WO2023019515A1 - 混合动力车辆并联起步控制方法、***及混合动力车辆 - Google Patents

混合动力车辆并联起步控制方法、***及混合动力车辆 Download PDF

Info

Publication number
WO2023019515A1
WO2023019515A1 PCT/CN2021/113558 CN2021113558W WO2023019515A1 WO 2023019515 A1 WO2023019515 A1 WO 2023019515A1 CN 2021113558 W CN2021113558 W CN 2021113558W WO 2023019515 A1 WO2023019515 A1 WO 2023019515A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
hybrid vehicle
starting
clutch
engine
Prior art date
Application number
PCT/CN2021/113558
Other languages
English (en)
French (fr)
Inventor
井俊超
刘义强
黄伟山
杨俊�
左波涛
于雪梅
王瑞平
肖逸阁
Original Assignee
宁波吉利罗佑发动机零部件有限公司
极光湾科技有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波吉利罗佑发动机零部件有限公司, 极光湾科技有限公司, 浙江吉利控股集团有限公司 filed Critical 宁波吉利罗佑发动机零部件有限公司
Priority to EP21935438.8A priority Critical patent/EP4169789B1/en
Priority to PCT/CN2021/113558 priority patent/WO2023019515A1/zh
Priority to US18/287,938 priority patent/US20240199002A1/en
Priority to CN202180004575.9A priority patent/CN114174138A/zh
Publication of WO2023019515A1 publication Critical patent/WO2023019515A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • B60W2510/0216Clutch engagement rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0291Clutch temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/70Control of gearings
    • B60Y2300/71Limiting transmission input torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to the technical field of vehicle control, in particular to a hybrid vehicle parallel start control method, system and hybrid vehicle.
  • the dual-motor hybrid power systems have three modes, which are pure electric mode, series mode and parallel mode.
  • the dual-motor hybrid system drives the wheels through the motor P2 in the series mode, and the clutch C0 is not engaged.
  • the engine charges the battery through the motor P1, and the motor P2 drives the wheels.
  • the clutch C0 is engaged.
  • the engine directly drives the wheels.
  • the present invention provides a hybrid vehicle parallel start control method, system and hybrid vehicle that overcome the above problems or at least partially solve the above problems.
  • An object of the present invention is how to improve the starting safety of a hybrid vehicle.
  • a further object of the present invention is how to control the clutch torque to avoid engine stall due to improper clutch torque control.
  • a further object of the present invention is how to control the clutch torque so as to improve the responsiveness, power and safety during starting.
  • a further object of the present invention is how to control the engine torque to avoid engine flameout, and further improve the responsiveness, power and safety during starting.
  • the present invention provides a hybrid vehicle parallel start control method, comprising the following steps:
  • a start-up control is performed on the clutch according to the start-clutch request torque.
  • the step of judging whether the hybrid vehicle satisfies the overheating protection condition according to the current working conditions of the clutch and the gearbox, and determining the starting basic torque according to the judging result and the engine request torque include:
  • the engine request torque is subtracted from the preset overheat protection offset torque to obtain the starting basic torque.
  • the step of determining the starting clutch request torque based on the starting basic torque according to the starting mode of the hybrid vehicle includes:
  • the anti-stall clutch torque is determined by looking up a table according to the change rate of the engine speed and the difference between the engine speed and the target idle speed;
  • the starting clutch request torque is obtained by taking the smaller of the first off-going clutch torque and the anti-stall clutch torque.
  • step of determining the starting clutch request torque based on the starting basic torque according to the starting mode of the hybrid vehicle further includes:
  • the first pre-request clutch torque and the anti-stall clutch torque are selected to be smaller, and the obtained The starting clutch request torque
  • the first to-be-requested clutch torque is used as the starting clutch request torque.
  • the step of determining the starting clutch request torque based on the starting basic torque according to the starting mode of the hybrid vehicle includes:
  • the anti-stall clutch torque is determined by looking up a table according to the change rate of the engine speed and the difference between the engine speed and the target idle speed;
  • the starting clutch request torque is obtained by taking the smaller of the second off-going clutch torque and the anti-stall clutch torque.
  • step of determining the starting clutch request torque based on the starting basic torque according to the starting mode of the hybrid vehicle further includes:
  • the torque between the second starting limit torque and the anti-stall clutch torque is selected to obtain the Start clutch request torque
  • the second to-be-requested clutch torque is used as the starting clutch request torque.
  • the step of determining the starting clutch request torque based on the starting basic torque according to the starting mode of the hybrid vehicle includes:
  • the second pre-request clutch torque is used as the start clutch request torque.
  • the starting clutch compensation torque is obtained by taking the negative of the P term torque.
  • a target speed calculation method corresponding to the start-up method is selected from a plurality of preset target speed calculation methods, and the next target speed calculation method is used to calculate the next
  • the step of periodically setting the target engine speed includes: when the starting mode of the hybrid vehicle is the way of stepping on the accelerator or launching the way to start, selecting and calculating the target engine speed by using a first target speed calculation method, the first target
  • the speed calculation method includes the following steps:
  • the target is queried from a first preset relationship table that stores the relationship between the minimum torque, the engine request torque and the engine speed Get the target engine speed corresponding to the small torque and the current engine request torque;
  • a target speed calculation method corresponding to the start-up method is selected from a plurality of preset target speed calculation methods, and the next target speed calculation method is used to calculate the next
  • the step of periodically setting the target engine speed includes: when the starting mode of the hybrid vehicle is a neutral gear coasting start mode, selecting to use a second target speed calculation method to calculate and obtain the target engine speed, and the second target speed calculation method includes:
  • the fourth preset relationship table that stores the relationship between the current engine speed and the target engine speed of the next cycle
  • the fourth preset relationship table is different from the third preset relationship table.
  • the starting basic torque is determined according to the judgment result and the engine request torque; according to the The starting method of the hybrid vehicle is based on the step of determining the starting clutch request torque based on the starting basic torque, including:
  • the engine request torque is subtracted from the preset overheating protection offset torque to obtain the starting basic torque, and the starting basic torque is used as the starting clutch request torque;
  • the engine request torque is used as the starting clutch request torque.
  • the temperature of the clutch is greater than or equal to 220°C, and the temperature of the gearbox is greater than or equal to 120°C;
  • the starting mode of the hybrid vehicle is the way of stepping on the gas pedal or the way of starting by ejection;
  • the rate of change of the requested engine torque is smaller than a first preset rate of change
  • the rate of change of the requested engine torque is smaller than a second preset rate rate of change
  • the first preset rate of change is smaller than the second preset rate of change
  • the difference obtained by subtracting the engine request torque from the engine maximum torque limit corresponding to the current engine speed of the hybrid vehicle is greater than the preset torque value
  • the current vehicle speed of the hybrid vehicle is less than or equal to a preset vehicle speed.
  • hybrid vehicle parallel start control method also includes the following steps:
  • hybrid vehicle parallel start control method also includes the following steps:
  • the engine compensation torque is calculated using the engine compensation torque calculation method
  • a start-up control of the engine is performed based on the start-up engine request torque.
  • calculation method of the engine compensation torque includes the following steps:
  • the engine compensation torque is obtained by adding the starting pre-combination torque of the hybrid vehicle to the starting engine compensation torque, and adding the preset overheat protection offset torque , wherein, the starting engine compensation torque is equal to the P term torque of the hybrid vehicle;
  • the engine compensation torque is obtained by adding the starting pre-combination torque to the starting engine compensation torque.
  • the limiting the engine target torque to obtain the starting engine request torque when the brake pedal of the hybrid vehicle is stepped on.
  • the starting pre-combination torque is determined in the following manner:
  • the present invention also provides a hybrid vehicle parallel start control system, including a control device, the control device includes a memory and a processor, a control program is stored in the memory, and the control program is executed by the processor During execution, it is used to realize the control method for parallel start of the hybrid electric vehicle according to the foregoing.
  • the present invention also provides a hybrid vehicle, including the aforementioned hybrid vehicle parallel start control system.
  • the hybrid vehicle satisfies the overheating protection condition according to the current working conditions of the clutch and the gearbox, and then the starting basic torque is determined according to the judgment result and the engine request torque, and then the basic starting torque is determined according to the starting mode of the hybrid vehicle.
  • the torque determines the request torque of the starting clutch, so that the protection torque during overheating is considered in the process of clutch starting control, and there will be different starting clutch request torques in different starting methods, thereby improving the starting safety of hybrid vehicles sex.
  • the anti-flame protection function is added, thereby increasing the power and safety of the system, and improving the starting response at the same time.
  • Fig. 1 shows a schematic structural diagram of a dual-motor hybrid power system in the prior art
  • FIG. 2 shows a schematic flowchart of a method for controlling parallel start of a hybrid vehicle according to an embodiment of the present invention
  • FIG. 3 shows a schematic flow chart of a method for determining the requested torque of the starting clutch in the mode of stepping on the accelerator and starting according to Embodiment 1 of the present invention
  • Fig. 4 shows a schematic flow chart of a method for obtaining compensation torque of the starting clutch according to Embodiment 1 of the present invention
  • FIG. 5 shows a schematic flowchart of a method for calculating a first target rotational speed according to Embodiment 1 of the present invention
  • FIG. 6 shows a schematic flowchart of a method for calculating a second target rotational speed according to Embodiment 1 of the present invention
  • FIG. 7 shows a schematic flow chart of a method for determining the requested torque of the starting clutch in a neutral coasting start mode according to Embodiment 1 of the present invention
  • FIG. 8 shows a schematic flow chart of a method for determining the requested torque of the starting clutch in the ejection starting mode according to Embodiment 1 of the present invention
  • FIG. 9 shows a schematic flowchart of engine start control in a hybrid vehicle parallel start control method according to Embodiment 2 of the present invention.
  • Fig. 10 shows a schematic flowchart of the calculation method of the engine compensation torque according to the second embodiment of the present invention.
  • Fig. 2 shows a schematic flowchart of a method for controlling parallel start of a hybrid vehicle according to an embodiment of the present invention.
  • the hybrid vehicle parallel start control method includes the following steps:
  • Step S100 obtaining the current operating conditions of the clutch and gearbox of the hybrid vehicle, the engine request torque of the hybrid vehicle, and the starting mode of the hybrid vehicle;
  • Step S200 according to the current working conditions of the clutch and the gearbox, judge whether the hybrid vehicle satisfies the overheating protection condition, and determine the starting basic torque according to the judgment result and the engine request torque;
  • Step S300 determining the starting clutch request torque based on the starting basic torque according to the starting mode of the hybrid vehicle
  • step S400 the clutch is controlled to start according to the requested torque of the clutch.
  • the hybrid vehicle satisfies the overheating protection condition according to the current working conditions of the clutch and the gearbox, and then the starting basic torque is determined according to the judgment result and the engine request torque, and then the basic starting torque is determined according to the starting mode of the hybrid vehicle.
  • the torque determines the request torque of the starting clutch, so that the protection torque during overheating is considered in the process of clutch starting control, and there will be different starting clutch request torques in different starting methods, thereby improving the starting safety of hybrid vehicles sex.
  • An embodiment of the present invention also provides a hybrid vehicle parallel start control system, including a control device, the control device includes a memory and a processor, the memory stores a control program, and the control program is executed by the processor During execution, it is used to realize the control method for parallel start of the hybrid electric vehicle according to the foregoing.
  • An embodiment of the present invention also provides a hybrid vehicle, including the aforementioned hybrid vehicle parallel start control system.
  • the clutch includes a fully engaged state, an incompletely engaged state and a disengaged state.
  • the gearbox includes working conditions in gear and working conditions not in gear.
  • the starting mode of the hybrid electric vehicle includes stepping on the gas pedal to start, neutral gear to slide and start and ejection to start. The entry conditions for each starting mode are as follows:
  • the entry condition of the step-on-accelerator start mode is that the gearbox is in the working condition and the driver steps on the accelerator to start instead of ejection start.
  • the exit condition is neutral.
  • the entry condition of this neutral coasting start mode is that the gearbox is in the working condition, the driver does not step on the accelerator to start, and the target speed of the off-acceleration start is greater than the target idle speed, and it is a non-ejection start.
  • the entry conditions of the ejection start mode are that the accelerator opening is >90%, the braking torque is >4000Nm, and the vehicle speed is ⁇ 1km/h.
  • the clutch can be locked after the vehicle starts to meet certain conditions to improve the torque transmission efficiency.
  • the conditions are as follows:
  • the speed of the gearbox input shaft is greater than 900rpm
  • the calculation method of the corresponding starting clutch request torque is introduced below according to the clutch working conditions and the gearbox working conditions.
  • step S200 includes: when it is determined that the hybrid vehicle meets the overheating protection condition, subtracting the preset overheating protection offset torque from the engine request torque to obtain the above-mentioned starting basic torque; When the overheating protection condition is met, the engine request torque is taken as the starting basic torque.
  • the overheat protection bias torque can be set to 50Nm, for example.
  • the temperature of the clutch is greater than or equal to 220°C, and the temperature of the gearbox is greater than or equal to 120°C;
  • the starting method of the hybrid vehicle is to start by stepping on the accelerator or starting by ejection;
  • the change rate of the engine request torque is less than the first preset change rate when the brake pedal of the hybrid vehicle is stepped on, and the change rate of the engine request torque is less than the second preset change rate when the brake pedal is not stepped on. It is assumed that the change rate is less than a second preset change rate, for example, the first preset change rate is 10 Nm/s, and the second preset change rate is 100 Nm/m.
  • the difference obtained by subtracting the engine request torque from the engine maximum torque limit corresponding to the current engine speed of the hybrid vehicle is greater than the preset torque value, wherein the maximum torque limit is the maximum engine torque, which is obtained through the engine bench test It is determined from the obtained universal characteristic map that, depending on the rotational speed, the corresponding maximum torque limits are different at 1500-5500 rotational speeds. And, the requested engine torque is the requested engine torque at the corresponding rotational speed.
  • the preset torque value may be 30Nm, for example.
  • the current vehicle speed of the hybrid vehicle is less than or equal to a preset vehicle speed, which may be, for example, 3 km/h.
  • step S300 The following specific execution steps in step S300 are determined according to the starting manner of the hybrid vehicle.
  • the way to start a hybrid vehicle is to step on the accelerator to start
  • the step S300 includes:
  • Step S31 limiting the upper and lower limits of the starting basic torque to obtain the first starting limited torque
  • Step S32 adding the first starting limited torque to the starting pre-coupling torque and the starting clutch compensation torque of the hybrid vehicle to obtain the first pre-request clutch torque;
  • Step S33 judging whether the brake pedal of the hybrid vehicle is stepped on, if stepped on, execute steps S34 to S38 in sequence, otherwise execute step S39.
  • Step S34 determining the brake clutch request torque when the brake pedal is stepped on according to the magnitude of the brake force at the crankshaft end of the hybrid vehicle and the first pre-request clutch torque;
  • Step S35 choose the smaller between the first pre-request clutch torque and the braking clutch request torque, to obtain the first to-be-request clutch torque;
  • Step S36 judging whether the engine speed of the hybrid vehicle is lower than the target idle speed, if so, execute step S37 and step S38 in sequence, otherwise execute step S391;
  • Step S37 according to the rate of change of the engine speed and the difference between the engine speed minus the target idle speed, look up the table to determine the anti-stall clutch torque;
  • Step S38 choose the smaller between the first to-be-requested clutch torque and the anti-stall clutch torque to obtain the starting clutch request torque
  • Step S39 judging whether the engine speed is greater than or equal to the target idle speed, if so, then use the first pre-request clutch torque as the starting clutch request torque, otherwise choose the smaller one between the first pre-request clutch torque and the anti-stall clutch torque, Get the starting clutch request torque;
  • Step S391 using the first to-be-requested clutch torque as the starting clutch requested torque.
  • limiting the upper and lower limits of the basic starting torque means that the basic starting torque should be limited between the maximum torque and the minimum torque of the engine.
  • the starting pre-combination torque is determined by the following methods: obtaining the current vehicle speed of the hybrid vehicle; querying the first preset mapping relationship table that stores the relationship between the vehicle speed and the starting pre-combination torque to determine the corresponding starting pre-combination torque.
  • the first preset mapping relationship table is an experience table, for example, it may be the following table 1:
  • Fig. 4 shows a schematic flow chart of a method for obtaining compensation torque of the starting clutch according to Embodiment 1 of the present invention.
  • the acquisition method includes:
  • Step S321 selecting a target speed calculation method corresponding to the starting mode from a plurality of preset target speed calculation methods according to the starting mode of the hybrid vehicle, and using the target speed calculation method to calculate and obtain the target engine speed of the next cycle;
  • Step S322 limiting the upper and lower limits of the target engine speed to obtain the target engine speed limit
  • Step S323 subtracting the actual engine speed from the target engine speed limit to obtain the target engine speed difference
  • Step S324 querying the target P-term coefficient corresponding to the target engine speed difference from the second preset mapping relationship table storing the relationship between the engine speed difference and the P-term coefficient;
  • Step S325 multiplying the target P-term coefficient by the target engine speed difference, and then multiplying by the preset engine moment of inertia, to obtain the P-term torque;
  • Step S326 taking the negative of the P term torque to obtain the starting clutch compensation torque.
  • the first target speed calculation method is selected to obtain the target engine speed.
  • the first target speed calculation method includes:
  • Step 3211 obtain the sum of the torque of the engine and the motor of the hybrid vehicle to obtain the overall torque
  • Step 3212 choose the smaller one between the overall torque and the engine requested torque, and obtain the smaller target torque
  • Step 3213 obtain the temperature of clutch and gearbox
  • Step 3214 when the temperature of the clutch is less than 185°C and the temperature of the gearbox is less than 100°C, query the target minimum torque from the first preset relationship table that stores the relationship between the minimum torque, the engine request torque and the engine speed a target engine speed corresponding to the current engine torque request;
  • Step 3215 when the temperature of the clutch is greater than 200°C and the temperature of the gearbox is greater than 110°C, query the target minimum torque from the second preset relationship table that stores the relationship between the minimum torque, the engine request torque and the engine speed The target engine speed corresponding to the current engine torque request, wherein the second preset relationship table is different from the first preset relationship table.
  • the requested engine torque is the filtered crankshaft torque.
  • the first preset relationship table can be, for example, the following table 2:
  • x represents the minimum torque
  • y represents the engine speed
  • the value jointly determined by x and y is the engine request torque.
  • the target takes the small torque as one of the values in the small torque.
  • the second preset relationship table can be, for example, the following table 3:
  • x represents the minimum torque
  • y represents the engine speed
  • the value jointly determined by x and y is the engine request torque.
  • the target takes the small torque as one of the values in the small torque.
  • the data settings in the first preset relational table and the second preset relational table can avoid engine overheating.
  • the target engine speed is calculated by using the second target speed calculation method.
  • the second target speed calculation method includes:
  • the preset acceleration may be, for example, 0.3m/s 2 .
  • the target engine speed for the next cycle is set to be slightly higher than the current engine speed, such as 50 rpm.
  • the third preset relationship table can be, for example, the following table 4:
  • the unit of the engine speed in Table 4 is rpm.
  • the fourth preset relationship table can be, for example, the following table 5:
  • the unit of the engine speed in Table 5 is rpm.
  • step S322 upper and lower limits are imposed on the target engine speed, wherein the upper limit is the engine speed plus a speed compensation based on the vehicle speed.
  • the speed compensation can be zero.
  • the upper limit of the current vehicle speed and the target engine speed satisfies the table shown in Table 6 below:
  • x represents the current vehicle speed in km/h
  • y represents the target engine speed in rpm.
  • Limit the upper and lower limits of the target engine speed wherein the lower limit is the larger value of the engine speed and the target idle speed (that is, the vehicle is in P gear, and the engine speed is 900-1200 speed).
  • step S324 when the start of the vehicle is activated, the starting engine compensation torque is equal to the P-direction torque, and is equal to -1*starting clutch compensation torque.
  • the start clutch compensation torque will gradually become zero at a certain rate, which may be, for example, 5 Nm/s.
  • the second preset mapping relationship table can be, for example, the following table 7:
  • the P-term torque is positive.
  • the engine needs to increase the torque, and the clutch torque needs to be reduced. Therefore, when calculating the starting clutch compensation torque, it must be negative, and the starting engine compensation torque is equal to the P-term torque.
  • the brake clutch request torque is determined by querying the relationship table storing the relationship between the magnitude of the crankshaft end brake force, the first pre-request clutch torque and the brake clutch request torque.
  • the relationship table is an experience table, for example, it can be the following table 8:
  • x represents the magnitude of the braking force at the crankshaft end
  • y represents the first pre-request clutch torque
  • the value jointly determined by x and y is the brake clutch request torque. Therefore, the method of the present invention considers the braking situation in the starting process.
  • the anti-stall clutch torque is determined by querying the relational table that stores the relationship between the rate of change of the engine speed, the difference between the engine speed minus the target idle speed, and the anti-stall clutch torque.
  • the relational table is for example Table 9 can be as follows:
  • x represents the rate of change of the engine speed
  • y represents the difference between the engine speed minus the target idle speed
  • the value jointly determined by x and y is the anti-stall clutch torque. Therefore, in the solution of the present invention, an anti-flame protection function is added. When the engine speed is lower than the target idle speed, the clutch torque should be reduced to prevent the engine from being dragged to flameout, thereby avoiding engine flameout during starting.
  • the starting method of the hybrid vehicle is neutral gear sliding start method
  • the step S300 includes:
  • Step S301 take a larger value between the starting basic torque and zero, and then limit the upper and lower limits of the larger value to obtain a second starting torque limit;
  • Step S302 judging whether the brake pedal of the hybrid vehicle is stepped on, if so, execute steps S303 to S306, otherwise execute step S307;
  • Step S303 choose the smaller between the second starting limit torque and the brake clutch request torque to obtain the second to-be-request clutch torque
  • Step S304 judging whether the engine speed is lower than the target idle speed, if so, execute steps S305 and S306, otherwise execute step S308;
  • Step S305 when the engine speed of the hybrid vehicle is less than the target idle speed, according to the rate of change of the engine speed and the difference value of the engine speed minus the target idle speed, look up the table to determine the anti-stall clutch torque;
  • Step S306 choose the smaller between the second to-be-requested clutch torque and the anti-stall clutch torque to obtain the starting clutch request torque
  • Step S307 judging whether the engine speed is lower than the target idle speed, if so, choose the smaller one between the second start-up limiting torque and the anti-stall clutch torque to obtain the start-up clutch request torque, otherwise use the second start-up limit torque as the start-up clutch request torque;
  • Step S308 using the second to-be-requested clutch torque as the starting clutch requested torque.
  • step S301 the purpose of choosing a larger value between the starting basic torque and zero is to prevent the clutch torque from dropping to a negative value and completely disengaging.
  • step S301 to step S307 The calculation method of starting basic torque, brake clutch request torque, anti-stall clutch torque, etc. in the step S301 to step S307 is consistent with the calculation method of the corresponding torque in the starting mode of the aforementioned hybrid vehicle, which is the starting mode of stepping on the accelerator, and will not be repeated here. repeat.
  • the starting method of the hybrid vehicle is the ejection starting method
  • the step S300 includes:
  • Step S310 adding the starting basic torque to the starting pre-combination torque and the starting clutch compensation torque of the hybrid vehicle to obtain the second pre-request clutch torque;
  • Step S320 judging whether the engine speed of the hybrid vehicle is lower than the target idle speed, if so, execute step S330 and step S340, otherwise execute step S350;
  • Step S330 according to the change rate of the engine speed and the difference between the engine speed minus the target idle speed, look up the table to determine the anti-stall clutch torque;
  • Step S340 choose the smaller between the second pre-request clutch torque and the anti-stall clutch torque to obtain the starting clutch request torque
  • Step S350 using the second pre-request clutch torque as the start clutch request torque.
  • step S310 to step S340 are consistent with the calculation method of the corresponding torque in the above-mentioned hybrid vehicle starting mode of stepping on the accelerator. , which will not be repeated here.
  • the steps S200 and S300 include: judging whether the hybrid vehicle satisfies the overheating protection condition; when it is determined that the hybrid vehicle meets the overheating protection condition, subtracting the preset overheating protection offset torque from the engine request torque, The starting basic torque is obtained, and the starting basic torque is used as the starting clutch request torque; when the hybrid vehicle does not meet the overheating protection condition, the engine request torque is used as the starting clutch request torque.
  • the overheating protection condition is consistent with the above-mentioned condition when the clutch is not fully engaged and the gearbox is in gear, and will not be repeated here.
  • the launch clutch request torque is determined to be equal to zero.
  • the scheme of the embodiment of the present invention by setting a variety of starting control modes in the starting process, specifically, the neutral gear coasting starting mode, the ejection starting mode and the stepping on the gas pedal starting mode, in each starting mode, the overheating working condition, the stepping on the brakes, etc.
  • the situation has been dealt with, and at the same time, the anti-flame protection function has been added, thereby increasing the power and safety of the system, and improving the starting response at the same time.
  • the hybrid vehicle parallel start control system in this embodiment corresponds to the features of the hybrid vehicle parallel start control method described above, and will not be repeated here.
  • the features of the hybrid vehicle in this embodiment correspond one-to-one to the features of the parallel start control system of the hybrid vehicle, and will not be repeated here.
  • the difference between the second embodiment and the first embodiment is that the second embodiment also controls the start of the engine, and the specific control method for the start control of the engine will be described in detail below.
  • the hybrid vehicle parallel start control method also includes:
  • Step S500 when the clutch is fully engaged, or the clutch is not fully engaged and the gearbox is not in gear, it is determined that the engine compensation torque is equal to zero;
  • Step S600 when the clutch is not fully engaged and the gearbox is in gear, the engine compensation torque is calculated using the engine compensation torque calculation method
  • Step S700 add the engine request torque to the engine compensation torque to obtain the engine target torque
  • Step S800 when the brake pedal of the hybrid vehicle is stepped on, limit the engine target torque to obtain the starting engine request torque;
  • step S900 the engine is controlled to start according to the requested torque for starting the engine.
  • step S600 the engine compensation torque calculation method includes:
  • Step S601 judging whether the hybrid vehicle satisfies the overheat protection condition, if so, execute step S602, otherwise execute step S603;
  • Step S602 add the starting engine compensation torque to the starting pre-combination torque of the hybrid vehicle, and add the preset overheat protection offset torque to obtain the engine compensation torque, wherein the starting engine compensation torque is equal to the P-term torque of the hybrid vehicle ;
  • Step S603 adding the starting pre-combination torque to the starting engine compensation torque to obtain the engine compensation torque.
  • the method of limiting the engine target torque in step S800 is: when the brake pedal of the hybrid vehicle is stepped on, determine the brake clutch request torque when the brake pedal is stepped on; Take the smaller value to get the starting engine request torque.
  • step S602 and step S603 The calculation method of starting engine compensation torque, starting pre-combination torque, etc. in step S602 and step S603 is consistent with the calculation method of the corresponding torque in the first embodiment, and will not be repeated here.
  • the hybrid vehicle parallel start control system in this embodiment corresponds to the features of the hybrid vehicle parallel start control method described above, and will not be repeated here.
  • the features of the hybrid vehicle in this embodiment correspond one-to-one to the features of the parallel start control system of the hybrid vehicle, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

混合动力车辆并联起步控制方法、***及混合动力车辆。混合动力车辆并联起步控制方法包括如下步骤:获取混合动力车辆的离合器和变速箱的当前工况、混合动力车辆的发动机请求扭矩以及混合动力车辆的起步方式;根据离合器和变速箱的当前工况,进行混合动力车辆是否满足过热保护条件的判断,根据判断结果和发动机请求扭矩确定起步基本扭矩;根据混合动力车辆的起步方式基于起步基本扭矩确定起步离合器请求扭矩;根据起步离合器请求扭矩对离合器进行起步控制。混合动力车辆并联起步控制方法可以提高混合动力车辆的起步安全性、响应性和动力性。

Description

混合动力车辆并联起步控制方法、***及混合动力车辆 技术领域
本发明涉及车辆控制技术领域,尤其涉及一种混合动力车辆并联起步控制方法、***及混合动力车辆。
背景技术
随着电气化***的发展以及国家法规对油耗和排放要求的日益严格,混合动力技术成为实现节能减排的关键。现有技术中存在着双电机混合动力***,双电机混合动力***有三种模式,分别为纯电模式、串联模式和并联模式。如图1所示,该双电机混合动力***在串联模式下通过电机P2驱动车轮,且离合器C0不结合,发动机通过电机P1给电池充电,电机P2驱动车轮,在并联模式下,离合器C0结合,发动机直接驱动车轮。
混合动力车辆的起步控制不好不仅影响***的响应性,而且可能会由于离合器扭矩控制不当导致发动机熄火,也可能会由于没有考虑离合器和变速器油温度导致硬件损坏等。因此,混合动力车辆的合理的起步控制方法是非常重要的。
发明内容
鉴于上述问题,本发明提供一种克服上述问题或者至少部分地解决上述问题的一种混合动力车辆并联起步控制方法、***及混合动力车辆。
本发明的一个目的在于如何提高混合动力车辆的起步安全性。
本发明的一个进一步的目的在于如何对离合器扭矩进行控制以避免由于离合器扭矩控制不当导致的发动机熄火。
本发明的又一个进一步的目的在于如何对离合器扭矩进行控制以提高起步过程中的响应性、动力性以及安全性。
本发明的再一个进一步的目的在于如何对发动机扭矩进行控制以避免发动机熄火,并进一步提高起步过程中的响应性、动力性以及安全性。
特别地,本发明提供了一种混合动力车辆并联起步控制方法,包括如下步骤:
获取混合动力车辆的离合器和变速箱的当前工况、所述混合动力车辆的发动机请求扭矩以及所述混合动力车辆的起步方式;
根据所述离合器和所述变速箱的当前工况,进行所述混合动力车辆是否满足过热保护条件的判断,根据判断结果和所述发动机请求扭矩确定起步基本扭矩;
根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩;
根据所述起步离合器请求扭矩对所述离合器进行起步控制。
进一步地,所述根据所述离合器和所述变速箱的当前工况,进行所述混合动力车辆是否满足过热保护条件的判断,并根据判断结果和所述发动机请求扭矩确定起步基本扭矩的步骤,包括:
在所述离合器处于未完全结合工况且所述变速箱处于在档工况下,判断所述混合动力车辆是否满足过热保护条件;
在确定所述混合动力车辆满足过热保护条件时,将所述发动机请求扭矩减去预设的过热保护偏移扭矩,得到所述起步基本扭矩。
进一步地,在所述混合动力车辆的起步方式为踩油门起步方式时,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤包括:
对所述起步基本扭矩进行上下限限制,得到第一起步限制扭矩;
将所述第一起步限制扭矩加上所述混合动力车辆的起步预结合扭矩和起步离合器补偿扭矩,得到第一预请求离合器扭矩;
在所述混合动力车辆的制动踏板被踩踏时,根据所述混合动力车辆的曲轴端刹车力大小以及所述第一预请求离合器扭矩确定所述制动踏板被踩踏时的刹车离合器请求扭矩;
在所述第一预请求离合器扭矩和所述刹车离合器请求扭矩之间取小,得到第一待请求离合器扭矩;
在所述混合动力车辆的发动机转速小于目标怠速转速时,根据所述发动机转速的变化率以及所述发动机转速减去所述目标怠速转速的差值查表确定防熄火离合器扭矩;
在所述第一待请求离合器扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩。
进一步地,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤还包括:
在所述混合动力车辆的制动踏板未被踩踏,且所述发动机转速大于或等于所述目标怠速转速时,将所述第一预请求离合器扭矩作为所述起步离合器请求扭矩;
在所述混合动力车辆的制动踏板未被踩踏,且所述发动机转速小于所述目标怠速转速时,在所述第一预请求离合器扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩;
在所述混合动力车辆的制动踏板被踩踏,且所述发动机转速大于或等于所述目标怠速转速时,将所述第一待请求离合器扭矩作为所述起步离合器请求扭矩。
进一步地,在所述混合动力车辆的起步方式为空挡滑行起步方式时,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤包括:
在所述起步基本扭矩和零之间取大,再对取大后的值进行上下限限制,得到第二起步限制扭矩;
在所述混合动力车辆的制动踏板被踩踏时,在所述第二起步限制扭矩和刹车离合器请求扭矩之间取小,得到第二待请求离合器扭矩;
在所述混合动力车辆的发动机转速小于目标怠速转速时,根据所述发动机转速的变化率以及所述发动机转速减去所述目标怠速转速的差值查表确定防熄火离合器扭矩;
在所述第二待请求离合器扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩。
进一步地,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤还包括:
在所述混合动力车辆的制动踏板未被踩踏,且所述发动机转速大于或等于所述目标怠速转速时,将所述第二起步限制扭矩作为所述起步离合器请求扭矩;
在所述混合动力车辆的制动踏板未被踩踏,且所述发动机转速小于所述目标怠速转速时,在所述第二起步限制扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩;
在所述混合动力车辆的制动踏板被踩踏,且所述发动机转速大于或等于所述目标怠速转速时,将所述第二待请求离合器扭矩作为所述起步离合器请求扭矩。
进一步地,在所述混合动力车辆的起步方式为弹射起步方式时,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤包括:
将所述起步基本扭矩加上所述混合动力车辆的起步预结合扭矩和起步离合器补偿扭矩,得到第二预请求离合器扭矩;
在所述混合动力车辆的发动机转速小于所述目标怠速转速时,根据所述发动机转速的变化率以及所述发动机转速减去所述目标怠速转速的差值查表确定防熄火离合器扭矩;
在所述第二预请求离合器扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离 合器请求扭矩;
在所述混合动力车辆的发动机转速大于或等于所述目标怠速转速时,将所述第二预请求离合器扭矩作为所述起步离合器请求扭矩。
进一步地,所述起步离合器补偿扭矩通过以下方式获取:
根据所述混合动力车辆的起步方式从预设的多个目标转速计算方法中选择出与所述起步方式对应的目标转速计算方法,并利用该目标转速计算方法计算获得下一周期的目标发动机转速;
对所述目标发动机转速进行上下限限制,得到发动机目标限制转速;
将所述发动机目标限制转速减去实际发动机转速,得到目标发动机转速差值;
从存储有发动机转速差值与P项系数之间关系的第二预设映射关系表中查询所述目标发动机转速差值对应的目标P项系数;
将所述目标P项系数乘以所述目标发动机转速差值,再乘以预设的发动机转动惯量,得到P项扭矩;
对所述P项扭矩取负得到所述起步离合器补偿扭矩。
进一步地,所述根据所述混合动力车辆的起步方式从预设的多个目标转速计算方法中选择出与所述起步方式对应的目标转速计算方法,并利用该目标转速计算方法计算获得下一周期的目标发动机转速的步骤包括:在所述混合动力车辆的起步方式为踩油门起步方式或弹射起步方式时,选择利用第一目标转速计算方法计算获得所述目标发动机转速,所述第一目标转速计算方法包括如下步骤:
获取所述混合动力车辆的发动机和电机的扭矩之和,得到整体扭矩;
在所述整体扭矩和所述发动机请求扭矩之间取小,得到目标取小扭矩;
获取所述离合器和所述变速箱的温度;
在所述离合器的温度小于185℃,且所述变速箱的温度小于100℃时,从存储有取小扭矩、发动机请求扭矩和发动机转速之间关系的第一预设关系表中查询所述目标取小扭矩和所述当前发动机请求扭矩对应的目标发动机转速;
在所述离合器的温度大于200℃,且所述变速箱的温度大于110℃时,从存储有取小扭矩、发动机请求扭矩和发动机转速之间关系的第二预设关系表中查询所述目标取小扭矩和所述当前发动机请求扭矩对应的目标发动机转速,其中,所述第二预设关系表与所述第一预设关系表不同。
进一步地,所述根据所述混合动力车辆的起步方式从预设的多个目标转速计算方法中选择出与所述起步方式对应的目标转速计算方法,并利用该目标转速计算方法计算获得下一周期的目标发动机转速的步骤包括:在所述混合动力车辆的起步方式为空挡滑行起步方式时,选择利用第二目标转速计算方法计算获得所述目标发动机转速,所述第二目标转速计算方法包括如下步骤:
获取所述混合动力车辆起步时的起步加速度;
将所述起步加速度与预设加速度进行比较;
在所述起步加速度小于所述预设加速度时,从存储有当前发动机转速和下一周期的发动机转速之间关系的第三预设关系表中查询当前发动机转速对应的下一周期的目标发动机转速;
在所述起步加速度大于或等于所述预设加速度时,从存储有当前发动机转速和下一周期的目标发动机转速之间关系的第四预设关系表中查询当前发动机转速对应的下一周期的目标发动机转速,所述第四预设关系表与第三预设关系表不同。
进一步地,所述根据所述离合器和所述变速箱的当前工况,进行所述混合动力车辆是否满足过热保护条件的判断,并根据判断结果和所述发动机请求扭矩确定起步基本扭矩;根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩 的步骤,包括:
在所述离合器处于完全结合工况时,判断所述混合动力车辆是否满足过热保护条件;
在确定所述混合动力车辆满足过热保护条件时,将所述发动机请求扭矩减去预设的过热保护偏移扭矩,得到所述起步基本扭矩,并将所述起步基本扭矩作为所述起步离合器请求扭矩;
在所述混合动力车辆不满足过热保护条件时,将所述发动机请求扭矩作为所述起步离合器请求扭矩。
进一步地,同时满足以下条件时确定满足所述过热保护条件:
所述离合器的温度大于等于220℃,所述变速箱的温度大于等于120℃;
所述混合动力车辆的起步方式为踩油门起步方式或弹射起步方式;
所述混合动力车辆的制动踏板被踩踏时所述发动机请求扭矩的变化率小于第一预设变化率,所述制动踏板未被踩踏时所述发动机请求扭矩的变化率小于第二预设变化率,所述第一预设变化率小于所述第二预设变化率;
所述混合动力车辆在当前发动机转速下对应的发动机最大扭矩限值减去所述发动机请求扭矩所得的差值大于预设扭矩值;
所述混合动力车辆的当前车速小于等于预设车速。
进一步地,所述混合动力车辆并联起步控制方法还包括如下步骤:
在所述离合器处于未完全结合工况且所述变速箱处于不在档工况下,确定所述起步离合器请求扭矩等于零。
进一步地,所述混合动力车辆并联起步控制方法还包括如下步骤:
在所述离合器处于完全结合工况,或者所述离合器处于未完全结合工况且所述变速箱处于不在档工况下,确定发动机补偿扭矩等于零;
在所述离合器处于未完全结合工况且所述变速箱处于在档工况下,利用发动机补偿扭矩计算方法计算获得发动机补偿扭矩;
将所述发动机请求扭矩加上所述发动机补偿扭矩,得到发动机目标扭矩;
在所述混合动力车辆的制动踏板被踩踏时,对所述发动机目标扭矩进行限值限制,得到起步发动机请求扭矩;
根据所述起步发动机请求扭矩对所述发动机进行起步控制。
进一步地,所述发动机补偿扭矩计算方法包括如下步骤:
在所述混合动力车辆满足所述过热保护条件时,将所述混合动力车辆的起步预结合扭矩加上起步发动机补偿扭矩,再加上预设的过热保护偏移扭矩,得到所述发动机补偿扭矩,其中,所述起步发动机补偿扭矩等于所述混合动力车辆的P项扭矩;
在所述混合动力车辆不满足所述过热保护条件时,将所述起步预结合扭矩加上所述起步发动机补偿扭矩,得到所述发动机补偿扭矩。
进一步地,所述在所述混合动力车辆的制动踏板被踩踏时,对所述发动机目标扭矩进行限值限制,得到起步发动机请求扭矩的步骤中,所述对所述发动机目标扭矩进行限值限制的方法为:
在所述混合动力车辆的制动踏板被踩踏时,确定所述制动踏板被踩踏时的刹车离合器请求扭矩;
在所述发动机目标扭矩和所述刹车发动机请求扭矩之间取小,得到所述起步发动机请求扭矩。
进一步地,所述起步预结合扭矩通过以下方式确定:
获取所述混合动力车辆的当前车速;
查询存储有车速与起步预结合扭矩之间关系的第一预设映射关系表,以确定所述当前车速下对应的起步预结合扭矩。
特别地,本发明还提供了一种混合动力车辆并联起步控制***,包括控制装置,所述控制装置包括存储器和处理器,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据前述的混合动力车辆并联起步控制方法。
特别地,本发明还提供了一种混合动力车辆,包括前述的混合动力车辆并联起步控制***。
根据本发明的方案,通过离合器和变速箱的当前工况来判断混合动力车辆是否满足过热保护条件,再根据判断结果和发动机请求扭矩确定起步基本扭矩,然后根据混合动力车辆的起步方式基于起步基本扭矩确定起步离合器请求扭矩,从而在对离合器进行起步控制的过程中考虑了过热时的保护扭矩,并在不同的起步方式中会有不同的起步离合器请求扭矩,从而提高了混合动力车辆的起步安全性。
进一步地,通过在起步过程中设置多种起步控制方式,具体为空挡滑行起步方式、弹射起步方式和踩油门起步方式,在各个起步方式中都对过热工况、踩刹车工况进行了处理,同时也增加了防熄火保护功能,从而增加了***的动力性、安全性,同时提高了起步响应。
进一步地,通过对发动机扭矩进行控制,可以进一步避免发动机熄火,并进一步提高起步过程中的响应性、动力性以及安全性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1示出了现有技术中双电机混合动力***的示意性结构图;
图2示出了根据本发明一个实施例的混合动力车辆并联起步控制方法的示意性流程图;
图3示出了根据本发明实施例一的踩油门起步方式下确定起步离合器请求扭矩的方法的示意性流程图;
图4示出了根据本发明实施例一的起步离合器补偿扭矩的获取方法示意性流程图;
图5示出了根据本发明实施例一的第一目标转速计算方法的示意性流程图;
图6示出了根据本发明实施例一的第二目标转速计算方法的示意性流程图;
图7示出了根据本发明实施例一的空挡滑行起步方式下确定起步离合器请求扭矩的方法的示意性流程图;
图8示出了根据本发明实施例一的弹射起步方式下确定起步离合器请求扭矩的方法的示意性流程图;
图9示出了根据本发明实施例二的混合动力车辆并联起步控制方法中对发动机进行起步控制的示意性流程图;
图10示出了根据本发明实施例二的发动机补偿扭矩的计算方法的示意性流程 图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图2示出了根据本发明一个实施例的混合动力车辆并联起步控制方法的示意性流程图。如图2所示,该混合动力车辆并联起步控制方法包括如下步骤:
步骤S100,获取混合动力车辆的离合器和变速箱的当前工况、混合动力车辆的发动机请求扭矩以及混合动力车辆的起步方式;
步骤S200,根据离合器和变速箱的当前工况,进行混合动力车辆是否满足过热保护条件的判断,根据判断结果和发动机请求扭矩确定起步基本扭矩;
步骤S300,根据混合动力车辆的起步方式基于起步基本扭矩确定起步离合器请求扭矩;
步骤S400,根据起步离合器请求扭矩对离合器进行起步控制。
根据本发明的方案,通过离合器和变速箱的当前工况来判断混合动力车辆是否满足过热保护条件,再根据判断结果和发动机请求扭矩确定起步基本扭矩,然后根据混合动力车辆的起步方式基于起步基本扭矩确定起步离合器请求扭矩,从而在对离合器进行起步控制的过程中考虑了过热时的保护扭矩,并在不同的起步方式中会有不同的起步离合器请求扭矩,从而提高了混合动力车辆的起步安全性。
本发明的实施例还提供了一种混合动力车辆并联起步控制***,包括控制装置,所述控制装置包括存储器和处理器,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据前述的混合动力车辆并联起步控制方法。
本发明的实施例还提供了一种混合动力车辆,包括前述的混合动力车辆并联起步控制***。
以下以具体实施例详细说明:
实施例一:
该步骤S100中,该离合器包括完全结合工况、未完全结合工况和断开工况。该变速箱包括在挡工况和不在挡工况。混合动力车辆的起步方式包括踩油门起步方式、空挡滑行起步方式和弹射起步方式。该各个起步方式的进入条件分别为:
1)该踩油门起步方式的进入条件为变速箱处于在挡工况且驾驶员踩油门起步而非弹射起步。退出条件是挂空挡。
2)该空挡滑行起步方式的进入条件为变速箱处于在挡工况,驾驶员未踩油门起步,并且未踩油门起步的目标转速大于目标怠速,且为非弹射起步。
3)该弹射起步方式的进入条件为油门开度>90%,刹车扭矩>4000Nm,车速<1km/h。
在具体实施时,车辆起步满足一定条件后可以锁住离合器以提高扭矩传递效率,条件如下:
1)变速箱输入轴转速大于900rpm;
2)起步的目标转速与变速箱输入轴转速差值绝对值小于限值40rpm。关于起步的目标转速的计算方法在下文中有详细介绍。
以下按照离合器工况和变速箱工况来介绍对应的起步离合器请求扭矩的计算方法。
一、离合器处于未完全结合工况且变速箱处于在档工况
在该工况下,该步骤S200包括:在确定混合动力车辆满足过热保护条件时,将发动 机请求扭矩减去预设的过热保护偏移扭矩,得到前述的起步基本扭矩;在确定混合动力车辆不满足过热保护条件时,将发动机请求扭矩作为该起步基本扭矩。该过热保护偏移扭矩例如可以设定为50Nm。
同时满足以下条件时确定满足过热保护条件:
1)离合器的温度大于等于220℃,所述变速箱的温度大于等于120℃;
2)混合动力车辆的起步方式为踩油门起步方式或弹射起步方式;
3)混合动力车辆的制动踏板被踩踏时发动机请求扭矩的变化率小于第一预设变化率,制动踏板未被踩踏时发动机请求扭矩的变化率小于第二预设变化率,第一预设变化率小于第二预设变化率,例如,该第一预设变化率为10Nm/s,该第二预设变化率为100Nm/m。
4)混合动力车辆在当前发动机转速下对应的发动机最大扭矩限值减去发动机请求扭矩所得的差值大于预设扭矩值,其中,该最大扭矩限制为发动机最大扭矩,其是通过发动机台架试验得到的万有特性图确定出,与转速有关,在1500-5500转速下对应的最大扭矩限值不同。并且,该发动机请求扭矩为对应转速下的发动机请求扭矩。该预设扭矩值例如可以30Nm。
5)混合动力车辆的当前车速小于等于预设车速,该预设车速例如可以为3km/h。
以下根据混合动力车辆的起步方式来确定步骤S300中的具体执行步骤。
1.混合动力车辆的起步方式为踩油门起步方式
在这种起步方式下,如图3所示,该步骤S300包括:
步骤S31,对起步基本扭矩进行上下限限制,得到第一起步限制扭矩;
步骤S32,将第一起步限制扭矩加上混合动力车辆的起步预结合扭矩和起步离合器补偿扭矩,得到第一预请求离合器扭矩;
步骤S33,判断混合动力车辆的制动踏板是否被踩踏,若被踩踏,则顺序执行步骤S34至S38,否则执行步骤S39。
步骤S34,根据混合动力车辆的曲轴端刹车力大小以及第一预请求离合器扭矩确定制动踏板被踩踏时的刹车离合器请求扭矩;
步骤S35,在第一预请求离合器扭矩和刹车离合器请求扭矩之间取小,得到第一待请求离合器扭矩;
步骤S36,判断混合动力车辆的发动机转速是否小于目标怠速转速,若是则顺序执行步骤S37和步骤S38,否则执行步骤S391;
步骤S37,根据发动机转速的变化率以及发动机转速减去目标怠速转速的差值查表确定防熄火离合器扭矩;
步骤S38,在第一待请求离合器扭矩和防熄火离合器扭矩之间取小,得到起步离合器请求扭矩;
步骤S39,判断发动机转速是否大于或等于所述目标怠速转速,若是,则将第一预请求离合器扭矩作为起步离合器请求扭矩,否则在第一预请求离合器扭矩和防熄火离合器扭矩之间取小,得到起步离合器请求扭矩;
步骤S391,将第一待请求离合器扭矩作为起步离合器请求扭矩。
该步骤S31中,对起步基本扭矩进行上下限限制是指,该起步基本扭矩要限制在发动机最大扭矩和最小扭矩之间。
该步骤S32中,该起步预结合扭矩通过以下方式确定:获取混合动力车辆的当前车速;查询存储有车速与起步预结合扭矩之间关系的第一预设映射关系表,以确定当前车速下对应的起步预结合扭矩。该第一预设映射关系表为经验表,例如可以为下表1:
表1
当前车速(km/h) 0 2 4 6
起步预结合扭矩(Nm) 3 2 1 0
图4示出了根据本发明实施例一的起步离合器补偿扭矩的获取方法示意性流程图。如图4所示,该获取方法包括:
步骤S321,根据混合动力车辆的起步方式从预设的多个目标转速计算方法中选择出与起步方式对应的目标转速计算方法,并利用该目标转速计算方法计算获得下一周期的目标发动机转速;
步骤S322,对目标发动机转速进行上下限限制,得到发动机目标限制转速;
步骤S323,将发动机目标限制转速减去实际发动机转速,得到目标发动机转速差值;
步骤S324,从存储有发动机转速差值与P项系数之间关系的第二预设映射关系表中查询目标发动机转速差值对应的目标P项系数;
步骤S325,将目标P项系数乘以目标发动机转速差值,再乘以预设的发动机转动惯量,得到P项扭矩;
步骤S326,对P项扭矩取负得到起步离合器补偿扭矩。
该步骤S321中,在起步方式为踩油门起步方式或弹射起步方式时,选择利用第一目标转速计算方法计算获得目标发动机转速,如图5所示,第一目标转速计算方法包括:
步骤3211,获取混合动力车辆的发动机和电机的扭矩之和,得到整体扭矩;
步骤3212,在整体扭矩和发动机请求扭矩之间取小,得到目标取小扭矩;
步骤3213,获取离合器和变速箱的温度;
步骤3214,在离合器的温度小于185℃,且变速箱的温度小于100℃时,从存储有取小扭矩、发动机请求扭矩和发动机转速之间关系的第一预设关系表中查询目标取小扭矩和当前发动机请求扭矩对应的目标发动机转速;
步骤3215,在离合器的温度大于200℃,且变速箱的温度大于110℃时,从存储有取小扭矩、发动机请求扭矩和发动机转速之间关系的第二预设关系表中查询目标取小扭矩和当前发动机请求扭矩对应的目标发动机转速,其中,第二预设关系表与第一预设关系表不同。
该步骤S3212中,发动机请求扭矩即为滤波后的曲轴扭矩。在步骤S3214中,该第一预设关系表例如可以为以下表2:
表2
x/y 0 1125 1250 1500 1750 2000 2250 2375 2500 3300 7000
10 900 1125 1250 1500 1750 2000 2250 2375 2500 3300 7000
25 1100 1300 1375 1500 1750 2000 2250 2375 2500 3300 7000
50 1600 1600 1600 1600 1800 2000 2250 2375 2500 3300 7000
100 1600 1600 1600 1600 1800 2000 2250 2375 2500 3300 7000
150 1800 1800 1800 1800 1800 2000 2250 2375 2500 3300 7000
200 1800 1800 1800 1800 1800 2000 2250 2375 2500 3300 7000
250 1800 1800 1800 1800 1800 2000 2250 2375 2500 3300 7000
该表2中,x表示取小扭矩,y表示发动机转速,x和y共同确定的值为发动机请求扭矩。该目标取小扭矩为取小扭矩中的其中一个值。
在步骤S3215中,该第二预设关系表例如可以为以下表3:
表3
x/y 0 1150 1500 1750 2000 2500 3800 7000
50 950 1150 1500 1750 2000 2500 3800 7000
100 1050 1425 1500 1750 2000 2500 3800 7000
150 1150 1441 1500 1750 2000 2500 3800 7000
200 1250 1458 1500 1750 2000 2500 3800 7000
250 1350 1475 1500 1750 2000 2500 3800 7000
300 1450 1491 1500 1750 2000 2500 3800 7000
330 1450 1491 1500 1750 2000 2500 3800 7000
该表3中,x表示取小扭矩,y表示发动机转速,x和y共同确定的值为发动机请求扭矩。该目标取小扭矩为取小扭矩中的其中一个值。
该第一预设关系表和第二预设关系表中的数据设置可以避免发动机过热现象。
该步骤S321中,在起步方式为空挡滑行起步方式时,选择利用第二目标转速计算方法计算获得目标发动机转速,如图6所示,第二目标转速计算方法包括:
S3211’,获取混合动力车辆起步时的起步加速度;
S3212’,将起步加速度与预设加速度进行比较;
S3213’,在起步加速度小于预设加速度时,从存储有当前发动机转速和下一周期的发动机转速之间关系的第三预设关系表中查询当前发动机转速对应的下一周期的目标发动机转速;
S3214’,在起步加速度大于或等于预设加速度时,从存储有当前发动机转速和下一周期的目标发动机转速之间关系的第四预设关系表中查询当前发动机转速对应的下一周期的目标发动机转速,第四预设关系表与第三预设关系表不同。
该步骤S3212’中,该预设加速度例如可以为0.3m/s 2。为了避免发动机转速下降过快到发动机转速以下,设置下一周期的目标发动机转速稍微高出当前发动机转速如50rpm。该第三预设关系表例如可以为以下表4:
表4
Figure PCTCN2021113558-appb-000001
该表4中的发动机转速的单位为rpm。
该步骤S3214’中,该第四预设关系表例如可以为以下表5:
表5
Figure PCTCN2021113558-appb-000002
该表5中的发动机转速的单位为rpm。
该步骤S322中,对目标发动机转速进行上下限限制,其中,上限为发动机转速加上基于车速的转速补偿量,当车速超过一定值后,该转速补偿量可以为零。当前车速与目标发动机转速的上限例如满足的表格可以如下表6所示:
表6
x 10 15 30 35
z 3000 1500 1000 0
该表6中的x表示当前车速,单位为km/h,y表示目标发动机转速,单位为rpm。
对目标发动机转速进行上下限限制,其中,下限为发动机转速和目标怠速(即车辆挂P挡,发动机转速为900-1200转速)取大的值。
在步骤S324中,当车辆的起步激活时,起步发动机补偿扭矩等于P向扭矩,且等于-1*起步离合器补偿扭矩。在车辆未处于起步激活时,起步离合器补偿扭矩会以一定的速率逐渐变为零,该一定的速率例如可以是5Nm/s。该第二预设映射关系表例如可以为下表7:
表7
Figure PCTCN2021113558-appb-000003
当发动机目标限制转速大于实际发动机转速时,P项扭矩为正,此时发动机需要增加扭矩,离合器扭矩需要减小,因此,计算起步离合器补偿扭矩时要取负,而起步发动机补偿扭矩等于P向扭矩。
该步骤S34中,该刹车离合器请求扭矩是通过查询存储有曲轴端刹车力大小、第一预请求离合器扭矩以及刹车离合器请求扭矩之间关系的关系表来确定的。该关系表为经验表,例如可以为下表8:
表8
y/x 0 50 100 200 400
0 0 0 0 0 0
50 60 0 0 0 0
100 110 50 0 0 0
400 410 350 300 200 0
该表8中,x表示曲轴端刹车力大小,y表示第一预请求离合器扭矩,x和y共同确定的值为刹车离合器请求扭矩。因此,本发明方法考虑了起步过程中的踩刹车情况。
该步骤S37中,该防熄火离合器扭矩是通过查询存储有发动机转速的变化率、发动机转速减去目标怠速转速的差值以及防熄火离合器扭矩之间关系的关系表来确定的,该关系表例如可以为下表9:
表9
x/y -450 -250 -150 -50 0 200 500 1000
-1000 0 0 0 100 150 300 500 500
-500 0 0 50 100 150 300 500 500
0 0 0 100 100 150 300 500 500
500 0 0 100 100 150 300 500 500
1000 0 0 100 100 150 300 500 500
该表9中x表示发动机转速的变化率,y表示发动机转速减去目标怠速转速的差值,x和y共同确定的值为防熄火离合器扭矩。因此,本发明方案中,增加了防熄火保护功能,当发动机转速小于目标怠速转速时,应减小离合器扭矩防止发动机被拖熄火,由此可以避免出现起步过程中发动机熄火的情况。
2.混合动力车辆的起步方式为空挡滑行起步方式
在这种起步方式下,如图7所示,该步骤S300包括:
步骤S301,在起步基本扭矩和零之间取大,再对取大后的值进行上下限限制,得到第二起步限制扭矩;
步骤S302,判断混合动力车辆的制动踏板是否被踩踏,若是则执行步骤S303至步骤S306,否则执行步骤S307;
步骤S303,在所述第二起步限制扭矩和刹车离合器请求扭矩之间取小,得到第二待请求离合器扭矩;
步骤S304,判断发动机转速是否小于目标怠速转速,若是则执行步骤S305和步骤S306,否则执行步骤S308;
步骤S305,在混合动力车辆的发动机转速小于目标怠速转速时,根据发动机转速的 变化率以及发动机转速减去目标怠速转速的差值查表确定防熄火离合器扭矩;
步骤S306,在第二待请求离合器扭矩和防熄火离合器扭矩之间取小,得到起步离合器请求扭矩;
步骤S307,判断发动机转速是否小于目标怠速转速,若是,则在第二起步限制扭矩和防熄火离合器扭矩之间取小,得到起步离合器请求扭矩,否则将第二起步限制扭矩作为起步离合器请求扭矩;
步骤S308,将第二待请求离合器扭矩作为起步离合器请求扭矩。
该步骤S301,在起步基本扭矩和零之间取大的目的是为了避免离合器扭矩掉到负值完全脱开。
该步骤S301至步骤S307中起步基本扭矩、刹车离合器请求扭矩、防熄火离合器扭矩等的计算方法与前述混合动力车辆的起步方式为踩油门起步方式中对应扭矩的计算方法保持一致,此处不再赘述。
3.混合动力车辆的起步方式为弹射起步方式
在这种起步方式下,如图8所示,该步骤S300包括:
步骤S310,将起步基本扭矩加上混合动力车辆的起步预结合扭矩和起步离合器补偿扭矩,得到第二预请求离合器扭矩;
步骤S320,判断混合动力车辆的发动机转速是否小于目标怠速转速,若是则执行步骤S330和步骤S340,否则执行步骤S350;
步骤S330,根据发动机转速的变化率以及发动机转速减去目标怠速转速的差值查表确定防熄火离合器扭矩;
步骤S340,在第二预请求离合器扭矩和防熄火离合器扭矩之间取小,得到起步离合器请求扭矩;
步骤S350,将第二预请求离合器扭矩作为起步离合器请求扭矩。
该步骤S310至步骤S340中起步基本扭矩、起步预结合扭矩、起步离合器补偿扭矩、防熄火离合器扭矩等的计算方法与前述混合动力车辆的起步方式为踩油门起步方式中对应扭矩的计算方法保持一致,此处不再赘述。
二、离合器处于完全结合工况
在该工况下,该步骤S200和步骤S300包括:判断混合动力车辆是否满足过热保护条件;在确定混合动力车辆满足过热保护条件时,将发动机请求扭矩减去预设的过热保护偏移扭矩,得到起步基本扭矩,并将起步基本扭矩作为起步离合器请求扭矩;在混合动力车辆不满足过热保护条件时,将发动机请求扭矩作为起步离合器请求扭矩。
该过热保护条件与前述离合器处于未完全结合工况且变速箱处于在档工况时保持一致,此处不再赘述。
三、离合器处于未完全结合工况且变速箱处于不在档工况
在该工况下,确定起步离合器请求扭矩等于零。
根据本发明实施例的方案,通过在起步过程中设置多种起步控制方式,具体为空挡滑行起步方式、弹射起步方式和踩油门起步方式,在各个起步方式中都对过热工况、踩刹车工况进行了处理,同时也增加了防熄火保护功能,从而增加了***的动力性、安全性,同时提高了起步响应。
该实施例中的混合动力车辆并联起步控制***与前述混合动力车辆并联起步控制方法的特征一一对应,此处不再赘述。
该实施例中的混合动力车辆的特征与混合动力车辆并联起步控制***的特征一一对应,此处不再赘述。
实施例二:
该实施例二与实施例一的区别在于,该实施例二还对发动机进行了起步控制,以下 详细介绍对发动机进行起步控制的具体控制方法。
如图9所示,该混合动力车辆并联起步控制方法还包括:
步骤S500,在离合器处于完全结合工况,或者离合器处于未完全结合工况且变速箱处于不在档工况下,确定发动机补偿扭矩等于零;
步骤S600,在离合器处于未完全结合工况且变速箱处于在档工况下,利用发动机补偿扭矩计算方法计算获得发动机补偿扭矩;
步骤S700,将发动机请求扭矩加上发动机补偿扭矩,得到发动机目标扭矩;
步骤S800,在混合动力车辆的制动踏板被踩踏时,对发动机目标扭矩进行限值限制,得到起步发动机请求扭矩;
步骤S900,根据起步发动机请求扭矩对发动机进行起步控制。
如图10所示,该步骤S600中,该发动机补偿扭矩计算方法包括:
步骤S601,判断混合动力车辆是否满足过热保护条件,若满足,则执行步骤S602,否则执行步骤S603;
步骤S602,将混合动力车辆的起步预结合扭矩加上起步发动机补偿扭矩,再加上预设的过热保护偏移扭矩,得到发动机补偿扭矩,其中,起步发动机补偿扭矩等于混合动力车辆的P项扭矩;
步骤S603,将起步预结合扭矩加上起步发动机补偿扭矩,得到发动机补偿扭矩。
该步骤S800对发动机目标扭矩进行限值限制的方法为:在混合动力车辆的制动踏板被踩踏时,确定制动踏板被踩踏时的刹车离合器请求扭矩;在发动机目标扭矩和刹车发动机请求扭矩之间取小,得到起步发动机请求扭矩。
该步骤S602和步骤S603中起步发动机补偿扭矩、起步预结合扭矩等的计算方法与实施例一中对应扭矩的计算方法保持一致,此处不再赘述。
该实施例中的混合动力车辆并联起步控制***与前述混合动力车辆并联起步控制方法的特征一一对应,此处不再赘述。
该实施例中的混合动力车辆的特征与混合动力车辆并联起步控制***的特征一一对应,此处不再赘述。
根据本发明实施例的方案,通过对发动机扭矩进行控制,可以进一步避免其熄火,并进一步提高起步过程中的响应性、动力性以及安全性。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (19)

  1. 一种混合动力车辆并联起步控制方法,包括如下步骤:
    获取混合动力车辆的离合器和变速箱的当前工况、所述混合动力车辆的发动机请求扭矩以及所述混合动力车辆的起步方式;
    根据所述离合器和所述变速箱的当前工况,进行所述混合动力车辆是否满足过热保护条件的判断,根据判断结果和所述发动机请求扭矩确定起步基本扭矩;
    根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩;
    根据所述起步离合器请求扭矩对所述离合器进行起步控制。
  2. 根据权利要求1所述的混合动力车辆并联起步控制方法,其中,所述根据所述离合器和所述变速箱的当前工况,进行所述混合动力车辆是否满足过热保护条件的判断,并根据判断结果和所述发动机请求扭矩确定起步基本扭矩的步骤,包括:
    在所述离合器处于未完全结合工况且所述变速箱处于在档工况下,判断所述混合动力车辆是否满足过热保护条件;
    在确定所述混合动力车辆满足过热保护条件时,将所述发动机请求扭矩减去预设的过热保护偏移扭矩,得到所述起步基本扭矩。
  3. 根据权利要求2所述的混合动力车辆并联起步控制方法,其中,在所述混合动力车辆的起步方式为踩油门起步方式时,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤包括:
    对所述起步基本扭矩进行上下限限制,得到第一起步限制扭矩;
    将所述第一起步限制扭矩加上所述混合动力车辆的起步预结合扭矩和起步离合器补偿扭矩,得到第一预请求离合器扭矩;
    在所述混合动力车辆的制动踏板被踩踏时,根据所述混合动力车辆的曲轴端刹车力大小以及所述第一预请求离合器扭矩确定所述制动踏板被踩踏时的刹车离合器请求扭矩;
    在所述第一预请求离合器扭矩和所述刹车离合器请求扭矩之间取小,得到第一待请求离合器扭矩;
    在所述混合动力车辆的发动机转速小于目标怠速转速时,根据所述发动机转速的变化率以及所述发动机转速减去所述目标怠速转速的差值查表确定防熄火离合器扭矩;
    在所述第一待请求离合器扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩。
  4. 根据权利要求3所述的混合动力车辆并联起步控制方法,其中,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤还包括:
    在所述混合动力车辆的制动踏板未被踩踏,且所述发动机转速大于或等于所述目标怠速转速时,将所述第一预请求离合器扭矩作为所述起步离合器请求扭矩;
    在所述混合动力车辆的制动踏板未被踩踏,且所述发动机转速小于所述目标怠速转速时,在所述第一预请求离合器扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩;
    在所述混合动力车辆的制动踏板被踩踏,且所述发动机转速大于或等于所述目标怠速转速时,将所述第一待请求离合器扭矩作为所述起步离合器请求扭矩。
  5. 根据权利要求2所述的混合动力车辆并联起步控制方法,其中,在所述混合动力车辆的起步方式为空挡滑行起步方式时,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤包括:
    在所述起步基本扭矩和零之间取大,再对取大后的值进行上下限限制,得到第二起步限制扭矩;
    在所述混合动力车辆的制动踏板被踩踏时,在所述第二起步限制扭矩和刹车离合器请求扭矩之间取小,得到第二待请求离合器扭矩;
    在所述混合动力车辆的发动机转速小于目标怠速转速时,根据所述发动机转速的变化率以及所述发动机转速减去所述目标怠速转速的差值查表确定防熄火离合器扭矩;
    在所述第二待请求离合器扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩。
  6. 根据权利要求5所述的混合动力车辆并联起步控制方法,其中,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤还包括:
    在所述混合动力车辆的制动踏板未被踩踏,且所述发动机转速大于或等于所述目标怠速转速时,将所述第二起步限制扭矩作为所述起步离合器请求扭矩;
    在所述混合动力车辆的制动踏板未被踩踏,且所述发动机转速小于所述目标怠速转速时,在所述第二起步限制扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩;
    在所述混合动力车辆的制动踏板被踩踏,且所述发动机转速大于或等于所述目标怠速转速时,将所述第二待请求离合器扭矩作为所述起步离合器请求扭矩。
  7. 根据权利要求2所述的混合动力车辆并联起步控制方法,其中,在所述混合动力车辆的起步方式为弹射起步方式时,所述根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤包括:
    将所述起步基本扭矩加上所述混合动力车辆的起步预结合扭矩和起步离合器补偿扭矩,得到第二预请求离合器扭矩;
    在所述混合动力车辆的发动机转速小于所述目标怠速转速时,根据所述发动机转速的变化率以及所述发动机转速减去所述目标怠速转速的差值查表确定防熄火离合器扭矩;
    在所述第二预请求离合器扭矩和所述防熄火离合器扭矩之间取小,得到所述起步离合器请求扭矩;
    在所述混合动力车辆的发动机转速大于或等于所述目标怠速转速时,将所述第二预请求离合器扭矩作为所述起步离合器请求扭矩。
  8. 根据权利要求3-7中任一项所述的混合动力车辆并联起步控制方法,其中,所述起步离合器补偿扭矩通过以下方式获取:
    根据所述混合动力车辆的起步方式从预设的多个目标转速计算方法中选择出与所述起步方式对应的目标转速计算方法,并利用该目标转速计算方法计算获得下一周期的目标发动机转速;
    对所述目标发动机转速进行上下限限制,得到发动机目标限制转速;
    将所述发动机目标限制转速减去实际发动机转速,得到目标发动机转速差值;
    从存储有发动机转速差值与P项系数之间关系的第二预设映射关系表中查询所述目标发动机转速差值对应的目标P项系数;
    将所述目标P项系数乘以所述目标发动机转速差值,再乘以预设的发动机转动惯量,得到P项扭矩;
    对所述P项扭矩取负得到所述起步离合器补偿扭矩。
  9. 根据权利要求8所述的混合动力车辆并联起步控制方法,其中,所述根据所述混合动力车辆的起步方式从预设的多个目标转速计算方法中选择出与所述起步方式对应的目标转速计算方法,并利用该目标转速计算方法计算获得下一周期的目标发动机转速的步骤包括:在所述混合动力车辆的起步方式为踩油门起步方式或弹射起步方式时,选择利用第一目标转速计算方法计算获得所述目标发动机转速,所述第一目标转速计算方法包括如下步骤:
    获取所述混合动力车辆的发动机和电机的扭矩之和,得到整体扭矩;
    在所述整体扭矩和所述发动机请求扭矩之间取小,得到目标取小扭矩;
    获取所述离合器和所述变速箱的温度;
    在所述离合器的温度小于185℃,且所述变速箱的温度小于100℃时,从存储有取小扭矩、发动机请求扭矩和发动机转速之间关系的第一预设关系表中查询所述目标取小扭矩和所述当前发动机请求扭矩对应的目标发动机转速;
    在所述离合器的温度大于200℃,且所述变速箱的温度大于110℃时,从存储有取小扭矩、发动机请求扭矩和发动机转速之间关系的第二预设关系表中查询所述目标取小扭矩和所述当前发动机请求扭矩对应的目标发动机转速,其中,所述第二预设关系表与所述第一预设关系表不同。
  10. 根据权利要求8所述的混合动力车辆并联起步控制方法,其中,所述根据所述混合动力车辆的起步方式从预设的多个目标转速计算方法中选择出与所述起步方式对应的目标转速计算方法,并利用该目标转速计算方法计算获得下一周期的目标发动机转速的步骤包括:在所述混合动力车辆的起步方式为空挡滑行起步方式时,选择利用第二目标转速计算方法计算获得所述目标发动机转速,所述第二目标转速计算方法包括如下步骤:
    获取所述混合动力车辆起步时的起步加速度;
    将所述起步加速度与预设加速度进行比较;
    在所述起步加速度小于所述预设加速度时,从存储有当前发动机转速和下一周期的发动机转速之间关系的第三预设关系表中查询当前发动机转速对应的下一周期的目标发动机转速;
    在所述起步加速度大于或等于所述预设加速度时,从存储有当前发动机转速和下一周期的目标发动机转速之间关系的第四预设关系表中查询当前发动机转速对应的下一周期的目标发动机转速,所述第四预设关系表与第三预设关系表不同。
  11. 根据权利要求1所述的混合动力车辆并联起步控制方法,所述根据所述离合器和所述变速箱的当前工况,进行所述混合动力车辆是否满足过热保护条件的判断,并根据判断结果和所述发动机请求扭矩确定起步基本扭矩;根据所述混合动力车辆的起步方式基于所述起步基本扭矩确定起步离合器请求扭矩的步骤,包括:
    在所述离合器处于完全结合工况时,判断所述混合动力车辆是否满足过热保护条件;
    在确定所述混合动力车辆满足过热保护条件时,将所述发动机请求扭矩减去预设的过热保护偏移扭矩,得到所述起步基本扭矩,并将所述起步基本扭矩作为所述起步离合器请求扭矩;
    在所述混合动力车辆不满足过热保护条件时,将所述发动机请求扭矩作为所述起步离合器请求扭矩。
  12. 根据权利要求2或11所述的混合动力车辆并联起步控制方法,其中,同时满足以下条件时确定满足所述过热保护条件:
    所述离合器的温度大于等于220℃,所述变速箱的温度大于等于120℃;
    所述混合动力车辆的起步方式为踩油门起步方式或弹射起步方式;
    所述混合动力车辆的制动踏板被踩踏时所述发动机请求扭矩的变化率小于第一预设变化率,所述制动踏板未被踩踏时所述发动机请求扭矩的变化率小于第二预设变化率,所述第一预设变化率小于所述第二预设变化率;
    所述混合动力车辆在当前发动机转速下对应的发动机最大扭矩限值减去所述发动机请求扭矩所得的差值大于预设扭矩值;
    所述混合动力车辆的当前车速小于等于预设车速。
  13. 根据权利要求1所述的混合动力车辆并联起步控制方法,还包括如下步骤:
    在所述离合器处于未完全结合工况且所述变速箱处于不在档工况下,确定所述起步离合器请求扭矩等于零。
  14. 根据权利要求1所述的混合动力车辆并联起步控制方法,还包括如下步骤:
    在所述离合器处于完全结合工况,或者所述离合器处于未完全结合工况且所述变速箱处于不在档工况下,确定发动机补偿扭矩等于零;
    在所述离合器处于未完全结合工况且所述变速箱处于在档工况下,利用发动机补偿扭矩计算方法计算获得发动机补偿扭矩;
    将所述发动机请求扭矩加上所述发动机补偿扭矩,得到发动机目标扭矩;
    在所述混合动力车辆的制动踏板被踩踏时,对所述发动机目标扭矩进行限值限制,得到起步发动机请求扭矩;
    根据所述起步发动机请求扭矩对所述发动机进行起步控制。
  15. 根据权利要求14所述的混合动力车辆并联起步控制方法,其中,所述发动机补偿扭矩计算方法包括如下步骤:
    在所述混合动力车辆满足所述过热保护条件时,将所述混合动力车辆的起步预结合扭矩加上起步发动机补偿扭矩,再加上预设的过热保护偏移扭矩,得到所述发动机补偿扭矩,其中,所述起步发动机补偿扭矩等于所述混合动力车辆的P项扭矩;
    在所述混合动力车辆不满足所述过热保护条件时,将所述起步预结合扭矩加上所述起步发动机补偿扭矩,得到所述发动机补偿扭矩。
  16. 根据权利要求14所述的混合动力车辆并联起步控制方法,其中,所述在所述混合动力车辆的制动踏板被踩踏时,对所述发动机目标扭矩进行限值限制,得到起步发动机请求扭矩的步骤中,所述对所述发动机目标扭矩进行限值限制的方法为:
    在所述混合动力车辆的制动踏板被踩踏时,确定所述制动踏板被踩踏时的刹车离合器请求扭矩;
    在所述发动机目标扭矩和所述刹车发动机请求扭矩之间取小,得到所述起步发动机请求扭矩。
  17. 根据权利要求3、5、7或15中任一项所述的混合动力车辆并联起步控制方法,其中,所述起步预结合扭矩通过以下方式确定:
    获取所述混合动力车辆的当前车速;
    查询存储有车速与起步预结合扭矩之间关系的第一预设映射关系表,以确定所述当前车速下对应的起步预结合扭矩。
  18. 一种混合动力车辆并联起步控制***,包括控制装置,所述控制装置包括存储器和处理器,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据权利要求1-17中任一项所述的混合动力车辆并联起步控制方法。
  19. 一种混合动力车辆,包括权利要求18所述的混合动力车辆并联起步控制***。
PCT/CN2021/113558 2021-08-19 2021-08-19 混合动力车辆并联起步控制方法、***及混合动力车辆 WO2023019515A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21935438.8A EP4169789B1 (en) 2021-08-19 2021-08-19 Parallel start control method and system for hybrid vehicle, and hybrid vehicle
PCT/CN2021/113558 WO2023019515A1 (zh) 2021-08-19 2021-08-19 混合动力车辆并联起步控制方法、***及混合动力车辆
US18/287,938 US20240199002A1 (en) 2021-08-19 2021-08-19 Parallel start control method and system for hybrid electric vehicle, and hybrid electric vehicle
CN202180004575.9A CN114174138A (zh) 2021-08-19 2021-08-19 混合动力车辆并联起步控制方法、***及混合动力车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113558 WO2023019515A1 (zh) 2021-08-19 2021-08-19 混合动力车辆并联起步控制方法、***及混合动力车辆

Publications (1)

Publication Number Publication Date
WO2023019515A1 true WO2023019515A1 (zh) 2023-02-23

Family

ID=80489994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113558 WO2023019515A1 (zh) 2021-08-19 2021-08-19 混合动力车辆并联起步控制方法、***及混合动力车辆

Country Status (4)

Country Link
US (1) US20240199002A1 (zh)
EP (1) EP4169789B1 (zh)
CN (1) CN114174138A (zh)
WO (1) WO2023019515A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906147A (zh) * 2022-06-27 2022-08-16 重庆青山工业有限责任公司 一种双离合器变速器弹射起步控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362461A (zh) * 2007-08-09 2009-02-11 福特全球技术公司 混合动力电动车辆的起跑控制器
CN104884325A (zh) * 2012-12-26 2015-09-02 日产自动车株式会社 混合动力车辆的控制装置
CN105143643A (zh) * 2013-04-25 2015-12-09 爱信精机株式会社 车辆用驱动装置
CN106560637A (zh) * 2015-10-01 2017-04-12 现代自动车株式会社 用于具有干式离合器的车辆的起步控制方法
US20170137017A1 (en) * 2015-11-18 2017-05-18 Hyundai Motor Company Startup control method for hybrid vehicle
CN112503115A (zh) * 2020-11-26 2021-03-16 安徽江淮汽车集团股份有限公司 双离合起步控制方法、装置、设备及存储介质
CN112677958A (zh) * 2021-01-08 2021-04-20 重庆长安汽车股份有限公司 一种车辆起步控制方法、***及车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003222720A1 (en) * 2002-03-07 2003-09-16 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Gearbox and starting strategy for a gearbox, especially for a twin-clutch gearbox of a motor vehicle
EP1762452A3 (en) * 2005-09-08 2009-05-27 Nissan Motor Co., Ltd. Engine starting control device and method
CN104709274B (zh) * 2013-12-16 2018-08-14 比亚迪股份有限公司 混合动力汽车及其发动机启动***和启动控制方法
JP7135847B2 (ja) * 2018-12-27 2022-09-13 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362461A (zh) * 2007-08-09 2009-02-11 福特全球技术公司 混合动力电动车辆的起跑控制器
CN104884325A (zh) * 2012-12-26 2015-09-02 日产自动车株式会社 混合动力车辆的控制装置
CN105143643A (zh) * 2013-04-25 2015-12-09 爱信精机株式会社 车辆用驱动装置
CN106560637A (zh) * 2015-10-01 2017-04-12 现代自动车株式会社 用于具有干式离合器的车辆的起步控制方法
US20170137017A1 (en) * 2015-11-18 2017-05-18 Hyundai Motor Company Startup control method for hybrid vehicle
CN112503115A (zh) * 2020-11-26 2021-03-16 安徽江淮汽车集团股份有限公司 双离合起步控制方法、装置、设备及存储介质
CN112677958A (zh) * 2021-01-08 2021-04-20 重庆长安汽车股份有限公司 一种车辆起步控制方法、***及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4169789A4 *

Also Published As

Publication number Publication date
EP4169789A1 (en) 2023-04-26
CN114174138A (zh) 2022-03-11
US20240199002A1 (en) 2024-06-20
EP4169789A4 (en) 2023-05-31
EP4169789B1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US11654879B2 (en) System and method for controlling hybrid electric vehicle using driving tendency of driver
CN106882178B (zh) 学习混合动力车辆的发动机离合器接合点的方法
US20090312895A1 (en) Mode change control method of hybrid vehicle
CN101676541B (zh) 用于协同转矩控制***的冷起动减排策略
CN109017749B (zh) 一种混合动力汽车的怠速控制方法
KR101558376B1 (ko) 하이브리드 차량의 엔진 클러치 제어 장치 및 방법
CN103386961A (zh) 用于起动混合动力车辆中的涡轮增压发动机的方法和设备
US9457794B2 (en) Hybrid vehicle control device
KR101684525B1 (ko) 하이브리드 차량의 엔진 클러치 접합점 학습 장치 및 방법
US20230083854A1 (en) Hybrid vehicle engine idling control
US10358124B2 (en) Driving force control method during engine clutch slipping of TMED HEV
CN113276824B (zh) 用于混合动力车辆的发动机起动方法、***及存储介质
WO2023019515A1 (zh) 混合动力车辆并联起步控制方法、***及混合动力车辆
WO2015182112A1 (ja) エンジン回転数制御装置
CN112896136A (zh) 车辆的控制方法及控制***
KR101338463B1 (ko) 하이브리드 차량의 시동 제어 방법 및 시스템
JP6150081B2 (ja) 車両制御装置
US11226017B2 (en) Engine clutch disengagement control method for hybrid electric vehicle
CN111824150B (zh) 变速器起步控制方法以及计算机可读存储介质
WO2023242121A1 (en) Control of hybrid vehicle engine idling torque
JP2002096658A (ja) 自動車の制御方法、および制御装置
CN114838120A (zh) 混合动力***的离合器起动控制方法、控制***及车辆
CN114198430B (zh) 一种离合器接合方法、装置、设备及介质
JP2014080932A (ja) エンジン制御装置
JP5240062B2 (ja) 惰行制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021935438

Country of ref document: EP

Effective date: 20221121

WWE Wipo information: entry into national phase

Ref document number: 18287938

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE