WO2023010676A1 - 一种柔性氮化镓光电探测器激光快速制备方法 - Google Patents

一种柔性氮化镓光电探测器激光快速制备方法 Download PDF

Info

Publication number
WO2023010676A1
WO2023010676A1 PCT/CN2021/121981 CN2021121981W WO2023010676A1 WO 2023010676 A1 WO2023010676 A1 WO 2023010676A1 CN 2021121981 W CN2021121981 W CN 2021121981W WO 2023010676 A1 WO2023010676 A1 WO 2023010676A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
laser
flexible
substrate
photodetector
Prior art date
Application number
PCT/CN2021/121981
Other languages
English (en)
French (fr)
Inventor
季凌飞
孙伟高
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2023010676A1 publication Critical patent/WO2023010676A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Chinese invention patent application 201811189141.1 uses a tool lift-off mechanical transfer method to separate gallium nitride thin films from substrate materials to prepare flexible gallium nitride photodetectors. This method has a high product damage rate and limited process controllability and precision.
  • Chinese invention patent application 202011106989.6 transfers the prepared gallium nitride functional device to a flexible substrate by pre-growing a sacrificial layer and then etching it with a chemical solution.
  • the specific technical solution of the present invention is: a laser rapid preparation method for a flexible gallium nitride photodetector, comprising the following steps:
  • Fig. 1 is the process flow chart of a kind of flexible gallium nitride photodetector laser rapid preparation method provided by the present invention

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种柔性氮化镓光电探测器激光快速制备方法,包括以下步骤:1)将柔性衬底(5)与氮化镓外延片贴合;2)调节光束焦平面位置,并保证光束从氮化镓外延片衬底一侧入射;3)使光束从步骤1)所得样品结构的边缘开始进行扫描辐照;4)调整工艺参数,沿步骤3)路径反方向扫描辐照;5)取下外延片原始刚性透明衬底(1),获得Ga金属纳米颗粒(3)/氮化镓薄膜/柔性衬底(5)结构;6)对步骤5)所得Ga金属纳米颗粒(3)表面制备叉指电极(4);采用激光技术一步制备出具有Ga金属纳米颗粒(3)原位分布探测表面的柔性氮化镓光电探测器,在简化工艺的同时诱导探测器表面形成等离激元效应(SPR),大幅增强了光吸收及光响应性能,适用工业生产。

Description

一种柔性氮化镓光电探测器激光快速制备方法 技术领域
本发明属于光电探测器件制备领域,具体涉及一种柔性氮化镓光电探测器激光快速制备方法。
背景技术
曝光是芯片制造光刻技术中最为关键的工艺环节,需要一定强度的紫外光透过掩膜对光刻胶进行选择性照射。而紫外曝光剂量会直接影响光刻胶显影图形的表面及边缘精度,最终影响芯片制造质量。采用紫外光电探测器可以有效地对光刻过程中的紫外曝光量进行监测,通过反馈调节从而提高光刻精度。目前广泛使用的非柔性紫外光电探测器主要是硅基紫外光电管和光电倍增管,体积笨重、易损坏。柔性氮化镓光电探测器作为新一代紫外光电探测器件,相比传统刚性基底探测器物化性质稳定,体积小巧,适用性广,更加适合芯片生产等高端复杂工业环境下的监测。中国发明专利申请201811189141.1采用刀具剥离机械转移的方式将氮化镓薄膜从衬底材料分离,用以制备柔性氮化镓光电探测器。该方法产品损伤率大,工艺可控性和精度均有限。中国发明专利申请202011106989.6采用预生长牺牲层再用化学溶液刻蚀的方式将制备好的氮化镓功能器件转移至柔性衬底。化学溶液刻蚀易造成环境污染,去除效率低、工艺复杂,不适用于批量化的生产。传统方法制作出的柔性光电探测器探测能力较弱,往往还需要进行纳米颗粒涂覆,借助等离激元增强效应来提高其探测性能。因此研发高性能氮化镓柔性光电探测器的快速制备新技术对提高半导体芯片制造过程中光刻精度乃至芯片生产质量具有重要意义。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种柔性氮化镓光电探测器激光快速制备方法。本发明采用激光技术在实现氮化镓薄膜向柔性衬底转移的同时,控制析出原位生长Ga金属纳米颗粒,一步制备出具有Ga金属纳米颗粒原位分布探测表面的柔性氮化镓光电探测器,在简化器件制备工 艺的同时,可大幅增强探测器的光吸收及光响应能力,适用于大规模批量化的工业生产。
本发明的具体技术方案为:一种柔性氮化镓光电探测器激光快速制备方法,包括以下步骤:
1)将柔性衬底与氮化镓薄膜外延片贴合,其中所述氮化镓外延片结构需为刚性透明衬底/氮化镓薄膜结构,贴合后得到刚性透明衬底/氮化镓薄膜/柔性衬底结构;
2)将样品放置在出光口下方固定高度的加工台面上,调节激光光束焦点位置,使其焦平面于步骤1)所述刚性透明衬底/氮化镓薄膜/柔性衬底结构中刚性透明衬底与氮化镓薄膜的交界面上下0.2mm的范围内,焦平面光斑尺寸l 0为5~100μm,并保证激光光束从刚性透明衬底一侧入射;
3)选择激光波长为250~1200nm,并选则脉宽小于等于10 -12s的超快激光。设置激光脉冲频率f 0为200kHz~1MHz。选用低单脉冲能量I 1为0.1~1μJ,低激光扫描速度v 1及小扫描间距d 1的工艺参数组合从步骤1)所得结构边缘开始扫描,且满足
Figure PCTCN2021121981-appb-000001
Figure PCTCN2021121981-appb-000002
采用低单脉冲能量、低激光扫描速度以及小扫描间距的工艺参数组合可以在确保氮化镓薄膜不发生分离或破损的情况下实现氮化镓薄膜与刚性透明衬底交界面之间Ga金属纳米颗粒的析出,同时减缓氮化镓分解产生的气体产物释放速度,降低气体产物对Ga金属纳米颗粒分布均匀性的影响;
4)激光脉宽、激光波长以及脉冲频率与步骤3)所述相同。选用高单脉冲能量I 2为1~2μJ,高激光扫描速度v 2以及大扫描间距d 2的工艺参数组合沿步骤3)中的扫描路径进行反方向的扫描,且满足
Figure PCTCN2021121981-appb-000003
Figure PCTCN2021121981-appb-000004
采用高单脉冲能量能够使氮化镓分解气体产物迅速释放,有利于破坏氮化镓薄膜与刚性透明衬底之间的微连接,实现氮化镓薄膜与刚性透明衬底的交界面分离。采用高扫描速度以及大扫描间距可以减小脉冲作用点之间的重叠率,降低相邻脉冲点间气体产物的相互耦合对步骤3)中已形成的Ga金属纳米颗粒分布的干扰。反向扫描可以进一步对步骤3)中析出的Ga金属纳米颗粒分布做均匀化补偿;
5)将激光扫描分离的刚性透明衬底取下,获得Ga金属纳米颗粒/氮化镓薄膜/柔性衬底结构;
6)在步骤5)所得结构中的Ga金属纳米颗粒表面制备叉指状电极,得到柔性氮化镓光电探测器。
进一步地,所述步骤3)中激光波长选择光子能量小于对应刚性透明衬底带隙的范围。
进一步地,所述步骤6)中叉指电极的材料为金属功函数高于氮化镓半导体亲和能的金属,和氮化镓薄膜形成肖特基接触。
与现有技术相比,本发明的有益效果在于:本发明提供了一种柔性氮化镓光电探测器激光快速制备方法。通过利用激光技术将刚性衬底上的氮化镓薄膜快速高质量地转移至柔性衬底,实现了柔性氮化镓光电探测器的快速制备。另外,通过对激光工艺的调控,使得探测器表面覆盖分布均匀的Ga金属纳米颗粒,进一步增强了该探测器的光吸收及光响应能力。该发明在简化柔性氮化镓光电探测器制备工艺的基础上,优化了器件性能,适用于大规模批量化的工业生产。
附图说明
图1为本发明提供的一种柔性氮化镓光电探测器激光快速制备方法的工艺流程图;
图1(e)为本发明提供的柔性氮化镓光电探测器的截面示意图;
图2为本发明提供的柔性氮化镓光电探测器的俯视示意图;
其中,1、刚性透明衬底,2、氮化镓外延薄膜,3、Ga金属纳米颗粒,4、叉指电极,5、柔性衬底,6、超快激光光束。
具体实施方式
为使本发明实施例的目的、技术方案和有点更加清楚,下面将结合实施例和附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一个实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
参见图1,本实施例提供的一种柔性氮化镓光电探测器激光快速制备方法包括如下步骤:
1)将thermal release tape柔性衬底与蓝宝石氮化镓薄膜外延片贴合,得到蓝宝石衬底/氮化镓薄膜/thermal release tape柔性衬底结构;
2)将步骤1)所述蓝宝石衬底/氮化镓薄膜/thermal release tape柔性衬底结构放置在出光口下方固定高度的加工台上,将激光光束焦平面设置在蓝宝石衬底与氮化镓薄膜的交界面上。由于所用氮化镓外延层厚度为4μm,thermal release tape柔性衬底厚度为500μm,因此将焦点位置设置为加工台上504μm处,并保证光束从蓝宝石衬底一侧入射,此时光斑大小为10μm;
3)由于蓝宝石衬底对短波长激光束透过率较高,因此选择355nm,脉宽为10皮秒(10 -12s)的激光束。光束能量形状分布为圆形光斑普通高斯光束,调节光束能量为0.5μJ,重复频率为250kHz,扫描速度为100mm/s,激光光束的扫描路径为线扫描填充,扫描间距为8μm,使其从步骤1)所述蓝宝石衬底/氮化镓薄膜/thermal release tape边缘开始扫描辐照,以此诱导氮化镓薄膜与蓝宝石衬底交界面析出原位生长的Ga金属纳米颗粒。
4)激光脉宽、激光波长、脉冲频率以及光斑大小与步骤3)所述相同,调节单脉冲能量为1.5μJ,扫描速度为3500mm/s,扫描间距为20μm。设置扫描路径起始点为步骤3)所述扫描路径的终点,沿步骤3)中所述路径进行反方向扫描。
5)扫描结束后,将蓝宝石衬底取下。此时得到氮化镓薄膜/thermal release tape柔性衬底结构,并且氮化镓薄膜表面覆盖有均匀分布的Ga金属纳米颗粒;
6)在步骤5)所得Ga金属纳米颗粒表面进行蒸镀Au叉指电极,电极厚度为80nm,使其与步骤5)所得结构形成肖特基接触,即制得表面Ga金属纳米颗粒平均尺寸为160nm的柔性氮化镓光电探测器,相比较直接在刚性衬底上蒸镀肖特基电极形成的氮化镓光电探测器,其对于280-400nm波段的光响应强度均有提高,350nm处出现响应峰值,提高了28倍。
实施例2:
参见图1,本实施例提供的一种柔性氮化镓光电探测器激光快速制备方法包括如下步骤:
1)将PET柔性衬底与蓝宝石氮化镓薄膜外延片贴合,得到蓝宝石衬底/氮化镓薄膜/PET柔性衬底结构;
2)将步骤1)所述蓝宝石衬底/氮化镓薄膜/PET柔性衬底结构放置在出光口下方固定高度的加工台上,将激光光束焦平面设置在蓝宝石衬底与氮化镓薄膜的交界面上。由于所用氮化镓外延层厚度为4μm,PET柔性衬底厚度为250μm,因此将焦点位置设置为加工台上254μm处,并保证光束从蓝宝石衬底一侧入射,此时光斑大小为10μm;
3)由于蓝宝石衬底对短波长激光束透过率较高,因此选择355nm,脉宽为10皮秒(10 -12s)的激光束。光束能量形状分布为圆形光斑平顶光束,调节光束能量为0.7μJ,重复频率为250kHz,扫描速度为80mm/s,激光光束的扫描路径为线扫描填充,扫描间距为5μm,使其从步骤1)所述蓝宝石衬底/氮化镓薄膜/PET边缘开始扫描辐照,以此诱导氮化镓薄膜与蓝宝石衬底交界面析出原位生长的Ga金属纳米颗粒。
4)激光脉宽、激光波长、脉冲频率以及光斑大小与步骤3)所述相同,调节单脉冲能量为1.8μJ,扫描速度为3000mm/s,扫描间距为15μm。设置扫描路径起始点为步骤3)所述扫描路径的终点,沿步骤3)中所述路径进行反方向扫描。
5)扫描结束后,将蓝宝石衬底取下。此时得到氮化镓薄膜/PET柔性衬底结构,并且氮化镓薄膜表面覆盖有均匀分布的Ga金属纳米颗粒;
6)在步骤5)所得Ga金属纳米颗粒表面进行蒸镀Au叉指电极,电极厚度为80nm,使其与步骤5)所得结构形成肖特基接触,即制得表面Ga金属纳米颗粒平均尺寸为80nm的柔性氮化镓光电探测器,相比较直接在刚性衬底上蒸镀肖特基电极形成的氮化镓光电探测器,其对于280-400nm波段的光响应强度均有提高,330nm处出现响应峰值,提高了35倍。
以上实施例1及实施例2仅是示例性,其中刚性透明衬底的选择,柔性衬底的选择以及激光光束各种参数的设定仅作为举例,不是对本发明的方法 的限定。例如:柔性衬底还可选择PI或PDMS,刚性透明衬底还可选择SiC,叉指电极材料还可选择Pt。
最后应说明的是:本领域的技术人员,在不脱离本发明的精神和范围内,对本发明的技术方案进行的修改或改进,均属于本发明的保护范围。

Claims (3)

  1. 一种柔性氮化镓光电探测器激光快速制备方法,其特征在于,包括如下步骤:
    1)将柔性衬底与氮化镓薄膜外延片贴合,其中所述氮化镓外延片结构需为刚性透明衬底/氮化镓薄膜结构,贴合后得到刚性透明衬底/氮化镓薄膜/柔性衬底结构;
    2)将样品放置在出光口下方固定高度的加工台面上,调节激光光束焦点位置,使其焦平面于步骤1)所述刚性透明衬底/氮化镓薄膜/柔性衬底结构中刚性透明衬底与氮化镓薄膜的交界面上下0.2mm的范围内,焦平面光斑尺寸l 0为5~100μm,并保证激光光束从刚性透明衬底一侧入射;
    3)选择激光波长为250~1200nm,并选则脉宽小于等于10 -12s的超快激光。设置激光脉冲频率f 0为200kHz~1MHz。选用低单脉冲能量I 1为0.1~1μJ,低激光扫描速度v 1及小扫描间距d 1的工艺参数组合从步骤1)所得结构边缘开始扫描,且满足
    Figure PCTCN2021121981-appb-100001
    Figure PCTCN2021121981-appb-100002
    辐照析出Ga金属纳米颗粒;
    4)激光脉宽、激光波长以及脉冲频率与步骤3)所述相同。选用高单脉冲能量I 2为1~2μJ,高激光扫描速度v 2以及大扫描间距d 2的工艺参数组合沿步骤3)中的扫描路径进行反方向的扫描,且满足
    Figure PCTCN2021121981-appb-100003
    Figure PCTCN2021121981-appb-100004
    对氮化镓薄膜与刚性透明衬底的交界面进行分离;
    5)将激光扫描分离的刚性透明衬底取下,获得Ga金属纳米颗粒/氮化镓薄膜/柔性衬底结构;
    6)在步骤5)所得结构中的Ga金属纳米颗粒表面制备叉指状电极,得到柔性氮化镓光电探测器。
  2. 根据权利要求1所述一种柔性氮化镓光电探测器激光快速制备方法,其特征在于:所述步骤3)中激光波长选择光子能量小于对应刚性透明衬底带隙的范围。
  3. 根据权利要求1所述一种柔性氮化镓光电探测器激光快速制备方法,其特征在于:所述步骤6)中叉指电极的材料为金属功函数高于氮化镓半导体亲 和能的金属,和氮化镓薄膜形成肖特基接触。
PCT/CN2021/121981 2021-08-02 2021-09-30 一种柔性氮化镓光电探测器激光快速制备方法 WO2023010676A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110883036.9A CN113770512B (zh) 2021-08-02 2021-08-02 一种柔性氮化镓光电探测器激光快速制备方法
CN202110883036.9 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023010676A1 true WO2023010676A1 (zh) 2023-02-09

Family

ID=78836556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121981 WO2023010676A1 (zh) 2021-08-02 2021-09-30 一种柔性氮化镓光电探测器激光快速制备方法

Country Status (3)

Country Link
US (1) US11894483B2 (zh)
CN (1) CN113770512B (zh)
WO (1) WO2023010676A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116295656B (zh) * 2023-05-09 2023-10-31 之江实验室 基于光电融合的一体化多参量传感器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070093037A1 (en) * 2005-10-26 2007-04-26 Velox Semicondutor Corporation Vertical structure semiconductor devices and method of fabricating the same
CN101246820A (zh) * 2008-03-19 2008-08-20 厦门大学 一种氮化镓基外延膜的制备方法
CN103824905A (zh) * 2014-02-24 2014-05-28 无锡晶凯科技有限公司 一种氮化镓led蓝宝石衬底柔性电子应用的激光剥离方法
CN103839777A (zh) * 2014-03-11 2014-06-04 中国科学院半导体研究所 一种氮化镓薄膜的大面积连续无损激光剥离方法
CN109411552A (zh) * 2018-10-11 2019-03-01 苏州大学 一种基于氮化镓薄膜的微型柔性紫外探测器及其制备方法
CN112382688A (zh) * 2020-10-16 2021-02-19 华南师范大学 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080041434A1 (en) * 2006-08-18 2008-02-21 Nanosolar, Inc. Methods and devices for large-scale solar installations
CN102790137B (zh) * 2011-05-19 2016-08-31 晶能光电(江西)有限公司 GaN基薄膜芯片的制备方法
US20140318611A1 (en) * 2011-08-09 2014-10-30 Solexel, Inc. Multi-level solar cell metallization
US8772144B2 (en) * 2011-11-11 2014-07-08 Alpha And Omega Semiconductor Incorporated Vertical gallium nitride Schottky diode
KR102166245B1 (ko) * 2013-12-02 2020-10-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제조방법
CN108015410B (zh) * 2017-12-01 2020-01-17 北京工业大学 一种基于飞秒激光诱导无定形GemSbnTek薄膜制备晶态纳米结构的方法
CN111496384A (zh) * 2020-04-09 2020-08-07 华侨大学 一种脆性材料表面纳米孔阵列的加工装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070093037A1 (en) * 2005-10-26 2007-04-26 Velox Semicondutor Corporation Vertical structure semiconductor devices and method of fabricating the same
CN101246820A (zh) * 2008-03-19 2008-08-20 厦门大学 一种氮化镓基外延膜的制备方法
CN103824905A (zh) * 2014-02-24 2014-05-28 无锡晶凯科技有限公司 一种氮化镓led蓝宝石衬底柔性电子应用的激光剥离方法
CN103839777A (zh) * 2014-03-11 2014-06-04 中国科学院半导体研究所 一种氮化镓薄膜的大面积连续无损激光剥离方法
CN109411552A (zh) * 2018-10-11 2019-03-01 苏州大学 一种基于氮化镓薄膜的微型柔性紫外探测器及其制备方法
CN112382688A (zh) * 2020-10-16 2021-02-19 华南师范大学 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法

Also Published As

Publication number Publication date
CN113770512A (zh) 2021-12-10
US20230032584A1 (en) 2023-02-02
CN113770512B (zh) 2022-05-17
US11894483B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
Kumar et al. Fabrication of silicon nanowire arrays based solar cell with improved performance
CN108963027B (zh) 一种非晶Ga2O3日盲紫外探测器及其制备方法和应用
CN112885922B (zh) 基于PtSe2与硅纳米柱阵列的光电探测器及其制备方法
CN107146830B (zh) 一种制备柔性透明的石墨烯/硅金属-半导体-金属光电探测器的方法
WO2023010676A1 (zh) 一种柔性氮化镓光电探测器激光快速制备方法
Tan et al. Nano-fabrication methods and novel applications of black silicon
CN104028777B (zh) 基于飞秒激光电子动态调控制备表面增强拉曼基底的方法
CN104743509B (zh) 基于缺陷诱导的半导体表面高度有序贵金属纳米结构阵列的制备方法及其应用
CN111496384A (zh) 一种脆性材料表面纳米孔阵列的加工装置及方法
Soueiti et al. A review of cost-effective black silicon fabrication techniques and applications
CN111223943A (zh) 一种基于碳量子点和石墨烯的光电探测器及制备方法
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN104167656B (zh) 一种太赫兹光导天线及其制作方法
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
CN112054086B (zh) 一种具有横向结硅基光电探测器的制备方法
CN104124286A (zh) 一种利用自生长贵金属等离基元纳米结构及其提高GaInP基太阳能电池光吸收的应用
Chaoudhary et al. Broadband self-powered photodetection with p-NiO/n-Si heterojunctions enhanced with plasmonic Ag nanoparticles deposited with pulsed laser ablation
CN114447231B (zh) 一种图案化单晶钙钛矿阵列薄膜的制备方法与应用
Liu et al. Fabrication of CdS nanorods on Si pyramid surface for photosensitive application
CN212217453U (zh) 一种脆性材料表面纳米孔阵列的加工装置
CN210245515U (zh) 一种基于局域表面等离激元效应的深紫外msm探测器
Song et al. High-performance antireflection nanostructure arrays on aluminum-doped zinc oxide film fabricated with femtosecond laser near-field processing
Srivastava et al. Silicon nanowire arrays based “black silicon” solar cells
CN107611231A (zh) 基于纳米压印制备表面等离子体垂直结构发光二极管的方法
CN113290320A (zh) 一种非线性反饱和吸收增强特性的Ag基薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE