブ63a及びパイロットバルブ63bを有する構成とされている。メインバルブ63aは、アキュムレータ61、タンク69、ヘッド側室53h及びロッド側室53rに通じて、上述した3位置の作動液の流れを制御する。パイロットバルブ63bは、電磁式の駆動方式で駆動され、メインバルブ63aにパイロット圧を導入し、メインバルブ63aを制御する。
 なお、制御弁63は、図示の例以外の種々の構成とされてよい。例えば、制御弁63は、直動バルブとされてもよいし、パイロット式のチェック弁とされてもよい。既述のようにロッド側室53rは、必ずしも作動液が供給される必要はないから、ロッド側室53rをアキュムレータ61(又はポンプ67)及びタンク69に接続するための流路及びバルブは設けられなくてもよい。
(チェック弁)
 チェック弁75は、ポンプ67から液圧回路59への作動液の供給の許容及び禁止を行う。これにより、例えば、低圧回路59Lのアキュムレータ61及び高圧回路59Hのアキュムレータ61に選択的に作動液を充填することができる。なお、このような機能を有するバルブは、チェック弁以外の構成であっても構わないし、低圧回路59Lと高圧回路59Hとで共用される1つのバルブであっても構わない。図示の例では、チェック弁75は、ポンプ67からアキュムレータ61への作動液の流れを許容するとともに、その逆方向の流れを禁止する向きで設けられており、また、パイロット圧の導入によって上記の双方の流れを禁止する。
(背圧除去シリンダ)
 背圧除去シリンダ65は、制御弁63(別の観点ではロッド側室53r)とタンク69とを接続する流路の中途に接続されている。ロッド側室53rからタンク69へ作動液が流れるとき、その一部は背圧除去シリンダ65に流れ込む。これにより、例えば、ピストン55(加圧部材41)が前進するときのロッド側室53rの圧力(背圧)の上昇が低減される。ひいては、加圧部材41の前進速度(別の観点では加圧部材41の応答性)が向上する。
 背圧除去シリンダ65の構成は適宜なものとされてよい。例えば、背圧除去シリンダ65は、アキュムレータによって構成されてよい。既述のアキュムレータ61の説明は、矛盾等が生じない限り、背圧除去シリンダ65に援用されてよい。また、背圧除去シリンダ65の容量及び圧力は適宜に設定されてよい。
 背圧除去シリンダ65の圧力は、比較的低く設定されてよい。これにより、作動液を速やかに収容できる。例えば、背圧除去シリンダ65がシリンダ式のアキュムレータである態様において、背圧除去シリンダ65のピストン65aが、作動液を放出する側(図6の下方)の駆動限に位置するときの圧力は、低圧回路59Lのアキュムレータ61の圧力よりも低い。
 ピストン65aが、作動液を放出する側の駆動限に位置するときの圧力は、例えば、タンク圧よりも高い。これにより、制御弁63からタンク69へ作動液が流れていないとき、ピストン65aは、作動液を放出する側の駆動限に移動する。ひいては、背圧除去シリンダ65の作動液がタンク69へ排出される。
(ポンプ及びタンク)
 ポンプ67及びタンク69の構成は、種々の構成とされてよく、例えば、公知の構成とされて構わない。ポンプ67及び/又はタンク69は、加圧装置2Aの液圧装置49以外の液圧装置(例えば射出装置9の液圧装置)に共用されてよい。
 ポンプ67は、必要に応じて駆動されてもよいし、常時駆動されていてもよい(この場合に必要なバルブは不図示)。ポンプ67は、例えば、アキュムレータ61の蓄圧に寄与する。この他、ポンプ67は、例えば、加圧シリンダ47のピストン55を後退させるときに、アキュムレータ61に代わってロッド側室53rに作動液を付与してもよいし(この場合に必要なバルブは不図示)。また、例えば、ポンプ67は、アキュムレータ61と協働してヘッド側室53hに作動液を供給してもよい。
 タンク69は、例えば、大気開放型のものとされている。従って、タンク69に接続されている流路等の圧力は、基本的には概ね大気圧である。タンク69は、例えば、既述のように、加圧シリンダ47(ロッド側室53r又はヘッド側室53h)から排出される作動液の回収に寄与する。
(圧力センサ及び流量センサ)
 圧力センサ71Rは、ロッド側室53rの圧力を検出する。圧力センサ71Hは、ヘッド側室53hの圧力を検出する。制御装置5は、例えば、検出されたロッド側室53rの圧力及びヘッド側室53hの圧力に基づいて、加圧シリンダ47が生じている駆動力を特定することができ、ひいては、加圧部材41によって溶湯に付与している圧力を特定できる。なお、ヘッド側室53hの圧力のみに基づいて、加圧シリンダ47が前進方向に加圧部材41に付与している駆動力を特定することも可能であり、圧力センサ71Rは省略されてもよい。圧力センサ71R及び71Hの具体的な構成は、種々の構成とされてよく、例えば、公知の構成とされて構わない。
 流量センサ73は、ロッド側室53rから排出される作動液の流量を検出する。これにより、例えば、加圧部材41の前進距離を検出することができる。このようなセンサは、例えば、加圧部材41の後退を検出するセンサ43が位置センサでない態様において特に有用である。なお、流量センサ73は設けられなくてもよい。流量センサ73の具体的な構成は、種々の構成とされてよく、例えば、公知の構成とされて構わない。
(各種のバルブ)
 バルブ77A、77R及び77Hは、例えば、加圧装置2Aのメンテナンスのときに利用されるものである。これらのバルブは、例えば、手動で開閉されるコックによって構成されてよい。なお、これらのバルブは設けられなくても構わない。
 バルブ77Aは、ロッド側室53rとヘッド側室53hとを接続する流路に設けられている。成形サイクルが行われているときは、バルブ77Aは閉じられている。メンテナンスのときには、バルブ77Aが開かれ、作動液が循環される。これにより、加圧シリンダ47からエアー抜きがなされる。ひいては、加圧シリンダ47の動作が安定する。
 バルブ77Rは、ロッド側室53rと圧力センサ71Rとの間に位置している。バルブ77Hは、ヘッド側室53hと圧力センサ71Hとの間に位置している。バルブ77R及び77Hは、成形サイクルが行われているときは、開かれている。
 特に図示しないが、タンク69からロッド側室53rへの作動液の流れを許容し、その反対方向の流れを禁止し、かつパイロット圧の導入によって双方の流れを許容するチェック弁が設けられてもよい。この場合、例えば、当該チェック弁にパイロット圧を導入した状態で、低圧回路59Lからヘッド側室53hに作動液を供給し、加圧部材41を初期位置へ移動させる。そして、加圧部材41が前進限に到達する前に、パイロット圧の導入を停止して、ロッド側室53rからの作動液の排出を禁止する。これにより、任意の位置で加圧部材41を停止させることができる。すなわち、後退限よりも前方の任意の位置を初期位置とし、かつ初期位置において加圧部材41に前方への力を付与できる。そして、加圧部材41が溶湯に押されて後退するときは、タンク69から上記チェック弁を介してロッド側室53rに作動液が補給される。その後、高圧回路59Hからヘッド側室53hへ作動液を供給して局部加圧を行うときは、再度、パイロット圧の導入によってロッド側室53rからの作動液の排出を許容する。
(2つ以上の加圧シリンダが設けられている場合の液圧装置の構成)
 液圧装置49において、2点鎖線で囲まれた構成要素(例えば加圧シリンダ47、圧力センサ71H及び71R並びに制御弁63)の組み合わせをユニット60と呼称するものとする。液圧装置49は、複数のユニット60を有してよい。すなわち、2以上の加圧シリンダ47(別の観点では2以上の加圧部材41)は、互いに独立に制御可能であってよい。なお、既に触れたように、1つの加圧シリンダ47は、1つの加圧部材41を駆動してもよいし、2以上の加圧部材41を駆動してもよい。また、2以上の加圧部材41は、構成が互いに異なる駆動部45(例えば加圧シリンダ47を有するものと、加圧シリンダ47を有さないもの)によって駆動されても構わない。
(射出及び局部加圧に係る動作)
 図7は、射出及び局部加圧に係る動作を説明するための図である。なお、この図の説明では、便宜上、加圧装置2Aを射出装置9の構成要素であるかのように表現したり、局部加圧が射出工程の一部であるかのように表現したりすることがある。
 図7において、横軸は時間tを示しており、右側ほど後の時点となっている。左の縦軸は速度Vを示しており、上側ほど高速である。右の縦軸は圧力Pを示しており、上側ほど高圧である。
 線LVは、射出速度(プランジャ21の速度)の経時変化を示している。線LPは、射出圧力の経時変化を示している。射出圧力は、プランジャ21が溶湯に付与する圧力であるものとする。
 線LCは、鋳造圧力の経時変化を示している。鋳造圧力は、例えば、充填完了後の金型101の製品部107a内の溶湯の圧力であり、本実施形態の説明では、射出圧力と区別している。なお、以下の説明では、鋳造圧力は、上昇後の最終的な圧力(終圧)のみを指すことがある。製品部107a内の溶湯の圧力は、厳密には、製品部107a内の位置によって異なる。ここで示されている鋳造圧力は、例えば、製品部107a内の実際の圧力の代表値であると捉えられたり、そのような厳密性は考慮されずに設定された鋳造圧力の目標値であると捉えられたりしてよい。
 線LBは、バリ吹き限界曲線を示している。バリ吹き限界曲線は、バリが吹かない成形材料(溶湯)の圧力の上限値の経時変化を示す曲線である。制御装置5は、当該曲線が示す時間及び圧力の組み合わせを計算式に基づいて算出してもよいし、時系列データを参照して特定してもよい。バリ吹き限界曲線の算出方法は公知であり、例えば、特開2019-13933号公報に記載の計算式によって算出されてよい。
 線LSは、駆動部45Aが加圧部材41を空間107に向けて駆動する駆動力を、加圧部材41(その前端)が溶湯に付与し得る圧力に換算した圧力の経時変化を示している。「付与し得る圧力」であるので、線LSは、加圧が行われる前(例えば、溶湯が加圧部材41に到達する前)においても示されている。加圧が開始された後(例えば、溶湯が加圧部材41に到達した後)は、線LSによって示される圧力は、加圧部材41が溶湯に実際に付与する圧力である。ここでは、加圧部材41が、製品部107a以外の部分、又は製品部107aの外周部の溶湯を加圧する態様を想定する。従って、線LSで示される圧力は、製品部107aの圧力の代表値、又は代表値の目標値である鋳造圧力(線LC)とは一致していない。
 なお、線LV、LP、LC及び/又はLSによって示される速度及び圧力は、目標値を示していると捉えられてもよいし、実際の値(例えばセンサによって検出される実測値)を示していると捉えられてもよい。目標値は、ユーザの入力によって、又は制御装置5の演算によって設定されてよい。
 ダイカストマシン1は、例えば、低速射出(時点t0~t1)、高速射出(時点t1~t2)、並びに増圧及び保圧(時点t2~)を順に行う。すなわち、ダイカストマシン1は、線LVによって示されているように、射出の初期段階においては、溶湯の空気の巻き込みを防止する等の観点から比較的低速(速度V)でプランジャ21を前進させる低速射出を行う。次に、ダイカストマシン1は、線LVで示されているように、溶湯の凝固に遅れずに溶湯を充填するため等の観点から比較的高速(速度V)でプランジャ21を前進させる高速射出を行う。次に、ダイカストマシン1は、線LCによって示されているように、成形品のヒケをなくす等の観点から、製品部107a内の溶湯を上昇させる増圧を行う。その後、線LCによって示されているように、ダイカストマシン1は、増圧によって得られた終圧を維持する保圧を行う。
 一般には、鋳造圧力(線LC)は、主として、プランジャ21が溶湯に付与する射出圧力(線LP)によって実現される。ただし、図示の例では、加圧部材41が溶湯に付与する圧力(線LS)が鋳造圧力に寄与する割合が大きくなっている。具体的には、以下のとおりである。
 射出圧力は、低速射出では、比較的低圧となっている。その後、高速射出が開始されると(時点t1)、射出圧力も上昇する。さらに、溶湯の充填が概ね完了すると(時点t2)、溶湯が行き場を失うことから、射出圧力は急激に上昇し、圧力P1に至る。図示の例では、圧力P1は、鋳造圧力よりも低い。
 一般に、充填完了時の圧力P1が鋳造圧力よりも低い態様においては、射出圧力が圧力P1よりも高い鋳造圧力に至るように、射出装置9が増圧のための動作を行う。そのような動作としては、例えば、ヘッド側室53hへ作動液を供給するアキュムレータを増圧用のアキュムレータに切り換える動作、及び増圧ピストン(後述する図12参照)の背後に作動液を供給する動作が挙げられる。
 ただし、図示の例では、射出装置9は、上記のような増圧のための動作を行わない。代わりに、加圧装置2Aによる局部加圧が行われ、これにより、鋳造圧力が実現される。具体的には、図示の例では、射出圧力が圧力P1に到達すると(時点t2)、高圧回路59Hによる加圧シリンダ47の駆動が開始され、ひいては、局部加圧が開始される。このとき局部加圧に係る圧力P2は、例えば、鋳造圧力(目標値)よりも高く、かつバリ吹き限界曲線よりも低い。
 なお、圧力P2は、塑性変形抵抗よりも高くなるように設定されてもよい。塑性変形抵抗の値としては、例えば、溶湯完了時の成形材料の温度における降伏点が(上降伏点と下降伏点とが現れる場合は前者)が用いられてよい。圧力P2は、ユーザによって塑性変形抵抗よりも高くなるように設定されてもよいし、塑性変形抵抗の情報を有している制御装置5によって塑性変形抵抗よりも高く設定されてもよい。後者の場合において、制御装置5は、ユーザの入力によって、塑性変形抵抗自体の情報、又は塑性変形抵抗を特定する情報を取得してよい。
 圧力P2の圧力P1に比較した大きさは任意である。例えば、成形品が薄肉の場合においては、圧力P2は、圧力P1の1.1倍以上2.0倍以下とされてよい。成形品が中肉又は厚肉の場合においては、圧力P2は、圧力P1の1.5倍以上4.0倍以下とされてよい。もちろん、両者の比は、上記の範囲外であっても構わない。
 局部加圧が開始される前(時点t2の前)において、線LSで示される圧力は、充填完了時の射出圧力である圧力P1(別の観点では射出圧力の最大値)よりも小さい。別の観点では、加圧部材41を初期位置(例えば前進限)へ位置させている駆動力(以下、初期力ということがある。)は、圧力P1を加圧部材41に前方から付与したと仮定したときに加圧部材41に加えられる力よりも小さい。これにより、溶湯が加圧部材41の位置に到達した後、適宜な時期に加圧部材41が後退する。本実施形態では、初期力は、低圧回路59Lからヘッド側室53hへ作動液が供給されることによって生じる。初期力は、適宜なタイミングで加圧部材41に付与されてよく、図示の例では、射出開始(時点t0)から付与されている。
 図8は、上記の動作を実現するために制御装置5が実行する処理の手順の一例を示すフローチャートである。
 ステップST1では、制御装置5は、ユーザの入力操作等に基づいて、種々の成形条件に関する初期設定を行う。この初期設定において設定される条件としては、例えば、図7において示した射出速度(線LV)、射出圧力(線LP)、鋳造圧力(線LC)、及び加圧部材41が溶湯に付与する圧力(線LS)の、適宜な時点における値が挙げられる。この値には、例えば、圧力P1及びP2が含まれてよい。また、バリ吹き限界曲線の算出に必要な値も設定されてよい。
 ステップST2では、制御装置5は、射出の開始条件が満たされたか否か判定する。開始条件は、例えば、固定型103及び移動型105の型締が終了し、溶湯がスリーブ19に供給されたことを示す情報が得られたことなどとされてよい。そして、制御装置5は、開始条件が満たされるまで待機して(ステップST2を繰り返し)、開始条件が満たされたと判定すると、ステップST3及びST6に進む。
 ステップST3~ST5は、射出装置9による射出に係る処理の手順を示している。一方、ステップST6~ST10は、加圧装置2Aによる局部加圧に係る処理の手順を示している。これらの処理は、例えば、少なくとも一部が並行して行われる。
 ステップST3では、制御装置5は、プランジャ21を前進させるように射出装置9の駆動部23を制御する。例えば、制御装置5は、射出シリンダ27のヘッド側室31hへ作動液が供給されるように射出装置9の液圧装置(不図示)を制御する。これにより、低速射出及び高速射出が行われる。
 ステップST4では、制御装置5は、射出圧力が充填完了時の目標値である圧力P1に到達したか否か判定する。そして、制御装置5は、否定判定のときは待機し(高速射出を継続し)、肯定判定のときはステップST5に進む。
 ステップST5では、制御装置5は、プランジャ21の前進を停止する。例えば、制御装置5は、ヘッド側室31hへの作動液の供給を停止する。また、このとき、溶湯からの圧力によってプランジャ21が後退しないように、ヘッド側室31hからの作動液の排出を禁止してよい。
 ステップST6では、制御装置5は、加圧部材41(加圧ピン)を初期位置(例えば前進限)へ移動させるように液圧装置49を制御する。すなわち、低圧回路59Lのアキュムレータ61から加圧シリンダ47のヘッド側室53hへ作動液が供給されるように低圧回路59Lの制御弁63を制御する。なお、このステップは、溶湯が加圧部材41の位置に到達する前に行われる限り、任意のタイミングで行われてよい。例えば、ステップST2の前に行われても構わない。
 ステップST7では、制御装置5は、センサ43からの信号に基づいて、加圧部材41が溶湯に押されて後退したか否か判定する。そして、制御装置5は、否定判定のときは待機し(ステップST7を繰り返し)、肯定判定のときはステップST8に進む。なお、センサ43が、リミットスイッチのように後退の有無を検出するものではなく、位置センサ又は圧力センサのように、後退に係る物理量を連続的に検出するものである場合においては、ステップST7は、検出量(例えば位置センサの場合は後退量)が所定の閾値を超えたか否かの判定とされてよい。
 ステップST8では、制御装置5は、加圧部材41を前進させるように液圧装置49を制御する。すなわち、制御装置5は、低圧回路59Lのアキュムレータ61に代えて、高圧回路59Hのアキュムレータ61からヘッド側室53hへ作動液が供給されるように、低圧回路59Lの制御弁63及び高圧回路59Hの制御弁63を制御する。これにより、局部加圧(別の観点では増圧)が行われる。
 ステップST9では、制御装置5は、加圧部材41が溶湯に付与する圧力が目標値である圧力P2に到達したか否か判定する。そして、制御装置5は、否定判定のときは待機し(加圧部材41の前進を継続し)、肯定判定のときはステップST10に進む。
 ステップST10では、制御装置5は、加圧部材41の前進を停止する。例えば、制御装置5は、ヘッド側室53hへの作動液の供給を停止する。これにより、保圧が行われる。このとき、溶湯から圧力によって加圧部材41が後退しないように、ヘッド側室53hからの作動液の排出は禁止されてよい。あるいは、作動液の漏れに相当する量でヘッド側室53hへ作動液が補給されてもよい。
 特に図示しないが、その後、溶湯の凝固に相関する所定の条件(例えば所定時間の経過)が満たされると、制御装置5は、保圧を終了する。例えば、制御装置5は、ヘッド側室53hをタンク69又は低圧回路59Lのアキュムレータ61に接続する。また、制御装置5は、型開き及びプランジャ21の後退等に係る制御を行う。その後、制御装置5は、所定の終了条件が満たされるまで、ステップST2に戻り、射出サイクル(成形サイクル)を繰り返してもよい。
 図8においてステップST4とステップST7とを結ぶ矢印で示すように、ステップST4において肯定判定がなされることは、ステップST7を実行する前提条件とされてよい。別の観点では、制御装置5は、プランジャ21が溶湯に付与する圧力が所定の圧力(図8の例では圧力P1)に到達したことを必要条件として、加圧部材41の前進を開始するように駆動部45Aを制御してよい。当該効果については、後述の第1実施形態のまとめにおいて述べる。
 複数の加圧部材41及び複数の加圧シリンダ47が設けられている態様においては、ステップST7~S10は、加圧シリンダ47ごとに互いに独立に行われてよい。これにより、互いに異なる位置に配置されている複数の加圧部材41を、それぞれに適切なタイミングで制御することができる。
 ステップST1において、局部加圧の目標圧力である圧力P2は、ユーザが設定してもよいし、鋳造圧力の目標値等に基づいて、制御装置5が設定してもよい。前者の場合において、制御装置5は、入力された圧力P2が、鋳造圧力の目標値又は塑性変形抵抗よりも小さい場合、及び/又はバリ吹き限界曲線を超える場合、表示装置及び/又は音響装置によってユーザに警告を行ってもよいし、そのような圧力P2の入力を無効としてもよい。また、制御装置5が圧力P2を設定する場合は、制御装置5は、圧力P2が、鋳造圧力の目標値以上又は塑性変形抵抗以上となるように、及び/又はバリ吹き限界曲線以下となるように、圧力P2を設定してよい。
(第1実施形態のまとめ)
 以上のとおり、第1実施形態に係る局部加圧装置2Aは、型(金型101)の内部(空間107)に前端が露出している加圧部材41と、加圧部材41に前方への力を付与する駆動部45Aと、を有している。加圧部材41は、成形材料(例えば溶湯)が加圧部材41の位置に到達するときに後退限よりも前方の初期位置(例えば前進限)に位置しており、溶湯に押されて初期位置から後退する。
 別の観点では、第1実施形態に係る成形機(型付ダイカストマシンDC又はダイカストマシン1)は、上記の加圧装置2Aと、金型101の開閉及び型締めを行う型締装置7と、空間107に溶湯を射出する射出装置9と、を有している。
 更に別の観点では、第1実施形態に係る成形方法は、射出ステップ(ステップST3参照)と、局部加圧ステップ(ステップST8参照)とを有している。射出ステップは、空間107に溶湯を射出する。局部加圧ステップは、空間107に前端が露出している加圧部材41を前進させて空間107の溶湯を加圧する。加圧部材41は、溶湯が加圧部材41の位置に到達するときに後退限よりも前方の初期位置に位置しており、溶湯に押されて初期位置から後退する。
 従って、第1実施形態の説明の前に図1(a)~図3(b)を参照して説明したように、種々の効果が得られる。例えば、サージ圧を加圧部材41の後退によって吸収してバリが発生する蓋然性を低減したり、及び加圧部材41の前進タイミングを好適化して、ひけ巣が発生する蓋然性を低減したりできる。
 駆動部45Aは、成形材料が加圧部材41の位置に到達するときに、加圧部材41に前方への初期力を付与している状態で加圧部材41を初期位置に位置させてよい。初期力は、射出プランジャ(プランジャ21)が成形材料に付与する射出工程中の最大圧力(圧力P1)を加圧部材41に前方から付与したと仮定したときに加圧部材41に加えられる力よりも小さくされてよい。
 この場合、例えば、溶湯は、初期力に抗して加圧部材41を後退させることになる。その過程においては、溶湯が有しているエネルギーが消費される。従って、効果的にサージ圧が吸収される。
 加圧装置2Aは、加圧部材41の後退を検出するセンサ43と、センサ43による加圧部材41の後退の検出に基づくタイミングで加圧部材41の前進を開始するように駆動部45Aを制御する制御装置5と、を有してよい。
 この場合、例えば、既述の加圧部材41の前進タイミングを好適化する効果が得られる。なお、加圧部材41の後退の検出に基づくタイミングは、図8の例とは異なり、検出直後のタイミングに限定されず、検出時点から所定の時間が経過したタイミングであってもよい。
 制御装置5は、プランジャ21が成形材料に付与する圧力が所定の圧力(図8の例では圧力P1)に到達したことを必要条件として、加圧部材41の前進を開始するように駆動部45Aを制御してよい(図8のステップST4からステップST7への矢印参照)。
 この場合、例えば、溶湯の充填が完了していないときに加圧部材41の前進が開始される蓋然性が低下する。その結果、例えば、加圧部材41の後退の検出(ステップST7)の感度を高くすることができる。例えば、リミットスイッチがONされる位置までの後退量を小さくしたり、制御装置5が位置センサの検出値に基づいて加圧部材41が後退したと判定するときの後退量(閾値)を小さくしたり、制御装置5が圧力センサ71Hの検出値に基づいて加圧部材41が後退したと判定するときの圧力上昇量(閾値)を小さくしたりできる。この感度の向上は、例えば、溶湯の凝固の進行に起因して、加圧部材41の位置まで射出圧力が伝わりにくい場合に有効である。
 加圧部材41は、初期位置から後退した後に、制御装置5にて設定された鋳造圧力、及び成形材料の塑性変形抵抗の少なくとも一方の圧力以上の圧力を成形材料に付与してよい。
 この場合、例えば、成形材料の圧力は、局部的にだけでなく、その全体として、適切な大きさとなりやすい。その結果、例えば、上述したように、射出圧力によって増圧を行わずに、局部加圧によって増圧を行ったときに、製品の品質を向上させることができる。
 加圧部材41は、初期位置から後退した後に、制御装置5にて特定されたバリ吹き限界曲線以下の圧力を成形材料に付与してよい。
 この場合、例えば、加圧部材41の周囲においてバリが生じる蓋然性が低減される。別の観点では、バリが生じる蓋然性を低減しつつ、極力大きな局部圧力を溶湯に付与して、品質を向上させることができる。
 駆動部45は、液圧シリンダ(加圧シリンダ47)と、アキュムレータ61と、背圧除去シリンダ65と、サーボバルブ(制御弁63)と、を有していてよい。加圧シリンダ47は、加圧部材41に連結されている。アキュムレータ61は、加圧シリンダ47の、加圧部材41が前進するときに作動液が供給される第1シリンダ室(ヘッド側室53h)に接続されている。背圧除去シリンダ65は、加圧シリンダ47の、加圧部材41が前進するときに作動液が排出される第2シリンダ室(ロッド側室53r)に接続されている。制御弁63は、アキュムレータ61からヘッド側室53hへの流れを制御する。
 この場合、例えば、ヘッド側室53hに高い圧力を付与できるとともにロッド側室53rの背圧を速やかに除去できるから、加圧部材41の応答性が向上する。その結果、例えば、センサ43によって溶湯の到達を適切に検出できる効果と相俟って、適切なタイミングで加圧部材41を前進させることができる。さらに、サーボバルブとしての制御弁63によって流量を制御できるから、アキュムレータ61及び背圧除去シリンダ65の利用によって過剰に加圧部材41が前進する蓋然性が低減される。
 加圧部材41の前端の径をdとし、プランジャ21の前端の径をDとしたとき、d/Dは、0.2以上0.5以下とされてよい。
 この場合、例えば、d/Dが0.5以下であることによって、加圧部材41を駆動する駆動部45Aが生じる駆動力に対して、加圧部材41が溶湯に付与する圧力を相対的に大きくすることができ、駆動部45Aの負担を軽減することができる。また、例えば、d/Dが0.2以上であることによって、成形材料を押し込む体積が相対的に大きく確保され、局部加圧の効果を向上させることができる。
<第2実施形態>
 図9(a)及び図9(b)は、第2実施形態に係る加圧装置2Bの構成を示す断面図である。図9(a)は、図1(b)に相当しており、溶湯が加圧部材41の位置に到達しておらず、加圧部材41が初期位置(前進限)に位置している状態を示している。図9(b)は、図2(b)に相当しており、溶湯が加圧部材41の位置に到達して加圧部材41が後退した状態を示している。
 加圧装置2Bにおいては、駆動部45として、弾性部材45Bが用いられている。溶湯が加圧部材に到達する前、加圧部材41は、弾性部材45Bの復元力によって前方(空間107側)へ押されて前進限に位置している。なお、加圧部材41が前進限に位置しているとき、弾性部材45Bは、復元力を生じている状態(変形が残っている状態)であってもよいし、復元力を概ね生じていない状態であってもよい。
 その後、溶湯109が加圧部材41の位置に到達すると、加圧部材41は後退する。加圧部材41の後退に伴って弾性部材45Bは復元力を増加させる。そして、加圧部材41は、溶湯から受ける力と、弾性部材45Bの復元力とが釣り合う位置で停止する(ここでは、摩擦力等の影響は無視している。)。なお、上記とは異なり、加圧部材41は、その後退限を規定する不図示のストッパに当接することによって停止してもよい。
 弾性部材45Bの具体的な構成は適宜なものとされてよい。図示の例では、弾性部材45Bは、コイル状のばねによって構成されており、前端が加圧部材41に当接し、後端が固定型103(又は固定型103に固定的な部材)に当接している。そして、弾性部材45Bは、圧縮変形によって復元力を生じる。弾性部材45Bの他の具体例としては、1つ以上の板ばね(例えば積層された皿ばね)が挙げられる(後述する他の実施形態においても同様。)。なお、念のために記載すると、加圧装置2Bは、加圧シリンダ47等の能動的に駆動力を生じる駆動部を有していない。
 本実施形態においても、加圧装置2Bは、型(金型101)の内部(空間107)に前端が露出している加圧部材41と、加圧部材41に前方への力を付与する駆動部(弾性部材45B)と、を有している。加圧部材41は、成形材料(溶湯109)が加圧部材41の位置に到達するときに後退限よりも前方の初期位置(前進限)に位置しており、溶湯109に押されて前進限から後退する。
 従って、第1実施形態の説明の前に述べた効果の少なくとも一部が奏される。例えば、サージ圧を吸収することができる。加圧部材41は、弾性部材45Bがサージ圧を吸収することによって、サージ圧が収まった後の溶湯の圧力よりも高い圧力を溶湯に付与することができる。これにより、局部加圧の効果を得ることができる。
 本実施形態で示したように、駆動部(45)は、加圧部材41に前方への復元力を付与する弾性部材45Bを含んでいてよい。
 この場合、例えば、流体の圧縮によってサージ圧を吸収する態様(当該態様も本開示に係る技術に含まれる。)に比較して、弾性部材45Bの弾性変形によってサージ圧を十分に吸収できる。また、流体を用いる必要性が低減されるから、シール等の部材を省略できる。さらに、サージ圧の吸収を利用してサージ圧が収まった後の溶湯に対して局部加圧を行うことから、エネルギーを節約できる。
<第3実施形態>
 図10は、第3実施形態に係る加圧装置2Cの構成を示す断面図であり、図1(b)に相当する。この図は、溶湯が加圧部材41の位置に到達しておらず、加圧部材41が初期位置(前進限)に位置している状態を示している。
 加圧装置2Cの駆動部45Cは、端的に言えば、第1実施形態の加圧シリンダ47と、第2実施形態の弾性部材45Bとを組み合わせたものである。具体的には、弾性部材45B及び加圧シリンダ47は、加圧部材41に対して並列に力を付与可能に設けられている。なお、ここでの「並列」は、力の付与に関してであり、位置関係に関してではない。
 具体的には、図示の例では、加圧シリンダ47は、第1実施形態と同様に、ピストンロッド57が加圧部材41に連結されている。弾性部材45Bは、コイル状のばねによって構成されており、ピストンロッド57に対して同心状に配列されている。弾性部材45Bは、第2実施形態と同様に、前端が加圧部材41に当接し、後端が固定型103(又は固定型103に固定的な部材)に当接し、圧縮変形によって復元力を生じる。
 特に図示しないが、駆動部45Cは、加圧シリンダ47への作動液の供給等を行う液圧装置を有している。この液圧装置は、図5及び図6に示した液圧装置49から低圧回路59Lを無くしたものである。以下に述べるように、弾性部材45Bが低圧回路59Lの代わりを担うからである。
 射出が行われているとき(図7の時点t0~t2)、液圧装置は、例えば、ロッド側室53r及びヘッド側室53hをタンク69に接続している。従って、加圧部材41は、弾性部材45Bの復元力によって前方へ押されて前進限(初期位置)に位置する。溶湯が加圧部材41の位置に到達すると、第2実施形態と同様に、弾性部材45Bの変形を伴って加圧部材41が後退する。このとき、サージ圧が吸収されてもよい。また、加圧部材41が後退すると、第1実施形態と同様に、高圧回路59H及び加圧シリンダ47によって、加圧部材41の前進が開始され、局部加圧が行われる(図8のステップST7~ST10を参照)。
 なお、局部加圧の前に、弾性部材45Bによって加圧部材41を前方へ移動させるとき、第1実施形態でも述べたように、パイロット式のチェック弁等によってロッド側室53rからの作動液の排出を禁止して、加圧部材41が前進限に到達する前に加圧部材41を停止させてもよい。すなわち、初期位置は、前進限以外の位置とされてもよい。
 以上のとおり、本実施形態においても、局部加圧装置2Cは、型(金型101)の内部(空間107)に前端が露出している加圧部材41と、加圧部材41に前方への力を付与する駆動部45Cと、を有している。加圧部材41は、成形材料(例えば溶湯)が加圧部材41の位置に到達するときに後退限よりも前方の初期位置(例えば前進限)に位置しており、溶湯に押されて初期位置から後退する。
 従って、第1実施形態の説明の前に述べた効果が奏される。例えば、サージ圧を吸収したり、局部加圧の開始タイミングを好適化したりできる。
 また、本実施形態で示したように、駆動部45Cは、加圧部材41に駆動力を付与する液圧シリンダ(加圧シリンダ47)と、加圧部材41に前方への復元力を付与する弾性部材45Bと、を含んでよい。加圧シリンダ47及び弾性部材45Bは、互いに並列に力を加圧部材41に付与可能に設けられていてよい。
 この場合、例えば、弾性部材45Bによって加圧部材41を初期位置に位置させつつ、加圧部材41に前方への力を付与できるから、第1実施形態の低圧回路59Lが不要になる。その結果、液圧装置が簡素化される。
<第4実施形態>
 図11は、第4実施形態に係る加圧装置2Dの構成を示す断面図であり、図1(b)に相当する。この図は、溶湯が加圧部材41の位置に到達しておらず、加圧部材41が初期位置に位置している状態を示している。
 加圧装置2Dの駆動部45Dは、端的に言えば、第3実施形態と同様に、第1実施形態の加圧シリンダ47と、第2実施形態の弾性部材45Bとを組み合わせたものである。そして、第3実施形態と同様に、溶湯が加圧部材41に到達する前においては、低圧回路59Lに代わって、弾性部材45Bが加圧部材41を前方へ押して加圧部材41を初期位置(例えば前進限)に位置させる。ただし、第3実施形態では、弾性部材45B及び加圧シリンダ47は、互いに並列に加圧部材41に力を付与可能に設けられていたのに対して、本実施形態では、弾性部材45B及び加圧シリンダ47は、互いに直列に加圧部材41に力を付与可能に設けられている。
 具体的には、図示の例では、加圧シリンダ47は、第1実施形態と同様に、ピストンロッド57が加圧部材41に連結されている。弾性部材45Bは、コイル状のばねによって構成されており、前端がシリンダ部材53の後端に当接し、後端が固定型103(又は固定型103に固定的な部材)に当接している。そして、弾性部材45Bは、圧縮変形によって復元力を生じる。なお、図示の例とは異なる態様としては、例えば、シリンダ部材53を固定型103に固定し、ピストンロッド57と加圧部材41との間に弾性部材45Bを介在させる態様が挙げられる。
 特に図示しないが、駆動部45Dは、加圧シリンダ47への作動液の供給等を行う液圧装置を有している。この液圧装置は、第3実施形態と同様に、図5及び図6に示した液圧装置49から低圧回路59Lを無くしたものである。
 射出が行われているとき(図7の時点t0~t2)、液圧装置は、例えば、ピストン55をシリンダ部材53に対して適宜な位置(例えば後退限)に位置させている。なお、ロッド側室53r及びヘッド側室53hは、例えば、作動液の流入及び流出が禁止されていてよい。そして、加圧部材41は、弾性部材45Bの復元力によって、加圧シリンダ47と共に前方へ押されて前進限に位置する。溶湯が加圧部材41の位置に到達すると、加圧部材41は、加圧シリンダ47と共に、弾性部材45Bの変形を伴って後退する。このとき、サージ圧が吸収されてもよい。また、加圧部材41が後退すると、第1実施形態と同様に、高圧回路59H及び加圧シリンダ47によって、加圧部材41の前進が開始され、局部加圧が行われる(ステップST7~ST10を参照)。なお、特に図示しないが、シリンダ部材53の固定型103に対する後退限を規定するストッパが設けられてもよい。
 上記のように、図11は、例えば、加圧部材41が初期位置に位置している状態を示している。図示の例では、加圧シリンダ47は、加圧部材41を初期位置から更に前進させることができる。従って、図11は、加圧部材41に関して、前進限ではない初期位置の一例を示している。局部加圧が行われるとき、加圧部材41が初期位置よりも前方に前進するように制御が行われてもよいし、そのような制御が行われなくてもよい。なお、図示の例とは異なり、加圧部材41が図示の位置にあるとき、加圧部材41(又は加圧部材41に固定的な部材)が固定型103(又は固定型103に固定的な部材)に設けられたストッパに当接することなどによって、図示の位置が前進限となっていても構わない。
 以上のとおり、本実施形態においても、局部加圧装置2Dは、型(金型101)の内部(空間107)に前端が露出している加圧部材41と、加圧部材41に前方への力を付与する駆動部45Dと、を有している。加圧部材41は、成形材料(例えば溶湯)が加圧部材41の位置に到達するときに後退限よりも前方の初期位置(例えば前進限)に位置しており、溶湯に押されて初期位置から後退する。
 従って、第1実施形態の説明の前に述べた効果が奏される。例えば、サージ圧を吸収したり、局部加圧の開始タイミングを好適化したりできる。
 また、本実施形態で示したように、駆動部45Dは、加圧部材41に駆動力を付与する液圧シリンダ(加圧シリンダ47)と、加圧部材41に前方への復元力を付与する弾性部材45Bと、を含んでよい。加圧シリンダ47及び弾性部材45Bは、互いに直列に力を加圧部材41に付与可能に設けられていてよい。
 この場合、例えば、第3実施形態と同様に、弾性部材45Bによって加圧部材41を初期位置に位置させることができるから、第1実施形態の低圧回路59Lが不要になる。その結果、液圧装置が簡素化される。
<第5実施形態>
 図12は、第5実施形態に係る型付ダイカストマシンDCEの構成を示す模式図である。
 本実施形態に係る加圧装置2E(駆動部45E)は、第1実施形態と同様に、加圧シリンダ47によって加圧部材41を駆動する構成とされている。ただし、本実施形態は、加圧シリンダ47への作動液の供給態様が第1実施形態と相違する。具体的には、本実施形態の液圧装置49Eでは、連通路83によって加圧シリンダ47のヘッド側室53hと、射出シリンダ27Eのヘッド側室31hとが連通されており、ヘッド側室31hに付与される圧力と同等の圧力がヘッド側室53hに供給される。より詳細には、例えば、以下のとおりである。
(射出装置及び加圧装置の構成)
 本実施形態では、プランジャ21を駆動する駆動部23Eは、射出シリンダ27Eを有している。また、駆動部23Eは、狭義の射出工程(図7の時点t0~t2)までにヘッド側室31hに付与する圧力よりも高い圧力をヘッド側室31hに付与して増圧を行うことが可能な構成とされている。このような駆動部23Eとしては、例えば、増圧式の射出シリンダを有する態様(図示の例)、及び射出及び増圧のうち増圧のみに用いられるアキュムレータを有する態様が挙げられる。なお、駆動部23Eは、射出シリンダと電動機とを併用するハイブリッド式であってもよい。以下では、図示の例(増圧式の射出シリンダ27E)を例に取って説明する。
 射出シリンダ27Eは、図1(a)に示した射出シリンダ27と同様に、シリンダ部材31E、ピストン33及びピストンロッド37を有している。ただし、シリンダ部材31Eは、小径シリンダ部31xと、その後方(図12の右側)に通じ、小径シリンダ部31xよりも径が大きい大径シリンダ部31yとを有しており、小径シリンダ部31xが図1(a)のシリンダ部材31に相当する。また、射出シリンダ27Eは、ピストン33の後方に増圧ピストン35を有している。
 増圧ピストン35は、小径シリンダ部31xを摺動する小径部35xと、大径シリンダ部31yを摺動する大径部35yとを有している。大径部35yは、大径シリンダ部31yを前方の前側室31aと後方の後側室31bとに区画している。増圧ピストン35は、前方(ヘッド側室31h)の圧力を受ける面積が後方(後側室31b)の圧力を受ける面積よりも小さい。従って、増圧ピストン35は、前側室31aの圧抜きをした状態において、後側室31bよりも高い圧力をヘッド側室31hに付与できる。
 加圧シリンダ47における、ピストン55がヘッド側室53hから圧力を受ける面積に対する、加圧部材41が前方から圧力を受ける面積の比は、射出シリンダ27Eにおける、ピストン33がヘッド側室31hから圧力を受ける面積に対する、プランジャ21が前方から圧力を受ける面積の比に対して、概ね同等とされている。従って、例えば、ヘッド側室53h及びヘッド側室31hに互いに同等の圧力が付与されると、加圧部材41及びプランジャ21は、互いに同等の圧力を溶湯に付与することができる。
 なお、増圧式の射出シリンダとしては、図示の例の他、例えば、ピストン33が摺動するシリンダ部材と、増圧ピストン35が摺動するシリンダ部材とが分離された構成のものが挙げられる。要は、増圧式の射出シリンダでは、増圧ピストン35がヘッド側室31hの圧力を受ける面積が、その反対側から圧力を受ける面積よりも小さければよい。また、念のために記載すると、液圧装置49Eは、例えば、低圧回路59L及び高圧回路59H(換言すれば加圧装置2Eに専用のアキュムレータ61)を有していない。また、加圧装置2Eは、例えば、加圧部材41の後退を検出するセンサ43を有していない。
(射出装置及び加圧装置の動作)
 射出工程(図7の時点t0~t2)においては、制御装置5は、バルブ81Aを開いてアキュムレータ79から射出シリンダ27Eのヘッド側室31hへ作動液を供給する。射出速度の切換えは、メータアウト回路(図示の例。符号省略)及び/又はメータイン回路によって実現される。
 加圧シリンダ47のヘッド側室53hは、溶湯の充填完了前の適宜な時期(例えば射出開始時)からヘッド側室31hに通じている。従って、アキュムレータ79の圧力は、ヘッド側室53hにも付与される。これにより、加圧部材41は、前方へ押されて初期位置(例えば前進限)に位置する。
 溶湯が金型101の空間107に概ね充填されると、加圧部材41の位置に到達した溶湯の圧力が上昇する。上記のように、加圧部材41は、プランジャ21と同等の圧力を溶湯に付与できる。従って、例えば、サージ圧が生じると、加圧部材41は後退する。
 制御装置5は、所定の増圧条件が満たされると、バルブ81Bを開いてアキュムレータ79から射出シリンダ27Eの後側室31bに作動液を供給する。既述のように、増圧ピストン35は、後側室31bの圧力よりも高い圧力をヘッド側室31hに付与する。バルブ81Aは、自閉するか、制御装置5によって閉じられる。その結果、プランジャ21が溶湯に付与する圧力が上昇し、増圧(図7の時点t2~)が行われる。図7とは異なり、射出圧力(線LP)は鋳造圧力(線LC)に近づくように上昇していく。
 このとき、ヘッド側室53hとヘッド側室31hとの連通は継続されている。従って、増圧されたヘッド側室31hの圧力は、ヘッド側室53hにも付与される。これにより、プランジャ21が増圧を行うのと同様に、加圧部材41は局部加圧を行うことができる。
 上記のような動作が好適に行われるように、連通路83には、種々のバルブ又は圧力除去シリンダ(いずれも符号省略)が適宜に設けられてもよい。また、溶湯の凝固の進行に伴って、溶湯の圧力等は、プランジャ21の位置と加圧部材41の位置とで異なるから、両者が溶湯に付与する圧力の大きさ及び/又はタイミングが互いに異なるように、適宜に寸法が設定されたり、連通路83におけるバルブの制御が行われたりしてもよい。
 以上のとおり、本実施形態においても、局部加圧装置2Eは、型(金型101)の内部(空間107)に前端が露出している加圧部材41と、加圧部材41に前方への力を付与する駆動部45Eと、を有している。加圧部材41は、成形材料(例えば溶湯)が加圧部材41の位置に到達するときに後退限よりも前方の初期位置(例えば前進限)に位置しており、溶湯に押されて初期位置から後退する。
 従って、第1実施形態の説明の前に述べた効果が奏される。例えば、サージ圧を吸収できる。
 また、本実施形態で示したように、駆動部45Eは、加圧部材41に連結されている液圧シリンダ(加圧シリンダ47)を有してよい。加圧シリンダ47の、加圧部材41が前進するときに作動液が供給される第1シリンダ室(ヘッド側室53h)は、射出プランジャ(プランジャ21)を駆動する射出シリンダ27Eの、プランジャ21が前進するときに作動液が供給されるヘッド側室31hに通じていてよい。
 この場合、例えば、溶湯が加圧部材41の位置に到達する前に加圧部材41を初期位置に位置させる駆動力、及び加圧部材41が後退した後に加圧部材41を前進させて局部加圧を行う駆動力の少なくとも一方(図示の例では双方)を射出用のアキュムレータ79からの作動液の供給によって得ることができる。また、例えば、ヘッド側室31hの圧力を上昇させてプランジャ21による増圧を開始する態様においては、その増圧の開始タイミングに局部加圧の開始タイミングを追従させることができる。その結果、局部加圧のタイミングが好適化される。
 なお、図示の例とは異なり、加圧シリンダ47は、射出シリンダ27Eと遮断された状態で低圧回路59Lから作動液が供給されて初期位置に位置し、その後、局部加圧を行うときに、増圧されたヘッド側室31hの圧力が供給されてもよい。逆に、加圧シリンダ47は、ヘッド側室31hへ作動液を供給するアキュムレータ79から作動液が供給されて初期位置に位置し、その後、局部加圧を行うときに、高圧回路59Hから作動液が供給されてもよい。
<加圧部材の位置の他の例>
 図13は、加圧部材41の位置について、これまでに図示した例とは異なる例を示す図である。
 第1実施形態の説明では、加圧部材41は、空間107のうちの任意の部分(製品部107a、オーバーフロー107b及びランナー107e等)の溶湯を加圧してよいことについて述べた。図13の例では、加圧部材41は、ランナー107eの溶湯を加圧するように配置されている。
 具体的には、図示の例では、ランナー107eは、その流れ方向がスリーブ19に交差(例えば直交)するように設けられている。別の観点では、図示の例では、ランナー107eは、流れ方向が上下方向とされている。ランナー107eの下部側面にはスリーブ19が通じている。ランナー107eの上部は、ゲート(符号省略)を介して製品部107aに通じている。
 加圧部材41は、例えば、ランナー107eに対して製品部107aとは反対側に配置され、かつランナー107eの流れ方向に移動可能に設けられている。図13に示す加圧部材41の位置は、例えば、溶湯が加圧部材41に到達する前の初期位置である。初期位置は、加圧部材41の前進限であってもよいし、前進限でなくてもよい。換言すれば、加圧部材41は、ランナー107e内に侵入不可能であってもよいし、侵入可能であってもよい。なお、図示の例とは異なり、加圧部材41は、ランナー107eの流れ方向とは異なる方向に進退可能に設けられていてもよい。
 ランナー107eを加圧する加圧部材41は、種々の実施形態のいずれの駆動部45と組み合わされてもよい。例えば、駆動部45として、第4実施形態の駆動部45D(図11)が用いられてよい。この場合、図示の初期位置は、図11と同様に、シリンダ部材53が金型101に対する前進限に位置し、ピストン55がシリンダ部材53に対する前進限よりも後方の位置(例えば後退限)に位置するときの位置とされてよい。そして、局部加圧においては、加圧部材41は、図示の位置よりも上方へ前進してよい。
 なお、以上の実施形態において、金型101は、型の一例である。型付ダイカストマシンDC若しくはDCE又はダイカストマシン1は、それぞれ成形機の一例である。溶湯109は成形材料の一例である。プランジャ21は射出プランジャの一例である。加圧シリンダ47は液圧シリンダの一例である。ヘッド側室53hは第1シリンダ室の一例である。ロッド側室53rは第2シリンダ室の一例である。制御弁63はサーボバルブの一例である。
 本発明は、以上の実施形態及び変形例に限定されず、種々の態様で実施されてよい。
 成形機は、ダイカストマシンに限定されない。例えば、成形機は、他の金属成形機であってもよいし、樹脂を成形する射出成形機であってもよいし、木粉に熱可塑性樹脂等を混合させた材料を成形する成形機であってもよい。また、成形機は、横型締横射出に限定されず、例えば、縦型締縦射出、縦型締横射出、横型締縦射出であってもよい。ダイカストマシンは、コールドチャンバマシンに限定されず、例えば、ホットチャンバマシンであってもよい。作動液は、油に限定されず、例えば水でもよい。
 射出は、低速射出及び高速射出を含むものに限定されず、例えば、低速で層流充填を行うものであってもよい。局部加圧のための加圧部材は、成形材料が凝固して構成された成形品を型から押し出すための押出ピンと兼用されるものであってもよい。実施形態の説明でも述べたように、駆動部は、電動式のものであってもよい。例えば、加圧シリンダに代えて、リニアモータ(ボイスコイルモータを含むものとする。)が設けられてもよい。
 複数の実施形態の構成は、適宜に組み合わされてよい。例えば、複数の加圧部材41が設けられている態様において、互いに異なる駆動部45の構成が1台のダイカストマシンに適用されていても構わない。
 DC…型付ダイカストマシン(成形機)、1…ダイカストマシン(成形機)、2…局部加圧装置、5…制御装置、9…射出装置、41…加圧部材、43…センサ、45…駆動部、47…加圧シリンダ、101…金型(型)、107…空間(型の内部)。

Claims (14)

  1.  型の内部に前端が露出している加圧部材と、
     前記加圧部材に前方への力を付与する駆動部と、
     を有しており、
     前記加圧部材は、成形材料が前記加圧部材の位置に到達するときに後退限よりも前方の初期位置に位置しており、前記成形材料に押されて前記初期位置から後退する
     局部加圧装置。
  2.  前記駆動部は、前記成形材料が前記加圧部材の位置に到達するときに、前記加圧部材に前方への初期力を付与した状態で前記加圧部材を前記初期位置に位置させており、
     前記初期力は、射出プランジャが前記成形材料に付与する射出工程中の最大圧力を前記加圧部材に前方から付与したと仮定したときに前記加圧部材に加えられる力よりも小さい
     請求項1に記載の局部加圧装置。
  3.  前記加圧部材の後退を検出するセンサと、
     前記センサによる前記加圧部材の後退の検出に基づくタイミングで前記加圧部材の前進を開始するように前記駆動部を制御する制御装置と、
     を更に有している請求項1又は2に記載の局部加圧装置。
  4.  前記制御装置は、射出プランジャが前記成形材料に付与する圧力が所定の圧力に到達したことを必要条件として、前記加圧部材の前進を開始するように前記駆動部を制御する
     請求項3に記載の局部加圧装置。
  5.  前記加圧部材は、前記初期位置から後退した後に、制御装置にて設定された鋳造圧力、及び前記成形材料の塑性変形抵抗の少なくとも一方の圧力以上の圧力を前記成形材料に付与する
     請求項1~4のいずれか1項に記載の局部加圧装置。
  6.  前記加圧部材は、前記初期位置から後退した後に、制御装置にて特定されたバリ吹き限界曲線以下の圧力を前記成形材料に付与する
     請求項1~5のいずれか1項に記載の局部加圧装置。
  7.  前記駆動部は、
      前記加圧部材に連結されている液圧シリンダと、
      前記液圧シリンダの、前記加圧部材が前進するときに作動液が供給される第1シリンダ室に接続されているアキュムレータと、
      前記液圧シリンダの、前記加圧部材が前進するときに作動液が排出される第2シリンダ室に接続されている背圧除去シリンダと、
      前記アキュムレータから前記第1シリンダ室への流れを制御するサーボバルブと、を有している
     請求項1~6のいずれか1項に記載の局部加圧装置。
  8.  前記駆動部は、前記加圧部材に前方への復元力を付与する弾性部材を含んでいる
     請求項1~7のいずれか1項に記載の局部加圧装置。
  9.  前記駆動部は、
      前記加圧部材に駆動力を付与する液圧シリンダと、
      前記加圧部材に前方への復元力を付与する弾性部材と、を含んでおり、
     前記液圧シリンダ及び前記弾性部材は、互いに並列に力を前記加圧部材に付与可能に設けられている
     請求項1~6のいずれか1項に記載の局部加圧装置。
  10.  前記駆動部は、
      前記加圧部材に駆動力を付与する液圧シリンダと、
      前記加圧部材に前方への復元力を付与する弾性部材と、を含んでおり、
     前記液圧シリンダ及び前記弾性部材は、互いに直列に力を前記加圧部材に付与可能に設けられている
     請求項1~6のいずれか1項に記載の局部加圧装置。
  11.  前記駆動部は、前記加圧部材に連結されている液圧シリンダを有しており、
     前記液圧シリンダの、前記加圧部材が前進するときに作動液が供給される第1シリンダ室が、射出プランジャを駆動する射出シリンダの、前記射出プランジャが前進するときに作動液が供給されるヘッド側室に通じている
     請求項1~6のいずれか1項に記載の局部加圧装置。
  12.  前記加圧部材の前端の径をdとし、射出プランジャの前端の径をDとしたとき、d/Dが0.2以上0.5以下である
     請求項1~11のいずれか1項に記載の局部加圧装置。
  13.  請求項1~12のいずれか1項に記載の局部加圧装置と、
     前記型の開閉及び型締めを行う型締装置と、
     前記型の内部に前記成形材料を射出する射出装置と、
     を有している成形機。
  14.  型の内部に成形材料を射出する射出ステップと、
     前記型の内部に前端が露出している加圧部材を前進させて前記型の内部の前記成形材料を加圧する局部加圧ステップと、
     を有しており、
     前記加圧部材は、前記成形材料が前記加圧部材の位置に到達するときに後退限よりも前方の初期位置に位置しており、前記成形材料に押されて前記初期位置から後退する
     成形方法。
PCT/JP2022/040393 2021-10-29 2022-10-28 局部加圧装置、成形機及び成形方法 WO2023074851A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280072675.XA CN118176072A (zh) 2021-10-29 2022-10-28 局部加压装置、成形机及成形方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177333A JP2023066640A (ja) 2021-10-29 2021-10-29 局部加圧装置、成形機及び成形方法
JP2021-177333 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074851A1 true WO2023074851A1 (ja) 2023-05-04

Family

ID=86159491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040393 WO2023074851A1 (ja) 2021-10-29 2022-10-28 局部加圧装置、成形機及び成形方法

Country Status (3)

Country Link
JP (1) JP2023066640A (ja)
CN (1) CN118176072A (ja)
WO (1) WO2023074851A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113810U (ja) * 1976-02-25 1977-08-30
JPH0222252U (ja) * 1988-07-26 1990-02-14
JPH0385155U (ja) * 1989-12-15 1991-08-28
JP2016203197A (ja) * 2015-04-20 2016-12-08 美濃工業栃木株式会社 加圧ピン制御方法及び加圧ピン制御装置
JP2019013933A (ja) * 2017-07-04 2019-01-31 東芝機械株式会社 射出装置及び成形機
JP2021020224A (ja) * 2019-07-24 2021-02-18 芝浦機械株式会社 局部加圧装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113810U (ja) * 1976-02-25 1977-08-30
JPH0222252U (ja) * 1988-07-26 1990-02-14
JPH0385155U (ja) * 1989-12-15 1991-08-28
JP2016203197A (ja) * 2015-04-20 2016-12-08 美濃工業栃木株式会社 加圧ピン制御方法及び加圧ピン制御装置
JP2019013933A (ja) * 2017-07-04 2019-01-31 東芝機械株式会社 射出装置及び成形機
JP2021020224A (ja) * 2019-07-24 2021-02-18 芝浦機械株式会社 局部加圧装置

Also Published As

Publication number Publication date
CN118176072A (zh) 2024-06-11
JP2023066640A (ja) 2023-05-16

Similar Documents

Publication Publication Date Title
JP4997921B2 (ja) ダイカストマシン及びダイカスト鋳造法
US7316259B2 (en) Diecasting machine
US20090242161A1 (en) Injection device for die casting machine
KR20040095705A (ko) 다이캐스트 머신의 사출 장치 및 주조 방법
WO2008050659A1 (fr) Machine à coulée sous pression et procédé de coulage sous pression
US7686067B2 (en) Die casting machine
JP2011131225A (ja) ダイカストマシンの射出装置および射出制御方法
JP7132876B2 (ja) 射出装置及び成形機
US7004224B2 (en) Diecasting machine
JP3662001B2 (ja) ダイカストマシンの射出方法
JP5381161B2 (ja) ダイカストマシン及びダイカスト鋳造方法
WO2023074851A1 (ja) 局部加圧装置、成形機及び成形方法
JP2023066641A (ja) 局部加圧装置、成形機及び成形方法
JP4657251B2 (ja) ダイカストマシンの制御方法
JP7137729B1 (ja) 局部加圧装置及び成形機
JP4436104B2 (ja) ダイカストマシン
JP5372626B2 (ja) 射出成形装置及び射出成形方法
JP7080963B1 (ja) 射出装置、成形機、型付成形機及び成形方法
JP7392523B2 (ja) ダイカスト成形方法および制御装置
WO2023210701A1 (ja) 射出装置、成形機及び成形品の製造方法
JP5605445B2 (ja) ダイカストマシン及びダイカスト鋳造方法
JP7219295B2 (ja) ダイカストマシン
JP2009061458A (ja) ダイカストマシン及びダイカスト鋳造方法
JP6582834B2 (ja) 射出増圧切換バルブ及び射出増圧切換方法
JP2023164387A (ja) 中子駆動装置、押出駆動装置、及び成形機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/005011

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE