WO2023007953A1 - 巻鉄心および巻鉄心の製造方法 - Google Patents

巻鉄心および巻鉄心の製造方法 Download PDF

Info

Publication number
WO2023007953A1
WO2023007953A1 PCT/JP2022/023039 JP2022023039W WO2023007953A1 WO 2023007953 A1 WO2023007953 A1 WO 2023007953A1 JP 2022023039 W JP2022023039 W JP 2022023039W WO 2023007953 A1 WO2023007953 A1 WO 2023007953A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron loss
core
superimposition
harmonic
wound core
Prior art date
Application number
PCT/JP2022/023039
Other languages
English (en)
French (fr)
Inventor
博貴 井上
健 大村
邦浩 千田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020247001270A priority Critical patent/KR20240021277A/ko
Priority to CN202280050560.0A priority patent/CN117652005A/zh
Priority to EP22849032.2A priority patent/EP4343796A1/en
Priority to CA3219694A priority patent/CA3219694A1/en
Priority to JP2022544248A priority patent/JP7151947B1/ja
Publication of WO2023007953A1 publication Critical patent/WO2023007953A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a wound core and a method for manufacturing the wound core, and more particularly to a wound core for a transformer and a method for manufacturing the wound core, which are made from grain-oriented electrical steel sheets.
  • a grain-oriented electrical steel sheet having a crystal structure in which the ⁇ 001> orientation, which is the axis of easy magnetization of iron, is highly aligned in the rolling direction of the steel sheet, is particularly used as a core material for power transformers.
  • Transformers are broadly classified into stacked core transformers and wound core transformers according to their core structure.
  • a laminated core transformer is one in which a core is formed by stacking steel plates cut into a predetermined shape.
  • a wound core transformer has a core formed by winding steel sheets. There are various requirements for transformer cores, but the most important is that the iron loss be small.
  • the iron loss is small as a characteristic required for the grain-oriented electrical steel sheet that is the iron core material.
  • a high magnetic flux density is also required to reduce the excitation current in the transformer and reduce copper loss.
  • This magnetic flux density is evaluated by the magnetic flux density B8(T) at a magnetizing force of 800 A/m, and generally, the higher the degree of azimuth integration in the Goss orientation, the greater the B8.
  • An electrical steel sheet with a high magnetic flux density generally has a small hysteresis loss and is excellent in iron loss characteristics. Also, in order to reduce iron loss, it is important to highly align the crystal orientation of the secondary recrystallized grains in the steel sheet with the Goss orientation and to reduce impurities in the steel composition.
  • Patent Literature 1 and Patent Literature 2 describe a heat-resistant magnetic domain refining method in which linear grooves having a predetermined depth are formed on the surface of a steel sheet.
  • the aforementioned Patent Document 1 describes means for forming grooves by means of gear-shaped rolls.
  • Patent Document 2 describes means for forming linear grooves on the surface of a steel sheet by etching.
  • iron loss material iron loss
  • iron loss in transformers is often larger than material iron loss.
  • the value obtained by dividing the iron loss value (transformer iron loss) when an electromagnetic steel sheet is used as the core of a transformer by the iron loss value of the material obtained by the Epstein test, etc. is generally called the building factor (BF) or distraction. It is called factor (DF). That is, BF generally exceeds 1 in transformers, and if BF can be reduced, transformer iron loss can be reduced.
  • the factor (BF factor) that causes the transformer iron loss in the wound core transformer to increase compared to the material iron loss is the magnetic flux concentration inside the core caused by the difference in the magnetic path length, the steel plate joint.
  • in-plane eddy current loss at steel plate joints will be described.
  • a wound core for a transformer is provided with a cut portion for inserting a winding. After the winding is inserted into the core from the cut portion, the steel plates are joined together by providing a lap portion.
  • the magnetic flux crosses the adjacent steel plate in the direction perpendicular to the plane, so an in-plane eddy current is generated. Therefore, the iron loss will increase locally.
  • strain during processing also causes an increase in iron loss. If strain is introduced by slitting the steel sheet, bending during core processing, or the like, the magnetic properties of the steel sheet deteriorate, and the iron loss of the transformer increases. In the case of a wound core, it is common to perform so-called strain relief annealing, in which annealing is performed at a temperature higher than the temperature at which strain is released after processing the core.
  • Patent Document 3 an electromagnetic steel sheet having magnetic properties inferior to those on the outer peripheral side of the core is placed on the inner peripheral side of the core where the magnetic path length is short, and an electromagnetic steel sheet having magnetic properties superior to those on the inner peripheral side of the core on the outer peripheral side of the core where the magnetic path length is long. It is disclosed that by arranging the magnetic steel sheets, the concentration of the magnetic flux to the inner peripheral side of the iron core is avoided, and the iron loss of the transformer is effectively reduced.
  • Patent Document 4 discloses an iron core design method that reduces transformer iron loss by controlling the concentration of magnetic flux and the resulting deterioration of iron loss by combining multiple types of magnetic steel sheets with different magnetic permeability and iron loss. .
  • An object of the present invention is to provide a wound core with excellent magnetic properties and low transformer core loss without using two or more materials with different magnetic properties, and a method for manufacturing the same.
  • a wound core having a flat portion and a corner portion adjacent to the flat portion, a wrap portion on the flat portion, and a bent portion on the corner portion.
  • iron loss deterioration rate under superimposed harmonics (iron loss) / (iron loss without superposition of harmonics)
  • iron loss under harmonic superimposition and the iron loss without harmonic superimposition in the above formula are iron losses (W/kg) measured under conditions of a frequency of 50 Hz and a maximum magnetization of 1.7 T, respectively.
  • the iron loss under harmonic superimposition is the iron loss measured under the conditions of 40% superimposition ratio of the tertiary harmonic with respect to the fundamental harmonic in the excitation voltage and phase difference of 60°.
  • a wound core having a flat portion and a corner portion adjacent to the flat portion, a wrap portion on the flat portion, and a bent portion on the corner portion. of magnetic material is wound to form a core.
  • a method is adopted in which a steel sheet is wound into a cylinder, then pressed so that the corners thereof have a certain curvature, and formed into a rectangular shape.
  • the corner portions of the wound core are bent in advance, and the bent steel plates are overlapped to form the wound core.
  • the iron core formed by this method has bent portions (bending portions) at the corner portions.
  • An iron core formed by the former method is generally called a tranco core, and an iron core formed by the latter method is generally called a uni-core or a duo-core, depending on the number of steel plate joints provided.
  • a structure in which the corner formed by the latter method is provided with a bent portion (flexion) is suitable.
  • a grain-oriented electrical steel sheet (magnetic flux density B8: 1.94 T, W17/50: 0.78 W/kg) with a thickness of 0.23 mm having one single-phase trunk core and two uni-cores having the shape shown in FIG. They were wound and shaped, and strain relief annealing was performed on one of the Truncco core and Unicore under the same conditions.
  • a wound core was produced by winding 50 turns and performing no-load excitation at a magnetic flux density of 1.5 T and a frequency of 60 Hz.
  • a one-turn search coil was arranged at the position shown in FIG.
  • FIG. 5 shows the maximum values of the magnetic flux densities of the iron cores of each quarter thickness from the inner winding (inner side) to the outer winding (outer side). It can be seen that both the tranco core (with strain relief annealing) and the unicore (with strain relief annealing and without strain relief annealing) have a higher magnetic flux density in the inner winding, and the concentration of magnetic flux occurs.
  • FIG. 6 shows the result of evaluating the form factor of (dB/dt) obtained by differentiating each magnetic flux waveform with time. Comparing the tranco core and the unicore, it was found that the unicore has a smaller magnetic flux concentration and a smaller form factor, that is, the magnetic flux waveform distortion is suppressed.
  • the form factor of the time-differentiated (dB/dt) becomes large. It is presumed that in the inner winding of the uni-core, the concentration of magnetic flux is less likely to occur and the distortion of the magnetic flux waveform is suppressed, compared to the truncated core that has a low magnetic permeability and does not have a bent portion.
  • FIG. 8 shows the waveform factor (dB/dt) obtained by time-differentiating the magnetic flux waveform at the innermost winding quarter thickness (position (i)) in a unicore made of a material (grain-oriented electrical steel sheet).
  • the form factor tended to decrease. 1.92 T or more and 1.98 T or less is a suitable range in which the magnetic flux waveform distortion can be kept small.
  • the reason why the concentration of the magnetic flux in the iron core is reduced as the magnetic flux density B8 of the grain-oriented electrical steel sheet, which is the raw material, increases is presumed as follows.
  • the magnetic flux density B8 of the iron core material is large, saturation of the magnetic flux is generally less likely to occur. If the magnetic flux density B8 of the iron core material is large, even if magnetic flux concentration occurs inside the iron core due to the magnetic path length difference, saturation does not occur up to high magnetic flux densities. Conceivable. Conversely, if the magnetic flux density B8 of the iron core material becomes too large, the magnetic flux concentration due to the magnetic path length difference becomes excessive due to the large saturation magnetization, and the magnetic flux waveform distortion also becomes large. Therefore, it is presumed that the magnetic flux waveform distortion can be kept small in the magnetic flux density B8 range where the iron core material exists.
  • the ratio of the length of the outer circumference to the length of the inner circumference of the iron core (the length of the outer circumference/the length of the inner circumference) is 1.70 or less. shows the results of investigating the effect of on magnetic flux concentration.
  • the iron core with a 0.23 mm thickness grain-oriented electrical steel sheet (magnetic flux density B8: 1.94 T, W17/50: 0 .78 W/kg).
  • a winding of 50 turns was applied, and no-load excitation was performed at a magnetic flux density of 1.5 T and a frequency of 60 Hz.
  • a one-turn search coil was arranged at the position shown in FIG. 4, and the magnetic flux density waveform in the iron core was investigated.
  • FIG 10 shows the ratio of the length of the outer circumference to the length of the inner circumference in each iron core shape, and the waveform factor of (dB/dt) obtained by time-differentiating the magnetic flux waveform at the innermost winding 1/4 thickness (position (i)). shows the relationship between The smaller the ratio of the length of the outer circumference to the length of the inner circumference, the smaller the (dB/dt) form factor. The smaller the ratio of the length of the outer circumference to the length of the inner circumference, the smaller the magnetic path length difference between the inner side and the outer side of the iron core. Therefore, it is presumed that the magnetic flux waveform distortion was suppressed.
  • the length of the inner circumference was calculated by 2(c+d)+4f ⁇ ( ⁇ 2 ⁇ 2).
  • the length of the perimeter was calculated by 2(a+b)+4e ⁇ ( ⁇ 2 ⁇ 2).
  • the length of the inner circumference and the length of the outer circumference may be calculated from the length of each location as shown in Table 2, or the length of the inner circumference and the length of the outer circumference may be measured.
  • iron loss deterioration rate under superimposed harmonics (iron loss) / (iron loss without superposition of harmonics)
  • iron loss under harmonic superimposition and the iron loss without harmonic superimposition in the above formula are iron losses (W/kg) measured under conditions of a frequency of 50 Hz and a maximum magnetization of 1.7 T, respectively.
  • the iron loss under harmonic superimposition is the iron loss measured under the conditions of a 40% superimposition ratio of the tertiary harmonic with respect to the fundamental harmonic in the excitation voltage and a phase difference of 60°.
  • FIG. 11 shows the relationship between the iron loss deterioration rate of the material grain-oriented electrical steel sheet under harmonic superimposition and the transformer iron loss. Transformer iron loss decreased in the region where the iron loss deterioration rate was 1.30 or less under harmonic superimposition.
  • a wound core made of a grain-oriented electrical steel sheet The wound core has a flat portion and a corner portion adjacent to the flat portion, the flat portion has a lap portion, the corner portion has a bent portion, and the wound core is viewed from the side.
  • the ratio of the length of the outer circumference to the length of the inner circumference is 1.70 or less
  • the grain-oriented electrical steel sheet has a magnetic flux density B8 of 1.92 T or more and 1.98 T or less when the magnetic field strength H is 800 A / m, and iron loss deterioration under harmonic superimposition obtained by the following formula A wound core having a modulus of 1.30 or less.
  • Iron loss deterioration rate under harmonic superimposition (iron loss under harmonic superimposition) / (iron loss without harmonic superimposition)
  • the iron loss under harmonic superimposition and the iron loss without harmonic superimposition in the above formula are iron losses (W/kg) measured under conditions of a frequency of 50 Hz and a maximum magnetization of 1.7 T, respectively.
  • the iron loss under harmonic superimposition is the iron loss measured under the conditions of 40% superimposition ratio of the tertiary harmonic with respect to the fundamental harmonic in the excitation voltage and phase difference of 60°.
  • Iron loss deterioration rate under harmonic superimposition (iron loss under harmonic superimposition) / (iron loss without harmonic superimposition)
  • the iron loss under harmonic superimposition and the iron loss without harmonic superimposition in the above formula are iron losses (W/kg) measured under conditions of a frequency of 50 Hz and a maximum magnetization of 1.7 T, respectively.
  • the iron loss under harmonic superimposition is the iron loss measured under the conditions of a 40% superimposition ratio of the tertiary harmonic with respect to the fundamental harmonic in the excitation voltage and a phase difference of 60°.
  • the present invention it is possible to provide a wound core with excellent magnetic properties and low transformer core loss, and a method for manufacturing the same. According to the present invention, it is possible to obtain a wound core excellent in magnetic properties with small transformer iron loss without using two or more kinds of materials having different magnetic properties (iron loss). According to the present invention, the complexity of iron core design such as arrangement of materials required when two or more kinds of materials having different magnetic properties are used is reduced, and a wound core excellent in magnetic properties with small iron loss is provided. It can be obtained with high manufacturability.
  • FIG. 1 is a schematic diagram illustrating a magnetic path inside the core and a magnetic path outside the core of a wound core.
  • FIG. 2 is a schematic diagram illustrating crossing of magnetic flux in the direction perpendicular to the plane of a steel plate at a steel plate joint.
  • FIG. 3 is an explanatory view (side view) for explaining the shapes of experimentally produced trancocores and unicores.
  • FIG. 4 is an explanatory diagram for explaining the arrangement of the search coils when examining the magnetic flux density distribution in the iron core.
  • FIG. 5 is a diagram showing the results of an investigation on the magnetic flux concentration in the iron cores of the tranco core and the unicore.
  • FIG. 1 is a schematic diagram illustrating a magnetic path inside the core and a magnetic path outside the core of a wound core.
  • FIG. 2 is a schematic diagram illustrating crossing of magnetic flux in the direction perpendicular to the plane of a steel plate at a steel plate joint.
  • FIG. 3 is an explanatory view (
  • FIG. 6 is a diagram showing the results of evaluating the form factor in the iron cores of the trunko core and the unicore.
  • FIG. 7 is an explanatory diagram for explaining waveform distortion caused by concentration of magnetic flux.
  • FIG. 8 is a diagram showing the relationship between the magnetic flux density B8 of the core material and the corrugation factor at the 1 ⁇ 4 thickness of the innermost winding of the core.
  • FIG. 9 is an explanatory diagram (side view) explaining the shape of an experimentally produced iron core.
  • FIG. 10 is a diagram showing the relationship between the ratio of the length of the outer circumference to the length of the inner circumference in each iron core shape and the corrugation factor at the innermost winding quarter thickness of the iron core.
  • FIG. 11 is a diagram showing the relationship between the iron loss deterioration rate of the iron core material under harmonic superimposition and the transformer iron loss.
  • FIG. 12 is an explanatory view (side view) for explaining the shape of the trunk core produced in the example.
  • FIG. 13 is an explanatory view (side view) explaining the shape of the unicore produced in the example.
  • a wound core having a flat portion and a corner portion adjacent to the flat portion, a wrap portion on the flat portion, and a bent portion on the corner portion. Perimeter length ratio is 1.70 or less
  • (A) is satisfied by selecting a wound core manufacturing method generally called uni-core or duo-core type.
  • a known method can be adopted as a method for manufacturing the wound core. More specifically, when using a Unicore manufacturing machine manufactured by AEM, when the design size is read into the manufacturing machine, the steel plate is sheared to the size according to the design drawing, and the processed steel plate with bent parts is processed one by one. Since it is produced, the wound core can be produced by laminating the processed steel plates.
  • the outer circumference and inner circumference of the iron core in the condition (B) refer to the outer circumference and inner circumference of the iron core when viewed from the side, respectively. That is, the length of the outer circumference of the iron core is measured along the outside (outer surface) of the outermost grain-oriented electrical steel sheet (raw material) of the grain-oriented electrical steel sheets (materials) that make up the wound core when the core is viewed from the side. It is the length of one turn in the winding direction of the grain-oriented electrical steel sheet, and the length of the inner circumference of the iron core is the inner side of the innermost grain-oriented electrical steel sheet among the grain-oriented electrical steel sheets that constitute the wound core.
  • the upper limit of the ratio of the length of the outer circumference to the length of the inner circumference of the iron core needs to be 1.70.
  • the ratio is preferably 1.60 or less, more preferably 1.55 or less.
  • the lower limit of the ratio is not specified in terms of characteristics, it is determined by the relationship between the core size and the thickness because the core thickness decreases when the ratio approaches 1. As an example, the lower limit of said ratio is 1.05.
  • a grain-oriented electrical steel sheet having a magnetic flux density B8 of 1.92 T or more and 1.98 T or less when the magnetic field strength H is 800 A / m is used.
  • Magnetic properties are measured by the Epstein test. .
  • the Epstein test is carried out by a known method such as IEC standards or JIS standards.
  • the result of the single plate magnetic measurement test (SST) may be substituted.
  • SST single plate magnetic measurement test
  • a test sample is taken from the tip and tail ends of the steel sheet coil, the Epstein test is performed, the magnetic flux density B8 is measured, and the average value is adopted as the representative characteristic.
  • materials may be selected based on the characteristic values (average values and guaranteed values) of steel sheets provided by steel material manufacturers.
  • Iron loss deterioration rate under harmonic superimposition (harmonics Iron loss under superimposition) / (Iron loss without harmonic superimposition)
  • the iron loss under harmonic superimposition and the iron loss without harmonic superimposition defined in the above formula were measured with the same Epstein tester or single plate magnetic measurement device at a frequency of 50 Hz and a maximum magnetization of 1.7 T.
  • the harmonic superimposition conditions in the present invention are conditions that the superposition ratio of the tertiary harmonic with respect to the fundamental harmonic in the excitation voltage is 40% and the phase difference is 60°.
  • the voltage waveform under the harmonic superimposition condition in the present invention is such that the amplitude of the 150 Hz sine wave, which is the third harmonic of the 50 Hz sine wave, which is the fundamental harmonic, is 40% of the amplitude of the fundamental harmonic.
  • a superimposed waveform with a phase difference of 60° is obtained.
  • a grain-oriented electrical steel sheet having a core loss deterioration rate of 1.30 or less under superimposed harmonics is used as the core material.
  • the iron loss deterioration rate under the superimposition of harmonics is preferably 1.28 or less, more preferably 1.25 or less.
  • the lower limit of the iron loss deterioration rate under the harmonic superimposition is not particularly limited, but as an example, the lower limit of the iron loss deterioration rate under the harmonic superimposition is 1.01.
  • the properties of the grain-oriented electrical steel sheet other than (C) and (D), the composition, the manufacturing method, etc. are not particularly limited.
  • composition and manufacturing method of the grain-oriented electrical steel sheet suitable as the material for the wound core of the present invention are described below.
  • the chemical composition of the grain-oriented electrical steel sheet slab may be any chemical composition that causes secondary recrystallization.
  • an inhibitor for example, when using an AlN-based inhibitor, Al and N are used, and when using an MnS/MnSe-based inhibitor, appropriate amounts of Mn and Se and/or S are included. good. Of course, both inhibitors may be used together.
  • the preferable contents of Al, N, S and Se are respectively Al: 0.010 to 0.065% by mass, N: 0.0050 to 0.0120% by mass, S: 0.005 to 0.030 % by mass, Se: 0.005 to 0.030% by mass.
  • the present invention can also be applied to grain-oriented electrical steel sheets with limited Al, N, S, and Se contents and no inhibitors.
  • the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.
  • C 0.08% by mass or less C is added to improve the texture of the hot-rolled sheet.
  • the C content exceeds 0.08% by mass, it becomes difficult to reduce the C content to 50 ppm by mass or less at which magnetic aging does not occur during the manufacturing process, so the C content is 0.08% by mass or less.
  • the lower limit of the C content it is not particularly necessary to set a lower limit because secondary recrystallization is possible even with a material that does not contain C. That is, the C content may be 0% by mass.
  • Si 2.0 to 8.0% by mass Si is an element effective in increasing the electric resistance of steel and improving iron loss.
  • the Si content is 2.0% by mass or more, a sufficient iron loss reduction effect can be obtained more easily.
  • the Si content is 8.0% by mass or less, significant deterioration in workability can be suppressed, and a decrease in magnetic flux density can be easily suppressed. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.
  • Mn 0.005 to 1.000% by mass
  • Mn is an element necessary for improving hot workability.
  • the Mn content is 0.005% by mass or more, the effect of addition can be easily obtained.
  • the Mn content is 1.000% by mass or less, it becomes easier to suppress the decrease in the magnetic flux density of the product sheet. Therefore, the Mn content is preferably in the range of 0.005 to 1.000% by mass.
  • Cr 0.02 to 0.20% by mass Cr is an element that promotes the formation of a dense oxide film at the interface between the forsterite film and the base iron. Although it is possible to form an oxide film without adding Cr, adding 0.02% by mass or more of Cr is expected to expand the suitable range of other components. Further, when the Cr content is 0.20% by mass or less, it is possible to suppress the oxide film from becoming too thick, and it becomes easy to suppress the deterioration of the coating peeling resistance. Therefore, the Cr content is preferably in the range of 0.02 to 0.20% by mass.
  • the slab for grain-oriented electrical steel sheets preferably has the above components as basic components.
  • the slab can appropriately contain the following elements in addition to the above components.
  • Ni 0.03 to 1.50% by mass
  • Sn 0.010 to 1.500% by mass
  • Sb 0.005 to 1.500% by mass
  • Cu 0.02 to 0.20% by mass
  • P At least one selected from 0.03 to 0.50% by mass
  • Mo 0.005 to 0.100% by mass
  • Ni is an element useful for improving the structure of the hot-rolled sheet and improving the magnetic properties.
  • the Ni content is 0.03% by mass or more, the effect of improving the magnetic properties can be more easily obtained.
  • the Ni content is 1.50% by mass or less, it is possible to suppress the secondary recrystallization from becoming unstable, and it becomes easy to reduce the risk of deterioration of the magnetic properties of the product sheet. Therefore, when Ni is contained, the Ni content is preferably in the range of 0.03 to 1.50% by mass.
  • Sn, Sb, Cu, P and Mo are elements useful for improving magnetic properties, respectively, and when the content of each component is at least the lower limit of the content of each component described above, the effect of improving the magnetic properties is more likely to be obtained. .
  • the content of each component is equal to or less than the upper limit of the above-described content, it becomes easier to reduce the possibility that the growth of secondary recrystallized grains is inhibited. Therefore, when Sn, Sb, Cu, P, and Mo are contained, it is preferable that the content of each element is set in the above range.
  • the balance other than the above components is unavoidable impurities and Fe mixed in the manufacturing process.
  • heating temperature is preferably 1150 to 1450°C.
  • Hot rolling After the heating, hot rolling is performed. After casting, hot rolling may be performed immediately without heating. In the case of thin cast slabs, hot rolling may be performed, or hot rolling may be omitted. When hot rolling is carried out, it is preferable to carry out the rolling temperature of the final pass of rough rolling at 900° C. or higher and the rolling temperature of the final pass of finish rolling at 700° C. or higher.
  • the hot-rolled sheet annealing temperature is preferably in the range of 800 to 1100° C. in order to develop the Goss texture in the product sheet to a high degree. If the hot-rolled sheet annealing temperature is lower than 800°C, the band structure in the hot rolling remains, making it difficult to achieve a primary recrystallized structure with uniform grains and inhibiting the development of secondary recrystallization. There is a risk. On the other hand, if the hot-rolled sheet annealing temperature exceeds 1100° C., the grain size after the hot-rolled sheet annealing becomes too coarse, which may make it extremely difficult to achieve a uniform primary recrystallization structure.
  • the intermediate annealing temperature is preferably 800°C or higher and 1150°C or lower. Also, the intermediate annealing time is preferably about 10 to 100 seconds.
  • decarburization annealing After that, decarburization annealing is performed. In the decarburization annealing, it is preferable to set the annealing temperature to 750 to 900° C., the oxidizing atmosphere PH 2 O/PH 2 to 0.25 to 0.60, and the annealing time to about 50 to 300 seconds.
  • the annealing separator preferably contains MgO as a main component and is applied in an amount of about 8 to 15 g/m 2 .
  • finish annealing is performed for the purpose of secondary recrystallization and formation of a forsterite coating. It is preferable that the annealing temperature is 1100° C. or higher and the annealing time is 30 minutes or longer.
  • a flattening process planarizing annealing
  • an insulating coating can be applied to the surface of the steel sheet before or after flattening annealing.
  • the insulation coating here means a coating (tension coating) that applies tension to the steel sheet in order to reduce iron loss.
  • Tensile coatings include inorganic coatings containing silica, ceramic coatings by physical vapor deposition, chemical vapor deposition, and the like.
  • the iron loss deterioration rate under harmonic superimposition decreases as the tensile tension applied to the steel sheet by the surface coating (forsterite coating and insulation coating) increases.
  • the thickness of the tension coating may be increased, but there is concern about deterioration of the space factor.
  • an inorganic coating containing silica there is a measure such as promoting glass crystallization by raising the baking temperature. Applying a film with a low coefficient of thermal expansion such as a ceramic coating is also effective in obtaining strong tension.
  • Magnetic domain refining treatment In order to reduce the iron loss of the steel sheet, it is preferable to apply a magnetic domain refining treatment.
  • the magnetic domain refining technology is a technology for reducing the core loss by refining the width of the magnetic domains by introducing non-uniformity to the surface of the steel sheet by a physical method. Magnetic domain refining techniques are roughly divided into heat-resistant magnetic domain refining whose effect is not impaired by strain relief annealing, and non-heat-resistant magnetic domain refining whose effect is reduced by strain relief annealing.
  • the present invention can be applied to any of a steel sheet not subjected to magnetic domain refining treatment, a steel sheet subjected to heat-resistant magnetic domain refining treatment, and a steel sheet subjected to non-heat-resistant magnetic domain refining treatment.
  • Non-heat-resistant magnetic domain refining treatment generally involves irradiating a steel sheet after secondary recrystallization with a high-energy beam (laser, etc.). This is a process for refining magnetic domains by forming a field.
  • a strong tensile field is formed by introducing a high dislocation density region on the outermost surface of the steel sheet, resulting in superimposition of harmonics.
  • Example 1 Single-phase tranco-cores and uni-cores were produced using the core shapes shown in FIG. 12 and Table 4, FIG.
  • strain relief annealing was performed at 800° C. for 2 hours. After annealing, the iron core was unwound from the joint and a 50-turn winding coil was inserted. Further, in conditions 13 to 54, the wound coil was inserted without performing the strain relief annealing. Then, under the conditions of excitation magnetic flux density (Bm) of 1.5 T and frequency (f) of 60 Hz, transformer iron loss was measured.
  • Bm excitation magnetic flux density
  • f frequency
  • the Epstein test result of the core material (in the case of non-heat-resistant magnetic domain refining, the single plate magnetic measurement result) is taken as the material iron loss, and the iron loss increase rate BF in the transformer iron loss for that material iron loss is asked.
  • Table 4 (in the case of tranco core), the length of the inner circumference was calculated by 2(c+d) ⁇ 8f ⁇ (1 ⁇ 90(°)/360(°)).
  • the length of the outer circumference was calculated by 2(a+b)-8e ⁇ (1- ⁇ 90(°)/360(°)).
  • the length of the inner circumference and the length of the outer circumference of the unicore in Table 5 were calculated in the same manner as in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

磁気特性の異なる2種類以上の素材を使用することなく、変圧器鉄損が小さい磁気特性に優れた巻鉄心を提供する。 本発明の巻鉄心は、方向性電磁鋼板を素材として構成され、平面部と該平面部に隣接するコーナー部を有し、前記平面部にラップ部を有し、前記コーナー部に屈曲部を有し、かつ、側面視したときの外周の長さと内周の長さの比(外周の長さ/内周の長さ)が1.70以下であり、前記方向性電磁鋼板は、磁場の強さHが800A/mのときの磁束密度B8が1.92T以上1.98T以下であり、かつ、所定の高調波重畳下での鉄損劣化率が1.30以下である。

Description

巻鉄心および巻鉄心の製造方法
 本発明は、巻鉄心および巻鉄心の製造方法に関するものであり、特に、方向性電磁鋼板を素材として作製される、変圧器の巻鉄心および巻鉄心の製造方法に関するものである。
 鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有する方向性電磁鋼板は、特に電力用変圧器の鉄心材料として用いられている。変圧器は、その鉄心構造から、積鉄心変圧器と巻鉄心変圧器に大別される。積鉄心変圧器とは、所定の形状に切断した鋼板を積層することによって鉄心を形成するものである。一方、巻鉄心変圧器は、鋼板を巻き重ねて鉄心を形成するものである。変圧器鉄心として要求されることは種々あるが、特に重要なのは鉄損が小さいことである。
 その観点で、鉄心素材である方向性電磁鋼板に要求される特性としても、鉄損が小さいことは重要である。また、変圧器における励磁電流を減らして銅損を低減するためには、磁束密度が高いことも必要である。この磁束密度は、磁化力800A/mのときの磁束密度B8(T)で評価され、一般に、Goss方位への方位集積度が高いほど、B8は大きくなる。磁束密度の大きい電磁鋼板は、一般にヒステリシス損が小さく、鉄損特性上でも優れる。また、鉄損を低減するためには、鋼板中の二次再結晶粒の結晶方位をGoss方位に高度に揃えることや、鋼成分中の不純物を低減することが重要となる。
 しかし、結晶方位の制御や不純物の低減には限界があることから、鋼板の表面に対して物理的な手法で不均一性を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。たとえば、特許文献1や特許文献2には、鋼板表面に所定深さの線状の溝を設ける耐熱型の磁区細分化方法が記載されている。前記特許文献1には、歯車型ロールによる溝の形成手段が記載されている。また特許文献2には、エッチング処理によって鋼板表面に線状溝を形成する手段が記載されている。これらの手段は、巻鉄心形成時の歪み取り焼鈍など、熱処理を行っても鋼板に施した磁区細分化効果が消失せず、巻鉄心などにも適用可能であるという利点を有している。
 変圧器鉄損を小さくする為には、一般には、鉄心素材である方向性電磁鋼板の鉄損(素材鉄損)を小さくすれば良いと考えられる。一方、素材鉄損と比べて変圧器における鉄損は大きくなることが多い。変圧器の鉄心として電磁鋼板が使用された場合の鉄損値(変圧器鉄損)を、エプスタイン試験等で得られる素材の鉄損値で除した値を、一般にビルディングファクタ(BF)またはディストラクションファクタ(DF)と呼ぶ。つまり、変圧器においてはBFが1を超えるのが一般的であり、BFを低減することができれば、変圧器鉄損を低減することができる。
 一般的な知見として、巻鉄心変圧器における変圧器鉄損が素材鉄損に比べて鉄損が増加する要因(BF要因)として、磁路長の違いにより生じる鉄心内側への磁束集中、鋼板接合部における面内渦電流損の発生、加工時の歪み導入による鉄損増加などが指摘されている。
 磁路長の違いにより生じる鉄心内側への磁束集中による鉄損増加について述べる。図1に示す単相の巻鉄心の場合、鉄心内側(内周側)の磁路(鉄心内側磁路)の方が、鉄心外側(外周側)の磁路(鉄心外側磁路)に比べて短いため、鉄心内側に磁束が集中する。一般に磁性体の鉄損は、励磁磁束密度の増加に対し、飽和磁化に近づくにつれて非線形に急速に増加していく。さらに、鉄心内側に磁束が集中すると、磁束波形が歪むことにより、さらに鉄損が増加する。よって、鉄心内側に磁束が集中した場合、鉄心内側の鉄損が特異に大きくなり、結果として鉄心全体の鉄損が増加する。
 鋼板接合部における面内渦電流損の発生について述べる。一般的に変圧器用の巻鉄心においては、巻き線を挿入するためにカット部が設けられる。カット部から鉄心に巻き線を挿入した後は、鋼板同士はラップ部を設けて、接合される。図2に示すように、鋼板接合部ではラップした部分(ラップ部)において、隣接する鋼板へ、面直方向に磁束が渡るため、面内渦電流が生じる。その為に、鉄損が局所的に増大することとなる。
 加工時の歪みの導入も、鉄損の増加要因となる。鋼板のスリット、鉄心加工時の折り曲げ等により歪みが導入されると、鋼板の磁気特性が劣化し、変圧器鉄損が増加する。巻鉄心の場合は、鉄心加工後に歪みが解放される温度以上で焼鈍を行う、いわゆる歪み取り焼鈍が施されるのが一般的である。
 こういった変圧器鉄損の増加要因を踏まえて、変圧器鉄損を低減させる方策として例えば以下のような提案がされている。
 特許文献3では、磁路長が短い鉄心内周側に、鉄心外周側よりも磁気特性の劣る電磁鋼板を、磁路長が長い鉄心外周側には、鉄心内周側よりも磁気特性の優れた電磁鋼板を配置することで、鉄心内周側への磁束の集中を回避し、変圧器鉄損が効果的に低減されることが開示されている。特許文献4では、透磁率と鉄損の異なる複数種の電磁鋼板を組み合わせることで、磁束の集中とそれによる鉄損劣化をコントロールし、変圧器鉄損を低減する鉄心設計手法が開示されている。
特公昭62-53579号公報 特許第2895670号公報 特許第5286292号公報 特開2006-185999号公報
 特許文献3、4に開示されているように、鉄心内周側への磁束の集中を回避するために、鉄心内周側と外周側に異材を使用することで、効率的に変圧器特性を改善することができる。しかしこれらの方法は、磁気特性(鉄損)の異なる2種類の素材(材料)を適切に配置する必要があるため、変圧器の設計の煩雑さや、製造性を著しく落とすこととなる。
 本発明は、磁気特性の異なる2種類以上の素材を使用することなく、変圧器鉄損が小さい磁気特性に優れた巻鉄心およびその製造方法を提供することを目的とする。
 変圧器鉄損が小さい磁気特性に優れた巻鉄心を得るためには、磁束の集中を緩和する鉄心設計と、鉄心の内側に磁束が集中しても磁束波形が歪まず、鉄損の増加が抑制できる鉄心素材の選択が必要である。
 磁束の集中を緩和し、磁束波形の歪みを防止するための鉄心設計として以下の3点が必要である。
(1)平面部と該平面部に隣接するコーナー部を有し、前記平面部にラップ部を有し、前記コーナー部に屈曲部を有する巻鉄心とすること
(2)鉄心素材として、磁場の強さHが800A/mのときの磁束密度B8が1.92T以上1.98T以下である方向性電磁鋼板を用いること
(3)鉄心の外周の長さと内周の長さの比(外周の長さ/内周の長さ)が1.70以下であること
 また、鉄心内側に磁束が集中しても鉄損の増加が抑制できる鉄心素材の選択としては以下の点が必要である。
(4)下記式で求められる高調波重畳下での鉄損劣化率が1.30以下である方向性電磁鋼板を用いること
高調波重畳下での鉄損劣化率=(高調波重畳下における鉄損)/(高調波重畳がない場合の鉄損)
ここで、上記式中の高調波重畳下における鉄損および高調波重畳がない場合の鉄損は、それぞれ周波数50Hz、最大磁化1.7Tの条件で測定された鉄損(W/kg)であり、かつ前記高調波重畳下における鉄損は、励磁電圧における基本調波に対する3次高調波の重畳率40%、位相差60°の条件において測定された鉄損である。
 それぞれの必要条件とその理由について詳細に説明する。
 (1)平面部と該平面部に隣接するコーナー部を有し、前記平面部にラップ部を有し、前記コーナー部に屈曲部を有する巻鉄心とすること
 巻鉄心は、方向性電磁鋼板などの磁性体を巻き回してコアとする。一般的には、鋼板を筒状に巻き取った後、コーナー部をある曲率となるようにプレスし、矩形状に成形する方法がとられる。一方、別の製造方法として、巻鉄心のコーナー部となる部分を予め曲げ加工し、曲げ加工した鋼板を重ね合わせることにより巻鉄心とする方法がある。この方法により形成された鉄心は、コーナー部に折り曲げ部(屈曲部)を有する。前者の方法により形成された鉄心はトランココア、後者の方法により形成された鉄心は、設けられる鋼板接合部の数により、ユニコアあるいはデュオコアと一般的に称する。磁束の集中を緩和し、磁束波形が歪むことを防ぐためには、後者の方法により形成されたコーナー部に折り曲げ部(屈曲部)を設ける構造が適する。
 以下実験的に、トランココアとユニコアの鉄心内の磁束の集中、及び磁束密度波形について調査した結果を示す。図3に示す形状の、単相のトランココア1個とユニコア2個の鉄心を0.23mm厚の方向性電磁鋼板(磁束密度B8:1.94T、W17/50:0.78W/kg)を巻き回して成型し、トランココアとユニコアの1個について、同条件で歪み取り焼鈍を行った。巻きコアの作製は50巻きの巻き線を施し、磁束密度1.5T、周波数60Hzの無負荷励磁を行った。図4に示す位置に、1巻きの探りコイルを配置し、鉄心内の磁束密度分布を調査した。図5に内巻き(内側)から外巻き(外側)にかけて各1/4厚さの鉄心の磁束密度の最大値を示す。トランココア(歪み取り焼鈍有)とユニコア(歪み取り焼鈍有、歪み取り焼鈍無)共に、内巻きの方が磁束密度が大きく、磁束の集中が生じていることがわかる。図6には、各磁束波形を時間微分した(dB/dt)の波形率を評価した結果を示す。トランココアとユニコアを比較すると、ユニコアの方が磁束集中が小さく、波形率が小さい、つまり磁束波形歪みが抑制されていることが判明した。
 ユニコア、つまりコーナー部に屈曲部を設けることにより、磁束波形歪みが抑制されている原因については以下のように推定している。ユニコアの屈曲部は、歪み取り焼鈍を行ったとしても変形双晶などが残存し、他の部分と比較すると、局所的に透磁率が小さくなっている。このような透磁率が著しく小さい部分が存在すると、ある一定以上の磁束が通ることはできない。そのため、磁路長差があっても内側のみへの磁束の集中は起きにくい。図7に示すように、磁束の集中が起こると、その磁束が最大となる部分においては、磁束が飽和し、波形が台形状に歪む。つまり、その時間微分した(dB/dt)の波形率は大きくなる。ユニコアの内巻き部においては、透磁率が小さい屈曲部を有さないトランココアと比べて、磁束の集中が起きにくく、磁束波形の歪みも抑制されたと推定される。
 (2)鉄心素材として、磁場の強さHが800A/mのときの磁束密度B8が1.92T以上1.98T以下である方向性電磁鋼板を用いること
 実験的に、ユニコアの鉄心内の磁束波形歪みに及ぼす、磁束密度B8の影響を調査した結果を示す。図3に示す形状の単相のユニコアを、表1に示す磁束密度B8の異なる0.23mm厚の方向性電磁鋼板で作製した。50巻きの巻き線を施し、磁束密度1.5T、周波数60Hzの無負荷励磁を行った。図4に示す位置に、1巻きの探りコイルを配置し、鉄心内の磁束密度波形を調査し、各磁束波形を時間微分した(dB/dt)の波形率を評価した。図8に素材(方向性電磁鋼板)で作製したユニコアにおける、最内巻き1/4厚さ(位置(i))での磁束波形を時間微分した(dB/dt)の波形率を示す。鉄心素材の磁束密度B8が大きいほど、波形率が小さくなる傾向にあるが、1.98Tより大きい領域では逆に、波形率は再び大きくなった。1.92T以上1.98T以下が磁束波形歪みを小さく抑えることができる好適範囲である。
 素材である方向性電磁鋼板の磁束密度B8が大きいほど、鉄心としたときの磁束の集中が緩和する原因については以下のように推定している。鉄心素材の磁束密度B8が大きいと、一般的には磁束の飽和が起こりにくくなる。鉄心素材の磁束密度B8が大きいと、磁路長差により鉄心内側への磁束集中が起こっても、高い磁束密度まで飽和が起こらないため、前述のように台形状の磁束波形歪みは起こりにくいと考えられる。逆に鉄心素材の磁束密度B8が大きくなりすぎると、飽和磁化が大きいために磁路長差による磁束集中が過度となり、磁束波形歪みも大きくなることとなる。そのため、鉄心素材のある磁束密度B8範囲において、磁束波形歪みを小さく抑えることができるのではないかと推定する。
Figure JPOXMLDOC01-appb-T000001
 
 (3)鉄心の外周の長さと内周の長さの比(外周の長さ/内周の長さ)が1.70以下であること
 実験的に、鉄心の内側と外側の磁路長差が、磁束集中に及ぼす影響を調査した結果を示す。図9と表2に示す形状にて、鉄心の内周と外周の長さの比率を変えた鉄心を0.23mm厚の方向性電磁鋼板(磁束密度B8:1.94T、W17/50:0.78W/kg)にて作製した。50巻きの巻き線を施し、磁束密度1.5T、周波数60Hzの無負荷励磁を行った。図4に示す位置に、1巻きの探りコイルを配置し、鉄心内の磁束密度波形を調査した。図10に各鉄心形状における外周の長さと内周の長さの比と、最内巻き1/4厚さ(位置(i))での磁束波形を時間微分した(dB/dt)の波形率の関係を示す。外周の長さと内周の長さの比率が小さいほど、(dB/dt)の波形率は小さくなった。外周の長さと内周の長さの比率が小さいほど、鉄心の内側と外側の磁路長差が小さくなるために、鉄心内側への磁束の集中は小さくなる。そのため、磁束波形歪みが抑制されたのだと推定する。特に、外周の長さと内周の長さの比が1.70以下の範囲で、磁束波形歪みが抑制されることが判明した。
なお、表2において、内周の長さは、2(c+d)+4f×(√2-2)で算出した。また、外周の長さは、2(a+b)+4e×(√2-2)で算出した。また、a、bは、それぞれa=c+2w、b=d+2wで算出した。
なお、内周の長さ、外周の長さは、表2のような各箇所の長さから算出してもよいし、内周の長さ、外周の長さをそれぞれ実測してもよい。
Figure JPOXMLDOC01-appb-T000002
 
 次に、鉄心の内側に磁束が集中し、磁束波形歪みが生じた場合に、鉄損増加を抑制する鉄心素材選択の条件と理由について説明する。
 (4)下記式で求められる高調波重畳下での鉄損劣化率が1.30以下である方向性電磁鋼板を用いること
高調波重畳下での鉄損劣化率=(高調波重畳下における鉄損)/(高調波重畳がない場合の鉄損)
ここで、上記式中の高調波重畳下における鉄損および高調波重畳がない場合の鉄損は、それぞれ周波数50Hz、最大磁化1.7Tの条件で測定された鉄損(W/kg)であり、かつ、前記高調波重畳下における鉄損は、励磁電圧における基本調波に対する3次高調波の重畳率40%、位相差60°の条件において測定された鉄損である。
 前述のように鉄心内側に磁束が集中し、磁束波形が台形状に歪むと、鉄損が大きくなる。その原因は、磁束波形が台形状に歪むと、その台形の側辺にあたる瞬間で磁束の急峻な変化が起き、そのために渦電流損が大きくなってしまうためである。
 その磁束波形歪み及び渦電流損の増加を模擬するために、高調波を重畳させて意図的に磁束波形を歪ませた状態で鉄心素材の磁気測定を行った。様々な条件にて高調波を重畳させた条件を試したところ、励磁電圧における基本調波に対する3次高調波重畳率40%、位相差60°の条件での鉄損が、巻鉄心における渦電流損の増加を模擬することが判明した。
 以下、上記好適範囲の根拠となった実験結果を示す。図3に示す形状の単相のユニコアを、表3に示す高調波重畳下での鉄損劣化率の異なる0.23mm厚の方向性電磁鋼板A~Kで作製した。高調波重畳下での鉄損劣化率の異なる素材(方向性電磁鋼板A~K)は、電磁鋼板表面に形成する絶縁被膜の被膜張力を変えることで作製した。被膜張力が大きくなる程、高調波重畳下での鉄損劣化率は減少した。作製したユニコアに50巻きの巻き線を施し、磁束密度1.5T、周波数60Hzの無負荷励磁を行い、鉄損を測定した。図11に、素材である方向性電磁鋼板の高調波重畳下での鉄損劣化率と変圧器鉄損の関係を示す。高調波重畳下での鉄損劣化率1.30以下の領域において、変圧器鉄損が小さくなった。
 高調波重畳下での鉄損劣化率を基準に材料選択を行うことで、鉄心の内側に磁束が集中し、磁束波形が台形状に歪んだ場合でも、鉄損増加を抑制できる。
Figure JPOXMLDOC01-appb-T000003
 
 本発明は、上記知見に基づきなされたものであり、以下の構成を有する。
[1]方向性電磁鋼板を素材として構成された巻鉄心であって、
前記巻鉄心は、平面部と該平面部に隣接するコーナー部を有し、前記平面部にラップ部を有し、前記コーナー部に屈曲部を有し、かつ、前記巻鉄心を側面視したときの外周の長さと内周の長さの比(外周の長さ/内周の長さ)が1.70以下であり、
前記方向性電磁鋼板は、磁場の強さHが800A/mのときの磁束密度B8が1.92T以上1.98T以下であり、かつ、下記式で求められる高調波重畳下での鉄損劣化率が1.30以下である、巻鉄心。
高調波重畳下での鉄損劣化率=(高調波重畳下における鉄損)/(高調波重畳がない場合の鉄損)
ここで、上記式中の高調波重畳下における鉄損および高調波重畳がない場合の鉄損は、それぞれ周波数50Hz、最大磁化1.7Tの条件で測定された鉄損(W/kg)であり、かつ前記高調波重畳下における鉄損は、励磁電圧における基本調波に対する3次高調波の重畳率40%、位相差60°の条件において測定された鉄損である。
[2]前記方向性電磁鋼板が、非耐熱型の磁区細分化処理が施されたものである、[1]に記載の巻鉄心。
[3]方向性電磁鋼板を素材として構成され、平面部と該平面部に隣接するコーナー部を有し、前記平面部にラップ部を有し、前記コーナー部に屈曲部を有する巻鉄心の製造方法であって、
前記巻鉄心を側面視したときの前記巻鉄心の外周の長さと内周の長さの比(外周の長さ/内周の長さ)を1.70以下とし、
前記方向性電磁鋼板として、磁場の強さHが800A/mのときの磁束密度B8が1.92T以上1.98T以下であり、かつ、下記式で求められる高調波重畳下での鉄損劣化率が1.30以下である方向性電磁鋼板を用いる、巻鉄心の製造方法。
高調波重畳下での鉄損劣化率=(高調波重畳下における鉄損)/(高調波重畳がない場合の鉄損)
ここで、上記式中の高調波重畳下における鉄損および高調波重畳がない場合の鉄損は、それぞれ周波数50Hz、最大磁化1.7Tの条件で測定された鉄損(W/kg)であり、かつ、前記高調波重畳下における鉄損は、励磁電圧における基本調波に対する3次高調波の重畳率40%、位相差60°の条件において測定された鉄損である。
[4]前記方向性電磁鋼板が、非耐熱型の磁区細分化処理が施されたものである、[3]に記載の巻鉄心の製造方法。
 本発明により、変圧器鉄損が小さい磁気特性に優れた巻鉄心およびその製造方法を提供することができる。本発明によれば、磁気特性(鉄損)の異なる2種類以上の素材を使用しなくても、変圧器鉄損が小さい磁気特性に優れた巻鉄心が得られる。
本発明によれば、磁気特性の異なる2種類以上の素材を使用した場合に必要となる素材の配置等の鉄心設計の煩雑さが低減され、鉄損が小さい磁気特性に優れた巻鉄心を、製造性高く得ることができる。
図1は、巻鉄心の鉄心内側の磁路と鉄心外側の磁路を説明する模式図である。 図2は、鋼板接合部において、鋼板の面直方向への磁束の渡りを説明する模式図である。 図3は、実験的に作製したトランココアとユニコアの形状を説明する説明図(側面図)である。 図4は、鉄心内の磁束密度分布を調査した際の探りコイルの配置について説明する説明図である。 図5は、トランココアとユニコアの鉄心内の磁束の集中について調査した結果を示す図である。 図6は、トランココアとユニコアの鉄心内の波形率を評価した結果を示す図である。 図7は、磁束の集中により生じる波形の歪みを説明する説明図である。 図8は、鉄心素材の磁束密度B8と、鉄心最内巻き1/4厚さにおける波形率の関係を示す図である。 図9は、実験的に作製した鉄心の形状を説明する説明図(側面図)である。 図10は、各鉄心形状における外周の長さと内周の長さの比と、鉄心最内巻き1/4厚さにおける波形率の関係を示す図である。 図11は、鉄心素材の高調波重畳下での鉄損劣化率と変圧器鉄損の関係を示す図である。 図12は、実施例で作製したトランココアの形状を説明する説明図(側面図)である。 図13は、実施例で作製したユニコアの形状を説明する説明図(側面図)である。
 以下、本発明の詳細を説明する。
 <巻鉄心>
 上述の通り、低鉄損となる変圧器巻鉄心を達成するには、以下の条件を満たす必要がある。
(A)平面部と平面部に隣接するコーナー部を有し、前記平面部にラップ部を有し、前記コーナー部に屈曲部を有する巻鉄心とすること
(B)鉄心の外周の長さと内周の長さの比が1.70以下であること
 (A)は一般的にユニコアやデュオコアタイプと呼ばれる巻鉄心の製造手法を選択することで満たされる。巻鉄心の製造方法は、公知の方法を採用することができる。より具体的には、AEM社製のユニコア製造機を使用すると、設計サイズを製造機に読み込ませると、設計図通りのサイズに鋼板がせん断、屈曲部加工された加工済みの鋼板が1枚ずつ作製されるので、この加工済みの鋼板を積層させることで上記巻鉄心を作製することができる。
 (B)の条件における、鉄心の外周、内周の長さとは、鉄心を側面視した場合における、鉄心の外周の長さと内周の長さをそれぞれ指す。すなわち、鉄心の外周の長さは、鉄心を側面視した場合において、巻鉄心を構成する方向性電磁鋼板(素材)のうち、最も外側に位置する方向性電磁鋼板の外側(外面)に沿って該方向性電磁鋼板の巻回方向に1周した長さであり、鉄心の内周の長さは、巻鉄心を構成する方向性電磁鋼板のうち、最も内側に位置する方向性電磁鋼板の内側(内面)に沿って該方向性電磁鋼板の巻回方向に1周した長さである。鉄心の外周の長さと内周の長さの比率の上限は1.70であることが必要である。前記比率は、1.60以下が好ましく、1.55以下がより好ましい。前記比率の下限は特性上では特には規定しないが、比率が1に近づくことは鉄心厚みが減少することになるので、鉄心サイズと厚みの関係で決定される。一例として、前記比率の下限は1.05である。
 上記(A)、(B)の要件を本発明範囲内に制御すれば、(A)、(B)以外の、鋼板接合部の形式や鉄心サイズ、屈曲部の折り曲げ角度、屈曲部数などは特に限定されない。
 <巻鉄心を構成する方向性電磁鋼板>
 上述の通り、低鉄損となる変圧器巻鉄心を達成するには、以下の条件を満たす必要がある。
 (C)鉄心素材として、磁場の強さHが800A/mのときの磁束密度B8が1.92T以上1.98T以下である方向性電磁鋼板を用いること
 磁気特性の測定は、エプスタイン試験により行う。エプスタイン試験はIEC規格あるいはJIS規格等の公知の方法で実施する。あるいは、非耐熱型の磁区細分化材など、エプスタイン試験による磁束密度B8の評価が困難な場合には、単板磁気測定試験(SST)による結果を代用しても良い。巻鉄心製造に関し、上記の磁束密度B8の好適範囲による選別を行う際には、方向性電磁鋼板コイルの代表特性を用いるべきである。具体的には、鋼板コイルの先尾端にて、試験サンプルを採取し、エプスタイン試験を行い磁束密度B8を測定し、その平均値を代表特性として採用する。あるいは、鋼材メーカが提供する鋼板の特性値(平均値及び保証値)を基に、材料の選別を行っても良い。
 (D)鉄心素材として、下記式で求められる高調波重畳下での鉄損劣化率が1.30以下である方向性電磁鋼板を用いること
高調波重畳下での鉄損劣化率=(高調波重畳下における鉄損)/(高調波重畳がない場合の鉄損)
 上記の式中で定義される、高調波重畳下における鉄損、高調波重畳がない場合の鉄損は、同一のエプスタイン試験機又は単板磁気測定装置にて周波数50Hz、最大磁化1.7Tの条件にて測定される鉄損(W/kg)であり、かつ、前記高調波重畳下における鉄損は、励磁電圧における基本調波に対する3次高調波の重畳率40%、位相差60°の条件において測定される鉄損である。高調波重畳は、一次巻き線の印加電圧に対して重畳される。一次巻き線の印加電圧に対する高調波重畳方法は、特に規定しないが、例えば波形発生器において高調波重畳した電圧波形を発生させ、それを電力アンプにて増幅させて、励磁電圧(一次巻き線に印加される電圧)とする方法がある。本発明における高調波重畳条件は、励磁電圧における基本調波に対する3次高調波の重畳率40%、位相差60°の条件である。すなわち、本発明における高調波重畳条件下での電圧波形は、基本調波となる50Hz正弦波に対し、その3次高調波である150Hz正弦波を、基本調波の振幅の40%の振幅にて、位相差60°遅らせて重畳させた波形となる。本発明では、上述のように、鉄心素材として、高調波重畳下での鉄損劣化率が1.30以下である方向性電磁鋼板を用いる。前記高調波重畳下での鉄損劣化率は、1.28以下が好ましく、1.25以下がより好ましい。なお、前記高調波重畳下での鉄損劣化率の下限は特に限定されないが、一例として、前記高調波重畳下での鉄損劣化率の下限は1.01である。
 (C)、(D)の要件を本発明範囲内に制御すれば、(C)、(D)以外の方向性電磁鋼板の特性や、成分、製造方法等は特に限定されるものではない。
 以下に、本発明の巻鉄心の素材として好適な方向性電磁鋼板の成分、製造方法について述べる。
 [成分組成]
 本発明において、方向性電磁鋼板用スラブの成分組成は、二次再結晶が生じる成分組成であればよい。また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.010~0.065質量%、N:0.0050~0.0120質量%、S:0.005~0.030質量%、Se:0.005~0.030質量%である。
 さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。この場合には、Al、N、SおよびSe量はそれぞれ、Al:100質量ppm以下、N:50質量ppm以下、S:50質量ppm以下、Se:50質量ppm以下に抑制することが好ましい。
 上記方向性電磁鋼板用スラブの基本成分および任意添加成分について具体的に述べると次のとおりである。
 C:0.08質量%以下
 Cは、熱延板組織の改善のために添加をする。しかしながら、C含有量が、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、C含有量は0.08質量%以下とすることが好ましい。なお、C含有量の下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。すなわち、C含有量は0質量%であってもよい。
 Si:2.0~8.0質量%
 Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素である。Si含有量が2.0質量%以上であると十分な鉄損低減効果がより得られやすくなる。一方、Si含有量が8.0質量%以下であると、著しい加工性の低下を抑制でき、また磁束密度の低下も抑制しやすくなる。そのため、Si含有量は2.0~8.0質量%の範囲とすることが好ましい。
 Mn:0.005~1.000質量%
 Mnは、熱間加工性を良好にする上で必要な元素である。Mn含有量が0.005質量%以上であると、その添加効果が得られやすくなる。一方、Mn含有量が1.000質量%以下であると製品板の磁束密度の低下を抑制しやすくなる。そのため、Mnの含有量は、0.005~1.000質量%の範囲とすることが好ましい。
 Cr:0.02~0.20質量%
 Crは、フォルステライト被膜と地鉄との界面に、緻密な酸化被膜形成を促進する元素である。Crを添加しなくても酸化被膜形成は可能であるが、Crを0.02質量%以上添加することによって他成分の好適範囲の拡大などが期待できる。また、Cr含有量が0.20質量%以下であると、酸化被膜が厚くなりすぎるのを抑制でき、耐コーティング剥離性の劣化を抑制しやすくなる。そのため、Cr含有量は、0.02~0.20質量%の範囲とすることが好ましい。
 上記方向性電磁鋼板用スラブは上記の成分を基本成分とすることが好ましい。前記スラブは、上記の成分以外に、次に述べる元素を適宜含有させることができる。
 Ni:0.03~1.50質量%、Sn:0.010~1.500質量%、Sb:0.005~1.500質量%、Cu:0.02~0.20質量%、P:0.03~0.50質量%、およびMo:0.005~0.100質量%のうちから選んだ少なくとも1種
 Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。Ni含有量が0.03質量%以上であると磁気特性の向上効果がより得られやすくなる。Ni含有量が1.50質量%以下であると、二次再結晶が不安定になるのを抑制でき、製品板の磁気特性が劣化するおそれを低減しやすくなる。そのため、Niを含有する場合、Ni含有量は0.03~1.50質量%の範囲とするのが好ましい。
 また、Sn、Sb、Cu、PおよびMoはそれぞれ磁気特性の向上に有用な元素であり、いずれも上記した各成分の含有量の下限以上であると磁気特性の向上効果がより得られやすくなる。一方、上記した各成分の含有量の上限以下であると、二次再結晶粒の発達が阻害されるおそれを低減しやすくなる。そのため、Sn、Sb、Cu、P、Moを含有する場合、前記各元素の含有量は、それぞれ上記範囲とすることが好ましい。
 なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
 次に、本発明の巻鉄心の素材として好適な方向性電磁鋼板の製造方法について説明する。
 [加熱]
 上記成分組成を有するスラブを、常法に従い加熱する。加熱温度は、1150~1450℃が好ましい。
 [熱間圧延]
 上記加熱後に、熱間圧延を行う。鋳造後、加熱せずに直ちに熱間圧延を行ってもよい。薄鋳片の場合には、熱間圧延を行うこととしてもよく、あるいは、熱間圧延を省略してもよい。熱間圧延を実施する場合は、粗圧延最終パスの圧延温度を900℃以上、仕上げ圧延最終パスの圧延温度を700℃以上で実施することが好ましい。
 [熱延板焼鈍]
 その後、必要に応じて熱延板焼鈍を施す。このとき、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800~1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害されるおそれがある。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が極めて困難となるおそれがある。
 [冷間圧延]
 その後、1回または中間焼鈍を挟む2回以上の冷間圧延を施す。中間焼鈍温度は800℃以上1150℃以下が好適である。また、中間焼鈍時間は、10~100秒程度とすることが好ましい。
 [脱炭焼鈍]
 その後、脱炭焼鈍を行う。脱炭焼鈍では、焼鈍温度を750~900℃とし、酸化性雰囲気PHO/PHを0.25~0.60とし、焼鈍時間を50~300秒程度とすることが好ましい。
 [焼鈍分離剤の塗布]
 その後、焼鈍分離剤を塗布する。焼鈍分離剤は、主成分をMgOとし、塗布量を8~15g/m程度とすることが好適である。
 [仕上げ焼鈍]
 その後、二次再結晶およびフォルステライト被膜の形成を目的として仕上げ焼鈍を施す。焼鈍温度は1100℃以上とし、焼鈍時間は30分以上とすることが好ましい。
 [平坦化処理および絶縁コーティング]
 その後、平坦化処理(平坦化焼鈍)および絶縁コーティングを施す。なお、絶縁コーティングを施す際の絶縁コーティングの塗布・焼き付け処理にて平坦化処理も同時に行い、形状を矯正することも可能である。平坦化焼鈍は、焼鈍温度を750~950℃とし、焼鈍時間10~200秒程度で実施するのが好適である。本発明では、平坦化焼鈍前または後に、鋼板表面に絶縁コーティングを施すことができる。ここでの絶縁コーティングとは、鉄損低減のために、鋼板に張力を付与するコーティング(張力コーティング)を意味する。張力コーティングとしては、シリカを含有する無機系コーティングや、物理蒸着法、化学蒸着法等によるセラミックコーティング等が挙げられる。
 一般的には、高調波重畳下における鉄損劣化率は、表面被膜(フォルステライト被膜及び絶縁コーティング)による鋼板への引張り張力が大きい方が減少する。被膜張力を大きくするためには、張力コーティングの厚みを増加させればよいが、占積率の悪化が懸念される。占積率を悪化させることなく、強い張力を得るためには、シリカを含有する無機系コーティングの場合には、焼き付け温度を上げることによるガラス結晶化の促進などの方策がある。またセラミックコーティングなどの低熱膨張率の被膜の付与も、強い張力を得るのに有効である。
 [磁区細分化処理]
 鋼板の鉄損を低減させるために、磁区細分化処理を施すことは好適である。磁区細分化技術とは、鋼板の表面に対して物理的な手法で不均一性を導入することにより、磁区の幅を細分化して鉄損を低減する技術である。磁区細分化技術は大きく分けて、歪み取り焼鈍において効果が損じない耐熱型の磁区細分化と、歪み取り焼鈍により効果が減じる非耐熱型の磁区細分化に分けられる。本発明においては、磁区細分化処理がされていない鋼板、耐熱型の磁区細分化処理が施された鋼板、非耐熱型の磁区細分化が施された鋼板いずれにも適用することができる。
 その中では、耐熱型の磁区細分化処理を施された鋼板よりも、非耐熱型の磁区細分化処理を施された鋼板が好適である。非耐熱型の磁区細分化処理は、一般的には高エネルギービーム(レーザー等)を二次再結晶後の鋼板に照射し、その照射による鋼板表層に高転位密度領域の導入及びそれに付随する応力場の形成により、磁区細分化する処理である。非耐熱型の磁区細分化処理材(非耐熱型の磁区細分化処理が施された鋼板)では、鋼板最表面に高転位密度領域の導入による強い引っ張り場が形成されることで、高調波重畳による渦電流損の増加を回避することができる。このような歪導入型の非耐熱型磁区細分化処理の方法については、鋼板表面に高エネルギービーム(レーザー、電子ビーム、プラズマジェット等)を照射する等の公知の技術を適用することができる。
 実施例に基づいて本発明を具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。本発明の実施形態は、本発明の趣旨に適合する範囲で適宜変更することが可能であり、それらは何れも本発明の技術的範囲に包含される。
 [実施例1]
 図12および表4、図13および表5に示す鉄心形状と、表6に示す鉄心素材である方向性電磁鋼板にて、単相のトランココア及びユニコアを作製した。条件1~12には、成型後、800℃で2時間の歪み取り焼鈍を行い、焼鈍後、接合部より鉄心を巻きほぐし、50Turn(50巻き)の巻き線コイルを挿入した。また、条件13~54には、前記歪み取り焼鈍を行わずに、前記巻き線コイルを挿入した。そして、励磁磁束密度(Bm)1.5T、周波数(f)60Hzの条件で、変圧器鉄損を測定した。同条件での、鉄心素材のエプスタイン試験結果(非耐熱型の磁区細分化の場合は単板磁気測定結果)を素材鉄損とし、その素材鉄損に対する変圧器鉄損における鉄損増加率BFを求めた。なお、表4(トランココアの場合)において、内周の長さは、2(c+d)-8f×(1-π×90(°)/360(°))で算出した。また、外周の長さは、2(a+b)-8e×(1-π×90(°)/360(°))で算出した。また、a、bは、それぞれa=c+2w、b=d+2wで算出した。表5のユニコアの内周の長さ、外周の長さは、表2と同様に算出した。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
 結果を表6中に示す。本発明の適合例および最適例においては、比較例と比べてBFが良好であり、非常に優れた変圧器特性を示すことが判明した。特に非耐熱型磁区細分化材を用いた最適例は、変圧器鉄損が特に小さかった。
Figure JPOXMLDOC01-appb-T000006
 

Claims (4)

  1. 方向性電磁鋼板を素材として構成された巻鉄心であって、
    前記巻鉄心は、
    平面部と該平面部に隣接するコーナー部を有し、前記平面部にラップ部を有し、前記コーナー部に屈曲部を有し、かつ、前記巻鉄心を側面視したときの外周の長さと内周の長さの比(外周の長さ/内周の長さ)が1.70以下であり、
    前記方向性電磁鋼板は、
    磁場の強さHが800A/mのときの磁束密度B8が1.92T以上1.98T以下であり、かつ、下記式で求められる高調波重畳下での鉄損劣化率が1.30以下である、巻鉄心。
    高調波重畳下での鉄損劣化率=(高調波重畳下における鉄損)/(高調波重畳がない場合の鉄損)
    ここで、上記式中の高調波重畳下における鉄損および高調波重畳がない場合の鉄損は、それぞれ周波数50Hz、最大磁化1.7Tの条件で測定された鉄損(W/kg)であり、かつ、前記高調波重畳下における鉄損は、励磁電圧における基本調波に対する3次高調波の重畳率40%、位相差60°の条件において測定された鉄損である。
  2. 前記方向性電磁鋼板が、非耐熱型の磁区細分化処理が施されたものである、請求項1に記載の巻鉄心。
  3. 方向性電磁鋼板を素材として構成され、平面部と該平面部に隣接するコーナー部を有し、前記平面部にラップ部を有し、前記コーナー部に屈曲部を有する巻鉄心の製造方法であって、
    前記巻鉄心を側面視したときの前記巻鉄心の外周の長さと内周の長さの比(外周の長さ/内周の長さ)を1.70以下とし、
    前記方向性電磁鋼板として、磁場の強さHが800A/mのときの磁束密度B8が1.92T以上1.98T以下であり、かつ、下記式で求められる高調波重畳下での鉄損劣化率が1.30以下である方向性電磁鋼板を用いる、巻鉄心の製造方法。
    高調波重畳下での鉄損劣化率=(高調波重畳下における鉄損)/(高調波重畳がない場合の鉄損)
    ここで、上記式中の高調波重畳下における鉄損および高調波重畳がない場合の鉄損は、それぞれ周波数50Hz、最大磁化1.7Tの条件で測定された鉄損(W/kg)であり、かつ、前記高調波重畳下における鉄損は、励磁電圧における基本調波に対する3次高調波の重畳率40%、位相差60°の条件において測定された鉄損である。
  4. 前記方向性電磁鋼板が、非耐熱型の磁区細分化処理が施されたものである、請求項3に記載の巻鉄心の製造方法。
PCT/JP2022/023039 2021-07-30 2022-06-08 巻鉄心および巻鉄心の製造方法 WO2023007953A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020247001270A KR20240021277A (ko) 2021-07-30 2022-06-08 권철심 및 권철심의 제조 방법
CN202280050560.0A CN117652005A (zh) 2021-07-30 2022-06-08 卷铁心及卷铁心的制造方法
EP22849032.2A EP4343796A1 (en) 2021-07-30 2022-06-08 Wound core and wound core manufacturing method
CA3219694A CA3219694A1 (en) 2021-07-30 2022-06-08 Wound core and method for producing wound core
JP2022544248A JP7151947B1 (ja) 2021-07-30 2022-06-08 巻鉄心および巻鉄心の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-124864 2021-07-30
JP2021124864 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023007953A1 true WO2023007953A1 (ja) 2023-02-02

Family

ID=85086572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023039 WO2023007953A1 (ja) 2021-07-30 2022-06-08 巻鉄心および巻鉄心の製造方法

Country Status (1)

Country Link
WO (1) WO2023007953A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253579B2 (ja) 1984-11-10 1987-11-11 Nippon Steel Corp
JP2895670B2 (ja) 1991-10-24 1999-05-24 川崎製鉄株式会社 鉄損の低い方向性電磁鋼板及びその製造方法
JP2006185999A (ja) 2004-12-27 2006-07-13 Nippon Steel Corp ビルディングファクタの低い変圧器およびリアクトル鉄心の製造方法
JP2011162829A (ja) * 2010-02-08 2011-08-25 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2012102395A (ja) * 2010-10-14 2012-05-31 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP5286292B2 (ja) 2005-07-08 2013-09-11 株式会社日立産機システム 静止機器用巻鉄心、及び三相三脚巻鉄心
WO2019009311A1 (ja) * 2017-07-04 2019-01-10 日立金属株式会社 巻磁心及び巻磁心の製造方法
JP2020150089A (ja) * 2019-03-12 2020-09-17 日本製鉄株式会社 鉄芯、巻鉄芯の製造方法、積鉄芯の製造方法及び鉄芯用電磁鋼板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253579B2 (ja) 1984-11-10 1987-11-11 Nippon Steel Corp
JP2895670B2 (ja) 1991-10-24 1999-05-24 川崎製鉄株式会社 鉄損の低い方向性電磁鋼板及びその製造方法
JP2006185999A (ja) 2004-12-27 2006-07-13 Nippon Steel Corp ビルディングファクタの低い変圧器およびリアクトル鉄心の製造方法
JP5286292B2 (ja) 2005-07-08 2013-09-11 株式会社日立産機システム 静止機器用巻鉄心、及び三相三脚巻鉄心
JP2011162829A (ja) * 2010-02-08 2011-08-25 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2012102395A (ja) * 2010-10-14 2012-05-31 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
WO2019009311A1 (ja) * 2017-07-04 2019-01-10 日立金属株式会社 巻磁心及び巻磁心の製造方法
JP2020150089A (ja) * 2019-03-12 2020-09-17 日本製鉄株式会社 鉄芯、巻鉄芯の製造方法、積鉄芯の製造方法及び鉄芯用電磁鋼板の製造方法

Similar Documents

Publication Publication Date Title
KR101421387B1 (ko) 방향성 전기 강판 및 그 제조 방법
KR102239708B1 (ko) 방향성 전자 강판 및 그의 제조 방법
WO2012017670A1 (ja) 方向性電磁鋼板およびその製造方法
WO2012017689A1 (ja) 方向性電磁鋼板およびその製造方法
KR101607909B1 (ko) 방향성 전자 강판 및 그것을 이용한 변압기 철심
WO2013100200A1 (ja) 方向性電磁鋼板およびその製造方法
JP6007501B2 (ja) 方向性電磁鋼板
JP2012177149A (ja) 方向性電磁鋼板およびその製造方法
RU2610204C1 (ru) Способ изготовления листа из текстурированной электротехнической стали
JP2012031498A (ja) 方向性電磁鋼板およびその製造方法
JP2012057232A (ja) 方向性電磁鋼板およびその製造方法
JP6973369B2 (ja) 方向性電磁鋼板およびその製造方法
JP5565307B2 (ja) 方向性電磁鋼板の製造方法
JP7151947B1 (ja) 巻鉄心および巻鉄心の製造方法
WO2023007953A1 (ja) 巻鉄心および巻鉄心の製造方法
JP7318846B1 (ja) 三相三脚巻鉄心およびその製造方法
WO2023167016A1 (ja) 三相三脚巻鉄心およびその製造方法
JP7151946B1 (ja) 巻鉄心および巻鉄心の製造方法
WO2023007952A1 (ja) 巻鉄心および巻鉄心の製造方法
JP7318845B1 (ja) 三相三脚巻鉄心およびその製造方法
WO2023167015A1 (ja) 三相三脚巻鉄心およびその製造方法
WO2022092114A1 (ja) 巻鉄心
JP7485954B2 (ja) 巻鉄心
JP7459955B2 (ja) 方向性電磁鋼板
JP5754170B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022544248

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3219694

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 22849032.2

Country of ref document: EP

Ref document number: 2022849032

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022849032

Country of ref document: EP

Effective date: 20231218

ENP Entry into the national phase

Ref document number: 20247001270

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001270

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280050560.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/000938

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE