CN112382688A - 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法 - Google Patents

基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法 Download PDF

Info

Publication number
CN112382688A
CN112382688A CN202011106989.6A CN202011106989A CN112382688A CN 112382688 A CN112382688 A CN 112382688A CN 202011106989 A CN202011106989 A CN 202011106989A CN 112382688 A CN112382688 A CN 112382688A
Authority
CN
China
Prior art keywords
layer
gan
gan layer
type
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011106989.6A
Other languages
English (en)
Other versions
CN112382688B (zh
Inventor
尹以安
李佳霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202011106989.6A priority Critical patent/CN112382688B/zh
Publication of CN112382688A publication Critical patent/CN112382688A/zh
Application granted granted Critical
Publication of CN112382688B publication Critical patent/CN112382688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测器的技术领域,具体涉及一种基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法。所述光电探测器的结构为依次排布的电极、柔性衬底、p‑GaN层、GaN层、n型β‑Ga2O3层以及电极;所述n型β‑Ga2O3层为利用Si掺杂得到,其一表面为微纳倒梯形结构,所述为微纳倒梯形结构为经过光刻和湿法刻蚀等形成多个倒梯形结构紧密排布形成,所采用的柔性导电衬底,可应用于便携式可穿戴紫外线检测等领域,当器件向上弯曲可使氮化镓产生压电电荷,更容易使空穴‑电子对分离且加快载流子迁移率,所采用的背照式倒梯形结构可大幅度地提高探测器的光吸收效率,使得光电探测器具有更高的灵敏度和更快的响应速度。

Description

基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法
技术领域
本发明属于光电探测器的技术领域,具体涉及一种基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法。
背景技术
所谓日盲区域是指当阳光照射到地球时会被大气层吸收一部分光,200nm至280nm之间的太阳辐射无法到达地球表面。与红外检测相比,日盲紫外检测由于几乎没有受到太阳辐射的干扰,使其具有较低的误报率和全天候工作环境的优越优势。实际上,日盲型光电探测器在军事和民用监视应用中的应用数量不断增加,并且在不断增长,例如导弹跟踪,安全通信,火灾检测,臭氧孔监视,化学/生物分析和电晕检测等。但是,传统的太阳盲光电探测器,例如光电倍增管,通常体积庞大且易碎,这限制了它们的实际应用。
目前报道的日盲紫外光电探测器的结构的结构主要有金属-半导体-金属型、PN结型、PIN型、雪崩型CAPD)型等。金属-半导体-金属型器件具有工艺简单,方便集成,但是没有内部增益,对微弱光信号的探测能力差、难以获得高的响应度。对于PN结型,一般来讲其耗尽区不是很宽,光的吸收率不高,当光照到半导体中非耗尽区时,会在各自的半导体中产生光生载流子,但是这些光生载流子会通过扩散运动到耗尽区,然后才会在内建电场下向P型N型半导体漂移,形成光生电流,这在无形中使得探测器件的速度减慢。
PIN结构紫外探测器分为正照射和背照射两种结构。正照射结构虽然制作工艺简单,但是由于p型层和电极接触处对入射光有吸收,造成入射光损失,降低了量子效率,并且不利于与光电集成和制作焦平面阵列器件。
近来,基于宽带隙半导体(例如GaN,ZnMgO,金刚石和β-Ga2O3)的日盲光电探测器引起了广泛的具有约4.9eV直接带隙的β-Ga2O3被认为是制造太阳盲光电探测器的理想候选材料之一。
发明内容
针对上述问题,为了克服现有技术的不足,本发明的目的在于提供一种基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法,提供一种灵敏度高、响应速度快、暗电流低的日盲紫外光电探测器。
本发明的技术内容如下:
本发明提供了一种基于柔性的氧化镓/氮化镓结构的光电探测器,所述光电探测器为包括柔性衬底、p-GaN层、GaN层、n型β-Ga2O3层以及电极层组成的结构;
所述光电探测器的结构为依次排布的电极、柔性衬底、p-GaN层、GaN层、n型β-Ga2O3层以及电极;
所述柔性衬底包括聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺衬底、聚丙烯己二酯衬底等透明导电的柔性衬底的一种,所述柔性衬底的厚度为70-80μm,透明导电的柔性衬底具有良好的光学透明性和低电阻率,使其作为柔性透明导电衬底可提高光电探测器件的柔性和光吸收率,获得更高的灵敏度;
所述p-GaN层的结构包括依次排布的蓝宝石衬底、GaN缓冲层、重掺杂n-GaN层和Mg掺杂p型GaN层,所述GaN缓冲层、重掺杂n-GaN层和Mg掺杂p型GaN层的厚度分别为25-30nm、2-3μm、和150-200nm;
所述GaN层为在上述p-GaN层上通过MOCVD工艺外延生长得到,其厚度为150-200nm;
所述β-Ga2O3层为透明导电薄膜,具有增强光的透射率的作用;
所述n型β-Ga2O3层为利用Si掺杂得到,其一表面为微纳倒梯形结构,所述为微纳倒梯形结构为经过光刻和湿法刻蚀等形成多个倒梯形结构紧密排布形成,微纳倒梯形结构的深度为1-1.5μm,所述n型β-Ga2O3层的厚度为1.5-2μm;
所述电极包括Ti/Au电极,所述电极分别位于柔性衬底上以及n型β-Ga2O3层的未刻蚀部分。
本发明还提供了一种基于柔性的氧化镓/氮化镓结构的光电探测器的制备方法,包括如下步骤:
1)清洗柔性衬底;
2)采用MOCVD工艺外延生长获得p-GaN层和GaN层;
3)采用MOCVD工艺在步骤2)的GaN层上外延生长Si掺杂的n型β-Ga2O3层;
4)在n型β-Ga2O3层上沉积一层SiO2层,再涂上光刻胶,刻蚀、去胶,得到SiO2正方形阵列;
5)之后继续刻蚀n型β-Ga2O3层形成微纳倒梯形结构,除去SiO2掩膜层,则获得表面带有微纳倒梯形结构的n型β-Ga2O3层;
6)将步骤5)得到的外延生长结构刻蚀除去生长衬底,转移到步骤1)的柔性衬底上,并在柔性衬底和n型β-Ga2O3层的未刻蚀部分沉积电极;
步骤2)所述p-GaN层和GaN层的获得:通过MOCVD工艺在蓝宝石衬底上依次外延生长25-30nmGaN缓冲层、2-3μm的重掺杂n-GaN层和150-200nm的Mg掺杂P型GaN层得到p-GaN层,继续外延生长150-200nm的GaN层;
步骤3)所述n型β-Ga2O3层的厚度为1.5-2μm;
所述步骤4)的具体操作包括:在上述n型β-Ga2O3层上沉积一层200-300nm的SiO2层,再涂上一层光刻胶,曝光后,用BOE溶液将SiO2掩膜层刻蚀,然后去胶,最后得到边长为2.5μm的SiO2正方形阵列;
所述步骤5)的具体操作包括:使用60%H3PO4作为刻蚀溶液,在150-200℃下湿法刻蚀1-2min形成微纳倒梯形结构,倒梯形深度为1-1.5μm,将所得结构置于HF溶液中除去二氧化硅掩膜层,则n型β-Ga2O3表面的微纳倒梯形结构形成;
所述步骤6)的具体操作包括通过电化学剥离法将重掺杂n-GaN刻蚀进行腐蚀,然后将其外延生长结构转移到步骤1)清洗后的柔性衬底PET上,分别在柔性衬底PET和n型β-Ga2O3层的未刻蚀部分上沉积100-200nm的Ti/Au电极,通过电化学刻蚀将重掺杂的n型β-Ga2O3层腐蚀并将分其外延生长结构转移到柔性衬底PET上,不仅使器件具有柔性,而且增大了器件的受光面积,大大提高器件探测能力。
所述基于柔性的氧化镓/氮化镓异质结的光电探测器的工作原理为:通过在n型β-Ga2O3/p-GaN组成的PN结中间加上I层,扩大了耗尽区的宽度,当光照射时,I层吸收大量光产生的光生载流子在内建电场的作用下分离,电子和空穴分别进入N型区和P型区经过电极将这些载流子收集传输,形成光电流,同时利用氮化镓的压电效应,对氮化镓c轴实施压应力,在靠近p-GaN层界面处产生负压电电荷,使耗尽区进一步增大,提高光吸收率和载流子迁移率,在一定程度上提高了器件的工作速度,另一方面,也减少了器件的结电容,优化了器件的频率特性。因此,本发明在n型β-Ga2O3层和p-GaN层中间添加一层本征GaN层,有助于增大pn结的耗尽区宽度,获得更高的光电流增益和更快的响应速度。
本发明的有益效果如下:
本发明的一种柔性的基于氧化镓/氮化镓异质结的光电探测器,采用PIN结构,由于I区的加入而且较宽,光在I区被大量吸收,使得光生载流子的产生率增多,提高了器件的响应度和量子效率,在I区加有电场,促使电子-空穴的快速分离和加快漂移速率,提高了器件的响应速度;
所述光电探测器为背照式结构,使光在n型β-Ga2O3层被收集,由于n型β-Ga2O3层为透明导电薄膜且n型β-Ga2O3层带隙(4.9eV)高于GaN(3.4eV)带隙,提高光的收集效率,更多光照射到I层,避免了p型层对入射光有吸收,造成入射光损失,降低量子效率,相比于传统的GaN基PIN光电探测器,本发明采用n型β-Ga2O3层可使更多的入射光透过并在I层被吸收,进一步提高了探测器的灵敏度和响应速度;
所述n型β-Ga2O3层的微纳倒梯形结构,产生陷光效应增强了对入射光的收集能力,减小表面对光的反射,大大提高器件的探测能力;
所采用的柔性透明导电衬底,使得探测器可弯曲折叠,不仅可应用于便捷式可穿戴紫外线检测等领域,而且探测器向上弯曲时,本征GaN层c轴受到压应力,在靠近n型β-Ga2O3层界面处产生正压电电荷,在靠近p-GaN层界面处产生负压电电荷,使耗尽区进一步增大,结电容减少,提高器件响应频率。
附图说明
图1是本发明的基于氧化镓/氮化镓异质结的光电探测器的示意图;
图2是本发明制备的P型GaN层和本征GaN层的示意图;
图3是本发明制备的n型β-Ga2O3层的示意图;
图4是本发明的沉积SiO2和光刻胶的示意图;
图5是本发明的SiO2阵列的示意图;
图6是本发明刻蚀n型β-Ga2O3层的示意图;
图7是本发明n型β-Ga2O3层的微纳倒梯形结构示意图;
图8是本发明刻蚀重掺杂n-GaN层的示意图;
图9是本发明的重掺杂n-GaN层的外延结构转移到柔性衬底后的示意图;
图10是本发明提供的n型β-Ga2O3/GaN/p-GaN结构的PIN光电探测器与n-GaN/GaN/p-GaN结构的PIN光电探测器在紫外光(波长为360nm)照射下的电流与时间关系特性曲线的对比图;
图11是本发明提供的n型β-Ga2O3/GaN/p-GaN结构的PIN光电探测器与n-GaN/GaN/p-GaN结构的PIN光电探测器的光谱响应曲线对比图。
具体实施方式
以下通过具体的实施案例以及附图说明对本发明作进一步详细的描述,应理解这些实施例仅用于说明本发明而不用于限制本发明的保护范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
若无特殊说明,本发明的所有原料和试剂均为常规市场的原料、试剂。
实施例
一种基于柔性的氧化镓/氮化镓异质结的光电探测器的制备方法,包括如下步骤:
1)清洗柔性衬底9:将PET衬底9依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2吹干,待用;
2)采用MOCVD工艺外延生长获得p-GaN层和GaN层:利用MOCVD设备在蓝宝石衬底1的C面依次生长25-30nm GaN缓冲层2、2-3μm重掺杂n-GaN层3、150-200nm Mg掺杂的P-GaN层4和150-200nm的GaN层5,如图2所示;
3)采用MOCVD工艺在步骤2)的GaN层上外延生长Si掺杂的n型β-Ga2O3层:利用MOCVD设备继续在GaN层5上外延生长1.5-2μm Si掺杂的n型β-Ga2O3层6;
采用三甲基镓(TMGa)作为金属有机源,氧气作为氧源,镓源和氧源的流量分别控制为10sccm和900sccm,生长过程中反应室的压强为240Pa,温度为700℃,生长厚度为2μm的Si掺杂的n型β-Ga2O3层,如图3所示;
4)在n型β-Ga2O3层6上沉积一层SiO2层7,再涂上光刻胶,刻蚀、去胶,得到SiO2正方形阵列:
a.清洗:将SiO2层7用丙酮超声清洗5min,异丙醇超声3min,再用去离子水清洗,交替超声清洗3遍;
b.烘干:将清洗干净的基底用N2吹干,并用热台120℃加热5min;
c.涂胶:用台式匀胶机涂上正型光刻胶8,如图4;
d.前烘:把涂胶后的基片放在120℃的热台加热5min;
e.曝光:采用G-25型光刻机进行曝光操作,紫外供灯功率9mW,时间10s;
f.后烘:热台120℃加热加热1min;
g.显影:用正胶显影液显影2min;
h.坚膜:把显影完的基片用N2吹干,并用热台120℃加热3min;
i.去胶:配置BOE溶液对掩膜层进行刻蚀,刻蚀2min,然后用丙酮超声3min,形成厚度为200-300nm、边长为2.5μm的SiO2正方形阵列,所得截面图如图5所示;
5)之后置于60%H3PO4溶液中腐蚀继续刻蚀n型β-Ga2O3层形成微纳倒梯形结构,如图6所示,在150-200℃下刻蚀1-2min,最后所得倒梯形深度为1-1.5μm;
如图7所示,将图6的结构置于HF溶液中除去SiO2掩膜层,则获得表面带有微纳倒梯形结构的n型β-Ga2O3层;
6)将步骤5)得到的外延生长结构刻蚀除去生长衬底,即利用电化学腐蚀将重掺杂n-GaN层3进行刻蚀,利用激光线切割的方式对蓝宝石衬底1进行预处理,将蓝宝石衬底1减薄至100m厚,结合去离子水配置选择性腐蚀溶液(0.3mol/L草酸溶液),采用直流恒压电源进行电化学腐蚀,电化学腐蚀过程中随着反应的发生,会伴有气泡生成,若n-GaN周围已无气泡生成,那么腐蚀已结束,如图8所示;
将脱离重掺杂n-GaN层3的外延生长结构转移到S1处理后的柔性衬底PET9上,如图9所示。并分别在柔性衬底PET9和n型β-Ga2O3层6的未刻蚀部分上沉积100-200nm的Ti/Au电极10,最终结构如图1所示。
如图10所示,其为本发明的n型β-Ga2O3/GaN/p-GaN结构的PIN光电探测器与n-GaN/GaN/p-GaN结构的PIN光电探测器在紫外光(波长为360nm)照射下的电流与时间关系特性曲线的对比图;如图11所示,其为本发明的n型β-Ga2O3/GaN/p-GaN结构的PIN光电探测器与n-GaN/GaN/p-GaN结构的PIN光电探测器的光谱响应曲线对比图。由图10和图11可见,采用n型β-Ga2O3有助于提高光的收集效率,更多光照射到I层,避免了p型层对入射光有吸收,造成入射光损失,降低量子效率,所采用的背照射结构,使入射光直接照射在n型β-Ga2O3表面,并且本发明在n型β-Ga2O3层表面采用倒梯形结构,陷光效应增强了对入射光的收集能力,减小表面对光的反射,大大提高器件的探测能力,可使更多的入射光透过并在I层被吸收,进一步提高了探测器的灵敏度和响应速度。

Claims (10)

1.一种基于柔性的氧化镓/氮化镓结构的光电探测器,其特征在于,所述光电探测器为包括柔性衬底、p-GaN层、GaN层、n型β-Ga2O3层以及电极层组成的结构,所述p-GaN层和n型β-Ga2O3层形成异质结构。
2.由权利要求1所述的光电探测器,其特征在于,所述光电探测器的结构为依次排布的电极、柔性衬底、p-GaN层、GaN层、n型β-Ga2O3层以及电极。
3.由权利要求1或2所述的光电探测器,其特征在于,所述p-GaN层的结构包括依次排布的蓝宝石衬底、GaN缓冲层、重掺杂n-GaN层和Mg掺杂p型GaN层。
4.由权利要求1或2所述的光电探测器,其特征在于,所述GaN层为在上述p-GaN层上通过MOCVD工艺外延生长得到。
5.由权利要求1或2所述的光电探测器,其特征在于,所述n型β-Ga2O3层为利用Si掺杂得到,其一表面为微纳倒梯形结构,所述为微纳倒梯形结构为经过光刻和湿法刻蚀等形成多个倒梯形结构紧密排布形成。
6.由权利要求1或2所述的光电探测器,其特征在于,所述电极包括Ti/Au电极,所述电极分别位于柔性衬底上以及n型β-Ga2O3层的未刻蚀部分。
7.一种权利要求1~6任一项所述的基于柔性的氧化镓/氮化镓结构的光电探测器的制备方法,其特征在于,包括如下步骤:
1)清洗柔性衬底;
2)采用MOCVD工艺外延生长获得p-GaN层和GaN层;
3)采用MOCVD工艺在步骤2)的GaN层上外延生长Si掺杂的n型β-Ga2O3层;
4)在n型β-Ga2O3层上沉积一层SiO2层,再涂上光刻胶,刻蚀、去胶,得到SiO2正方形阵列;
5)之后继续刻蚀n型β-Ga2O3层形成微纳倒梯形结构,除去SiO2掩膜层,则获得表面带有微纳倒梯形结构的n型β-Ga2O3层;
6)将步骤5)得到的外延生长结构刻蚀除去生长衬底,转移到步骤1)的柔性衬底上,并在柔性衬底和n型β-Ga2O3层的未刻蚀部分沉积电极。
8.由权利要求7所述的光电探测器的制备方法,其特征在于,步骤2)所述p-GaN层和GaN层的获得:通过MOCVD工艺在蓝宝石衬底上依次外延生长GaN缓冲层、重掺杂n-GaN层和的Mg掺杂P型GaN层得到p-GaN层,继续外延生长的GaN层。
9.由权利要求7所述的光电探测器的制备方法,其特征在于,所述步骤4)的具体操作包括在n型β-Ga2O3层上沉积一层SiO2层,再涂上一层光刻胶,曝光后,用BOE溶液将SiO2掩膜层刻蚀,然后去胶,得到SiO2正方形阵列。
10.由权利要求7所述的光电探测器的制备方法,其特征在于,所述步骤6)的具体操作包括通过电化学剥离法将重掺杂n-GaN刻蚀进行腐蚀,然后将其外延生长结构转移到步骤1)清洗后的柔性衬底PET上,分别在柔性衬底PET和n型β-Ga2O3层的未刻蚀部分上沉积Ti/Au电极。
CN202011106989.6A 2020-10-16 2020-10-16 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法 Active CN112382688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011106989.6A CN112382688B (zh) 2020-10-16 2020-10-16 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011106989.6A CN112382688B (zh) 2020-10-16 2020-10-16 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN112382688A true CN112382688A (zh) 2021-02-19
CN112382688B CN112382688B (zh) 2022-11-04

Family

ID=74581565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011106989.6A Active CN112382688B (zh) 2020-10-16 2020-10-16 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN112382688B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725235A (zh) * 2022-04-06 2022-07-08 中国科学院苏州纳米技术与纳米仿生研究所 双极性响应多波长光电探测器、其制作方法及应用
WO2023010676A1 (zh) * 2021-08-02 2023-02-09 北京工业大学 一种柔性氮化镓光电探测器激光快速制备方法
CN115911168A (zh) * 2022-10-12 2023-04-04 厦门大学 一种有源区全耗尽的pin异质结日盲紫外高速光电探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393093A (zh) * 2014-11-13 2015-03-04 北京工业大学 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器
CN106449894A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
CN109411552A (zh) * 2018-10-11 2019-03-01 苏州大学 一种基于氮化镓薄膜的微型柔性紫外探测器及其制备方法
CN111244203A (zh) * 2020-03-25 2020-06-05 杭州电子科技大学 基于Ga2O3/CuI异质PN结的日光盲紫外探测器
CN111524995A (zh) * 2020-04-21 2020-08-11 昌吉学院 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393093A (zh) * 2014-11-13 2015-03-04 北京工业大学 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器
CN106449894A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
CN109411552A (zh) * 2018-10-11 2019-03-01 苏州大学 一种基于氮化镓薄膜的微型柔性紫外探测器及其制备方法
CN111244203A (zh) * 2020-03-25 2020-06-05 杭州电子科技大学 基于Ga2O3/CuI异质PN结的日光盲紫外探测器
CN111524995A (zh) * 2020-04-21 2020-08-11 昌吉学院 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010676A1 (zh) * 2021-08-02 2023-02-09 北京工业大学 一种柔性氮化镓光电探测器激光快速制备方法
US11894483B2 (en) 2021-08-02 2024-02-06 Beijing University Of Technology Laser rapid fabrication method for flexible gallium nitride photodetector
CN114725235A (zh) * 2022-04-06 2022-07-08 中国科学院苏州纳米技术与纳米仿生研究所 双极性响应多波长光电探测器、其制作方法及应用
CN115911168A (zh) * 2022-10-12 2023-04-04 厦门大学 一种有源区全耗尽的pin异质结日盲紫外高速光电探测器及其制备方法

Also Published As

Publication number Publication date
CN112382688B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN112382688B (zh) 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法
CN106169516A (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
JP2019036706A (ja) 二次元電子デバイスおよび関連する製造方法
CN108231926A (zh) 一种红外探测器及其制备方法
CN112614910B (zh) 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
CN109638024B (zh) 一种可见光短波段硅基雪崩光电二极管阵列及其制备方法
CN111211196B (zh) 一种高灵敏度高线性度探测器
CN113178497B (zh) 一种基于量子点的紫外探测器及制作方法
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
CN113054048A (zh) 一种蓝绿光增强型的硅基雪崩光电二极管
CN114122191A (zh) 一种雪崩光电探测器的制备方法
CN110350045B (zh) PbS量子点Si-APD红外探测器及其制备方法
Laih et al. Characteristics of Si-based MSM photodetectors with an amorphous-crystalline heterojunction
CN112614943B (zh) 一种微米级的核壳异质结自驱动紫外探测器及其制备方法
CN111628013B (zh) 一种硅基环形多波段探测器及其制作方法
CN117219689B (zh) 通过掺杂提升MXene异质结光电探测器性能的方法
CN111063752B (zh) 一种受厚度调控的肖特基结无机窄带光电探测器及其制备方法
KR101612959B1 (ko) 태양 전지 및 그 제조 방법
Kim et al. Interface engineering to enhance the photoresponse of core-shell structure silicon nanowire photodetectors
CN109216485B (zh) 红外探测器及其制备方法
Amirpoor et al. Fabrication of UV detector by Schottky Pd/ZnO/Si contacts
KR810001712B1 (ko) 실리콘 확산 태양전지의 제조방법
Guo et al. Wafer-scale Deep UV Si Photodiodes Based on Ultra-shallow Junction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant