WO2023044969A1 - 一种锌基电化学储能器件 - Google Patents

一种锌基电化学储能器件 Download PDF

Info

Publication number
WO2023044969A1
WO2023044969A1 PCT/CN2021/122805 CN2021122805W WO2023044969A1 WO 2023044969 A1 WO2023044969 A1 WO 2023044969A1 CN 2021122805 W CN2021122805 W CN 2021122805W WO 2023044969 A1 WO2023044969 A1 WO 2023044969A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
electrolyte
energy storage
fluorine
storage device
Prior art date
Application number
PCT/CN2021/122805
Other languages
English (en)
French (fr)
Inventor
翁哲
韩大量
崔长俊
郭晓霞
杨全红
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2023044969A1 publication Critical patent/WO2023044969A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of energy storage technology (battery, supercapacitor, hybrid ion capacitor), in particular to a zinc-based electrochemical energy storage device.
  • Electrolyte is a key component of electrochemical energy storage devices, and its properties and compatibility with other components are crucial to the electrochemical performance and actual working ability of electrochemical energy storage devices.
  • the electrolyte of zinc-based electrochemical energy storage devices is mainly an aqueous or non-aqueous solution mainly composed of zinc salts such as zinc sulfate, zinc trifluoromethanesulfonate, zinc perchlorate, zinc chloride, zinc acetate, and zinc nitrate.
  • zinc salts such as zinc sulfate, zinc trifluoromethanesulfonate, zinc perchlorate, zinc chloride, zinc acetate, and zinc nitrate.
  • the present invention aims to develop a zinc-based electrochemical energy storage device.
  • the electrolyte contained in it can effectively solve the problems of dendrite growth, corrosion, hydrogen evolution, etc.
  • the temperature range and the characteristics of inhibiting the dissolution of the positive electrode can meet the needs of practical zinc-based electrochemical energy storage devices.
  • One of the purposes of the present invention is to provide a zinc-based electrochemical energy storage device for the deficiencies of the prior art, which can effectively solve the negative electrode dendrite growth, side reactions and positive electrode activity faced by zinc-based electrochemical energy storage devices. Dissolution of substances, low utilization rate and other problems, improve its electrochemical performance and promote its practical application process.
  • a zinc-based electrochemical energy storage device comprising at least a positive electrode, a metal zinc negative electrode and a fluorine-containing zinc salt electrolyte;
  • the positive electrode material is a vanadium-based positive electrode, an organic redox active compound, Prussian blue and its analogs, and a Chevrel phase compound and at least one of transition metal chalcogenides;
  • the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and a fluorine-containing zinc salt solute, and the fluorine-containing zinc salt solute is anhydrous zinc tetrafluoroborate, hydrated tetrafluoroboric acid At least one of zinc, anhydrous zinc hexafluorophosphate and hydrated zinc hexafluorophosphate.
  • the preparation steps of the fluorine-containing zinc salt electrolyte include at least adding the fluorine-containing zinc salt into the solvent according to a certain mass molar concentration, and obtaining a uniform, clear and transparent solution by stirring and (or) ultrasonic treatment, using the electrolyte salt anion and metal zinc
  • the reaction can generate a fluorine-containing interfacial layer in situ on the surface of the metal zinc anode, and realize the suppression of problems such as dendrite growth, corrosion and hydrogen evolution.
  • the dissolution of the positive electrode material is significantly inhibited, and the electrolyte is acidic, which effectively alleviates the deposition of the leachate on the negative electrode, promotes its recycling on the positive electrode, and improves the activity. Material utilization, and then improve the performance of zinc-based electrochemical energy storage devices.
  • the vanadium-based positive electrode includes vanadium pentoxide, vanadium trioxide, vanadium dioxide, zinc vanadate, lithium vanadate, sodium vanadate, magnesium vanadate , at least one of silver vanadate, potassium vanadate, calcium vanadate, aluminum vanadate, ammonium vanadate, sodium vanadate phosphate and vanadate oxynitride;
  • the organic redox active compound includes polyaniline, polypyrrole at least one of;
  • the Prussian blue and its analogs include at least one of Prussian blue, copper hexacyanoferrate and zinc hexacyanoferrate;
  • the transition metal chalcogenides include molybdenum sulfide, vanadium sulfide, At least one of titanium sulfide and tin sulfide.
  • the working principle of the energy storage device is: the price change of vanadium element and the intercalation/extraction of zinc ions occur at the positive electrode, and the dissolution/deposition of zinc ions occurs at the negative electrode.
  • the non-aqueous solvent is at least one of alcohols, esters, ethers, sulfones, nitriles, olefinic organic solvents and ionic liquids. Effectively avoid the problems of low electrochemical window of aqueous electrolyte, corrosion of negative electrode and dissolution of positive electrode. According to the solubility of the fluorine-containing zinc salt in the above-mentioned solvents, alcohols and ester solvents which are easier to dissolve the fluorine-containing zinc salt are preferred.
  • the alcohol organic solvent is at least one of methanol, ethanol, propanol, ethylene glycol, polyethylene glycol and glycerol;
  • the ester organic solvent is carbonic acid Dimethyl, Ethylene Carbonate, Propylene Carbonate, Diethyl Carbonate, Ethyl Methyl Carbonate, Methyl Formate, Ethyl Propionate, Dimethyl Phosphate, Diethyl Phosphate, Methyl Phosphate and Fluoroethylene Carbonate
  • At least one of the ether organic solvents is at least one of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and propylene glycol ether;
  • the ionic liquid is 1-ethyl-3-methylimidazole-hexafluorophosphate, 1-butyl-1-methylimidazole-tetrafluoroboron salt, 1 ⁇ ethyl ⁇ 3 ⁇ methylimidazole ⁇ tetrafluoroborate, N ⁇ methyl ⁇ N ⁇ propylpyrrolidine ⁇ bistrifluoromethylsulfonylimide, 1 ⁇ ethyl ⁇ 3 ⁇ At least one of methylimidazole-bistrifluoromethylsulfonimide salt and the like. Ionic liquids can further enhance the electrochemical stability window and safety of electrolytes.
  • the mass molar concentration of the fluorine-containing zinc salt solute is 0.0001-20 mol/kg.
  • the electrolyte in order to further broaden the compatibility between the electrolyte and other positive electrode materials, also includes mol/kg at least one of lithium salts, sodium salts, potassium salts, ammonium salts, magnesium salts, calcium salts and aluminum salts.
  • the positive electrode can use other cations for energy storage.
  • the zinc-based electrochemical energy storage device of the present invention considering the characteristics and functions of the fluorine-containing zinc salt, it can also be used as an electrolyte additive together with other zinc salts, and the electrolyte also includes a mass molar concentration of 0 ⁇ 15 mol/kg mol/kg of at least one of zinc acetate, zinc sulfate, zinc chloride, zinc nitrate, zinc perchlorate, zinc trifluoromethanesulfonate and zinc bistrifluoromethanesulfonylimide.
  • the energy storage device is at least one of secondary batteries, supercapacitors, and hybrid ion capacitors in which at least one electrode uses zinc ions as the main charge carrier for energy storage.
  • the charge carrier used by the other pole is not specifically limited, it can be either zinc ions or other cations, At least one of anion and molecule.
  • the present invention does not specifically limit the specific current collectors, diaphragms, shells, and structural forms of the electrochemical energy storage device, and reference can be made to existing electrochemical energy storage devices.
  • the secondary battery may include but not limited to at least one of zinc ion battery, flow battery, air battery, dual ion battery, mixed cation battery and the like.
  • the supercapacitor may include but not limited to at least one of a symmetric supercapacitor, an asymmetric supercapacitor, a hybrid ion capacitor, and the like.
  • the electrolyte containing fluorine-containing zinc salt used in the system of the present invention can utilize chemical or electrochemical reactions to form a layer of dense and isolable electrolyte on the surface of the negative electrode of the zinc-based electrochemical energy storage device.
  • the interfacial layer of fluorine-containing solid electrolyte with zinc ions conduction and electronic insulation can not only uniform zinc ion flow, solve the problem of negative electrode dendrite growth, but also block the direct contact between the electrolyte and the negative electrode, reducing the electrolyte in the
  • the side reactions that occur on the surface of the negative electrode can effectively solve the problems of negative electrode corrosion and hydrogen evolution, thereby improving the coulombic efficiency, charge-discharge depth, and cycle life of the negative electrode; on the other hand, it can also inhibit zinc-based electrochemical energy storage devices (batteries, supercapacitors)
  • the dissolution of the positive electrode material in the medium promotes the recycling of the positive electrode material, improves the utilization rate of the material, and then improves its cycle stability.
  • FIG. 1 is a test diagram of the liquid retention capacity of the zinc ion battery electrolyte exposed to air in Example 1 of the present application.
  • Fig. 2 is the flammability test of the zinc ion battery electrolyte obtained in Example 2 of the present application.
  • Fig. 3 is the low-temperature DSC test of the zinc-ion battery electrolyte obtained in Example 2 of the present application.
  • Fig. 4 is an SEM photo of the surface of the pure zinc sheet in application example 1 without immersion and circulation treatment.
  • Fig. 5 is a SEM photo of the surface after soaking in the electrolyte solution obtained in Example 1 for 7 days in Application Example 1 of the present application.
  • Fig. 6 is a SEM photo of the surface after soaking in the electrolyte solution obtained in the comparative example for 7 days in Application Example 1 of the present application.
  • Fig. 7 is a charge-discharge and cycle performance diagram of a zinc//zinc symmetric battery assembled with the electrolyte obtained in Example 2 and the comparative example in Application Example 2 of the present application.
  • Fig. 8 is a diagram of the coulombic efficiency and cycle performance of zinc//copper asymmetric batteries assembled with the electrolytes obtained in Example 2 and Comparative Example in Application Example 2 of the present application.
  • Fig. 9 is a cycle performance graph of zinc//vanadium pentoxide zinc ion battery assembled with the electrolyte obtained in Example 2 and the comparative example in Application Example 3 of the present application.
  • Fig. 10 is an optical photograph of the diaphragm after 100 cycles of the zinc//vanadium pentoxide zinc ion battery assembled with the electrolyte obtained in Example 2 and the comparative example in Application Example 3 of the present application.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte; the positive electrode material is vanadium trioxide; the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and a The fluorine-zinc salt solute, the fluorine-containing zinc salt solute is anhydrous zinc tetrafluoroborate, and the solvent is ethylene glycol.
  • the mass molar concentration of anhydrous zinc tetrafluoroborate is 2 mol/kg.
  • the preparation method of the electrolyte is as follows: weigh the quality of anhydrous zinc tetrafluoroborate and ethylene glycol according to the mass molar concentration of 2 mol/kg, put the above-mentioned medicines into a beaker and stir and mix for 20 minutes to completely dissolve to form a clear solution, namely
  • the zinc-ion battery electrolyte of this example was obtained, and its ionic conductivity was 3.8 mS/cm.
  • a zinc-based electrochemical energy storage device is obtained by assembling the above-mentioned positive electrode, negative electrode, and electrolyte into a battery.
  • the electrolyte quality change trend graph of the electrolyte prepared in Example 1 exposed to air with a relative humidity of 25% at 27 °C for different times is shown in Figure 1. It can be seen that the obtained electrolyte has good liquid retention Even after 60 hours of exposure, it can still maintain more than 95% of the initial mass of the electrolyte, so it is a good choice for the preparation of electrolytes for open zinc-based electrochemical energy storage devices. Even if the shell of the basic electrochemical energy storage device is broken, the electrolyte can still work normally after being exposed to the air for a long time, and the device will not fail due to the dryness of the electrolyte.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte; the positive electrode material is vanadium pentoxide; the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and a Fluorine zinc salt solute, the fluorine-containing zinc salt solute is hydrated zinc tetrafluoroborate, and the solvent is ethylene glycol.
  • the mass molar concentration of hydrated zinc tetrafluoroborate is 4 mol/kg.
  • the preparation method of the electrolyte solution is as follows: weigh the hydrated zinc tetrafluoroborate and ethylene glycol according to the mass molar concentration of 4 mol/kg, put the above-mentioned medicines into a beaker and ultrasonically stir for 40 minutes to completely dissolve to form a clear solution, which is obtained
  • the zinc-ion battery electrolyte in this example has an ionic conductivity of 4.5 mS/cm and a zinc ion migration number of 0.43.
  • a zinc-based electrochemical energy storage device is obtained by assembling the above-mentioned positive electrode, negative electrode, and electrolyte into a battery.
  • the differential scanning calorimetry curve of the electrolyte prepared in Example 2 is shown in Figure 3. It can be seen that the obtained electrolyte has not solidified even at a temperature as low as -80°C, indicating that the electrolyte has good resistance low temperature performance. And the boiling point of ethylene glycol is as high as 197.3 °C, and also endows the electrolyte with good high temperature resistance characteristics.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte; the positive electrode material is vanadium dioxide; the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and a fluorine-containing Zinc salt solute, the fluorine-containing zinc salt solute is hydrated zinc tetrafluoroborate and hydrated zinc fluoride, and the solvent is ethylene glycol.
  • the mass molar concentration of hydrated zinc tetrafluoroborate is 8 mol/kg.
  • the preparation method of the electrolyte is as follows: Weigh the mass of zinc tetrafluoroborate hydrate and ethylene glycol according to the mass molar concentration of zinc tetrafluoroborate hydrate 8 mol/kg, put the above drugs into a beaker and stir ultrasonically for 80 minutes to completely dissolve and form Clarify the solution, promptly obtain the zinc-ion battery electrolyte of this example.
  • a zinc-based electrochemical energy storage device is obtained by assembling the above-mentioned positive electrode, negative electrode, and electrolyte into a battery.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte; the positive electrode material is sodium vanadate; the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and a fluorine-containing Zinc salt solutes, fluorine-containing zinc salt solutes are hydrated zinc tetrafluoroborate and hydrated zinc hexafluorophosphate, and the solvents are ethylene glycol and methanol.
  • the mass molar concentration of hydrated zinc tetrafluoroborate is 12 mol/kg, the molar concentration of zinc hexafluorophosphate hydrate is 0.005 mol/kg.
  • the preparation method of the electrolyte solution is as follows: Weigh the hydrated zinc hexafluorophosphate, hydrated zinc tetrafluoroborate, methanol, ethylene di The quality of alcohol, wherein the mass ratio of methanol and ethylene glycol is 2:1, put the above-mentioned medicine in a beaker and stir it ultrasonically for 100 minutes to completely dissolve to form a clear solution, that is, to obtain the zinc ion battery electrolyte of this example.
  • a zinc-based electrochemical energy storage device is obtained by assembling the above-mentioned positive electrode, negative electrode, and electrolyte into a battery.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte; the positive electrode material is ammonium vanadate; the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and a fluorine-containing The zinc salt solute, the fluorine-containing zinc salt solute is hydrated zinc tetrafluoroborate, and the solvent is propylene carbonate and fluoroethylene carbonate.
  • the mass molar concentration of hydrated zinc tetrafluoroborate is 4 mol/kg.
  • the preparation method of the electrolyte is as follows: according to the mass molar concentration of zinc tetrafluoroborate hydrate being 4 mol/kg, weigh the quality of zinc tetrafluoroborate hydrate, propylene carbonate and fluoroethylene carbonate, wherein propylene carbonate and fluorocarbonic acid The mass ratio of vinyl ester is 20:1. Put the above medicines into a beaker and stir them ultrasonically for 80 minutes to completely dissolve to form a clear solution, which is the zinc ion battery electrolyte of this example.
  • a zinc-based electrochemical energy storage device is obtained by assembling the above-mentioned positive electrode, negative electrode, and electrolyte into a battery.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte; the positive electrode material is aluminum vanadate; the fluorine-containing zinc salt electrolyte includes a solvent and a fluorine-containing zinc salt Solute, fluorine-containing zinc salt
  • the solute is anhydrous zinc tetrafluoroborate, and the solvent is ethylene glycol and propylene carbonate.
  • the mass molar concentration of anhydrous zinc tetrafluoroborate is 2 mol/kg.
  • the preparation method of the electrolyte is as follows: according to the mass molar concentration of 2 mol kg -1 , weigh the quality of anhydrous zinc tetrafluoroborate, ethylene glycol and propylene carbonate, wherein the mass ratio of ethylene glycol and propylene carbonate is 7:10, Put the above-mentioned medicine into a beaker and heat it (60°C) under the condition of ultrasonic stirring for 50 minutes to completely dissolve and form a clear solution, which is to obtain the zinc-ion battery electrolyte of this example.
  • a zinc-based electrochemical energy storage device is obtained by assembling the above-mentioned positive electrode, negative electrode, and electrolyte into a battery.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte; the positive electrode material is vanadium pentoxide; the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and zinc Salt solute, the zinc salt solute is hydrated zinc tetrafluoroborate and hydrated zinc sulfate, and the solvent is ethanol and dimethyl sulfoxide.
  • the mass molar concentration of hydrated zinc tetrafluoroborate is 3 mol/kg
  • the mass molar concentration of zinc sulfate hydrate is 1 mol/kg.
  • the preparation method of the electrolyte is as follows: according to the hydrated zinc tetrafluoroborate as 3 mol/kg and the hydrated zinc sulfate as 1
  • the mass molar concentration of mol/kg weighs the quality of zinc tetrafluoroborate hydrate, zinc sulfate hydrate, ethanol and dimethyl sulfoxide, wherein the mass ratio of ethanol and dimethyl sulfoxide is 15:1, put the above drugs into
  • the beaker was ultrasonically stirred for 70 minutes to completely dissolve to form a clear solution, which was to obtain the zinc ion battery electrolyte of this example.
  • a zinc-based electrochemical energy storage device is obtained by assembling the above-mentioned positive electrode, negative electrode, and electrolyte into a battery.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte; the positive electrode material is vanadium pentoxide; the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and zinc Salt solute, the zinc salt solute is zinc tetrafluoroborate hydrate and zinc sulfate hydrate, and the solvent is glycerol, ethylene glycol dimethyl ether and 1,3-dioxolane.
  • the mass molar concentration of hydrated zinc tetrafluoroborate is 3 mol/kg, and the mass molar concentration of hydrated zinc sulfate is 1 mol/kg.
  • the preparation method of the electrolyte is as follows: Weigh the zinc tetrafluoroborate hydrate, zinc sulfate hydrate, glycerin, ethylene glycol according to the mass molar concentration of zinc tetrafluoroborate hydrate 3 mol/kg and zinc sulfate hydrate 1 mol/kg The quality of dimethyl ether and 1,3-dioxolane, wherein the mass ratio of glycerol, ethylene glycol dimethyl ether and 1,3-dioxolane is 5:1:1, put the above medicines into The beaker was stirred ultrasonically for 100 minutes to completely dissolve to form a clear solution, which was to obtain the zinc ion battery electrolyte of this example.
  • a zinc-based electrochemical energy storage device is obtained by assembling the above-mentioned positive electrode, negative electrode, and electrolyte into a battery.
  • This embodiment provides a zinc-based electrochemical energy storage device, which at least includes a positive electrode, a metal zinc negative electrode, and a fluorine-containing zinc salt electrolyte;
  • the positive electrode material is vanadium pentoxide;
  • the fluorine-containing zinc salt electrolyte includes a non-aqueous solvent and a Fluorine zinc salt solute, the fluorine-containing zinc salt solute is hydrated zinc tetrafluoroborate and sodium tetrafluoroborate, and the solvent is ethylene glycol, acetonitrile and 1-butyl-1-methylimidazole-tetrafluoroborate.
  • the mass molar concentration of hydrated zinc tetrafluoroborate is 1 mol/kg, and the mass molar concentration of sodium tetrafluoroborate is 1 mol/kg.
  • the preparation method of the electrolyte is as follows: Weigh hydrated zinc tetrafluoroborate, sodium tetrafluoroborate, ethylene glycol, acetonitrile according to the mass molar concentration of hydrated zinc tetrafluoroborate 1 mol/kg and sodium tetrafluoroborate 1 mol/kg and 1-butyl-1-methylimidazole-tetrafluoroborate, wherein the mass ratio of ethylene glycol, acetonitrile and 1-butyl-1-methylimidazole-tetrafluoroborate is 5:2 : 1, above-mentioned medicine is put into beaker ultrasonic, stir 100 minutes to dissolve completely and form clear solution, promptly obtain the zinc-ion battery electrolyte of this example.
  • the zinc ion battery electrolyte of this comparative example is specifically composed of hydrated zinc sulfate and water. Its preparation method is as follows: according to the molar concentration of 2 mol/L, weigh the quality of zinc sulfate hydrate and place it in a beaker containing water, stir and dissolve, stir for 30 minutes, completely dissolve to form a clear solution, and then transfer to a 1 L volumetric flask to set To obtain the zinc ion battery electrolyte of this comparative example.
  • the metal zinc foil was immersed in the zinc ion battery electrolyte prepared in Examples 1-9 and the comparative example, and the surface morphology of the zinc foil was characterized and observed after standing at room temperature for 7 days.
  • the surface morphology of unsoaked zinc flakes is shown in Figure 4, and the surface is relatively smooth without impurities.
  • Example 1 the resulting scanning electron microscope photo is shown in Figure 5, as can be seen from the figure, uniform spherical particle solids appear on the surface of the zinc flakes after soaking in the zinc ion battery electrolyte prepared in Example 1
  • the interface layer, and the particle size and thickness do not change with the extension of immersion time, indicating that the reaction between the metal zinc and the electrolyte is effectively isolated, and the interface layer is mainly composed of zinc fluoride by XRD test.
  • Figure 6 the scanning electron microscope photo after soaking in the electrolyte prepared in the comparative example for 7 days is shown in Figure 6.
  • Figure 8 shows the coulombic efficiency of the zinc//copper asymmetric battery using the electrolyte of Example 2 and the electrolyte of the comparative example under the test conditions of 1 mA/cm 2 and 0.5 mAh/cm 2 , as can be seen from the figure, using Example 2
  • the zinc//copper asymmetric battery as the electrolyte exhibited a Coulombic efficiency as high as 99.4%, much higher than the symmetric battery using the comparative electrolyte, indicating that the electrolyte effectively inhibited the growth of negative dendrites and the occurrence of side reactions. .
  • Zinc-ion batteries were assembled using the electrolytes prepared in Examples 1-9 and the electrolytes prepared in Comparative Examples, and the charge-discharge and cycle life of the batteries were tested.
  • Figure 9 shows the cycle life of the zinc//vanadium pentoxide zinc ion battery using the electrolyte of Example 2 and the electrolyte of the comparative example under the test condition of 1 A/g and the color of the separator of the battery after 100 cycles. It can be seen from Figure 9 that the cycle life of the zinc//vanadium pentoxide zinc ion battery using Example 2 as the electrolyte is significantly improved compared with the zinc//vanadium pentoxide battery using the comparative electrolyte.
  • the electrolyte solution prepared in Example 1 and the electrolyte solution prepared in Comparative Example were used to assemble a zinc-ion battery, and the charge-discharge performance and cycle life of the zinc-ion battery were tested.
  • the positive electrode material is Prussian blue
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Example 1 is significantly improved.
  • the electrolyte solution prepared in Example 2 and the electrolyte solution prepared in the comparative example were used to assemble a zinc-ion battery, and the charge-discharge performance and cycle life of the zinc-ion battery were tested.
  • the positive electrode material is copper hexacyanoferrate
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Example 2 is significantly improved.
  • the electrolyte solution prepared in Example 3 and the electrolyte solution prepared in the comparative example were used to assemble a zinc-ion battery, and the charge-discharge performance and cycle life of the zinc-ion battery were tested.
  • the positive electrode material is molybdenum sulfide
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Example 3 is significantly improved.
  • the electrolyte solution prepared in Example 4 and the electrolyte solution prepared in the comparative example were used to assemble a zinc-ion battery, and the charge-discharge performance and cycle life of the zinc-ion battery were tested.
  • the positive electrode material is polyaniline
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Example 4 is significantly improved.
  • the electrolyte solution prepared in Example 5 and the electrolyte solution prepared in the comparative example were used to assemble a zinc-ion battery, and the charge-discharge performance and cycle life of the zinc-ion battery were tested.
  • the positive electrode material is polypyrrole
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Example 5 is significantly improved.
  • the electrolyte solution prepared in Example 6 and the electrolyte solution prepared in the comparative example were used to assemble a zinc-ion battery, and the charge-discharge performance and cycle life of the zinc-ion battery were tested.
  • the positive electrode material is zinc hexacyanoferrate
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Example 6 is significantly improved.
  • the electrolyte solution prepared in Example 6 and the electrolyte solution prepared in the comparative example were used to assemble a zinc-ion battery, and the charge-discharge performance and cycle life of the zinc-ion battery were tested.
  • the positive electrode material is vanadium sulfide
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Example 6 is significantly improved.
  • the electrolyte solution prepared in Example 7 and the electrolyte solution prepared in the comparative example were used to assemble a zinc-ion battery, and the charge-discharge performance and cycle life of the zinc-ion battery were tested.
  • the positive electrode material is titanium sulfide
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Example 7 is significantly improved.
  • Zinc-ion batteries were assembled using the electrolytes prepared in Examples 8-9 and the electrolytes prepared in Comparative Examples, and the charge-discharge performance and cycle life of the zinc-ion batteries were tested.
  • the positive electrode material is tin sulfide
  • the negative electrode material is zinc.
  • the cycle stability of the battery using the electrolyte of Examples 8-9 is significantly improved.
  • the electrolyte solution prepared in Examples 1-9 and the electrolyte solution prepared in Comparative Example were used to assemble a zinc-ion hybrid capacitor, and the charge-discharge performance and cycle life of the zinc-ion capacitor were tested.
  • the positive electrode of this application example may include, but not limited to, one or more of activated carbon, doped porous carbon, graphene or carbon nanotubes. Compared with the zinc ion capacitors using the comparative electrolyte, the cycle stability of the zinc ion capacitors using the electrolytes of Examples 1 to 9 is significantly improved.
  • the electrolyte solution prepared in Examples 1-9 and the electrolyte solution prepared in Comparative Example were used to assemble a hybrid ion battery, and the charging and discharging behavior and cycle life of the battery were tested.
  • the hybrid ion battery in this application example includes both dual cation hybrid batteries and hybrid ion batteries using both anion and cation energy storage.
  • the positive electrode can include but is not limited to graphite or sodium vanadium phosphate, lithium manganese oxide, lithium cobalt oxide, etc. Compared with the hybrid ion battery using the comparative electrolyte, the cycle stability of the hybrid ion battery using the electrolytes of Examples 1-9 is significantly improved.
  • Zinc-air batteries were assembled using the electrolytes prepared in Examples 1-9 and the electrolytes prepared in Comparative Examples, and the charge-discharge behavior, specific capacity, and cycle life of the above-mentioned batteries were tested.
  • the types of current collectors and catalysts for the air electrode in this application example are not specifically limited, for example may include but not limited to hydrophobic carbon paper loaded with iron catalysts. Compared with the air battery using the comparative electrolyte, the cycle performance of the air battery using the electrolyte of Examples 1-9 is significantly improved.

Abstract

本发明涉及储能技术领域,尤其涉及一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为钒基正极、有机氧化还原活性化合物、普鲁士蓝及其类似物、Chevrel相化合物和过渡金属硫族化合物中的至少一种;含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,含氟锌盐溶质为无水四氟硼酸锌、水合四氟硼酸锌、无水六氟磷酸锌和水合六氟磷酸锌中的至少一种。相对于现有技术,该锌基电化学储能器件不仅可以在负极表面生成致密的可隔绝电解液的锌离子导通而电子绝缘的含氟固态电解质界面层,有效解决了负极存在的枝晶生长、腐蚀、析氢等问题,而且可以抑制正极活性物质的溶解,提升正极材料利用率,改善其循环稳定性,显著提升其综合性能。

Description

一种锌基电化学储能器件 技术领域
本发明涉及储能技术(电池、超级电容器、混合离子电容器)领域,尤其涉及一种锌基电化学储能器件。
背景技术
可充电锌基电化学储能装置因其高安全、低成本、环境友好等特点,在包括消费电子产品、大规模储能等领域具有广阔的应用前景,近年来受到了广泛关注。然而,包括负极存在的枝晶生长、腐蚀、析氢以及正极稳定性差等问题严重制约了其发展。电解液作为电化学储能装置的关键部件,其性质及其与其他组分间的兼容性对电化学储能装置的电化学性能和实际工作能力至关重要。
目前锌基电化学储能装置的电解液主要为以硫酸锌、三氟甲烷磺酸锌、高氯酸锌、氯化锌、乙酸锌和硝酸锌等锌盐为主的水系或非水系溶液。尽管上述电解液可以实现锌基电化学储能装置的可逆工作,但是负极的枝晶生长、腐蚀和析氢问题仍然没有得到很好的解决,正极材料溶解、结构坍塌导致的循环稳定性差等问题依然存在,且部分电解液还存在制备工艺复杂、成本高昂、稳定性差、副反应剧烈、工作温度范围窄等问题,无法满足实用化锌基电化学储能装置的需求。
因此,本发明旨在开发一种锌基电化学储能器件,其含有的电解液能够有效解决负极面临的枝晶生长、腐蚀、析氢等问题的同时,还具有低成本、不可燃、宽工作温度区间及抑制正极溶解等特性,能够满足实用化锌基电化学储能器件的需求。
技术问题
本发明的目的之一在于:针对现有技术的不足,而提供一种锌基电化学储能器件,其能够有效解决锌基电化学储能装置面临的负极枝晶生长、副反应和正极活性物质溶解、利用率低等问题,提升其电化学性能并推动其实用化进程。
技术解决方案
为了达到上述目的,本发明采用的技术方案如下:
一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;所述正极材料为钒基正极、有机氧化还原活性化合物、普鲁士蓝及其类似物、Chevrel相化合物和过渡金属硫族化合物中的至少一种;所述含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,所述含氟锌盐溶质为无水四氟硼酸锌、水合四氟硼酸锌、无水六氟磷酸锌和水合六氟磷酸锌中的至少一种。含氟锌盐电解液的制备步骤至少包含将含氟锌盐按照一定的质量摩尔浓度加入到溶剂中,并通过搅拌和(或)超声处理获得均匀澄清透明的溶液,利用电解质盐阴离子与金属锌的反应,可以在金属锌负极表面原位生成含氟界面层,实现对枝晶生长、腐蚀和析氢等问题的抑制。同时,由于正极活性物质在非水溶剂中溶解度低,显著抑制正极材料的溶解,且电解液显酸性,有效缓解了溶出物在负极的沉积,促进了其在正极测的循环利用,提升了活性物质利用率,进而提升锌基电化学储能器件的性能。
作为本发明锌基电化学储能器件的一种改进,所述钒基正极包括五氧化二钒、三氧化二钒、二氧化钒、钒酸锌、钒酸锂、钒酸钠、钒酸镁、钒酸银、钒酸钾、钒酸钙、钒酸铝、钒酸铵、磷酸钒钠和钒酸盐氧氮化物中的至少一种;所述有机氧化还原活性化合物包括聚苯胺、聚吡咯的至少一种;所述普鲁士蓝及其类似物包括普鲁士蓝、六氰基铁酸铜和六氰基铁酸锌中的至少一种;所述过渡金属硫族化合物包括硫化钼、硫化钒、硫化钛、硫化锡中的至少一种。
以正极的活性物质为氧化钒,负极的活性物质为锌为例,该储能器件的工作原理为:正极发生钒元素的变价以及锌离子嵌入/脱出,负极发生锌离子的溶解/沉积。
作为本发明锌基电化学储能器件的一种改进,所述非水溶剂为醇类、酯类、醚类、砜类、腈类、烯烃类有机溶剂和离子液体中的至少一种。有效避免水系电解液电化学窗口低、对负极腐蚀和对正极溶解的问题。根据含氟锌盐在上述溶剂中的溶解度,优选更易溶解含氟锌盐的醇类和酯类溶剂。
作为本发明锌基电化学储能器件的一种改进,醇类有机溶剂为甲醇、乙醇、丙醇、乙二醇、聚乙二醇和丙三醇中的至少一种;酯类有机溶剂为碳酸二甲酯、碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸甲乙酯、甲酸甲酯、丙酸乙酯、磷酸二甲酯、磷酸二乙酯、磷酸甲酯和氟代碳酸乙烯酯中的至少一种;醚类有机溶剂为乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚和丙二醇醚中的至少一种;砜类有机溶剂为二甲基亚砜、四氢呋喃、1,3-二氧环戊烷和冠醚中的至少一种;腈类有机溶剂为乙腈、丙腈、丁腈等中的至少一种;烯烃类溶剂为甲基丁烷、戊烷、戊烯、己烯、庚烯、辛烯等及其卤化物中的至少一种。
作为本发明锌基电化学储能器件的一种改进,所述离子液体为1‑乙基‑3‑甲基咪唑‑六氟磷酸盐、1‑丁基‑1‑甲基咪唑‑四氟硼酸盐、1‑乙基‑3‑甲基咪唑‑四氟硼酸盐、N‑甲基‑N‑丙基吡咯烷‑双三氟甲基磺酰亚胺盐、1‑乙基‑3‑甲基咪唑‑双三氟甲基磺酰亚胺盐等中的至少一种。离子液体可以进一步提升电解液的电化学稳定窗口和安全性。
作为本发明锌基电化学储能器件的一种改进,考虑到参与电化学反应所需锌离子浓度以及含氟锌盐的溶解度,所述含氟锌盐溶质的质量摩尔浓度为0.0001~20 mol/kg。
作为本发明锌基电化学储能器件的一种改进,为进一步拓宽电解液与其他正极材料的适配性,所述电解液中还包括质量摩尔浓度为0~30 mol/kg的锂盐、钠盐、钾盐、铵盐、镁盐、钙盐和铝盐中的至少一种。此时正极可以采用其他阳离子进行储能。
作为本发明锌基电化学储能器件的一种改进,考虑到含氟锌盐的特性和功能,其还可以作为电解液添加剂与其他锌盐共同使用,所述电解液中还包括质量摩尔浓度为0~15 mol/kg mol/kg的醋酸锌、硫酸锌、氯化锌、硝酸锌、高氯酸锌、三氟甲烷磺酸锌和双三氟甲基磺酰亚胺锌中的至少一种。
作为本发明锌基电化学储能器件的一种改进,所述储能器件为至少一极采用锌离子作为主要电荷载体储能的二次电池、超级电容器、混合离子电容器中的至少一种。包括但不限于一极既采用锌离子作为电荷载体又采用其它离子作为电荷载体进行储能,而对于另一极采用的电荷载体则不作具体限定,既可以也是锌离子,也可以是其它阳离子、阴离子、分子中的至少一种。本发明在电化学储能装置的具体集流体、隔膜、外壳和结构形态等不作具体限定,可以参考现有的电化学储能装置。如二次电池可以包括但不限于锌离子电池、液流电池、空气电池、双离子电池、混合阳离子电池等中的至少一种。如超级电容器可以包括但不限于对称超级电容器、非对称超级电容器、混合离子电容器等中的至少一种。
有益效果
相对于现有技术,本发明体系中使用的含有含氟锌盐的电解液,一方面可以利用化学或者电化学反应在锌基电化学储能装置的负极表面形成一层致密的可隔绝电解液的锌离子导通而电子绝缘的含氟固态电解质界面层,该界面层不仅可以均匀锌离子流,解决负极枝晶生长的问题,同时还可以阻隔电解液与负极的直接接触,减少电解液在负极表面发生的副反应,有效解决负极腐蚀、析氢等问题,进而提升负极的库伦效率、充放电深度和循环寿命;另一方面,还可以抑制锌基电化学储能装置(电池、超级电容器)中正极材料的溶解,促进正极材料的循环利用,提升材料利用率,进而提升其循环稳定性。此外,由于氟的电负性极强,还有望改善电解液中锌离子的化学环境及电解液组分间相互作用,从而使得电解液具有其他特性或潜质,诸如包括但不限于良好耐高低温性能、宽电化学窗口等。将该电解液应用于锌基电化学储能装置,可以有效解决其面临的负极枝晶生长、副反应严重及正极活性物质溶解等问题,进而大幅提升锌基电化学储能装置综合电化学性能,推动其实用化进程。
附图说明
图1是本申请实施例1中锌离子电池电解液在暴露于空气中的保液能力测试图。
图2是本申请实施例2中所得锌离子电池电解液的可燃性测试。
图3是本申请实施例2中所得锌离子电池电解液的低温DSC测试。
图4是本申请应用例1中纯锌片未经浸泡和循环处理表面SEM照片。
图5是本申请应用例1中在实施例1所得电解液中浸泡7天后的表面SEM照片。
图6是本申请应用例1中在对比例所得电解液中浸泡7天后的表面SEM照片。
图7是本申请应用例2中采用实施例2和对比例所得电解液组装锌//锌对称电池的充放电和循环性能图。
图8是本申请应用例2中采用实施例2和对比例所得电解液组装锌//铜非对称电池的库伦效率和循环性能图。
图9是本申请应用例3中采用实施例2和对比例所得电解液组装锌//五氧化二钒锌离子电池的循环性能图。
图10是本申请应用例3中采用实施例2和对比例所得电解液组装锌//五氧化二钒锌离子电池循环100圈后隔膜的光学照片。
本发明的最佳实施方式
以下以具体实施例来进一步详细举例说明本发明的技术方案,需要说明的是,以下列举的实施例仅用以解释本发明,但本发明的保护范围不限于此。
实施例1
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为三氧化二钒;含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,含氟锌盐溶质为无水四氟硼酸锌,溶剂为乙二醇。无水四氟硼酸锌的质量摩尔浓度为2 mol/kg。电解液的制备方法如下:按照2 mol/kg的质量摩尔浓度称取无水四氟硼酸锌和乙二醇的质量,将上述药品放入烧杯中搅拌混合20分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液,其离子电导率为3.8 mS/cm。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
特别地,实施例1制备的电解液在27 ℃暴露于相对湿度为25%的空气中不同时间的电解液质量变化趋势图如图1所示,可以看出,所得电解液具有良好的保液能力,即使经过60小时的暴露,仍能保持电解液初始质量的95%以上,因而是制备开放型锌基电化学储能装置电解液的良好选择,此外还可以保证采用该电解液的密闭锌基电化学储能装置即使发生外壳破裂,电解液长时间暴露于空气中后仍能正常工作,不会因电解液干涸而造成装置失效。
本发明的实施方式
实施例2
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为五氧化二钒;含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,含氟锌盐溶质为水合四氟硼酸锌,溶剂为乙二醇。水合四氟硼酸锌的质量摩尔浓度为4 mol/kg。电解液的配制方法如下:按照4 mol/kg的质量摩尔浓度称取水合四氟硼酸锌和乙二醇的质量,将上述药品放入烧杯中超声搅拌40分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液,其离子电导率为4.5 mS/cm,锌离子迁移数为0.43。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
特别地,实施例2制备的电解液的可燃性实验结果如图2所示,可以看出,纯乙二醇是可燃的,但是所得的含有四氟硼酸锌的乙二醇溶液是不可燃的,表明该电解液具有良好的不可燃性,也使得采用该电解液的锌基电化学储能装置具有良好的安全性。
实施例2制备的电解液的差示扫描量热曲线如图3所示,可以看出,所得电解液即使在低至-80 ℃的情况下仍然未发生凝固,表明该电解液具有良好的耐低温性能。且乙二醇的沸点高达197.3 ℃,同时也赋予了该电解液良好的耐高温特性。
实施例3
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为二氧化钒;含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,含氟锌盐溶质为水合四氟硼酸锌和水合氟化锌,溶剂为乙二醇。水合四氟硼酸锌的质量摩尔浓度为8 mol/kg。电解液的配制方法如下:按照水合四氟硼酸锌8 mol/kg的质量摩尔浓度称取水合四氟硼酸锌和乙二醇的质量,将上述药品放入烧杯中超声搅拌80分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
实施例4
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为钒酸钠;含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,含氟锌盐溶质为水合四氟硼酸锌和水合六氟磷酸锌,溶剂为乙二醇和甲醇。水合四氟硼酸锌的质量摩尔浓度为12 mol/kg,水合六氟磷酸锌的质量摩尔浓度为0.005 mol/kg。电解液的配制方法如下:按照水合六氟磷酸锌为0.005 mol/kg和水合四氟硼酸锌12 mol/kg的质量摩尔浓度称取水合六氟磷酸锌、水合四氟硼酸锌、甲醇、乙二醇的质量,其中甲醇和乙二醇的质量比为2:1,将上述药品放入烧杯中超声搅拌100分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
实施例5
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为钒酸铵;含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,含氟锌盐溶质为水合四氟硼酸锌,溶剂为碳酸丙烯酯和氟代碳酸乙烯酯。水合四氟硼酸锌的质量摩尔浓度为4 mol/kg。电解液的配制方法如下:按照水合四氟硼酸锌为4 mol/kg的质量摩尔浓度称取水合四氟硼酸锌、碳酸丙烯酯和氟代碳酸乙烯酯的质量,其中碳酸丙烯酯和氟代碳酸乙烯酯的质量比为20:1将上述药品放入烧杯中超声搅拌80分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
实施例6
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为钒酸铝;含氟锌盐电解液包括溶剂和含氟锌盐溶质,含氟锌盐溶质为无水四氟硼酸锌,溶剂为乙二醇和碳酸丙烯酯。无水四氟硼酸锌的质量摩尔浓度为2 mol/kg。电解液的配制方法如下:按照2 mol kg -1的质量摩尔浓度称取无水四氟硼酸锌和乙二醇和碳酸丙烯酯的质量,其中乙二醇和碳酸丙烯酯的质量比为7:10,将上述药品放入烧杯中加热(60 ℃)条件下超声搅拌50分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
实施例7
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为五氧化二钒;含氟锌盐电解液包括非水溶剂和锌盐溶质,锌盐溶质为水合四氟硼酸锌和水合硫酸锌,溶剂为乙醇和二甲基亚砜。水合四氟硼酸锌的质量摩尔浓度为3 mol/kg,水合硫酸锌的质量摩尔浓度为1 mol/kg。电解液的配制方法如下:按照水合四氟硼酸锌为3 mol/kg和水合硫酸锌为1 mol/kg的质量摩尔浓度称取水合四氟硼酸锌、水合硫酸锌、乙醇和二甲基亚砜的质量,其中乙醇和二甲基亚砜的质量比为15:1,将上述药品放入烧杯中超声搅拌70分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
实施例8
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为五氧化二钒;含氟锌盐电解液包括非水溶剂和锌盐溶质,锌盐溶质为水合四氟硼酸锌和水合硫酸锌,溶剂为丙三醇、乙二醇二甲醚和1,3-二氧戊烷。水合四氟硼酸锌的质量摩尔浓度为3 mol/kg,水合硫酸锌的质量摩尔浓度为1 mol/kg。电解液的配制方法如下:按照水合四氟硼酸锌为3 mol/kg和水合硫酸锌为1 mol/kg的质量摩尔浓度称取水合四氟硼酸锌、水合硫酸锌、丙三醇、乙二醇二甲醚和1,3-二氧戊烷的质量,其中丙三醇、乙二醇二甲醚和1,3-二氧戊烷的质量比为5:1:1,将上述药品放入烧杯中超声搅拌100分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
实施例9
本实施例提供了一种锌基电化学储能器件,至少包含正极、金属锌负极和含氟锌盐电解液;正极材料为五氧化二钒;含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,含氟锌盐溶质为水合四氟硼酸锌和四氟硼酸钠,溶剂为乙二醇、乙腈和1‑丁基‑1‑甲基咪唑‑四氟硼酸盐。水合四氟硼酸锌的质量摩尔浓度为1 mol/kg,四氟硼酸钠的质量摩尔浓度为1 mol/kg。电解液的配制方法如下:按照水合四氟硼酸锌为1 mol/kg和四氟硼酸钠为1 mol/kg的质量摩尔浓度称取水合四氟硼酸锌、四氟硼酸钠、乙二醇、乙腈和1‑丁基‑1‑甲基咪唑‑四氟硼酸盐的质量,其中乙二醇、乙腈和1‑丁基‑1‑甲基咪唑‑四氟硼酸盐的质量比为5:2:1,将上述药品放入烧杯中超声、搅拌100分钟以完全溶解形成澄清溶液,即获得本例的锌离子电池电解液。将上述正极、负极、电解液组装电池即得锌基电化学储能器件。
工业实用性
对比例
本对比例的锌离子电池电解液,其具体组成为水合硫酸锌和水。其制备方法如下:按照2 mol/L的摩尔浓度称取水合硫酸锌的质量并置于含有水的烧杯中搅拌溶解,搅拌30分钟,完全溶解形成澄清溶液,再转移至1 L容量瓶中定容,即获得本对比例的锌离子电池电解液。
应用例1
将金属锌箔浸泡于实施例1~9和对比例中配制的锌离子电池电解液,在常温下静置7天后对锌箔的表面形貌进行表征观测。未经浸泡的锌片表面形貌如图4所示,表面较为光滑而无杂质。以实施例1中的电解液为例,所得扫描电子显微镜照片如图5所示,由图可知,在实施例1制备的锌离子电池电解液中浸泡后的锌片表面出现均匀的球形颗粒固体界面层,且颗粒大小和厚度不随着浸泡时间的延长而变化,表明金属锌与电解液之间的反应被有效隔绝,经XRD测试发现该界面层主要由氟化锌组成。而在对比例制备得到的电解液中浸泡7天后的扫描电镜照片如图6所示,可见锌箔表面出现很多大小不一的片状碱式硫酸锌腐蚀副产物,且随和浸泡时间的延长,副产物会变得更多、更厚,表明电解液与锌之间的反应在一直发生。
应用例2
采用实施例1~9制备得到的电解液和对比例制备得到的电解液组装锌//锌对称电池和锌//铜非对称电池,测试对称电池的循环寿命以及在上述电解液中锌的沉积/溶解库伦效率。图7展示了采用实施例2电解液和对比例电解液的对称电池在0.5 mA/cm 2、0.25 mAh/cm 2测试条件下的循环寿命,由图可知,采用实施例2作为电解液的对称电池循环寿命可达3500小时,远远高于采用对比例电解液的对称电池,表明该电解液有效抑制了负极枝晶的生长。图8展示了采用实施例2电解液和对比例电解液的锌//铜非对称电池在1 mA/cm 2、0.5 mAh/cm 2测试条件下的库伦效率,由图可知,采用实施例2作为电解液的锌//铜非对称电池展现出高达99.4%的库伦效率,远高于采用对比例电解液的对称电池,表明该电解液有效抑制了负极枝晶的生长及副反应等的发生。
应用例3
采用实施例1~9制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试电池的充放电和循环寿命。图9展示了采用实施例2电解液和对比例电解液的锌//五氧化二钒锌离子电池在1 A/g测试条件下的循环寿命及循环100圈后拆开电池的隔膜颜色。由图9可知,采用实施例2作为电解液的锌//五氧化二钒锌离子电池循环寿命相较于采用对比例电解液的锌//五氧化二钒电池显著提升。由图10可知,采用实施例2作为电解液的锌//五氧化二钒锌离子电池在循环100圈后隔膜没有变化,而采用对比例电解液的电池在循环后则在隔膜上出现了很多暗黑和暗黄色的固体,表明该电解液有效抑制了五氧化二钒正极的溶剂,进而提升了所得锌离子电池的循环寿命。
应用例4
采用实施例1制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为普鲁士蓝,负极材料为锌。相较采用对比例电解液的电池,采用实施例1电解液电池的循环稳定性显著提升。
应用例5
采用实施例2制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为六氰基铁酸铜,负极材料为锌。相较采用对比例电解液的电池,采用实施例2电解液电池的循环稳定性显著提升。
应用例6
采用实施例3制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为硫化钼,负极材料为锌。相较采用对比例电解液的电池,采用实施例3电解液电池的循环稳定性显著提升。
应用例7
采用实施例4制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为聚苯胺,负极材料为锌。相较采用对比例电解液的电池,采用实施例4电解液电池的循环稳定性显著提升。
应用例8
采用实施例5制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为聚吡咯,负极材料为锌。相较采用对比例电解液的电池,采用实施例5电解液电池的循环稳定性显著提升。
应用例9
采用实施例6制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为六氰基铁酸锌,负极材料为锌。相较采用对比例电解液的电池,采用实施例6电解液电池的循环稳定性显著提升。
应用例10
采用实施例6制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为硫化钒,负极材料为锌。相较采用对比例电解液的电池,采用实施例6电解液电池的循环稳定性显著提升。
应用例11
采用实施例7制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为硫化钛,负极材料为锌。相较采用对比例电解液的电池,采用实施例7电解液电池的循环稳定性显著提升。
应用例12
采用实施例8~9制备得到的电解液和对比例制备得到的电解液组装锌离子电池,测试锌离子电池的充放电性能和循环寿命。此应用例中,正极材料为硫化锡,负极材料为锌。相较采用对比例电解液的电池,采用实施例8~9电解液电池的循环稳定性显著提升。
应用例13
采用实施例1~9制备得到的电解液和对比例制备得到的电解液组装锌离子混合电容器,测试锌离子电容器的充放电性能和循环寿命。此应用例的正极可以包括但不限于活性炭、掺杂多孔碳、石墨烯或碳纳米管中的某一或某几种。相较采用对比例电解液的锌离子电容器而言,采用实施例1~9电解液锌离子电容器的循环稳定性显著提升。
应用例14
采用实施例1~9制备得到的电解液和对比例制备得到的电解液组装混合离子电池,测试上述电池的充放电行为和循环寿命。此应用例的混合离子电池既包括双阳离子混合电池也包括同时采用阴、阳离子储能的混合离子电池,例如正极可以包括但不限于是石墨或者磷酸钒钠、锰酸锂、钴酸锂等。相较采用对比例电解液的混合离子电池而言,采用实施例1~9电解液混合离子电池的循环稳定性显著提升。
应用例15
采用实施例1~9制备得到的电解液和对比例制备得到的电解液组装锌-空气电池,测试上述电池的充放电行为、比容量和循环寿命。此应用例中空气电极测的集流体及催化剂种类不作具体限定,例如可以包括但不限于负载有铁催化剂的疏水碳纸。相较采用对比例电解液的空气电池而言,采用实施例1~9电解液空气电池的循环性能明显提升。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面所述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (9)

  1. 一种锌基电化学储能器件,其特征在于:至少包含正极、金属锌负极和含氟锌盐电解液;所述正极材料为钒基正极、有机氧化还原活性化合物、普鲁士蓝及其类似物、Chevrel相化合物和过渡金属硫族化合物中的至少一种;所述含氟锌盐电解液包括非水溶剂和含氟锌盐溶质,所述含氟锌盐溶质为无水四氟硼酸锌、水合四氟硼酸锌、无水六氟磷酸锌和水合六氟磷酸锌中的至少一种。
  2. 根据权利要求1所述的锌基电化学储能器件,其特征在于:所述钒基正极包括五氧化二钒、三氧化二钒、二氧化钒、钒酸锌、钒酸锂、钒酸钠、钒酸镁、钒酸银、钒酸钾、钒酸钙、钒酸铝、钒酸铵、磷酸钒钠和钒酸盐氧氮化物中的至少一种;所述有机氧化还原活性化合物包括聚苯胺、聚吡咯的至少一种;所述普鲁士蓝及其类似物包括普鲁士蓝、六氰基铁酸铜和六氰基铁酸锌中的至少一种;所述过渡金属硫族化合物包括硫化钼、硫化钒、硫化钛、硫化锡中的至少一种。
  3. 根据权利要求1所述的锌基电化学储能器件,其特征在于:所述非水溶剂为醇类、酯类、醚类、砜类、腈类、烯烃类有机溶剂和离子液体中的至少一种。
  4. 根据权利要求3所述的锌基电化学储能器件,其特征在于:醇类有机溶剂为甲醇、乙醇、丙醇、乙二醇、聚乙二醇和丙三醇中的至少一种;酯类有机溶剂为碳酸二甲酯、碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸甲乙酯、甲酸甲酯、丙酸乙酯、磷酸二甲酯、磷酸二乙酯、磷酸甲酯和氟代碳酸乙烯酯中的至少一种;醚类有机溶剂为乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚和丙二醇醚中的至少一种;砜类有机溶剂为二甲基亚砜、四氢呋喃、1,3-二氧环戊烷和冠醚中的至少一种;腈类有机溶剂为乙腈丙腈、丁腈等中的至少一种;烯烃类溶剂为甲基丁烷、戊烷、戊烯、己烯、庚烯、辛烯等及其卤化物中的至少一种。
  5. 根据权利要求3所述的锌基电化学储能器件,其特征在于:所述离子液体为1‑乙基‑3‑甲基咪唑‑六氟磷酸盐、1‑丁基‑1‑甲基咪唑‑四氟硼酸盐、1‑乙基‑3‑甲基咪唑‑四氟硼酸盐、N‑甲基‑N‑丙基吡咯烷‑双三氟甲基磺酰亚胺盐、1‑乙基‑3‑甲基咪唑‑双三氟甲基磺酰亚胺盐等中的至少一种。
  6. 根据权利要求1所述的锌基电化学储能器件,其特征在于:所述含氟锌盐溶质的质量摩尔浓度为0.0001~20 mol/kg。
  7. 根据权利要求1所述的锌基电化学储能器件,其特征在于:所述电解液中还包括质量摩尔浓度为0~30 mol/kg的锂盐、钠盐、钾盐、铵盐、镁盐、钙盐和铝盐中的至少一种。
  8. 根据权利要求1所述的锌基电化学储能器件,其特征在于:所述电解液中还包括质量摩尔浓度为0~15 mol/kg的醋酸锌、硫酸锌、氯化锌、硝酸锌、高氯酸锌、三氟甲烷磺酸锌和双三氟甲基磺酰亚胺锌中的至少一种。
  9. 根据权利要求1所述的锌基电化学储能器件,其特征在于:所述储能器件为至少一极采用锌离子作为主要电荷载体储能的二次电池、超级电容器、混合离子电容器中的至少一种。
PCT/CN2021/122805 2021-09-24 2021-10-09 一种锌基电化学储能器件 WO2023044969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111117846.X 2021-09-24
CN202111117846.XA CN113921900B (zh) 2021-09-24 2021-09-24 一种锌基电化学储能器件

Publications (1)

Publication Number Publication Date
WO2023044969A1 true WO2023044969A1 (zh) 2023-03-30

Family

ID=79236008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122805 WO2023044969A1 (zh) 2021-09-24 2021-10-09 一种锌基电化学储能器件

Country Status (2)

Country Link
CN (1) CN113921900B (zh)
WO (1) WO2023044969A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393870A (zh) * 2023-12-11 2024-01-12 大连理工大学 一种锌离子电池储能器件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695973A (zh) * 2022-03-21 2022-07-01 电子科技大学 一种低温锌离子电池的制备方法
CN114927772A (zh) * 2022-06-28 2022-08-19 华中科技大学 一种电解液的添加剂及其应用、电解液和水系锌离子电池
CN115832473B (zh) * 2023-02-03 2023-05-12 江苏思贝尔海纳储能科技有限公司 一种储能***
CN116072988B (zh) * 2023-02-22 2024-02-23 南京航空航天大学 一种共晶电解液及其制备方法和应用、水系锌-碘电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369567A (zh) * 2017-07-17 2017-11-21 深圳中科瑞能实业有限公司 锌离子混合超级电容器用电解液、锌离子混合超级电容器及其制备方法
CN108242560A (zh) * 2017-12-26 2018-07-03 深圳先进技术研究院 锌基双离子电池及其制备方法
CN108574085A (zh) * 2018-03-22 2018-09-25 复旦大学 一种低温锌离子电池
CN109037794A (zh) * 2017-10-20 2018-12-18 南京蔚速科技有限公司 一种可充电电池
CN110311171A (zh) * 2019-06-29 2019-10-08 复旦大学 一种宽工作温度范围的磷酸酯基电解液及其应用
CN110518295A (zh) * 2019-08-26 2019-11-29 河北大学 一种可充锌基电池
CN110534808A (zh) * 2019-08-06 2019-12-03 河北大学 一种用于可充锌电池的阻燃有机电解液及可充锌电池
CN111540963A (zh) * 2020-05-21 2020-08-14 中国科学院青岛生物能源与过程研究所 一种水熔盐基锌电解质及其在二次锌电池中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900497A (zh) * 2020-06-12 2020-11-06 北京大学深圳研究生院 一种水系锌离子电池电解液及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369567A (zh) * 2017-07-17 2017-11-21 深圳中科瑞能实业有限公司 锌离子混合超级电容器用电解液、锌离子混合超级电容器及其制备方法
CN109037794A (zh) * 2017-10-20 2018-12-18 南京蔚速科技有限公司 一种可充电电池
CN108242560A (zh) * 2017-12-26 2018-07-03 深圳先进技术研究院 锌基双离子电池及其制备方法
CN108574085A (zh) * 2018-03-22 2018-09-25 复旦大学 一种低温锌离子电池
CN110311171A (zh) * 2019-06-29 2019-10-08 复旦大学 一种宽工作温度范围的磷酸酯基电解液及其应用
CN110534808A (zh) * 2019-08-06 2019-12-03 河北大学 一种用于可充锌电池的阻燃有机电解液及可充锌电池
CN110518295A (zh) * 2019-08-26 2019-11-29 河北大学 一种可充锌基电池
CN111540963A (zh) * 2020-05-21 2020-08-14 中国科学院青岛生物能源与过程研究所 一种水熔盐基锌电解质及其在二次锌电池中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393870A (zh) * 2023-12-11 2024-01-12 大连理工大学 一种锌离子电池储能器件
CN117393870B (zh) * 2023-12-11 2024-02-13 大连理工大学 一种锌离子电池储能器件

Also Published As

Publication number Publication date
CN113921900B (zh) 2024-04-12
CN113921900A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
Zhang et al. Pursuit of reversible Zn electrochemistry: a time-honored challenge towards low-cost and green energy storage
Zhang et al. Issues and rational design of aqueous electrolyte for Zn‐ion batteries
WO2023044969A1 (zh) 一种锌基电化学储能器件
EP3187487B1 (en) Ionic liquid and plastic crystal
US20140050947A1 (en) Hybrid Electrochemical Energy Storage Devices
CN101764258B (zh) 一种二次铝电池及其制备方法
CN106340651A (zh) 一种二次电池及其制备方法
US20120244436A1 (en) Anodes of porous silicon particles
US20120225359A1 (en) Electrolytes in Support of 5 V Li ion Chemistry
CN108242560A (zh) 锌基双离子电池及其制备方法
TW200305174A (en) Material for electrolytic solutions and use thereof
JP2020074477A (ja) リチウムイオンキャパシタ
US20140295262A1 (en) Electrolyte solution for lithium metal battery, and lithium metal battery
CN113429616B (zh) 一种吸湿的双层凝胶聚合物电解质的制备方法及其应用
CN106252663A (zh) 金属有机骨架材料CuBDC纳米片及其制备方法和应用
JP2019505967A (ja) レドックスフロー電池用電解液およびレドックスフロー電池
JP5621745B2 (ja) 空気電池用電解液
CN106299264A (zh) 一种正极活性材料及其制备方法、正极片及锂离子电池
Wang et al. An efficient electrolyte additive of 1, 3, 6-hexanetricarbonitrile for high performance aqueous zinc-ion batteries
CN110034342A (zh) 一种水系锌-碲二次电池
WO2024027499A1 (zh) 一种基于物理过程形成sei膜的宽电压窗口水系电解液及其制备方法和应用
CN111261946B (zh) 一种铝离子电池电解质溶液与电池
TW201631833A (zh) 非水電解液及使用該非水電解液的蓄電裝置
JP2002367675A (ja) 非水電解質電池
CN115020827A (zh) 一种水系锌离子电池准固态电解质及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958084

Country of ref document: EP

Kind code of ref document: A1