WO2023060571A1 - 一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料 - Google Patents

一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料 Download PDF

Info

Publication number
WO2023060571A1
WO2023060571A1 PCT/CN2021/124147 CN2021124147W WO2023060571A1 WO 2023060571 A1 WO2023060571 A1 WO 2023060571A1 CN 2021124147 W CN2021124147 W CN 2021124147W WO 2023060571 A1 WO2023060571 A1 WO 2023060571A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium phosphate
flame retardant
bio
preparation
modified nano
Prior art date
Application number
PCT/CN2021/124147
Other languages
English (en)
French (fr)
Inventor
刘治田
王成
Original Assignee
武汉工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉工程大学 filed Critical 武汉工程大学
Priority to PCT/CN2021/124147 priority Critical patent/WO2023060571A1/zh
Publication of WO2023060571A1 publication Critical patent/WO2023060571A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints

Definitions

  • the invention belongs to the technical field of novel flame-retardant and smoke-suppressing additives and fireproof coatings, and in particular relates to a bio-based macromolecule modified nano-zirconium phosphate flame retardant and a fireproof coating prepared by using the same.
  • ⁇ -ZrP The two-dimensional layered nanomaterial ⁇ -zirconium phosphate ( ⁇ -ZrP) has attracted much attention due to its excellent chemical properties, thermal stability, acid and alkali resistance, and potential high catalytic performance, and is often used as a polymer flame retardant. additive.
  • ⁇ -ZrP as a layered inorganic substance with a regular structure that can be synthesized artificially, has the characteristics of adjustable aspect ratio and narrow particle size distribution, and is considered to be one of the excellent matrices for the preparation of polymer-inorganic nanocomposites.
  • Layered zirconium phosphate not only has the commonality of layered compounds, but also has characteristics that other layered compounds do not have, such as large ion exchange space, easy intercalation and stripping, adjustable interlayer spacing, and solid acid properties; at the same time, due to The interlayer of zirconium phosphate is rich in Lewis acid points, and has good catalytic charring effect on various polymers, so it has unique advantages in the field of polymer flame retardancy.
  • zirconium phosphate has a layered barrier effect and solid acid catalyzed char formation, which can significantly improve the flame retardancy of flame retardants, but because the carbon layer of the flame retardant system reported so far is relatively loose, and zirconium phosphate is easy to agglomerate, This limits the catalytic carbonization efficiency of zirconium phosphate, leading to problems such as poor thermal stability and low flame retardant efficiency of flame retardants.
  • the main purpose of the present invention is to provide a bio-based macromolecule modified nano-zirconium phosphate flame retardant, which uses piperazine
  • the positive and negative attraction of cyclodextrin, piperazine is adsorbed on the surface of cyclodextrin, and then nano-zirconium phosphate is introduced to modify its surface, and the bio-based macromolecule modified nano-zirconium phosphate flame retardant is prepared; It is applied to the preparation of intumescent fireproof coatings, which can show the advantages of excellent char formation, good film formation, long fire resistance time, good water resistance and durability, short drying time, and environmental friendliness, and the preparation process involved is simple and the reaction Mild conditions, suitable for popularization and application.
  • a bio-based macromolecule modified nano zirconium phosphate flame retardant the preparation method of which comprises the following steps:
  • step 2) Disperse the solid product obtained in step 1) in 1,4-dioxane, then add nano-zirconium phosphate and perform mechanical stirring at a certain temperature, centrifugally wash, and dry to obtain the bio-based macromolecule-modified nano-phosphate Zirconium flame retardant.
  • the volume ratio of the alcohol solvent to water used in the alcohol-water solvent is 1:5-10:1.
  • the alcohol solvent can be selected from one or more of dehydrated ethanol, dehydrated methanol, isopropanol and the like.
  • the dissolution step adopts ultrasonic dissolution conditions, and the temperature is 20-50°C.
  • the stirring reaction time in step 1) is 6-18h, and the reaction temperature is 40-90°C.
  • the molar ratio of piperazine to cyclodextrin is 1:3-10:1.
  • the nano zirconium phosphate is ⁇ -zirconium phosphate ( ⁇ -ZrP); its particle size is 50-900nm.
  • the mechanical stirring temperature in step 2) is 30-95°C, and the time is 12-24h.
  • the molar ratio of the nano zirconium phosphate introduced in step 2) to the piperazine introduced in step 1) is 5:1 ⁇ 1:10.
  • the washing step in step 2) is sequentially washing with acetone for 2 to 3 times, ethanol for 2 to 3 times, and water for 2 to 3 times.
  • the environmentally friendly flame retardant obtained in the above scheme is applied to the preparation of intumescent fireproof coatings.
  • the components and their mass percentages include: 20-30% of polymer emulsion, 30-36% of ammonium polyphosphate, and 10-20% of pentaerythritol , melamine 10-15%, titanium dioxide 1-5%, hydroxyethyl cellulose 0.5-1%, dispersant 0.5-1%, defoamer 0.5-1%, n-octanol 0.5-1%, bio-based macromolecule
  • the flame retardant for modifying the nanometer zirconium phosphate is 1-10%, and the rest is water.
  • the mass percentage of the bio-based macromolecule-modified nano-zirconium phosphate flame retardant is 3.5-5.5%, and under the condition of a relatively low dosage of flame retardant, excellent flame retardant performance can be achieved, taking into account relatively high Good overall performance.
  • the polymer emulsion is one or more of pure acrylic emulsion, methacrylate modified core-shell emulsion, water-based epoxy resin emulsion and modified derivatives of these three emulsions. .
  • the intumescent fireproof coating prepared according to the above scheme has excellent fire resistance and smoke suppression performance, good durability and waterproof performance, low halogen-free cost, good char formation, high carbon layer strength, environmental friendliness and wide applicability.
  • the present invention first utilizes the positive and negative electric attraction between piperazine and cyclodextrin to adsorb piperazine on the surface of bio-based macromolecular cyclodextrin, and then uses nanometer zirconium phosphate to coat the surface to improve the thermal conductivity of cyclodextrin.
  • Decomposition temperature at the same time, piperazine with excellent char formation and cyclodextrin with a large number of hydroxyl groups are catalyzed and carbonized by the solid acid effect of nano-zirconium phosphate at high temperature, which can form a dense and high-strength char layer, which plays a role in heat and oxygen insulation. role;
  • the pentaerythritol in the fire-resistant coatings reacts with ammonium polyphosphate at high temperature, dehydrates and carbonizes, and the melamine is decomposed by heat to release non-combustible gases, forming a honeycomb carbon layer, which plays a flame-retardant role; While the bio-based flame retardant obtained in the present invention exerts a flame-retardant effect, it can quickly form charcoal on the surface of the substrate, fill the gaps between the loose carbon layers of the coating, and form many and dense micro-nano carbon cages to block the carbon dioxide in the air.
  • the synergistic flame retardant reaction of zirconium phosphate, piperazine and cyclodextrin can be cross-linked to produce a spatial network structure with high thermal stability. Further improving the degree of graphitization of the carbon layer can realize the P-N-Zr synergistic effect, and at the same time can effectively improve the carbon layer strength of the carbon cage, and further play a flame-retardant effect on the microstructure level, and can be combined with the intumescent flame-retardant system in the fire-resistant coating Play a synergistic flame retardant effect and improve its durability.
  • the heterocyclic ring and polyhydroxy cyclodextrin in piperazine can be used as a char-forming agent when the polymer matrix is burned or degraded, and play a role in delaying the thermal decomposition of the polymer, and can work together with phosphorus, nitrogen and zirconium to exert synergistic Charcoal flame retardant and other effects, so that the obtained flame retardant has better thermal stability, durability, can effectively improve the flame retardant performance of the intumescent fire retardant coating.
  • the flame retardant obtained in the present invention integrates flame retardant, smoke suppression and enhanced functions, and has low halogen-free cost, excellent char formation, high carbon layer strength, environmental friendliness and wide applicability, and the preparation method involved is simple in process and reaction Mild conditions, suitable for popularization and application.
  • the fireproof coating prepared by the present invention integrates flame retardancy, smoke suppression and environmental protection, has high carbon layer strength, good compactness, simple preparation method, easy molding, mild reaction conditions, and wide application fields.
  • the zirconium phosphate used is all ⁇ -zirconium phosphate, which specifically includes the following preparation steps: prepare 100 mL of concentrated phosphoric acid with a molar concentration of 3mol/L, add it to a 250 ml three-necked flask, and then add 10.00 g of zirconium oxychloride (ZrOCl 2 -8H 2 0), heat up to 95°C, mechanically stir for 20 minutes to fully disperse zirconium oxychloride, then stop stirring, and react at reflux temperature for 24 hours.
  • zirconium phosphate used is all ⁇ -zirconium phosphate, which specifically includes the following preparation steps: prepare 100 mL of concentrated phosphoric acid with a molar concentration of 3mol/L, add it to a 250 ml three-necked flask, and then add 10.00 g of zirconium oxychloride (ZrOCl 2 -8H 2 0), heat up to 95°C, mechanical
  • a kind of bio-based macromolecule modified nano zirconium phosphate flame retardant, its preparation method comprises the following steps:
  • step 2) Mechanically stirring the solid product obtained in step 1) with 0.1mol nano zirconium phosphate at 60°C for 16 hours, after centrifugation, washing with acetone for 2 to 3 times, ethanol for 2 to 3 times, and water for 2 to 3 times; Dry at 80° C. for 24 hours to obtain the flame retardant of bio-based macromolecule-modified nano zirconium phosphate.
  • a kind of bio-based macromolecule modified nano zirconium phosphate flame retardant, its preparation method comprises the following steps:
  • step 2) mechanically stirring the solid product obtained in step 1) with 0.2mol nanometer zirconium phosphate at 50° C. for 12 hours, after centrifugation, washing with acetone for 2 to 3 times, ethanol for 2 to 3 times, and water for 2 to 3 times; 80 and drying at °C for 24 hours to obtain the flame retardant of bio-based macromolecule modified nano zirconium phosphate.
  • Example 1 The flame retardant obtained in Example 1 is applied to the preparation of acrylate-based intumescent fireproof coatings, and the specific steps include:
  • each component and its mass percentage include: methacrylic acid modified acrylate emulsion 20%, ammonium polyphosphate 36%, pentaerythritol 12%, melamine 12%, titanium dioxide 3%, hydroxyl 0.5% ethyl cellulose, 0.5% dispersant, 0.5% defoamer, 0.5% n-octanol, 10% water, 5% flame retardant of bio-based macromolecule modified nano zirconium phosphate;
  • zirconium phosphate flame retardant based on graphitized carbon nitride composite intercalation modification, methacrylic acid-modified acrylate emulsion and n-octanol are thoroughly ground and mixed to obtain the fire-resistant coating.
  • the preparation method of the fireproof coating described in Application Example 2 is roughly the same as Application Example 1, except that each component and its mass percentage are: 20% of methacrylic acid modified acrylate emulsion, 36% of ammonium polyphosphate, pentaerythritol 12%, melamine 12%, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 12%, bio-based macromolecule modified nano zirconium phosphate barrier Fuel agent 3%.
  • the preparation method of the fireproof coating described in Application Example 3 is roughly the same as Application Example 1, except that the components and their mass percentages are: 20% of methacrylic acid modified acrylate emulsion, 36% of ammonium polyphosphate, Pentaerythritol 12%, melamine 12%, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 13%, bio-based macromolecule modified nano zirconium phosphate Flame retardant 2%.
  • the preparation method of the fireproof coating described in comparative example 1 is roughly the same as that of application example 1, and the difference is that each component and its mass percentage are: methacrylic acid modified acrylate emulsion 20%, ammonium polyphosphate 36%, Pentaerythritol 12%, melamine 12%, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 15%.
  • the preparation method of the fireproof coating described in comparative example 2 is roughly the same as that of application example 1, the difference being: methacrylic acid modified acrylate emulsion 20%, ammonium polyphosphate 36%, pentaerythritol 12%, melamine 12%, titanium dioxide 3% , 0.5% hydroxyethyl cellulose, 0.5% dispersant, 0.5% defoamer, 0.5% n-octanol, 10% water, 5% zirconium phosphate.
  • the preparation method of the fireproof coating described in Comparative Example 3 is roughly the same as that of Application Example 1, except that: methacrylic acid modified acrylate emulsion 20%, ammonium polyphosphate 36%, pentaerythritol 12%, melamine 12%, titanium dioxide 3% , 0.5% hydroxyethyl cellulose, 0.5% dispersant, 0.5% defoamer, 0.5% n-octanol, 10% water, 5% cyclodextrin.
  • the preparation method of the fireproof coating described in Comparative Example 4 is roughly the same as that of Application Example 1, except that: methacrylic acid modified acrylate emulsion 20%, ammonium polyphosphate 36%, pentaerythritol 12%, melamine 12%, titanium dioxide 3% , hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 10%, the mixture of cyclodextrin and zirconium phosphate 5wt% (zirconium phosphate 3wt%, cyclodextrin 2wt% %).
  • the flame retardant obtained in the present invention has good flame retardant efficiency, high carbon formation rate of the base material, excellent comprehensive performance, good resin compatibility, good durability, environmental friendliness, and will not damage other properties of the material. wide range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Fireproofing Substances (AREA)

Abstract

本发明公开了一种生物基大分子修饰纳米磷酸锆的阻燃剂,首先利用哌嗪与环糊精的正负电吸引作用,将哌嗪吸附在环糊精表面,再引入纳米磷酸锆对其进行表面改性而成。该阻燃剂可有效解决磷酸锆易团聚的问题,同时可有效提高与树脂相容性以及热稳定性,可与防火涂料中的膨胀阻燃体系发挥协同阻燃作用,形成了碳-氮-磷-锆协效阻燃效应,可显著提升所得防火涂料的成膜性、耐火性和耐久性等。本发明所得阻燃剂集阻燃抑烟与增强功能于一体,且无卤成本低,成炭性好,碳层强度高,环保友好,适用性广泛,且涉及的制备方法工艺简单,反应条件温和,适合推广应用。

Description

一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料 技术领域
本发明属于新型阻燃抑烟助剂及防火涂料技术领域,具体涉及一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料。
背景技术
二维层状纳米材料α-磷酸锆(α-ZrP)因其优异的化学性能、热稳定性、耐酸耐碱性和潜在的高催化性能而备受关注,并常被用作聚合物阻燃添加剂。α-ZrP作为一种可人工合成的具有规整结构的层状无机物,具有长径比可调控,粒子尺寸分布窄等特点,被认为是制备聚合物无机纳米复合材料的优良基体之一。层状磷酸锆不仅具有层状化合物的共性,还具备其他层状化合物所不具有的特性,比如较大的离子交换空间、易于插层剥离、层间距可调,具有固体酸特性等;同时由于磷酸锆层间富含Lewis酸点,对多种聚合物具有良好的催化成炭作用使其在聚合物阻燃领域具有独特的优势。虽然磷酸锆具有层状阻隔作用和固体酸催化成炭作用,可以较为明显地提升阻燃剂的阻燃性,但是由于目前所报道的阻燃体系的炭层较为疏松,且磷酸锆易团聚,限制了磷酸锆催化成炭效率,导致阻燃剂存在热稳定性较差,阻燃效率较低等问题。
为改善磷酸锆不能高效催化聚合物成炭限制阻燃效率等问题;专利CN108203519A中利用甲胺插层磷酸锆中并剥离成片状,在MCA合成过程中加入纳米片层磷酸锆,并把磷酸锆作为协效剂应用于PA6复合材料中。但该专利中,并未解决磷酸锆纳米片易团聚问题,导致了磷酸锆的催化成炭作用不能有效释放,同时也并未考虑与树脂相容性问题,导致其阻燃效率仍不太理想。因此,进一步优化磷酸锆类化合物的改性手段及其性能具有重要的研究和应用意义。
发明内容
本发明的主要目的在于,针对现有阻燃剂成炭质量不佳、炭层松散强度低以及阻燃效率低等问题,提供一种生物基大分子修饰纳米磷酸锆阻燃剂,利用哌嗪与环糊精的正负电吸引作用,将哌嗪吸附在环糊精表面,再引入纳米磷酸锆对其进行表面改性,制备得到所述生物基大分子修饰纳米磷酸锆阻燃剂;将其应用于制备膨胀性防火涂料,可表现出成炭性优异、成膜性好、耐火时间长、耐水性和耐久性好、干燥时间短、环境友好等优点,且涉及的制备工艺简单,反应条件温和,适合推广应用。
为实现上述目的,本发明采用的技术方案为:
一种生物基大分子修饰纳米磷酸锆阻燃剂,其制备方法包括如下步骤:
1)将哌嗪溶解于醇水溶液中,然后加入环糊精进行搅拌反应,过滤,收集固体产物;
2)将步骤1)所得固体产物分散在1,4二氧六环中,然后加入纳米磷酸锆并在一定温度下进行机械搅拌,离心洗涤,干燥,即得所述生物基大分子修饰纳米磷酸锆阻燃剂。
上述方案中,所述醇水溶剂中采用的醇溶剂与水的体积比为1:5~10:1。
上述方案中,所述醇溶剂可选用无水乙醇、无水甲醇、异丙醇等中的一种或几种。
上述方案中,所述溶解步骤采用超声溶解条件,温度为20-50℃。
上述方案中,步骤1)中所述搅拌反应时间为6-18h,反应温度为40-90℃。
上述方案中,所述哌嗪与环糊精的摩尔比为1:3~10:1。
上述方案中,所述纳米磷酸锆为α-磷酸锆(α-ZrP);其粒径为50~900nm。
上述方案中,步骤2)所述机械搅拌温度为30-95℃,时间为12-24h。
上述方案中,步骤2)中引入的纳米磷酸锆与步骤1)中引入的哌嗪的摩尔比为5:1~1:10。
上述方案中,步骤2)中所述洗涤步骤为依次采用丙酮洗涤2~3次,乙醇洗涤2~3次,水洗涤2~3次。
将上述方案所得环境友好型阻燃剂应用于制备膨胀型防火涂料,各组分及其所占质量百分比包括:高分子乳液20~30%,聚磷酸铵30~36%,季戊四醇10~20%,三聚氰胺10~15%,二氧化钛1~5%,羟乙基纤维素0.5~1%,分散剂0.5~1%,消泡剂0.5~1%,正辛醇0.5~1%,生物基大分子修饰纳米磷酸锆的阻燃剂1~10%,其余为水。
优选的,所述生物基大分子修饰纳米磷酸锆的阻燃剂所占质量百分比为3.5-5.5%,在较低掺量阻燃剂的条件下,可实现优异的阻燃性能,并兼顾较好的综合性能。
上述方案中,所述高分子乳液为纯丙乳液、甲基丙烯酸酯改性核壳乳液、水性环氧树脂乳液及对这三种乳液进行改性所得的衍生新乳液中的一种或多种。
根据上述方案制备膨胀型防火涂料,其耐火抑烟性能优异,耐久防水性能好,且无卤成本低,成炭性好,碳层强度高,环境友好且适用性广泛。
本发明的原理为:
本发明首先利用哌嗪与环糊精的正负电吸引作用,将哌嗪吸附在生物基大分子环糊精表面,再利用纳米磷酸锆对其进行表面包覆,提高了环糊精的热分解温度,同时成炭性优异的哌嗪和含有大量羟基的环糊精在高温下被纳米磷酸锆的固体酸效应进行催化炭化,可以形成致密和高强度的炭层,起到隔热隔氧的作用;
将其应用于制备防火涂料,在火灾发生时,防火涂料中的季戊四醇与多聚磷酸铵在高温下反应,脱水碳化,三聚氰胺受热分解释放不可燃气体,形成蜂窝状碳层,发挥阻燃作用;而本发明所得生物基阻燃剂在发挥阻燃作用的同时,在基材表面可快速成炭,填补涂料疏松炭层之间的空隙,形成多而密集的微纳碳笼,阻隔空气中的氧气,并将大量的降解产物封闭 其中,同时引入哌嗪作用于微观碳笼中,磷酸锆与哌嗪和环糊精的协效阻燃反应可交联产生高热稳定性的空间网状结构,进而提升炭层的石墨化程度,可以实现P-N-Zr协同效应,同时可有效提高碳笼的碳层强度,进一步在微观结构层面上发挥出阻燃作用,并与防火涂料中的膨胀阻燃体系发挥协同阻燃作用并提升其耐久性能。
与现有技术相比,本发明的有益效果为:
1)通过生物基大分子环糊精对磷酸锆的修饰,充分解决了磷酸锆的团聚问题,且利用哌嗪的高效阻燃性和优异的成炭性,与防火涂料中多聚磷酸铵、季戊四醇、三聚氰胺所组成的膨胀体系发挥协同阻燃效应,使得防火涂料形成了石墨化程度高、强度高致密的燃烧炭层,从而具有高效的阻燃性。
2)生物基大分子环糊精在磷酸锆表面的修饰,提高了磷酸锆阻燃剂的环境友好性,合成成本更低,制备方法简便快速,适合产业化。
3)使用环糊精和哌嗪在磷酸锆片层进行表面接枝修饰,可有效降低磷酸锆的表面极性,保证两者表面的均一性,有效简化防火涂料组成成分,使涂料各组分之间相容性和分散性更好,有利于提高涂料的成膜性、实用性,并进一步有效提升所得防火涂料的防火性能。
4)哌嗪中的杂环与多羟基的环糊精可作为聚合物基体燃烧或降解时的成炭剂,发挥延缓聚合物的热分解等作用,并可磷氮锆共同作用,发挥协效成炭阻燃等作用,使所得阻燃剂具有较好的热稳定性,耐久性,可有效提升膨胀型防火涂料的阻燃性能。
5)本发明所得阻燃剂集阻燃抑烟与增强功能于一体,且无卤成本低,成炭性优异,碳层强度高,环保友好且适用性广泛,涉及的制备方法工艺简单,反应条件温和,适合推广应用。
6)利用本发明所制备的防火涂料集阻燃抑烟环保于一体,碳层强度高,致密性好,制备方法简便,易成型,反应条件温和,应用领域广泛。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下实施例中,采用的磷酸锆均为α-磷酸锆,具体包括如下制备步骤:配制100mL摩尔浓度为3mo1/L的浓磷酸,加入250ml三口烧瓶中,再加入10.00g氧氯化锆(ZrOCl 2-8H 20),升温到95℃,机械搅拌20min使氧氯化锆充分分散,然后停止搅拌,回流温度下反应24h,反应结束后,将所得混合溶液静置自然冷却至常温,然后倒掉上层清液,将下层乳白色沉淀物进行离心处理(10000r/min,10min)进行固液分离,将所得固体产物用适量去离子水洗涤,然后再进行离心处理,重复以上步骤至离心清液满足pH>5,洗涤后的固体产物在80℃烘箱 中干燥12h后,研磨得到磷酸锆白色粉末,其平均粒径约为90nm。
实施例1
一种生物基大分子修饰纳米磷酸锆的阻燃剂,其制备方法包括如下步骤:
1)将0.1mol哌嗪在30℃下超声溶解于150ml由无水乙醇和水(体积比为1:2)形成的混合溶液中,然后加入0.1mol的环糊精进行机械搅拌,在50℃下反应12h,反应结束后进行过滤,收集固体产物;
2)将步骤1)所得固体产物与0.1mol纳米磷酸锆在60℃下进行机械搅拌16h,离心后,依次用丙酮洗涤2~3次,乙醇洗涤2~3次,水洗涤2~3次;80℃干燥24h,即得所述生物基大分子修饰纳米磷酸锆的阻燃剂。
实施例2
一种生物基大分子修饰纳米磷酸锆的阻燃剂,其制备方法包括如下步骤:
1)将0.2mol哌嗪在35℃下超声溶解于200ml由无水乙醇和水(体积比为1:2)形成的混合溶液中,然后加入0.1mol的环糊精进行机械搅拌,在60℃下反应12h,反应结束后进行过滤,收集固体产物;
2)将步骤1)所得固体产物与0.2mol纳米磷酸锆在50℃下进行机械搅拌12h,离心后,利用丙酮洗涤2~3次,乙醇洗涤2~3次,水洗涤2~3次;80℃干燥24h,即得所述生物基大分子修饰纳米磷酸锆的阻燃剂。
应用例1
将本实施例1所得阻燃剂应用于制备丙烯酸酯基膨胀型防火涂料,具体步骤包括:
1)按配比称取各原料,各组分及其所占质量百分比包括:甲基丙烯酸改性丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,生物基大分子修饰纳米磷酸锆的阻燃剂5%;
2)将称取的聚磷酸铵、季戊四醇、三聚氰胺、二氧化钛、羟乙基纤维素研磨成粉状,然后加水充分研磨混合均匀;再加入消泡剂和分散剂,继续充分研磨;
3)最后加入基于石墨化氮化碳复合插层改性的磷酸锆阻燃剂、甲基丙烯酸改性丙烯酸酯乳液和正辛醇充分研磨混合均匀,即得所述防火涂料。
应用例2
应用例2所述防火涂料的制备方法与应用例1大致相同,不同之处在于各组分及其所占质量百分比为:甲基丙烯酸改性丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰 胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水12%,生物基大分子修饰纳米磷酸锆的阻燃剂3%。
应用例3
应用例3所述防火涂料的制备方法与应用例1大致相同,不同之处在于:各组分及其所占质量百分比为:甲基丙烯酸改性丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水13%,生物基大分子修饰纳米磷酸锆的阻燃剂2%。
对比例1
对比例1所述防火涂料的制备方法与应用例1大致相同,不同之处在于:各组分及其所占质量百分比为:甲基丙烯酸改性丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水15%。
对比例2
对比例2所述防火涂料的制备方法与应用例1大致相同,不同之处在于:甲基丙烯酸改性丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,磷酸锆5%。
对比例3
对比例3所述防火涂料的制备方法与应用例1大致相同,不同之处在于:甲基丙烯酸改性丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,环糊精5%。
对比例4
对比例4所述防火涂料的制备方法与应用例1大致相同,不同之处在于:甲基丙烯酸改性丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,环糊精与磷酸锆的混合物5wt%(磷酸锆3wt%、环糊精2wt%)。
将应用例1~3和对比例1~4所得膨胀型防火涂料分别进行耐火性能测试,结果见表1。
表1 应用例1~3和对比例1~4所得膨胀型防火涂料相关性能测试
Figure PCTCN2021124147-appb-000001
Figure PCTCN2021124147-appb-000002
上述结果表明:本发明所得阻燃剂具有阻燃效率好,基材的成炭率高,综合性能优异,树脂相容性好,耐久性好,环境友好,不会损坏材料的其它性能,适用性广。
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (10)

  1. 一种生物基大分子修饰纳米磷酸锆阻燃剂的制备方法,其特征在于,其制备方法包括如下步骤:
    1)将哌嗪溶解于醇水溶液中,然后加入环糊精进行搅拌反应,过滤,收集固体产物;
    2)将步骤1)所得固体产物分散在1,4二氧六环中,然后加入纳米磷酸锆并在一定温度下进行机械搅拌,离心洗涤,干燥,即得所述生物基大分子修饰纳米磷酸锆阻燃剂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述醇水溶剂中采用的醇溶剂与水的体积比为1:5~10:1。
  3. 根据权利要求2所述的制备方法,其特征在于,所述醇溶剂为无水乙醇、无水甲醇、异丙醇中的一种或几种。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤1)中所述搅拌反应时间为6-18h,反应温度为40-90℃。
  5. 根据权利要求1所述的制备方法,其特征在于,所述哌嗪与环糊精的摩尔比为1:3~10:1。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤2)中引入的纳米磷酸锆与步骤1)中引入的哌嗪的摩尔比为5:1~1:10。
  7. 根据权利要求1所述的制备方法,其特征在于,机械搅拌温度为30-95℃,时间为12-24h。
  8. 权利要求1~7任一项所述制备方法制备的生物基大分子修饰纳米磷酸锆阻燃剂。
  9. 权利要求8所述生物基大分子修饰纳米磷酸锆阻燃剂在膨胀型防火涂料中的应用,其特征在于,各组分及其所占质量百分比包括:高分子乳液20~30%,聚磷酸铵30~36%,季戊四醇10~20%,三聚氰胺10~15%,二氧化钛1~5%,羟乙基纤维素0.5~1%,分散剂0.5~1%,消泡剂0.5~1%,正辛醇0.5~1%,生物基大分子修饰纳米磷酸锆的阻燃剂1~10%,其余为水。
  10. 根据权利要求9所述的应用,其特征在于,所述生物基大分子修饰纳米磷酸锆的阻燃剂所占质量百分比为3.5-5.5%。
PCT/CN2021/124147 2021-10-15 2021-10-15 一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料 WO2023060571A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124147 WO2023060571A1 (zh) 2021-10-15 2021-10-15 一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124147 WO2023060571A1 (zh) 2021-10-15 2021-10-15 一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料

Publications (1)

Publication Number Publication Date
WO2023060571A1 true WO2023060571A1 (zh) 2023-04-20

Family

ID=85987986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124147 WO2023060571A1 (zh) 2021-10-15 2021-10-15 一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料

Country Status (1)

Country Link
WO (1) WO2023060571A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864660A (zh) * 2023-09-04 2023-10-10 浙江华宇钠电新能源科技有限公司 一种磷酸钒钠正极材料及其用于车辆的电池
CN117986987A (zh) * 2023-12-28 2024-05-07 浙江睿高新材料股份有限公司 一种阻燃耐高温防火涂料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105908A (ja) * 1985-10-30 1987-05-16 Natl Inst For Res In Inorg Mater リン酸ジルコニウム−シクロデキストリン化合物の結晶質複合体及びその製造法
US20040146567A1 (en) * 2003-01-23 2004-07-29 Sinanen Zeomic Co., Ltd. Antibacterial composition
WO2008017755A2 (fr) * 2006-08-02 2008-02-14 Rhodia Operations Phosphate de zirconium et/ou de titane a structure lamellaire modifie par une alkylamine ou une diamine, son procede de preparation et son utilisation
CN101665513A (zh) * 2009-09-30 2010-03-10 中国科学技术大学苏州研究院 一种阻燃聚苯乙烯/层状无机物纳米复合物及其制备方法
CN103911146A (zh) * 2014-04-09 2014-07-09 中国工程物理研究院化工材料研究所 用于检测Fe3+和Fe2+的荧光小分子探针及制备方法、使用方法
CN105111886A (zh) * 2015-08-28 2015-12-02 中国科学院合肥物质科学研究院 一种水性环氧多功能钢结构涂料及其制备方法
CN109705462A (zh) * 2018-12-25 2019-05-03 广东聚石化学股份有限公司 一种挤出吸塑专用v0级无卤阻燃聚丙烯材料及其制备方法
CN110894369A (zh) * 2019-10-31 2020-03-20 武汉工程大学 一种基于磷杂菲基团修饰磷酸锆的阻燃剂及其制备方法
CN112280405A (zh) * 2020-11-09 2021-01-29 山东省海洋化工科学研究院 一种水性无卤膨胀阻燃涂层胶、制备方法及用其制作的阻燃织物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105908A (ja) * 1985-10-30 1987-05-16 Natl Inst For Res In Inorg Mater リン酸ジルコニウム−シクロデキストリン化合物の結晶質複合体及びその製造法
US20040146567A1 (en) * 2003-01-23 2004-07-29 Sinanen Zeomic Co., Ltd. Antibacterial composition
WO2008017755A2 (fr) * 2006-08-02 2008-02-14 Rhodia Operations Phosphate de zirconium et/ou de titane a structure lamellaire modifie par une alkylamine ou une diamine, son procede de preparation et son utilisation
CN101665513A (zh) * 2009-09-30 2010-03-10 中国科学技术大学苏州研究院 一种阻燃聚苯乙烯/层状无机物纳米复合物及其制备方法
CN103911146A (zh) * 2014-04-09 2014-07-09 中国工程物理研究院化工材料研究所 用于检测Fe3+和Fe2+的荧光小分子探针及制备方法、使用方法
CN105111886A (zh) * 2015-08-28 2015-12-02 中国科学院合肥物质科学研究院 一种水性环氧多功能钢结构涂料及其制备方法
CN109705462A (zh) * 2018-12-25 2019-05-03 广东聚石化学股份有限公司 一种挤出吸塑专用v0级无卤阻燃聚丙烯材料及其制备方法
CN110894369A (zh) * 2019-10-31 2020-03-20 武汉工程大学 一种基于磷杂菲基团修饰磷酸锆的阻燃剂及其制备方法
CN112280405A (zh) * 2020-11-09 2021-01-29 山东省海洋化工科学研究院 一种水性无卤膨胀阻燃涂层胶、制备方法及用其制作的阻燃织物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864660A (zh) * 2023-09-04 2023-10-10 浙江华宇钠电新能源科技有限公司 一种磷酸钒钠正极材料及其用于车辆的电池
CN116864660B (zh) * 2023-09-04 2023-12-15 浙江华宇钠电新能源科技有限公司 一种磷酸钒钠正极材料及其用于车辆的电池
CN117986987A (zh) * 2023-12-28 2024-05-07 浙江睿高新材料股份有限公司 一种阻燃耐高温防火涂料及其制备方法

Similar Documents

Publication Publication Date Title
Shang et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology
Huang et al. High‐efficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant
WO2023060571A1 (zh) 一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料
CN102585347B (zh) 一种无卤膨胀型阻燃聚丙烯混合物及其制备方法
WO2022160673A1 (zh) 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法
WO2014090105A1 (zh) 水性膨胀型钢结构防火涂料及制备方法
CN111234564B (zh) 一种环境友好型阻燃剂及利用其制备的膨胀性防火涂料
CN110591156B (zh) 一种基于石墨化氮化碳复合插层改性的磷酸锆阻燃剂及其制备方法
CN112225985B (zh) 一种阻燃pp复合材料及其制备方法
WO2023039939A1 (zh) 一种纳米磷酸锆基阻燃抑菌剂及其制备的膨胀型防火抑菌涂料
WO2022148018A1 (zh) 一种基于埃洛石的水性膨胀型防火涂料及其制备方法
CN105037811A (zh) 一种聚磷酸铵阻燃剂及其制备方法
Xu et al. A silica-coated metal-organic framework/graphite-carbon nitride hybrid for improved fire safety of epoxy resins
CN110079012A (zh) 石墨烯/poss复合协效无卤阻燃聚丙烯复合材料及其制备方法
Huang et al. Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan
CN108203519A (zh) α-磷酸锆改性阻燃剂及其制备方法和应用
CN110894369A (zh) 一种基于磷杂菲基团修饰磷酸锆的阻燃剂及其制备方法
Zhang et al. A graphene@ Cu-MOF hybrid synthesized by mechanical ball milling method and its flame retardancy and smoke suppression effect on EP
Yang et al. PGS@ B–N: an efficient flame retardant to improve simultaneously the interfacial interaction and the flame retardancy of EVA
Wang et al. Synergistic enhancement of flame retardancy of epoxy resin by layered zirconium phenylphosphate modified layered double hydroxides
Wang et al. The synergistic effect of lamellar cobalt phosphate and sodium metaborate hydrate improves the flame retardancy of epoxy resin
Ren et al. Microcapsule preparation of melamine and orange peel charcoal encapsulated by sodium alginate and its effect on combustion performance of epoxy resins
CN113831597B (zh) 一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料
CN109486105B (zh) 一种环氧树脂/苯基磷酸铁纳米复合材料的制备方法
WO2023050314A1 (zh) 一种环境友好的结构型水性膨胀型防火涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE