WO2023062312A1 - Procédé de thermoformage double-feuilles d'un corps creux et corps creux en dérivant - Google Patents

Procédé de thermoformage double-feuilles d'un corps creux et corps creux en dérivant Download PDF

Info

Publication number
WO2023062312A1
WO2023062312A1 PCT/FR2022/051909 FR2022051909W WO2023062312A1 WO 2023062312 A1 WO2023062312 A1 WO 2023062312A1 FR 2022051909 W FR2022051909 W FR 2022051909W WO 2023062312 A1 WO2023062312 A1 WO 2023062312A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
composition
ketone
double
sheets
Prior art date
Application number
PCT/FR2022/051909
Other languages
English (en)
Inventor
Pierre GONNETAN
Clément PAUL
Philippe Bussi
Olivier RODARY
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to CN202280068633.9A priority Critical patent/CN118103193A/zh
Priority to KR1020247015658A priority patent/KR20240075924A/ko
Publication of WO2023062312A1 publication Critical patent/WO2023062312A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • B29C51/105Twin sheet thermoforming, i.e. deforming two parallel opposing sheets or foils at the same time by using one common mould cavity and without welding them together during thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06905Using combined techniques for making the preform
    • B29C49/0691Using combined techniques for making the preform using sheet like material, e.g. sheet blow-moulding from joined sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06905Using combined techniques for making the preform
    • B29C49/0691Using combined techniques for making the preform using sheet like material, e.g. sheet blow-moulding from joined sheets
    • B29C49/06914Using combined techniques for making the preform using sheet like material, e.g. sheet blow-moulding from joined sheets using parallel sheets as a preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4268Auxiliary operations during the blow-moulding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4273Auxiliary operations after the blow-moulding operation not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/265Auxiliary operations during the thermoforming operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/266Auxiliary operations after the thermoforming operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/428Heating or cooling of moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • B29C2049/4838Moulds with incorporated heating or cooling means for heating moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0039Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/004Semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • B29K2995/0043Crystalline non-uniform

Definitions

  • the invention relates to the field of double-sheet thermoforming processes for a hollow body.
  • the invention relates to such methods using sheets based on poly-aryl-ether-ketone(s).
  • Poly-aryl-ether-ketones are well-known high performance engineering polymers. They can be used for demanding applications in terms of temperature and/or mechanical or even chemical stresses. They can also be used for applications requiring excellent fire resistance and low emission of smoke or toxic gases. Finally, they have good biocompatibility. These polymers are found in fields as varied as aeronautics and space, off-shore drilling, automotive, rail, marine, wind power, sports, construction, electronics and implants. medical.
  • Double-sheet thermoforming processes for thermoplastics are also known from the prior art. They make it possible in particular to produce hollow rigid articles.
  • a double-sheet thermoforming process consists of thermoforming two sheets to form two halves of an article and welding these halves together so as to obtain a hollow article.
  • thermoplastic polymer are placed in a clamping frame and heated simultaneously.
  • the sheets have reached forming temperature, i.e. are sufficiently softened, air is forced between the sheets and/or a vacuum is applied to the outer part of the sheets, pressing them against two mold halves which can be closed and pressed against each other allowing a pinching effect.
  • the two sheets are sequentially thermoformed in their respective mold half.
  • the two mold halves are then closed and pressed against each other allowing the pinching effect.
  • thermoplastic polymers having a high deflection temperature is described in US Pat. No. 5,114,767 A2.
  • HHDT polymers include within the meaning of this technique polyetherimides, polyamideimides, polyimides, polysulfones, polyether sulfone, polyphenylsulphone, polyetheretherketone, polyetherketoneketone, polyarylsulfone, aromatic polyamides, polyarylsulfones and polyphenylether/polystyrene mixtures .
  • Two layers of HHDT thermoplastic polymer such as one cited above, are first heated above their deflection temperature and placed between two mold halves brought to a temperature below said deflection temperature.
  • a layer of a low deflection temperature polymer (LHDT) is sandwiched between the two layers of HHDT thermoplastic polymer.
  • the two mold halves are then closed against each other, the adhesion between the two layers of HHDT polymer being ensured by the presence of the LHDT polymer.
  • a hollow body is formed by injecting gas into the mold.
  • This technique has the disadvantage of having to add an adhesion layer between the two layers intended to mainly form the hollow body.
  • the present invention proposes a double-sheet thermoforming process comprising at least two sheets of poly-aryl-ether-ketone(s) capable of crystallizing without requiring an additional intermediate layer.
  • the invention relates to a double-sheet thermoforming method for manufacturing a hollow body.
  • the process includes:
  • thermoformed sheets a step of forming the softened sheets so as to form thermoformed sheets
  • a step of crystallizing the composition at a mold temperature, to form a crystallized hollow body the crystallization step being implemented essentially after the contacting and coalescence step, and preferably essentially after the step of forming.
  • the composition may have a viscosity at 380° C., at 1 Hz, as measured by a parallel plane rheometer, ranging from 200 Pa.s to 8000 Pa.s, preferentially from 500 Pa.s to 5000 Pa.s , and more preferably from 750 Pa.s to 4500 Pa.s.
  • the isothermal half-crystallization time at the contact temperature of the composition can be at least 3 seconds, preferentially at least 5 seconds, and most preferentially at least 8 seconds; and/or at most 30 minutes, preferably at most 10 minutes, preferably still for at most 5 minutes, and most preferably for at most 2 minutes.
  • the poly-aryl-ether-ketone(s) can be a poly-ether-ketone-ketone. It may preferably be a homopolymer or a copolymer essentially consisting, or consisting, of at least one isophthalic repeating unit (I), having the chemical formula: and in the case of the copolymer, of a terephthalic repeating unit (T), having the chemical formula: the molar percentage of T units relative to the sum of the T and I units being from 0% to 5% or from 35% to 78%, preferably from 45% to 75%, and extremely preferably from 48% to 52% or 65% to 74%.
  • I isophthalic repeating unit
  • T terephthalic repeating unit
  • the poly-aryl-ether-ketone(s) may be a copolymer essentially consisting of, or consisting of, a repeating unit of formula: and a repeating pattern of formula: the molar percentage in unit (III) relative to the sum of the units (III) and (IV) being: 0% to 99%, preferably 5% to 95%, more preferably 10% to 50% and most preferably from 20% to 40%.
  • the poly-aryl-ether-ketone(s) may be a copolymer essentially consisting of, or consisting of, a repeating unit having the formula: and a repeating unit having the formula: the molar percentage in unit (III) relative to the sum of the units (III) and (V) being from 0% to 99% and preferably from 0% to 95%.
  • the composition may comprise at least one other thermoplastic polymer other than a poly-aryl-ether-ketone and/or may comprise at least one filler and/or may comprise at least one additive.
  • the composition may consist of poly-aryl-ether-ketone(s), optionally of one or more other thermoplastic polymer(s) different from a poly-aryl-ether-ketone, optionally one or more fillers, and optionally one or more additives.
  • each sheet can be constituted, independently or not of one another, of a pseudo-amorphous composition based on poly-aryl-ether-ketone(s).
  • the two sheets can have, independently or not of each other, a thickness of 200 microns to 20 millimeters, preferably a thickness of 500 microns to 10 millimeters.
  • the crystallization step can be implemented up to an average level of crystallinity in the thickness strictly greater than 7%, as measured by WAXS, during the crystallization step; preferably up to a degree of crystallinity greater than or equal to 10%, or greater than or equal to 15%, or greater than or equal to 20%, or even greater than or equal to 25%.
  • the softening step can be implemented with a softening temperature having a value strictly greater than Tg and less than or equal to (Tg+80)°C, and preferably having a value ranging from (Tg+10)° C at (Tg+75)°C.
  • the crystallization step can be implemented at a mold temperature close to the temperature at which the composition has a minimum isothermal half-crystallization time.
  • the difference between the mold temperature and the softening temperature is less than or equal to 50°C, and preferably greater than or equal to 15°C.
  • the contacting and coalescence step is implemented with a pinch pressure having a value ranging from 1 bar to 50 bars, preferably with a pinch pressure having a value ranging from 5 bars to 40 bar, and more preferably with a pinch pressure having a value ranging from 7 bar to 30 bar.
  • the invention also relates to a hollow body comprising at least one internal surface consisting of a crystallized composition based on poly-aryl-ether-ketone(s), capable of being obtained by a process as described above.
  • the present invention is based on the use by the inventors of sheets comprising at least one face consisting of a pseudo-amorphous composition based on poly-aryl-ether-ketone(s) for a double-sheet thermoforming process making it possible to manufacture a hollow body.
  • the use of such sheets can in particular be implemented in a method such as those described above.
  • These sheets make it possible to implement a heat seal of good quality at the contact zone between the sheets, since the composition of each sheet remains in an essentially amorphous state until the compositions are brought into contact and coalesce.
  • the composition of each sheet is nevertheless crystallizable and crystallizes after the contacting and coalescence of the compositions.
  • the inventors have thus been able to exploit the particularly advantageous crystallization kinetics of pseudo-amorphous poly-aryl-ether-ketone(s) to implement a hollow body crystallized from sheets of pseudo-amorphous composition(s) based on poly-aryl-ether-ketone(s), without the need to resort to an adhesive intermediate layer.
  • Figure 1 is a diagram of a double-sheet thermoforming device.
  • Figure 2 is a block diagram representing the main steps of a double-sheet thermoforming process according to a first embodiment and for which the device according to Figure 1 is particularly suitable.
  • glass transition temperature denoted T g
  • T g glass transition temperature
  • the glass transition temperature when reference is made to a glass transition temperature, it is more particularly, unless otherwise indicated, the glass transition temperature at half-height of the landing as defined in this standard.
  • the compositions based on PAEK(s) in the present invention may optionally exhibit several glass transition levels in the DSC analysis, in particular due, where appropriate, to the presence of several different immiscible polymers.
  • glass transition temperature is meant the highest glass transition temperature corresponding to the glass transition plateau of the PAEK or of the mixture of PAEKs.
  • melting temperature means the temperature at which an at least partially crystallized polymer changes to the viscous liquid state, as measured by differential scanning calorimetry (DSC) according to standard NF EN ISO 11357-3:2018, first heating, using a heating rate of 20°C/min.
  • DSC differential scanning calorimetry
  • melting temperature when reference is made to a melting temperature, it is more particularly a matter of, unless otherwise indicated, the peak melting temperature as defined in this standard.
  • the compositions based on PAEK(s) in the present invention may possibly exhibit several melting peaks in the DSC analysis, in particular due and/or for a given polymer to the presence of different crystalline forms. In this case, by melting temperature is meant the melting temperature corresponding to the highest temperature melting peak.
  • pseudo-amorphous polymer is understood to denote a polymer, respectively a composition, occurring at a temperature below its glass transition temperature in essentially amorphous form.
  • the polymer, respectively the composition is nevertheless capable of crystallizing once brought to a temperature above its glass transition temperature for a sufficient period.
  • a “pseudo-amorphous” polymer respectively a “pseudo-amorphous” composition, has a crystallinity rate of 0% to 7% at 25°C.
  • the "crystallinity rate" can be measured by WAXS.
  • WAXS wide-angle X-ray scattering
  • Nano-inXider® type device with the following conditions:
  • isothermal half-crystallization time designates the time necessary to reach a relative crystallinity of 0.5 for isothermal crystallization at the measurement temperature, as defined according to ISO 11357-7:2015.
  • the isothermal crystallization conditions are implemented by a first step of melting a specimen then cooling as quickly as possible to the chosen measurement temperature so that crystallization begins after the end of the step. cooling.
  • the time at which the isothermal step ends ie the time required to obtain a complete crystallization curve, depends on the crystallization rate. In the absence of clarity of the DSC curve, this time is set at five times the time necessary to reach the maximum rate of crystallization.
  • blend of polymers is understood to denote a composition of macroscopically homogeneous polymers.
  • the term encompasses mixtures of compatible and/or miscible polymers, the mixture exhibiting a glass transition temperature intermediate to those of its polymers considered individually.
  • the term also encompasses such compositions composed of phases that are immiscible with each other and dispersed on a micrometric scale.
  • copolymer is understood to denote a polymer resulting from the copolymerization of at least two types of chemically different monomer, called comonomers.
  • a copolymer is therefore formed from at least two repeating units. It can also be formed from three or more repeating patterns.
  • PAEK corresponds to the notation “poly-aryl-ether-ketone", “PAEKs” to “poly-aryl-ether-ketones” and “PAEK(s)” to “poly-aryl-ether-ketone or poly-aryl-ether-ketones.
  • composition based on poly-aryl-ether-ketone(s) in sheet form for the process according to the invention is pseudo-amorphous.
  • the at least one poly- aryl-ether-ketone, respectively the composition comprising it advantageously has a degree of crystallinity less than or equal to 5.0%, or less than or equal to 3.0%, or even less than or equal to 1.0%, and ideally of about 0 %.
  • the composition must have a rate of crystallization at a temperature lying between Tf and T g sufficiently slow, so as to be able to form sheets in the pseudo-amorphous state.
  • the composition must also have a crystallization rate between Tf and Tg that is sufficiently slow so as to remain in an essentially amorphous state during the softening step and until the contacting step.
  • the composition must have a crystallization rate between Tf and T g that is sufficiently fast so as to be able to crystallize within a reasonable time scale after the contacting and coalescence step.
  • the isothermal half-crystallization time of the composition at the softening temperature and/or at the contact temperature can be at least 3 seconds and at most 30 minutes.
  • the isothermal half-crystallization time of the composition at the softening temperature and/or at the contact temperature may preferably be at least 5 seconds, and more preferably at least 8 seconds.
  • the isothermal half-crystallization time of the composition at the softening temperature and/or at the contact temperature may preferably be at most 10 minutes, more preferably at most 5 minutes, and extremely preferably at 2 more minutes.
  • the viscosity of the composition at 380° C. and 1 Hz, as measured with a rheometer with parallel planes 25 mm in diameter, under a nitrogen sweep has a value of 200 Pa.s to 8000 Pa. s, preferably from 500 Pa.s to 5000 Pa.s, and more preferably from 750 Pa.s to 4500 Pa.s.
  • the composition may in particular have a viscosity having a value of: 750 Pa.s to 1200 Pa.s, or 1200 Pa.s to 1600 Pa.s, or 1600 Pa.s to 2000 Pa.s, or 2000 Pa .s to 2400 Pa.s, or from 2400 Pa.s to 2800 Pa.s, or from 2800 Pa.s to 3200 Pa.s, or from 3200 Pa.s to 3600 Pa.s, or even from 3600 Pa. s to 4000 Pa.s, or from 4000 Pa.s to 4250 Pa.s, or from 4250 Pa.s to 4500 Pa.s.
  • the composition preferably has a glass transition temperature T g greater than or equal to 125°C, more preferably greater than or equal to 145°C, and extremely preferably greater than or equal to 150°C.
  • the composition preferably has a melting point Tm greater than or equal to 250°C, and more preferably greater than or equal to 270°C.
  • the composition may in particular have a melting point greater than or equal to 280° C., or greater than or equal to 290° C., or greater than or equal to 300° C., or greater than or equal to 310° C., or greater than or equal to 320 °C, or even greater than or equal to 330°C.
  • the composition comprises at least 50% by weight of at least one poly-aryl-ether-ketone. It is referred to interchangeably in the rest of the application as a composition based on poly-aryl-ether-ketone(s).
  • a poly-aryl-ether-ketone comprises the units of the following formulas: (-Ar-X-) and (-An-Y-), in which:
  • - Ar and An can be chosen, preferably, from 1,3-phenylene, 1,4-phenylene, 1,1′-biphenylene divalent in positions 3,3′, Ie1,1′-biphenyl divalent in positions 3 ,4', 1,4-naphthylene, 1,5-naphthylene and 2,6-naphthylene;
  • - X denotes an electron-withdrawing group; it can be chosen, preferably, from the carbonyl group and the sulfonyl group,
  • - Y denotes a group chosen from an oxygen atom, a sulfur atom, an alkylene group, such as -(CH)2- and isopropylidene.
  • At least 50%, preferably at least 70% and more particularly, at least 80% of the X groups are a carbonyl group, and at least 50%, preferably at least 70% and more particularly at least 80% of the Y groups represent an oxygen atom.
  • 100% of the X groups denote a carbonyl group and 100% of the Y groups represent an oxygen atom.
  • the PAEK weight or, where appropriate, the sum of the weights of the PAEKs of the composition may represent at least 60%, or at least 70%, or at least 80%, or at least 85%, or at least 90%, or at least 92.5%, or at least 95%, or at least 99%, or at least 99.9% or 100% of the total weight of the composition.
  • the composition consists essentially of PAEK(s), that is to say it comprises from 90% to 99.9% of the total weight of the composition in PAEK(s).
  • the composition consists of PAEK(s), that is to say that it consists of at least 99.9%, ideally 100%, of the total weight of the composition in PAEK(s). ).
  • the PAEK(s) can be chosen from:
  • PEKK a poly-ether-ketone-ketone, also called PEKK;
  • a PEKK comprises unit(s) of formula: -Ph-O-Ph-C(O)-Ph-C(O)-;
  • a poly-ether-ether-ketone also called PEEK
  • a PEEK comprises unit(s) of formula: -Ph-O-Ph-O-Ph-C(O)-;
  • a PEK comprises unit(s) of formula: -Ph-O-Ph-C(O)-;
  • a PEEKK comprises unit(s) of formula: -Ph-O-Ph-O-Ph-C(O)-Ph-C(O)-;
  • PEEEK a poly-ether-ether-ether-ketone, also called PEEEK;
  • a PEEEK comprises unit(s) of formula: -Ph-O-Ph-O-Ph-O-Ph-C(O)-;
  • a PEDEK comprises unit(s) of formula: a PEDEK comprises unit(s) of formula -Ph-O-Ph-Ph-O-Ph-C(O)-;
  • Ph represents a phenylene group and -C(O)- a carbonyl group, each of the phenylenes being able independently to be of ortho type (1 -2), meta (1 -3 ) or para (1 -4), preferably being of the meta or para type.
  • defects, terminal groups and/or monomers can be incorporated in very small quantities in the polymers as described in the list above, without affecting their performance.
  • the composition comprises, consists essentially of, or even consists of, a poly-ether-ketone-ketone polymer comprising: a terephthalic unit and an isophthalic unit, the terephthalic unit having the formula: the isophthalic unit having the formula:
  • the term "comprises one or more unit(s)” means that this/these unit(s) have a total molar proportion of at least 50% in the polymer.
  • This/these unit(s) may represent a molar proportion of at least 60%, or at least 70%, or at least 80%, or at least 85%, or at least 90%, or at least 92.5%, or at least 95%, or at least 99%, or at least 99.9% in the polymer.
  • the term "essentially composed of unit(s)” means that the unit(s) represent(s) a molar proportion of 95% to 99.9% in the copolymer.
  • the term "made up of unit(s)” means that the unit(s) represent a molar proportion of at least 99.9% in the polymer.
  • the poly-ether-ketone-ketone essentially consists of, or even consists of: isophthalic “I” and terephthalic “T” units.
  • the poly-ether-ketone-ketone is, where appropriate, a random copolymer.
  • T units The choice of the molar proportion of T units relative to the sum of the T and I units is one of the factors which makes it possible to adjust the crystallization rate properties of the poly-ether-ketone-ketones.
  • a given molar proportion of T units relative to the sum of the T and I units can be obtained by adjusting the respective concentrations of the reactants during the polymerization, in a manner known per se.
  • the molar proportion of T units relative to the sum of the T and I units of PEKK(s) may in particular vary from: 0 to 5%; or 5 to 10%; or 10 to 15%; or 15 to 20%; or 20 to 25%; or 25 to 30%; or 30 to 35%; or 35 to 40%; or 40 to 45%; or from 45% to 48%, or from 48% to 51%, or from 51% to 54%, or from 54% to 58%, or from 58% to 62%, or from 62% to 65%, or from 65 68%; or from 68% to 73% or from 73% to 75%; or 75 to 78%; or 78 to 80%; or 80 to 85%.
  • the poly-ether-ketone-ketone consists essentially of, or even consists of, “T” and “I” units, with a molar proportion of T units relative to the sum of the T and I units ranging from 0% to 5% or from 35% to 78%.
  • a poly-ether-ketone-ketone has an appropriate crystallization rate allowing on the one hand to be obtained in essentially amorphous form with sufficiently rapid cooling and to crystallize sufficiently quickly once heated. above its glass transition temperature.
  • These molar proportions of T units relative to the sum of the T and I units are therefore particularly appropriate for compositions essentially consisting, or even consisting, of a single poly-ether-ketone-ketone.
  • the molar proportion of T units relative to the sum of T and I units can preferably be from 0% to 5% or from 35% to 78%, preferably from 45% to 75% and more preferably from 48% to 52% or from 65% to 74%.
  • the molar proportion of T units relative to the sum of the T and I units may in particular be approximately 50% or approximately 70%.
  • composition preferably does not consist of a poly-ether-ether-ketone homopolymer consisting of a single repeating unit of formula:
  • this polymer crystallizes very quickly when heated above its Tg, which makes it very difficult to form thick pseudo-films. amorphous and which also makes it very difficult to form such sheets in an essentially amorphous state.
  • this polymer does not make it possible to obtain good coalescence between sheets and results in poor adhesion properties at the level of the contact zone. Starting from this observation, it can nevertheless be envisaged to reduce the crystallization rate of the above homopolymer in various ways.
  • a first aspect is the introduction of a certain number of defects in the structure of the homopolymer consisting of the unit of formula (III), that is to say a modification of its chemical structure.
  • composition may comprise, consist essentially of, or even consist of, a polymer comprising a unit of formula:
  • the polymer consists essentially of, or even consists of: units of formula (III) and (IV).
  • the polymer is, where appropriate, a random copolymer.
  • the molar proportion of unit (III) relative to the sum of units (III) and (IV) can range from 0% to 99%, preferably from 5% to 95%, more preferably from 10% to 50% and most preferably from 20% to 40%.
  • the composition may comprise, consist essentially of, or even consist of, a polymer comprising, being essentially consisting of, or even consisting of: a unit of formula: and a formula unit:
  • the polymer consists essentially of, or even consists of: units of formula (III) and (IVa).
  • the polymer is, where appropriate, a random copolymer.
  • the molar proportion of unit (III) relative to the sum of units (III) and (IVa) can range from 0% to 99%, and preferably from 5% to 95%.
  • composition may comprise, consist essentially of, or even consist of, a polymer comprising a unit of formula:
  • the polymer consists essentially of, or even consists of units of formula (III) and (V).
  • the polymer is, where appropriate, a random copolymer.
  • the molar proportion of unit (III) relative to the sum of units (III) and (V) can range from 0% to 99%, preferably from 0% to 95%.
  • the composition may comprise, consist essentially of, or even consist of, a polymer comprising, being essentially consisting of, or even consisting of: a unit of formula: and a formula unit:
  • the polymer consists essentially of, or even consists of units of formula (III) and (Va).
  • the polymer is, where appropriate, a random copolymer.
  • the molar proportion of unit (III) relative to the sum of units (III) and (Va) can range from 0% to 99%, and preferably from 0% to 95%.
  • a second aspect to reduce the crystallization of a homopolymer consisting of the repeating unit of formula (III) is to mix it with another PAEK which takes longer to crystallize.
  • This other PAEK may in particular be a PEKK essentially consisting, preferably consisting, of unit I and/or of unit T or else a copolymer comprising the repeating unit of formula (III), in particular those presented above.
  • a third aspect for reducing the rate of crystallization of a PEEK homopolymer consisting of the repeating unit of formula (III) is to mix it with another polymer other than a PAEK, in particular an amorphous polymer.
  • An amorphous polymer compatible with many PAEKs, in particular with a PEKK or a PEEK, is for example a polyetherimide.
  • a fourth aspect, not developed in detail here, to reduce the crystallization of a PEEK homopolymer consisting of the repeating unit of formula (III) would be the addition of an additive acting as a modulating agent of the crystallization rate.
  • composition is in particular essentially constituted, or constituted, of a single PAEK chosen from:
  • PEKK in particular consisting essentially of, or consisting of, units I and T, as described above;
  • the composition comprises, consists essentially of, or consists of a single PAEK, of substantially homogeneous composition and/or viscosity.
  • the composition comprises, consists essentially of, or consists of several different PAEKs, that is to say in particular having a different chemical composition and/or a different viscosity.
  • the composition comprises at least two PAEKs of different chemical composition, more particularly:
  • PEKK in particular consisting essentially of, or consisting of, the I and T units, as described above, and in addition to this PEKK,
  • PEK polymer essentially consisting of, or consisting of units of formula (III) and (V) as described above
  • PEEKK, PEKEKK, PEEEK, PEDEK polymer essentially consisting of, or consisting of units of formula (III) and (IV) as described above, with a content of less than 50% by weight of the total weight of the composition, preferably less than or equal at 30% by weight of the composition.
  • the composition comprises a mixture of several PAEKs, the PAEKs being a copolymer of PAEK with molar proportions in different repeating units.
  • the composition may comprise a mixture of PEKK copolymers having a different molar ratio of “T-type” units relative to the sum of the “T-type” and “I-type” units.
  • the composition can also comprise a mixture of several PAEKs, the PAEKs being a PAEK copolymer with different viscosities.
  • the composition can also comprise a mixture of copolymers of PAEKs, the PAEKs being a copolymer of PAEK with molar proportions in different repeating units and different viscosities.
  • the composition may also comprise one or more other polymers not belonging to the family of PAEKs, in particular other thermoplastic polymers.
  • the composition may comprise a mixture of PAEK(s) with at least one fluoropolymer, such as the fluoropolymers described in application EP 2,767,986 and US 9,543,058.
  • the fluoropolymer can preferably be chosen from the list consisting of: a polytetrafluoroethylene (PTFE), a poly(vinyl fluoride) (PVF), a poly(vinyl fluoride) (PVDF), a polychlorotrifluoroethylene (PCTFE), a perfluoroalkoxy polymer, a perfluoroalkoxy-alkane copolymer (PFA), a fluorinated ethylene-propylene copolymer (FEP), a poly(ethylene-co-tetrafluoroethylene) (ETFE), polyethylenechlorotrifluoroethylene (ECTFE), a perfluorinated elastomer (FFKM), a perfluoropolyether (PFPE), and
  • Fluoropolymers generally being immiscible with PAEKs the composition is, in these embodiments, advantageously a dispersion of fluorinated polymer particles in said at least one PAEK.
  • the composition comprises a mixture of PAEK(s) and a polyetherimide (PEI), a silicone-polyimide copolymer or even a polysiloxane/polyimide block copolymer (such as a polyetherimide/polydimethylsiloxane (PEI/PDMS)) , such as the polymers described in applications EP 0 323 142 and US 8 013 251 .
  • PEI polyetherimide
  • PDMS polydimethylsiloxane
  • the composition may comprise, alternatively to the aforementioned thermoplastics or in addition to these: a polyphenylene sulfone (PPSU), a polysulfone (PSU), a polycarbonate (PC), a polyphenylene ether (PPE), a poly (phenylene sulfide) (PPS), poly (ethylene terephthalate) (PET), polyamide (PA), polybenzimidizole (PBI), poly (amide-imide) (PAI), poly (ether sulfone) (PES), a poly(aryl sulfone), a poly(ether imide sulfone), a polyphenylene, a polybenzoxazole, a polybenzothiazole, their mixture.
  • the composition essentially consists of, or consists of a mixture of:
  • - PAEK chosen from: a PEKK, in particular consisting essentially of, or consisting of, units I and T, as described above; a polymer essentially consisting of, or consisting of units of formula (III) and (IV), as described above; and a polymer essentially consisting of, or consisting of units of formula (III) and (V), as described above;
  • composition may in particular essentially consist of, or consist of a mixture of:
  • - PEKK essentially consisting of, or consisting of, I and T units, in which the molar proportion of T units relative to the sum of the T and I units ranges from 45% to 75%;
  • the composition may also comprise fillers and/or additives.
  • fillers of the mainly reinforcing type in fibrous form or not.
  • the non-fibrous fillers can in particular be titanium dioxide, talc or calcium carbonate.
  • the fibrous fillers can in particular be ground or unground glass fibers and carbon fibers.
  • fillers of the mainly heat-conductive type and in particular fillers which can be chosen from the list consisting of: ceramics, such as boron nitride or aluminum oxide, metals, such as copper, stainless steel, aluminum, gold, silver, carbon fillers, such as carbon black, carbon nanotubes, graphite, mineral fillers, such as hematite, or a mixture thereof .
  • the composition may thus comprise less than 50% by weight of fillers, preferably less than 40% by weight of fillers and even more preferably less than 25% by weight of fillers, relative to the total weight of composition.
  • additives mention may be made of stabilizing agents (light, in particular UV, and heat such as phosphate salts), optical brighteners, dyes, pigments, flow agents, additives making it possible to adjust the viscosity of the composition in the molten state, the additives making it possible to adjust the crystallization rates of the composition, the additives making it possible to adjust the heat capacity of the composition, or a combination of these additives.
  • the composition may thus comprise less than 10% by weight, preferably less than 5% by weight, and even more preferably less than 1% by weight of additive(s) relative to the total weight of composition.
  • Sheet comprising the composition on at least one of its faces
  • a sheet is a three-dimensional article that is typically flat or substantially planar and has a thickness that is significantly less than both its length and its width.
  • a sheet may in particular have a thickness of less than 10%, or less than 5%, with respect to both its length and its width.
  • the sheet can be nonporous, porous, microporous, etc., depending on the intended application and use.
  • the sheet can be made of the pseudo-amorphous composition based on polyaryl ether ketone(s).
  • the sheet can be formed by a multiplicity of layers, that is to say at least two layers, each layer being able to have, independently of one another, a different chemical composition or not.
  • the composition based on poly-aryl-ether-ketone(s) is then used to form a layer on the periphery of the multiplicity of layers, that is to say on at least one of the two sides of the sheet.
  • each sheet can be made up of two layers.
  • An advantageous example of a bi-layer sheet is a sheet consisting of a first layer of PEKK consisting of T:1 repeating units and having a T:1 molar ratio of approximately 70:30 and a second layer of PEKK constituted of repeating units T:1 and having a molar ratio T:1 of approximately 60:40, the PEKK having a ratio T:1 being advantageously used to constitute the internal face of a sheet.
  • Sheet thickness can be measured, for example, using a standard micrometer.
  • the sheet may in particular have a thickness ranging from 200 microns to 20.00 millimeters.
  • the sheet has a thickness ranging from 500 microns to 10.00 millimeters.
  • the sheet or where appropriate the layer consisting of the composition based on poly-aryl-ether-ketone(s), has a thickness equal to a value ranging from 500 microns to 1000 microns, or has a value ranging from 1.00 millimeters to 2.00 millimeters, or has a value ranging from 2.00 millimeters to 3.00 millimeters, or has a value ranging from 3.00 millimeters to 4.00 millimeters, or has a value ranging from 4.00 millimeters to 5.00 millimeters, or has a value ranging from 6.00 millimeters to 7.00 millimeters, or has a value ranging from 8.00 millimeters to 9.00 millimeters, or has a value ranging from 9.00 millimeters to 10.00 millimeters.
  • the sheet thickness is substantially uniform, that is to say that its thickness can vary from one place to another of the sheet by at most about 10%, preferably by at least more about 5%.
  • the sheet or where appropriate the layer consisting of the composition based on poly-aryl-ether-ketone(s), can be manufactured by methods known per se comprising:
  • the sheets used in the present invention can be made by melt extrusion.
  • the extrusion temperature will depend on the melting temperature of the polymer (which in the case of a PEKK is influenced by its T:1 ratio) as well as its melt viscosity. For example, when the ratio of T:1 isomers in a PEKK is 70:30 or 50:50, the preferred extrusion temperature is between about 350°C and about 380°C. Generally, extrusion temperatures of about 5°C to about 70°C, or about 10°C to about 50°C, above the melt temperature of the composition are suitable temperatures.
  • the extruded sheet is transported from the die directly onto polished metal or textured rolls, commonly referred to as "chill rolls", because the surface temperature of these rolls is kept below the melting temperature of the polymer.
  • a stream of air or other gas may also be directed at the extruded sheet to aid in cooling.
  • the rate at which the sheet is cooled (called the quench rate) and solidified is an important aspect in achieving a pseudo-amorphous sheet structure. Quench rate is largely determined by chill roll temperature, sheet thickness and line speed. It must be fast enough to obtain the sheet in a pseudo-amorphous state.
  • Figure 1 schematically presents a device 1 suitable for a double sheet thermoforming process according to the invention, in particular for the process described by the block diagram of Figure 2.
  • the device 1 comprises a frame 20 comprising clamping means 21 capable of fixing two sheets 10 thereto.
  • the two sheets 10 are initially substantially parallel to each other and separated by an interspace. sheets 60.
  • the sheets 10 each comprise an inner face 11 consisting of a pseudo-amorphous composition based on poly-aryl-ether-ketone(s).
  • the inner faces 11 of the two sheets 10 face each other and are able to be brought into contact, at least partially, with each other at a contact zone 12 during the contacting and coalescence step.
  • the device 1 also comprises two mold halves 30 comprising walls 31, the shape of which is adapted to the desired final shape of the hollow body to be manufactured.
  • Each mold half 30 can be, independently of one another, flat, positively shaped or negatively shaped.
  • one of the two mold halves is of negative shape.
  • the other half of the mold can then be a plate, of positive shape, or of negative shape.
  • the other half of the mold can in particular be a plate or of a negative shape.
  • the mold halves 30 can be moved (direction of the arrows) from an open position ( Figure 1), away from each other, to a closed position (not shown), so that the walls 31 form a cavity. It is this cavity that gives the manufactured article its attribute of “hollow body”.
  • the outer faces 13 of the two sheets 10 face their respective mold half 30. They are capable of being brought into contact at the level of a pinching zone 14 with parts 32 of the half-molds 30 intended to ensure closure by pinching.
  • the parts 32 of the half-molds 30 can be flat or, on the contrary, have a shape making it possible to increase the contact surface at the level of the pinching zone 14.
  • Each mold half 30 may include openings 33 allowing the gases to escape during, at least, the forming step. These openings 33 can advantageously be connected to a gas outlet tube 40 through which the vacuum can be drawn in order to allow, at least in part, the forming of the sheets 10.
  • the forming of the sheets can be carried out, at least in part, by injection of pressurized gas, by means of a gas inlet tube 50 which can be inserted, at least temporarily, at the level of the inter-sheet space 60.
  • the gas can optionally be heated so that the sheets 10 retain a temperature sufficiently close to the softening temperature during the forming step.
  • Each sheet can be heated on its external face 13 and/or on its internal face 11 using a means of heating by radiation, by convection or by conduction, making it possible to soften it.
  • the heating can be carried out for example using infrared lamps and/or by blowing hot air and/or in an oven.
  • the heating means are arranged in such a way that each sheet softens as uniformly as possible.
  • a heating means 70 can be arranged at the level of the inter-sheet space 60, thus making it possible to heat the internal face 11 of the two sheets 10 during the softening step.
  • additional heating means can be used, at least temporarily, to heat the outer faces of the sheets 10. This can in particular be made necessary in the case where the sheet has a very significant thickness.
  • additional heating means can be used so as to heat, in embodiments where the contacting temperature is higher than the softening temperature, the contact zones 12 of at least one or both sheets 10.
  • this additional heating mode can be implemented by conduction by bringing the part of the half-mold 32 into contact with the pinching zone 14 one of the two sheets 10 for a sufficient period.
  • These additional heating means are arranged so that the pinching zones 14 have the most uniform temperature possible.
  • the device according to Figure 1 is in particular suitable for implementing a method 100 of double sheet thermoforming according to a method whose block diagram is presented in Figure 2.
  • the method 100 comprises the supply of two sheets 10 comprising at least one face 11 consisting of a pseudoamorphous composition based on poly-aryl-ether-ketone(s).
  • the method 100 includes a step of softening 105 each of the sheets at a softening temperature, so as to form softened sheets 110.
  • the softening temperature may be otherwise referred to as the "thermoforming temperature”.
  • the softening temperature is greater than or equal to the glass transition temperature of each pseudo-amorphous composition.
  • the softening temperature may be different for each sheet.
  • the softening temperature of each sheet may be similar.
  • the softening temperature can be measured using a thermocouple close to the internal face 11 of a sheet 10 (outside the contact zone 12).
  • the softening temperature generally has a value strictly greater than T g and less than or equal to (T g +80)°C.
  • the softening temperature can preferably be from ( Tg +10)°C to (Tg+75)°C.
  • the softening temperature can be from (Tg+15)°C to (Tg+65)°C or even from (Tg+20)°C to (Tg+60)°C.
  • the softening temperature is substantially uniform over the entire internal face 11 of each sheet 10, except possibly at the level of the contact zones 12 and neighboring zones, if a contact temperature different from the softening temperature is imposed.
  • the softening temperature may be 175°C to 225°C.
  • a temperature of 195° C. to 215° C. can advantageously be chosen.
  • the heating element 70 can be removed from the inter-sheet space 60.
  • the method 100 comprises a step 115 of forming the softened sheets 110.
  • the forming can in particular be implemented by blowing a pressurized gas onto the internal faces 11 and/or by sucking air onto the external faces 13.
  • a pressure of 1 to 6 bar, preferably 1.2 to 5 bar can be exerted on the inner faces 11 and/or a vacuum of 0.001 to 0.9 bar, preferably 0.05 to 0.85 bar can be exerted on the outer faces 13.
  • the method 100 comprises a step of bringing into contact and coalescence 125 of at least one contact zone 12 of said faces 11 of the softened sheets so as to form an intermediate body 130.
  • the contact areas 12 are heated to a contacting temperature, each contact area 12 remaining in a substantially amorphous state at least until contacting.
  • the contact step is implemented by bringing together the half-molds 30 so that the parts of the half-mold 32 first come into contact with the sheets 10 at the pinching zones 14, then bring into contact the two sheets 10 at the level of their contact zone 12.
  • the coalescence of the two sheets 10 is made possible by the fact that the composition of the internal faces 11 constituting them is in an essentially amorphous state at the time of the contacting of the zones of contact 12.
  • the contact temperature can be measured using a thermocouple near a contact zone 12 of a sheet 10.
  • the contact temperature is generally greater than or equal to the softening temperature.
  • the contact temperature is generally less than or equal to the mold temperature.
  • the contact temperature can be equal to approximately the softening temperature.
  • the contact temperature can be equal to approximately the mold temperature.
  • the contact temperature can be higher by a few degrees or a few tens of degrees with respect to the softening temperature.
  • the contact temperature may in particular be at least 5° C., or at least 10° C., or at least 15° C. above the softening temperature.
  • the contact temperature may in particular be at most 75° C., or at most 60° C., or at most 50° C., or at most 45° C., or at most 40° C. , or at most 35°C, or at most 30°C, or at most 25°C or at most 20°C above the softening temperature.
  • the contact temperature can be lower by a few degrees or a few tens of degrees with respect to the mold temperature.
  • the contact temperature may in particular be at most 5° C., or at most 10° C., or at most 15° C. lower than the mold temperature.
  • a pinching pressure can be exerted on the two half-molds 30.
  • the pinching pressure is from 1 bar to 50 bars.
  • the pinching pressure can preferably be from 5 bars to 40 bars and even more preferably from 7 to 30 bars.
  • the pinching pressure can be adapted by providing an air gap between the two half-molds.
  • the method 100 finally comprises a crystallization step 135 of the composition based on poly-aryl-ether-ketone(s) at a mold temperature, so as to form a crystallized hollow body after the step of bringing into contact and coalescence 115 and after the forming step 125, to form a crystallized hollow body 140.
  • the mold can be brought to the mold temperature, preferably as uniform as possible, using suitable mold heating means, for example electric heating devices.
  • the mold temperature can advantageously be a temperature close to the temperature at which the composition has a minimum isothermal half-crystallization time.
  • the mold temperature can be close to (T g +Tf)/2.
  • the mold temperature is preferably not higher than 35°C, or not higher than 25°C, or not higher than 15°C, or not higher than 10°C above (T g +Tf)/2.
  • the mold temperature is preferably not lower than 45°C, or 35°C, or 25°C, or 20°C below (T g +Tf)/2.
  • the mold temperature may be 210°C to 270°C, and preferably from 220°C to 260°C, and more preferably from 225°C to 255°C.
  • the difference between the softening temperature and the mold temperature can be less than or equal to 60° C., so as to avoid any warping.
  • the difference between the softening temperature and the mold temperature may in particular be less than or equal to 50°C, or even less than or equal to 40°C.
  • the difference between the softening temperature and the mold temperature can be greater than or equal to 15°C, or greater than or equal to 20°C, or even greater than or equal to 25°C.
  • the duration of the crystallization step can depend on the thickness of the sheets, the mold temperature, the shape of the mold and the desired crystallization rate.
  • this duration can be from 1 minute to 30 minutes, preferentially from 2 minutes to 15 minutes, and more preferably 3 minutes to 10 minutes.
  • the sufficiently long heating of the contact zone makes it possible to reach an average crystallinity rate strictly greater than 7%, as measured by WAXS.
  • it makes it possible to achieve a degree of crystallinity greater than or equal to 10%, or greater than or equal to 15%, or greater than or equal to 20%, or even greater than or equal to 25%.
  • FIG. 2 represents steps of the sequential type, some of these steps may in practice overlap and/or take place simultaneously, or even in a different order.
  • the step of forming 115 of the sheets 10 can be initiated before the step of bringing into contact and coalescence 125 by initiating an air blow and/or a vacuum suction before the contact zones 12 n have been put in contact.
  • the forming step 115 can be implemented so as to end before, at the same time, or after the contacting and coalescing step.
  • the forming step 115 can end before the contacting and coalescence step 125. This is the case in particular when the sheets are formed one by one then then brought into contact with one the other.
  • the forming step 115 may end approximately at the same time as the contacting and coalescing step 125.
  • the forming step can be implemented essentially after the contacting and coalescence step.
  • the crystallization step can, to a certain extent, be initiated before the end of the contacting step and/or before the end of the forming step, it is essential for the implementation of the invention that the composition is in a substantially amorphous state for contacting and coalescing the contact areas of the sheets. It is also advantageous for the forming step to be carried out with an essentially amorphous composition.
  • Hollow bodies that can be implemented according to the invention are innumerable and can have more or less complex shapes.
  • a hollow body was manufactured using a device as schematized in Figure 1 according to a process following the block diagram of Figure 2.
  • Two amorphous sheets 2.3 millimeters thick consisting of a polyetherketoneketone consisting of T and I units with a molar ratio of 70:30 and a viscosity at 380° C., at 1 Hz, of 3906 Pa.s are used.
  • the inner face of the sheets is heated to a softening temperature of 210°C for the softening step. No additional heating means is implemented to heat the intersheet contact zones.
  • the two half-molds are closed with a pinching pressure of 10 bars.
  • the two sheets are thermoformed and kept for approximately 5 minutes in a mold brought to a temperature of 240°C.
  • the mold is then opened by removing one of the two half-molds and the hot hollow body is cooled by a jet of air.
  • the hollow body thus obtained is opaque in appearance, that is to say crystallized.
  • a hollow body was fabricated with the same sheets used in Example 1.
  • the inner side of the sheets is heated to a softening temperature of 200°C for the softening step.
  • the contact areas are brought to a temperature of 220°C.
  • the two half-molds are closed with a pinching pressure of 10 bars.
  • the two sheets are thermoformed and kept for approximately 5 minutes in a mold brought to a temperature of 240°C.
  • the mold is then opened by removing one of the two half-molds and the hot hollow body is cooled by a jet of air.
  • the hollow body thus obtained is opaque in appearance, that is to say crystallized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

L'invention concerne l'utilisation de feuilles comprenant au moins une face constituée d'une composition pseudo-amorphe à base de poly-aryl-éther- cétone(s) pour un procédé de thermoformage double-feuilles, un procédé correspondant ainsi que le corps creux obtenu par ce procédé.

Description

Description
Titre : Procédé de thermoformaqe double-feuilles d’un corps creux et corps creux en dérivant
Domaine technique
L'invention concerne le domaine des procédés de thermoformage double- feuilles d’un corps creux.
Plus précisément l’invention concerne de tels procédés utilisant des feuilles à base de poly-aryl-éther-cétone(s).
Art antérieur
Les poly-aryl-éther-cétones sont des polymères techniques haute performance bien connus. Ils peuvent être utilisés pour des applications contraignantes en température et/ou en contraintes mécaniques, voire chimiques. Ils peuvent également être utilisés pour des applications demandant une excellente résistance au feu et peu d’émission de fumées ou de gaz toxiques. Ils présentent enfin une bonne biocompatibilité. On retrouve ces polymères dans des domaines aussi variés que l’aéronautique et le spatial, les forages off-shore, l’automobile, le ferroviaire, la marine, l’éolien, le sport, le bâtiment, l’électronique ou encore les implants médicaux.
Les procédés de thermoformage double-feuilles de thermoplastiques sont également connus de l’art antérieur. Ils permettent notamment de produire des articles rigides creux.
Un procédé de thermoformage double-feuilles consiste à thermoformer deux feuilles pour former deux moitiés d’un article et à souder ces moitiés entre elles de sorte à obtenir un article creux.
Deux procédés sont notamment connus.
Selon un premier procédé, deux feuilles en polymère thermoplastique sont mises en place dans un cadre de serrage et chauffées simultanément. Lorsque les feuilles ont atteint la température de formage, c’est-à-dire sont suffisamment ramollies, de l'air est forcé entre les feuilles et/ou un vide est appliqué sur la partie externe des feuilles, les pressant contre deux moitiés de moules pouvant être refermées et pressées l’une contre l’autre permettant un effet de pincement.
Selon un deuxième procédé, les deux feuilles sont séquentiellement thermoformées dans leur moitié de moule respective. Les deux moitiés de moule sont ensuite refermées et pressées l’une contre l’autre permettant l’effet de pincement.
Un exemple de mise en œuvre avec des polymères thermoplastiques ayant une température de fléchissement élevée (HHDT) est décrit dans le brevet US 5,114,767 A2. Les polymères HHDT incluent au sens de cette technique des polyétherimides, des polyamideimides, des polyimides, des polysulfones, un polyéther sulfone, un polyphénylsulphone, un polyétheréthercétone, un polyéthercétonecétone, un polyaryl sulfone, des polyamides aromatiques, des polyarylsulfones et des mélanges polyphényléther/polystyrène.
Deux couches de polymère thermoplastique HHDT, tel un de que ceux cités ci- dessus, sont d’abord chauffées au-dessus de leur température de fléchissement et placées entre deux moitiés de moule portées à une température inférieure à ladite température de fléchissement. Une couche d’un polymère à basse température de fléchissement (LHDT), est intercalée entre les deux couches de polymère thermoplastique HHDT. Les deux moitiés de moule sont ensuite refermées l’une contre l’autre, l’adhésion entre les deux couches de polymère HHDT étant assurée par la présence du polymère LHDT. Enfin, un corps creux est formé par injection de gaz dans le moule.
Cette technique présente comme désavantage l’obligation d’ajouter une couche d’adhésion entre les deux couches destinées à former principalement le corps creux.
Il existe actuellement un besoin d’utiliser des poly-aryl-éther-cétones dans des procédés de thermoformage afin de fabriquer des corps creux cristallisés haute performance. La présente invention propose un procédé de thermoformage double-feuilles comprenant au moins deux feuilles de poly-aryl-éther-cétone(s) aptes à cristalliser sans nécessiter de couche supplémentaire intermédiaire.
Résumé de l'invention
L’invention concerne un procédé de thermoformage double-feuilles pour fabriquer un corps creux. Le procédé comprend :
- la fourniture de deux feuilles comprenant au moins une face constituée d’une composition pseudo-amorphe à base de poly-aryl-éther-cétone(s) ;
- une étape de ramollissement des deux feuilles à une température de ramollissement, de sorte à former des feuilles ramollies, la température de ramollissement étant supérieure ou égale à la température de transition vitreuse de chaque composition pseudo-amorphe ;
- une étape de formage des feuilles ramollies de sorte à former des feuilles thermoformées ;
- une étape de mise en contact et de coalescence d’au moins une zone de contact desdites faces des feuilles ramollies, et/ou des feuilles en cours de formage ou déjà formées, de sorte à former un corps intermédiaire, les zones de contact étant chauffées à une température de mise en contact, chaque zone de contact restant dans un état essentiellement amorphe au moins jusqu’à la mise en contact; et,
- une étape de cristallisation de la composition à une température de moule, pour former un corps creux cristallisé, l’étape de cristallisation étant mise en œuvre essentiellement après l’étape de mise en contact et de coalescence, et préférentiellement essentiellement après l’étape de formage.
Avantageusement, la composition peut avoir une viscosité à 380°C, à 1 Hz, telle que mesurée par un rhéomètre à plans parallèles, allant de 200 Pa.s à 8000 Pa.s, préférentiellement de 500 Pa.s à 5000 Pa.s, et plus préférentiellement de 750 Pa.s à 4500 Pa.s.
Avantageusement, le temps de demi-cristallisation isotherme à la température de contact de la composition peut être d’au moins 3 secondes, préférentiellement d’au moins 5 secondes, et le plus préférentiellement d’au moins 8 secondes ; et/ou d’au plus 30 minutes, préférentiellement d’au plus 10 minutes, préférentiellement encore d’au plus 5 minutes, et le plus préférentiellement d’au plus 2 minutes.
Selon certains modes de réalisation, le(s) poly-aryl-éther-cétone(s) peut être un poly-éther-cétone-cétone. Il peut préférentiellement être un homopolymère ou un copolymère essentiellement constitué, ou constitué, d’au moins un motif de répétition isophtalique (I), ayant pour formule chimique :
Figure imgf000006_0001
et dans le cas du copolymère, d’un motif de répétition téréphtalique (T), ayant pour formule chimique :
Figure imgf000006_0002
le pourcentage molaire en motifs T par rapport à la somme des motifs T et I étant de 0% à 5% ou de 35% à 78%, préférentiellement de 45% à 75%, et de manière extrêmement préférée de 48% à 52% ou de 65% à 74%.
Selon certains modes de réalisation, le(s) poly-aryl-éther-cétone(s) peut être un copolymère essentiellement constitué, ou constitué, d’un motif de répétition de formule :
Figure imgf000006_0003
et d’un motif de répétition de formule :
Figure imgf000006_0004
le pourcentage molaire en unité (III) par rapport à la somme des unités (III) et (IV) étant de : 0% à 99%, préférentiellement de 5% à 95%, de manière davantage préférée de 10% à 50% et de manière la plus préférée de 20% à 40%. Selon certains modes de réalisation, le(s) poly-aryl-éther-cétone(s) peut être un un copolymère essentiellement constitué, ou constitué, d’un motif de répétition ayant pour formule :
Figure imgf000007_0001
et d’un motif de répétition ayant pour formule:
Figure imgf000007_0002
le pourcentage molaire en unité (III) par rapport à la somme des unités (III) et (V) étant de 0% à 99% et préférentiellement de 0% à 95%.
Selon certains modes de réalisation, la composition peut comprendre au moins un autre polymère thermoplastique différent d’un poly-aryl-éther-cétone et/ou peut comprendre au moins une charge et/ou peut comprendre au moins un additif. Selon certains modes de réalisation, la composition peut être constituée du (des) poly-aryl-éther-cétone(s), optionnellement d’un ou plusieurs autre(s) polymère(s) thermoplastique(s) différent(s) d’un poly-aryl-éther-cétone, optionnellement d’une ou plusieurs charges, et optionnellement d’un ou plusieurs additifs.
Selon certains modes de réalisation, chaque feuille peut être constituée, indépendamment ou non l’une de l’autre, d’une composition pseudo-amorphe à base de poly-aryl-éther-cétone(s).
Avantageusement, les deux feuilles peuvent avoir, indépendamment ou non l’une de l’autre, une épaisseur de 200 microns à 20 millimètres, préférentiellement une épaisseur de 500 microns à 10 millimètres.
Avantageusement, l’étape de cristallisation peut être mise en œuvre jusqu’à un taux de cristallinité moyen dans l’épaisseur strictement supérieur à 7%, tel que mesuré par WAXS, au cours de l’étape de cristallisation; préférentiellement jusqu’à un taux de cristallinité supérieur ou égal à 10%, ou supérieur ou égal à 15%, ou supérieur ou égal à 20%, voire supérieur ou égal à 25%. Avantageusement, l’étape de ramollissement peut être mise en œuvre avec une température de ramollissement ayant une valeur strictement supérieure à Tg et inférieure ou égale à (Tg+80)°C, et préférentiellement ayant une valeur allant de (Tg+10)°C à (Tg+75)°C.
Avantageusement, l’étape de cristallisation peut être mise en œuvre à une température de moule voisine de la température à laquelle la composition présente un minimum de temps de demi-cristallisation isotherme.
Avantageusement, l’écart entre la température de moule et la température de ramollissement est inférieur ou égal à 50°C, et préférentiellement supérieur ou égal à 15°C.
Selon certains modes de réalisation, l’étape de mise en contact et de coalescence est mise en œuvre avec une pression de pincement ayant une valeur allant de 1 bar à 50 bars, préférentiellement avec une pression de pincement ayant une valeur allant de 5 bars à 40 bars, et de manière davantage préférée avec une pression de pincement ayant une valeur allant de 7 bars à 30 bars.
L’invention concerne également un corps creux comprenant au moins une surface interne constituée d’une composition cristallisée à base de poly-aryl-éther- cétone(s), susceptible d’être obtenu par un procédé tel que décrit ci-dessus.
La présente invention repose sur l’utilisation par les inventeurs de feuilles comprenant au moins une face constituée d’une composition pseudo-amorphe à base de poly-aryl-éther-cétone(s) pour un procédé de thermoformage double- feuilles permettant de fabriquer un corps creux. L’utilisation de telles feuilles peut notamment être mise en œuvre dans un procédé tel que ceux décrits ci-dessus. Ces feuilles permettent de mettre en œuvre une thermosoudure de bonne qualité au niveau de la zone de contact entre les feuilles, puisque la composition de chaque feuille reste dans un état essentiellement amorphe jusqu’à la mise en contact et coalescence des compositions. La composition de chaque feuille est néanmoins cristall isable et cristallise après la mise en contact et coalescence des compositions. Les inventeurs ont ainsi pu exploiter la cinétique de cristallisation particulièrement avantageuse de poly-aryl-éther-cétone(s) pseudo-amorphe(s) pour mettre en œuvre un corps creux cristallisé à partir de feuilles de composition(s) pseudo-amorphe(s) à base de poly-aryl-éther-cétone(s), sans besoin de recourir à une couche intermédiaire adhésive.
Figures
La Figure 1 est un schéma d’un dispositif de thermoformage double-feuilles.
La Figure 2 est un diagramme bloc représentant les étapes principales d’un procédé de thermoformage double-feuilles selon un premier mode de réalisation et pour lequel, le dispositif selon la Figure 1 est particulièrement approprié.
Description détaillée de l’invention
Définitions
On entend par le terme « température de transition vitreuse », noté Tg, désigner la température à laquelle un polymère, au moins partiellement amorphe, passe d’un état caoutchoutique vers un état vitreux, ou vice versa, telle que mesurée par analyse calorimétrique différentielle (DSC) selon la norme NF ISO 11357- 2:2020, en deuxième chauffe utilisant une vitesse de chauffe de 20°C/min.
Dans la présente invention, quand il est fait référence à une température de transition vitreuse, il s’agit plus particulièremen, sauf indication contraire, de la température de transition vitreuse en demi-hauteur de palier telle que définie dans cette norme. Les compositions à base de PAEK(s) dans la présente invention peuvent éventuellement présenter plusieurs paliers de transition vitreuse dans l’analyse de DSC, notamment dus, le cas échéant, à la présence de plusieurs polymères différents non miscibles. Dans ce cas, on entend par température de transition vitreuse, la plus haute température de transition vitreuse correspondant au palier de transition vitreuse du PAEK ou du mélange de PAEKs.
On entend par le terme « température de fusion », noté Tf, désigner la température à laquelle un polymère au moins partiellement cristallisé passe à l’état liquide visqueux, telle que mesurée par calorimétrie différentielle à balayage (DSC) selon la norme NF EN ISO 11357-3 :2018, en première chauffe, en utilisant une vitesse de chauffe de 20°C/min. Dans la présente invention, quand il est fait référence à une température de fusion, il s’agit plus particulièrement de, sauf indication contraire, la température de fusion de pic telle que définie dans cette norme. Les compositions à base de PAEK(s) dans la présente invention peuvent éventuellement présenter plusieurs pics de fusion dans l’analyse de DSC, notamment dus et/ou pour un polymère donné à la présence de différentes formes cristallines. Dans ce cas, on entend par température de fusion la température de fusion correspondant au pic de fusion le plus élevé en température.
On entend par le terme polymère « pseudo amorphe », respectivement composition « pseudo amorphe », désigner un polymère, respectivement une composition, se présentant à une température inférieure à sa température de transition vitreuse sous forme essentiellement amorphe. Le polymère, respectivement la composition, est néanmoins apte à cristalliser une fois porté(e) à une température supérieure à sa température de transition vitreuse pendant une durée suffisante. Au sens de l’invention un polymère « pseudo amorphe », respectivement une composition « pseudo amorphe », a un taux de cristallinité de 0% à 7% à 25°C.
Le « taux de cristallinité » peut être mesuré par WAXS. A titre d’exemple, l’analyse peut être effectuée en diffusion des rayons X aux grands angles (WAXS), sur un appareil de type Nano-inXider® avec les conditions suivantes :
- Longueur d’onde : raie principale Ka1 du cuivre (1 ,54 Angstrom).
- Puissance du générateur : 50 kV - 0.6 mA.
- Mode d’observation : transmission.
- Temps de comptage : 10 minutes.
On obtient ainsi un spectre de l’intensité diffusée en fonction de l’angle de diffraction. Ce spectre permet d’identifier la présence de cristaux, lorsque des pics sont visibles sur le spectre en plus du halo amorphe.
Dans le spectre, on peut mesurer l’aire des pics cristallins (notée AC) et l’aire du halo amorphe (notée AH). La proportion massique de PEKK cristallin dans le PEKK est alors estimée par le rapport (AC)/(AC +AH).
On entend par « temps de demi-cristallisation isotherme », noté « t1/2 » à une température de mesure, désigner le temps nécessaire pour atteindre une cristallinité relative de 0.5 pour une cristallisation isotherme à la température de mesure, tel que défini selon la norme ISO 11357-7:2015.
Selon cette norme, les conditions de cristallisation isotherme sont mises en œuvre par une première étape de fusion d’une éprouvette puis refroidissement le plus rapidement possible à la température de mesure choisie de sorte à ce que la cristallisation débute après la fin de l’étape de refroidissement. Le temps auquel l'étape isotherme prend fin, c'est à dire le temps nécessaire pour obtenir une courbe de cristallisation complète, dépend de la vitesse de cristallisation. En l'absence de clarté de la courbe DSC, ce temps est fixé à cinq fois le temps nécessaire pour atteindre la vitesse maximale de cristallisation.
On entend par le terme « mélange de polymères » désigner une composition de polymères homogène macroscopiquement. Le terme englobe les mélanges de polymères compatibles et/ou miscibles, le mélange présentant une température de transition vitreuse intermédiaire à celles de ses polymères considérés individuellement. Le terme englobe également de telles compositions composées de phases non miscibles entre elles et dispersées à l’échelle micrométrique.
On entend par le terme « copolymère » désigner un polymère issu de la copolymérisation d'au moins deux types de monomère chimiquement différents, appelés comonomères. Un copolymère est donc formé d'au moins deux motifs de répétition. Il peut également être formé de trois ou plus motifs de répétition.
L’acronyme «PAEK» correspond à la notation «poly-aryl-éther-cétone», «PAEKs» à «poly-aryl-éther-cétones» et «PAEK(s)» à «poly-aryl-éther- cétone ou poly-aryl-éther-cétones.
Dans l’ensemble des gammes énoncées dans la présente demande, les bornes sont incluses sauf mention contraire.
Composition pseudo-amorphe à base de poly-aryl-éther-cétone(s)
La composition à base de poly-aryl-éther-cétone(s) sous forme de feuille pour le procédé selon l’invention est pseudo-amorphe.
C’est le caractère essentiellement amorphe de la composition qui permet une bonne coalescence des zones périphériques des feuilles mises en contact dans le procédé de thermoformage double-feuilles. C’est pourquoi, l’au moins un poly- aryl-éther-cétone, respectivement la composition en comprenant, a avantageusement un taux de cristallinité inférieur ou égal à 5.0%, ou inférieur ou égal à 3.0%, ou encore inférieur ou égal à 1 .0%, et idéalement d’environ 0%.
La composition doit avoir une vitesse de cristallisation à une température se trouvant entre Tf et Tg suffisamment lente, de telle sorte à pouvoir former des feuilles à l’état pseudo-amorphe.
La composition doit également avoir une vitesse de cristallisation entre Tf et Tg suffisamment lente de sorte à rester dans un état essentiellement amorphe pendant l’étape de ramollissement et jusqu’à l’étape de mise en contact.
A contrario, la composition doit avoir une vitesse de cristallisation entre Tf et Tg suffisamment rapide de telle sorte à pouvoir cristalliser dans une échelle de temps raisonnable après l’étape de mise en contact et de coalescence.
Avantageusement, le temps de demi-cristallisation isotherme de la composition à la température de ramollissement et/ou à la température de contact peut être d’au moins 3 secondes et d’au plus 30 minutes.
Le temps de demi-cristallisation isotherme de la composition à la température de ramollissement et/ou à la température de contact peut préférentiellement être d’au moins 5 secondes, et préférentiellement encore d’au moins 8 secondes.
Le temps de demi-cristallisation isotherme de la composition à la température de ramollissement et/ou à la température de contact peut préférentiellement être d’au plus 10 minutes, préférentiellement encore d’au plus 5 minutes, et de manière extrêmement préférée d’au plus 2 minutes.
De manière avantageuse, la viscosité de la composition à 380°C et 1 Hz, telle que mesurée avec un rhéomètre à plans parallèles de 25mm de diamètre, sous un balayage d’azote, a une valeur de 200 Pa.s à 8000 Pa.s, préférentiellement de 500 Pa.s à 5000 Pa.s, et plus préférentiellement de 750 Pa.s à 4500 Pa.s.
Ces domaines de viscosité sont notamment avantageux pour permettre d’obtenir une feuille ayant une bonne tenue et une épaisseur sensiblement homogène lors de l’extrusion de la feuille, une résistance au fluage raisonnable lors de l’étape de formage des feuilles ramollies, et enfin de permettre une bonne coalescence lors de l’étape de mise en contact et coalescence des deux feuilles l’une avec l’autre. La composition peut notamment avoir une viscosité ayant une valeur de : 750 Pa.s à 1200 Pa.s, ou de 1200 Pa.s à 1600 Pa.s, ou de 1600 Pa.s à 2000 Pa.s, ou de 2000 Pa.s à 2400 Pa.s, ou de 2400 Pa.s à 2800 Pa.s, ou de 2800 Pa.s à 3200 Pa.s, ou de 3200 Pa.s à 3600 Pa.s, ou encore de 3600 Pa.s à 4000 Pa.s, ou encore de 4000 Pa.s à 4250 Pa.s, ou encore de 4250 Pa.s à 4500 Pa.s.
La composition a préférentiellement une température de transition vitreuse Tg supérieure ou égale à 125°C, de préférence encore supérieure ou égale à 145°C, et de manière extrêmement préférée supérieure ou égale à 150°C.
La composition a préférentiellement une température de fusion Tf supérieure ou égale à 250 °C, et de préférence encore supérieure ou égale à 270°C. La composition peut notamment avoir une température de fusion supérieure ou égale à 280°C, ou supérieure ou égale à 290 °C, ou supérieure ou égale à 300°C, ou supérieure ou égale à 310°C, ou supérieure ou égale à 320°C, voire supérieure ou égale à 330°C.
La composition comprend au moins 50% en poids d’au moins un poly-aryl-éther- cétone. Elle est indifféremment désignée dans le reste de la demande comme une composition à base de poly-aryl-éther-cétone(s).
Un poly-aryl-éther-cétone (PAEK) comporte les motifs de formules suivantes: (-Ar-X-) et (-An-Y-), dans lesquelles :
- Ar et An désignent chacun un radical aromatique divalent;
- Ar et An peuvent être choisis, de préférence, parmi le 1 ,3-phénylène, 1 ,4- phénylène, le 1 ,1 ’-biphénylène divalent en positions 3,3’, Ie1 ,1 ’-biphényle divalent en positions 3,4’, le 1 ,4-naphthylène, le 1 ,5-naphthylène et le 2,6-naphthylène ;
- X désigne un groupe électroattracteur ; il peut être choisi, de préférence, parmi le groupe carbonyle et le groupe sulfonyle,
- Y désigne un groupe choisi parmi un atome d’oxygène, un atome de soufre, un groupe alkylène, tel que -(CH)2- et l’isopropylidène.
Dans ces motifs X et Y, au moins 50%, de préférence au moins 70% et plus particulièrement, au moins 80% des groupes X sont un groupe carbonyle, et au moins 50%, de préférence au moins 70% et plus particulièrement au moins 80% des groupes Y représentent un atome d’oxygène. Selon un mode de réalisation préféré, 100% des groupes X désignent un groupe carbonyle et 100% des groupes Y représentent un atome d’oxygène.
Le poids en PAEK ou, le cas échéant, la somme des poids des PAEKs de la composition peut représenter au moins 60%, ou au moins 70%, ou au moins 80%, ou au moins 85%, ou au moins 90%, ou au moins 92,5%, ou au moins 95%, ou au moins 99%, ou au moins 99,9% ou 100% du poids total de la composition.
Dans certains modes de réalisation la composition est essentiellement constituée de PAEK(s), c’est-à-dire qu’elle comprend de 90% à 99,9% du poids total de composition en PAEK(s).
Dans certains modes de réalisation, la composition est constituée de PAEK(s) c’est-à-dire qu’elle est constituée d’au moins 99,9%, idéalement de 100%, du poids total de composition en PAEK(s).
Avantageusement, le(s) PAEK(s) peut/peuvent être choisi(s) parmi:
- un poly-éther-cétone-cétone, également nommé PEKK ; un PEKK comprend un/des motif(s) de formule : -Ph-O-Ph-C(O)-Ph-C(O)- ;
- un poly-éther-éther-cétone, également nommé PEEK ; un PEEK comprend un/des motif(s) de formule : -Ph-O-Ph-O-Ph-C(O)- ;
- un poly-éther-cétone, également nommé PEK ; un PEK comprend un/des motif(s) de formule : -Ph-O-Ph-C(O)- ;
- un poly-éther-éther-cétone-cétone, également nommé PEEKK ; un PEEKK comprend un/des motif(s) de formule : -Ph-O-Ph-O-Ph-C(O)- Ph-C(O)- ;
- un poly-éther-éther-éther-cétone, également nommé PEEEK ; un PEEEK comprend un/des motif(s) de formule : -Ph-O-Ph-O-Ph-O- Ph-C(O)- ;
- un poly-éther-diphényle-éther-cétone également nommé PEDEK ; un PEDEK comprend un/des motif(s) de formule : un PEDEK comprend un/des motif(s) de formule -Ph-O-Ph-Ph-O-Ph-C(O)- ;
- leurs mélanges ; et,
- des copolymères comprenant au moins deux des motifs précités, dans lesquelles : Ph représente un groupement phénylène et -C(O)- un groupement carbonyle, chacun des phénylènes pouvant indépendamment être de type ortho (1 -2), méta (1 -3) ou para (1 -4), préférentiellement étant de type méta ou para. En outre, des défauts, des groupes terminaux et/ou des monomères peuvent être incorporés en très faible quantité dans les polymères tels que décrits dans la liste ci-dessus, sans pour autant avoir une incidence sur leur performance.
Selon certains modes de réalisation, la composition comprend, est essentiellement constituée de, voire est constituée de, un polymère de poly-éther- cétone-cétone comprenant : un motif téréphtalique et un motif isophtalique, le motif téréphtalique ayant pour formule :
Figure imgf000015_0001
le motif isophtalique ayant pour formule :
Figure imgf000015_0002
Pour un polymère d’une famille donnée, telle la famille des PEKKs, on entend par «comprend une/des unité(s)» signifier que cette/ces unité(s) ont une proportion molaire totale d’au moins 50% dans le polymère. Cette/ces unité(s) peut/peuvent représenter une proportion molaire d’au moins 60%, ou d’au moins 70%, ou d’au moins 80%, ou d’au moins 85%, ou d’au moins 90%, ou d’au moins 92.5%, ou d’au moins 95%, ou d’au moins 99%, ou d’au moins 99,9 % dans le polymère. On entend par « essentiellement constituée d’unité(s) » signifier que l’/les unité(s) représente(nt) une proportion molaire de 95% à 99,9% dans le copolymère. Enfin, on entend par « constituée d’unité(s) » signifier que l’/les unités(s) représentent une proportion molaire d’au moins 99,9% dans le polymère.
Préférentiellement, le poly-éther-cétone-cétone est essentiellement constitué de, voire même constitué de : motifs isophtalique « I » et téréphtalique « T ».
Préférentiellement, le poly-éther-cétone-cétone est, le cas échéant, un copolymère statistique.
Le choix de la proportion molaire de motifs T par rapport à la somme des motifs T et I est l’un des facteurs qui permet d’ajuster les propriétés de vitesse de cristallisation des poly-éther-cétone-cétones. Une proportion molaire donnée de motifs T par rapport à la somme des motifs T et I peut être obtenue en ajustant les concentrations respectives des réactifs lors de la polymérisation, de manière connue en soi.
La proportion molaire de motifs T par rapport à la somme des motifs T et I de PEKK(s) peut notamment varier de : 0 à 5 % ; ou de 5 à 10 % ; ou de 10 à 15 % ; ou de 15 à 20 % ; ou de 20 à 25 % ; ou de 25 à 30 % ; ou de 30 à 35 % ; ou de 35 à 40 % ; ou de 40 à 45 % ; ou de 45 à 48%, ou de 48% à 51 %, ou de 51 % à 54%, ou de 54% à 58%, ou de 58% à 62%, ou de 62% à 65%, ou de 65 à 68 % ; ou de 68% à 73% ou de 73% à 75 % ; ou de 75 à 78% ; ou de 78 à 80 % ; ou de 80 à 85%.
Selon des modes de réalisation particuliers, le poly-éther-cétone-cétone est essentiellement constitué, voir même constitué de, motifs « T » et « I », avec une proportion molaire de motifs T par rapport à la somme des motifs T et I allant de 0% à 5% ou de 35% à 78%. En effet, pour cette gamme de proportions molaires, un poly-éther-cétone-cétone a une vitesse de cristallisation appropriée permettant d’une part d’être obtenu sous forme essentiellement amorphe moyennant un refroidissement suffisamment rapide et de cristalliser suffisamment rapidement une fois chauffé au-dessus de sa température de transition vitreuse. Ces proportions molaires de motifs T par rapport à la somme des motifs T et I sont donc particulièrement appropriées pour des compositions essentiellement constituées, voire constituées, d’un seul poly-éther-cétone-cétone. La proportion molaire de motifs T par rapport à la somme des motifs T et I peut préférentiellement être de 0% à 5% ou de 35% à 78%, de manière préférée de 45% à 75% et de manière davantage préférée de 48% à 52% ou de 65% à 74%. La proportion molaire de motifs T par rapport à la somme des motifs T et I peut notamment être d’environ 50% ou d’environ 70%.
La composition n’est préférentiellement pas constituée d’un homopolymère de poly-éther-éther-cétone constitué d’une seule unité de répétition de formule:
Figure imgf000016_0001
En effet, ce polymère cristallise très rapidement lorsqu’il est chauffé au-dessus de sa Tg, ce qui rend très difficile la formation de feuilles épaisses pseudo- amorphes et ce qui rend également très difficile le formage de telles feuilles dans un état essentiellement amorphe. En outre, du fait de sa cristallisation très rapide, ce polymère ne permet pas d’obtenir une bonne coalescence entre feuilles et résulte en de mauvaises propriétés d’adhésion au niveau de la zone de contact. Partant de ce constat, il peut néanmoins être envisagé de réduire la vitesse de cristallisation de l’homopolymère ci-dessus de diverses manières.
Un premier aspect est l’introduction d’un certain nombre de défauts dans la structure de l’homopolymère constitué de l’unité de formule (III), c’est-à-dire une modification de sa structure chimique.
La composition peut comprendre, être essentiellement constituée, voire être constituée, d’un polymère comprenant une unité de formule :
Figure imgf000017_0001
Préférentiellement, le polymère est essentiellement constitué de, voire même constitué de : unités de formule (III) et (IV).
Préférentiellement, le polymère est, le cas échéant, un copolymère statistique.
La proportion molaire d’unité (III) par rapport à la somme des unités (III) et (IV) peut aller 0% à 99%, préférentiellement de 5% à 95%, de manière davantage préférée de 10% à 50% et de manière la plus préférée de 20% à 40%.
Selon certaines variantes, la composition peut comprendre, être essentiellement constituée, voire constituée, d’un polymère comprenant, étant essentiellement constitué de, voire même étant constitué de : une unité de formule :
Figure imgf000017_0002
et une unité de formule :
Figure imgf000018_0001
Préférentiellement, le polymère est essentiellement constitué de, voire même constitué de : unités de formule (III) et (IVa).
Préférentiellement, le polymère est, le cas échéant, un copolymère statistique.
La proportion molaire d’unité (III) par rapport à la somme des unités (III) et (IVa) peut aller 0% à 99%, et préférentiellement de 5% à 95%.
La composition peut comprendre, être essentiellement constituée, voire constituée, d’un polymère comprenant une unité de formule :
Figure imgf000018_0002
Préférentiellement, le polymère est essentiellement constitué de, voire même constitué d’unités de formule (III) et (V).
Préférentiellement, le polymère est, le cas échéant, un copolymère statistique.
La proportion molaire d’unité (III) par rapport à la somme des unités (III) et (V) peut aller de 0 % à 99%, préférentiellement de 0% à 95%.
Selon certaines variantes, la composition peut comprendre, être essentiellement constituée, voire constituée, d’un polymère comprenant, étant essentiellement constitué de, voire même étant constitué de : une unité de formule :
Figure imgf000018_0003
et une unité de formule :
Figure imgf000019_0001
Préférentiellement, le polymère est essentiellement constitué de, voire même constitué d’unités de formule (III) et (Va).
Préférentiellement, le polymère est, le cas échéant, un copolymère statistique.
La proportion molaire d’unité (III) par rapport à la somme des unités (III) et (Va) peut aller de 0 % à 99%, et préférentiellement de 0% à 95%.
Un deuxième aspect pour réduire la cristallisation d’un homopolymère constitué de l’unité de répétition de formule (III) est de le mélanger avec un autre PAEK qui soit plus long à cristalliser. Cet autre PAEK peut notamment être un PEKK essentiellement constitué, préférentiellement constitué, de motif I et/ou de motif T ou encore un copolymère comprenant l’unité de répétition de formule (III), notamment ceux présentés ci-dessus.
Un troisième aspect pour réduire la vitesse de cristallisation d’un homopolymère de PEEK constitué de l’unité de répétition de formule (III) est de le mélanger avec un autre polymère différent d’un PAEK, notamment un polymère amorphe. Un polymère amorphe compatible avec de nombreux PAEKs, notamment avec un PEKK ou un PEEK, est par exemple un polyétherimide.
Un quatrième aspect, non développé en détail ici, pour réduire la cristallisation d’un homopolymère de PEEK constitué de l’unité de répétition de formule (III) serait l’ajout d’un additif jouant le rôle d’agent de modulation de la vitesse de cristallisation.
Selon certains modes de réalisations particuliers, la composition est notamment essentiellement constituée, ou constituée, d’un seul PAEK choisi parmi :
- un PEKK, notamment étant essentiellement constitué, ou constitué des motifs I et T, tel que décrit ci-dessus ; - un polymère essentiellement constitué, ou constitué d’unités de formule (III) et (IV), tel que décrit ci-dessus ; et,
- un polymère essentiellement constitué, ou constitué d’unités de formule (III) et (V), tel que décrit ci-dessus.
Selon certains modes de réalisation, la composition comprend, est essentiellement constituée de, ou est constituée de, un seul PAEK, de composition et/ou de viscosité substantiellement homogène(s).
Selon certains modes de réalisation la composition comprend, est essentiellement constituée de, ou est constituée de, plusieurs PAEKs différents, c’est-à-dire notamment ayant une composition chimique différente et/ou une viscosité différente.
Selon certains modes de réalisation particuliers, la composition comprend au moins deux PAEKs de composition chimique différente, plus particulièrement :
- un PEKK, notamment étant essentiellement constitué, ou constitué des motifs I et T, tel que décrit ci-dessus, et en plus de ce PEKK,
- l'un au moins des polymères suivants : PEK, PEEKEK, PEEK, notamment un polymère essentiellement constitué, ou constitué d’unités de formule (III) et (V) tel que décrit ci-dessus, PEEKK, PEKEKK, PEEEK, PEDEK, ou un polymère essentiellement constitué, ou constitué d’unités de formule (III) et (IV) tel que décrit ci-dessus, avec une teneur de moins de 50% en poids du poids total de la composition, de préférence inférieure ou égale à 30% massique de la composition.
Selon certains modes de réalisation particuliers, la composition comprend un mélange de plusieurs PAEKs, les PAEKs étant un copolymère de PAEK avec des proportions molaires en unités de répétition différentes. En particulier, la composition peut comprendre un mélange de copolymères de PEKKs ayant un ratio molaire différent en motifs de « type T » par rapport à la somme des motifs de « type T » et de « type I ».
Selon certains modes de réalisation particuliers, la composition peut aussi comprendre un mélange de plusieurs PAEKs, les PAEKs étant un copolymère de PAEK avec des viscosités différentes. Enfin, la composition peut aussi comprendre un mélange de copolymères de PAEKs, les PAEKs étant un copolymère de PAEK avec des proportions molaires en unités de répétition différentes et des viscosités différentes.
Selon certains modes de réalisation, la composition peut en outre comprendre un ou plusieurs autres polymères n’appartenant pas à la famille des PAEKs, notamment d’autres polymères thermoplastiques.
Selon certains modes de réalisation, la composition peut comprendre un mélange de PAEK(s) avec au moins un polymère fluoré, tels les polymères fluorés décrits dans la demande EP 2 767 986 et US 9,543,058. Le fluoropolymère peut préférentiellement être choisi parmi la liste constituée de : un polytétrafluoroéthylène (PTFE), un poly(fluorure de vinyle) (PVF), un poly(fluorure de vinyle) (PVDF), un polychlorotrifluoroéthylène (PCTFE), un polymère perfluoroalcoxy, un copolymère perfluoroalcoxy-alcane (PFA), un copolymère éthylène-propylène fluoré (FEP), un poly(éthylène-co-tétrafluoroéthylène) (ETFE), polyéthylènechlorotrifluoroéthylène (ECTFE), un élastomère perfluoré (FFKM), un perfluoropolyéther (PFPE), et leur mélange.
Les polymères fluorés étant généralement non miscibles avec les PAEKs, la composition est, dans ces modes de réalisation, avantageusement une dispersion de particules de polymères fluorés dans ledit au moins un PAEK.
Selon certains modes de réalisation, la composition comprend un mélange de PAEK(s) et d’un polyétherimide (PEI), un copolymère silicone-polyimide ou encore un copolymère bloc polysiloxane/polyimide (comme un polyétherimide/polydiméthylsiloxane (PEI/PDMS)), tels les polymères décrits dans les demandes EP 0 323 142 et US 8 013 251 .
Selon certains modes de réalisation, la composition peut comprendre alternativement aux thermoplastiques précités ou en plus de ceux-ci : un polyphénylène sulfone (PPSU), un polysulfone (PSU), un polycarbonate (PC), un polyphénylène éther (PPE), un poly(sulfure de phénylène) (PPS), un poly(téréphtalate d’éthylène) (PET), un polyamide (PA), un polybenzimidizole (PBI), un poly (amide-imide) (PAI), un poly(éther sulfone) (PES), un poly(aryl sulfone), un poly(éther imide sulfone), un polyphénylène, un polybenzoxazole, un polybenzothiazole, leur mélange. Selon certains modes de réalisations particuliers, la composition est essentiellement constituée, ou constituée d’un mélange de :
- PAEK choisi parmi : un PEKK, notamment étant essentiellement constitué, ou constitué des motifs I et T, tel que décrit ci-dessus ; un polymère essentiellement constitué, ou constitué d’unités de formule (III) et (IV), tel que décrit ci-dessus ; et un polymère essentiellement constitué, ou constitué d’unités de formule (III) et (V), tel que décrit ci-dessus ;
- avec un autre polymère choisi dans la liste constituée de :
FEP, PFA, FFKM, PEI, PEI/PDMS, PES, PSU, PPSU, PPS, PPE et leur mélange. La composition peut notamment être essentiellement constituée, ou constituée d’un mélange de :
- PEKK, essentiellement constitué, ou constitué des motifs I et T, dans lequel la proportion molaire de motifs T par rapport à la somme des motifs T et I va de 45% à 75% ;
- avec un autre polymère choisi dans la liste constituée de : FEP, PFA, FFKM, PEI, PEI/PDMS, PES, PSU, PPSU, PPS, PPE et leur mélange.
Selon certains modes de réalisation, la composition peut comprendre en outre des charges et/ou des additifs.
Parmi les charges, citons les charges de type principalement renforçantes, sous forme fibreuse ou non. Les charges non fibreuses peuvent notamment être du dioxyde de titane, du talc ou du carbonate de calcium. Les charges fibreuses peuvent notamment des fibres de verre et des fibres de carbone, broyées ou non. Parmi les charges, citons les charges de type principalement thermoconductrices, et notamment des charges pouvant être choisies dans la liste constituée de : des céramiques, telles que le nitrure de bore ou l'oxyde d'aluminium, des métaux, tels que le cuivre, l'acier inoxydable, l'aluminium, l'or, l'argent, des charges de carbone, tels que le noir de carbone, les nanotubes de carbone, le graphite, des charges minérales, telles que l'hématite, ou leur mélange.
La composition peut ainsi comprendre moins de 50 % en poids de charges, de préférence moins de 40 % en poids de charges et de préférence encore moins de 25% en poids de charges, par rapport au poids total de composition. Parmi les additifs, on peut citer les agents stabilisants (lumière, en particulier UV, et chaleur comme par exemple les sels de phosphate), les azurants optiques, colorants, pigments, les agents d’écoulement, les additifs permettant d’ajuster la viscosité de la composition à l’état de fondu, les additifs permettant d’ajuster les vitesses de cristallisation de la composition, les additifs permettant d’ajuster la capacité calorifique de la composition, ou une combinaison de ces additifs. La composition peut ainsi comprendre moins de 10% en poids, de préférence moins de 5 % en poids, et de préférence encore moins de 1 % en poids d’additif(s) par rapport au poids total de composition.
Feuille comprenant la composition sur au moins une de ses faces
Une feuille est un article tridimensionnel qui est typiquement plat ou sensiblement plan et a une épaisseur qui est significativement inférieure à la fois à sa longueur et à sa largeur. Une feuille peut notamment avoir une épaisseur inférieure à 10%, ou inférieure à 5%, par rapport à la fois à sa longueur et à sa largeur.
La feuille peut être non poreuse, poreuse, microporeuse, etc., selon l'application et l'utilisation envisagées.
Selon certains modes de réalisation, la feuille peut être constituée de la composition pseudo-amorphe à base de polyaryl éther cétone(s).
Selon certains modes de réalisation, la feuille peut être formée par une multiplicité de couches, c’est-à-dire au moins deux couches, chaque couche pouvant avoir indépendamment l’une de l’autre une composition chimique différente ou non. Dans ce mode de réalisation, la composition à base de poly-aryl-éther-cétone(s) est alors utilisée pour former une couche en périphérie de la multiplicité de couches, c’est-à-dire sur au moins l’une des deux faces de la feuille.
Selon certains modes de réalisation, chaque feuille peut être constituée de deux couches. Un exemple avantageux de feuille bi-couche est une feuille constituée d’une première couche de PEKK constitué d’unités de répétition T:l et ayant un ratio molaire T:l d’environ 70 :30 et d’une deuxième couche de PEKK constitué d’unités de répétition T:l et ayant un ratio molaire T:l d’environ 60 :40, le PEKK ayant un ratio T:l étant avantageusement utilisé pour constituer la face interne d’une feuille.
L'épaisseur de la feuille peut être mesurée, par exemple, à l'aide d'un micromètre standard.
La feuille, ou le cas échéant la couche constituée de la composition à base de poly-aryl-éther-cétone(s), peut notamment avoir une épaisseur allant de 200 microns à 20,00 millimètres. Préférentiellement la feuille a une épaisseur allant de 500 microns à 10,00 millimètres.
Selon des modes de réalisation particuliers, la feuille, ou le cas échéant la couche constituée de la composition à base de poly-aryl-éther-cétone(s), a une épaisseur égale à une valeur allant de 500 microns à 1000 microns, ou a une valeur allant de 1 ,00 millimètre à 2,00 millimètres, ou a une valeur allant de 2,00 millimètres à 3,00 millimètres, ou a une valeur allant de 3,00 millimètres à 4,00 millimètres, ou a une valeur allant de 4,00 millimètres à 5,00 millimètres, ou a une valeur allant de 6,00 millimètres à 7,00 millimètres, ou a une valeur allant de 8,00 millimètres à 9,00 millimètres, ou encore a une valeur allant de 9,00 millimètres à 10,00 millimètres.
D'une manière générale, l'épaisseur de feuille est sensiblement uniforme, c’est- à-dire que son épaisseur peut varier d’un endroit à l’autre de la feuille d’au plus environ 10%, préférentiellement d’au plus environ 5%.
La feuille, ou le cas échéant la couche constituée de la composition à base de poly-aryl-éther-cétone(s), peut être fabriquée par des méthodes connues en soi comprenant :
- une étape de chauffage de la composition à base de poly-aryl-éther-cétone(s) à une température appropriée au-dessus de sa température de fusion, pour fournir une composition de résine fondue;
- une étape de formage de la composition de résine fondue en une feuille; et
- une étape de trempe de la feuille à une vitesse suffisamment rapide pour obtenir une feuille dans un état pseudo-amorphe. Selon certains modes de réalisation, les feuilles utilisées dans la présente invention peuvent être fabriquées par extrusion à l'état fondu. La température d'extrusion dépendra de la température de fusion du polymère (qui, dans le cas d'un PEKK, est influencée par son rapport T:l) ainsi que de sa viscosité à l'état fondu. Par exemple, lorsque le rapport des isomères T:l dans un PEKK est de 70:30 ou 50:50, la température d'extrusion préférée est comprise entre environ 350°C et environ 380°C. De manière générale, des températures d'extrusion d'environ 5 °C à environ 70 °C, ou d'environ 10 °C à environ 50 °C, au-dessus de la température de fusion de la composition sont des températures appropriées.
La feuille extrudée est transportée de la filière directement sur du métal poli ou des cylindres texturés, communément appelés «cylindres refroidisseurs», car la température de surface de ces cylindres est maintenue à un niveau inférieur à la température de fusion du polymère. Un courant d'air ou autre gaz peut également être dirigé vers la feuille extrudée afin d’en faciliter le refroidissement. La vitesse à laquelle la feuille est refroidie (appelée vitesse de trempe) et solidifiée est un aspect important dans l'obtention d'une structure de feuille pseudo-amorphe. La vitesse de trempe est largement déterminée par la température des cylindres refroidisseurs, l'épaisseur de la feuille et la vitesse de la ligne. Elle doit être suffisamment rapide pour l’obtention de la feuille dans un état pseudo-amorphe.
Procédé de thermoformage double-feuilles
La Figure 1 présente schématiquement un dispositif 1 adapté pour un procédé de thermoformage double feuilles selon l’invention, notamment pour le procédé décrit par le schéma bloc de la Figure 2.
En référence à la Figure 1 , le dispositif 1 comprend un bâti 20 comprenant des moyens de serrage 21 aptes à y fixer deux feuilles 10. Les deux feuilles 10 sont initialement sensiblement parallèles l’une à l’autre et séparées par un espace inter-feuilles 60.
Les feuilles 10 comprennent chacune une face interne 11 constituée d’une composition pseudo-amorphe à base de poly-aryl-éther-cétone(s). Les faces internes 11 des deux feuilles 10 se font face l’une à l’autre et sont aptes à être mises en contact, au moins partiellement, l’une avec l’autre au niveau d’une zone de contact 12 lors de l’étape de mise en contact et coalescence.
Le dispositif 1 comprend également deux moitiés de moule 30 comprenant des parois 31 , dont la forme est adaptée à la forme finale désirée du corps creux à fabriquer.
Chaque moitié de moule 30 peut être, indépendamment l’une de l’autre, plate, de forme positive ou de forme négative.
Selon des modes de réalisation avantageux, l’une des deux moitiés de moule est de forme négative. L’autre moitié de moule peut alors être une plaque, de forme positive, ou de forme négative. L’autre moitié de moule peut notamment être une plaque ou de forme négative.
Les moitiés de moule 30 peuvent être déplacées (sens des flèches) depuis une position ouverte (Figure 1 ), à l'écart l’une de l’autre, jusqu’à une position fermée (non représentée), de sorte à ce que les parois 31 forment une cavité. C’est cette cavité qui donne à l’article fabriqué son attribut de « corps creux ».
Les faces externes 13 des deux feuilles 10 font face à leur moitié de moule 30 respective. Elles sont aptes à être mise en contact au niveau d’une zone de pincement 14 avec des parties 32 des demi-moules 30 destinées à assurer une fermeture par pincement.
Les parties 32 des demi-moules 30 peuvent être planes ou au contraire avoir une forme permettant d’augmenter la surface de contact au niveau de la zone de pincement 14.
Chaque moitié de moule 30 peut comprendre des percements 33 permettant aux gaz de s’échapper au cours, au moins, de l’étape de formage. Ces percements 33, peuvent être avantageusement reliés à un tube de sortie des gaz 40 au travers duquel le vide peut être tiré afin de permettre, au moins en partie, le formage des feuilles 10. Alternativement et/ou en complément, le formage des feuilles peut être effectué, au moins en partie, par injection de gaz pressurisé, au moyen d’un tube d’entrée de gaz 50 pouvant être inséré, au moins temporairement, au niveau de l’espace inter-feuilles 60. Le gaz peut éventuellement être chauffé de sorte à ce que les feuilles 10 conservent une température suffisamment proche de la température de ramollissement au cours de l’étape de formage. Chaque feuille peut être chauffée sur sa face externe 13 et/ou sur sa face interne 11 à l’aide d’un moyen de chauffage par radiation, par convection ou par conduction, permettant d’en assurer le ramollissement. Le chauffage peut être effectué par exemple à l’aide de lampes infrarouges et/ou par soufflage d’air chaud et/ou dans un four. Les moyens de chauffage sont disposés de tels sorte à ce que chaque feuille ramollisse de la manière la plus uniforme possible.
Selon un mode de réalisation, représenté sur la Figure 1 , un moyen de chauffage 70 peut être disposé au niveau de l’espace inter-feuilles 60 permettant ainsi de chauffer la face interne 11 des deux feuilles 10 pendant l’étape de ramollissement. En complément (non représenté sur le schéma de la Figure 1 ), des moyens de chauffage supplémentaires peuvent être utilisés, au moins temporairement, pour chauffer les faces externes des feuilles 10. Ceci peut notamment être rendu nécessaire dans le cas où la feuille a une épaisseur très importante.
Egalement en complément (non représenté sur le schéma de la Figure 1 ), des moyens de chauffage supplémentaires peuvent être utilisés de telle sorte à chauffer, dans des modes de réalisation où la température de mise en contact est supérieure à la température de ramollissement, les zones de contact 12 d’au moins une ou des deux feuilles 10. Selon certains modes de réalisation, ce mode de chauffage complémentaire peut être mis en œuvre par conduction en mettant en contact la partie du demi-moule 32 avec la zone de pincement 14 d’une des deux feuilles 10 pendant une durée suffisante. Ces moyens de chauffage complémentaires sont disposés de telle sorte à ce que les zones de pincement 14 aient une température la plus uniforme possible.
Le dispositif selon la Figure 1 est notamment adapté pour mettre en œuvre un procédé 100 de thermoformage double feuilles selon un procédé dont le diagramme en blocs est présenté à la Figure 2.
En référence à la Figure 2, le procédé 100 comprend la fourniture de deux feuilles 10 comprenant au moins une face 11 constituée d’une composition pseudoamorphe à base de poly-aryl-éther-cétone(s).
Le procédé 100 comprend une étape de ramollissement 105 de chacune des feuilles à une température de ramollissement, de sorte à former des feuilles ramollies 110. La température de ramollissement peut être autrement désignée sous le nom de « température de thermoformage ».
La température de ramollissement est supérieure ou égale à la température de transition vitreuse de chaque composition pseudo-amorphe.
Selon les modes de réalisation où la composition des feuilles est différente, la température de ramollissement peut être différente pour chaque feuille. A contrario, selon les modes de réalisation où la composition des feuilles est similaire, la température de ramollissement de chaque feuille peut être similaire. La température de ramollissement peut être mesurée à l’aide d’un thermocouple à proximité de la face interne 11 d’une feuille 10 (hors zone de contact 12).
La température de ramollissement a généralement une valeur strictement supérieure à Tg et inférieure ou égale à (Tg+80)°C. La température de ramollissement peut préférentiellement être de (Tg+10)°C à (Tg+75)°C.
Selon certains modes de réalisation, la température de ramollissement peut être de (Tg+15)°C à (Tg+65)°C ou encore de (Tg+20)°C à (Tg+60)°C.
De manière avantageuse, la température de ramollissement est sensiblement homogène sur toute la face interne 11 de chaque feuille 10, sauf éventuellement au niveau des zones de contact 12 et zones avoisinantes, si une température de contact différente de la température de ramollissement est imposée.
Par exemple, pour le PEKK constitué essentiellement, ou constitué, d’unités de répétition T et I et ayant un ratio molaire T : I égal à environ 70%, la température de ramollissement peut être de 175°C à 225°C. Dans le cas où la température de ramollissement est égale à la température de mise en contact des zones de mise en contact, une température de 195°C à 215°C peut avantageusement être choisie.
Lorsque les feuilles 10 ont atteint leur température de ramollissement, l’élément chauffant 70 peut être retiré de l’espace inter-feuilles 60.
Le procédé 100 comprend une étape de formage 115 des feuilles ramollies 110. Le formage peut notamment être mis en œuvre par soufflage d’un gaz pressurisé sur les faces internes 11 et/ou par aspiration d’air sur les faces externes 13. Par exemple une pression de 1 à 6 bars, préférentiellement de 1 .2 à 5 bars peut être exercée sur les faces internes 11 et/ou un vide de 0.001 à 0.9 bar, préférentiellement de 0.05 à 0.85 bar peut être exercée sur les faces externes 13.
Le procédé 100 comprend une étape de de mise en contact et de coalescence 125 d’au moins une zone de contact 12 desdites faces 11 des feuilles ramollies de sorte à former un corps intermédiaire 130. Pour l’étape de mise en contact et coalescence, les zones de contact 12 sont chauffées à une température de mise en contact, chaque zone de contact 12 restant dans un état essentiellement amorphe au moins jusqu’à la mise en contact. L’étape de contact est mise en œuvre par rapprochement des demi-moules 30 de sorte à ce que les parties du demi-moule 32 entrent d’abord en contact avec les feuilles 10 au niveau des zones de pincements 14, puis font entrer en contact les deux feuilles 10 au niveau de leur zone de contact 12. La coalescence des deux feuilles 10 est rendue possible du fait que la composition des faces internes 11 les constituant est dans un état essentiellement amorphe au moment de la mise en contact des zones de contact 12.
La température de contact peut être mesurée à l’aide d’un thermocouple à proximité d’une zone de contact 12 d’une feuille 10.
La température de contact est généralement supérieure ou égale à la température de ramollissement.
La température de contact est généralement inférieure ou égale à la température de moule.
Selon certains modes de réalisation, la température de contact peut être égale à environ la température de ramollissement.
Selon certains modes de réalisation, la température de contact peut être égale à environ la température de moule.
Selon certains modes de réalisation, la température de contact peut être supérieure de quelques degrés ou quelques dizaines de degrés par rapport à la température de ramollissement.
La température de contact peut notamment être d’au moins 5°C, ou d’au moins 10°C, ou d’au moins 15°C supérieure à la température de ramollissement. La température de contact peut notamment être d’au plus 75°C, ou d’au plus 60°C, ou d’au plus 50°C, ou d’au plus 45°C, ou d’au plus 40°C, ou d’au plus 35°C, ou d’au plus 30°C, ou d’au plus 25°C ou d’au plus 20°C supérieure à la température de ramollissement.
Selon certains modes de réalisation, la température de contact peut être inférieure de quelques degrés ou quelques dizaines de degrés par rapport à la température de moule. Ces modes de réalisation peuvent notamment être mis en œuvre quand la partie 32 d’un demi-moule 30 est mise en contact pendant une durée suffisante avec la zone de pincement 14 avant l’étape de contact et coalescence des zones de contact 12 des feuilles 10.
La température de contact peut notamment être d’au plus 5°C, ou d’au plus10°C, ou d’au plus15°C inférieure à la température de moule.
Afin de faciliter la coalescence des zones de contact 12, une pression de pincement peut être exercée sur les deux demi-moules 30. Selon certains modes de réalisation, la pression de pincement est de 1 bar à 50 bars. La pression de pincement peut préférentiellement être de 5 bars à 40 bars et encore préférentiellement être de 7 à 30 bars. La pression de pincement peut être adaptée en ménageant un entrefer entre les deux demi-moules.
Le procédé 100 comprend enfin une étape de cristallisation 135 de la composition à base de poly-aryl-éther-cétone(s) à une température de moule, de sorte à former un corps creux cristallisé après l’étape de mise en contact et de coalescence 115 et après l’étape de formage 125, pour former un corps creux cristallisé 140.
Le moule peut être porté à la température de moule, préférentiellement la plus uniforme possible, grâce à des moyens de chauffage adaptés de moule, par exemple des dispositifs de chauffage électrique.
La température de moule peut avantageusement être une température voisine de la température à laquelle la composition présente un minimum de temps de demi- cristallisation isotherme.
Selon certains modes de réalisation, la température de moule peut être voisine de (Tg +Tf)/2. La température de moule n’est préférentiellement pas supérieure à 35°C, ou pas supérieure à 25 °C, ou pas supérieure à 15°C, ou pas supérieure à 10°C au-dessus de (Tg +Tf)/2. La température de moule n’est préférentiellement pas inférieure à 45°C, ou à 35°C, ou à 25°C, ou à 20°C au-dessous de (Tg +Tf)/2. Par exemple, pour le PEKK constitué essentiellement, ou constitué, d’unités de répétition T et I et ayant un ratio molaire T:l égal à environ 70%, la température de moule peut être de 210°C à 270°C, et préférentiellement de 220°C à 260°C, et préférentiellement encore de 225°C à 255°C.
De manière avantageuse, l’écart entre la température de ramollissement et la température de moule peut être inférieur ou égale à 60°C, de sorte à éviter tout gauchissement. L’écart entre la température de ramollissement et la température de moule peut notamment être inférieur ou égal à 50°C, ou encore inférieur ou égal à 40°C.
De manière avantageuse également, l’écart entre la température de ramollissement et la température de moule peut être supérieure ou égale à 15°C, ou supérieure ou égale à 20°C, ou encore supérieure ou égale à 25°C.
La durée de l’étape de cristallisation peut dépendre de l’épaisseur des feuilles, de la température de moule, de la forme du moule et du taux de cristallisation souhaité. Par exemple, pour le PEKK constitué essentiellement, ou constitué, d’unités de répétition T et I et ayant un ratio molaire T:l égal à environ 70%, cette durée peut être de 1 minute à 30 minutes, préférentiellement de 2 minutes à 15 minutes, et de manière davantage préférée de 3 minutes à 10 minutes.
Selon certains modes de réalisation, le chauffage suffisamment long de la zone de contact permet d’atteindre un taux de cristallinité moyen strictement supérieur à 7%, tel que mesuré par WAXS. Préférentiellement, il permet d’atteindre un taux de cristallinité supérieur ou égal à 10%, ou supérieur ou égal à 15%, ou supérieur ou égal à 20%, voire supérieur ou égal à 25%.
Bien que le schéma bloc de la Figure 2 représente des étapes de type séquentielles, certaines de ces étapes peuvent dans la pratique se chevaucher et/ou avoir lieu de manière simultanée, voire dans un ordre différent.
Selon certains modes de réalisation, l’étape de formage 115 des feuilles 10 peut être initiée avant l’étape de mise en contact et coalescence 125 en initiant un soufflage d’air et ou une aspiration sous vide avant que les zones de contact 12 n’aient été mises en contact. Selon ces modes de réalisation, l’étape de formage 115 peut être mise en œuvre de sorte à se terminer avant, en même temps, ou après l’étape de mise en contact et de coalescence.
Selon des modes de réalisation particuliers, l’étape de formage 115 peut se terminer avant l’étape de mise en contact et coalescence 125. Tel est le cas notamment quand les feuilles sont formées une à une puis ensuite mise en contact l’une avec l’autre.
Selon certains modes de réalisation, l’étape de formage 115 peut se terminer approximativement en même temps que l’étape de mise en contact et coalescence 125.
Selon certains modes de réalisation (non représenté sur la figure 2), l’étape de formage peut être mise en œuvre essentiellement après l’étape de mise en contact et coalescence.
Bien que l’étape de cristallisation peut, dans une certaine mesure, être initiée avant la fin de l’étape de mise en contact et/ou avant la fin de l’étape de formage, il est essentiel pour la mise en œuvre de l’invention que la composition soit dans un état essentiellement amorphe pour la mise en contact et coalescence des zones de contact des feuilles. Il est également avantageux que l’étape de formage soit mise en œuvre avec une composition essentiellement amorphe.
Des corps creux pouvant être mis en œuvre selon l’invention sont innombrables et peuvent avoir des formes plus ou moins complexes. Parmi les corps creux possibles, on peut notamment citer les objets de type « réservoir » ou les objets de type « boîtier » ou « étui ».
Exemples
Exemple 1
Un corps creux a été fabriqué à l’aide d’un dispositif tel que schématisé à la Figure 1 selon un procédé suivant le diagramme bloc de la Figure 2.
Deux feuilles amorphes de 2,3 millimètres d’épaisseur constituées d’un polyéthercétonecétone constitué de motifs T et I avec un ratio molaire 70 :30 et une viscosité à 380°C, à 1 Hz, de 3906 Pa.s sont utilisées. La face interne des feuilles est chauffée à une température de ramollissement de 210°C pour l’étape de ramollissement. Aucun moyen de chauffage supplémentaire n’est mis en œuvre pour chauffer les zones de contact interfeuilles.
Les deux demi-moules sont refermés avec une pression de pincement de 10 bars. Les deux feuilles sont thermoformées et maintenues pendant environ 5 minutes dans un moule porté à une température de 240°C. Le moule est ensuite ouvert en enlevant un des deux demi-moules et le corps creux chaud est refroidi par jet d’air.
Le corps creux ainsi obtenu est d’apparence opaque, c’est-à-dire cristallisé.
Exemple 2
Un corps creux a été fabriqué avec les mêmes feuilles que celles utilisées à l’exemple 1 .
La face interne des feuilles est chauffée à une température de ramollissement de 200°C pour l’étape de ramollissement. Les zones de contacts sont portées à une température de 220°C.
Les deux demi-moules sont refermés avec une pression de pincement de 10 bars. Les deux feuilles sont thermoformées et maintenues pendant environ 5 minutes dans un moule porté à une température de 240°C. Le moule est ensuite ouvert en enlevant un des deux demi-moules et le corps creux chaud est refroidi par jet d’air.
Le corps creux ainsi obtenu est d’apparence opaque, c’est-à-dire cristallisé.

Claims

32 Revendications
1 . Procédé (100) de thermoformage double-feuilles pour fabriquer un corps creux (140), ledit procédé comprenant :
- la fourniture de deux feuilles (10) comprenant au moins une face (11 ) constituée d’une composition pseudo-amorphe à base de poly-aryl-éther-cétone(s);
- une étape de ramollissement (105) des deux feuilles (10) à une température de ramollissement, de sorte à former des feuilles ramollies (110), la température de ramollissement étant supérieure ou égale à la température de transition vitreuse de chaque composition pseudo-amorphe ;
- une étape de formage (115) des feuilles ramollies (110) de sorte à former des feuilles thermoformées (120) ;
- une étape de mise en contact et de coalescence (125) d’au moins une zone de contact (12) desdites faces (11 ) des feuilles ramollies, et/ou des feuilles en cours de formage ou déjà formées, de sorte à former un corps intermédiaire (130), les zones de contact (12) étant chauffées à une température de mise en contact, chaque zone de contact restant dans un état essentiellement amorphe au moins jusqu’à la mise en contact; et,
- une étape de cristallisation (135) de la composition à une température de moule, pour former un corps creux cristallisé (140), l’étape de cristallisation (135) étant mise en œuvre essentiellement après l’étape de mise en contact et de coalescence (125), et préférentiellement essentiellement après l’étape de formage (115).
2. Procédé de thermoformage double-feuilles selon la revendication 1 , dans lequel ladite composition a une viscosité à 380°C, à 1 Hz, telle que mesurée par un rhéomètre à plans parallèles, allant de 200 Pa.s à 8000 Pa.s, préférentiellement de 500 Pa.s à 5000 Pa.s, et plus préférentiellement de 750 Pa.s à 4500 Pa.s.
3. Procédé de thermoformage selon l’une quelconque des revendications 1 et 2, dans lequel le temps de demi-cristallisation isotherme à la température de contact est d’au moins 3 secondes, préférentiellement d’au moins 5 secondes, et le plus préférentiellement d’au moins 8 secondes ; et/ou dans lequel le temps de demi-cristallisation isotherme à la température de contact est d’au plus 30 minutes, préférentiellement d’au plus 10 minutes, préférentiellement encore d’au plus 5 minutes, et le plus préférentiellement d’au plus 2 minutes.
4. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel l’au moins un poly-aryl-éther-cétone est un poly-éther-cétone-cétone, préférentiellement un homopolymère ou un copolymère essentiellement constitué, ou constitué, d’au moins un motif de répétition isophtalique (I), ayant pour formule chimique :
Figure imgf000035_0001
et dans le cas du copolymère, d’un motif de répétition téréphtalique (T), ayant pour formule chimique :
Figure imgf000035_0002
le pourcentage molaire en motifs T par rapport à la somme des motifs T et I étant de 0% à 5% ou de 35% à 78%, préférentiellement de 45% à 75%, et de manière davantage préférée de 48% à 52% ou de 65% à 74%.
5. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications 1 à 3, dans lequel l’au moins un poly-aryl-éther-cétone est un copolymère essentiellement constitué, ou constitué, d’un motif de répétition de formule chimique :
Figure imgf000036_0001
et d’un motif de répétition de formule chimique :
Figure imgf000036_0002
le pourcentage molaire en unité (III) par rapport à la somme des unités (III) et (IV) étant de : 0% à 99%, préférentiellement de 5% à 95%, préférentiellement encore de 10% à 50% et de manière la plus préférée de 20% à 40%.
6. Procédé de thermoformage double-feuilles, selon l’une quelconque des revendications 1 à 3, dans lequel l’au moins un poly-aryl-éther-cétone est un copolymère essentiellement constitué, ou constitué, d’un motif de répétition ayant pour formule :
Figure imgf000036_0003
et d’un motif de répétition ayant pour formule:
Figure imgf000036_0004
le pourcentage molaire en unité (III) par rapport à la somme des unités (III) et (V) étant de 0% à 99% et préférentiellement de 0% à 95%.
7. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel la composition est constituée de(s) polyaryl éther cétone(s), optionnellement d’autre(s) polymère(s) thermoplastique(s) différent(s) d’un polyaryl éther cétone, optionnellement de charge(s), et optionnellement d’additif(s).
8. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel chaque feuille est constituée, indépendamment ou non l’une de l’autre, d’une composition pseudo-amorphe à base de polyaryl éther cétone(s).
9. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel les deux feuilles ont, indépendamment ou non l’une de l’autre, une épaisseur de 200 microns à 20 millimètres, préférentiellement une épaisseur de 500 microns à 10 millimètres.
10. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel l’étape de cristallisation est mise en œuvre jusqu’à un taux de cristallinité moyen dans l’épaisseur strictement supérieur à 7%, tel que mesuré par WAXS, au cours de l’étape de cristallisation; préférentiellement jusqu’à un taux de cristallinité moyen supérieur ou égal à 10%, ou supérieur ou égal à 15%, ou supérieur ou égal à 20%, voire supérieur ou égal à 25%.
11. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel l’étape de ramollissement (105) est mise en œuvre à une température de ramollissement ayant une valeur strictement supérieure à Tg et inférieure ou égale à (Tg+80)°C, et préférentiellement ayant une valeur allant de (Tg+10)°C à (Tg+75)°C.
12. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel l’étape de cristallisation est mise en œuvre à une température de moule voisine de la température à laquelle la composition présente un minimum de temps de demi-cristallisation isotherme. 36
13. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel l’écart entre la température de moule et la température de ramollissement est inférieur ou égal à 60°C, et/ou supérieur ou égal à 15°C.
14. Procédé de thermoformage double-feuilles selon l’une quelconque des revendications précédentes, dans lequel l’étape de mise en contact et de coalescence est mise en œuvre avec une pression de pincement ayant une valeur allant de 1 bar à 50 bars, préférentiellement avec une pression de pincement ayant une valeur allant de 5 bars à 40 bars, et de manière davantage préférée avec une pression de pincement ayant une valeur allant de 7 bars à 30 bars.
15. Corps creux comprenant au moins une surface interne constituée d’une composition cristallisée à base de polyaryl éther cétone(s), susceptible d’être obtenu par un procédé selon l’une quelconque des revendications 1 à 14.
PCT/FR2022/051909 2021-10-12 2022-10-11 Procédé de thermoformage double-feuilles d'un corps creux et corps creux en dérivant WO2023062312A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280068633.9A CN118103193A (zh) 2021-10-12 2022-10-11 用于中空物体的双片材热成型的方法和所得中空物体
KR1020247015658A KR20240075924A (ko) 2021-10-12 2022-10-11 중공체의 이중 시트 열성형 방법 및 수득된 중공체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2110778 2021-10-12
FR2110778A FR3127906A1 (fr) 2021-10-12 2021-10-12 Procédé de thermoformage double-feuilles d’un corps creux et corps creux en dérivant

Publications (1)

Publication Number Publication Date
WO2023062312A1 true WO2023062312A1 (fr) 2023-04-20

Family

ID=80122579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051909 WO2023062312A1 (fr) 2021-10-12 2022-10-11 Procédé de thermoformage double-feuilles d'un corps creux et corps creux en dérivant

Country Status (4)

Country Link
KR (1) KR20240075924A (fr)
CN (1) CN118103193A (fr)
FR (1) FR3127906A1 (fr)
WO (1) WO2023062312A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323142A2 (fr) 1987-12-24 1989-07-05 PIRELLI GENERAL plc Mélanges ternaires comme matière d'enrobage isolante
US4996287A (en) * 1988-12-13 1991-02-26 E. I. Du Pont De Nemours And Company Thermoformable polyaryletherketone sheet
US5114767A (en) 1990-02-09 1992-05-19 General Electric Company Process for twin-sheet forming high heat distortion temperature thermoplastic material and articles therefrom
US8013251B2 (en) 2008-03-17 2011-09-06 Sabic Innovative Plastics Ip B.V. Electrical wire comprising an aromatic polyketone and polysiloxane/polyimide block copolymer composition
EP2767986A1 (fr) 2011-12-14 2014-08-20 Daikin Industries, Ltd. Fil isolé
US9543058B2 (en) 2014-02-25 2017-01-10 Essex Group, Inc. Insulated winding wire
US20200147852A1 (en) * 2017-06-15 2020-05-14 Bruce Clay Production of semicrystalline parts from pseudo-amorphous polymers
WO2021074218A1 (fr) * 2019-10-15 2021-04-22 Arkema France Feuilles polymères thermoformables à base de polyaryléthercétone pseudo-amorphe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323142A2 (fr) 1987-12-24 1989-07-05 PIRELLI GENERAL plc Mélanges ternaires comme matière d'enrobage isolante
US4996287A (en) * 1988-12-13 1991-02-26 E. I. Du Pont De Nemours And Company Thermoformable polyaryletherketone sheet
US5114767A (en) 1990-02-09 1992-05-19 General Electric Company Process for twin-sheet forming high heat distortion temperature thermoplastic material and articles therefrom
US8013251B2 (en) 2008-03-17 2011-09-06 Sabic Innovative Plastics Ip B.V. Electrical wire comprising an aromatic polyketone and polysiloxane/polyimide block copolymer composition
EP2767986A1 (fr) 2011-12-14 2014-08-20 Daikin Industries, Ltd. Fil isolé
US9543058B2 (en) 2014-02-25 2017-01-10 Essex Group, Inc. Insulated winding wire
US20200147852A1 (en) * 2017-06-15 2020-05-14 Bruce Clay Production of semicrystalline parts from pseudo-amorphous polymers
WO2021074218A1 (fr) * 2019-10-15 2021-04-22 Arkema France Feuilles polymères thermoformables à base de polyaryléthercétone pseudo-amorphe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "What Is Twin Sheet Thermoforming | Associated Thermoforming Inc", 26 March 2018 (2018-03-26), pages 1 - 4, XP055916580, Retrieved from the Internet <URL:https://ati-forms.com/what-is-twin-sheet-thermoforming/> [retrieved on 20220429] *

Also Published As

Publication number Publication date
KR20240075924A (ko) 2024-05-29
CN118103193A (zh) 2024-05-28
FR3127906A1 (fr) 2023-04-14

Similar Documents

Publication Publication Date Title
EP2487196B1 (fr) Procédé de production d&#39; un article moulé en polyimide coloré
KR101736904B1 (ko) 낮은 광학 위상 지연을 구비한 다층 물품
FR2606328A1 (fr) Articles multicouches thermodurcis, orientes biaxialement, et procede de fabrication
WO2008013151A1 (fr) Film polyimide renfermant de multiples composants polyimide et son procédé de production
FR2883791A1 (fr) Structure plane composee d&#39;un assemblage cohesif de cellules alveolaires jointives
FR2566323A1 (fr) Film de copolymere de fluorure de vinylidene
WO2023062312A1 (fr) Procédé de thermoformage double-feuilles d&#39;un corps creux et corps creux en dérivant
FR2899145A1 (fr) Procede pour la fabrication d&#39;une structure alveolaire a base de matiere plastique
BE1010654A3 (fr) Procede de mise en oeuvre d&#39;une matiere thermoplastique semi-cristalline.
FR2927274A1 (fr) Procede pour la fabrication d&#39;une structure tridimensionnelle perforee a base de matiere plastique et dispositif pour la mise en oeuvre de ce procede
FR2948895A1 (fr) Fabrication et utilisation d&#39;un profile renforce en matiere thermoplastique
EP3494158B1 (fr) Polyester thermoplastique semi-cristallin pour la fabrication de films bi-orientés
WO2010024349A1 (fr) Feuille polymère et procédé de fabrication à cet effet, et feuille de scellement de cellule de batterie solaire et module de batterie solaire utilisant ladite feuille polymère
WO2021069833A1 (fr) Poudre de poly-aryl-éther-cétone(s) chargée, procédé de fabrication et utilisation correspondants
TWI827755B (zh) 積層體以及使用有積層體之包裝體
EP4143858A1 (fr) Conducteur isolé apte à être utilisé dans un bobinage, bobinage en dérivant et procédés de fabrication correspondants
WO2021136904A1 (fr) Procédé de fabrication d&#39;un produit à base de poly-aryl-éther-cétone et produit correspondants
WO2008088336A1 (fr) Articles de fabrication revetus a base de melanges de polymeres a temperature de transition vitreuse elevee
JP2008279696A (ja) 多層積層構造体、その製造方法および製造装置
FR3079163A1 (fr) Nappe de materiau fibreux impregne, son procede de fabrication et son utilisation pour la fabrication de pieces composites en trois dimensions
EP0113638A1 (fr) Film d&#39;alcool polyvinylique et son application pour la préparation de films composites imperméables aux gaz
EP3484682B1 (fr) Procédé de fabrication d&#39;une feuille mince extrudée, et feuille mince ainsi produite
FR2894511A1 (fr) Structures alveolaires a base de polymeres thermoplastiques amorphes
BE1026110B1 (fr) Production de corps creux mono ou multicolores et transparents par rotomoulage
EP0069682B1 (fr) Procédé de préparation de corps creux biorientés en matière plastique, comportant un revêtement imperméable aux gaz et résistant à l&#39;eau et les corps creux obtenus conformément à ce procédé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22802206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247015658

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022802206

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022802206

Country of ref document: EP

Effective date: 20240513