WO2023071332A1 - 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用 - Google Patents

一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用 Download PDF

Info

Publication number
WO2023071332A1
WO2023071332A1 PCT/CN2022/108441 CN2022108441W WO2023071332A1 WO 2023071332 A1 WO2023071332 A1 WO 2023071332A1 CN 2022108441 W CN2022108441 W CN 2022108441W WO 2023071332 A1 WO2023071332 A1 WO 2023071332A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified siloxane
carbon dioxide
supercritical carbon
preparation
dioxide thickener
Prior art date
Application number
PCT/CN2022/108441
Other languages
English (en)
French (fr)
Inventor
王彦玲
刘斌
孙宝江
梁雷
李迪
Original Assignee
中国石油大学华东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学华东 filed Critical 中国石油大学华东
Priority to US18/025,666 priority Critical patent/US12030994B2/en
Publication of WO2023071332A1 publication Critical patent/WO2023071332A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/885Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to a preparation method and application of a modified siloxane supercritical carbon dioxide thickener, belonging to the technical field of petroleum exploitation.
  • the thickening mechanism of the supercritical CO2 thickener mainly has the following points: (1) On the premise that the hydrocarbon polymer chain segment has sufficient flexibility, the long chains of the polymer cross and intertwine to form random fluffy Coils, which capture and fix CO2 molecules so that they cannot move freely, have a thickening effect; (2) Surfactant thickeners, when the concentration used is equal to the critical micelle concentration (CMC), the micellar structure adopts a spherical shape.
  • CMC critical micelle concentration
  • micellar structure When the concentration is much higher than that of CMC, the micellar structure will gradually change into a worm structure and grow continuously, and then intersect and intertwine to increase the CO2 viscosity; (3) modified siloxane CO2 thickener, siloxane itself and CO2 does not interact.
  • fluorine-containing compounds or polymers are most commonly used as supercritical carbon dioxide thickeners. Such substances are harmful to the formation, pollute groundwater resources, cause environmental pollution, have high biological toxicity, and fluorine-containing substances are expensive. Reasons such as price, environmental pollution and few available types have hindered the wide use of fluorine-containing substances in oilfield fracturing stimulation to a certain extent. Although hydrocarbon polymers have low cost and little pollution, their thickening effect is not ideal.
  • CN112961360A provides a kind of preparation method of polygonal clathrate siloxane supercritical carbon dioxide thickener. Including: (1) In an organic solvent, react the hydroxyl double-capped siloxane with sodium silanolate to prepare the double-ended sodium-blocked siloxane; then, make the double-ended sodium-blocked siloxane react with the Silane reaction to produce monohydrogen-terminated siloxane; (2) In the presence of a catalyst, monohydrogen-terminated siloxane is reacted with a catalyst in a cyclohexane solution of cage-shaped stereocyclic siloxane to prepare a polygonal cage Silicone polymer. The resulting silicone polymer has better thickening ability to thicken supercritical carbon dioxide.
  • the preparation method of this patent is relatively complicated, and the comprehensive yield is not ideal.
  • CN108003349A discloses a method for preparing a siloxane polymer supercritical carbon dioxide thickener for fracturing. Including: reflux reaction of aminopropylalkoxysilane hydrolyzate with tetramethyltetravinylcyclotetrasiloxane and other cyclosiloxanes under base catalysis to prepare aminopropyl-terminated vinyl side chain modification Polydimethylsiloxane, and then carry out acid chloride reaction with aromatic acid chloride to obtain aromatic amide group-terminated side chain modified siloxane polymer; add dropwise organic solvent solution of chloroplatinic acid to make aromatic amide group-terminated side chain
  • the modified siloxane polymer reacts with hydrogen-containing siloxane to obtain a product.
  • the synthesis method of the siloxane polymer is relatively complicated, and the thickening effect still needs to be improved.
  • CN112708138A discloses a method for preparing a sesquicyclic siloxane supercritical carbon dioxide thickener.
  • the prepared supercritical carbon dioxide thickener has good solubility in supercritical carbon dioxide and reduces the amount of cosolvent.
  • the prepared thickener can only be dissolved in supercritical CO2 under the effect of a cosolvent.
  • multiple organic solvents are used in the reaction of this method, such as toluene, benzene, and acetone. The toxicity is relatively large, and the preparation process is complicated. .
  • the invention provides a preparation method of a modified siloxane supercritical carbon dioxide thickener (SBD).
  • SBD siloxane supercritical carbon dioxide thickener
  • the invention also provides the application of the prepared modified silicone supercritical carbon dioxide thickener.
  • the modified siloxane polymer obtained in the present invention has better thickening effect, better solubility in supercritical carbon dioxide, no need for co-solvent, and good temperature and pressure resistance.
  • a preparation method of a modified siloxane supercritical carbon dioxide thickener comprising the steps of:
  • the weight-average molecular weight of the modified siloxane polymer (SBD) prepared by the invention is 8000-11000.
  • the polymer is a colorless transparent liquid, which can be directly used as a supercritical carbon dioxide thickener without purification and post-treatment. And there is no need to use co-solvents during application.
  • the carbonyl group of the 1,3-diallyl-1,3,5-triazine-2,4,6-trione and the 1,3,5,7-tetramethylcyclotetra The active hydrogen molar ratio of siloxane is 1-4:1. Further preferably, the carbonyl of the 1,3-diallyl-1,3,5-triazine-2,4,6-trione and the 1,3,5,7-tetramethylcyclotetrasiloxane The active hydrogen molar ratio of alkanes is 1-2:1.
  • the carbonyl group of the 1,3-diallyl-1,3,5-triazine-2,4,6-trione and 1,3,5,7-tetramethylcyclotetrasiloxane is 1.25:1.
  • the catalyst activation temperature is 80°C to 90°C.
  • the catalyst chloroplatinic acid is used in an amount of 25 ppm to 60 ppm, more preferably 35 ppm to 50 ppm.
  • the silicon hydrogen reaction temperature is the same as the catalyst activation temperature.
  • the silicon hydrogen reaction time is 2h-20h; more preferably 4h-8h.
  • the modified siloxane polymer (SBD) prepared in the present invention is a network structure polymer with linear chains interspersed.
  • the polymer (SBD) prepared in the present invention is a mixed product in which chain structure polymerization forms and network structure polymerization forms are interpenetrated and intertwined, which is beneficial to thickening supercritical carbon dioxide without purification.
  • the modified siloxane polymer (SBD) prepared by the present invention has a structure shown in formula I, and the reaction formula of the present invention is as follows:
  • n 17-24.
  • the present invention uses 1,3-diallyl-1,3,5-triazine-2,4,6-trione and 1,3,5,7-tetramethylcyclotetrasiloxane as reaction monomers , the product can be obtained by one-step silicon hydrogen reaction, and the obtained modified siloxane polymer is a network polymer SBD with chain crossing and chain and network interpenetration, which not only makes the polymer have excellent solubility, but also improves silicon The ability of oxanes to thicken supercritical carbon dioxide.
  • the modified siloxane polymer (SBD) prepared by the invention is used as a supercritical carbon dioxide thickener.
  • the modified siloxane polymer is formulated into a solution with a concentration of 1-2% by mass. No co-solvents are required.
  • the present invention particularly prefers 1,3-diallyl-1,3,5-triazine-2,4,6-trione as a polymerization monomer, and the prepared modified siloxane polymer has more excellent
  • the thickening effect, the viscosity ratio can reach up to 285 times, which is better than the thickeners reported in the prior art.
  • the modified siloxane polymer prepared by the present invention itself has more excellent solubility in supercritical CO 2 , can achieve the condition of not using a cosolvent, improve economical efficiency, and be beneficial to industrial use.
  • the method of the invention is suitable for industrial batch production, and has better application in oilfield exploitation.
  • the modified siloxane polymer supercritical carbon dioxide thickener (SBD) of the present invention has good temperature resistance, and can be applied to realize thickening performance under different temperature and pressure conditions.
  • the modified siloxane polymer supercritical carbon dioxide thickener of the present invention has good compatibility with oilfield working fluids such as various fracturing fluids; it is non-toxic, safe to use, and has little damage to formations.
  • the modified siloxane polymer supercritical carbon dioxide thickener of the present invention can achieve a very good thickening effect with a very small amount (1-2%), and can obviously reduce the pollution to groundwater and surface water in formations, Meet the requirements of enterprise environmental protection.
  • the preparation method of the modified siloxane polymer supercritical carbon dioxide thickener of the present invention is simple, and the yield is good, and the product can be obtained in one step reaction, and the product yield can be as high as 95.68%.
  • Figure 1 is a chembio3D photo of the product SBD synthesized in Example 1, showing that the polymer is in a helical structure and has the force of hinge winding.
  • Fig. 2 is the proton nuclear magnetic spectrum of the product SBD synthesized in embodiment 1.
  • Fig. 3 is the carbon nuclear magnetic spectrum of the product SBD synthesized in embodiment 1.
  • Figure 4 is the experimental phase diagram of the solubility of the modified siloxane polymer SBD prepared in Example 1 in supercritical CO 2 , in the figure, a: pure CO 2 (298.15K, 7.48MPa); b: CO 2 +1wt .%SBD (298.15K, 10MPa); c: CO 2 +1 wt.%SBD (305.15K, 10MPa).
  • Embodiment 1 a kind of preparation method of modified siloxane supercritical carbon dioxide thickener SBD is as follows:
  • the prepared polymer has a weight average molecular weight of 9430.
  • the structure is shown in Figure 1.
  • Example 1 As described in Example 1, the difference is that the amount of 1,3-diallyl-1,3,5-triazine-2,4,6-trione used is 24.73g (1,3-diene The active hydrogen molar ratio of the carbonyl group of propyl-1,3,5-triazine-2,4,6-trione to that of 1,3,5,7-tetramethylcyclotetrasiloxane is 2:1) . The obtained product was 31.45g, and the yield was 90.56%.
  • 1,3-diallyl-1,3,5-triazine-2,4,6-trione is 12.36g (1,3-diallyl- 1,3,5-triazine-2,4,6-trione carbonyl and 1,3,5,7-tetramethylcyclotetrasiloxane molar ratio of active hydrogen is 1:1), catalyst activation
  • the temperature was 95°C
  • the reaction temperature was 95°C.
  • the obtained product was 18.25g, and the yield was 81.62%.
  • the difference is that the amount of catalyst chloroplatinic acid is 50 ppm, the activation temperature is 80° C., and the reaction temperature is 80° C.
  • the obtained product was 20.96g, and the yield was 82.35%.
  • the difference is that the activation temperature is 100°C, the reaction temperature is 100°C, and the reaction time is 4h.
  • the obtained product was 20.50 g, and the yield was 80.55%.
  • the difference is that the amount of catalyst chloroplatinic acid is 35ppm, and the reaction time is 8h.
  • the obtained product was 23.25g, and the yield was 91.35%.
  • the difference is that the amount of catalyst chloroplatinic acid is 20 ppm, and the activation temperature and reaction temperature are 80° C.
  • Example 1 As in Example 1, the difference is that the carbonyl of the 1,3-diallyl-1,3,5-triazine-2,4,6-trione and the 1,3,5,7-tetramethyl
  • the active hydrogen molar ratio of cyclotetrasiloxane is 5:1.
  • Example 5 The product of Example 5 (viscosity ratio up to 149 times) in the description of CN108003349A "A Preparation Method of Siloxane Polymer Supercritical Carbon Dioxide Thickener for Fracturing".
  • Measurement conditions of comparative example 3 polymer solution with a concentration of 2%, 25°C, 8MPa, refer to the specification of CN108003349A.
  • Example 1 Get the product preparation polymer concentration of Example 1 and be 1% supercritical CO Fracturing fluid (pure polymer solution), use capillary differential pressure meter test sample at different temperatures under 10MPa, shear rate 240s -1 condition The viscosity, viscosity ratio (compared to pure carbon dioxide) data are shown in Table 2. The results show that the temperature resistance is good.
  • the visualization container is filled with pure CO 2 , and the clear phase diagram is shown in a in Figure 4 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明涉及一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用。该方法包括:以1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮作为聚合单体,在催化剂存在下滴入1,3,5,7-四甲基环四硅氧烷进行硅氢反应,得改性硅氧烷聚合物。所得改性硅氧烷聚合物无需提纯后处理,直接用作超临界二氧化碳增稠剂;使用时,将改性硅氧烷聚合物配制成浓度1-2%的溶液,增稠效果好;无需使用助溶剂,在二氧化碳中溶解性好,且耐温性好。

Description

一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用 技术领域
本发明涉及一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用,属于石油开采技术领域。
背景技术
我国非常规油气资源的勘探开发处于起步阶段,非常规油气资源中除了面临核心技术攻关,还受到待解决的复杂的地理问题和生态水资源环境问题的限制。超临界CO 2增稠剂的增稠机理主要有以下几点:(1)在烃类聚合物链段具有足够柔顺性的前提下,以聚合物长链相互交叉、缠绕的作用形成无规则蓬松线团,捕集固定CO 2分子使其无法自由移动,起到增稠效果;(2)表面活性剂类增稠剂,在使用浓度等于临界胶束浓度(CMC),胶束结构采取球形。当使用浓度远大于CMC时,胶束结构会逐渐转变为蠕虫结构不断增长,进而相互交叉、缠绕增加CO 2粘度;(3)改性硅氧烷类CO 2增稠剂,硅氧烷自身与CO 2并无相互作用。主要依靠助溶剂与两个组分的相互作用(助溶剂与硅氧烷相互作用、助溶剂与CO 2路易斯酸碱的氢键作用)构成三维网状结构来增稠CO 2;(4)含氟类CO 2增稠剂,氟元素大大降低聚合物的内聚能,使聚合物分子链更易溶于SC-CO 2,分子链相互交叉缠绕形成网状结构起到增稠作用。
目前超临界二氧化碳增稠剂最常使用含氟类化合物或聚合物,此类物质对于地层伤害较大,污染地下水资源,导致环境污染,生物毒性大,且含氟类物质价格昂贵。价格和环境污染问题以及可用的种类少等原因在一定程度上阻碍了含氟类物质广泛用于油田的压裂增产。而碳氢类聚合物虽然成本低、污染小,但增稠效果不理想。
近年来,有关硅氧烷超临界二氧化碳增稠剂的研究受到关注。如CN112961360A提供一种多角笼形硅氧烷超临界二氧化碳增稠剂的制备方法。包括:(1)在有机溶剂中,使羟基双封端硅氧烷与硅醇钠反应,制得双端钠封端硅氧烷;然后,使双端钠封端硅氧烷与含氢氯硅烷反应,制得单氢封端硅氧烷;(2)在催化剂存在下,单氢封端硅氧烷于笼形立体环硅氧烷的环己烷溶液中催化剂反应,制得多角笼形硅氧烷聚合物。所得硅氧烷聚合物具有增稠超临界二氧化碳的较好增稠能力。但是,该专利制备方法较为复杂,综合产率不理想。
CN108003349A公开了一种压裂用硅氧烷聚合物超临界二氧化碳增稠剂的制备方法。包括:使氨丙基烷氧基硅烷水解产物与四甲基四乙烯基环四硅氧烷及其他环硅氧烷在碱催化下回流反应,制得氨丙基封端乙烯基侧链改性聚二甲基硅氧烷,再与芳香酰氯进行酰氯反应,得芳香酰胺基封端侧链改性硅氧烷聚合物;滴加氯铂酸的有机溶剂溶液,使芳香酰胺基封端侧链改性硅氧烷聚合物与含氢硅氧烷进行反应得产物。但是,该硅氧烷聚合物合成方法较为复杂,增稠效果尚有待提高。
CN112708138A公开了一种倍半环状硅氧烷超临界二氧化碳增稠剂的制备方法,制得超临界二氧化碳增稠剂在超临界二氧化碳中的溶解度好,降低助溶剂的用量。但是,所制得的增稠剂仅能在助溶剂的作用下溶于超临界CO2中,另外,该方法反应中使用多种有机溶剂,例如甲苯、苯、丙酮毒性较大,且制备工艺复杂。
因此,有必要研发一种制备简单、溶解度和增稠性更好的超临界二氧化碳增稠剂 以解决现有技术的不足。
发明内容
针对现有技术的不足,本发明提供一种改性硅氧烷类超临界二氧化碳增稠剂(SBD)的制备方法。
本发明还提供所制备的改性硅氧烷类超临界二氧化碳增稠剂的应用。相比于现有技术,本发明所得改性硅氧烷类聚合物具有更好的增稠效果,在超临界二氧化碳中的溶解度更好好,无需使用助溶剂,且耐温耐压性好。
本发明的技术方案如下:
一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法,包括步骤:
向反应器中加入1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮,搅拌升温至60℃~120℃,加入催化剂氯铂酸活化1-3小时,催化剂活化温度60℃~100℃;然后滴入1,3,5,7-四甲基环四硅氧烷,保持温度70℃~110℃进行硅氢反应,得改性硅氧烷聚合物(SBD);即为改性硅氧烷超临界二氧化碳增稠剂。
本发明制备的改性硅氧烷聚合物(SBD)重均分子量为8000~11000。该聚合物为无色透明液体,无需提纯后处理,直接用作超临界二氧化碳增稠剂。且在应用时不需要使用助溶剂。
根据本发明优选的,所述1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的活性氢摩尔比为1~4:1。进一步优选的,所述1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的的活性氢摩尔比为1~2:1。最优选,所述1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的的活性氢摩尔比为1.25:1。
根据本发明优选的,所述催化剂活化温度为80℃~90℃。
根据本发明优选的,所述催化剂氯铂酸用量为25ppm~60ppm,进一步优选35ppm~50ppm。
根据本发明,所述硅氢反应温度和催化剂活化温度相同。
根据本发明优选的,所述硅氢反应时间为2h~20h;进一步优选4h~8h。
本发明制备的改性硅氧烷聚合物(SBD)为有直链穿插的网状结构聚合物。本发明制备的聚合物(SBD)是链状结构聚合形式与网状结构聚合形式相互穿插、缠绕的混合产物,有利于对超临界二氧化碳增稠,无需提纯。
本发明制备的改性硅氧烷聚合物(SBD)具有式I所示的结构,本发明的反应式如下:
Figure PCTCN2022108441-appb-000001
其中,n=17-24。
本发明以1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮与1,3,5,7-四甲基环四硅氧烷为反应单体,经一步硅氢反应即可得产物,所得改性硅氧烷聚合物为链状交叉及链状与网状穿插的网状聚合物SBD,不仅使聚合物有优秀的溶解度,还能改善硅氧烷增稠超临界二氧化碳的能力。本发明所制备的改性硅氧烷聚合物,从分子结构上来看的聚合单元中具备3个C=O,能与更多的CO 2以路易斯酸碱对作用形成氢键,在超临界CO 2中具有更好的溶解性,有利于改善增稠剂的溶解与增稠性能。
本发明制备的改性硅氧烷聚合物(SBD)作为超临界二氧化碳增稠剂的用途。使用时,将改性硅氧烷聚合物配制成1-2%质量百分比浓度的溶液。无需使用助溶剂。
本发明的技术特点与优良效果:
1.本发明特别优选1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮作为聚合单体,所制备的改性硅氧烷聚合物具有更加优异的增稠效果,粘度比最高可达285倍,比现有技术报道的增稠剂都好。
2.本发明制备的改性硅氧烷聚合物本身在超临界CO 2中具备更加优异的溶解性,可达到不使用助溶剂的条件,提高经济性,利于工业使用。本发明的方法适合工业化批量生产,且在油田开采中具有较好的应用。
3.本发明的改性硅氧烷聚合物超临界二氧化碳增稠剂(SBD)具备较好的耐温性能,可适用于不同温度和压力条件下实现增稠性能。
4.本发明的改性硅氧烷聚合物超临界二氧化碳增稠剂与各种压裂液等油田工作液的配伍性好;无毒,使用安全,对地层伤害小。
5.本发明的改性硅氧烷聚合物超临界二氧化碳增稠剂使用很少量(1-2%)就能达到非常好的增稠效果,可以明显减少对地层地下水和地表水的污染,符合企业环保要求。
6.本发明的改性硅氧烷聚合物超临界二氧化碳增稠剂的制备方法简单,收率好,一步反应即得产物,产品收率可高达95.68%。
附图说明
图1是实施例1合成的产物SBD的chembio3D照片,显示聚合物呈螺旋结构,具备铰链缠绕的力。
图2是实施例1合成的产物SBD的核磁氢谱。
图3是实施例1合成的产物SBD的核磁碳谱。
图4是实施例1制备的改性硅氧烷聚合物SBD在超临界CO 2中溶解性实验相图,图中,a:纯CO 2(298.15K,7.48MPa);b:CO 2+1wt.%SBD(298.15K,10MPa);c:CO 2+1wt.%SBD(305.15K,10MPa)。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明保护范围不仅限于此,实施例所述的反应物购于上海麦克林生化科技有限公司,使用前进行回流除杂。
实施例1、一种改性硅氧烷超临界二氧化碳增稠剂SBD的制备方法如下:
在250mL装有回流装置的三口烧瓶中加入15.45g的1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮,开启搅拌升温,待到达90℃温度,加入40ppm氯铂酸活化2小时。然后,用恒压滴液 漏斗滴入10g的1,3,5,7-四甲基环四硅氧烷(所述1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的的活性氢摩尔比为1.25:1),保持温度90℃不变,反应6h,得无色透明的液体聚合物(SBD)24.35g,收率95.68%。
所制备的聚合物重均分子量为9430。结构如图1所示。
实施例1合成的产物SBD的核磁谱图如图2、图3所示,图2中δ=3.68ppm和δ=1.54ppm处出现了N—CH 2—CH中的H。图3中1,3,5,7-四甲基环四硅氧烷中的C出现在δ=3.9~4.1ppm内,δ=148~152ppm处出现C=O的C,δ=44~50ppm和δ=21~22ppm处出现N—CH 2—CH,由此表明本发明成功合成了改性硅氧烷超聚合物SBD。
实施例2、
如实施例1所述,所不同的是所用的1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮用量为24.73g(1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的的活性氢摩尔比为2:1)。所得产物31.45g,收率90.56%。
实施例3、
如实施例1所述,所不同的是1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮为12.36g(1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的的活性氢摩尔比为1:1),催化剂活化温度为95℃,反应温度95℃。所得产物18.25g,收率81.62%。
实施例4、
如实施例1所述,所不同的是所述催化剂氯铂酸用量为50ppm,活化温度为80℃,反应温度80℃。所得产物20.96g,收率82.35%。
实施例5、
如实施例1所述,所不同的是,活化温度为100℃,反应温度100℃,反应时间为4h。所得产物20.50g,收率80.55%。
实施例6、
如实施例1所述,所不同的是,催化剂氯铂酸用量为35ppm,反应时间为8h。所得产物23.25g,收率91.35%。
实施例7、
如实施例1所述,所不同的是反应时间为4小时。所得产物23.50g,收率92.35%。
对比例1、
如实施例1所述,所不同的是催化剂氯铂酸用量为20ppm,活化温度及反应温度为80℃。
对比例2:
如实施例1,所不同的是所述1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的的活性氢摩尔比为5:1。
对比例3:
CN108003349A《一种压裂用硅氧烷聚合物超临界二氧化碳增稠剂的制备方法》说明书的实施例5(粘度比最高149倍)的产品。
实验例一、实施例及对比例的聚合物产品性能对比实验
将产物聚合物样品直接溶于超临界CO 2中配制聚合物质量浓度为1%的超临界CO 2压裂液(单纯聚合物溶液),在32℃、10MPa、剪切速率240s -1条件下使用毛细管压差计测试 样品的粘度,粘度比(相较于纯二氧化碳)数据如表1所示。
表1、抗剪切粘度性能评价结果
样品编号 粘度值(MPa﹒s) 粘度比(倍)
实施例1 11.4 285
实施例2 9.52 238
实施例3 9.8 245
实施例4 10.76 269
实施例5 8.52 213
实施例6 8.96 224
实施例7 8.72 218
对比例1 7.2 180
对比例2 4.8 120
对比例3 / 149
注:对比例3测量条件:浓度2%的聚合物溶液,25℃、8MPa,参见CN108003349A说明书。
实验例二、本发明制备的改性硅氧烷聚合物SBD耐温性能实验
取实施例1的产物配制聚合物浓度为1%的超临界CO 2压裂液(单纯的聚合物溶液),在10MPa、剪切速率240s -1条件下使用毛细管压差计测试样品在不同温度的粘度,粘度比(相较于纯二氧化碳)数据如表2所示。结果显示,该耐温性好。
表2.耐温实验结果
温度(℃) 粘度比(倍)
32 285
36 280
40 265
44 250
48 220
实验例三、本发明制备的改性硅氧烷聚合物SBD在超临界CO 2中溶解性实验
不添加助溶剂,实验步骤如下:
(1)可视化容器中注满纯CO 2,澄清透亮的相图如图4中a所示。
(2)在室温条件下,向可视化容器中加入1wt.%SBD增稠剂(实施例1制备),然后注满CO 2加压至10MPa,搅拌均匀此时相图如图4中b所示。
(3)将(2)中容器置于305.15K的恒温箱中,静置12h。晃动可视化容器观察内部流体无浑浊现象,此时相图如图4中c所示。
a:纯CO 2(298.15K,7.48MPa);
b:CO 2+1wt.%SBD(298.15K,10MPa);
c:CO 2+1wt.%SBD(305.15K,10MPa)。

Claims (10)

  1. 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法,包括步骤:
    向反应器中加入1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮,搅拌升温至60℃~120℃,加入催化剂氯铂酸活化1-3小时,催化剂活化温度60℃~100℃;然后滴入1,3,5,7-四甲基环四硅氧烷,所述1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的活性氢摩尔比为1~4:1;保持温度70℃~110℃进行硅氢反应,得改性硅氧烷聚合物(SBD);即为改性硅氧烷超临界二氧化碳增稠剂。
  2. 根据权利要求1所述的改性硅氧烷类超临界二氧化碳增稠剂的制备方法,其特征在于,所述1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的的活性氢摩尔比为1~2:1;优选的,所述1,3-二烯丙基-1,3,5-三嗪-2,4,6-三酮的羰基和1,3,5,7-四甲基环四硅氧烷的的活性氢摩尔比为1.25:1。
  3. 根据权利要求1所述的改性硅氧烷类超临界二氧化碳增稠剂的制备方法,其特征在于,所述催化剂活化温度为80℃~90℃;优选的,所述硅氢反应温度和催化剂活化温度相同。
  4. 根据权利要求1所述的改性硅氧烷类超临界二氧化碳增稠剂的制备方法,其特征在于,所述催化剂氯铂酸用量为25ppm~60ppm,优选35ppm~50ppm。
  5. 根据权利要求1所述的改性硅氧烷类超临界二氧化碳增稠剂的制备方法,其特征在于,所述硅氢反应时间为2h~20h;优选4h~8h。
  6. 根据权利要求1所述的改性硅氧烷类超临界二氧化碳增稠剂的制备方法,其特征在于,所述改性硅氧烷聚合物的重均分子量为8000~11000。
  7. 权利要求1-5任一项所述的制备的改性硅氧烷类超临界二氧化碳增稠剂,具有式I所示的结构:
    Figure PCTCN2022108441-appb-100001
    其中,n=17-24。
  8. 本权利要求1-5任一项所述的制备的改性硅氧烷聚合物作为超临界二氧化碳增稠剂的用途。
  9. 如权利要求8所述的用途,其特征在于,使用时,将改性硅氧烷聚合物配制成1-2%质量百分比浓度的溶液;无需使用助溶剂。
  10. 如权利要求8所述的用途,其特征在于,所制备的改性硅氧烷聚合物无需提纯后处理,直接用作超临界二氧化碳增稠剂。
PCT/CN2022/108441 2021-10-26 2022-07-28 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用 WO2023071332A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/025,666 US12030994B2 (en) 2021-10-26 2022-07-28 Preparation method for and application of modified siloxane-based supercritical carbon dioxide thickener

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111248462.1 2021-10-26
CN202111248462.1A CN113929915B (zh) 2021-10-26 2021-10-26 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2023071332A1 true WO2023071332A1 (zh) 2023-05-04

Family

ID=79284311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108441 WO2023071332A1 (zh) 2021-10-26 2022-07-28 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用

Country Status (3)

Country Link
US (1) US12030994B2 (zh)
CN (1) CN113929915B (zh)
WO (1) WO2023071332A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751353A (zh) * 2023-05-26 2023-09-15 陕西延长石油(集团)有限责任公司 一种环保型二氧化碳增稠剂及其制备方法
CN118126260A (zh) * 2024-05-06 2024-06-04 西南石油大学 一种poss基杂化超临界co2增稠剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929915B (zh) 2021-10-26 2022-10-28 中国石油大学(华东) 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用
CN116041651B (zh) * 2022-12-15 2024-07-19 中国石油大学(北京) 一种用于增稠二氧化碳的有机硅聚合物、其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126892A (ja) * 2007-11-20 2009-06-11 Kaneka Corp 硬化性組成物
JP2010163520A (ja) * 2009-01-14 2010-07-29 Kaneka Corp 光学材料
CN101896537A (zh) * 2007-12-10 2010-11-24 株式会社钟化 具有碱显影性的固化性组合物、使用该组合物的绝缘性薄膜以及薄膜晶体管
JP2010285518A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2010285517A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2010285519A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
CN102171268A (zh) * 2008-10-02 2011-08-31 株式会社钟化 光固化性组合物以及固化物
JP2011221192A (ja) * 2010-04-07 2011-11-04 Kaneka Corp 硬化性組成物および硬化物
JP2012089610A (ja) * 2010-10-18 2012-05-10 Kaneka Corp 薄膜トランジスタ
JP2015038211A (ja) * 2014-09-25 2015-02-26 株式会社カネカ 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
CN108003349A (zh) * 2017-11-21 2018-05-08 中国石油大学(华东) 一种压裂用硅氧烷聚合物超临界二氧化碳增稠剂的制备方法
CN112708138A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种倍半环状硅氧烷超临界二氧化碳增稠剂的制法与应用
CN112961360A (zh) * 2021-02-04 2021-06-15 中国石油大学(华东) 一种多角笼形硅氧烷超临界二氧化碳增稠剂的制备方法
CN113929915A (zh) * 2021-10-26 2022-01-14 中国石油大学(华东) 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265374A (ja) * 2009-05-14 2010-11-25 Shin-Etsu Chemical Co Ltd イソシアヌル環含有末端ハイドロジェンポリシロキサン
CN108034052B (zh) * 2017-12-26 2020-09-18 中国石油大学(华东) 一种苯四脲硅氧烷聚合物超临界二氧化碳增稠剂的制备方法
CN109796955B (zh) * 2019-01-30 2020-12-25 中国石油大学(华东) 一种梯形支链改性硅氧烷聚合物超临界二氧化碳增稠剂的制备方法
CN110862543B (zh) * 2019-12-03 2021-11-09 中国石油大学(华东) 一种超支化含氢硅氧烷超临界二氧化碳增稠剂的制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126892A (ja) * 2007-11-20 2009-06-11 Kaneka Corp 硬化性組成物
CN101896537A (zh) * 2007-12-10 2010-11-24 株式会社钟化 具有碱显影性的固化性组合物、使用该组合物的绝缘性薄膜以及薄膜晶体管
CN102171268A (zh) * 2008-10-02 2011-08-31 株式会社钟化 光固化性组合物以及固化物
CN104497272A (zh) * 2008-10-02 2015-04-08 株式会社钟化 光固化性组合物以及固化物
JP2010163520A (ja) * 2009-01-14 2010-07-29 Kaneka Corp 光学材料
JP2010285518A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2010285519A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2010285517A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2011221192A (ja) * 2010-04-07 2011-11-04 Kaneka Corp 硬化性組成物および硬化物
JP2012089610A (ja) * 2010-10-18 2012-05-10 Kaneka Corp 薄膜トランジスタ
JP2015038211A (ja) * 2014-09-25 2015-02-26 株式会社カネカ 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
CN108003349A (zh) * 2017-11-21 2018-05-08 中国石油大学(华东) 一种压裂用硅氧烷聚合物超临界二氧化碳增稠剂的制备方法
CN112708138A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种倍半环状硅氧烷超临界二氧化碳增稠剂的制法与应用
CN112961360A (zh) * 2021-02-04 2021-06-15 中国石油大学(华东) 一种多角笼形硅氧烷超临界二氧化碳增稠剂的制备方法
CN113929915A (zh) * 2021-10-26 2022-01-14 中国石油大学(华东) 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751353A (zh) * 2023-05-26 2023-09-15 陕西延长石油(集团)有限责任公司 一种环保型二氧化碳增稠剂及其制备方法
CN118126260A (zh) * 2024-05-06 2024-06-04 西南石油大学 一种poss基杂化超临界co2增稠剂及其制备方法

Also Published As

Publication number Publication date
US20230391959A1 (en) 2023-12-07
US12030994B2 (en) 2024-07-09
CN113929915A (zh) 2022-01-14
CN113929915B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2023071332A1 (zh) 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用
CN108003349B (zh) 一种压裂用硅氧烷聚合物超临界二氧化碳增稠剂的制备方法
CN108034052B (zh) 一种苯四脲硅氧烷聚合物超临界二氧化碳增稠剂的制备方法
CN109796955B (zh) 一种梯形支链改性硅氧烷聚合物超临界二氧化碳增稠剂的制备方法
O’Brien et al. Anthraquinone siloxanes as thickening agents for supercritical CO2
CN110862541B (zh) 一种丙烯酸酯/硅氧烷聚合物超临界二氧化碳增稠剂的制备方法
TWI812618B (zh) 矽氫化可固化聚矽氧樹脂
CN110862543B (zh) 一种超支化含氢硅氧烷超临界二氧化碳增稠剂的制备方法
Doherty et al. Small molecule cyclic amide and urea based thickeners for organic and sc-CO2/organic solutions
RU2722804C1 (ru) Загуститель на основе катионного полимера, способ его получения и термостойкая жидкость для гидроразрыва пласта, получаемая с его использованием
CN112708138A (zh) 一种倍半环状硅氧烷超临界二氧化碳增稠剂的制法与应用
CN101899162A (zh) 一种梳型聚合物及其制备方法和应用
CN112961360B (zh) 一种多角笼形硅氧烷超临界二氧化碳增稠剂的制备方法
CN104086776A (zh) 一种新型含官能团氟改性硅油及其制备方法
CN116655828A (zh) 一种压裂用改性瓜尔胶及其制备方法
US20120199355A1 (en) Water flooding method for secondary hydrocarbon recovery
CN112679663B (zh) 一种超临界二氧化碳增稠剂的制备方法及应用
CN117143284B (zh) 一种耐170℃以上温度的压裂用聚合物增稠剂及其合成方法
CN115073749B (zh) 一种多端支化硅氧烷类超临界二氧化碳增稠剂的制备方法
CN114230714A (zh) 一种疏水缔合双网络驱油聚合物及其制备方法
Gupta et al. Ruthenium-catalyzed chemical modification of poly (vinylmethylsiloxane) with 9-acetylphenanthrene
CN116606395A (zh) 一种石油油气井用清洁压裂液稠化剂的制备方法
CN117362651A (zh) 一种聚(脲酸脂-硅氧烷)聚合物及制备方法和应用
CN108424490B (zh) 一种丙烯酰胺共聚物及其制备方法和应用
CN117304402A (zh) 一种脲酸脂改性硅氧烷类聚合物及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE