WO2023027181A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2023027181A1
WO2023027181A1 PCT/JP2022/032265 JP2022032265W WO2023027181A1 WO 2023027181 A1 WO2023027181 A1 WO 2023027181A1 JP 2022032265 W JP2022032265 W JP 2022032265W WO 2023027181 A1 WO2023027181 A1 WO 2023027181A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
opening
map
motor
closing body
Prior art date
Application number
PCT/JP2022/032265
Other languages
French (fr)
Japanese (ja)
Inventor
快 松浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112022004155.2T priority Critical patent/DE112022004155T5/en
Priority to JP2023544008A priority patent/JPWO2023027181A1/ja
Publication of WO2023027181A1 publication Critical patent/WO2023027181A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/08Windows; Windscreens; Accessories therefor arranged at vehicle sides
    • B60J1/12Windows; Windscreens; Accessories therefor arranged at vehicle sides adjustable
    • B60J1/16Windows; Windscreens; Accessories therefor arranged at vehicle sides adjustable slidable
    • B60J1/17Windows; Windscreens; Accessories therefor arranged at vehicle sides adjustable slidable vertically
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • E05F15/689Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings specially adapted for vehicle windows

Definitions

  • the present disclosure relates to technology for driving and controlling a motor.
  • Patent Document 1 describes that in a power window system, slow start control is performed at the start of operation, slow stop control is performed at the end of operation, and constant speed control is performed between slow start control and slow stop control.
  • slow start control by increasing the duty of the drive signal that drives the motor at a constant rate, the voltage applied to the motor and the movement speed of the window glass (hereinafter referred to as the opening/closing body) driven by the motor are increased to the target speed. Increase at a constant rate.
  • the duty of the drive signal that drives the motor is reduced at a constant rate, thereby reducing the voltage applied to the motor and, in turn, the moving speed of the opening/closing body driven by the motor at a constant rate.
  • control value that is, the voltage applied to the motor
  • the control value necessary to keep the moving speed of the opening/closing body constant is controlled using a learned voltage map that corresponds to the position of the opening/closing body.
  • the position of the opening/closing body is represented by the count value of the pulse signal output from the Hall sensor or the like each time the drive motor rotates by a predetermined angle.
  • the operating range of the opening/closing member that is, the count value from the fully closed position to the fully opened position varies depending on the type of vehicle and the mounting state of the opening/closing member.
  • the voltage map is prepared wider than the actual operating range of the opening/closing body, and the learning value is stored in the area corresponding to the operating range of the opening/closing body.
  • One aspect of the present disclosure provides a technique for driving the opening/closing body even when the measured position of the opening/closing body differs from the actual position of the opening/closing body.
  • One aspect of the present disclosure is a motor control device that includes a state detection unit, a map storage unit, and a signal generation unit.
  • the state detection unit is configured to detect the position and moving speed of the opening/closing body based on a detection signal from a sensor that detects rotation of a motor that automatically opens/closes the opening/closing body provided in the vehicle.
  • the map storage unit is configured to store a voltage map indicating a learning value of the voltage applied to the motor required to operate the opening/closing member at a constant target speed in association with the position of the opening/closing member.
  • the signal generator applies the position and moving speed of the opening/closing body detected by the state detection part and the applied voltage calculated using the voltage map to the motor so that the opening/closing body operates according to the specified speed pattern.
  • Generate a drive signal for In the voltage map a default value of the applied voltage is also set at a position beyond the movable range of the opening/closing body.
  • the position of the opening/closing body detected by the state detection unit is deviated from the actual position of the opening/closing body, so that a region in which the learned value is not stored in the voltage map is referred to. Even so, the opening/closing body can be operated, and discomfort given to the user can be suppressed.
  • FIG. 7 is a flowchart of map setting processing
  • FIG. 4 is an explanatory diagram of a learning voltage map and a set voltage map
  • 4 is a flowchart of drive processing
  • FIG. 4 is an explanatory diagram showing an overview of 100% duty control and control using a voltage map
  • FIG. 4 is an explanatory diagram of a voltage correction value used for control of a constant speed section
  • 4 is a flowchart of learning processing
  • FIG. 4 is an explanatory diagram showing a method of calculating a learned value of applied voltage to be stored in a learned voltage map
  • FIG. 10 is an explanatory diagram showing operations when there is no positional deviation and when there is positional deviation;
  • FIG. 1 shows the configuration for one door.
  • the rotation detection sensor 5 detects the rotation of the motor 4.
  • the rotation detection sensor 5 is composed of, for example, a magnet that rotates integrally with the rotor of the motor 4 and a Hall IC for magnetism detection. generate a signal.
  • the operation unit 6 is provided at a place where the passenger of the vehicle can operate it.
  • the operation unit 6 includes an UP switch, a DN switch, and an AUTO switch.
  • the UP switch is a switch for operating the window glass toward the fully closed position while it is operated in the ON state.
  • the DN switch is a switch for operating the window glass toward the fully open position while it is operated in the ON state.
  • the AUTO switch is a switch for continuing to operate the window glass until it reaches the fully closed position or the fully opened position even after returning to the OFF state when it is operated to the ON state.
  • the battery 7 supplies power to each part of the vehicle with a DC battery voltage VB (eg, 12 V).
  • VB DC battery voltage
  • the other ECU 3 operates by receiving power supply from the battery 7, and has at least a function of acquiring the operation state of each switch that constitutes the operation unit 6 and notifying it to the door ECU 2 via the in-vehicle communication network.
  • the door ECU 2 operates by receiving power supply from the battery 7, and drives the motor 4 according to the signal from the rotation detection sensor 5 and the operation state of each switch constituting the operation unit 6 acquired via the other ECU 3. to open and close the window glass.
  • the other ECU 3 includes a power supply circuit 31 , a communication circuit 32 , an input circuit 33 and a controller 35 .
  • the power supply circuit 31 steps down the power from the battery voltage VB supplied from the battery 7 to a control voltage VC (eg, 5V), and supplies the power to the communication circuit 32 and the control unit 35 constituting the other ECU 3 .
  • a control voltage VC eg, 5V
  • the communication circuit 32 realizes communication with other ECUs including the door ECU 2 via an in-vehicle communication network (eg, CAN).
  • CAN is a registered trademark.
  • the input circuit 33 formats the output of each switch constituting the operation unit 6 into a binary signal representing the operation state of each switch by ON/OFF, and inputs the binary signal to the control unit 35 .
  • the control unit 35 includes a microcomputer having a CPU and a semiconductor memory such as ROM or RAM (hereinafter referred to as memory).
  • the control unit 35 performs at least an information collection process of transmitting the operation state of each switch constituting the operation unit 6 acquired through the input circuit 33 to the door ECU 2 .
  • the memory stores at least a program that implements information collection processing.
  • the other ECU 3 acquires the operation state of each switch constituting the operation unit 6 and transmits the operation state to the door ECU 2.
  • the door ECU 2 directly acquires the operation state without going through the other ECU. It may be configured as
  • the door ECU 2 includes a power supply circuit 21 , a communication circuit 22 , a motor drive circuit 23 , an amplifier 24 and a controller 25 . Since the power supply circuit 21 and the communication circuit 22 are the same as the power supply circuit 31 and the communication circuit 32 described in the other ECU 3, description thereof is omitted. However, the power supply circuit 31 also supplies power to the amplifier 24 with the control voltage VC.
  • the motor drive circuit 23 is composed of, for example, an H bridge circuit, and applies a battery voltage VB of positive or reverse polarity to the motor 4 according to a PWM signal, which is a drive signal supplied from the control section 25 . That is, the direction of rotation of the motor 4 , and thus the direction of movement of the window glass (that is, the direction of opening or closing) is controlled by the polarity of the battery voltage VB applied to the motor 4 . Further, the rotational speed of the motor 4, and thus the moving speed of the window crow, is controlled by the voltage applied to the motor 4 determined by the duty of the PWM signal.
  • the voltage applied to the motor 4 is VB when driven by a PWM signal with a duty of 100%, and is VB/2 when driven by a PWM signal with a duty of 50%.
  • the amplifier 24 amplifies and shapes the pulse signal output from the rotation detection sensor 5 and inputs it to the controller 25 .
  • control unit 25 includes a microcomputer having a CPU 251 and a semiconductor memory (hereinafter referred to as memory) 252 such as ROM or RAM.
  • the control unit 25 executes at least map setting processing, driving processing, and learning processing.
  • the memory 252 stores programs and the like for realizing functions assigned to the control unit 25 .
  • the RAM that constitutes the memory 252 has a nonvolatile area that retains memory contents even when the power is turned off, and a volatile area that retains memory contents only while the power is on.
  • a learned voltage map is stored in a non-volatile area of RAM.
  • an area hereinafter referred to as a map setting area for temporarily storing the learning voltage map read from the nonvolatile area is secured.
  • the learning voltage map shows the voltage applied to the motor 4 required to rotate the motor 4 at the target rotation speed, and the opening/closing position of the window glass driven by the motor 4 (hereinafter referred to as window position).
  • the window position is represented by a count value c obtained by counting pulse signals input from the rotation detection sensor 5 .
  • the count value c representing the window position may be set so that the value increases from the fully closed position toward the fully opened position of the window glass.
  • the map setting area For the map setting area, a range wider than the window position range (that is, the movable range of the window glass) shown in the learning voltage map is secured. For example, if the learning voltage map stores applied voltages for each of approximately 190 window positions, the map setting area is reserved to store applied voltages for 256 window positions.
  • the map setting area is used as a ring buffer and treated as if the end address and the start address are continuous.
  • the learning voltage map is set with an arbitrary point in the map setting area as the head (that is, the fully closed position). This is to flexibly cope with the movable range of the window glass, which varies depending on the vehicle type, the individual window glass, and the state of attachment to the door.
  • the map setting process is executed as one of the initialization processes executed when the control unit 25 is activated.
  • control unit 25 sets default values over the entire map setting area prepared in the volatile area of the RAM that constitutes the memory 252, as shown in the third row of FIG.
  • an average value of applied voltages (that is, learned values) indicated in the learned voltage map stored in the memory 252 may be used.
  • an applied voltage that is, a design value required to achieve the target rotation speed logically calculated from the characteristics of the motor 4 and the motor drive circuit 23 may be used.
  • control unit 25 reads out the learned voltage map stored in the memory 252, and overwrites the map setting area in which the default value is set, as shown in the fourth row of FIG.
  • control unit 25 determines whether or not the reading of the learning voltage map has succeeded.
  • the readout of the learning voltage map may not match the data read from the memory 252 .
  • data added to prevent tampering such as CRC calculation and authentication will not match.
  • the voltage is insufficient during writing, or noise is added during reading, resulting in garbled bits. case is conceivable.
  • control unit 25 again sets the default values over the entire map setting area, as in S110, and terminates the process.
  • the reason for resetting the default value is that the data read from the map setting area cannot be trusted when it is determined in S130 that reading of the learning voltage map has failed.
  • the learning voltage map is set so that the learning value of the applied voltage at the fully closed position in the learning voltage map is written in the preset count value Cc.
  • the map setting process By the map setting process, all map setting areas other than the learning area are filled with default values, regardless of the width of the learning area where the learning voltage map has values.
  • the learned voltage map including the default values set in the map setting area by the map setting process is referred to as the set voltage map.
  • the driving process is repeatedly executed after the map setting process is executed.
  • control is executed to gradually increase the moving speed of the window glass until the target speed is reached.
  • control is executed to maintain the moving speed of the window glass at a constant target speed according to the set voltage map set in the map setting area.
  • control is executed to gradually decrease the moving speed of the window glass from the target speed until it reaches the stop position.
  • the count value representing the start position of the slow start section is C0.
  • C1 be a count value representing the end position of the slow start section (that is, the start position of the constant speed section).
  • C2 be a count value representing the start position of the slow stop section (that is, the end position of the constant speed section).
  • C3 be a count value representing the end position of the slow stop section.
  • the section width WS of the slow start section and the section width WE of the slow stop section are set in advance.
  • CO and C3 are determined by the window position of the window glass at the start of driving and its moving direction
  • FIG. 5 shows the case where the window glass moves from the fully closed state to the fully opened state or from the fully opened state to the fully closed state.
  • the control unit 25 receives an operation request from the operation state of each switch constituting the operation unit 6 acquired from the other ECU 3 via the communication circuit 22. Determine whether or not If the controller 25 determines that there is an actuation request, the process proceeds to S220, and if it determines that there is no actuation request, the process ends.
  • the control unit 25 determines whether or not learning of the voltage map is completed. If the learning is completed, the process proceeds to S230, and if the learning is not completed, the process proceeds to S330. Determination as to whether or not the learning has been completed may be made by, for example, determining that the learning voltage map has been generated if a value is written in the storage area of the learning voltage map prepared in the memory 252 .
  • control unit 25 calculates the applied voltage Vap(c) corresponding to the count value c representing the current window position according to the initial voltage VS and the start gradient ⁇ Vrt using equation (2). Furthermore, the control unit 25 calculates the duty ratio DT corresponding to the calculated applied voltage Vap(c) according to the equation (3), and supplies the motor 4 with a PWM signal having the calculated duty ratio DT. to drive. By this driving, the moving speed of the window glass is controlled so as to increase at the rate of the start change amount ⁇ Vrt.
  • Such driving is performed because the static friction of the window glass when it is stationary is greater than the dynamic friction when it is moving, and a larger torque is required when starting to move than when moving.
  • control unit 25 determines whether or not the end position C1 of the slow start section has been reached. Whether or not the end position C1 of the slow start section has been reached is specifically determined by whether or not the count value c representing the window position has reached the value C1 representing the end position of the slow start section.
  • the control unit 25 calculates the voltage correction value ⁇ VH in the constant speed section.
  • the rotation speed ⁇ 1 that is, the moving speed of the window glass
  • a voltage correction value ⁇ VH is calculated using the formula.
  • is the target rotation speed ⁇ of the motor 4 corresponding to the target speed of the window glass in the constant speed section.
  • KV is the KV value.
  • the KV value is a characteristic of the motor 4 and is the number of rotations of the motor 4 per 1V of applied voltage [rpm/V]. That is, as shown in FIG. 6, the difference between the target rotation speed ⁇ and the rotation speed ⁇ 1 measured at the end position of the slow start section (that is, the start position of the constant speed section) is calculated as a voltage value using the KV value. is the voltage correction value ⁇ VH.
  • the control unit 25 acquires the applied voltage learning value V(c) at the window position c from the set voltage map, and as shown in the equation (5), the acquired learning value V(c) is: By adding the voltage correction value ⁇ VH, the applied voltage Vap(c) is calculated. Furthermore, the duty ratio DT corresponding to the calculated applied voltage Vap(c) is calculated using the equation (3), and the motor 4 is driven by supplying a PWM signal having the calculated duty ratio DT to the motor 4. . This drive controls the moving speed of the window glass to a constant target speed.
  • Vap(c) V(c)+ ⁇ VH (5) It should be noted that the voltage correction value ⁇ VH is successively updated according to the value calculated using the equation (4) in which ⁇ 1 is replaced by ⁇ in accordance with the rotation speed ⁇ that reflects the driving with the newly calculated duty ratio DT. be done.
  • control unit 25 determines whether or not the start position of the slow stop section has been reached, and if it has reached, the process proceeds to S290, and if it has not reached, the process returns to S270. Whether or not the start position of the slow stop section has been reached is specifically determined by whether or not the count value c representing the window position has reached the value C2 representing the end position of the slow stop section.
  • the stop start voltage Vap(C2) is the applied voltage at the start position C2 of the slow stop section calculated using the equation (5).
  • control unit 25 calculates the applied voltage Vap(c) corresponding to the count value c representing the window position according to the stop start voltage Vap(C2) and the stop change amount ⁇ Vop using equation (7). . Further, the control unit 25 calculates the duty ratio DT corresponding to the calculated applied voltage Vap(c) using the equation (3), and supplies a PWM signal having the calculated duty ratio DT to the motor 4. drive the motor 4; By this driving, the moving speed of the window glass is controlled so as to decrease at the rate of the stop change amount ⁇ Vrt.
  • Vap(c) Vap(C2)+ ⁇ Vop ⁇ (c ⁇ C2) (7)
  • the control unit 25 determines whether or not the energization stop position, that is, the end position C3 of the slow stop section has been reached. to S300.
  • control unit 25 stops energizing the motor 4 and ends the process.
  • control unit 25 determines whether or not the energization stop position, that is, the end position C3 of the slow stop section has been reached. is returned to S330.
  • control is executed to drive all sections with a PWM signal with a duty ratio of 100%.
  • the learning voltage map is learned when 100% duty control is being executed in the driving process, and the values of the setting learning map are sequentially updated when control using the voltage map is being executed. .
  • the learning process is executed each time a pulse signal is input.
  • control unit 25 determines whether the window glass is being opened. If the control unit 25 determines that the opening operation is being performed, the process proceeds to S420, and if it is determined that the closing operation is being performed instead of the opening operation, the process proceeds to S430.
  • control unit 25 counts up the count value c representing the window position and advances the process to S440.
  • control unit 25 counts down the count value c representing the window position and advances the process to S440.
  • control unit 25 calculates the rotational speed ⁇ (c) of the motor 4 from the time interval from the previous activation of the learning process to the current activation, that is, the pulse signal interval.
  • control unit 25 determines whether or not the 100% duty control is being executed, that is, whether or not the learning voltage map is being learned. If the control unit 25 determines that the learned voltage map is being learned, the process proceeds to S460, and if it is determined that the learned voltage map is not being learned, the process proceeds to S480.
  • control unit 25 uses the rotation speed ⁇ (c) calculated at S440, the target rotation speed ⁇ , and the KV value to obtain the learned value V(c) of the applied voltage at the window position c as (8) Calculate according to the formula.
  • V(c) VB-( ⁇ (c)- ⁇ )/KV (8) That is, the applied voltage learning value V(c) is calculated for each window position c, and as shown in FIG. is calculated by subtracting from the battery voltage VB a correction amount obtained by converting the difference between the voltages using the KV value.
  • control unit 25 writes the learning value V(c) calculated in S460 to the area for storing the learning voltage map provided in the non-volatile area of the RAM constituting the memory 252, and ends the process. do.
  • control unit 25 determines whether or not constant speed control is being performed in a constant speed section. exit.
  • control unit 25 calculates (9 ), a new applied voltage V(c) at the window position c is calculated.
  • V(c) Vap(c)-( ⁇ (c)- ⁇ )/KV (9)
  • the control unit 25 updates the set voltage map by rewriting the set value V(c) of the window position c in the set voltage map to the applied voltage V(c) calculated in S490, and continues the process. finish.
  • the learning value V(C1) at the end position of the slow start section obtained from the set voltage map is set to the default value as indicated by symbol B in FIG. value. Therefore, as indicated by the dotted line in the fourth graph in FIG. 9, the same control as when there is no positional deviation is performed.
  • the learning value V(c) in the constant speed section in the set voltage map is successively updated by the learning process. Therefore, even if the set voltage map has inappropriate characteristics due to positional deviation, the characteristics of the constant speed section in the set voltage map are updated to appropriate characteristics each time the window map is activated.
  • the controller 25 of the door ECU 2 corresponds to the motor controller.
  • the memory 252 corresponds to the map storage section.
  • the set voltage map corresponds to the voltage map.
  • S410 to S440 correspond to the state detector.
  • S210 to S320 correspond to the signal generator.
  • a map setting area for storing the set voltage map has a wider range than the learning voltage map, and default values are set except for the learning area where the values shown in the learning voltage map are set. Therefore, even if a region other than the learning region of the set voltage map is referred to in the driving process due to the positional deviation of the count value c representing the window position from the actual window position, the window glass can be operated without problems. be able to.
  • the speed change amounts ⁇ Vrt and ⁇ Vop in the slow start section and the slow stop section are calculated using the values of the set voltage map, but preset fixed values may be used.
  • the opening/closing body driven by the motor 4 is the window glass of the vehicle
  • the opening/closing body is not limited to the window glass, and may be an object that is displaced by the driving of the motor 4. Just do it.
  • control using the voltage map in the constant speed section is applied to both the opening and closing operations of the window glass, but only to either the opening operation or the closing operation of the window glass. may apply.
  • the side that does not apply control using the voltage map may use PI control that feeds back the difference between the measured speed and the target speed.
  • both voltage maps are used for both the opening operation and the closing operation.
  • both voltage maps may store difference values from applied voltages at adjacent window positions. In this case, the size of data stored in both voltage maps can be reduced.
  • the count value c representing the window position may be reset to match the count value representing the fully closed position of the set voltage map each time the window glass stops at the fully closed position.
  • Control unit 25 and techniques described in this disclosure may be provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be implemented by a computer. Alternatively, the controller 25 and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the controller 25 and techniques described in this disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. may be implemented by one or more dedicated computers configured by Computer programs may also be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium. The method of realizing the function of each part included in the control part 25 does not necessarily include software, and all the functions may be realized using one or a plurality of pieces of hardware.
  • a plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or a function possessed by one component may be realized by a plurality of components. Moreover, a plurality of functions possessed by a plurality of components may be realized by one component, or one function realized by a plurality of components may be realized by one component. Also, part of the configuration of the above embodiment may be omitted. Also, at least part of the configuration of the above embodiment may be added or replaced with respect to the configuration of the other above embodiment.
  • a system having the motor control device as a component, a program for causing a computer to function as the motor control device, and the program are recorded.
  • the present disclosure can also be implemented in various forms such as a non-transitional substantive recording medium such as a semiconductor memory and a motor control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Abstract

A map storage unit (225) stores a voltage map which shows learning values of voltage that is applied to a motor and that is necessary to cause an opening/closing body to move at a constant target speed, the learning values being associated with the position of the opening/closing body. A signal generation unit (25: S210-S320) generates a driving signal for applying an application voltage to the motor so that the opening/closing body can operate in a specified speed pattern, the application voltage being calculated using the position and the movement speed of the opening/closing body, which are detected by a state detection unit (25: S410-S440), and the voltage map. In the voltage map, a default value for the application voltage is also set for a position beyond the movable range of the opening/closing body.

Description

モータ制御装置motor controller 関連出願の相互参照Cross-reference to related applications
 本国際出願は、2021年8月27日に日本国特許庁に出願された日本国特許出願第2021-139329号に基づく優先権を主張するものであり、日本国特許出願第2021-139329号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2021-139329 filed with the Japan Patent Office on August 27, 2021. The entire contents are incorporated by reference into this international application.
 本開示は、モータを駆動制御する技術に関する。 The present disclosure relates to technology for driving and controlling a motor.
 下記特許文献1には、パワーウィンドウシステムにおいて、作動開始時にスロースタート制御、作動終了時にスローストップ制御、スロースタート制御とスローストップ制御との間では速度一定制御を実施することが記載されている。 Patent Document 1 below describes that in a power window system, slow start control is performed at the start of operation, slow stop control is performed at the end of operation, and constant speed control is performed between slow start control and slow stop control.
 スロースタート制御では、モータを駆動する駆動信号のデューティを、一定の割合で増大させることで、モータの印加電圧、ひいてはモータによって駆動されるウィンドウガラス(以下、開閉体)の移動速度を目標速度まで一定の割合で増大させる。同様に、スローストップ制御では、モータを駆動する駆動信号のデューティを、一定の割合で減少させることで、モータの印加電圧、ひいてはモータによって駆動される開閉体の移動速度を一定の割合で減少させる。 In slow start control, by increasing the duty of the drive signal that drives the motor at a constant rate, the voltage applied to the motor and the movement speed of the window glass (hereinafter referred to as the opening/closing body) driven by the motor are increased to the target speed. Increase at a constant rate. Similarly, in slow stop control, the duty of the drive signal that drives the motor is reduced at a constant rate, thereby reducing the voltage applied to the motor and, in turn, the moving speed of the opening/closing body driven by the motor at a constant rate. .
 速度一定制御では、開閉体の移動速度を一定にするのに必要な制御値(すなわち、モータの印加電圧)を、開閉体の位置に対応づけて学習した電圧マップを使用して制御を行う。 In constant speed control, the control value (that is, the voltage applied to the motor) necessary to keep the moving speed of the opening/closing body constant is controlled using a learned voltage map that corresponds to the position of the opening/closing body.
特開2019-15141号公報JP 2019-15141 A
 しかしながら、発明者の詳細な検討の結果、何らかの原因で開閉体の位置と電圧マップの位置との対応づけに、ずれが生じると制御不能となる可能性があるという課題が見出された。 However, as a result of a detailed study by the inventor, it was found that if for some reason there is a deviation in the correspondence between the position of the switch and the position of the voltage map, control may become uncontrollable.
 すなわち、開閉体の位置は、駆動モータが所定角度だけ回転する毎にホールセンサ等から出力されるパルス信号のカウント値で表される。また、開閉体の動作範囲、すなわち、全閉位置から全開位置に到るカウント値は、車種等によって異なり、開閉体の組み付け状態等によっても異なる。このような動作範囲の違いに対応できるように、電圧マップは、開閉体の実際の動作範囲より広めに用意され、開閉体の動作範囲に対応する領域に、学習値が記憶される。 That is, the position of the opening/closing body is represented by the count value of the pulse signal output from the Hall sensor or the like each time the drive motor rotates by a predetermined angle. Further, the operating range of the opening/closing member, that is, the count value from the fully closed position to the fully opened position varies depending on the type of vehicle and the mounting state of the opening/closing member. In order to cope with such a difference in operating range, the voltage map is prepared wider than the actual operating range of the opening/closing body, and the learning value is stored in the area corresponding to the operating range of the opening/closing body.
 従って、カウント値と開閉体の動作範囲との対応にずれが発生すると、カウント値を用いて電圧マップを参照したときに、学習値が存在しない領域を参照してしまい、動作不能となる可能性があった。このようなずれが発生する原因としては、ノイズによるRAM(すなわち、カウント値の格納領域)の値化けのほか、モータを駆動するECUやレギュレータの交換等も考えられる。 Therefore, if there is a deviation in the correspondence between the count value and the operating range of the opening/closing member, when the voltage map is referred to using the count value, an area in which the learned value does not exist may be referred to, resulting in inoperability. was there. Possible causes of such a deviation include garbled values in the RAM (that is, the storage area for the count value) due to noise, and replacement of the ECU and the regulator that drive the motor.
 本開示の1つの局面は、計測された開閉体の位置が実際の開閉体の位置と異なる場合でも、開閉体の駆動を実現する技術を提供する。 One aspect of the present disclosure provides a technique for driving the opening/closing body even when the measured position of the opening/closing body differs from the actual position of the opening/closing body.
 本開示の一態様は、モータ制御装置であって、状態検出部と、マップ記憶部と、信号生成部と、を備える。状態検出部は、車両に設けられた開閉体を自動開閉するモータの回転を検出するセンサからの検出信号に基づいて、開閉体の位置及び移動速度を検出するように構成される。マップ記憶部は、開閉体の位置に対応づけて、開閉体を一定の目標速度で動作させるのに必要なモータの印加電圧の学習値を示した電圧マップを記憶するように構成される。信号生成部は、指定された速度パターンで開閉体が作動するように、状態検出部で検出された開閉体の位置及び移動速度、並びに電圧マップを用いて算出される印加電圧を、モータに印加するための駆動信号を生成する。電圧マップは、開閉体の可動範囲を超えた位置にも印加電圧のデフォルト値が設定される。 One aspect of the present disclosure is a motor control device that includes a state detection unit, a map storage unit, and a signal generation unit. The state detection unit is configured to detect the position and moving speed of the opening/closing body based on a detection signal from a sensor that detects rotation of a motor that automatically opens/closes the opening/closing body provided in the vehicle. The map storage unit is configured to store a voltage map indicating a learning value of the voltage applied to the motor required to operate the opening/closing member at a constant target speed in association with the position of the opening/closing member. The signal generator applies the position and moving speed of the opening/closing body detected by the state detection part and the applied voltage calculated using the voltage map to the motor so that the opening/closing body operates according to the specified speed pattern. Generate a drive signal for In the voltage map, a default value of the applied voltage is also set at a position beyond the movable range of the opening/closing body.
 このような構成によれば、状態検出部によって検出される開閉体の位置と、開閉体の実際の位置とにずれが生じることで、電圧マップにおいて学習値が記憶されていない領域が参照されたとしても、開閉体を作動させることができ、ユーザに与える違和感も抑制できる。 According to such a configuration, the position of the opening/closing body detected by the state detection unit is deviated from the actual position of the opening/closing body, so that a region in which the learned value is not stored in the voltage map is referred to. Even so, the opening/closing body can be operated, and discomfort given to the user can be suppressed.
実施形態のパワーウィンドウシステムの構成を示すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structure of the power window system of embodiment. マップ設定処理のフローチャートである。7 is a flowchart of map setting processing; 学習電圧マップ及び設定電圧マップの説明図である。FIG. 4 is an explanatory diagram of a learning voltage map and a set voltage map; 駆動処理のフローチャートである。4 is a flowchart of drive processing; デューティ100%制御及び電圧マップを使用した制御の概要を示す説明図である。FIG. 4 is an explanatory diagram showing an overview of 100% duty control and control using a voltage map; 速度一定区間の制御に用いる電圧補正値の説明図である。FIG. 4 is an explanatory diagram of a voltage correction value used for control of a constant speed section; 学習処理のフローチャートである。4 is a flowchart of learning processing; 学習電圧マップに記憶する印加電圧の学習値の算出方法を示す説明図である。FIG. 4 is an explanatory diagram showing a method of calculating a learned value of applied voltage to be stored in a learned voltage map; 位置ずれがない場合及び位置ずれがある場合の動作を示す説明図である。FIG. 10 is an explanatory diagram showing operations when there is no positional deviation and when there is positional deviation;
 以下、図面を参照しながら、本開示の実施形態を説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 [1.構成]
 図1に示すパワーウィンドウシステム1は、ドアECU2と、他ECU3と、モータ4と、回転検出センサ5と、操作部6と、バッテリ7とを備える。
[1. composition]
A power window system 1 shown in FIG.
 モータ4は、車両ドアのウィンドウガラスの自動開閉を行うために、各ドアに取り付けられる。図1では、1つのドアに対する構成を示す。 A motor 4 is attached to each door to automatically open and close the window glass of the vehicle door. FIG. 1 shows the configuration for one door.
 回転検出センサ5は、モータ4の回転を検出する。回転検出センサ5は、例えば、モータ4のロータと一体に回転する磁石、及び磁気検出用のホールIC等を用いて構成され、ロータの回転に同期した検出信号として、所定の回転角毎にパルス信号を発生する。 The rotation detection sensor 5 detects the rotation of the motor 4. The rotation detection sensor 5 is composed of, for example, a magnet that rotates integrally with the rotor of the motor 4 and a Hall IC for magnetism detection. generate a signal.
 操作部6は、車両の乗員が操作可能な場所に設けられる。操作部6は、UPスイッチ、DNスイッチ、AUTOスイッチを備える。UPスイッチは、オン状態に操作されている間、ウィンドウガラスを全閉位置に向けて作動させるためのスイッチである。DNスイッチは、オン状態に操作されている間、ウィンドウガラスを全開位置に向けて作動させるためのスイッチである。AUTOスイッチは、オン状態に操作されると、オフ状態に戻った後でも、ウィンドウガラスを全閉位置又は全開位置に到達するまで作動させ続けるためのスイッチである。 The operation unit 6 is provided at a place where the passenger of the vehicle can operate it. The operation unit 6 includes an UP switch, a DN switch, and an AUTO switch. The UP switch is a switch for operating the window glass toward the fully closed position while it is operated in the ON state. The DN switch is a switch for operating the window glass toward the fully open position while it is operated in the ON state. The AUTO switch is a switch for continuing to operate the window glass until it reaches the fully closed position or the fully opened position even after returning to the OFF state when it is operated to the ON state.
 バッテリ7は、直流のバッテリ電圧VB(例えば、12V)で、車両各部に電力を供給する。 The battery 7 supplies power to each part of the vehicle with a DC battery voltage VB (eg, 12 V).
 他ECU3は、バッテリ7から電力供給を受けて動作し、操作部6を構成する各スイッチの操作状態を取得して、車内通信網を介してドアECU2に通知する機能を少なくとも備える。 The other ECU 3 operates by receiving power supply from the battery 7, and has at least a function of acquiring the operation state of each switch that constitutes the operation unit 6 and notifying it to the door ECU 2 via the in-vehicle communication network.
 ドアECU2は、バッテリ7から電力供給を受けて作動し、回転検出センサ5からの信号及び他ECU3を介して取得する操作部6を構成する各スイッチの操作状態に応じてモータ4を駆動することでウィンドウガラスを開閉する。 The door ECU 2 operates by receiving power supply from the battery 7, and drives the motor 4 according to the signal from the rotation detection sensor 5 and the operation state of each switch constituting the operation unit 6 acquired via the other ECU 3. to open and close the window glass.
 [1-2.他ECU]
 他ECU3は、電源回路31と、通信回路32と、入力回路33と、制御部35とを備える。
[1-2. Other ECUs]
The other ECU 3 includes a power supply circuit 31 , a communication circuit 32 , an input circuit 33 and a controller 35 .
 電源回路31は、バッテリ7から供給されるバッテリ電圧VBで電力を、制御電圧VC(例えば、5V)に降圧して、他ECU3を構成する通信回路32及び制御部35等に電力を供給する。 The power supply circuit 31 steps down the power from the battery voltage VB supplied from the battery 7 to a control voltage VC (eg, 5V), and supplies the power to the communication circuit 32 and the control unit 35 constituting the other ECU 3 .
 通信回路32は、車内通信網(例えば、CAN)を介してドアECU2を含む他のECUとの通信を実現する。CANは登録商標である。 The communication circuit 32 realizes communication with other ECUs including the door ECU 2 via an in-vehicle communication network (eg, CAN). CAN is a registered trademark.
 入力回路33は、操作部6を構成する各スイッチの出力を、各スイッチの操作状態をオンオフで表す2値信号に整形して制御部35に入力する。 The input circuit 33 formats the output of each switch constituting the operation unit 6 into a binary signal representing the operation state of each switch by ON/OFF, and inputs the binary signal to the control unit 35 .
 制御部35は、CPUと、例えば、ROM又はRAM等の半導体メモリ(以下、メモリ)と、を有するマイクロコンピュータを備える。制御部35は、入力回路33を介して取得した操作部6を構成する各スイッチの操作状態をドアECU2に送信する情報収集処理を少なくとも実施する。メモリには、情報収集処理を実現するプログラムが少なくとも記憶される。 The control unit 35 includes a microcomputer having a CPU and a semiconductor memory such as ROM or RAM (hereinafter referred to as memory). The control unit 35 performs at least an information collection process of transmitting the operation state of each switch constituting the operation unit 6 acquired through the input circuit 33 to the door ECU 2 . The memory stores at least a program that implements information collection processing.
 本実施形態では、操作部6を構成する各スイッチの操作状態を、他ECU3が取得して、ドアECU2に送信するように構成されているが、ドアECU2が他ECUを介することなく直接取得するように構成されてもよい。 In the present embodiment, the other ECU 3 acquires the operation state of each switch constituting the operation unit 6 and transmits the operation state to the door ECU 2. However, the door ECU 2 directly acquires the operation state without going through the other ECU. It may be configured as
 [1-3.ドアECU]
 ドアECU2は、電源回路21と、通信回路22と、モータ駆動回路23と、アンプ24と、制御部25とを備える。電源回路21及び通信回路22は、他ECU3で説明した電源回路31及び通信回路32と同様であるため、説明を省略する。但し、電源回路31は、アンプ24にも制御電圧VCで電力を供給する。
[1-3. Door ECU]
The door ECU 2 includes a power supply circuit 21 , a communication circuit 22 , a motor drive circuit 23 , an amplifier 24 and a controller 25 . Since the power supply circuit 21 and the communication circuit 22 are the same as the power supply circuit 31 and the communication circuit 32 described in the other ECU 3, description thereof is omitted. However, the power supply circuit 31 also supplies power to the amplifier 24 with the control voltage VC.
 モータ駆動回路23は、例えば、Hブリッジ回路により構成され、制御部25から供給される駆動信号であるPWM信号に従って、正極性又は逆極性のバッテリ電圧VBをモータ4に印加する。つまり、モータ4の回転方向、ひいてはウィンドウガラスの移動方向(すなわち、開方向又は閉方向)は、モータ4に印加するバッテリ電圧VBの極性によって制御される。また、モータ4の回転速度、ひいてはウィンドウカラスの移動速度は、PWM信号のデューティによって決まるモータ4の印加電圧によって制御される。モータ4の印加電圧は、デューティ100%のPWM信号で駆動した場合はVBであり、ディーティ50%のPWM信号で駆動した場合はVB/2である。 The motor drive circuit 23 is composed of, for example, an H bridge circuit, and applies a battery voltage VB of positive or reverse polarity to the motor 4 according to a PWM signal, which is a drive signal supplied from the control section 25 . That is, the direction of rotation of the motor 4 , and thus the direction of movement of the window glass (that is, the direction of opening or closing) is controlled by the polarity of the battery voltage VB applied to the motor 4 . Further, the rotational speed of the motor 4, and thus the moving speed of the window crow, is controlled by the voltage applied to the motor 4 determined by the duty of the PWM signal. The voltage applied to the motor 4 is VB when driven by a PWM signal with a duty of 100%, and is VB/2 when driven by a PWM signal with a duty of 50%.
 アンプ24は、回転検出センサ5から出力されるパルス信号を増幅し整形して制御部25に入力する。 The amplifier 24 amplifies and shapes the pulse signal output from the rotation detection sensor 5 and inputs it to the controller 25 .
 制御部25は、制御部35と同様に、CPU251と、例えば、ROM又はRAM等の半導体メモリ(以下、メモリ)252と、を有するマイクロコンピュータを備える。制御部25は、マップ設定処理、駆動処理、学習処理を少なくとも実行する。 Similarly to the control unit 35, the control unit 25 includes a microcomputer having a CPU 251 and a semiconductor memory (hereinafter referred to as memory) 252 such as ROM or RAM. The control unit 25 executes at least map setting processing, driving processing, and learning processing.
 メモリ252には、制御部25に割り当てられた機能を実現するためのプログラム等が記憶される。メモリ252を構成するRAMには、電源がオフになっても記憶内容が保持される不揮発性領域と、電源がオンの間だけ記憶内容が保持される揮発性領域とが存在する。RAMの不揮発性領域には、学習電圧マップが記憶される。RAMの揮発性領域には、不揮発性領域から学習電圧マップを読み出して一時的に記憶するための領域(以下、マップ設定領域)が確保される。 The memory 252 stores programs and the like for realizing functions assigned to the control unit 25 . The RAM that constitutes the memory 252 has a nonvolatile area that retains memory contents even when the power is turned off, and a volatile area that retains memory contents only while the power is on. A learned voltage map is stored in a non-volatile area of RAM. In the volatile area of the RAM, an area (hereinafter referred to as a map setting area) for temporarily storing the learning voltage map read from the nonvolatile area is secured.
 学習電圧マップは、図3の2段目に示すように、モータ4を目標回転速度で回転させるのに必要なモータ4の印加電圧を、モータ4により駆動されるウィンドウガラスの開閉位置(以下、窓位置)に対応づけて記憶したテーブル情報である。窓位置は、回転検出センサ5から入力されるパルス信号をカウントしたカウント値cによって表される。窓位置を表すカウント値cは、ウィンドウガラスの全閉位置から全開位置に向けて値が増加するように設定されてもよい。 As shown in the second row of FIG. 3 , the learning voltage map shows the voltage applied to the motor 4 required to rotate the motor 4 at the target rotation speed, and the opening/closing position of the window glass driven by the motor 4 (hereinafter referred to as window position). The window position is represented by a count value c obtained by counting pulse signals input from the rotation detection sensor 5 . The count value c representing the window position may be set so that the value increases from the fully closed position toward the fully opened position of the window glass.
 マップ設定領域は、学習電圧マップに示される窓位置の範囲(すなわち、ウィンドウガラスの可動範囲)より広い範囲が確保される。例えば、学習電圧マップが、約190地点の窓位置のそれぞれについて印加電圧が記憶される場合、マップ設定領域は、256地点の窓位置について印加電圧を記憶できるように確保される。 For the map setting area, a range wider than the window position range (that is, the movable range of the window glass) shown in the learning voltage map is secured. For example, if the learning voltage map stores applied voltages for each of approximately 190 window positions, the map setting area is reserved to store applied voltages for 256 window positions.
 また、マップ設定領域は、リングバッファとして使用され、末尾アドレスと先頭アドレスとが連続しているように取り扱われる。学習電圧マップは、マップ設定領域の任意の地点を先頭(すなわち、全閉位置)にして設定される。これは、車種、ウィンドウガラスの個体、及びドアへの取り付け状態等によって相違するウィンドウガラスの可動範囲に柔軟に対応するためである。 Also, the map setting area is used as a ring buffer and treated as if the end address and the start address are continuous. The learning voltage map is set with an arbitrary point in the map setting area as the head (that is, the fully closed position). This is to flexibly cope with the movable range of the window glass, which varies depending on the vehicle type, the individual window glass, and the state of attachment to the door.
 [2.処理]
 [2-1.マップ設定処理]
 制御部25が実行するマップ設定処理について、図2のフローチャートを用いて説明する。
[2. process]
[2-1. Map setting processing]
A map setting process executed by the control unit 25 will be described with reference to the flowchart of FIG.
 マップ設定処理は、制御部25の起動時に実行される初期化処理の一つとして実行される。 The map setting process is executed as one of the initialization processes executed when the control unit 25 is activated.
 S110では、制御部25は、図3の3段目に示すように、メモリ252を構成するRAMの揮発性領域に用意されたマップ設定領域の全体にわたって、デフォルト値を設定する。 In S110, the control unit 25 sets default values over the entire map setting area prepared in the volatile area of the RAM that constitutes the memory 252, as shown in the third row of FIG.
 デフォルト値は、例えば、メモリ252に記憶された学習電圧マップに示された印加電圧(すなわち、学習値)の平均値を用いてもよい。また、デフォルト値は、モータ4及びモータ駆動回路23の特性から論理的に算出される目標回転速度を実現するのに必要な印加電圧(すなわち、設計値)を用いてもよい。 For the default value, for example, an average value of applied voltages (that is, learned values) indicated in the learned voltage map stored in the memory 252 may be used. As the default value, an applied voltage (that is, a design value) required to achieve the target rotation speed logically calculated from the characteristics of the motor 4 and the motor drive circuit 23 may be used.
 続くS120では、制御部25は、メモリ252に記憶された学習電圧マップを読み出して、図3の4段目に示すように、デフォルト値が設定されたマップ設定領域に上書きする。 In subsequent S120, the control unit 25 reads out the learned voltage map stored in the memory 252, and overwrites the map setting area in which the default value is set, as shown in the fourth row of FIG.
 続くS130では、制御部25は、学習電圧マップの読み出しに成功したか否かを判定し、成功していれば処理を終了し、読み出しに失敗していれば処理をS140に移行する。 In subsequent S130, the control unit 25 determines whether or not the reading of the learning voltage map has succeeded.
 学習電圧マップの読み出しに失敗したと判定されるのは、単純に読み出しに失敗した場合の他、マップ設定領域に書き込まれたデータが、メモリ252から読み出したデータと不一致である場合がある。この場合、例えば、CRC演算や認証等の改ざん防止のために付加されるデータが不一致となる。データの不一致が生じる原因としては、例えば、他のソフトウェアコンポーネントによって書き込まれたデータを読み出してしまう場合、書き込み時に電圧が不足したり、読み出し時にノイズが乗ったりする等して、ビット化けが生じた場合が考えられる。 In addition to simply failing to read the learned voltage map, it may be determined that the readout of the learning voltage map has failed, or the data written in the map setting area may not match the data read from the memory 252 . In this case, for example, data added to prevent tampering such as CRC calculation and authentication will not match. For example, when data written by another software component is read, the voltage is insufficient during writing, or noise is added during reading, resulting in garbled bits. case is conceivable.
 S140では、制御部25は、S110と同様に、再度、マップ設定領域の全体にわたって、デフォルト値を設定して処理を終了する。なお、デフォルト値を再設定する理由は、S130にて学習電圧マップの読み出し失敗したと判定された場合、マップ設定領域から読み出されるデータが信用できないためである。 At S140, the control unit 25 again sets the default values over the entire map setting area, as in S110, and terminates the process. The reason for resetting the default value is that the data read from the map setting area cannot be trusted when it is determined in S130 that reading of the learning voltage map has failed.
 学習電圧マップは、あらかじめ設定されたカウント値Ccに、学習電圧マップにおける全閉位置での印加電圧の学習値が書き込まれるように設定する。全閉位置に対応づけられるカウント値Ccは任意であり、例えば、Cc=0であってもよい。 The learning voltage map is set so that the learning value of the applied voltage at the fully closed position in the learning voltage map is written in the preset count value Cc. The count value Cc associated with the fully closed position is arbitrary, and may be Cc=0, for example.
 マップ設定処理により、学習電圧マップが値を持つ領域である学習領域の幅によらず、学習領域以外のすべてのマップ設定領域が、デフォルト値で埋め尽くされる。以下では、マップ設定処理によりマップ設定領域に設定されたデフォルト値を含む学習電圧マップを、設定電圧マップという。 By the map setting process, all map setting areas other than the learning area are filled with default values, regardless of the width of the learning area where the learning voltage map has values. Hereinafter, the learned voltage map including the default values set in the map setting area by the map setting process is referred to as the set voltage map.
 [2-2.駆動処理]
 制御部25が実行する駆動処理について、図4のフローチャートを用いて説明する。
[2-2. Drive processing]
A drive process executed by the control unit 25 will be described with reference to the flowchart of FIG.
 駆動処理は、マップ設定処理の実行後、繰り返し実行される。 The driving process is repeatedly executed after the map setting process is executed.
 なお、駆動処理では、指定された速度パターンに従った制御を実現するために、スロースタート区間、速度一定区間、スローストップ区間のそれぞれで異なる制御を実行する。スロースタート区間では、目標速度に達するまで、ウィンドウガラスの移動速度を徐々に増大させる制御が実行される。速度一定区間は、マップ設定領域に設定された設定電圧マップに従って、ウィンドウガラスの移動速度を一定の目標速度に維持する制御が実行される。スローストップ区間では、停止位置に至るまで、ウィンドウガラスの移動速度を目標速度から徐々に減少させる制御が実行される。 It should be noted that in the drive process, different controls are executed in each of the slow start section, constant speed section, and slow stop section in order to implement control according to the specified speed pattern. In the slow start section, control is executed to gradually increase the moving speed of the window glass until the target speed is reached. In the constant speed section, control is executed to maintain the moving speed of the window glass at a constant target speed according to the set voltage map set in the map setting area. In the slow stop section, control is executed to gradually decrease the moving speed of the window glass from the target speed until it reaches the stop position.
 以下の説明では、図5に示すように、スロースタート区間の開始位置を表すカウント値をC0とする。スロースタート区間の終了位置(すなわち、速度一定区間の開始位置)を表すカウント値をC1とする。スローストップ区間の開始位置(すなわち、速度一定区間の終了位置)を表すカウント値をC2とする。スローストップ区間の終了位置を表すカウント値をC3とする。なお、スロースタート区間の区間幅WS及びスローストップ区間の区間幅WEは予め設定される。CO及びC3は、駆動開始時のウィンドウガラスの窓位置とその移動方向によって決まり、C1及びC2は、C1=C0+WS、C2=C3-WEによって決まる。図5では、ウィンドウガラスが全閉状態から全開状態に移動する場合、又は全開状態から全閉状態に移動する場合を示す。 In the following description, as shown in FIG. 5, the count value representing the start position of the slow start section is C0. Let C1 be a count value representing the end position of the slow start section (that is, the start position of the constant speed section). Let C2 be a count value representing the start position of the slow stop section (that is, the end position of the constant speed section). Let C3 be a count value representing the end position of the slow stop section. Note that the section width WS of the slow start section and the section width WE of the slow stop section are set in advance. CO and C3 are determined by the window position of the window glass at the start of driving and its moving direction, and C1 and C2 are determined by C1=C0+WS and C2=C3-WE. FIG. 5 shows the case where the window glass moves from the fully closed state to the fully opened state or from the fully opened state to the fully closed state.
 図4に示すように、駆動処理が起動すると、まずS210では、制御部25は、通信回路22を介して他ECU3から取得する操作部6を構成する各スイッチの操作状態から、作動要求があるか否かを判定する。制御部25は、作動要求があると判定した場合、処理をS220に移行し、作動要求がないと判定した場合、処理を終了する。 As shown in FIG. 4, when the driving process is started, first in S210, the control unit 25 receives an operation request from the operation state of each switch constituting the operation unit 6 acquired from the other ECU 3 via the communication circuit 22. Determine whether or not If the controller 25 determines that there is an actuation request, the process proceeds to S220, and if it determines that there is no actuation request, the process ends.
 S220では、制御部25は、電圧マップの学習が完了しているか否かを判定し、学習が完了していれば処理をS230に移行し、学習が完了していなければ処理をS330に移行する。学習が完了しているか否かの判定は、例えば、メモリ252に用意された学習電圧マップの記憶領域に値が書き込まれていれば、学習電圧マップが生成されていると判定してもよい。 In S220, the control unit 25 determines whether or not learning of the voltage map is completed. If the learning is completed, the process proceeds to S230, and if the learning is not completed, the process proceeds to S330. . Determination as to whether or not the learning has been completed may be made by, for example, determining that the learning voltage map has been generated if a value is written in the storage area of the learning voltage map prepared in the memory 252 .
 S230では、制御部25は、スロースタート区間にてウィンドウガラスの移動速度を増大させる割合を表すスタート変化量ΔVrtを算出する。具体的には、制御部25は、マップ設定処理によって設定された設定電圧マップから、スロースタート区間の終了位置C1での印加電圧の学習値V(C1)を取得する。そして、制御部25は、取得した学習値V(C1)と、予め設定された初期速度に対応する印加電圧である初期電圧VSと、スロースタート区間の区間長WS(=C1-C0)とに基づき、(1)式を用いて、スタート変化量ΔVrtを算出する。 At S230, the control unit 25 calculates a start change amount ΔVrt representing the rate at which the moving speed of the window glass is increased in the slow start section. Specifically, the control unit 25 acquires the applied voltage learning value V(C1) at the end position C1 of the slow start section from the set voltage map set by the map setting process. Then, the control unit 25 determines the acquired learning value V(C1), the initial voltage VS which is the applied voltage corresponding to the preset initial speed, and the section length WS (=C1-C0) of the slow start section. Based on this, the start change amount ΔVrt is calculated using equation (1).
  ΔVrt=(V(C1)-VS)/WS        (1)
 続くS240では、制御部25は、初期電圧VSとスタート傾きΔVrtとに従って、現在の窓位置を表すカウント値cに応じた印加電圧Vap(c)を(2)式を用いて算出する。更に、制御部25は、算出した印加電圧Vap(c)に対応したデューティ比DTを(3)式に従って算出し、算出したデューティ比DTを有するPWM信号をモータ4に供給することで、モータ4を駆動する。この駆動により、ウィンドウガラスの移動速度が、スタート変化量ΔVrtの割合で増加するように制御される。
ΔVrt=(V(C1)-VS)/WS (1)
In subsequent S240, the control unit 25 calculates the applied voltage Vap(c) corresponding to the count value c representing the current window position according to the initial voltage VS and the start gradient ΔVrt using equation (2). Furthermore, the control unit 25 calculates the duty ratio DT corresponding to the calculated applied voltage Vap(c) according to the equation (3), and supplies the motor 4 with a PWM signal having the calculated duty ratio DT. to drive. By this driving, the moving speed of the window glass is controlled so as to increase at the rate of the start change amount ΔVrt.
  Vap(c)=VS+ΔVrt×(c-C0)     (2)
  DT=Vap(c)/VB              (3)
 但し、制御開始時は、短期間だけデューティ100%(すなわち、DT=1)で駆動する。このような駆動を行うのは、ウィンドウガラスの静止時における静的摩擦は、移動時における動的摩擦より大きく、移動開始時には移動時より大きなトルクが必要なためである。
Vap(c)=VS+ΔVrt×(c−C0) (2)
DT=Vap(c)/VB (3)
However, at the start of control, it is driven with a duty of 100% (that is, DT=1) for a short period of time. Such driving is performed because the static friction of the window glass when it is stationary is greater than the dynamic friction when it is moving, and a larger torque is required when starting to move than when moving.
 続くS250では、制御部25は、スロースタート区間の終了位置C1に到達したか否かを判定し、到達していれば処理をS260に移行し、到達していなければ、処理をS240に戻す。スロースタート区間の終了位置C1に到達したか否かの判定は、具体的には、窓位置を表すカウント値cがスロースタート区間の終了位置を表す値C1になったか否かによって判定する。 In the subsequent S250, the control unit 25 determines whether or not the end position C1 of the slow start section has been reached. Whether or not the end position C1 of the slow start section has been reached is specifically determined by whether or not the count value c representing the window position has reached the value C1 representing the end position of the slow start section.
 S260では、制御部25は、速度一定区間での電圧補正値ΔVHを算出する。具体的には、回転検出センサ5からアンプ24を介して入力されるパルス信号の間隔からスロースタート区間の終了位置での回転速度ω1(すなわち、ウィンドウガラスの移動速度)を算出し、(4)式を用いて電圧補正値ΔVHを算出する。Ωは、速度一定区間でのウィンドウガラスの目標速度に対応するモータ4の目標回転速度Ωである。KVはKV値である。KV値は、モータ4の特性であり、印加電圧1V当たりのモータ4の回転数[rpm/V]である。つまり、図6に示すように、目標回転速度Ωと、スロースタート区間の終了位置(すなわち、速度一定区間の開始位置)で測定された回転速度ω1との差分を、KV値を用いて電圧値に変換した値が電圧補正値ΔVHとなる。 At S260, the control unit 25 calculates the voltage correction value ΔVH in the constant speed section. Specifically, the rotation speed ω1 (that is, the moving speed of the window glass) at the end position of the slow start section is calculated from the intervals of the pulse signals input from the rotation detection sensor 5 via the amplifier 24, and (4) A voltage correction value ΔVH is calculated using the formula. Ω is the target rotation speed Ω of the motor 4 corresponding to the target speed of the window glass in the constant speed section. KV is the KV value. The KV value is a characteristic of the motor 4 and is the number of rotations of the motor 4 per 1V of applied voltage [rpm/V]. That is, as shown in FIG. 6, the difference between the target rotation speed Ω and the rotation speed ω1 measured at the end position of the slow start section (that is, the start position of the constant speed section) is calculated as a voltage value using the KV value. is the voltage correction value ΔVH.
  ΔVH=(Ω-ω1)/KV             (4)
 続くS270では、制御部25は、設定電圧マップから窓位置cでの印加電圧の学習値V(c)を取得し、(5)式に示すように、取得した学習値V(c)に、電圧補正値ΔVHを加算することで、印加電圧Vap(c)を算出する。更に、算出した印加電圧Vap(c)に対応したデューティ比DTを(3)式を用いて算出し、算出したデューティ比DTを有するPWM信号をモータ4に供給することで、モータ4を駆動する。この駆動により、ウィンドウガラスの移動速度が一定の目標速度となるように制御される。
ΔVH=(Ω−ω1)/KV (4)
In subsequent S270, the control unit 25 acquires the applied voltage learning value V(c) at the window position c from the set voltage map, and as shown in the equation (5), the acquired learning value V(c) is: By adding the voltage correction value ΔVH, the applied voltage Vap(c) is calculated. Furthermore, the duty ratio DT corresponding to the calculated applied voltage Vap(c) is calculated using the equation (3), and the motor 4 is driven by supplying a PWM signal having the calculated duty ratio DT to the motor 4. . This drive controls the moving speed of the window glass to a constant target speed.
  Vap(c)=V(c)+ΔVH          (5)
 なお、電圧補正値ΔVHは、新たに算出されたデューティ比DTでの駆動が反映された回転速度ωに従い、(4)式においてω1をωに置き換えた式を用いて算出される値によって逐次更新される。
Vap(c)=V(c)+ΔVH (5)
It should be noted that the voltage correction value ΔVH is successively updated according to the value calculated using the equation (4) in which ω1 is replaced by ω in accordance with the rotation speed ω that reflects the driving with the newly calculated duty ratio DT. be done.
 続くS280では、制御部25は、スローストップ区間の開始位置に到達したか否かを判定し、到達していれば処理をS290に移行し、到達していなければ処理をS270に戻す。スローストップ区間の開始位置に到達したか否かの判定は、具体的には、窓位置を表すカウント値cがスローストップ区間の終了位置を表す値C2になっているか否かによって判定する。 In subsequent S280, the control unit 25 determines whether or not the start position of the slow stop section has been reached, and if it has reached, the process proceeds to S290, and if it has not reached, the process returns to S270. Whether or not the start position of the slow stop section has been reached is specifically determined by whether or not the count value c representing the window position has reached the value C2 representing the end position of the slow stop section.
 S290では、制御部25は、スローストップ区間にて速度を減少させる割合を表すストップ変化量ΔVopを算出する。具体的には、制御部25は、ストップ開始電圧Vap(C2)と、予め設定された終了速度に対応する印加電圧VEと、スローストップ区間の区間長WE(=C3-C2)とに基づき、(6)式を用いて算出する。なお、ストップ開始電圧Vap(C2)は、(5)式を用いて算出されるスローストップ区間の開始位置C2での印加電圧である。 At S290, the control unit 25 calculates a stop change amount ΔVop representing the rate at which the speed is decreased in the slow stop section. Specifically, based on the stop start voltage Vap (C2), the applied voltage VE corresponding to the preset end speed, and the section length WE (=C3-C2) of the slow stop section, (6) Calculate using the formula. The stop start voltage Vap(C2) is the applied voltage at the start position C2 of the slow stop section calculated using the equation (5).
  ΔVop=(VE-Vap(C2))/WE      (6)
 続くS300では、制御部25は、ストップ開始電圧Vap(C2)とストップ変化量ΔVopとに従って、窓位置を表すカウント値cに応じた印加電圧Vap(c)を(7)式を用いて算出する。更に、制御部25は、算出した印加電圧Vap(c)に対応したデューティ比DTを(3)式を用いて算出し、算出したデューティ比DTを有するPWM信号をモータ4に供給することで、モータ4を駆動する。この駆動により、ウィンドウガラスの移動速度が、ストップ変化量ΔVrtの割合で減少するように制御される。
ΔVop=(VE−Vap(C2))/WE (6)
In subsequent S300, the control unit 25 calculates the applied voltage Vap(c) corresponding to the count value c representing the window position according to the stop start voltage Vap(C2) and the stop change amount ΔVop using equation (7). . Further, the control unit 25 calculates the duty ratio DT corresponding to the calculated applied voltage Vap(c) using the equation (3), and supplies a PWM signal having the calculated duty ratio DT to the motor 4. drive the motor 4; By this driving, the moving speed of the window glass is controlled so as to decrease at the rate of the stop change amount ΔVrt.
  Vap(c)=Vap(C2)+ΔVop×(c-C2) (7)
 続くS310では、制御部25は、通電停止位置、すなわちスローストップ区間の終了位置C3に到達したか否かを判定し、到達していれば処理をS320に移行し、到達していなければ、処理をS300に戻す。
Vap(c)=Vap(C2)+ΔVop×(c−C2) (7)
In subsequent S310, the control unit 25 determines whether or not the energization stop position, that is, the end position C3 of the slow stop section has been reached. to S300.
 S320では、制御部25は、モータ4への通電を停止して、処理を終了する。 At S320, the control unit 25 stops energizing the motor 4 and ends the process.
 S330では、制御部25は、全期間をデューティ100%(すなわち、DT=1)のPWM信号でモータ4を駆動する制御を実行する。 At S330, the control unit 25 executes control to drive the motor 4 with a PWM signal with a duty of 100% (that is, DT=1) for the entire period.
 続くS340では、制御部25は、通電停止位置、すなわちスローストップ区間の終了位置C3に到達したか否かを判定し、到達していれば処理をS320に移行し、到達していなければ、処理をS330に戻す。 In subsequent S340, the control unit 25 determines whether or not the energization stop position, that is, the end position C3 of the slow stop section has been reached. is returned to S330.
 つまり、学習電圧マップの学習が完了していない場合は、図5の上段に示すように、すべての区間をデューティ比100%のPWM信号で駆動する制御が実行される。 That is, when the learning of the learning voltage map is not completed, as shown in the upper part of FIG. 5, control is executed to drive all sections with a PWM signal with a duty ratio of 100%.
 学習電圧マップの学習が完了している場合は、図5の下段に示すように、区間毎に異なる制御が実行され、特に、速度一定区間では、学習電圧マップに従って設定される設定電圧マップを使用した制御が実行される。 When the learning of the learning voltage map is completed, as shown in the lower part of FIG. 5, different control is performed for each section, and in particular, in the constant speed section, the set voltage map set according to the learning voltage map is used. control is executed.
 [2-3.学習処理]
 制御部25が駆動処理と並行して実行する学習処理について、図7のフローチャートを用いて説明する。
[2-3. learning process]
The learning process executed by the control unit 25 in parallel with the driving process will be described with reference to the flowchart of FIG.
 学習処理では、駆動処理においてデューティ100%制御を実行中である場合は、学習電圧マップの学習を行い、電圧マップを使用した制御を実行中である場合は、設定学習マップの値を逐次更新する。 In the learning process, the learning voltage map is learned when 100% duty control is being executed in the driving process, and the values of the setting learning map are sequentially updated when control using the voltage map is being executed. .
 学習処理は、パルス信号が入力される毎に実行される。 The learning process is executed each time a pulse signal is input.
 学習処理が開始されると、S410では、制御部25は、ウィンドウガラスが開動作中であるか否かを判定する。制御部25は、開動作中であると判定した場合は、処理をS420に移行し、開動作中ではなく、閉動作中であると判定した場合は処理S430に移行する。 When the learning process starts, in S410 the control unit 25 determines whether the window glass is being opened. If the control unit 25 determines that the opening operation is being performed, the process proceeds to S420, and if it is determined that the closing operation is being performed instead of the opening operation, the process proceeds to S430.
 S420では、制御部25は、窓位置を表すカウント値cをカウントアップして処理をS440に進める。 At S420, the control unit 25 counts up the count value c representing the window position and advances the process to S440.
 S430では、制御部25は、窓位置を表すカウント値cをカウントダウンして処理をS440に進める。 At S430, the control unit 25 counts down the count value c representing the window position and advances the process to S440.
 S440では、制御部25は、学習処理が前回起動してから今回起動するまでの時間間隔、すなわち、パルス信号の間隔からモータ4の回転速度ω(c)を算出する。 In S440, the control unit 25 calculates the rotational speed ω(c) of the motor 4 from the time interval from the previous activation of the learning process to the current activation, that is, the pulse signal interval.
 続くS450では、制御部25は、デューティ100%制御を実行中、すなわち、学習電圧マップの学習中であるか否かを判定する。制御部25は、学習電圧マップの学習中であると判定した場合は、処理をS460に移行し、学習電圧マップの学習中ではないと判定した場合は、処理をS480に移行する。 In the subsequent S450, the control unit 25 determines whether or not the 100% duty control is being executed, that is, whether or not the learning voltage map is being learned. If the control unit 25 determines that the learned voltage map is being learned, the process proceeds to S460, and if it is determined that the learned voltage map is not being learned, the process proceeds to S480.
 S460では、制御部25は、S440で算出された回転速度ω(c)と目標回転速度Ωと、KV値とを用い、窓位置cにおける印加電圧の学習値V(c)を、(8)式に従って算出する。 At S460, the control unit 25 uses the rotation speed ω(c) calculated at S440, the target rotation speed Ω, and the KV value to obtain the learned value V(c) of the applied voltage at the window position c as (8) Calculate according to the formula.
  V(c)=VB-(ω(c)-Ω)/KV     (8)
 つまり、印加電圧の学習値V(c)は、窓位置c毎に算出され、図8に示すように、モータ4にバッテリ電圧VBを印加したときに測定された回転速度と目標回転速度Ωとの差をKV値で電圧に換算した補正量を、バッテリ電圧VBから減じることで算出される。
V(c)=VB-(ω(c)-Ω)/KV (8)
That is, the applied voltage learning value V(c) is calculated for each window position c, and as shown in FIG. is calculated by subtracting from the battery voltage VB a correction amount obtained by converting the difference between the voltages using the KV value.
 続くS470では、制御部25は、メモリ252を構成するRAMの不揮発性領域に設けられた学習電圧マップを記憶する領域に、S460で算出された学習値V(c)を書き込んで、処理を終了する。 In subsequent S470, the control unit 25 writes the learning value V(c) calculated in S460 to the area for storing the learning voltage map provided in the non-volatile area of the RAM constituting the memory 252, and ends the process. do.
 S480では、制御部25は、速度一定区間での速度一定制御中であるか否かを判定し、速度一定制御中であれば、処理をS490に移行し、速度一定制御中でなければ、処理を終了する。 At S480, the control unit 25 determines whether or not constant speed control is being performed in a constant speed section. exit.
 S490では、制御部25は、先のS270で算出された印加電圧Vap(c)と、S440で算出された回転速度ω(c)と、目標回転速度Ωと、KV値とに基づき、(9)式に従って、窓位置cにおける新たな印加電圧V(c)を算出する。 In S490, the control unit 25 calculates (9 ), a new applied voltage V(c) at the window position c is calculated.
  V(c)=Vap(c)-(ω(c)-Ω)/KV     (9)
 続くS500では、制御部25は、設定電圧マップにおける窓位置cの設定値V(c)を、S490で算出された印加電圧V(c)に書き換えることで設定電圧マップを更新して、処理を終了する。
V(c)=Vap(c)-(ω(c)-Ω)/KV (9)
In subsequent S500, the control unit 25 updates the set voltage map by rewriting the set value V(c) of the window position c in the set voltage map to the applied voltage V(c) calculated in S490, and continues the process. finish.
 [3.動作]
 図9に示すように、窓位置を表すカウント値cと、実際の位置とに位置ずれが生じた場合を考える。位置ずれが生じた場合、デフォルト値の設定がなければ、設定電圧マップから取得されるスロースタート区間の終了位置での学習値V(C1)は、図9中の符号Aで示すように0となる。このため、図9中の4段目のグラフにて実線で示すように、スロースタート区間では、初期速度Vsから速度ゼロに向かうようにスタート変化量ΔVrtが設定され、移動が停止してしまう。
[3. motion]
As shown in FIG. 9, consider a case where a positional deviation occurs between the count value c representing the window position and the actual position. If the default value is not set when a position shift occurs, the learning value V(C1) at the end position of the slow start section obtained from the set voltage map will be 0 as indicated by symbol A in FIG. Become. Therefore, as indicated by the solid line in the fourth graph in FIG. 9, in the slow start section, the start change amount ΔVrt is set so that the initial speed Vs goes to zero speed, and the movement stops.
 位置ずれが生じた場合、デフォルト値の設定があれば、設定電圧マップから取得されるスロースタート区間の終了位置での学習値V(C1)は、図9中の符号Bで示すように、デフォルト値となる。このため、図9中の4段目のグラフにて点線で示すように、位置ずれがない場合と同様の制御が行われる。 If a default value is set when a position shift occurs, the learning value V(C1) at the end position of the slow start section obtained from the set voltage map is set to the default value as indicated by symbol B in FIG. value. Therefore, as indicated by the dotted line in the fourth graph in FIG. 9, the same control as when there is no positional deviation is performed.
 また、設定電圧マップにおける速度一定区間の学習値V(c)は、学習処理によって逐次更新される。このため、位置ずれが生じることで設定電圧マップが不適切な特性になったとしても、ウィンドウマップが作動する毎に、設定電圧マップにおける速度一定区間の特性は適切な特性に更新される。 Also, the learning value V(c) in the constant speed section in the set voltage map is successively updated by the learning process. Therefore, even if the set voltage map has inappropriate characteristics due to positional deviation, the characteristics of the constant speed section in the set voltage map are updated to appropriate characteristics each time the window map is activated.
 [4.対応]
 本実施形態において、ドアECU2の制御部25がモータ制御装置に相当する。メモリ252がマップ記憶部に相当する。設定電圧マップが電圧マップに相当する。S410~S440が状態検出部に相当する。S210~S320が信号生成部に相当する。
[4. correspondence]
In this embodiment, the controller 25 of the door ECU 2 corresponds to the motor controller. The memory 252 corresponds to the map storage section. The set voltage map corresponds to the voltage map. S410 to S440 correspond to the state detector. S210 to S320 correspond to the signal generator.
 [5.効果]
 以上詳述した第1実施形態によれば、以下の効果を奏する。
[5. effect]
According to 1st Embodiment detailed above, there exist the following effects.
 (5a)設定電圧マップを記憶するマップ設定領域は、学習電圧マップより広い範囲が用意されており、学習電圧マップに示された値が設定される学習領域以外は、デフォルト値が設定される。従って、窓位置を表すカウント値cが、実際の窓位置からずれる位置ずれが生じることで、駆動処理において設定電圧マップの学習領域以外の領域が参照されたとしても、ウィンドウガラスを問題なく作動させることができる。 (5a) A map setting area for storing the set voltage map has a wider range than the learning voltage map, and default values are set except for the learning area where the values shown in the learning voltage map are set. Therefore, even if a region other than the learning region of the set voltage map is referred to in the driving process due to the positional deviation of the count value c representing the window position from the actual window position, the window glass can be operated without problems. be able to.
 (5b)デフォルト値として、速度一定区間での制御に用いる印加電圧の学習値に近い値が用いられるため、駆動処理においてデフォルト値が参照されたときに、ユーザに与える違和感を抑制できる。 (5b) As the default value, a value close to the learned value of the applied voltage used for control in the constant speed section is used. Therefore, when the default value is referred to in the driving process, it is possible to suppress the user's discomfort.
 (5c)設定電圧マップにおける速度一定区間の学習値は、電圧マップを使用した制御の実行中に、逐次更新されるため、位置ずれが生じた場合でも、自動的に修正される。 (5c) Since the learning value of the constant speed section in the set voltage map is successively updated during the execution of control using the voltage map, it is automatically corrected even if a position shift occurs.
 [6.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
[6. Other embodiments]
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be made.
 (6a)本開示では、スロースタート区間及びスローストップ区間における速度の変化量ΔVrt,ΔVopを、設定電圧マップの値を用いて算出しているが、予め設定された固定値を用いてもよい。 (6a) In the present disclosure, the speed change amounts ΔVrt and ΔVop in the slow start section and the slow stop section are calculated using the values of the set voltage map, but preset fixed values may be used.
 (6b)本開示では、ウィンドウガラスの開動作及び閉動作の制御に、同じ電圧マップを用いているが、開動作と閉動作とで異なる電圧マップを用いてもよい。 (6b) In the present disclosure, the same voltage map is used for controlling the opening and closing operations of the window glass, but different voltage maps may be used for the opening and closing operations.
 (6c)本開示では、モータ4によって駆動される開閉体が、車両のウィンドウガラスである場合について説明したが、開閉体は、ウィンドウガラスに限定されず、モータ4の駆動によって変位する物体であればよい。 (6c) In the present disclosure, the case where the opening/closing body driven by the motor 4 is the window glass of the vehicle has been described, but the opening/closing body is not limited to the window glass, and may be an object that is displaced by the driving of the motor 4. Just do it.
 (6d)本開示では、速度一定区間における電圧マップを使用した制御を、ウィンドウガラスの開動作及び閉動作のいずれにも適用しているが、ウィンドウガラスの開動作及び閉動作のいずれかにだけ適用してもよい。この場合、電圧マップを使用した制御を適用しない側は、測定速度と目標速度との差分をフィードバックするPI制御を用いてもよい。 (6d) In the present disclosure, the control using the voltage map in the constant speed section is applied to both the opening and closing operations of the window glass, but only to either the opening operation or the closing operation of the window glass. may apply. In this case, the side that does not apply control using the voltage map may use PI control that feeds back the difference between the measured speed and the target speed.
 (6e)本開示では、学習電圧マップ及び設定電圧マップ(以下、両電圧マップ)には、印加電圧がそのまま記憶され、両電圧マップを開動作及び閉動作のいずれにも使用している。しかし、両電圧マップを開動作及び閉動作のうちいずれかだけで使用する場合、両電圧マップには、隣接する窓位置での印加電圧との差分値が記憶されてもよい。この場合、両電圧マップに記憶するデータサイズを削減できる。 (6e) In the present disclosure, the applied voltage is stored as is in the learned voltage map and the set voltage map (hereinafter referred to as both voltage maps), and both voltage maps are used for both the opening operation and the closing operation. However, if both voltage maps are used for only one of the opening operation and the closing operation, both voltage maps may store difference values from applied voltages at adjacent window positions. In this case, the size of data stored in both voltage maps can be reduced.
 (6f)窓位置を表すカウント値cは、ウィンドウガラスが全閉位置に停止する毎に、設定電圧マップの全閉位置を表すカウント値と一致するように再設定されてもよい。 (6f) The count value c representing the window position may be reset to match the count value representing the fully closed position of the set voltage map each time the window glass stops at the fully closed position.
 (6g)本開示に記載の制御部25及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部25及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部25及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されてもよい。制御部25に含まれる各部の機能を実現する手法には、必ずしもソフトウェアが含まれている必要はなく、その全部の機能が、一つあるいは複数のハードウェアを用いて実現されてもよい。 (6g) Control unit 25 and techniques described in this disclosure may be provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be implemented by a computer. Alternatively, the controller 25 and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the controller 25 and techniques described in this disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. may be implemented by one or more dedicated computers configured by Computer programs may also be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium. The method of realizing the function of each part included in the control part 25 does not necessarily include software, and all the functions may be realized using one or a plurality of pieces of hardware.
 (6h)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。 (6h) A plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or a function possessed by one component may be realized by a plurality of components. . Moreover, a plurality of functions possessed by a plurality of components may be realized by one component, or one function realized by a plurality of components may be realized by one component. Also, part of the configuration of the above embodiment may be omitted. Also, at least part of the configuration of the above embodiment may be added or replaced with respect to the configuration of the other above embodiment.
 (6i)上述したドアECU2の制御部25によって実現されるモータ制御装置の他、当該モータ制御装置を構成要素とするシステム、当該モータ制御装置としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実体的記録媒体、モータ制御方法など、種々の形態で本開示を実現することもできる。 (6i) In addition to the motor control device realized by the control unit 25 of the door ECU 2 described above, a system having the motor control device as a component, a program for causing a computer to function as the motor control device, and the program are recorded. The present disclosure can also be implemented in various forms such as a non-transitional substantive recording medium such as a semiconductor memory and a motor control method.

Claims (7)

  1.  車両に設けられた開閉体を自動開閉するモータの回転を検出するセンサからの検出信号に基づいて、前記開閉体の位置及び移動速度を検出するように構成された状態検出部(25:S410~S440)と、
     前記開閉体の位置に対応づけて、前記開閉体を一定の目標速度で動作させるのに必要な前記モータの印加電圧の学習値を示した電圧マップを記憶するように構成されたマップ記憶部(252)と、
     指定された速度パターンで前記開閉体が作動するように、前記状態検出部で検出される前記開閉体の位置及び移動速度、並びに前記電圧マップを用いて算出される前記印加電圧を、前記モータに印加するための駆動信号を生成する信号生成部(25:S210~S320)と、
     を備え、
     前記電圧マップは、前記開閉体の可動範囲を超えた位置にも前記印加電圧のデフォルト値が設定された
     モータ制御装置。
    A state detection unit (25: S410- S440) and
    A map storage unit configured to store a voltage map indicating a learning value of the voltage applied to the motor required to operate the opening/closing body at a constant target speed in association with the position of the opening/closing body ( 252) and
    The position and moving speed of the opening/closing body detected by the state detection unit and the applied voltage calculated using the voltage map are applied to the motor so that the opening/closing body operates in a designated speed pattern. A signal generation unit (25: S210 to S320) that generates a drive signal for application;
    with
    The voltage map includes a default value of the applied voltage set even at a position beyond the movable range of the opening/closing member.
  2.  請求項1に記載のモータ制御装置であって、
     前記デフォルト値は、前記モータ及び該モータを前記駆動信号に従って駆動するモータ駆動回路の特性から論理的に算出される前記印加電圧の設計値である
     モータ制御装置。
    The motor control device according to claim 1,
    The default value is a design value of the applied voltage that is logically calculated from the characteristics of the motor and a motor drive circuit that drives the motor according to the drive signal.
  3.  請求項1に記載のモータ制御装置であって、
     前記デフォルト値は、前記電圧マップに示された前記印加電圧の学習値の平均値である
     モータ制御装置。
    The motor control device according to claim 1,
    The default value is an average value of the learned values of the applied voltage indicated in the voltage map. Motor control device.
  4.  請求項1から請求項3までのいずれか1項に記載のモータ制御装置であって、
     前記速度パターンには、前記開閉体の移動速度を一定の割合で増加させるスロースタート区間、前記開閉体の移動速度を前記目標速度に維持する速度一定区間、前記開閉体の移動速度を一定の割合で減少させるスローストップ区間が含まれ、
     前記信号生成部は、少なくとも前記速度一定区間にて、前記電圧マップを用いるように構成された
     モータ制御装置。
    The motor control device according to any one of claims 1 to 3,
    The speed pattern includes a slow start section in which the moving speed of the opening/closing body is increased at a constant rate, a constant speed section in which the moving speed of the opening/closing body is maintained at the target speed, and a constant rate of moving speed of the opening/closing body. contains a slow-stop interval that decreases with
    The motor control device, wherein the signal generator is configured to use the voltage map at least in the constant speed section.
  5.  請求項4に記載のモータ制御装置であって、
     前記信号生成部は、前記電圧マップから取得される前記スロースタート区間の終了位置にて、前記印加電圧が前記電圧マップから取得される学習値となるように、前記スロースタート区間で前記開閉体の移動速度を変化させる割合を設定するように構成された
     モータ制御装置。
    The motor control device according to claim 4,
    The signal generation unit controls the opening/closing body in the slow start section so that the applied voltage becomes the learning value obtained from the voltage map at the end position of the slow start section obtained from the voltage map. A motor controller configured to set the rate at which the travel speed is varied.
  6.  請求項5に記載のモータ制御装置であって、
     前記信号生成部は、前記速度一定区間では、前記状態検出部にて検出される前記開閉体の移動速度と、前記目標速度との差から前記印加電圧の補正値を算出し、前記速度一定区間では、前記電圧マップから取得される学習値を前記補正値で補正した前記印加電圧に従って前記駆動信号を生成するように構成された
     モータ制御装置。
    The motor control device according to claim 5,
    In the constant speed section, the signal generation section calculates a correction value of the applied voltage from a difference between the moving speed of the opening/closing body detected by the state detection section and the target speed, and calculates the correction value of the applied voltage in the constant speed section. In the motor controller, the drive signal is generated according to the applied voltage obtained by correcting the learning value obtained from the voltage map with the correction value.
  7.  請求項1から請求項6までのいずれか1項に記載のモータ制御装置であって、
     前記センサは、前記モータの回転に同期してパルス信号を出力し、
     前記状態検出部は、前記パルス信号をカウントすることで前記開閉体の位置を算出し、前記パルス信号の間隔から前記開閉体の移動速度を算出するように構成された
     モータ制御装置。
    The motor control device according to any one of claims 1 to 6,
    The sensor outputs a pulse signal in synchronization with rotation of the motor,
    The state detection unit is configured to calculate the position of the opening/closing body by counting the pulse signals, and to calculate the moving speed of the opening/closing body from the intervals of the pulse signals.
PCT/JP2022/032265 2021-08-27 2022-08-26 Motor control device WO2023027181A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022004155.2T DE112022004155T5 (en) 2021-08-27 2022-08-26 Engine controller
JP2023544008A JPWO2023027181A1 (en) 2021-08-27 2022-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-139329 2021-08-27
JP2021139329 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023027181A1 true WO2023027181A1 (en) 2023-03-02

Family

ID=85322955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032265 WO2023027181A1 (en) 2021-08-27 2022-08-26 Motor control device

Country Status (3)

Country Link
JP (1) JPWO2023027181A1 (en)
DE (1) DE112022004155T5 (en)
WO (1) WO2023027181A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166358A (en) * 1997-12-03 1999-06-22 Asmo Co Ltd Sliding door opening and closing device for automobile and vehicle stopping attitude determining method
JP2005016251A (en) * 2003-06-27 2005-01-20 Asmo Co Ltd Device for opening/closing door for vehicle
JP2007138633A (en) * 2005-11-21 2007-06-07 Nippon Jido Door Kk Door device
JP2020012279A (en) * 2018-07-17 2020-01-23 株式会社ミツバ Vehicle opening/closing body control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005972B2 (en) 2017-07-10 2022-01-24 株式会社アイシン Vehicle open / close control device
JP2021139329A (en) 2020-03-05 2021-09-16 トヨタ自動車株式会社 Fuel cleanliness estimation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166358A (en) * 1997-12-03 1999-06-22 Asmo Co Ltd Sliding door opening and closing device for automobile and vehicle stopping attitude determining method
JP2005016251A (en) * 2003-06-27 2005-01-20 Asmo Co Ltd Device for opening/closing door for vehicle
JP2007138633A (en) * 2005-11-21 2007-06-07 Nippon Jido Door Kk Door device
JP2020012279A (en) * 2018-07-17 2020-01-23 株式会社ミツバ Vehicle opening/closing body control device

Also Published As

Publication number Publication date
JPWO2023027181A1 (en) 2023-03-02
DE112022004155T5 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
JP3524374B2 (en) Power window device pinch detection method
JP6164449B2 (en) Opening / closing body pinching detection device and opening / closing body device
US7952312B2 (en) Closure panel control apparatus
JP5277301B2 (en) Motor control device
JP6528398B2 (en) Wiper controller
US6788016B2 (en) Motor speed-based anti-pinch control apparatus and method with endzone ramp detection and compensation
JP6988769B2 (en) Open / close body control device and motor
WO2023027181A1 (en) Motor control device
CN111456581B (en) Vehicle opening/closing body control device
JP2007053894A (en) Motor control device
JP3155694B2 (en) Apparatus and method for controlling throttle valve
JP6296557B2 (en) Auxiliary control device
US20190309558A1 (en) Method for controlling a drive arrangement for a flap of a motor vehicle
US10723320B2 (en) Wiper control device
JP7060681B2 (en) Vehicle open / close body control device
US7164983B2 (en) Switching device for detecting a voltage interruption
JP6945944B2 (en) Rotation detector
JP5138960B2 (en) Motor control device and motor control method
JP2007166711A (en) Method and apparatus for driving/controlling brushless motor
JP2018170945A (en) Controller for brushless motor
JP2010110171A (en) Motor control apparatus and motor apparatus
JP4062228B2 (en) DC motor drive device
JP6593215B2 (en) Wiper control device
JP6950868B2 (en) Vehicle speed control device
JP4678475B2 (en) Electric motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544008

Country of ref document: JP